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Abstract 

Defect detection techniques, which utilise guided waves, have received significant attention 

over the past twenty years. Many of these techniques implement the baseline signal subtraction 

approach for damage diagnosis. In this approach, the baseline signal previously recorded for a 

defect-free structure is compared with/or subtracted from the actual signal recorded during 

routine inspections. A significant deviation between these two signals (or residual signal/time-

trace) can be treated as an indication of the presence of critical damage. However, the accuracy 

of this common approach can be compromised by various uncontrolled factors, which include 

ambient temperature variations, unavoidable inconsistences in the PZTs installation procedure 

and degradation of mechanical properties with time. This paper presents a new method for 

reconstruction of the baseline signal, which can compensate for the above influences and 

improve the accurateness of damage diagnosis. The method utilises 3D laser vibrometry 

measurements in conjunction with high-fidelity FE simulations. This paper also describes an 

application of this method to the reconstruction of the baseline signal and detection of damage 

in beam and plate structures.  

 

KEY WORDS: damage detection, guided waves, SHM, transient FE analysis, 3D laser 

vibrometry, baseline signal. 
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1. Introduction 

 

During the past two decades, on-line damage detection techniques have been a subject of 

intensive research and development in many industries and applications. The potential benefits 

of such techniques are significant and include a step improvement in reliability and safety, along 

with a substantial reduction in the associated maintenance costs [1]. The on-line damage 

detection techniques are often based on the generation and sensing of guided waves to detect 

various types of structural damage, such as cracks [2-9], corrosion spots [10-13], delamination, 

debonding or matrix damage in composites [14-22].  

Guided waves have several special properties which make them very attractive for on-line 

applications [17, 23, 24]. These include: 

(i) An ability to propagate over large distances without significant energy decay and, 

therefore, can be used for inspection of large areas with a single or small number of 

actuators/sensors; 

(ii) High sensitivity to the presence of various types of structural damage;  

(iii) Simplicity, energy and weight efficiency of the hardware, resulting in easy integration of 

damage detection systems based on guided waves into on-line structural health monitoring 

systems. 

 

The baseline subtraction approach is often utilised in the guided wave based damage detection 

techniques to process the recorded signal responses during routine inspections and identify the 

presence of structural damage [25-28]. In accordance with this approach, the previously 

recorded signal for a defect-free structure or structural component (the baseline signal) is 

subtracted from the actual signal obtained during inspections. A significant deviation between 

these two signals (the critical or threshold level of this deviation depends on the particular 

application) is treated as an indication of the presence of critical damage. A schematic 

illustration of the baseline signal subtraction approach for damage detection is shown in Figure 

1. 

 

The baseline (signal) subtraction approach can easily be adopted by on-line health monitoring 

systems due to the above listed properties of guided waves, which normally do not interfere 
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with operational loads. Another significant advantage of the baseline signal subtraction method 

is its ability to detect damage in structural components with complex geometry [14].  

 

 

 

Figure 1: Illustration of the baseline signal subtraction approach for damage detection using 

guided waves  

 

As it alluded to in the literature, application of this approach in practice, however, can face 

many obstacles. The accuracy of damage detection can be significantly compromised by a 

number of uncontrolled factors [14]. In metallic structures, which are the focus of the current 

paper, these factors include: 

(i) Ambient temperature variations, which can affect the response of PZT; 

(ii) Variations in PZT adhesive bond thickness and its properties, which can result in large 

differences in the baseline signals for identical structural components;   

(iii) Time in service and severity of loading, which can change the mechanical properties of the 

structure, adhesive bond and PZT or in some cases even the geometry of the structural 

component, e.g. due to local buckling. 
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For example, the effect of the variations in the adhesive thickness on the PZT-induced wave 

excitation signal was comprehensively investigated in Ha and Chang [29]. In particular, it was 

demonstrated that small variations in the thickness as small as from 10 µm to 40 µm can 

significantly influence the generated signal. This means that identical free-from-defect 

structures with the same material properties could have completely different baseline signal 

responses due to slight and uncontrollable differences in the bond layer. The same conclusion 

was derived in a number of past studies focusing on different aspects or inconsistences of PZT 

installation procedures, such as variations in the mechanical properties of the adhesive sourced 

from different batches [29-32].  

