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Abstract 16 

The determination of the creep (compliance) function of viscoelastic pipelines is essential 17 

for modelling their hydraulic behavior and accurately predicting pressure responses under 18 

transient events. This paper proposes a novel frequency-domain technique for the 19 

determination of the creep function of viscoelastic pipelines using hydraulic transients. A 20 

viscoelastic pipeline system, when compared with a frictionless elastic pipeline under the 21 

same system configuration, has non-uniformly shifted resonant frequencies. Analytical 22 
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analysis shows that the shift in the resonant frequencies of a viscoelastic pipeline system is 23 

related to both the pipe wall viscoelastic compliance effects and the unsteady wall shear 24 

stress effects. A technique is developed to determine the elastic wave speed and the 25 

viscoelastic creep compliances based on the shifted system resonant frequencies. To 26 

improve the accuracy of the calibration for the viscoelastic parameters, an approach is 27 

proposed to correct the shifting in the resonant frequencies induced by the unsteady friction 28 

before the calibration. Numerical simulations conducted on a high-density polyethylene 29 

(HDPE) pipeline verify that the elastic wave speed and viscoelastic compliance can be 30 

determined with relatively high accuracy.  31 

Keywords: creep function; fluid transient; polymer; resonance; viscoelasticity; water 32 

hammer. 33 

Introduction 34 

Viscoelastic pipelines, such as polyvinyl chloride (PVC) and high-density polyethylene 35 

(HDPE) pipelines, have been increasingly used throughout the world for potable water 36 

distribution, sewage effluent transport and agriculture irrigation. Experimental studies 37 

(Güney 1983; Covas et al. 2004; Ramos et al. 2004; Brunone and Berni 2010; Meniconi et 38 

al. 2012; Pezzinga et al. 2014) showed that transient pressure waves experienced greater 39 

attenuation and dispersion in viscoelastic pipelines when compared with elastic pipelines 40 

(e.g. metallic pipes). However, in some cases, the use of viscoelastic pipelines increases 41 

the maximum transient pressure (Pezzinga and Scandura 1995; Ramos et al. 2004). In the 42 

frequency domain, viscoelasticity introduces non-uniform (frequency-dependent) shifting 43 
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of the resonant frequencies of a pipeline system and non-uniform resonant responses (Suo 44 

and Wylie 1990; Lee et al. 2013). Detailed understanding of the hydraulic characteristics 45 

of viscoelastic pipelines is critical for accurate prediction of the pressure responses of a 46 

pipeline system during transient events, better system design and safe operation.  47 

A number of studies, both in the time and the frequency domain, have been conducted and 48 

reported in the literature on the development of a mathematical model to describe the 49 

hydraulic transient response of viscoelastic pipelines. For an applied pressure load within 50 

a pipe (as experienced during a water hammer event), the effect of viscoelasticity is 51 

characterized by an instantaneous elastic strain, followed by a gradual retarded strain 52 

(Covas et al. 2004; Shaw and MacKnight 2005). In the time domain, the method of 53 

characteristics (MOC) (Wylie and Streeter 1993; Chaudhry 2014) was used and an 54 

additional viscoelastic term was added into the classic continuity equation to describe the 55 

retarded wall deformation (Gally et al. 1979; Rieutord and Blanchard 1979; Güney 1983; 56 

Pezzinga and Scandura 1995; Ramos et al. 2004; Covas et al. 2005; Soares et al. 2008; 57 

Meniconi et al. 2012; Meniconi et al. 2014). Within all this work, a linear viscoelastic 58 

mechanical model, the generalized Kelvin-Voigt (K-V) model (Shaw and MacKnight 2005) 59 

that includes an elastic element and one or more viscoelastic elements, was used to describe 60 

the retarded wall deformation by mathematically describing the creep function of a 61 

viscoelastic pipeline. The creep function, which is also known as compliance function, is a 62 

description of the time variation of strain for a constant stress, and related to the molecular 63 

structure of the material, temperature and stress-time history (Covas et al. 2004). In 64 

