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ABSTRACT 

Compared with routine microscopy imaging of a few analytes at a time, rapid scanning through the whole 

sample area of a microscope slide to locate every single target object offers many advantages in terms of 

simplicity, speed, throughput, and potential for robust quantitative analysis. Existing techniques that 

accommodate solid-phase samples incorporating individual micron-sized targets generally rely on digital 

microscopy and image analysis, with intrinsically low throughput and reliability. Here we report an 

advanced on-the-fly stage scanning method to achieve high-precision target location across the whole 

slide. By integrating X- and Y-axis linear encoders to a motorised stage as the virtual “grids” that provide 

real-time positional references, we demonstrate an Orthogonal Scanning Automated Microscopy (OSAM) 
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technique which can search a coverslip area of 50 × 24 mm
2
 in just 5.3 minutes, and locate individual 

15-µm lanthanide luminescent microspheres with standard deviations of 1.38 and 1.75 µm in X and Y 

directions. Alongside implementation of an autofocus unit that compensates the tilt of a slide in the Z-axis 

in real time, we increase the luminescence detection efficiency by 35% with an improved coefficient of 

variation. We demonstrate the capability of advanced OSAM for robust quantification of luminescence 

intensities and lifetimes for a variety of micron-scale luminescent targets, specifically single 

down-conversion and upconversion microspheres, crystalline microplates, and colour-barcoded microrods, 

as well as quantitative suspension array assays of biotinylated-DNA functionalized upconversion 

nanoparticles (UCNPs). 
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INTRODUCTION 

Quantitative luminescence measurements of biomolecules, single cells and tissue specimens in solid 

phase are particularly valuable for identification and unambiguous confirmation of rare cell types
1-3

, 

time-lapse study of live cells
4-6

, profiling of subcellular components and biomolecular expressions
7-9

, and 

a broad range of other diagnostics applications
10-12

. The existing techniques based on digital 

microscopy
13-16

, however, are time-consuming and resource-demanding, as images are typically captured 

for the entire sample area, or even through three-dimensional space
17-20

, followed by stitching and 

processing to identify and quantitate targets of interest. Their quantification is also less accurate, because 

different types of noise and background emission interfere in the measurement of absolute intensities, and 

targets that are randomly located at the periphery of the field-of-view (FOV) have large variation in 

excitation and detection efficiencies
21-23

. The key to realising a simplified accessible technique for 

quantitative luminescence measurements lies in the improvements in both the signal-to-background 

contrast and the pinpointing precision with which each target is brought to the centre of the FOV. 

One solution to this problem includes the use of lanthanide luminescent materials exhibiting long 

lifetimes and/or photon upconversion properties, which are highly useful as either high-contrast molecular 

probes for direct labelling
24-30

 or microsphere-based suspension arrays for high throughput assays
31-33

. 

Improved sensitivity by orders of magnitude has been demonstrated compared to the conventional 

fluorescence methods, taking advantage of either time-gated detection or near-infrared (NIR) excitation to 

remove the autofluorescence background
34-36

. We have also shown recently that luminescence lifetimes of 

lanthanide-based upconversion materials can be fine-tuned across the microsecond to millisecond range, 

allowing for creation of temporally multiplexed codes for luminescence detaction
33,37

. In parallel we have 

developed a controlled synthesis approach for bottom-up production of a library of colour-barcoded 

heterogeneous micro-rods at low cost
38

. These advances open new opportunities for data storage, 
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document security, and multiplexing assays which allow a large number of labelled biomolecular species 

to be interrogated simultaneously.  

The advantages offered by lanthanide luminescence have further enabled us to develop a novel 

two-step Orthogonal Scanning Automated Microscopy (OSAM) technique
33,39,40

 to quickly locate target 

analytes in a microscope slide-mounted sample with minimum requirements in data acquisition, storage 

and processing. Briefly, the initial scan entails continuous sample movement along the X-axis, with a 

single-element photodetector tube to rapidly identify any randomly-distributed luminescent targets on a 

slide. By doing this, a sunrise-sunset profile of luminescence signal can be collected when a target passes 

the microscopy FOV, which gives the X-coordinate for each target. These coordinates guide orthogonal 

scans along the Y-axis to traverse each target at the centre of the FOV, allowing luminescence intensity 

and lifetime for each target to be measured at maximum detected signal.  