 

The influence of temperature variations on damage detection with PZTs is well-known and has 

been extensively documented in the literature [33-37]. Even relatively small temperature 

variations, say ±10 0C, can significantly modify the burst signal generated by the PZT due to 

the changes in the mechanical properties of the adhesive. In addition, for polymer materials and 

composites, which will be a focus of a separate study, these variations can strongly affect the 

guided wave propagation and even mask damage [35, 38]. 

 

Over the past two decades, a significant effort by many researchers has been devoted to the 

development of various compensation techniques, which could improve the reliability of the 

defect detection with guided waves. Several such techniques were reported in the literature, e.g. 

[34, 38, 39] to name a few. For example, one particular compensation technique [39] combines 

an adaptive filter and optimisation of the baseline signal to minimise the influence of 

temperature variations on damage detection.  

 

The present paper proposes a new practical method, which is able to avoid the influence of 

many uncontrolled factors affecting the baseline signal for free-from-defect structure. Instead 

of focusing on signal processing techniques [24, 34, 38, 39], it reconstructs the baseline signal 

corresponding to the current conditions of the structural component and PZTs.  This method 

utilises 3D scanning laser vibrometry (SLV) and transient high-fidelity FE simulations of 

guided wave propagation.  

 

The conceptual idea of this method is based on a physical recording of the actual 3D 

velocity/displacement fields around the PZT (scanning area) and prescribing these fields to the 

corresponding finite element model representing the free-from-defect structure. The scanning 
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area encapsulates the PZT avoiding the necessity to model the PZT response, which is 

extremely complex and can be affected by many factors as discussed above. The material 

properties data, which is needed for the numerical simulations, is extracted from the analysis of 

the wave propagation in the scanning area of the actual specimen. Therefore, this method can 

compensate for the possible variations in the material properties of the structure and adhesive 

bond between the PZT and the structure. The paper demonstrates the feasibility of the accurate 

reconstruction of the baseline signal with the proposed method. It also describes a practical 

application of the developed method to damage detection in an isotropic beam structure. In 

addition, the method can be easily extended for complex structural components or anisotropic 

materials. However, this will be a subject of future work. 

 

It is recognised that the use of SLV or other 3D measurement systems, as well as high-fidelity 

transient FE simulations, can significantly increase the cost of the non-destructive defect 

inspections. However, with the advance of computational power, numerical packages and laser 

technologies, this cost will eventually decrease exponentially over time. Moreover, this method 

can be useful for defect inspections of hard-to-reach locations, or for the generation of 

periodical updates of baseline signals, specifically, in the case of varying loading and 

temperature conditions.     

 

This paper is organized as follows. The next section introduces the concept of the proposed new 

method for reconstruction of the baseline signal. Section 3 presents outcomes of transient FE 

simulations with the overall purpose of demonstrating that the baseline signal can be accurately 

reconstructed if the area with the prescribed boundary conditions is sufficiently large and the 

mesh density is appropriately applied. Section 4 provides details of an experimental study 

conducted to demonstrate the practical reconstruction of the baseline signal for a simple 

isotropic beam as well as detection of damage with the new method. 
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2. The Method 

 

The concept of the proposed method can be explained with a help of two spaces; the physical 

space and modelling space as shown in Figure 2. The physical space represents the actual plate 

or shell component equipped with an actuator (PZT) generating a burst signal of certain 

wavelength (frequency). The measurement system incorporates the 3D laser vibrometer (or any 

other equipment), which is capable of accurately measuring the surface displacements (on the 

both sides of the component) due to PZT excitation. The surface displacement over the scanning 

area, which encapsulates PZT, and at a remote location, P, are recorded and utilised in the 

modelling space for the reconstruction of the baseline signal and defect signature analysis, 

respectively.  

 

Figure 2: Concept of the method illustrating the physical and modelling spaces. 
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The modelling (virtual) space represents an accurate FE model of the free-from-defect structural 

component, with the exception of the dummy region, see Figure 2. The corresponding boundary 

conditions are applied to the points where the physical measurements were taken in the physical 

space. It will be demonstrated later in this paper (Section 3) that the wave propagation in this 

dummy region does not affect the wave dynamics outside the area with the prescribed boundary 

conditions if the length of this area is larger than the half of the wavelength of the generated 

signal, so the dummy region, which encircles PZT, can be simply ignored. It will be also 

confirmed via extensive FE simulations and experimental studies that an accurate baseline 

signal at a remote location, P, can be obtained (or reconstructed) with the proposed method. 

