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Within contemporary hadron physics there are two common methods for determining the momentum-
dependence of the interaction between quarks: the top-down approach, which works toward an ab initio
computation of the interaction via direct analysis of the gauge-sector gap equations; and the bottom-
up scheme, which aims to infer the interaction by fitting data within a well-defined truncation of 
those equations in the matter sector that are relevant to bound-state properties. We unite these two 
approaches by demonstrating that the renormalisation-group-invariant running-interaction predicted by 
contemporary analyses of QCD’s gauge sector coincides with that required in order to describe ground-
state hadron observables using a nonperturbative truncation of QCD’s Dyson–Schwinger equations in the 
matter sector. This bridges a gap that had lain between nonperturbative continuum-QCD and the ab initio
prediction of bound-state properties.

© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The last two decades have seen significant progress and phe-
nomenological success in the formulation and use of symmetry 
preserving methods in continuum-QCD for the computation of ob-
servable properties of hadrons [1–8]. A large part of that work 
is based on the rainbow-ladder (RL) truncation of QCD’s Dyson–
Schwinger equations (DSEs), which is the leading-order term in a 
symmetry preserving approximation scheme [9,10]. The RL trun-
cation is usually employed with a one-parameter model for the 
infrared behaviour of the quark–quark interaction produced by 
QCD’s gauge-sector [11,12]. It is accurate for ground-state vector-
and isospin-nonzero pseudoscalar-mesons constituted from light 
quarks and also for nucleon and � properties because correc-
tions in all these channels largely cancel owing to parameter-
free preservation of the Ward–Green–Takahashi (WGT) identities 
[13–16]. Corrections do not cancel in other channels, however; and 
hence studies based on the RL truncation, or low-order improve-
ments thereof [17,18], have usually provided poor results for all 
other systems.

* Corresponding author.
E-mail address: cdroberts@anl.gov (C.D. Roberts).

A recently developed truncation scheme [19] overcomes the 
weaknesses of RL truncation in all channels considered thus far. 
This new strategy, too, is symmetry preserving but it has an ad-
ditional strength; namely, the capacity to express dynamical chiral 
symmetry breaking (DCSB) nonperturbatively in the integral equa-
tions connected with bound-states. That is a crucial advance be-
cause, like confinement, DCSB is one of the most important emer-
gent phenomena within the Standard Model: it may be considered 
as the origin of more than 98% of the visible mass in the Uni-
verse. Owing to this feature, the new scheme is described as the 
“DCSB-improved” or “DB” truncation. It preserves successes of the 
RL truncation but has also enabled a range of novel nonperturba-
tive features of QCD to be demonstrated [20–23].

The widespread phenomenological success of this bottom-up 
approach to the calculation of hadron observables raises an im-
portant question; viz., are the one-parameter RL or DB interaction 
models, used in those equations relevant to colour-singlet bound-
states, consistent with modern analyses of QCD’s gauge sector and 
the solutions of the gluon and ghost gap equations they yield 
[24–34]? An answer in the affirmative will grant significant ad-
ditional credibility to the claim that these predictions are firmly 
grounded in QCD.

http://dx.doi.org/10.1016/j.physletb.2015.01.031
0370-2693/© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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2. Quark gap equation

In order to expose the computational essence of the bottom-
up DSE studies, it is sufficient to consider the gap equation for 
the dressed quark Schwinger function, S(p) = Z(p2)/[iγ · p +
M(p2)]:
S−1(p) = Z2

(
iγ · p + mbm) + Σ(p), (1a)

Σ(p) = Z1

Λ∫
dq

g2 Dμν(p − q)
λa

2
γμS(q)

λa

2
Γν(q, p), (1b)

where: Dμν is the gluon propagator1; Γν , the quark–gluon ver-

tex; 
∫ Λ

dq , a symbol representing a Poincaré invariant regularisation 
of the four-dimensional integral, with Λ the regularisation mass-
scale; mbm(Λ), the current-quark bare mass; and Z1,2(ζ

2, Λ2), 
respectively, the vertex and quark wave-function renormalisation 
constants, with ζ the renormalisation point, which is ζ = ζ2 :=
2 GeV here. Eqs. (1) are the starting point for all DSE predictions 
of hadron properties.

Significantly, owing to asymptotic freedom, there is no model 
dependence in the behaviour of the gap equation’s kernel on the 
domain A = {(p2, q2) | k2 = (p − q)2 � p2 � q2 � 2 GeV2} because 
perturbation theory and the renormalisation group can be used to 
show [38–40]:

g2 Dμν(k)Z1Γν(q, p)
k2�2 GeV2

= 4παs
(
k2)Dfree

μν (k)Z 2
2γν, (2)

where Dfree
μν (k) is the free-gauge-boson propagator and αs(k2) is 

QCD’s running coupling on this domain. Kindred results follow 
immediately for the kernels in the two-body Bethe–Salpeter equa-
tions relevant for meson bound-states [9,10,19].

