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Abstract:  33 

 34 

Magnetic Resonance Imaging (MRI) is a non-invasive technique routinely used to investigate 35 

pathological changes in knee osteoarthritis (OA) patients. MRI uniquely reveals zones of the most 36 

severe change in the subchondral bone (SCB) in OA, called bone marrow lesions (BMLs). BMLs have 37 

diagnostic and prognostic significance in OA, but MRI does not provide a molecular understanding of 38 

BMLs. Multiple N-glycan structures have been observed to play a pivotal role in the OA disease 39 

process. We applied matrix-assisted laser desorption/ionization (MALDI)  mass spectrometry imaging 40 

(MSI) of N-glycans to formalin-fixed paraffin-embedded (FFPE) SCB tissue sections from patients with 41 

knee OA, and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-42 

MS/MS) was conducted on consecutive sections to structurally characterize and correlate with the N-43 

glycans seen by MALDI-MSI. The application of this novel MALDI-MSI protocol has enabled the first 44 

steps to spatially investigate the N-glycome in the SCB of knee OA patients.  45 

Human osteoarthritis (OA) is an increasingly prevalent age-related joint disease with a high burden of 46 

personal and economic cost. The disease is characterized by articular cartilage degeneration, with the 47 

addition of both generalized and focal changes of the subchondral bone [1, 2]. Bone marrow lesions 48 

(BMLs) are features that have been identified in both early asymptomatic and severe late-stage OA 49 

patients and their presence associates with loss of overlying cartilage [3, 4]. Classically, BMLs are 50 

identified using magnetic resonance imaging (MRI) by either fat-suppressed and/or proton dense T2 51 

weighted scans. The difference between T1 and T2 weighted scans is that BML areas appear 52 

hypointense (i.e. low signal) for T1 and hyperintense (i.e. high signal) for T2 [5, 6]. Therefore, T2 53 

weighted scans depict BMLs to their full extent, while T1 weighted scans usually assess cartilage. A 54 

combination of these sequences provides diagnostic and prognostic information regarding OA disease 55 

progression [7, 8]. However, MRI does not provide a molecular understanding of BML formation and OA 56 

disease progression.   57 

 58 

Adjacent to BMLs in the SCB is overlying cartilage composed of extracellular matrix (ECM) 59 

glycoproteins [9, 10]. Besides proteoglycans, there are glycosylated cell surface proteins, such as 60 
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CD44 and integrins, which play an important role in mediating chondrocyte and ECM interactions [11, 61 

12]. Glycans attached to these cartilage ECM glycoproteins are classified into two groups: (i) N-linked 62 

glycans that are attached to asparagine residues and (ii) O-linked glycans that are attached to 63 

serine/threonine residues [13]. N-glycans are the most common glycan, with well-established methods 64 

for analysis from tissue [14, 15]. Multiple N-glycan structures have been observed to play a pivotal role 65 

in OA disease progression. Recently, using high-performance liquid chromatography (HPLC) mass 66 

spectrometry (MS), it has been shown that high-mannose type N-glycans are significantly decreased on 67 

proteins in tissue from both murine and human OA cartilage [16]. In 2013, glycophenotyping of OA 68 

cartilage was carried out using several techniques, such as RT-PCR, mass spectrometry and 69 

immunohistochemistry. Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-70 

ESI-MS/MS) separation and structural identification of the released glycans confirmed 21 N-glycans  on 71 

the human OA chondrocyte proteins isolated from femoral condyle articular cartilage [17]. The N-72 

glycome of bone marrow from OA patients has not yet been characterized. 73 

 74 

MALDI mass spectrometry imaging (MALDI-MSI) has previously been applied to the proteomic analysis 75 

of fresh frozen human OA knee cartilage and synovial tissue. Deep and superficial knee cartilage from 76 

human healthy and OA patients were sectioned and analyzed by MALDI-MSI of the tryptic peptides 77 

[18]. Fibronectin and cartilage oligomeric matrix protein (COMP) were 2 glycoproteins identified in the 78 