In spite of the advances made in both materials and instrumentation, the precision with which targets 

can be located within the comparatively large area of a microscope slide has been limited (typically to 

±30 µm, large compared with target size) by electronic jitter and mechanical lag of the scanning stage, as 

well as optical defocusing on the often tilted slide. Truly quantitative luminescence measurement for 

micron-scale targets lies in interrogation of every individual target under identical illumination and 

detection conditions with a precision in location which is small compared to the target size. Here we 

report a major advance in OSAM performance achieved using linear encoders to provide virtual grids of 

spatial reference in the XY plane, and addition of an autofocus capability which enables us to offset slide 

tilt in real time. This new Referenced-OSAM (or R-OSAM) achieves order-of-magnitude improvements 

in the precision of target location and subsequent quantification of luminescence intensity of individual 

micron-scale targets in real-time during rapid scanning. The performance of the R-OSAM is 

systematically validated by statistical analysis of luminescent microspheres, microplates and 
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colour-barcoded microrods, as well as suspension array assays of biotinylated-DNA functionalized 

upconversion nanoparticles (UCNPs). 

EXPERIMENTAL SECTION 

Optical configuration. Shown in Supporting Figure S1, the R-OSAM is built on an inverted 

microscope (IX71, Olympus) equipped with a motorised stage (H117, Prior Scientific). Two light sources 

in addition to the original mercury lamp are integrated: a fibre-coupled near-infrared (NIR) diode laser 

with peak wavelength at 980 nm (Beijing Viasho Technology; maximum CW laser power 1.3 W), and an 

ultraviolet light-emitting diode (UV LED) with peak wavelength at 365 nm (NCSU033A, Nichia; 

bandwidth 9 nm FWHM, maximum CW output 250 mW). A doublet collimator (F810SMA-780, Thorlabs; 

f = 36 mm) and a fused silica lens (f = 30 mm) are coupled to the additional sources, respectively, to 

ensure uniformity in illumination. The excitation beam is reflected by a dichroic before illuminating the 

field-of-view (FOV) through an objective lens (NT38-340, Edmund Optics; 60×, NA = 0.75). The 

luminescence is directed to either an electronically gateable photomultiplier tube (PMT, H10304-20-NF, 

Hamamatsu; 10
6
 gain at 0.9 V control voltage) or a digital colour camera (DP72, Olympus), switched by a 

movable mirror placed at 45°. In front of the PMT a convex lens (f = 40 mm) is used to converge the 

emission onto the photocathode window. Band-pass filters mounted on a filter wheel can be inserted to 

select target emission bands.  

The following dichroic mirrors and filters were used in this work: FF511-Di01 as well as 

FF750-SDi02 (Semrock) for NIR excitation; 400DCLP (Chroma) for UV excitation; FF01-540/50 and 

FF01-655/40 (Semrock) for the green and red upconversion emission from Er
3+

; FF02-475/50 (Semrock) 

for the blue upconversion emission from Tm
3+

; 9514-B (New Focus) for the red emission of Eu chelates; 

and FF01-842/SP-25 (Semrock) for blockage of excitation wavelengths when taking luminescence 

images.  
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Linear encoders. Though the position of the motorised stage can be read out on demand, the in-built 

serial communication does not provide the capability of real-time reading during continuous motion. We 

therefore added to the X and Y axes of the stage, two miniature linear encoders (MercuryII 1600, MicroE 

systems) as well as laser tape scales (Supporting Figure S2; the tape scales are attached to the scanning 

plates, while the encoders are mounted on the immobile frame). Each encoder has a 850 nm infrared laser 

diode to illuminate the tape scale engraved with 20-µm grating pitches, and a displacement sensor 

employing ×40 interpolation to deliver two quadrature square-wave outputs with 0.5 µm resolution per 

count when reading the tape scale that moves with the stage. A computer equipped with a multifunction 

data acquisition card (PCIe-6363, National Instruments) is used to synchronously record the optical signal 

from the PMT (transduced by a preamplifier at 10
5
 V/A; DLPCA-200, FEMTO) and the displacement 

output from the encoders, enabling correlation in the form of a luminescence vs. position curve.  