Eq. (2) entails that the model input in realistic DSE studies is 
expressed in a statement about the nature of the gap equation’s 
kernel on A ; i.e., at infrared momenta. One writes

Z1 g2 Dμν(k)Γν(q, p) = k2G
(
k2)Dfree

μν (k)Z2Γ
A
ν (q, p) (3a)

= [
k2GIR

(
k2) + 4πα̃pQCD

(
k2)]

× Dfree
μν (k)Z2Γ

A
ν (q, p), (3b)

where α̃pQCD(k2) is a bounded, monotonically-decreasing regular 
continuation of the perturbative-QCD running coupling to all val-
ues of spacelike-k2; GIR(k2) is an assumed form for the interac-
tion at infrared momenta, with k2GIR(k2) � 4πα̃pQCD(k2) ∀k2 �
2 GeV2; and Γ A

ν (q, p) is an Ansatz for the dressed-gluon–quark 
vertex, with Γ A

ν (q, p) = Z2γν on A .
As reviewed elsewhere [5,6,8], successful explanations and pre-

dictions of numerous hadron observables are obtained with

I
(
k2) = k2G

(
k2), (4a)

G
(
k2) = 8π2

ω4
De−k2/ω2 + 8π2γmE(k2)

ln[τ + (1 + k2/Λ2
QCD)2] , (4b)

where: γm = 12/(33 −2N f ) [typically, N f = 4], ΛQCD = 0.234 GeV; 
τ = e2 − 1; and E(k2) = [1 − exp(−k2/[4m2

t ])]/k2, mt = 0.5 GeV. 

1 Landau gauge is typically used because it is, inter alia [35–37]: a fixed point 
of the renormalisation group; that gauge for which sensitivity to model-dependent 
differences between Ansätze for the fermion-gauge-boson vertex are least notice-
able; and a covariant gauge, which is readily implemented in numerical simulations 
of lattice regularised QCD. Importantly, capitalisation on the gauge covariance of 
Schwinger functions obviates any question about the gauge dependence of gauge 
invariant quantities.

The origin and features of Eq. (4b) are detailed in Ref. [11] so here 
we only highlight two key aspects: the Ansatz is consistent with 
the constraints described above and it involves just one free pa-
rameter.

The last point deserves further attention. At first glance there 
appear to be two free parameters in Eq. (4b): D , ω. How-
ever, computations show [11,12,41] that a large body of ob-
servable properties of ground-state vector- and isospin-nonzero 
pseudoscalar-mesons are practically insensitive to variations of 
ω ∈ [0.4, 0.6] GeV, so long as

(ςG)3 := Dω = constant. (5)

(The midpoint ω = 0.5 GeV is usually employed in calculations.) 
This feature also extends to numerous properties of the nucleon 
and � resonance [4,7]. The value of ςG is typically chosen in order 
to obtain the measured value of the pion’s leptonic decay con-
stant, fπ . It is striking that fitting just one parameter in a Gaußian
Ansatz for the gap equation’s kernel is sufficient to achieve an 
efficacious description of a wide range of hadron observables. It 
provides prima facie evidence that Eqs. (3), (4) are correct in prin-
ciple; and translates the question posed at the end of Section 1
into the following: “How does k2GIR(k2) in Eq. (4a) compare with 
today’s understanding of QCD’s gauge sector?”

That question has a subtext, however, because the fitted value 
of ςG depends on the form of Γ A

ν (q, p). We consider two choices 
herein: RL and DB. The RL truncation is obtained with

Γ A
ν (q, p) = Z2γν. (6)

It is summarised in Appendix A.1 of Ref. [42] and provides the 
most widely used DSE computational scheme in hadron physics. In 
this case one has [23]

ςRL
G = 0.87 GeV. (7)

The form of Γ DB
ν (q, p) is detailed in Appendix A.2 of Ref. [42]. 

It is consistent with constraints imposed by both the longitudinal 
and transverse WGT identities [43]. The DB kernel is connected 
with the most refined nonperturbative truncation that is currently 
available. It is therefore expected to be the most realistic. With this 
vertex, one has [23]

ςDB
G = 0.55 GeV. (8)

Following upon this discussion, we arrive at a pair of simple 
questions. Does an analysis of QCD’s gauge sector produce a run-
ning interaction-strength that is generally consistent with the form 
in Eqs. (4); and, if so, does it more closely resemble the function 
obtained with ςG in Eq. (7) or (8)?

3. RGI interaction kernel

In order to expose the quantity with which Eq. (4b) should be 
compared, we must provide some background. The Landau-gauge 
dressed-gluon propagator has the simple form

Dμν(k) = Dfree
μν (k)�

(
k2) =

[
δμν − kμkν

k2

]
�(k2)

k2
=: T k

μνD
(
k2);

(9)

and since we are interested in QCD’s gauge sector, the dressed-
ghost propagator will also be relevant:

F
(
k2) = − F (k2)

k2
. (10)

As we now explain, the scalar function in Eq. (10) is connected 
with the following gluon-ghost vacuum-polarisation:
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Λμν(k) = δμνG
(
k2) + (

kμkν/k2)L
(
k2) (11a)

= Nc

Λ∫
dq

g2F
(
k2)Dμρ(q)Hρν(q,k), (11b)

which arises in contemporary applications of the pinch-technique 
(PT) [44,45] to QCD’s gauge sector [27,46]. The kernel Hρν(q, k) in 
Eq. (11) is defined via

kν Hμν(q,k) = Γ F
μ (q,k), (12)

where Γ
F
μ (q, k) is the dressed-ghost-gluon vertex: in the ab-

sence of dressing, Hμν(q, k) → H0
μν(q, k) = δμν and Γ F

μ (q, k) →
Γ

F 0
μ (q, k) = kμ . In Landau gauge, one has [26]

1/F
(
k2) = 1 + G

(
k2) + L

(
k2). (13)

Notably, Eq. (13) is a consequence of QCD’s BRST invariance; and 
the combination [1 + G(k2)] is a crucial element in the set of 
background-quantum identities (BQIs) explained in Ref. [46].