OA patients, but not in the healthy controls. Moreover, the glycoprotein fibronectin was identified in the 79 

synovial membranes from OA patients, but not in healthy controls. In summary, glycoproteins have 80 

been observed to play an important role in OA changes of human knee cartilage and synovial tissue.  81 

 82 

The measurement of N-glycans by MALDI-MSI on fresh frozen mouse brain tissue and various 83 

formalin-fixed paraffin-embedded (FFPE) tissues has been established previously [19, 20], with regions 84 

of interest, such as tumour and non-tumour, differentiated based on the pattern of N-glycans released. 85 

The limitation of MALDI analysis is that N-glycan masses can identify the glycan compositions but 86 

cannot identify the sequence and branching of the glycan structures. This has recently been overcome 87 

with a new workflow combining N-glycan analysis by MALDI-MSI and LC-ESI-MS/MS [21]. 88 

 89 

Here we investigate the N-glycome of FFPE cartilage and bone marrow tissue. Human knee SCB, from 90 

OA patients with BMLs (stage 1 and 2) or without BMLs were analysed  to investigate N-glycosylation 91 

patterns.  92 
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Tibial plateaus were obtained from three patients (one male aged 52 years, two females aged 68 and 93 

74 years) undergoing knee arthroplasty surgery for radiographic and severe symptomatic OA. Tibial 94 

plateau specimens were scanned ex vivo, using an MR scanner with an 8-channel wrist coil (3T MRI 95 

Siemens TRIO), at two specific sequences; fat suppressed (FS) fast spin-echo proton density-weighted 96 

(PDFS) and T1 weighted spin echo in sagittal and coronal plane. Sagittal slice thickness was 1.6 mm 97 

with distance factor of 25%. Coronal slice thickness was 3.0 mm with 10% distance factor. Ex vivo MR 98 

imaging was confirmed to correspond to pre-operative imaging, by comparing pre- and post-operative 99 

MR data. BMLs were defined as changes of the MRI signal intensity in the bone marrow, located 100 

beneath cartilage and visible at least on 2 consecutive slices. BMLs detected on the PDFS sequence 101 

only (no signal on T1) are classified as BML stage 1 and correspond to mild-to-moderate osteochondral 102 

OA pathology; BMLs detected on both PDFS and T1 sequences are classified as BML stage 2 and 103 

represent severe OA osteochondral pathology [22]. Using precise mapping of BMLs (OsiriX software, 104 

Pixmeo-SARL, Switzerland), a sagittal slice of cartilage-subchondral bone (width 5mm x depth 5 to 105 

12mm) containing the BML area (Figure 1) was dissected using a low speed diamond wheel saw 106 

(Model 660, South Bay Technology, Inc.). Sagittal blocks of tissue were fixed in 4% (w/v) 107 

paraformaldehyde and slowly decalcified in 15% (w/v) ethylenediaminetetra acetic acid (EDTA). 108 

Following complete decalcification as determined by X-ray, samples were processed, embedded in 109 

paraffin and cut on a rotary microtome (Leica RM 2235 Nussloch, Germany) into 5µm thick sections. 110 

 111 

FFPE human OA tissue sections on indium tin oxide (ITO) or polyethylene naphthalate (PEN) slides 112 

were rehydrated using a modified procedure of citric acid antigen retrieval (CAAR) at 70° for 3 h instead 113 

of 98° for 30 min and printing 15 nL of PNGase F instead of printing 30 nL of PNGase F [21]. Mass 114 

spectra were acquired using an ultrafleXtreme MALDI-TOF/TOF mass spectrometer or LC-iontrap ESI-115 

MS/MS analysis as described previously [21, 23].  116 

Bone marrow lesions (BMLs) were identified using PDFS and T1 weighted scans in magnetic 117 

resonance imaging (MRI) of the tibial plateaus. As depicted in Figure 1 Panel a, there was no BML 118 

detected in this patient, while in Figure 1 Panels b and c, BML stage 1 and 2, respectively, were 119 

detected. These BMLs are annotated in pink and green, as indicated on the MRI. Below each MRI are 120 

shown stained formalin-fixed paraffin-embedded (FFPE) tissue sections. Haematoxylin and eosin 121 