Further, the reconstructed baseline signal and the actual responses at the same remote 

location(s) can be analysed, using, for example, the baseline signal subtraction or any other 

defect signature evaluation approach.  

 

3. Numerical Implementation of the Method 

 

3.1. Details of Numerical Simulations 

This section presents selected outcomes of preliminary numerical simulations of the sensitivity 

of the reconstructed baseline signal to the size (length, L) of the scanning area. The purpose of 

these simulations is to help to identify the approximate size of the scanning area and the mesh 

density, which are necessary for an accurate reconstruction of the baseline signal, as well as to 

demonstrate the feasibility of the new method for a simple case.  With this purpose, two FE 

models were developed; one represents the physical space (Model 1) and another the modelling 

space (Model 2), as illustrated in Figure 4. The differences between the models are: (1) Model 

2 ignores the area encapsulated by the scanning area (shown by dotted lines in Figure 3), and 

(2) the boundary conditions (displacements) in Model 2 are extracted from the scanning area of 

Model 1. These arrangements virtually simulate the proposed method for the reconstruction of 

the baseline signal in the simplest case of a beam component. The symmetry boundary 

conditions are applied to the edges of the beam, so the wave propagation is essentially 2D 

process, with zero displacements in the lateral direction, 𝑈𝑦 = 0. Also, for convenience, the 

simulations were limited to linear-elastic, isotropic and homogeneous materials. 
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Figure 3: Virtual implementation of the proposed method for a 1D isotropic homogeneous 

beam and f = 200 kHz excitation frequency. 

 

The scanning area is now reduced to a line with a characteristic length, 𝐿. The 2D surface 

velocity components from Model 1 (the physical space), 𝑈𝑧 𝑡, 𝑥, 𝑧 = ±ℎ 2⁄   and 

𝑈𝑥 𝑡, 𝑥, 𝑧 = ±ℎ 2⁄  , were prescribed as boundary conditions for Model 2 (the modelling space) 

as described above, and two displacements as computed by two models, 𝑈𝑥,𝑧
 𝑎  𝑡   and 𝑈𝑥,𝑧

 𝑟  𝑡 , 

can be then compared at a remote location, e.g. point P shown in Figure 4. From this comparison 

we can evaluate the error associated with the baseline signal reconstruction method. This error 

provides essential information for the selection of the appropriate threshold signal level, which 

can be adopted for the identification of the presence of critical damage.  

A 2D explicit FE model representing an isotropic homogeneous beam with 0.3 mm × 3 mm 

cross section was developed using the ANSYS 15.0 software package. The FE model utilised 

3D hexahedral type of element with hourglass control. Each node of the hex element had two 

displacement degrees of freedoms. The pure A0 and S0 mode guided waves were excited by 

applying the corresponding nodal displacements to the surface nodes representing the PZT 

transducer area, see Figure 3. The length of this area is 3 mm, and it was located at the left end 

of the beam. A very fine mesh with the typical element size 0.25 × 0.25 × 0.25 mm3 was used 

in the finite element models. This element size corresponds to 0.05𝜆, (or 20 nodes per 

wavelength), which exceeds the minimum required number of nodes per wavelength reported 

in the literature [28, 40].  
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The transient (guided wave propagation) problem was solved by AutoDyne solver. The 

standard elastic properties used in the numerical simulations; Young’s modulus (𝐸) of 72 GPa 

and Poisson’s ratio (ν) of 0.3, which correspond to aluminium alloys. A five-cycle sinusoidal 

tone burst modulated by a Hanning window, was used to generate anti-symmetric (A0  and 

symmetric (S0) modes of the burst signal,  

 

𝑈𝑧 𝑡 = 𝐴 (1 − cos
2𝜋𝑓𝑡

𝑁
) cos 2𝜋𝑓𝑡  (1) 

 

where 𝑈𝑧 𝑡 , are the prescribed displacements in the PZT area in  𝑧 direction to excite So and 

A0, respectively, 𝐴 is the amplitude of the pulse, 𝑓 = 𝜔  2𝜋 ⁄  is the pulse centre frequency, 𝑡 

is the time and 𝑁 is number of the generated cycles (which in this case 𝑁 = 5).  The A0-mode 

of guided wave was generated by applying the same displacements on the both free surfaces of 

the beam, while the S0-mode was generated when the sign of the applied displacement on the 

free surfaces of the beam is opposite. These boundary conditions correspond to two PZT 

patches placed on the top and bottom surfaces of the beam subjected to the same or opposite 

polarity signal bursts. The time step was automatically controlled by ANSYS/AutoDyne and 

depended on the smallest element size.  