Autofocus system. To provide the scanning precision along the Z axis (focal length), an autofocus 

system consisting of a Z-drive and a focus feedback unit (CRISP, Applied Scientific Instrumentation) is 

integrated into the R-OSAM (Supporting Figure S3). It is designed to compensate the difference in Z 

positions across the entire sample area, so that individual targets can be interrogated at identical focal 

length. The Z-drive, incorporating a DC motor and a rotary encoder, is mounted onto the fine focus shaft 

of the microscope. The focus feedback unit – basically an extra reflective detection module with a LED 

source (720 nm), a filter cube and a split photodiode – is inserted in the detection path after the original 

dichroic. The LED is off the optical axis, so that any focus change of the slide results in the lateral 

displacement of the reflected light, which is detected by the split photodiode (see Supporting Figure S4)
41

. 

Its signal is conditioned by an in-built log amplifier to provide closed-loop control for the Z-drive. To 

ensure robust operation, the LED intensity, the log amplifier offset and the photodiode lateral position are 

carefully adjusted, so that the signal sensitivity in response to focus shift is maximised. In addition, the 
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relative focus height (Z coordinate), monitored by the rotary encoder of the Z-drive, is displayed on the 

controller of the autofocus system.  

Evaluation Samples. Five kinds of lanthanide luminescent samples, as summarised in Table 1, were 

prepared for comprehensive validation of our new-generation R-OSAM in precise pinpointing of 

micron-sized targets and quantitative luminescence measurements.  

Table 1. Descriptions of the evaluation samples as well as experiments they are used in.  

Sample Description Use in experiments Luminescent Image 

1 15-µm polystyrene beads incorporating 40-nm 

NaYF4:Yb,Er UCNPs with 20 mol% Yb
3+

 and 4 

mol% Er3+  

target pinpointing; focus height 

analysis; R-OSAM vs. image 

analysis; material 

characterisation  

2 5-µm polystyrene beads containing Eu complexes 

(i.e. FireRedTM) 

quantification enhancement 

 

3 barcoded upconversion microrods (width 1~1.5 

µm) with NaYb0.995F4:Tm0.005 in the middle 

(length ~1 µm) and NaYb0.999F4:Er0.001 at the ends 

(length ~3 µm each side)  

material characterisation 

 

4 upconversion microplates of NaYb0.96F4:Er0.04 

(size ~4 µm, thickness ~0.5µm) 

R-OSAM vs. image analysis 

 

5 streptavidin-modified 15-µm polystyrene beads 

reacted with biotinylated-DNA functionalised 

UCNPs 

suspension array assays 
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Polystyrene microspheres were used as carriers to embed both upconversion and down-conversion 

luminescent materials via swelling methods. The NaYF4:Yb,Er upconversion nanoparticles (UCNPs; 

doped with 20% Yb
3+

 and 4% Er
3+

, size ~40 nm; see Supporting Figure S5 for the Transmission Electron 

Microscopy image) were synthesized with their oleic acid surfactants removed and incorporated into 15 

µm polystyrene beads (PC07N/8783, Bangs Laboratories) according to existing protocols
32,37

. The 

Eu-complex-containing FireRed
TM

 beads (5 µm in diameter, Newport Instruments) were prepared 

according to the protocol reported previously
42

.  

Hydrothermal synthesis was employed for the controlled growth of micron-sized upconversion 

crystals. The upconversion microrods (middle section NaYbF4:Tm with 99.5% Yb
3+

 and 0.5% Tm
3+

; end 

sections NaYbF4:Er with 99.9% Yb
3+

 and 0.1% Er
3+

; length ~7 µm, width 1~1.5 µm) were synthesized 

using our reported protocol
38

. A similar method was used to synthesize the microplates (NaYbF4:Er, with 

96% Yb
3+

 and 4% Er
3+

; size ~4 µm, thickness ~0.5µm).  