(H&E) staining provides histological information and safranin-O highlights the cartilage in red. Following 122 

acquisition of the MRI, the image was overlaid with the stained FFPE tissue sections and regions of no 123 

BML and BML stages 1 and 2 were annotated in black. Although the identification of these BMLs using 124 

MRI is useful, it does not provide molecular information. Therefore, we performed MALDI mass 125 
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spectrometry imaging (MALDI-MSI) of the released N-glycans to investigate the molecular mechanisms 126 

behind BMLs. 127 

 128 

For the citric acid antigen retrieval (CAAR) [21, 24], we reduced the temperature and incubated longer 129 

to maintain adherence to the ITO slide. MALDI-MSI experiments were conducted in parallel with LC-130 

ESI-MS/MS structural characterization. Consecutive tissue sections were manually micro-dissected, 131 

and the N-glycans were released and structurally characterized by LC-ESI-MS/MS. Figure 2 represents 132 

the summed LC-ESI-MS and MALDI-MS profiles of both bone marrow and cartilage. In Figure 2 Panel 133 

a (LC-ESI-MS profiles), 52 individual N-glycan masses (including structural and compositional isomers) 134 

were identified from bone marrow proteins compared to 56 individual N-glycan masses (including 135 

structural and compositional isomers) identified from cartilage proteins, based on LC-ESI-MS/MS data 136 

(Supplementary Table 1). The detailed structures were manually assigned from the MS/MS 137 

fragmentation data as illustrated in Supplementary Figure 1.  A comparison of the LC-ESI-MS mass 138 

profiles revealed differences in intensity of particular m/z values. For example, m/z 1111.4 was 139 

observed as a lower intensity peak in the cartilage relative to the bone marrow.  140 

 141 

Ion intensity maps were then generated by MALDI-MSI for N-glycan structures from the complex/hybrid, 142 

sialylated and high-mannose families that had been determined by LC-ESI-MS/MS analysis (refer to 143 

Figure 2 Panel a for the summed LC-ESI-MS profiles). Figure 3 shows safranin-O stained images and 144 

ion intensity maps for the same 3 patients described in Figure 1. The region annotated in black 145 

represents the control (i.e. non-treated) and calibrant regions while the region annotated in white is 146 

cartilage. There were no differences observed between the complex/hybrid N-glycan masses in both 147 

the cartilage and bone marrow (even between fucosylated and non-fucosylated N-glycans). The log ion 148 

intensity map for (HexNAc)2(Man)3 + (Hex)2(HexNAc)2(NeuAc)1 was observed as a doubly sodiated 149 

species only in the cartilage whereas the core fucosylated version of this N-glycan was observed in 150 

both the cartilage and bone marrow. In addition, (HexNAc)2(Man)3 + (Hex)2(HexNAc)2(NeuAc)2  was 151 

observed as a triply sodiated species only in the bone marrow of the patient with BML stage 1, but not 152 

in patients without BML or BML stage 2 as classified by MRI. This particular N-glycan was observed in 153 

LC-ESI-MS/MS profiles of both the cartilage and bone marrow, but exhibited decreased intensity in 154 

cartilage. This suggests that this N-glycan is too low in abundance in the cartilage for MALDI-MSI 155 

detection. High mannose N-glycans such as (HexNAc)2(Man)3 + (Hex)3, (HexNAc)2(Man)3 + (Hex)4 and 156 

(HexNAc)2(Man)3 + (Hex)5  were compared between the three knee OA patients. The ion intensity map 157 

for (HexNAc)2(Man)3 + (Hex)3 showed that this N-glycan was only observed in the cartilage region, 158 
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whereas (HexNAc)2(Man)3 + (Hex)4 and (HexNAc)2(Man)3 + (Hex)5  are highlighted in both the cartilage 159 

and bone marrow.   160 

 161 

Regions of interest (i.e. bone marrow and cartilage) were also selected based on histology and 162 

summed spectra were extracted from the MALDI-MSI dataset. Figure 2 panel b represents summed 163 

spectra from these regions and show a lower sensitivity of detection compared to LC-ESI-MS/MS. A 164 

comparison of those structures found by MALDI-MSI and LC-ESI-MS/MS are shown in Supplementary 165 