The functions G(k2) and L(k2) both satisfy dynamical equa-
tions [27], which may readily be deduced from the definitions in 
Eqs. (11). Analysing this dynamical system, one can prove the ex-
act result [26] L(0) = 0; and hence, using Eq. (13): [1 + G(k2 =
0) = 1/F (0)]. However, L(k2) �≡ 0. In fact, as demonstrated else-
where [34], L(k2) is sizeable at intermediate momenta, so that the 
oft used assumption [47,48] [1 + G(k2) ≈ 1/F (k2)] is quantitatively 
inaccurate. Therefore, in computing G(k2) herein, we include the 
nonperturbative corrections to Γ F

μ (q, k) determined in Ref. [34].
As remarked above and elucidated elsewhere [9,10,19], there is 

a one-to-one correspondence between the kernels in the dressed-
quark gap equation and those in the Bethe–Salpeter equations 
relevant to meson bound-states, which we will denote by K . Cru-
cially, the kernels K possess a “universal” subcomponent, which 
has the nature of a running interaction-strength (coupling), d(k2), 
that does not depend on the valence-quark content of the Bethe–
Salpeter equation.

A systematic identification of d(k2) has been completed using 
the pinch technique [25]. It was achieved via the rearrangement 
of physical amplitudes into sub-amplitudes with special proper-
ties. In this way one obtains dressed coloured vertices that sat-
isfy QED-like WGT identities and a gluon propagator that captures 
all the theory’s renormalisation-group logarithms. These quantities 
coincide with the corresponding vertices and propagator defined 
in the background field method (BFM) [49]. This identification is 
valid both perturbatively, to all orders, and nonperturbatively, at 
the level of the corresponding DSEs. Moreover, the relationship be-
tween the corresponding Schwinger functions before and after the 
diagrammatic application of the PT procedure is formally captured 
by the BQIs.

To be specific, in the present context the standard gluon dress-
ing function, �(k2) in Eq. (9), is related to the scalar cofactor of 
the PT-BFM gluon propagator, denoted �̂(k2), as follows:

�
(
k2) = �̂

(
k2)[1 + G

(
k2)]2

, (14)

where G(k2) was introduced in Eqs. (11). Evidently, �̂(k2) is re-
lated to �(k2) via a function determined by ghost-gluon dynamics.

Similarly, the PT-BFM quark–gluon vertex: Γ̂ a
μ = λa

2 Γ̂μ , which 
satisfies a QED-like WGT identity:

kμiΓ̂μ(p,q) = S−1(p) − S−1(q), (15)

is related to Γμ in Eqs. (1) by the BQI

Fig. 1. RGI running interaction strength, d(k2) in Eq. (19), computed via a combi-
nation of DSE- and lattice-QCD results, as explained in Ref. [25]. We display the 
function obtained using five different values of the renormalisation point in order 
to highlight that the result is RGI.

[
1 + G

(
k2)]Γμ(p,q)

= Γ̂μ(p,q) + S−1(q)Q μ(p,q) + Q̄ μ(p,q)S−1(p), (16)

where Q μ , Q̄ μ are auxiliary composite three-point functions. Im-
portantly, when embedded in the computation of scattering pro-
cesses, the last two terms on the right-hand-side of Eq. (16) cancel 
against other process-dependent contributions.

These considerations entail that the leading term in the quark–
antiquark scattering kernel (q+ − q− = P = p+ − p−)

K (p,q; P ) = −λa

2
Γμ(p+,q+)αs Dμν(k)

λa

2
Γν(q−, p−), (17)

in which the spinor indices have been suppressed, may be rewrit-
ten as

K (p,q; P ) = −λa

2
Γ̂μ(p+,q+)αs�̂

(
k2)Dfree

μν (k)
λa

2
Γ̂ν(q−, p−).

(18)

Given that Γ̂ν in Eq. (18) satisfies Eq. (15), which is a signifi-
cant element in the construction of the RL and DB truncations 
described above, then a comparison with Eqs. (3) and their com-
putable analogues for the Bethe–Salpeter equations [9,10,19] leads 
one to conclude that the dimensionless quantity

Id̂

(
k2) := k2d

(
k2) = αs(ζ

2)�(k2; ζ 2)

[1 + G2(k2; ζ 2)]2
(19)

is the object that should be compared directly with the interaction 
in Eq. (4a).

It is noteworthy that d(k2) is a renormalisation-group-invariant 
(RGI) [25]. The interaction defining the DB kernel, which is built 
using a sophisticated dressed-quark–gluon vertex, Γ A

μ , shares 
this feature. In contrast, interactions employed in the RL ker-
nel and stepwise improvements thereof possess some residual 
ζ -dependence because such kernels use a form for Γ A

μ that is too 
simple.

