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ABSTRACT

Modelling spatio-temporal data has received significant attention, recently and is
widely applied in many disciplines such as economics, environmental and social sci-
ences. In economics, housing price is a real example that indicates the importance
of modeling such data. Estimating the movement in housing prices is an import-
ant but challenging problem due to the difficulties associated with spatio-temporal
interactions. One main challenge is that there is no natural spatial ordering and
thus it is not as straightforward as in time series analysis to transform data to be
stationary across space. In addition, it is a challenge to model spatio-temporal data
collected at irregularly spaced sampling locations due to the potentially large num-
ber of parameters. Moreover, the complexity of the dependence structure requires

new effective statistical methods for modeling and analysis.

While nonparametric and semiparametric methods have been popular for nonlin-
ear modeling of time series data in econometrics and statistics, they become increas-
ingly challenging when extended to irregularly located spatio-temporal data with
complex nonlinear structures. The literature on nonlinear spatio-temporal model-
ling is still rather rare except a few contributions recently done, for example, by (Lu
et al., 2009), (Wikle and Hooten, 2010) and (Wikle and Holan, 2011). Therefore,
the main aim of this thesis is to propose a class of semiparametric spatio-temporal
autoregressive partially nonlinear regression models as a practical way to overcome

these challenges. The main contributions of this thesis are summarised as follows:

v



(1) In Chapter 2, a class of semiparametric spatio-temporal autoregressive par-
tially nonlinear regression models is proposed. The proposed models not only permit
location-varying nonlinear relationships between the response variable and the cov-
ariates but also allow for the dependence structure to be nonstationary over space
while alleviating the "curse of dimensionality” by using the popular idea of spa-
tial weight matrix measuring the spatial interaction, which is assumed to be well
defined as in spatial econometrics. Both the estimation and its finite- and large-

sample properties for the proposed models are established.

(2) In order to more objectively let data decide the spatial interaction in the
models, in Chapter 3, we propose a scheme of general data-driven models to estimate
the spatial weights in the semiparametric spatio-temporal autoregressive partially
nonlinear regression models by applying the adaptive lasso. Both estimation and its
finite- and large-sample properties for this class of the general data-driven models

are developed.

(3) An improved scheme for such data-driven models with spatial weight mat-
rix is presented in Chapter 4. For this class of the improved data-driven models,
we develop a computationally feasible method for estimation and thus enable our
methodology to be applicable in practice. Asymptotic properties of our proposed
estimates are established and comparisons are made, in theory and via simulations,

between estimates before and after spatial smoothing.

(4) In empirical case studies, the proposed methodologies are applied to investigate
the housing prices in relation to the mortgage rates in Chapter 2 and to the consumer
price index in Chapter 3 and 4 for the 50 states and District of Columbia (DC) in
the United States (U.S.). It is empirically found that such relationships could be
of nonlinear features that help to improve the predictions and the third class of the

improved data-driven models appears to work promisingly better.
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