Table 1. The detected m/z from LC-ESI-MS corresponded to doubly charged [M−2H]2− masses and the 166 

m/z from MALDI–MSI corresponded to the sodiated mass ([M+Na+]+. A total of 17 individual N-glycan 167 

masses were identified from bone marrow compared to 20 individual N-glycan masses from cartilage. 168 

As previously seen in the ion intensity maps, (HexNAc)2(Man)3 + (Hex)2(HexNAc)2(NeuAc)1 was only 169 

detected in the cartilage while (HexNAc)2(Man)3 + (Hex)2(HexNAc)2(NeuAc)2 was only detected in the 170 

bone marrow. There was a major difference between the intensity of the N-glycan m/z values observed 171 

with (HexNAc)2(Man)3 + (Hex)3 being prominent in the cartilage relative to the bone marrow.       172 

 173 

In summary, we have established a MALDI-MSI and LC-ESI-MS/MS workflow for FFPE tibial cartilage 174 

and SCB of knee OA patients. For the first time, the N-glycome of different regions of the same OA 175 

sample have been investigated, with individual N-glycan structural and compositional isomers in bone 176 

marrow and cartilage (a total of 52 and 56 respectively) being identified by LC-ESI-MS/MS. Using 177 

targeted masses in the MALDI-MSI experiments, the disialylated biantennary complex glycan, 178 

(HexNAc)2(Man)3 + (Hex)2(HexNAc)2(NeuAc)2  was identified to be prominent in the bone marrow for 179 

the BML stage 1 patient relative to all other patient samples. However, larger patient studies will be 180 

required in order to understand the biological relevance of this observation. Overall, further 181 

development of this novel MALDI-MSI protocol has enabled the first steps to investigate the spatial 182 

distribution of the N-glycome of knee OA patients.    183 

Figure 1: Knee osteoarthritis (OA) patients (a) without bone marrow lesions (No BML), (b) with BML stage 1 (BML 1), 184 

and (c) with BML stage 2 (BML 2). Each panel includes (from top to bottom) a PDFS-weighted MRI of the tibial plateau 185 

(BML stage 1 and 2 are annotated in pink and green, respectively), a haematoxylin and eosin (H&E) stain, and a Safranin-186 

O/Fast Green stain of consecutive FFPE tissue sections. Regions of interest are annotated in black. 187 

  188 

Figure 2: (a) LC-ESI-MS profiles of bone marrow and cartilage regions, and (b) MALDI-MS profiles of bone marrow 189 

and cartilage regions, annotated with confirmed N-glycan structures from LC-ESI-MS/MS. (a) N-glycans were 190 

released in-solution from formalin-fixed paraffin-embedded (FFPE) tissue sections using PNGase F prior to LC-ESI-MS/MS. 191 

(b) N-glycans were released in situ from FFPE tissue sections using PNGase F and analysed by MALDI-TOF/TOF-MS. 192 

Regions were selected based on histology in SCiLS lab software (V2015a, Bruker Daltonics, Bremen, Germany). 193 
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  194 

Figure 3: Safranin-O stained images and ion intensity maps of complex/hybrid, sialylated and high-mannose N-195 

glycans observed in patients without bone marrow lesions (No BML), with BML stage 1 (BML 1) and with BML stage 196 

2 (BML 2). N-glycans were released in situ on FFPE tissue sections using PNGase F and analyzed by MALDI-TOF/TOF-197 

MS. m/z values were selected and visualized in SCiLS lab software (V2015a, Bruker Daltonics, Bremen, Germany). Ion 198 

intensity maps were co-registered with safranin-O stained images to identify the distribution of the selected N-glycans. There 199 

was no distinct pattern between the same families (i.e. complex/hybrid, sialylated and high-mannose) of N-glycans. Control 200 

and calibrant regions (i.e. regions not treated with PNGase F) are annotated in black.    201 

 202 
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