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ABSTRACT: Ectrodactyly/split hand-foot malformation is genetically heterogeneous with 

more than 100 syndromic associations. Acinar dysplasia is a rare congenital lung lesion of 

unknown etiology which is frequently lethal postnatally. To date, there have been no reports 

of combinations of these two phenotypes. Here we present an infant from a consanguineous 

union with both ectrodactyly and autopsy confirmed acinar dysplasia. SNP array and whole 

exome sequencing analyses of the affected infant identified a novel homozygous Fibroblast 

Growth Factor Receptor 2 (FGFR2) missense mutation (p.R255Q) in the IgIII domain (D3). 

Expression studies of Fgfr2 in development show localization to the affected limbs and 

organs. Molecular modeling, and genetic and functional assays support that this mutation is at 
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least a partial loss-of-function mutation, and contributes to ectrodactyly and acinar dysplasia 

only in homozygosity, unlike previously reported heterozygous activating FGFR2 mutations 

that cause Crouzon, Apert and Pfeiffer syndromes. This is the first report of mutations in a 

human disease with ectrodactyly with pulmonary acinar dysplasia and, as such, homozygous 

loss-of-function FGFR2 mutations represent a unique syndrome. 

Keywords: FGFR2, ectrodactyly, acinar dysplasia, whole exome sequencing 

 

 

 

Introduction 

Ectrodactyly/split-hand foot malformation (SHFM) can occur as an isolated abnormality but 

is also associated with more than 100 syndromes [Elliott and Evans 2006; Elliott et al., 2005]. 

At least 7 different genetic loci have been mapped [de Mollerat et al., 2003; Elliott and Evans 

2006; Faiyaz-Ul-Haque et al., 2005; Goodman et al., 2002; Ianakiev et al., 2000; Naveed et 

al., 2006; Scherer et al., 1994; Ugur and Tolun 2008]. Acinar dysplasia (Congenital 

Pulmonary Airway Malformation (CPAM) type 0) is a rare perinatal lethal congenital lung 

disease [Chow et al., 2013; Lee 2013]. It is the rarest subtype of CPAM and is characterized 

embryologically by maturational arrest of the lung at the pseudo-glandular stage of 

development [Chow et al., 2013]. Familial cases of acinar dysplasia have been described and 

some reports describe associated congenital abnormalities.  The etiology of acinar dysplasia 

is unknown [Lee 2013]. The combination of acinar dysplasia and ectrodactyly has not been 

described before.   
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Fibroblast growth factor receptor (FGFR2) (OMIM 176943) is a tyrosine kinase receptor and 

is one of four FGF receptors which have roles in the development and homeostasis of various 

tissues and the regulation of metabolism [Goetz and Mohammadi 2013]. When bound by a 

fibroblast growth factor (FGF), FGFR2 monomers dimerize resulting in transphosphorylation 

of tyrosine residues in the phosphotyrosine kinase domain. This activates the kinase activity 

of this receptor leading to the phosphorylation of intracellular targets [Goetz and Mohammadi 

2013]. Fibroblast Receptor substrate 2 alpha (FRS2) (OMIM 607743), a target of FGFR2, lies 

immediately downstream of the receptor and mediates signaling through the MAP Kinase 

pathway [Gotoh et al., 2004; Gotoh et al., 2005]. ERK1/ERK2 (MAPK3/MAPK1, 

respectively), two components of this pathway, become phosphorylated when FGFR2 is 

activated and can traffic to the nucleus where they mediate effects of receptor activation. In 

the nucleus, they phosphorylate relevant targets, thereby promoting cellular proliferation and 

other events [Meister et al., 2013]. The ligand binding extracellular portion of FGFR2 is 

comprised of three immunoglobulin-like domains (D1, D2 and D3) [Goetz and Mohammadi 

2013]. Alternative splicing of the C-terminal portion of the D3 domain determines ligand 

specificity. FGFR2 exists in two major isoforms (IIIb and IIIc), each of which has had the C-

terminal end of the D3 domain encoded by a different exon. IIIb is expressed specifically in 

epithelial cells whilst IIIc is expressed in mesenchymal tissues [Eswarakumar et al., 2005]. 

