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SUMMARY 

 

Dynamic stall is one of the primary causes of unsteady loads on wind 

turbine blades. The process can be instigated by a multitude of factors, 

common in wind turbine operating environments, such as inflow 

turbulence, wind gusts and sustained yaw misalignment. The unsteady 

separation due to dynamic stall can lead to excessive loads, much larger 

than the design loads for the turbine, and vibrations in the blade, 

leading to fatigue damage. Furthermore, massive flow separations can 

lead to performance losses for the turbines. Therefore, it is of utmost 

importance to devise methods to control the unsteady separation on 

wind turbines and to reduce its impact on the performance and 

structural integrity of the system. 

Dynamic stall on wind turbine blades is initiated by a rapid variation in 

wind speed and direction. However, no viable methods are available that 

could reliably predict the occurrence of unsteady separation for wind 

turbines. Therefore, in the present research, an analytical method has 

been developed and validated against well-known test cases to quickly 

and reliably deduce the variations in the sectional angles of attack, 

based on the variability of wind speed and direction of the oncoming 

flow. The concept of limiting reduced frequency as a precursor for 

unsteady separation is proposed in this initial study. Furthermore, it is 

illustrated, using high-quality wind data, that unsteady separation 

principally exists near the root regions of turbine blades where thick 

airfoil sections are generally used.  
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Further research was conducted to determine the effects of wakes on the 

occurrence of dynamic stall. For this study, the mean and turbulent 

wind conditions in the wake were acquired through Large Eddy 

Simulation of a wind turbine wake performed at the University of 

Adelaide. The data was used to determine the influence of wakes on the 

occurrence of dynamic stall on wind turbines operating in the wake of an 

upstream turbine. It was shown that the primary cause of large 

unsteady loads on downstream wind turbines is the rapid variation in 

the wind direction. It is emphasized that the model can be used during 

wind turbine design phase to determine the regions of the blade where 

the dynamic stall control is necessary.  

After determining the occurrence of dynamic stall on the turbine blades 

under normal operating conditions, the second objective of the present 

research was to gain a deeper insight into the dynamic stall process, 

particularly the lift characteristics of thick airfoils under unsteady 

separation. Experiments were conducted to understand the non-linear 

lift behavior of the airfoil during dynamic stall at constant pitch rates. It 

was shown that the thickening of the boundary layer during pitch-up 

resulted in an apparent increase in the thickness and camber of the 

airfoil. It is, furthermore, proposed that the primary dynamic stall vortex 

also increases the effective camber of the airfoil. This results in the 

sudden increase in the lift-slope when the vortex is formed. This effect 

was further demonstrated using numerical simulations of the thick 

NACA 0021 airfoil at low turbulence levels. During steady-state 

operation, a long separation bubble on the airfoil surface was found to 

be responsible for the increased lift-slope, greater than the theoretical 

maximum, and the abrupt stalling behavior of the foil. It was proposed 

that this long separation bubble was responsible for an apparent 

increase in the airfoil’s camber. Furthermore, removing the bubble, 

through an artificial increase in turbulence, degraded the lift-to-drag 
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ratio of the airfoil. However, due to the absence of the bubble, the 

steady-state stall angle of attack was significantly increased. This study, 

therefore, illustrated that apparent changes in thickness and camber of 

the airfoil during dynamic stall process are principally responsible for 

the non-linear lift behavior. 

It was observed, in the experiments, that an increase in the reduced 

frequency or the Reynolds number resulted in the increase in the 

strength of the primary dynamic stall vortex. It was also observed that 

the stall intensity of the airfoil undergoing unsteady separation is also 

dictated by the primary vortex. Therefore, an increase in the reduced 

frequency or the Reynolds number resulted in increased stall intensity. 

Hence, in order to improve the post-stall lift behavior of the airfoil, it is 

necessary to modify the primary dynamic stall vortex. This can be 

accomplished by reducing the strength of the vortex and delaying its 

formation on the airfoil by minimizing the reversed flow accumulation 

that leads to the formation of the vortex. In order to propose appropriate 

control methodologies for dynamic stall on wind turbine blades, 

literature survey illustrated that the required control would need to be 

implemented passively, near the leading edge of the airfoil. It was, 

furthermore, observed that the control methodologies need to be 

deployed before the formation of the dynamic stall vortex in order to 

affect the post-stall behavior of the foil. Finally, the required control 

needs to influence the flow field to a large extent to diminish the effects 

of the vortex. Therefore, three different methods were proposed to control 

the dynamic stall process. These included streamwise vortices generated 

using leading edge vortex generators, spanwise-vortices generated using 

a novel concept of a thin elevated wire affixed at the leading edge, and a 

cavity on the upper surface of the airfoil. It is demonstrated through 

experiment that all three methods influence the formation of the 

dynamic stall vortex during unsteady separation. However, the methods 
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that promoted enhanced mixing, namely the vortex generators and the 

elevated wire, were observed to favorably reduce the excessive lift 

associated with the primary vortex structure. It was also observed that 

the stall intensity was significantly reduced for these methods since the 

strength of the primary dynamic stall vortex was significantly reduced. It 

was, furthermore, illustrated that these methods aid in the lift recovery 

after separation, leading to reduced stall intensity and post-stall load 

fluctuations. On the other hand, the cavity was observed to consistently 

delay the unsteady separation. However, the primary vortex structure 

was not affected to large degree and, therefore, the stall intensity was 

similar to the baseline airfoil. Out of these three methods, it is proposed 

that the vortex generators and the novel elevated wire concept can be 

used to control the process of dynamic stall on wind turbine blades. 

These methods are not only easier to implement on existing blades, but 

also improve the steady-state performance of the airfoil through 

sustained lift and reduced drag, even at high angles of attack.  

The research presented in this thesis aims to improve the unsteady 

stalling conditions of wind turbine blades. This is accomplished by 

minimizing the primary dynamic stall vortex lift generated during pitch-

up and reducing the abrupt lift-decay after separation. The thesis 

presents a comprehensive review of dynamic stall on wind turbine blades 

as well as investigates previous attempts in controlling the unsteady 

separation. The new research conducted in the thesis has been 

presented in the form of journal manuscripts, arranged in an order that 

will assist the development of ideas. The research as a whole provides 

renewed insight into dynamic stall control on wind turbine blades.   
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