4. Numerical results for the RGI kernel

The best available information on the RGI running interaction-
strength in Eq. (19) has been obtained through a combination 
of DSE- and lattice-QCD analyses. The procedure is detailed in 
Ref. [25] and yields the result depicted in Fig. 1. We do not 
review the method herein; but, since the renormalisation-point-
independence of the result is important, we recapitulate relevant 
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aspects of that procedure, which are elaborated elsewhere [26]. 
One begins with lattice-QCD results for the ghost dressing function 
[50], F (k2; ζ 2

4.3) in Eq. (10), which was renormalised to unity at 
ζ = ζ4.3 = 4.3 GeV, and determines αs(ζ

2
4.3) by requiring that the 

DSE for F (k2; ζ 2
4.3) reproduces the lattice result. The value of αs

at a new value of ζ is then obtained by employing multiplicative 
renormalisability in order to rescale the lattice result and subse-
quently fixing αs(ζ

2) so that the gap equation for F (k2; ζ 2) re-
produces the rescaled lattice function. In following this procedure, 
all scales are completely determined by the original lattice result 
and the running of αs(ζ

2) matches that of perturbative QCD on 
the perturbative domain (ζ 2 ≥ ζ 2

2 ); viz., the four-loop expression 
for the running coupling evaluated in the momentum-subtraction 
scheme with a value of ΛQCD between 0.25 and 0.32 GeV [51,52].

One may naturally separate d(k2) into the product of two scale-
dependent terms: a dimensionless running coupling, α(ζ 2), mul-
tiplied by the mass-dimension “−2” PT-BFM gluon propagator, 
�̂(k2)/k2, Eq. (14). The latter quantity can be used to define a 
ζ -dependent gluon mass-scale:

m2
g

(
ζ 2) = lim

k2→0

[
1/D

(
k2) = k2/�̂

(
k2; ζ 2)]. (20)

It is evident from Fig. 1 that with αs(ζ ) finite and nonzero, then 
0 < m2

g(ζ
2) < ∞.

Repeating the analysis in Ref. [25], we obtain d(k2 = 0) =
12.9/GeV2, as is plain from Fig. 1; and our results on the domain 
1 < ζ < 4.3 GeV are accurately interpolated by

m2
g

(
ζ 2) = 0.22 + 0.019ζ 2

1 + 1.76ζ 2
, αs

(
ζ 2) = 12.9m2

g

(
ζ 2). (21)

Extrapolating to the far infrared, one finds that QCD’s gauge sector 
is characterised by the following coupling and mass-scale:

αs(0) = 2.77 ≈ 0.9π, m2
g(0) = (0.46 GeV)2. (22)

The value of the mass-scale in Eq. (22) is natural in the sense 
that it is commensurate with but larger than the value of 
the dressed light-quark mass function at far infrared momenta: 
M(0) ≈ 0.3 GeV [53]. The strength of the coupling is also interest-
ing.2 It is greater than that required for DCSB to occur in simple 
treatments of strong-coupling QED [56,57] (αc = π/3) and gap 
equation models for QCD [54,55] (αc ≈ π/3.5), and consistent with 
the value often imagined necessary to describe strong-interaction 
phenomena: αs(0) � π (see, e.g., Refs. [11,58,59]).

5. Comparison of interaction kernels

It is now possible to compare the prediction yielded by 
analyses of QCD’s gauge sector (top-down approach) with the 
running-interaction determined using the bottom-up approach; i.e., 
parametrising the gauge-sector kernel and fitting the parameter in 
order to explain a wide range of hadron observables. The results 
of the comparison are displayed in Fig. 2: the upper panel de-
picts I(k2) itself, whereas the lower panel portrays k2I(k2). The 
latter is plotted because the computation of hadron observables 
typically involves a four-dimensional Euclidean integration, which 
introduces an additional factor of k2 from the measure.

It is immediately apparent that the top-down RGI interaction 
(solid-black curve) and the DB-truncation bottom-up interaction 

2 Our result for αs(0) is approximately five times larger than that obtained in 
Ref. [25] because we use dressed vertices in the gap equations for F (k2), G(k2) and 
accurately evaluated the angular integrals that appear, whereas tree-level vertices 
and the angle-approximation [1,54,55] were used in Ref. [25].

Fig. 2. Comparison between top-down results for the gauge-sector interaction 
[Eqs. (19), (22), Fig. 1] with those obtained using the bottom-up approach based 
on hadron physics observables [Eqs. (4)–(8)]. Solid curve – top-down result for the 
RGI running interaction; dot-dashed curve within pale-red band – bottom-up result 
obtained in the RL truncation, Eqs. (4) and (7); and dashed curve within pale-green 
band – advanced bottom-up result obtained in the DB truncation, Eqs. (4) and (8). 
The bands denote the domain of constant ground-state physics 0.45 < ω < 0.6, de-
scribed in connection with Eq. (5), with ω = 0.6 producing the “flattest” curve; 
i.e., the smaller values on k2 � 0.65 GeV2 and the larger values on k2 � 0.65GeV2. 
The curve within each band is obtained with ω = 0.5 GeV. All curves are identical 
on the perturbative domain: k2 > 2.5 GeV2. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.)