 

3.2 Selected Numerical Results  

Typical results of the numerical simulations are presented in Figure 4. This figure demonstrate 

the influence of the length (𝐿 = 𝑎𝜆) of the scanning area on the accuracy of the reconstructed 

baseline signal. Here 𝜆 is the wavelength corresponding to the excitation frequency, 𝑓, and 𝑎 is 

a coefficient representing the ratio of the length of the scanning area to the wavelength.  
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Figure 4: Comparisons of the generated baseline signal (Model 1) with the reconstructed 

baseline signal (Model 2) at a remote point for f =100 kHz excitation frequency, (a) out-of-

plane displacement Uz, (b) in-plane displacement Ux. At L= 0.5λ the difference between the 

actual response (Model 1) and the reconstructed signal (Mode 2) is negligible. 

 

The main outcome of the numerical simulations (or virtual implementation of the proposed 

method) is that the baseline signal can be reliably reconstructed when the length of the scanning 

area L= 0.5λ or 𝑎 ≥ 0.5) with the mesh density corresponding to approximately twenty 

measurements points per wavelength of the excited signal. The accuracy is slightly lower for 

the in-plane displacements, which are associated with So mode (see Figure 4). The discrepancies 

between the reconstructed, 𝑈𝑥,𝑧
 𝑟  𝑡 , and the actual signals, 𝑈𝑥,𝑧

 𝑎  𝑡 , for the S0 mode can also be 

attributed to the accuracy of the numerical simulations, which can be improved by selecting a 

higher mesh density and a smaller time step, if required. From our numerical simulations it was 
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also demonstrated that the similar recommendations for the selection of mesh density and the 

length of the scanning area apply to plates as well. In the next section the proposed method will 

be applied to generate the baseline signal and detect damage in a beam and plate structures. 

 

4. Experimental Studies 

 

The purpose of this section is to demonstrate a practical application of the developed method 

to the reconstruction of the baseline signal, as well as for damage detection. In the beginning 

the experimental set up will be described, after that the reconstruction procedure of the baseline 

signal from the actual scanning data obtained from the 3D SLV will be applied, and finally, the 

baseline substruction approach based on the reconstructed baseline signal will be utilised to 

detect damage in simple structures. 

4.1 Experimental Rig 

 

 
       

Figure 5: Experimental rig (a) the aluminium plate and (b) the aluminium beam. 

 

The experimental rig is shown in Figure 5. The specimens utilised in the experimental studies 

represent a 3 mm thick square plate 500mm by 500mm, see Figure 5(a) and a beam of 3 mm× 

12 mm cross-section and 300 mm long, see Figure 5(b). Both specimens were cut from the same 

bulk plate made of aluminium alloy. For wave generation in the plate sample, a disk-shaped 

PZT of 10 mm in diameter and 3 mm in thickness with a backing mass of the same size made 

of brass were glued on the surface in the centre of the plate, see Figure 5(a). A rectangular-

(b) (a) 
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shaped PZT of in-plane dimensions 12 mm by 6 mm and 2 mm thick with a backing mass of 

the same size but 3 mm in thickness, made of brass was glued on the surface of one end of the 

beam specimen. The backing masses were used to maximise the excitability of the A0 mode 

guided wave. The experimental equipment included a power amplifier, 3D scanning laser 

vibrometer and a built–in signal generator. A five-cycle sinusoidal tone burst modulated by a 

Hanning window, at frequencies between 100 to 300 kHz, was generated using a signal 

generator and amplified, up to ±50 V, using the power amplifier. This amplified signal was 

applied to the transducer mounted on the surface of the beam specimen. The transducer 

transformed the amplified electrical signal to the surface displacements that generate the guided 

wave. The signal was excited and recorded 200 times for each experimental arrangement, 

averaged and filtered to remove noise and systematic errors. The interval between consecutive 

signals was 9 ms, which is sufficient to avoid the interference between the signals and 

responses. The data recording and signal generation stages were synchronized accurately and 

controlled by the SLV computer. 