FGFR2-associated disease is most often due to mutations in the IIIc isoform. Activating 

mutations in FGFR2 cause Crouzon syndrome (OMIM 123500) [Reardon et al., 1994], Apert 

syndrome (OMIM 101200) [Wilkie et al., 1995], Pfeiffer syndrome (OMIM 101600) 

[Muenke et al., 1994; Schell et al., 1995], Jackson-Weiss syndrome (OMIM 123150) [Jabs et 

al., 1994], Beare-Stevenson syndrome (OMIM 123790) [Przylepa et al., 1996], and non-

syndromic craniosynostosis [Carinci et al., 2005; Reardon et al., 1994; Wilkie et al., 2007]. 

The majority of mutations in Crouzon syndrome occur in the D3 domain. Several of these 
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craniosynostosis syndromes have associated limb abnormalities (e.g. broad first finger/toe in 

Pfeiffer syndrome, syndactyly in Apert syndrome), but ectrodactyly is not a general feature of 

these conditions [Garcin et al., 1932] and no primary congenital pulmonary abnormalities 

have been previously described. However, studies in an Fgfr2 mouse model that displays 

Apert syndrome-like phenotypic features showed defects in FGFR2 signaling resulting in 

defective mesenchymal differentiation, inhibition of terminal airway development and 

ultimately an “emphysema like” phenotype throughout the lungs [De Langhe et al., 2006]. 

Here we present a newborn infant of consanguineous parents with a proposed new syndrome 

of lethal acinar dysplasia and ectrodactyly in whom exome sequencing identified a 

homozygous FGFR2 mutation (GRCh37/hg19; Chr10:g.123,279,668C>T; 

NM_000141.4:c.764G>A; NP_000132.3:p.R255Q; FGFR2 IIIc) 

(http://www.lovd.nl/FGFR2). The unique clinical presentation of acinar dysplasia and 

ectrodactyly and the absence of craniosynostosis in the affected infant, her heterozygous 

parents and her sibling, led to our hypothesis that the FGFR2 mutation in this family is at 

least a partial loss-of-function mutation. We performed functional experiments to determine 

the effect of the p.R255Q mutation on the activity of FGFR2 by measuring its effect on 

downstream signaling and to confirm whether FGFR2 is expressed in the tissues involved in 

the phenotype of the affected infant. In silico modeling was also carried out to predict the 

impact of the p.R255Q mutation. This is the first instance of a homozygous FGFR2 missense 

mutation causing disease in humans. 

Materials and Methods 

SNP Array Analysis 
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A SNP array (Illumina HumanCytoSNP-12 v2.1) was performed on the patient's genomic 

DNA from peripheral blood to identify copy number changes and regions of loss of 

heterozygosity due to consanguinity. 

Whole Exome Sequencing (WES) 

Whole exome capture (Agilent Whole Exome SureSelect V4 All Exon Capture Platform; 

Agilent Technologies, Mulgrave, Victoria Australia) and sequencing (Illumina HiSeq2000 

platform; Illumina, Inc, San Diego, CA USA), targeting a total sequence of 51 MB were 

performed at the Australian Genome Research Facility (Parkville, Victoria). Samples were 

sequenced using a paired end 2 x100 sequencing protocol. Reads were mapped to hg19 and 

variants called and annotated as described previously [Gagliardi et al., 2014]. Variants from 

within regions of common descent were screened against dbSNP v135 and Exome 

Aggregation Consortium (ExAC, v0.3.1, http://exac.broadinstitute.org) databases. Filtering 

was carried out on the WES variants under the key assumptions that the disease is completely 

penetrant and that any variants present in the affected infant, which were also present in 

dbSNP v135 with a minor allele frequency (MAF) greater than 0.1%, were non-causative, 

and hence excluded. Homozygous variants within regions of loss of heterozygosity were 

preferentially considered to fit with the predicted autosomal recessive mode of inheritance. 

Variants then underwent SeattleSeq Annotation including Genomic Evolutionary Rate 

Profiling (GERP) [Cooper et al., 2005] and were screened using PolyPhen-2 and Combined 

Annotation Dependent Depletion (CADD, v1.3) [Kircher et al., 2014] to predict 

pathogenicity. Primers were designed to amplify regions containing top hit candidate SNVs 

from patient, parents and an unaffected sibling DNA, and Sanger sequencing was performed 

to confirm their presence and segregation. 