To demonstrate the quantitative suspension array assays, firstly, we functionalised streptavidin (SA) 

onto the polystyrene beads as the capture substrate (suspension arrays). 50 ul of the 15 µm polystyrene 

beads were first washed twice by water, and then added into 400 µl MES buffer containing 20 µl of 2.5 

mg/ml SA and 5 mg 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The mixture was incubated 

at 1,000 rpm for 2 hours. The SA-beads were harvested by centrifugation and washing, and finally stored 

in 200 µl water. Secondly, the biotinalyted-DNA functionalized UCNPs, as the reporter analytes, were 

prepared based on a previously reported method
43

. 20 µl of 10 mg/ml UCNPs were suspended in 400 µl 

chloroform, and then mixed with 300 µl 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) buffer 

containing 6.5 µM biotinylated DNA (Sequence: 5'-GAA ACC CTA TGT ATG CTC TTT TTT TTT 

T-BIOTIN-3', Integrated DNA Technologies). The mixture was incubated at 600 rpm for 2 hours to 

perform ligand exchange on the surface of UCNPs from the original oleic acid to the biotinylated DNA. 
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As a result, the UCNPs were transferred from the chloroform to the MES buffer. The latter was collected 

and centrifuged at 14,600 rpm for 5 mins. After removing the supernatant containing unbound 

biotinylated DNA, the functionalized UCNPs were redispersed into 100 µl deionised water. The 

concentration was 2 mg/ml (corresponding to 15.6 nM)
35

 assuming no loss in the preparation steps above. 

Finally, the assay was conducted by mixing 10 µl of the as-prepared biotinalyted-DNA functionalized 

UNCPs (10 µl × 15.6 nM = 156 fmol) or its dilution (10, 50 and 200 times) with 5 µl of the SA-beads. 

The reaction was allowed for 3 hours at room temperature, and the unbound UCNPs were washed away 

before luminescence measurement. 

To prepare the samples for scan, each 20 µl suspension of microspheres, microplates or microrods 

(~2×10
4
 particle/ml after dilution with ethanol) were spread on one coverslip of 50 mm × 24 mm, which 

was pre-heated to 60 °C to facilitate evaporation of the liquid. The coverslip was then sealed with a 

microscopic slide. Flip of the sample was avoided to ensure that particles stuck to only one surface. 

Alternatively, adherent surface treatment or spin coating can be applied.  

RESULTS AND DISCUSSION 

High-speed scanning by R-OSAM. The concept of the Referenced-OSAM (R-OSAM) employing 

the linear encoders and the autofocus unit is illustrated in Figure 1a. It rapidly scans sample slides 

containing luminescent targets by taking advantage of the negligible autofluorescence and scattering 

background obtained via either time-gated detection or NIR illumination for the upconversion materials, 

while both the spatial referencing and the autofocusing are carried out in real time without affecting the 

scan speed. For every slide, its entire area is first examined in a serpentine pattern consisting of 

continuous movement along one (X) axis and stepwise movement along the other (Y) axis. As shown in 

Figure 1b, when a target is scanned continuously across the FOV, its luminescence signal exceeds a 

preselected threshold (Vth), so that the entrance (P1) and exit (P2) positions are registered. The target 
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coordinate along the scanning direction (X) is calculated out (as P = (P1 + P2)/2) regardless of variation in 

the scanning speed. The other coordinate is obtained by a series of orthogonal scans along the Y axis 

across each target particle, during which the luminescence intensity is captured when the target is exactly 

at the centre of the FOV. Scanning a coverslip area of 50 × 24 mm
2
 typically takes 5.3 minutes, 

corresponding to an analytical speed of 225 mm
2
/minute. R-OSAM can be operated in either the 

continuous-wave mode or the time-gating mode, as described below.  