 

The out-of-plane, 𝑉𝑧 𝑡 , and in-plane, 𝑉𝑥 𝑡  and  𝑉𝑦 𝑡 , velocity fields were measured on both 

surfaces of the beam by a Polytec PSV-400 SLV. The PSV-400 SLV consists of three separate 

scanning heads and utilises the Doppler effect for measurement of velocities in three directions. 

With a simple coordinate transformation, these measured velocities can be resolved in the 𝑥, 𝑦 

and 𝑧 directions. These velocity components were temporally integrated using a built-in SLV 

computer to obtain the displacement field at the grid point locations. 

 

To simplify the prescription of boundary conditions the measurement grid size was selected to 

be exactly the same as in the numerical simulations. This selected grid size is approximately 20 

points per wavelength of A0 mode as found in Section 3.2. The measured signal was averaged 

200 times at each measurement point to improve the signal-to-noise ratio (SNR). Inbuilt band 

pass filters were adjusted such that the lower and higher cut off frequencies were either ±50 

kHz or ±100 kHz of the signal envelope energy of each centre frequency, and were applied to 

reduce the noise outside of the frequency bandwidth. Finally, a sensitivity of 10 mm/s/V, a 

sampling frequency of 2.5 MHz and a resolution of 390.6 ns were used for the 3D measurements 

of the velocity fields.  

4.2 Defining material properties 
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In the case of possible changes (or degradation) of material properties, the actual material 

properties corresponding to the current conditions of defect inspection can be identified from 

the wave propagation characteristics. There are several well-known techniques for recovery of 

material properties, for example, from the measured phase velocity dispersion relation for 

isotropic homogeneous plates. In accordance with this technique, the experimental data can be 

curve fitted to the theoretical equation [41]; 

𝐶𝑝ℎ 𝑓 = [
𝜌

𝐸

𝜌

𝜇
 1 − 𝜈2 −

𝜌

𝐸

12

ℎ2
 1 − 𝜈2 

1

2𝜋𝑓2
] (2) 

where 𝐶𝑝ℎ is the phase velocity, 𝜔 is the frequency, 𝜌 is the density of the material, ℎ is the 

plate thickness, 𝐸 is Young’s modulus, 𝜇 is shear modulus and 𝜈 is Poisson’s ratio.  

 

The phase velocity, which is the ratio of the angular velocity, 𝜔, and wavenumber, 𝑘, 

𝐶𝑝ℎ 𝑓 =
2𝜋𝑓

𝑘 𝑓 
 

(                               

(3) 

can be determined from the phase spectra of time-dependent signals, measured at points along 

the radial lines, which starts from the excitation source (PZT) [42]. If ∆𝑟 =  𝑟2 − 𝑟1  is the 

distance between such two points, and Δ𝜙 𝑓  is the phase difference as a function of a 

frequency, 𝑓, determined from the Fourier transformed signal,  then the wavenumber 𝑘 𝑓  and 

the phase velocity can be calculated as 

𝑘 𝑓 = −
𝛥𝜙

∆𝑟
 

         (4) 

and 

𝐶𝑝ℎ 𝑓 = −
2𝜋𝑓∆𝑟

Δ𝜙
 (5) 

In order to avoid ±2𝑛𝜋 ambiguity, several measurement points along the radial line can be 

taken, so the value of 𝑛 can be identified. The measuring points have to be selected in the way 

that the approximation of the centrally induced flexural waves by plane waves is reasonably 

accurate and that the input signal has passed the measurement point before the first reflection 

arrives. 

 

Once the phase velocity, 𝐶𝑝ℎ 𝑓 , is determined using least square optimisation and 𝐸 𝜌⁄  as the 

parameter to be fit in Eq. (2), the actual value of this ratio can be identified, provided all other 

parameters, such as thickness and Poisson’s ratio are known.  An application of this technique 

to the identification of the ratio 𝐸 𝜌⁄  is shown in Figure 6. Here, the phase velocity was 
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measured for the 3 mm thickness aluminium plate subjected to A0 mode excitation. Assuming 

Poisson’s ratio, 𝜈 = 0.3, (in general, it does not significantly affect the optimisation result) 

𝐸 𝜌⁄ = 28.5 MN/kg was obtained and used in the numerical reconstruction of base-line signals 

for beam and plate geometries. 

 

Figure 6: Phase velocity measurements and the fitted curve for the 3mm thickness aluminium 

plate. The dots represent the measured phase velocity at discrete frequencies. 