Brunone et al. (2000) it is shown that very large (not physically reasonable) decay 65 
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coefficients of the friction formula (Brunone et al. 1995) should be used to simulate 66 

transients in viscoelastic pipes when viscoelasticity is not taken into account.  67 

In the frequency domain, most previous studies of fluid transient simulation in viscoelastic 68 

pipelines used a frequency-dependent wave speed to describe the pipeline viscoelasticity, 69 

and the modulus of elasticity of a viscoelastic pipeline was represented by the inverse of 70 

the creep function (both in the frequency domain) (Meißner and Frank 1977; Rieutord 1982; 71 

Franke and Seyler 1983; Suo and Wylie 1990). A diffident approach was taken by Duan et 72 

al. (2012), which derived the transfer matrix of a viscoelastic pipeline, with and without a 73 

leak, using the time-domain modified continuity equation and a one-element K-V model. 74 

However, the frequency-dependent effects on the size of the resonant responses were not 75 

observed in their numerical simulations, i.e. the resonant responses of the intact viscoelastic 76 

pipe that was considered showed an almost uniform amplitude. 77 

Research on the transient behavior of viscoelastic pipelines has also been extended to 78 

numerical stability analysis of the MOC-based simulation with K-V model (Zecchin et al. 79 

2008), viscoelastic pipelines with unsteady friction (Covas et al. 2005; Duan et al. 2010a; 80 

Duan et al. 2010b), cavitation (Keramat et al. 2010), time-dependent Poisson’s ratio 81 

(Keramat et al. 2013), fluid structure interaction (Keramat et al. 2012), the presence of 82 

leaks (Duan et al. 2012; Ferrante et al. 2013; Lazhar et al. 2013) and blockages (Meniconi 83 

et al. 2012; Meniconi et al. 2013; Meniconi et al. 2014), and in networks (Zecchin et al. 84 

2012).  85 
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With the interest of research on viscoelastic pipelines (in particular, pressurized polymeric 86 

water pipelines) gradually increasing in more complex scenarios and experimental studies, 87 

a critical issue is the accurate evaluation of the creep function, which is the key for accurate 88 

prediction of the mechanical behavior and transient response in real viscoelastic pipelines. 89 

The creep function of a viscoelastic pipeline can be evaluated by mechanical testing (Zhang 90 

and Moore 1997; Covas et al. 2004). However, experiments by Covas et al. (2004) showed 91 

that mechanical testing of small samples of the pipe wall material only provided an estimate 92 

of the actual mechanical behavior of the pipe system, which depends on not only the 93 

molecular structure of the material and temperature but also the pipe axial and 94 

circumferential constraints and stress-time history of the pipe system. An alternative 95 

approach is to calibrate the mechanical behavior of a pipeline system by hydraulic transient 96 

tests. Pezzinga and Scandura (1995) used a one-element K-V model to study a short 97 

additional HDPE pipeline connected to a relatively long steel pipeline system. The elastic 98 

modulus of elasticity (which corresponds to the elastic component of the pipe’s 99 

circumferential expansion and manifested by the elastic wave speed) of the HDPE pipe 100 

was determined from the oscillation periods of the transient pressure wave, while the 101 

viscoelastic parameters were determined by trial-and-error. However, the accuracy of the 102 

calibration of the elastic modulus of elasticity (or the elastic wave speed) is hard to assure 103 

because the oscillation period is not constant over time in viscoelastic pipes due to wave 104 

dispersion. Covas et al. (2004) used the inverse transient analysis (ITA) (Liggett and Chen 105 

1994) to calibrate the viscoelastic parameters of a HDPE pipeline by optimizing the 106 

parameters in a multi-element K-V model in order to minimizing the difference between 107 

the simulated and observed pressure traces. Unsteady friction was considered in the 108 
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forward modeling to account for the friction-induced damping. However, the elastic wave 109 

speed (or the elastic creep) was not calibrated by ITA due to the non-uniqueness of the 110 

solutions. It was estimated using the traveling time of the incident wave between two 111 

pressure transducers, but the measured wave speed varied with the location of the 112 

transducer pairs due to wave dispersion. The ITA approach was adapted in several later 113 

studies (Soares et al. 2008; Duan et al. 2010a; Meniconi et al. 2012; Pezzinga 2014). 114 