Precise target pinpointing assisted by encoders. To evaluate the enhanced precision of target 

location achieved by the linear encoders, the XY coordinates of each targets obtained via orthogonal 

scanning were sequentially retrieved for image verification with their distance to the centre of the FOV 

measured. Figure 2a shows data from one typical slide containing 571 UCNP-impregnated beads (15 µm 

in diameter) pinpointed during rapid scanning under continuous-wave NIR (980 nm) excitation and PMT 

detection. The standard deviations of the distances from individual beads to the centre of the FOV in X 

and Y directions were 1.38 and 1.75 µm, respectively, demonstrating that the R-OSAM is capable of 

target location with precision substantially smaller than the diameter of most targets of practical interest. 

To determine the improved precision of R-OSAM in locating down-conversion luminescent targets, 

the time-gating mode consisting of periodic pulsed UV excitation and delayed detection was employed. 

With 200 µs time-gating cycles consisting of 90 µs excitation, 10 µs time delay and 100 µs detection 

window, standard deviations of 4.01 and 3.74 µm were achieved in X and Y directions, respectively, 

which are about one order of magnitude better than the OSAM scanning result without the assistance of 

the linear encoders (33.0 and 35.6 µm), as shown in Supporting Figure S6. Because in the time-gating 

mode a proportion of the targets pass the FOV during the excitation phases when the detector is disabled, 

location of them is virtually rounded into the adjacent detection phases, leading to slightly decreased 

precision compared to the continuous-wave mode.  
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Offsetting Z-axis variance by autofocus. In addition to high-precision XY target location, accurate 

luminescence measurement also requires bringing all the targets to focus in the Z axis. Figure 2b shows 

the variance in focus height over a typical slide measured by the autofocus system (with feedback control 

disabled) upon each target after retrieval as well as the edges of the slide and the coverslip, which 

displays both the random positions of each targets between the slide and the coverslip and the tilt of slide 

itself. It is seen that the latter is usually the major cause of the variance in focus height (~70 µm; in 

contrast the space between the slide and the coverslip is ~20 µm) during the whole slide scanning
44

, while 

the former can be further alleviated with careful sample preparation. By implementing the autofocus 

system, the focal length is locked with respect to one reflective surface, which essentially compensates 

the tilt of the sample in real time. The enhanced target location and autofocus of the R-OSAM is 

demonstrated in Supporting Movie S1. 

Improved luminescence quantification by R-OSAM. The precision of R-OSAM in pinpointing the 

targets in three dimensions further enhances luminescence quantification with maximised excitation and 

collection efficiencies. As a result, the average intensity measured from single 5-µm Eu-containing 

FireRed
TM

 beads increased by 35% compared with the OSAM with both the encoders and the autofocus 

unit disabled, as shown in Figure 2c. Moreover, the recorded intensity histogram shows better symmetry 

with coefficient of variation (CV) improved from 17.0% to 12.7%. 

Comparison of quantitative results obtained by R-OSAM vs. image analysis. The intensity 

captured by the single-element PMT detector during the R-OSAM on-the-fly scanning mode was further 

validated by analysing the images of each target taken at the retrieval step. Figure 3a shows a good 

correlation (R-square 0.98 for the linear curve fitting) over a large dynamic range by comparing the two 

approaches in quantifying the intensities of UCNP-impregnated beads. This consistency extends to the 

upconversion microplates with size of 4 µm or less (Figure 3b; R-square 0.95 for the linear curve fitting), 
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suggesting that the R-OSAM gives results comparable to the best conventional image analysis while 

significantly reducing the processing time.  

High-throughput material characterization by R-OSAM. Fluorescence microscopy has been 

conventionally used to assess the quality and dispersity of lanthanide luminescent materials, but the 

limited number of images by low-throughput image acquisition and analysis are insufficient to give 

statistical results. We have developed an analytical application of the R-OSAM scanning microscopy 

method for statistical characterisation of a new type of luminescence materials – the epitaxial-grown 

barcoded upconversion microrods. Figure 4a shows that the as-prepared crystalline microrods have 

high-quality consistent core section (NaYbF4:Tm) with a narrow CV in the blue luminescence intensity of 

only 4.93%, but the high CV in the red luminescence intensity of 39.5% reveals substantial variation in 

growth of the end sections (NaYbF4:Er). These results were confirmed by target retrieval showing that the 

individual variation is attributed to the inconsistency during epitaxial growth in terms of different lengths 

and crystalline quality. In fact, a small but significant proportion of the microrods have single ends (see 

Figure 4a).  