 

According to Glushkov et al. (2015) [43] the phase velocity between beam and plate are not 

identical but the difference is very small, especially at lower frequency ranges (below 200kHz). 

Hence, for the beam it is still possible to use the material properties obtained from the phase 

velocity curve of the plate. 

 

If several parameters are unknown then a multi-parametric optimisation can be conducted in 

order to recover the actual material properties of the structure. It is clear that the size and the 

shape of the scanning area have to be adequate for the determination of the phase velocity and 

recovery of the material properties. These issues were previously investigated in a number of 

articles for both isotropic and anisotropic materials [44-48] and will not be repeated in this 

paper. 
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4.3 Example of Reconstruction of Baseline Signal 

 

Initially, the measurements were conducted for only one single row of the sample points on the 

top and bottom of the beam located in the middle of the scanning area as shown in Figure 3. 

  

Figure 7: Experimental implementation of the proposed method for a 1D isotropic beam. 

 

The obtained experimental results were compared with the results from the numerical 

simulations using the proposed method as described in the previous section. Large 

discrepancies can be observed, see Figure 8(a), between the actual and reproduced baseline 

signals. These discrepancies between the modelling and experimental results were attributed to 

the effect of wave reflection from the beam edges, indicating that the wave propagation along 

the beam is essentially a 3D process. Therefore, to increase the accuracy of the method we 

considered several rows of measurement points across the width of the specimen. For example, 

Figure 8(b) shows the comparison of the actual 𝑈𝑧
 𝑎  𝑡, 𝑃  displacement function recorded by 

SLV with the displacement function, 𝑈𝑧
 𝑟  𝑡, 𝑃 , obtained from the corresponding FE model in 

the case of three rows of measurement points across the beam width, exactly as shown in Figure 

7. As it can be seen from Figure 8(b) the difference between the reconstructed and actual 

baseline signal is now quite small, and can be further decreased with the application of higher 

mesh density, reduction of the time step and improvement of the accuracy the measurements 

with SLV. 
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Figure 8: Comparison between results of the physical and modelling spaces (Model 1 and 

Model 2) for out-of-plane displacement Uz for f =200 kHz for (a) one row and (b) three rows 

of measurement points. 

 

The algebraic subtraction of the two signals in Figure 8(b) is shown in Figure 9. It is clear that 

for practical applications of the proposed method in damage detection techniques, the amplitude 

of this signal, which essentially represents the error associated with the reconstruction method, 

has to be much smaller than the threshold signal adopted for the particular structure and type of 

the damage.  
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Figure 9: Subtracted signal between measured and reconstructed baseline signals of the out-

of-plane displacement Uz demonstrating the error associated with the method. 

 

4.4 Detection of Damage 

 

This section details the application of the developed method for the detection of damage in a 

simple beam structure. A half-cylindrical volume was milled at the free surface of the beam at 

a distance of 100 mm from the PZT (excitation source). The cross sectional dimensions of the 

milled volume are 2×1×12 mm3 as illustrated in Figure 10. 

 

Figure 10: Schematic of the specimen with the introduced damage. All other dimensions are 

as shown in Figure 7. 
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Figure 11 shows the reconstructed baseline signal for defect-free structure, based on the 

proposed method, as well as the signal recorded by SLV for the damaged beam shown in Figure 

10. A significant difference between these two signal responses can be easily identified. Figure 

12 shows the comparison of (1) the subtracted actual signal of damaged structure with the 

reconstructed baseline signal and (2) the error between the reconstructed baseline signal and 

the actual baseline signal, which was also presented previously in Figure 9. It can be noted from 

Figure 12 that the error associated with the reconstruction method is significantly smaller than 

the damage signature. This provides the confidence that the difference between the 

reconstructed baselines signal and the actual signals are not due to numerical errors but are 

because of the presence of the damage. 

 

Figure 11: Reconstructed baseline signal (with the proposed method) and the actual signal for 

beam with a damage (Figure 10). 
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Figure 12: Comparison of subtracted signal (out-of-plane displacements Uz) of damaged 

structure with reconstructed baseline and error associated with the proposed method 

(difference between actual and reconstructed baseline signals). 