Candidate Gene Expression Using in situ RNA Hybridization 
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The candidate genes were annotated with a locus specific database (Mouse Genome 

Informatics (MGI), Online Mendelian disease database (OMIM) and gene expression 

databases (GenePaint and BioGPS). Whole mount in situ RNA hybridizations were 

performed on the limbs of E11.5 and E12.5 embryonic C57BL/6 inbred mice according to a 

previously published method on the Intavis InsituPro VSi instrument in order to determine 

the expression pattern of FGFR2 during digital development [Riddle et al., 1993]. These 

stages were chosen as development of the digits begins to take place during these times 

[Taher et al., 2011]. RNA in situ probes were designed to target the final exon junction in 

FGFR2 (exon 17-18, 678 bp). The probe sequence was amplified from mouse genomic DNA 

with primers 5’CGAATTCTGACTCTCACAACCA’3 (FOR), 

5’TAGGTGCATCAGGACATCCAT 3’ (REV). Images were taken on a SZX10 stereo 

microscope (Olympus) mounted with a Micropublisher 3.3 digital camera (Q-Imaging). The 

images were processed with OpenLab 2.2 software. 

Generation of FGFR2 WT and Mutant Expression Constructs 

A pRcCMV plasmid expressing the mesenchymal isoform FGFR2 IIIc (NM_000141.4, 

NP_000132.3, transcript variant 1) (pRcCMV-FGFR2) was purchased from OriGene. Using 

site-directed mutagenesis, we generated pRcCMV-FGFR2(p.R255Q) and pRcCMV-

FGFR2(C342Y) (a mutation causing constitutive receptor activation) and pRcCMV-Empty. 

FGFR2 and ERK1/2 Phosphorylation Assays 

Human Embryonic Kidney 293 (HEK293) cells were transfected with FGFR2 WT and 

mutant expression constructs using Lipofectamine 2000 (Life Technologies). The following 

day, after serum starvation, cells were stimulated with fibroblast growth factor 2 (FGF2) at 20 

ng/ml for 5 and 15 min in the presence of 10 µg/ml heparin to promote high affinity FGF2 

binding to FGFR2. Western blots were performed to assess the levels of FGFR2 tyrosine 

phosphorylation and downstream ERK1/2 phosphorylation (p-ERK1/2). Phosphorylation of 
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two tyrosine residues (Y653, Y654) in the activation loop of FGFR2 leads to activation of the 

receptor and downstream signaling [Eswarakumar et al., 2005]. Antibodies used: anti-

phospho ERK1/2 rabbit monoclonal antibody (Cell Signalling Technology, #12638), anti-

ERK1/2 rabbit monoclonal antibody (Cell Signalling Technology, #4695), anti-phospho-

tyrosine monoclonal antibody (Thermo Scientific, MA1-10443) and anti-BEK (C-17) 

(FGFR2) rabbit polyclonal antibody (Santa Cruz, sc-122). 

 

Results 

Clinical Details 

The proband was born to healthy first cousin parents of Kurdish heritage; the mother was 20 

years old and the father 23 years old. There was no history of infertility or miscarriages. First-

trimester nuchal translucency and biochemical screening were normal. Ultrasound 

examination at 19 weeks gestation revealed abnormalities of the hands and feet. On the left 

hand the thumb, second, third and fourth fingers were short and the fifth was thought to be 

absent. On the right hand only the index finger was seen. The arm bones appeared to be 

normal on both sides. On both feet, only the first and fifth toe could be identified. In addition 

to the limb abnormalities, there was evidence of echogenicity of the fetal gut. Parental 

hemoglobin electrophoresis and alpha thalassemia genotyping were normal. The couple was 

counselled regarding the differential diagnosis for these abnormalities, declined 

amniocentesis and elected to continue the pregnancy. The female infant was born at 36 weeks 

gestation following spontaneous onset of labour. Birthweight was 2.3 kg (15
th

 percentile). 