(green band containing dashed curve) are in excellent agreement. 
Hence, the interaction predicted by modern analyses of QCD’s 
gauge sector is in near precise agreement with that required for 
a veracious description of measurable hadron properties using the 
most sophisticated matter-sector gap and Bethe–Salpeter kernels 
available today. This is a remarkable result given that, on the 
themes described herein, there had previously been no commu-
nication between the continuum-QCD hemisphere represented by 
the studies described in Section 2 and that connected with Sec-
tions 3 and 4, except insofar as it was mutually acknowledged that 
QCD’s gauge sector is characterised by a nonzero and finite gluon 
mass-scale.

Unlike one of its predecessors [60], the modern interaction in-
ferred using RL-truncation [11,12] has the correct shape; but it is 
too large in the infrared. This is because the bare-vertex in Eq. (6)
suppresses all effects associated with DCSB in the kernels of the 
gap and Bethe–Salpeter equations except those expressed in I(k2), 
and therefore a description of hadronic phenomena can only be 
achieved by overmagnifying the gauge-sector interaction strength 
at infrared momenta. A similar conclusion was drawn elsewhere 
[61]. It follows that whilst the RL truncation supplies a useful 
computational link between QCD’s gauge sector and measurable 
hadron properties, the model interaction it delivers should nei-
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Table 1
Row 1 – Computed values determined from the interaction tension in Eq. (23), 
quoted in GeV; and Row 2 – the difference: ες := ςI/ςId − 1. So as to represent 
the domain of constant ground-state physics, described in connection with Eq. (5), 
we list values obtained with bottom-up interactions using ω = 0.5, 0.6 GeV.

I Id Iω=0.5
DB Iω=0.6

DB Iω=0.5
RL Iω=0.6

RL

ςI 1.86 1.91 1.82 3.14 2.90
ες 0 2.8% −2.4% 68.5% 55.8%

ther be misconstrued nor misrepresented as a pointwise-accurate 
representation of ghost-gluon dynamics. Notwithstanding this, the 
judicious use of RL truncation and the careful interpretation of its 
results can still be a valuable tool for hadron physics phenomenol-
ogy.3

The level of agreement between the curves in Fig. 2 can usefully 
be quantified via the interaction tension [63]

ς2
I :=

k2
p∫

0

dk2I
(
k2), (23)

where the integral is limited to k2 ≤ k2
p = 2.5 GeV2 because all 

interactions are identical on the perturbative domain. The results 
are listed in Table 1. According to the metric defined by the sec-
ond row, there is plainly little measurable difference between the 
top-down prediction and the DB-truncation bottom-up interaction. 
This is true independent of whether one uses I(k2) or k2I(k2) as 
the integrand.

6. Confinement, fragmentation and Gribov copies

It has long been known that the only Schwinger functions 
which can be associated with states in the Hilbert space of ob-
servables; namely, the set of measurable expectation values, are 
those that satisfy the axiom of reflection positivity [64]. In this 
connection, it is a simple matter to show that the spectral den-
sity associated with any single-variable Schwinger function, S (k2), 
which possesses an inflexion point at k2 > 0 cannot be positive 
definite [65,66]; i.e., it violates the axiom of reflection positivity 
and hence the associated excitation may be viewed as confined.

The RGI function d(k2) displayed in Fig. 1 possesses and inflec-
tion point at k2 = k2

i = (0.41 GeV)2. Consequently, when probed at 
momenta k2 > k2

i , the PT-BFM gluon behaves as an “ordinary” exci-
tation because on this domain its propagator has the convex shape 
that is characteristic of free-particle-like behaviour. Notably, the 
computed value |ki | = 0.41 GeV corresponds to a length si ≈ 0.5 fm, 
which is a natural scale for confinement in QCD; and as k2 de-
creases through k2

i , passing into the infrared, the effects of strong, 
nonperturbative ghost and gluon dressing become manifest and 
the excitation’s propagation characteristics are dramatically altered.

Indeed, as described twenty years ago [67], a violation of pos-
itivity owing to the dynamical generation of a length-scale si ≈
0.5 fm may plausibly be connected with the fragmentation phe-
nomenon. Namely, the coloured state propagates as a pseudo-
plane-wave over mean-distances 〈s〉 < si . However, after each 
“step” of length si , on average, an interaction occurs, so that the 
coloured state loses its identity, sharing it with other partons. Fi-
nally, a cloud of partons is produced, which coalesces into a num-

3 The shortcomings of the interaction in Ref. [60] are explained in Ref. [11]. They 
are practically immaterial if one only considers low momentum transfer proper-
ties of hadron ground-states, which are mainly sensitive to the integrated strength 
of the interaction on the infrared domain: k2 � 2 GeV2. This fact is highlighted 
by the phenomenological successes of a RL treatment of a vector ⊗ vector contact-
interaction (see Refs. [22,59,62] and citations therein).

ber (often large) of colour-singlet final states. This realisation of 
confinement is essentially dynamical. It is not connected in any 
way with the static potential between infinitely-heavy quarks mea-
sured in numerical simulations of quenched lattice-QCD.4

The fact that the active piece of the gauge-boson Schwinger 
function acquires a dynamically generated mass-scale ensures that 
gluons with wavelengths λ � 1/mg(0) ≈ 0.5 fm play no role 
in hadron observables. This phenomenon, and the analogue for 
quarks, provides a basis for understanding the notion of a maxi-
mum wavelength for gluons and quarks in QCD [70].