 

The next example demonstrates the application of the proposed method for the detection of 

damage in the case of plate geometry. A narrow slit of 10 mm length and 2 mm width and 1.5 

mm depth was milled at a distance of 70 mm from PZT in the aluminium plate of 3 mm 

thickness.  The same method for the numerical reconstruction of the baseline signal and the 

same parameters of FE model were implemented for the plate (as illustrated in Figure 2). The 

reconstructed baseline signal was compared with the actual signal affected by the damage and 

recorded with SLV.  Figure 13 shows the subtracted signal, which represents the algebraic 

difference between the numerically reconstructed baseline and actual signals. Similar to the 

previous case with the beam geometry (Figure 10), the error associated with the reconstruction 

method is much smaller than the damage signature. Therefore, the considered type of damage 

in plates can also be reliably identified with the proposed method.  
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Figure 13: Reconstructed baseline signal (with the proposed method) and the actual signal for 

a damaged plate for the out-of-plane displacement Uz and for f =200 kHz excitation 

frequency. 

 

In a general case, the accuracy of the reconstructed signal, or, essentially the complexity of the 

FE model, density of the measurement points and the accuracy of the measurements, has to be 

appropriately selected based on the magnitude of the signal threshold accepted as the indication 

of damage in accordance with the baseline signal substruction approach. This magnitude 

depends on the particular application and type of damage as discussed above. Therefore, the 

selection of the parameters, such as time step in numerical simulation, density of the 

measurement points, requires extensive preliminary numerical simulations as well as 

experimental studies in order to verify that the accuracy of the reconstructed signal is sufficient 

to detect the critical damage. However, once the accuracy is verified then the method can be 

routinely applied to the similar structures working under variable ambient temperature or 

loading conditions. It is clear, that the damage diagnosis for more complicated structures will 

require a more extensive computational effort, and currently, the method can be applicable to 

rather simple geometries. However, this should not be a critical problem in the future taking 

into account a very rapid development of numerical techniques and continuing increase in 

computer power.  
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5. Conclusions 

 

A new method to reconstruct or update baseline signals for damage detection with guided waves 

was presented in this paper. The proposed method utilises 3D scanning laser vibrometry 

measurements in conjunction with explicit high-fidelity FE simulations of guided wave 

propagation in a free-from-defect structure. This method can help to overcome the current 

difficulties associated with the necessity to compensate for the uncontrolled factors affecting 

the baseline signal, such as temperature variations, various uncertainties in PZT installation 

procedure and material degradation. The current paper focuses on one-dimensional 

waveguides, i.e. the guided waves in beam and plate structures. The conducted numerical and 

experimental studies have demonstrated the concept and practicality of the proposed method. 

In particular, it was demonstrated that the baseline signal can be reconstructed based on the 

measurements of the displacement field near the actuator and prescribing these fields to the 

corresponding FE model, which represent the free-from-defect structure. It is important that the 

region encapsulated by the scanning area can be disregarded in the FE simulations if the length 

of the scanning area (see Figure 2) is sufficiently large, say larger than the half of the 

wavelength of the excitation signal. Thus, this avoids the need to model the PZT response, 

which can be affected by many factors. Another important aspect of the method is that the 

accuracy of the generation of the reconstructed baseline signal can be controlled by selecting 

the appropriate mesh density, time step and accuracy of the measurements. The method is 

capable of taking into account the changes in material properties of the structural element by 

analysing the guided wave propagation for different frequencies and extracting the actual 

material properties from the generated experimentally dispersion curves.  

The paper also described a practical implementation of the new method to simple isotropic 

beams and plates. The experimental studies were underpinned by numerical simulations, which 

demonstrated the feasibility of this method and guided the selection of the governing parameters 

of the method. It is recognised that the utilisation of 3D measurement system and transient FE 

simulations can significantly increase the cost of the damage detection. Moreover, wave 

propagation in complex structures (e.g. riveted panels or composite sandwich panels) is still 

represent a significant challenge for numerical modelling However, it is believed, that with the 

advance of computer and laser technologies the cost-efficiency can be significantly improved, 

and, in the future, the proposed method can be utilised to detect damage in many practical 

applications and more complex structures than considered in the current study. 
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The future work will be primary directed to composite components, where guided wave based 

defect detection techniques are considered to be a very promising for the development of on-

line health monitoring systems. However, in the case of composite structures, the required size 

of the scanning area may be significantly larger as a result of a much more complicated wave 

structure generated by actuator (PZT) and the necessity to identify more material constants for 

accurate reconstruction of the baseline signal. 
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