The infant was in poor condition at birth (Apgar 2
1
4

5
) and required immediate ventilatory 

support for severe respiratory distress. Chest x-ray was consistent with severe pulmonary 

hypoplasia and ventilatory support was withdrawn at 5 hours of age; the infant died shortly 
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after. Dysmorphic facial features were noted with epicanthic folds, a small mouth (23 mm, 

normal range 26 ± 2.5 mm), mild hypertelorism (78 mm, normal range 65 ± 3.5 mm), a broad 

nasal bridge and bulbous nasal tip, low set ears and obvious narrowing of the external 

auditory canals bilaterally which remained patent (Figure 1A and B). The fontanelles were 

normal and there were no features to suggest craniosynostosis. Both parents had normal 

physical examinations. X-ray of the mother’s skull showed no abnormalities (Supp. Figure 

S1). 

There were 4 digits on the left hand and a cleft extending into the palm between fingers 2 and 

3 (Figure 1C, D and H). There was skin syndactyly between fingers 1 and 2, and fingers 3 

and 4. Fingers 1-3 were considerably shorter than the fourth finger. There was no 

recognizable thumb. Only one digit was recognizable on the right hand and this digit was 

attached to a broad base (Figure 1E and 1J). There were 4 digits identifiable on the right foot 

with the appearance of a bifid first toe and a cleft extending into the dorsum of the right foot 

between the bifid first/second toe and toes 4 and 5 (Figure 1F). There were 4 recognizable 

digits on the left foot including a large first toe (not shown). There was syndactyly between 

the second and third toes on this foot and a cleft between the first and second toes. These 

limb abnormalities were thought to represent a severe form of ectrodactyly with both 

oligodactyly and syndactyly. X-rays of the hands (Figure 1G corresponding to Figure 1H, and 

Figure 1I corresponding to Figure 1J) and feet performed at autopsy confirmed a 

disorganized pattern with absent or short phalanges, variable degrees of syndactyly, 

ectrodactyly, oligodactyly and bifid bones. Skeletal radiological survey was otherwise normal 

with no abnormalities of the cranial vault. The lungs were small at autopsy (combined weight 

26.89 g; normal for 36 week female 36.7± 16.8 g) and had abnormal lobation with 2 lobes on 

the right and one on the left (Figure 1K). Histological examination demonstrated severe 
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maturational arrest of lung tissue at the pseudoglandular stage and multiple small cysts of 

<0.5 cm in diameter consistent with a diagnosis of acinar dysplasia (Figure 1L and 1M). 

SNP Array and Whole Exome Sequencing to Identify Causal Candidate Gene 

Mutations 

No significant copy number changes were identified in the genome of the affected infant 

using SNP array. There were however long continuous stretches of homozygosity 

representing approximately 6% of the genome, consistent with the degree of consanguinity 

expected for offspring of first cousins. 

Whole exome sequencing (WES) was then performed on the affected infant, and following 

removal of variants present at a MAF>0.1% in dbSNP v135, coding variants were identified 

in 21 genes within the regions of loss of heterozygosity (LOH). These were further filtered to 

remove unlikely pathogenic variants with PolyPhen2 (benign), GERP (<2) and CADD (<10) 

using SeattleSeq Annotation which further narrowed down the number to 13 candidate 

variants. Analysis of gene expression patterns matching sites of developmental perturbations 

in the infant with The e-Mouse Atlas Project and Mouse Genome Informatics resulted in 5 

genes; FGFR2, GGA3, COL12A1, UBE2Q2 and SPATA13. Segregation analysis of the 5 

variants on both parents, the affected infant and her sibling using Sanger sequencing was 

consistent with autosomal recessive inheritance of the disease for all variants except for 

SPATA13 which was homozygous in the unaffected sibling and hence was excluded. 

Of the 4 remaining genes, the mutation in FGFR2 (p.R255Q; Table 1) was considered to be 

the most likely causative gene based on Online Mendelian Inheritance in Man (OMIM) 

phenotypes, expression data (BioGPS), a FGFR2 mouse model [Mai et al., 2010], in silico 

modeling, and functional studies (outlined below). Sanger sequencing of each family member 

for segregation of FGFR2 (p.R255Q) is shown in Figure 2A and B. Variants in GGA3, 
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COL12A1 and UBE2Q2 were excluded as candidates due to clinical, phenotypic and/or 

expression inconsistencies when compared to the affected individual (Table 1). 