In general, the concentrations of sensitizers (Yb) and activators (Tm or Er) in upconversion materials 

primarily determine the luminescence lifetimes
37

. To further assess the doping uniformity during the 

crystal growth, we collected the luminescence lifetimes of each individual barcoded microrods. Figure 4b 

displays the statistics of the luminescence lifetimes for both the blue (Tm) and the red (Er) emissions, 

yielding CVs of 6.16% and 3.52% (as well as average value of 366 µs and 444 µs), respectively. This 

indicates that dopant concentration of end sections has relatively small variation across the population of 

microrods, thus the large CV for intensity is attributed to variation in the size of the Er-doped end 

sections.  

Moreover, the ratiometric scattering plots by R-OSAM, as shown in Figure 4c, suggest a statistical 
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approach to robust decoding and classification of individual microspheres for multiplexing, in a similar 

manner to standard flow cytometry assays. Doping UCNPs by 20 mol% Yb and 4 mol% Er yields a 

consistent green-to-red ratio of 0.526, while doping 99.9 mol% Yb and 0.1 mol% Er yields a consistent 

green-to-red ratio of 0.0894, with R-square over 0.99 when linear curve fitting is applied. The intrinsic 

ratios reflect the specific types of the UCNPs used, independent of the exact number of UCNPs embedded 

in each microsphere. 

Quantitative suspension assay assays. Suspension array assays provide a high-throughput 

analytical approach to screening and quantification of multiple biomolecules in a single test
45,46

. These are 

based on ensembles of spectrally coded microspheres, most commonly using varying combinations of 

fluorescent dyes
47-49

. While they have major advantages including rapid reaction kinetics, high throughput 

and statistical accuracy, their potential for quantitative assays is often compromised, because 

colour-coded microspheres will also generate spectral-channel interference in the fluorescence detection 

of the reporter dyes. To remove such interference for accurate quantification, we use lanthanide materials 

as the reporter probes that can be completely distinguished in the time domain. Such an assay was 

demonstrated here by using the UCNPs as the reporter probes and the R-OSAM in the time-gating mode 

for quantitative background-free luminescent measurement. Figure 5a illustrates our experiment by 

mixing the as-prepared biotinalyted-DNA functionalized UNCPs with the SA-modified polystyrene beads, 

with different amount of the UCNPs used to evaluate the quantification accuracy. As shown in Figure 5b, 

the time-gated luminescence signal drops largely linearly as the dilution of the UCNPs, with the intensity 

CV around 20% for each sample. Similar results can be obtained via retrieval of every target followed by 

conventional image analysis (see Supporting Figure S7), however this is at the cost of a very long data 

collection process. This demonstration not only reinforces the practical value of R-OSAM scanning at 
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high speed for precise quantification of target luminescence, but also demonstrates the advantage of using 

UCNPs as reporter probes to remove the optical background for quantitative suspension array assays.  

CONCLUSIONS 

By integrating the XY-axes linear encoders and the Z-axis autofocus system into a 

motorised-stage-based scanning microscopy, precise pinpointing of luminescent targets at an analytical 

speed of 225 mm
2
/minute is realised in this work. Its precision, measured as the distances from the 

pinpointed targets to the centre of the field of view, is 1.38 and 1.75 µm in X and Y directions respectively, 

demonstrating that the R-OSAM is capable of target location with precision substantially smaller than 

typical micron-sized targets. The use of the autofocus system to lock the optical focus to one reflective 

surface has essentially compensated the tilt of the sample slide in real time. These new advances deliver 

the best precision in target pinpointing in three dimensions during rapid scanning over a whole 

microscopic slide, enabling accurate quantification of the luminescence intensities as well as derivative 

properties such as ratios and lifetimes upon individual targets.  