One of the strengths of the framework we have employed 
is the intimate connection it draws between confinement, DCSB, 
dynamically generated gluon and quark masses, and the max-
imum wavelengths for gluons and quarks. We have exempli-
fied this above and choose to highlight another example here. 
Namely, the behaviour of d(k2) entails DCSB, which itself guar-
antees that light-quark dynamics in QCD supports the existence 
of a (nearly-)massless pseudoscalar meson; viz., the pion, whose 
properties are almost entirely determined by the dressed-quark 
mass-function [71]. The exceptionally light pion degree-of-freedom 
becomes dominant in QCD at those length-scales above which 
dressed-gluons and -quarks decouple from the theory owing to 
the large magnitudes of their dynamically generated masses. We 
therefore judge that Gribov copies can have no measurable im-
pact on observables within the Standard Model because they 
affect only those gluonic modes whose wavelengths lie in the 
far infrared; and such modes are dynamically screened, by an 
exponential damping factor ∼ exp(−λmg), so that their role in 
hadron physics is superseded by the dynamics of light-hadrons. 
This conjecture is consistent with the insensitivity to Gribov 
copies of the dressed-quark and -gluon two-point Schwinger func-
tions observed in numerical simulations of QCD on fine lattices 
[72,73].

7. Epilogue

We have demonstrated that the form of the renormalisation-
group-invariant running-interaction predicted by contemporary 
analyses of QCD’s gauge sector is a good match to the behaviour 
required in order to describe a wide range of hadron observables 
using the most sophisticated, nonperturbative truncation of QCD’s 
Dyson–Schwinger equations in the matter sector that is currently 
available. In doing so, we have drawn a direct connection be-
tween QCD’s gauge sector and measurable hadron properties. This 
paves the way for genuinely ab initio predictions of observables in 
continuum-QCD.

The understanding highlighted by Fig. 2 was only made possible 
by recent progress in developing nonperturbative truncations for 
the gap and bound-state equations in QCD’s matter sector. The new 
symmetry-preserving scheme enables the influence of dynamical 
chiral symmetry breaking (DCSB) and concurrent phenomena to 
be spread throughout the gap and Bethe–Salpeter kernels so that 
the universal subcomponent associated cleanly with the gauge-
sector can reliably be separated. The primary element in the new 
scheme is an accurate representation of the dressed-quark–gluon 
vertex, Γμ . Our analysis thus emphasises the need for a contin-
uation and expansion of efforts to better determine Γμ , both in 
continuum- and lattice-QCD.

4 This static potential is irrelevant to the question of confinement in a universe 
in which light quarks are ubiquitous because light-particle creation and annihilation 
effects are essentially nonperturbative and therefore it is impossible in principle 
to compute a (non light-front) quantum mechanical potential between two light 
quarks [68,69].



188 D. Binosi et al. / Physics Letters B 742 (2015) 183–188

Acknowledgements

We thank A.C. Aguilar, I.C. Cloët, B. El-Bennich, M.R. Penning-
ton, M. Pitschmann, J. Rodríguez-Quintero, J. Segovia, P.C. Tandy 
and A.W. Thomas for valuable discussions and suggestions. DB, 
JP and CDR are grateful for the chance to participate in the 
workshops “DSEs in Modern Physics and Mathematics”, ECT∗, 
Villazzano, Trento, Italy, and “Connecting Nuclear Physics and 
Elementary Particle Interactions: Building Bridges at the Span-
ish Frontier”, Punta Umbría, Spain, during which this work was 
conceived and begun. This research was supported by: Univer-
sity of Adelaide and Australian Research Council through grant 
no. FL0992247; Spanish MEYC grant no. FPA2011-23596; General-
itat Valenciana grant “PrometeoII/2014/066”; and U.S. Department 
of Energy, Office of Science, Office of Nuclear Physics, contract 
no. DE-AC02-06CH11357.

References

[1] C.D. Roberts, A.G. Williams, Prog. Part. Nucl. Phys. 33 (1994) 477–575.
[2] C.D. Roberts, S.M. Schmidt, Prog. Part. Nucl. Phys. 45 (2000) S1–S103.
[3] P. Maris, C.D. Roberts, Int. J. Mod. Phys. E 12 (2003) 297–365.
[4] G. Eichmann, Hadron properties from QCD bound-state equations, PhD thesis, 

Universität Graz, arXiv:0909.0703 [hep-ph].
[5] L. Chang, C.D. Roberts, P.C. Tandy, Chin. J. Phys. 49 (2011) 955–1004.
[6] A. Bashir, et al., Commun. Theor. Phys. 58 (2012) 79–134.
[7] G. Eichmann, Prog. Part. Nucl. Phys. 67 (2012) 234–238.
[8] I.C. Cloët, C.D. Roberts, Prog. Part. Nucl. Phys. 77 (2014) 1–69.
[9] H.J. Munczek, Phys. Rev. D 52 (1995) 4736–4740.