FGFR2 Expression Marks Tissues Affected in this Patient 

To more clearly define the expression profile of FGFR2 in developing limbs and lungs, we 

performed in situ RNA hybridization on a staged series of mouse embryos. FGFR2 

expression was seen in the developing limbs at day E11.5 and E12.5. At E11.5, there was 

strong expression in the hindlimbs and forelimbs, specifically in mesenchymal condensations 

that will later give rise to bone (Figure 3A). By E12.5, FGFR2 expression was localized to 

the webbing between the developing digits in the forelimbs and hindlimbs, tissues consistent 

with the aberrant development seen in the patient. Expression was also seen in the developing 

epithelium of E14.5 lungs which is consistent with the defects associated with acinar 

dysplasia (Figure 3B). 

An Important Role for R255 in the Protein – in silico Modeling 

The wildtype R255 amino acid residue in FGFR2 and its surrounding sequence is highly 

conserved across multiple species including chimpanzee, mouse, chicken and zebrafish, and 

in all human FGFR family members (Figure 4A and Supp. Figure S2). The p.R255Q variant 

is situated at the D3 domain end of the linker between domains D2 and D3 (Figure 4B), and 

within a hotspot of germline mutations that cause Crouzon and Apert syndromes and non-

syndromic craniosynostosis (Figure 4C). R255 with H254 and I348 forms a pocket for the 

binding of a sulfate ion from heparan sulphate (Figure 4D, top), [Golovin et al., 2005; 

Stauber et al., 2000] a glycoprotein that facilitates high affinity binding of the FGF ligand to 

the FGFR2 receptor [Plotnikov et al., 2000] which is a necessary for active signaling from the 

cytoplasmic receptor tyrosine kinase [Stauber et al., 2000]. The p.R255Q mutation likely 
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prevents binding of this sulfate ion, which may impact on receptor activation and downstream 

signaling (Figure 4D, bottom).  

FGFR2 (p.R255Q) Displays Loss-Of-Function Properties 

To ascertain the functional effect of the p.R255Q mutation on FGFR2 signaling, we 

measured phosphorylation of FGFR2 and its downstream effectors ERK1/2 in response to the 

activating ligand FGF2. Phosphorylation of 2 tyrosine residues (Y653 and Y654) in the 

activation loop of FGFR2 leads to activation and signaling of the receptor [Eswarakumar et 

al., 2005]. As a positive control, we included a known Crouzon syndrome mutation C342Y, 

which causes homodimerization and constitutive activation of FGFR2 resulting in increased 

basal ERK1/2 phosphorylation [Krejci et al., 2012]. Human Embryonic Kidney 293 

(HEK293) cells were transiently transfected with constructs to express FGFR2 WT and 

mutants. Following a period of serum starvation, the cells were stimulated with FGF2 for 5 

and 15 min. FGFR2 (p.R255Q) mutant displayed similar basal receptor phosphorylation as 

WT, but in response to FGF2, did not achieve the same level of increased FGFR2 

phosphorylation, which is seen more notably in downstream ERK1/2 phosphorylation, as did 

WT (Figure 5 and Supp. Figure S3). For FGFR2 phosphorylation, 4 individual blots are 

shown as they were difficult to quantify due to the large size of the protein and spread of the 

bands. C342Y showed high basal FGFR2 phosphorylation and heightened basal and FGF2-

stimulated ERK1/2 activation consistent with a constitutively active mutant. Overall, 

p.R255Q demonstrates properties of at least a partial loss-of-function mutation consistent 

with its recessive inheritance pattern. 

 

Discussion 
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This case of a unique phenotype of ectrodactyly and acinar dysplasia represents the first 

human case of homozygous FGFR2 disease to the best of our knowledge. RNA in situ 

hybridization data revealed expression in the affected tissues in mice (forelimbs, hindlimbs 

and the lung) and protein alignments revealed a high level of conservation for the R255 

residue. Fgfr2 knockout mice show complete absence of limb outgrowth and defects in lung 

branching morphogenesis [Arman et al., 1999]. Further, a homozygous knock-in mouse 

model of a gain-of-function Fgfr2
W290R

 mutant developed by others overlaps most of the 

abnormalities observed in our patient [Mai et al., 2010]. Interestingly however, while 