Keramat and Haghighi (2014) developed a ‘viscoelastic Joukowsky formula’ to describe 115 

the head response in viscoelastic pipelines induced by a valve closure. Unsteady friction 116 

was neglected in the formula. A curve-fitting procedure, which is much more 117 

computational efficient than the ITA, was used to calibrate the mechanical parameters by 118 

matching the numerical head response with the measurements in the first half water 119 

hammer cycle. However, the elastic modulus of elasticity (or the elastic wave speed) was 120 

not calibrated but pre-assigned in the case studies reported in Keramat and Haghighi (2014), 121 

and the calibrated viscoelastic compliances were significantly different (20% or more) 122 

from the values used in the original numerical model. Overall, all the previous hydraulic 123 

transient-based studies on the calibration of the creep function of viscoelastic water 124 

pipelines were limited to time-domain analysis. The parameter calibration, even for the 125 

elastic modulus of elasticity (or the elastic wave speed) alone, is very challenging due to 126 

the significant wave dispersion and the fact that unsteady friction also introduces wave 127 

attenuation and dispersion. 128 

The current research proposes a new technique for calibrating the creep function of 129 

viscoelastic pipelines using hydraulic transients but with frequency-domain analysis. The 130 

proposed technique only uses information about the resonant frequencies, which is not 131 
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subject to discrete faults (such as leaks) in pipelines. The analysis of the transfer matrix of 132 

a viscoelastic pipeline derived using a generalized multi-element K-V model shows that 133 

the use of an additional retarded strain term in the continuity equation and the use of a 134 

frequency-dependent wave speed (or frequency-dependent modulus of elasticity) to model 135 

the pipeline viscoelastic behavior are equivalent. It is also found that both the 136 

viscoelasticity and the unsteady friction introduce frequency-dependent reduction and 137 

shifting to the resonant response peaks of a pipeline system. Based on the analytical 138 

relationship between the resonant frequencies and the pipeline viscoelastic and friction-139 

related parameters, a technique is developed to determine the elastic wave speed and the 140 

viscoelastic compliances from the resonant frequencies. The technique is complemented 141 

by an approach to correct the shifting in the resonant frequencies induced by the unsteady 142 

friction before the calibration of the viscoelastic parameters. Numerical case studies are 143 

conducted on an HDPE pipeline without and with unsteady friction. The results show that 144 

the new technique is computationally efficient and can yield accurate evaluation of the 145 

elastic wave speed and satisfactory accuracy for the viscoelastic compliances. Challenges 146 

for future applications in field pipelines are also identified and discussed in the end of the 147 

paper. 148 

Time-domain Governing Equations for Viscoelastic 149 

Pipelines  150 

This section is a brief review of the time-domain governing equations for viscoelastic 151 

pipelines. The one-dimensional (1-D) momentum equation for transient flow in pressurized 152 

pipelines is given as (Wylie and Streeter 1993; Chaudhry 2014)  153 
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1 0f

Q H h
gA t x

∂ ∂
+ + =

∂ ∂
 (1) 

where g  is gravitational acceleration, A  is the cross-sectional area of a pipeline, Q  is the 154 

flow rate, H  is the piezometric head, t  is time, x  is distance along the pipeline, and fh  is 155 

the head loss per unit length due to friction. The head loss can be regarded as a summation 156 

of a steady-state component and an unsteady-state component (Zielke 1968). The steady-157 

state component is well defined for both laminar and turbulent flow (Wylie and Streeter 158 

1993; Chaudhry 2014). Several unsteady head loss formulas are reported in the literature 159 