[10] A. Bender, C.D. Roberts, L. von Smekal, Phys. Lett. B 380 (1996) 7–12.
[11] S.-X. Qin, et al., Phys. Rev. C 84 (2011) 042202(R).
[12] S.-X. Qin, et al., Phys. Rev. C 85 (2012) 035202.
[13] J.C. Ward, Phys. Rev. 78 (1950) 182.
[14] H.S. Green, Proc. Phys. Soc. A 66 (1953) 873–880.
[15] Y. Takahashi, Nuovo Cimento 6 (1957) 371–375.
[16] Y. Takahashi, Canonical quantization and generalized Ward relations: Founda-

tion of nonperturbative approach, Alberta, 1985, Print-85-0421.
[17] P. Watson, W. Cassing, P.C. Tandy, Few-Body Syst. 35 (2004) 129–153.
[18] C.S. Fischer, R. Williams, Phys. Rev. Lett. 103 (2009) 122001.
[19] L. Chang, C.D. Roberts, Phys. Rev. Lett. 103 (2009) 081601.
[20] L. Chang, Y.-X. Liu, C.D. Roberts, Phys. Rev. Lett. 106 (2011) 072001.
[21] L. Chang, C.D. Roberts, Phys. Rev. C 85 (2012) 052201(R).
[22] C. Chen, et al., Few-Body Syst. 53 (2012) 293–326.
[23] L. Chang, et al., Phys. Rev. Lett. 110 (2013) 132001.
[24] A. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 78 (2008) 025010.
[25] A. Aguilar, D. Binosi, J. Papavassiliou, J. Rodríguez-Quintero, Phys. Rev. D 80 

(2009) 085018.
[26] A.C. Aguilar, D. Binosi, J. Papavassiliou, JHEP 0911 (2009) 066.
[27] D. Binosi, J. Papavassiliou, Phys. Rep. 479 (2009) 1–152.

[28] P. Boucaud, et al., Few-Body Syst. 53 (2012) 387–436.
[29] M.R. Pennington, D.J. Wilson, Phys. Rev. D 84 (2011) 119901.
[30] A. Maas, Phys. Rep. 524 (2013) 203–300.
[31] A. Cucchieri, D. Dudal, T. Mendes, N. Vandersickel, Phys. Rev. D 85 (2012) 

094513.
[32] D. Dudal, O. Oliveira, J. Rodríguez-Quintero, Phys. Rev. D 86 (2012) 105005.
[33] S. Strauss, C.S. Fischer, C. Kellermann, Phys. Rev. Lett. 109 (2012) 252001.
[34] A.C. Aguilar, D. Ibáñez, J. Papavassiliou, Phys. Rev. D 87 (2013) 114020.
[35] A. Bashir, A. Raya, I.C. Cloët, C.D. Roberts, Phys. Rev. C 78 (2008) 055201.
[36] A. Bashir, A. Raya, S. Sánchez-Madrigal, C.D. Roberts, Few-Body Syst. 46 (2009) 

229–237.
[37] K. Raya, et al., Phys. Rev. D 88 (2013) 096003.
[38] P. Jain, H.J. Munczek, Phys. Rev. D 48 (1993) 5403–5411.
[39] P. Maris, C.D. Roberts, Phys. Rev. C 56 (1997) 3369–3383.
[40] J.C.R. Bloch, Phys. Rev. D 66 (2002) 034032.
[41] P. Maris, A. Raya, C.D. Roberts, S.M. Schmidt, Eur. Phys. J. A 18 (2003) 231–235.
[42] L. Chang, C.D. Roberts, S.M. Schmidt, Phys. Rev. C 87 (2013) 015203.
[43] S.-X. Qin, et al., Phys. Lett. B 722 (2013) 384–388.
[44] J.M. Cornwall, Phys. Rev. D 26 (1982) 1453.
[45] J.M. Cornwall, J. Papavassiliou, Phys. Rev. D 40 (1989) 3474.
[46] D. Binosi, J. Papavassiliou, Phys. Rev. D 66 (2002) 025024.
[47] A. Aguilar, D. Binosi, J. Papavassiliou, Phys. Rev. D 86 (2012) 014032.
[48] D. Binosi, D. Ibáñez, J. Papavassiliou, Phys. Rev. D 86 (2012) 085033.
[49] L.F. Abbott, Nucl. Phys. B 185 (1981) 189.
[50] I. Bogolubsky, E. Ilgenfritz, M. Muller-Preussker, A. Sternbeck, Phys. Lett. B 676 