Fgfr2
W290R/+

 mice have normal limb development consistent with Crouzon syndrome, 

Fgfr2
W290R/W290R 

developed major reductive limb abnormalities and small lungs and died on 

the first day of life. It is clear that the lungs in this mouse model are markedly small and 

underdeveloped [Mai et al., 2010]. The Fgfr2
W290R/W290R 

mice also displayed abnormalities of 

the cranial vault, although no craniosynostosis was seen consistent with observations for our 

infant with homozygous FGFR2
R255Q/R255Q

 mutation. The overall analysis of FGFR2 gain-of-

function and loss-of-function mouse models suggest that various organs respond differently 

to heterozygous and homozygous mutant genotypes. Further, in some tissues, perturbation of 

FGFR2 signaling, either up or down, results in the same phenotype while in other tissues 

produces opposite effects (summarized in Mai et al., [2010]). The predominantly distal 

pattern of limb abnormalities in our case may suggest more complex involvement of FGFR2 

in human limb development or result from this at least partial loss-of-function mutation. 

Consistent with loss-of-function of FGFR2 in our patient causing lung and limb abnormalities 

is phenotypic data from a mouse model of homozygous loss-of-function mutation in FGF10, 

an endogenous ligand of FGFR2 [Sekine et al., 1999]. In this study, homozygous FGF10-

deficient mice died at birth due to lack of lung development. Severe pulmonary branching 

morphology was disrupted. Mutant mice also had complete truncation of the fore- and 
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hindlimbs [Sekine et al., 1999]. Based on genetic inheritance pattern, functional studies, and 

our patient and parental phenotypes, we propose that the homozygous FGFR2 mutation is 

most likely a loss-of-function. FGF2 stimulation assays showed that this mutation displays 

decreased but not completely abrogated activation and signaling in downstream pathways, 

providing evidence of at least partial loss-of-function. Furthermore, segregation analysis 

supports the candidacy of this gene and in situ RNA hybridization in mice point to the 

involvement of this gene in limb and lung development. Further functional work will be 

required to confirm the exact mechanism by which this gene mutation leads to loss-of-

function of FGFR2. 

Gain-of-function mutations in FGFR2 have consistently caused craniosynostosis syndromes 

[Hatch et al., 2006]. These gain-of-function mutations in craniosynostosis syndromes are 

thought to do so through receptor activation and some are glycosylation-dependent [Hatch et 

al., 2006]. In our study, we provide evidence that the FGFR2 p.R255Q mutation is at least 

partial loss-of-function. Neither parent has evidence of craniosynostosis on physical 

examination; the mother has had a skull x-ray with no evidence of craniosynostosis and both 

the father and the heterozygous sibling have no evidence of craniosynostosis. Similarly, 

dominant activating mutations in FGFR3 cause a variety of short-limbed bone dysplasias 

including achondroplasia and syndromic craniosynostosis. But recently, WES identified a 

homozygous loss-of-function mutation in FGFR3 in humans characterized by tall stature and 

severe skeletal abnormalities leading to inability to walk, with camptodactyly, 

arachnodactyly, and scoliosis [Makrythanasis et al., 2014]. 

Somatic loss-of-function mutations in FGFR2 are associated with malignant melanoma, but 

no previous cases of germline FGFR2 loss-of-function mutations have been described 

[Gartside et al., 2009]. The combination of acinar dysplasia with ectrodactyly has not been 

previously reported although there is one report of ectrodactyly and capillary alveolar 
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dysplasia, another lethal lung disease, in association with tibial agenesis [Witters et al., 2001]. 

Three children in one consanguineous family were affected, suggestive of autosomal 

recessive inheritance. The first infant died in the neonatal period of pulmonary hypertension, 

secondary to congenital alveolar capillary dysplasia and had tibial agenesis and ectrodactyly. 