(Zielke 1968; Vardy et al. 1993; Brunone et al. 1995; Vítkovský 2006).  160 

The one-dimensional continuity equation with a retarded strain term for viscoelastic 161 

pipelines is given as (Gally et al. 1979; Pezzinga and Scandura 1995; Covas et al. 2005)  162 

2 2 0r

e

gA H Q A
a t x t

ε∂∂ ∂
+ + =

∂ ∂ ∂
 (2) 

where ea  is the elastic wave speed and rε  is the retarded strain. ea  is related to the elastic 163 

modulus of elasticity 0E  by the classic wave speed formula (Wylie and Streeter 1993; 164 

Chaudhry 2014). 165 

The generalized Kevin-Voigt (K-V) model has been commonly used to describe the 166 

mechanical behavior (creep function) of a viscoelastic material (Shaw and MacKnight 167 

2005). The model, as illustrated in Figure 1, includes one elastic element and  168 N
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viscoelastic elements in series connection. The elastic element is represented by a single 169 

spring with a modulus of elasticity 0E  (which is referred as the elastic modulus of 170 

elasticity), and a viscoelastic element consists of a dashpot with a viscosity kη  and a spring 171 

with a modulus of elasticity kE  in parallel connection.  172 

Using the K-V model, the creep function is described by 173 

 /
0

1
( ) (1 )k

N
t

k
k

J t J J e τ−

=

= + −∑  (3) 

where 0J  equals 01/ E  and it is termed as the elastic creep in some literature, kJ  equals 174 

1/ kE  and it is the compliance of the spring of the k th K-V element, kτ  equals /k kEη  and 175 

it is the retardation time of the dashpot of the k th K-V element. Note that the K-V model 176 

is a phenomenological model without physical interpretation (Weinerowska-Bords 2006, 177 

2007), as a result, different combinations of the number of K-V elements and the values of 178 

0J , kJ  and kτ may yield very similar creep curves (Covas et al. 2005; Keramat and 179 

Haghighi 2014). To reduce the possibility of non-uniqueness in solutions, a recent practice 180 

in research is to assume the number of K-V elements and assign constant values to kτ , then 181 

determine the values of 0J  and kJ  (Covas et al. 2005; Keramat and Haghighi 2014; 182 

Pezzinga 2014). This strategy is also used in the current research. 183 
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Frequency-domain Governing Equations for Viscoelastic 184 

Pipelines 185 

Transfer matrix for a viscoelastic pipeline 186 

The transfer function of a viscoelastic pipeline can be derived using the concept of steady-187 

oscillatory flow, where every transient signal is described as a perturbation about a mean 188 

state (Wylie and Streeter 1993; Chaudhry 2014). Using Eqs. (1) and (2) and following the 189 

derivation presented in Duan et al. (2012) but using a generalized multiple element K-V 190 

model [Eq. (3)], the transfer matrix for a viscoelastic pipeline can be written as  191 

 
1 1cosh( ) sinh( )

sinh( ) cosh( )

n nq qL L
Z

h hZ L L

µ µ

µ µ

+  −    =       − 

 (4) 

where q  and h  are the complex flow and head oscillation in the frequency domain, L  is 192 

the total length of the pipe, and the propagation operator µ  and the characteristic 193 

impedance Z  are given by  194 

 VE F
e

i T T
a
ωµ =  (5) 

 e F

VE

a TZ
gA T

=  (6) 
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in which ω  is the angular frequency, VET  and FT represent the terms contributed by 195 

viscoelasticity and friction, respectively, and are given as 196 

 2

1

1
1

N
k

VE e
k k

D JT a
e i

α ρ
ωτ=

= +
+∑  (7) 

 1F
gAT R
iω

= +  (8) 

where α  is the pipeline restraint factor, D is the pipeline internal diameter, ρ is the 197 

density of fluid, e  is pipe wall thickness, R  is the resistance per unit length. More details 198 

for the derivation of Eqs. (5) to (8) can be found in Gong et al. (2015b). 199 

R  can be described by a summation of the steady friction part sR  and the unsteady friction 200 

part usR , i.e.   s usR R R= + , where 2
0 / ( )sR fQ gDA=  is the linearized steady-state 201 

resistance term for smooth-pipe turbulent flow and f  is the Darcy-Weisbach friction 202 

factor. The expression of usR  presented in Vítkovský et al. (2003) is used in this research. 203 