(2009) 69–73.
[51] P. Boucaud, et al., Phys. Rev. D 72 (2005) 114503.
[52] P. Boucaud, et al., Phys. Rev. D 79 (2009) 014508.
[53] M.S. Bhagwat, P.C. Tandy, AIP Conf. Proc. 842 (2006) 225–227.
[54] K. Higashijima, Phys. Rev. D 29 (1984) 1228.
[55] C.D. Roberts, B.H. McKellar, Phys. Rev. D 41 (1990) 672.
[56] K. Johnson, M. Baker, R. Willey, Phys. Rev. 136 (1964) B1111–B1119.
[57] R. Fukuda, T. Kugo, Nucl. Phys. B 117 (1976) 250.
[58] S.J. Brodsky, G.F. de Teramond, A. Deur, Phys. Rev. D 81 (2010) 096010.
[59] H.L.L. Roberts, et al., Phys. Rev. C 83 (2011) 065206.
[60] P. Maris, P.C. Tandy, Phys. Rev. C 60 (1999) 055214.
[61] E. Rojas, B. El-Bennich, J. De Melo, M.A. Paracha, Insights into the quark–gluon 

vertex from lattice QCD and meson spectroscopy, arXiv:1409.8620 [hep-ph].
[62] M. Pitschmann, C.-Y. Seng, C.D. Roberts, S.M. Schmidt, Nucleon tensor charges 

and electric dipole moments, arXiv:1411.2052 [nucl-th].
[63] C.D. Roberts, Continuum strong QCD: confinement and dynamical chiral sym-

metry breaking, arXiv:nucl-th/0007054.
[64] C.D. Roberts, A.G. Williams, G. Krein, Int. J. Mod. Phys. A 7 (1992) 5607–5624.
[65] H. Aiso, et al., Nucl. Phys. B, Proc. Suppl. 53 (1997) 570–573.
[66] C.D. Roberts, Prog. Part. Nucl. Phys. 61 (2008) 50–65.
[67] M. Stingl, Z. Phys. A 353 (1996) 423–445.
[68] G.S. Bali, et al., Phys. Rev. D 71 (2005) 114513.
[69] L. Chang, et al., Chin. Phys. C 33 (2009) 1189–1196.
[70] S.J. Brodsky, R. Shrock, Phys. Lett. B 666 (2008) 95–99.
[71] P. Maris, C.D. Roberts, P.C. Tandy, Phys. Lett. B 420 (1998) 267–273.
[72] P.O. Bowman, U.M. Heller, D.B. Leinweber, A.G. Williams, Phys. Rev. D 66 (2002) 

074505.
[73] J. Zhang, et al., Phys. Rev. D 71 (2005) 014501.

http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F62657274733A313939346472s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F62657274733A323030306161s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4D617269733A32303033766Bs1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib456963686D616E6E3A323030397A78s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib456963686D616E6E3A323030397A78s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368616E673A323031317675s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4261736869723A323031326673s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib456963686D616E6E3A323031327A7As1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib436C6F65743A323031336A7961s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4D756E637A656B3A313939347A7As1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib42656E6465723A313939366262s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib51696E3A32303131646453s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib51696E3A32303131787153s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib576172643A313935307870s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib477265656E3A313935337465s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib54616B6168617368693A31393537786Es1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib576174736F6E3A323030346B64s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib466973636865723A323030396A6Ds1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368616E673A323030397A62s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368616E673A323031306862s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368616E673A323031316569s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368656E3A32303132717253s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368616E673A32303133707153s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib416775696C61723A32303038786Ds1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib416775696C61723A323030396E66s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib416775696C61723A323030396E66s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib416775696C61723A323030397070s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib42696E6F73693A32303039716Ds1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426F75636175643A32303131756753s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib50656E6E696E67746F6E3A323031317873s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4D6161733A323031317365s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4375636368696572693A323031316967s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4375636368696572693A323031316967s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib447564616C3A323031327A78s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib537472617573733A323031326467s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib416775696C61723A32303133787161s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4261736869723A32303038666Bs1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4261736869723A323030396676s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4261736869723A323030396676s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526179613A32303133696E6153s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4A61696E3A313939337168s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4D617269733A31393937746Ds1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426C6F63683A323030326571s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4D617269733A323030326D74s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368616E673A323031326363s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib51696E3A323031336D746153s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib436F726E77616C6C3A313938317A72s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib436F726E77616C6C3A313938396776s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib42696E6F73693A32303032657As1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib416775696C61723A32303132727As1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib42696E6F73693A32303132736As1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4162626F74743A313938306877s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426F676F6C7562736B793A323030396463s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426F676F6C7562736B793A323030396463s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426F75636175643A323030356767s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426F75636175643A32303038676Es1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426861677761743A323030367475s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib486967617368696A696D613A313938336778s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F62657274733A313938396D6As1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4A6F686E736F6E3A313936346461s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib46756B7564613A313937367A62s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib42726F64736B793A323031307572s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F62657274733A32303131777953s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4D617269733A313939396E74s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F6A61733A32303134747961s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F6A61733A32303134747961s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib5069747363686D616E6E3A323031346A7861s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib5069747363686D616E6E3A323031346A7861s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F62657274733A323030306869s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F62657274733A323030306869s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4B7265696E3A313939307366s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4169736F3A313939376175s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib526F62657274733A323030376A69s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib5374696E676C3A313939346E6Bs1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib42616C693A32303035667553s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4368616E673A32303039616553s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib42726F64736B793A323030386265s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib4D617269733A313939376864s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426F776D616E3A323030326665s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib426F776D616E3A323030326665s1
http://refhub.elsevier.com/S0370-2693(15)00041-6/bib5A68616E673A323030346776s1