The second infant had similarly severely affected lungs but normal limbs. A third affected 

pregnancy occurred with bilateral agenesis of the tibia, symmetric ectrodactyly of the hands 

and feet and alveolar capillary dysplasia. The genetic cause of these familial abnormalities 

has not been identified (personal communication with Witters). Isolated alveolar capillary 

dysplasia with misalignment of pulmonary veins (ACDMPV; OMIM 265380) is caused by 

heterozygous mutations in FOXF1 (OMIM 601089) or its regulatory region and follows an 

autosomal dominant mode of inheritance [Sen et al., 2013]. FOXF1 is expressed in 

developing capillaries rather than developing epithelium. It is interesting that germline 

mutations in Crouzon syndrome and somatic mutations in endometrial cancer have been 

shown to be gain-of-function while somatic mutations in melanoma are loss-of-function 

[Gartside et al., 2009]. For these three conditions, there are no mutations in common although 

they are somewhat scattered linearly along the primary protein sequence. Hence, for any 

newly identified variant, it may be very difficult to predict its phenotypic impact without 

functional testing. 

Here we report a novel germline FGFR2 mutation which displays yet another phenotype, and 

which is flanked immediately by Crouzon syndrome mutations. In our unique case, we have 

identified a homozygous at least partial loss-of-function mutation in FGFR2 associated with a 

severe phenotype including lethal lung disease and marked limb abnormalities. 
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Figure Legends 

Figure 1.  Anatomical and histological features of affected infant. A and B: Head and face, C 

and D: left hand, and E: right hand. X-rays of G and H: left hand and I and J: right hand. 

Acinar dysplasia of affected infant’s autopsy lung at 36 weeks gestation. K: Photograph of 

heart and lungs showing greatly reduced lung size. Hematoxylin and Eosin staining of L: 

affected infant’s lung showing acinar dysplasia in comparison to M: normal lung of a similar 

aged individual. 
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Figure 2.  Pedigree of infant affected with ectrodactyly and acinar dysplasia and segregation 

analysis of FGFR2 (p.R255Q) mutation. A: Pedigree of affected family showing FGFR2 

genotype. B: Sanger sequencing of FGFR2 mutation in affected family confirms parental 

heterozygosity and affected infant homozygosity for NM_000141.4:c.764G>A 

(NP_000132.3:p.R255Q). 
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Figure 3.  FGFR2 in situ RNA hybridization of embryonic mouse. A: Whole mount in situ of 

mouse embryo limbs at embryonic day 11.5 and 12.5. B: Sagittal section of in situ RNA 

hybridization of embryonic mouse E14.5 (Image from genepaint.org, image set ID:FG35, 

Image 5D). 

 

Figure 4.  Conservation of FGFR2 R255 across species and structural modeling to show its 

function. A: Conservation of amino acid R255 in FGFR2 across species. Multiple Alignment 

in HomoloGene (NCBI) was used to align the orthologous amino acid residues to human 

R255 and surrounding sequence in the species shown. Extracellular immunoglobulin-like 

domains D2 and D3 are shown below alignments. B: Position of known FGFR2 disease-

causing mutations and R255Q. R255Q (orange) is located in the D3 Ig-like domain of 

FGFR2 near the ligand binding surface. Previously identified activating mutations from 

HGMD® Human Gene Mutation Database (BIOBASE) (green) are predominantly located 

throughout the D3 domain. C: Position of R225Q in the FGFR2 protein in relation to other 

disease-causing activating mutations. Shown is FGFR2 (NM_000141.4, variant 1; 

NP_000132.3, isoform IIIc) with immunoglobulin-like domains (D1-3, bind FGF ligands), 
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acidic box (AB, binds bivalent cations for optimal interaction with heparin sulfate 

proteoglycans), transmembrane domain (TM) and tyrosine kinase domain (kinase). Crouzon 

(orange), Pfeiffer (purple) and Apert (green) syndromes, non-syndromic craniosynostosis and 

others (blue). Mutations were obtained from Human Gene Mutation Database (HGMD). D: 

Effect of p.R255Q on FGFR2 binding to its ligand. Molecular structure of human FGF1 

ligand (pale yellow) to wild-type (WT) human FGFR2 (D3 in deep blue and D2 in light 

blue). Negatively charged sulphate ions (green) from ligand-associated heparin sulphate are 

able to associate with the WT R255 (orange) and adjacent residues H254 (pink) and I348 

(magenta). R255Q leads to the replacement of a large, positive side chain with a smaller 

neutral one, which may negatively impact binding of heparin sulphate to the receptor, leading 

to a loss of receptor activation. The loss of this charged chain is also predicted to alter the 

confirmation of the D3 Ig-like domain which may further inhibit activation. The WT crystal 

structure (PDB ID: 1DJS) is from Stauber et al. [Stauber et al., 2000]. Visualization is via 