Our R-OSAM approach benefits from the low-background nature of lanthanide luminescence that are 

immune to the autofluorescence and scattering background via time-gated detection and/or NIR 

illumination for upconversion materials. It offers a robust and high-throughput solution beyond 

conventional image analysis for statistical characterisation of luminescence materials. Compared to 

measurements from collective samples using common spectroscopy and microscopy approaches, the 

statistical results obtained by R-OSAM provide an array of in-depth information on population variations 

from one target to another. Such measurement was previously not possible in the routine materials 

syntheses and characterisations, but will enable new understanding and development of advanced 

materials for quantitative applications that exploit combinations of colours, intensities, lifetimes and 
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spatial barcodes for high-throughput analysis. Moreover, we demonstrate the upconversion nanoparticles 

as background-free reporter probes suitable for quantitative biomolecular assays based on the suspension 

arrays, opening new opportunities in analytical chemistry, micro and molecular biology, pharmaceutical 

discoveries and clinical diagnostics.  
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Figure 1. (a) Schematic illustrating the concept of R-OSAM, which exploits linear encoders and 

autofocusing to pinpoint targets during rapid scanning of the sample slide. For each of the scan direction 

(X and Y), a laser tape scale is attached to the stage, and a linear encoder is mounted (fixed to the 

microscope frame) above the scale to read the displacement when the stage moves. The output is 

correlated to the luminescence signal recorded by the photodetector to determine the precise location of 

the target along the scan direction. To enable the autofocus function of the sample slide, a Z-reference 

light source delivers its beam in the margin of the optical path, so that any change in the focal length will 

lead to the shift of the reflected beam. This is detected by a split photodiode, which feedback controls the 

focus drive to maintain the focal length. (b) The sunrise-sunset luminescence signal profile with respect to 

the scan displacement of one typical target passing across the field of view (FOV), from which the 

location of the target along the scan direction is obtained.  
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Figure 2. (a) A heat plot summarising the locations of the UCNP-impregnated calibration beads obtained 

by the R-OSAM with respect to the centre of the FOV for a typical sample slide, with the shadowed 

circles indicating the size of the beads (15 µm). (b) The spatial distribution of UCNP-impregnated beads 

spread between a microscopic slide and a cover slip, measured by the R-OSAM. The standard deviations 

for the Z-coordinate of the bead and for the distance from each bead to the substrate plane are 16.2 µm 

and 6.7 µm respectively, suggesting that the tilt of the slide is usually the major cause of the variance in 

focus. (c) Comparison of luminescence intensity profiles for 5 µm Eu-calibration beads on the same 

sample slide, measured by the R-OSAM (red bars) and the OSAM with both encoders and autofocus 

disabled (purple bars). Exposure time: 100 ms. Scale bar: 15 µm. 
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Figure 3. Correlation between the luminescence intensity captured by the R-OSAM and that measured 

from the image taken after target retrieval, for (a) 15 µm UCNP-impregnated microspheres, and (b) 

upconversion microplates (Scanning Electron Microscopy image on the top left corner), over a large 

dynamic range. Each of the luminescence images show an individual microsphere or microplate that 

generates the data point, with exposure times of 50 ms for the microspheres and 150 ms for the 

microplates, respectively. Scale bars represent 15 µm in the luminescence image and 2 µm in the SEM 

image. 
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Figure 4. (a) A scatter plot showing the luminescence intensities measured by the R-OSAM in the red 

(ends) and the blue channels (middle) from individual upconversion microrods (SEM image on the top 

right corner), alongside representative luminescence images taken after target retrieval. Exposure time is 

150 ms. Scale bars represent 5 µm in the luminescence image and 1 µm in the SEM image. (b) 

Histograms of the luminescence lifetimes for the ends (red channel) and the middle (blue channel) of the 

microrods. (c) The intensity ratios of green to red luminescence with respect to the Yb/Er co-doping 

concentrations. The inset shows normalised emission spectra. 
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Figure 5. (a) The scheme of the demonstration assay using biotinylated-DNA functionalised UCNPs as 

the target and SA conjugated polystyrene beads as the substrate. (b) The relation between the amount of 

the biotin-UCNPs and the luminescence intensity of individual beads, concluded statistically from the 

intensity histograms of the beads populations. The error bars represent twice the standard deviation (95% 

confidence). The inset images show typical beads from each population, captured with different exposure 

time. Scale bar 10 µm.  
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