PyMOL (Version 1.5.0.3 Schrödinger, LLC). 
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Figure 5.  FGFR2 and ERK1/2 activation studies to determine effect of p.R255Q on FGFR2 

function. HEK293 cells were transfected with FGFR2 WT or mutant constructs. After 20 h, 

the cells were serum starved for 4 h and then 20 ng/ml FGF2 with 10 µg/ml heparin was 

added. A: Cells were harvested after 0, 5 and 15 min, lysates run on western blots, and blots 

probed with anti-phospho ERK1/2, anti-ERK1/2, anti-phospho-tyrosine and anti-FGFR2 

antibodies. B: Bar graph showing the densitometric quantification of FGFR2 phosphorylation 

levels from a representative western blot. C: ERK1/2 phosphorylation levels were quantified 

and standardized to unphosphorylated protein. Protein band intensities across blots were 

normalized to the standardized p-ERK value for FGFR2 WT at time 0 (set to 1). The graph 

shows the mean ± S.E.M. of 4 independent experiments. Statistical analysis was performed 

using Mann-Whitney test.  
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Table 1. Germline gene mutation candidates identified by whole exome sequencing. 

 
Gene 

(OMIM) 
Genomic 
Variant 

cDNA 
Variant 

Protein 
Variant 

GERP PolyPhen2 
Prediction 

CADD 
(v1.3) 

ExAC 
(Alt/Ref) 

Disease 
(OMIM ID) 

(inheritance) 

Exclusion 
Criteria 

FGFR2 
(176943) 

chr10:g. 
123,279,668 

C>T 

c.764G>A 
NM_000141.4 

R255Q 
NP_000132.3 

5.79 Probably 
damaging 

35 Novel 
(0/110,500) 

Crouzon syndrome 
(CFD1; 123500) (AD) 

Apert syndrome 
(ACS1; 101200) (AD) 

Pfeiffer syndrome 
(ACS5; 101600) (AD) 

Jackson-Weiss 
syndrome 

(JWS; 123150) (AD) 

None 
(N.B. not AD 

inheritance gain-
of-function 

mutation like all 
currently 
reported 

mutations in 
OMIM) 

UBE2Q2 
(612501) 

chr15:g. 
76,168,613_ 
76,168,614 

dupGT 

c.673+1_+2 
dupGT 

NM_173469.3 

*Splice 
site 

(donor)  

5.00 No 
prediction 

26 Novel 
(0/121,300) 

None Expressed in all 
tissues. 

COL12A1 
(120320) 

chr6:g. 
75,843,078 

A>G 

c.5725T>C 
NM_004370.5 

Y1909H 
NP_004361.3 

5.63 Probably 
damaging 

23.3 Novel 
(0/120,634) 

Bethlem myopathy 
(BTHLM2; 616471) 

(AD) 
Ullrich congenital 

muscular dystrophy-2 
(UCMD2; 616470) 

(AR) 

Patient showed 
no evidence of 
contractures. 

Bethlem 
Myopathy does 
not cause limb 

abnormalities or 
acinar 

dysplasia. 
Muscle histology 

was normal at 
autopsy. 

GGA3 
(606006) 

chr17:g. 
73,235,102 

T>C 

c.1744A>G 
NM_014001.4 

K582E 
NP_054720.1 

5.24 Possibly 
damaging 

24.8 Novel 
(0/121,114) 

None Expression in 
lung but not 

limbs 

 

Variants where identified by whole exome sequencing. These 4 candidate variants are 

changes in highly conserved amino acids, are in conserved regions across species, and are 

predicted to negatively impact protein function. Asterisk, UBE2Q2 (dupGT) is predicted by 

splice predictor programs Alternative Splice Site Predictor and Alamut 2.0 Splicing 

Prediction Module to potentially cause a 2 nt frameshift. Autosomal dominant, AD; 

Autosomal recessive, AR. Expression was determined using BioGPS, MGI and GenePaint. 

For cDNA numbering, nucleotide numbering uses +1 as the A of the ATG translation 

initiation codon in the reference sequence, with the initiation codon as codon 1. 

 

 

 

 

 

 

 