The usR  term was derived based on the Zielke (1968) unsteady friction model and the 204 

Vardy and Brown (1995; 1996) weighting function for smooth-pipe turbulent flow.  205 

Modelling pipe viscoelasticity by retarded strain versus by 206 

complex wave speed 207 

A further analysis of Eqs. (5) and (6) shows that,  the existing two approaches of modeling 208 

pipe wall viscoelastic effects on transient pressure waves as reported in literature [i.e. the 209 
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use of an additional term ( 2 rA tε∂ ∂ ) to represent the retarded strain (Gally et al. 1979; 210 

Rieutord and Blanchard 1979; Güney 1983; Pezzinga and Scandura 1995; Ramos et al. 211 

2004; Covas et al. 2005; Soares et al. 2008; Meniconi et al. 2012; Meniconi et al. 2014) 212 

and the use of a frequency-dependent and complex wave speed (Rieutord 1982; Suo and 213 

Wylie 1990)], are equivalent, despite apparent differences in their representations. In 214 

Rieutord (1982) and Suo and Wylie (1990), the pipeline viscoelasticity was modeled by 215 

only considering a frequency-dependent and complex modulus of elasticity ( )E iω , which 216 

is defined as 1/ ( )J iω  and ( )J iω  is the frequency domain representation of the creep 217 

function shown in Eq.(3). The use of ( )E iω  resulted in a frequency-dependent and 218 

complex wave speed *a as given by the classic wave speed formula for elastic pipes 219 

(Rieutord 1982; Suo and Wylie 1990)  220 

 ( )( )
* /

1 ( )
Ka

K E i D e
ρ

α ω
=

+
 (9) 

To model the pipe wall viscoelastic effects for transient pressure waves, instead of the use 221 

of an additional term for the retarded strain, *a  was used in the classic continuity equation 222 

for elastic pipes to replace the elastic wave speed (Rieutord 1982; Suo and Wylie 1990).  223 

Considering the governing equations [Eqs. (5) and (6)] resulted from the use of an 224 

additional term for the retarded strain in the continuity equation, the ratio of ea  to AET  can 225 

be regarded as a single parameter ca . The use of ca  also transforms the format of the 226 
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propagation operator µ  [Eq. (5)] and the characteristic impedance Z  [Eq. (6)] to their 227 

counterparts for elastic pipes. ca  in its full expression is written as  228 

 2

1
1

1

e
c N

k
e

k k

aa
JDa

e i
α ρ

ωτ=

=

+
+∑

 
(10) 

where the elastic wave speed ea  is given by the classical wave speed formula for elastic 229 

pipes [same format as Eq. (9) but with a constant modulus of elasticity 0E ]. Further 230 

mathematical arrangements show that ca  as given in Eq. (10) is indeed the same as the 231 

frequency-dependent and complex wave speed *a  as derived from the complex modulus 232 

of elasticity in Eq. (9). This finding indicates that the use of an additional viscoelastic term 233 

to represent the retarded strain is equivalent to the use of a frequency-dependent and 234 

complex wave speed (or modulus of elasticity) in the continuity equation. In other words, 235 

the mechanical characteristics of viscoelastic pipelines (an instantaneous elastic strain 236 

followed by a retarded strain) lead to a frequency-dependent wave speed. As a result, the 237 

pipeline viscoelasticity is more suitable to be analyzed in the frequency domain, where the 238 

pipe response to loadings with various frequencies can be studied independently.   239 

Frequency response function of a viscoelastic pipeline 240 

The frequency response function (FRF) of a viscoelastic pipeline can be derived using the 241 

pipeline transfer matrix in Eq. (4) with boundary conditions. In this research, a reservoir-242 

pipeline-high loss valve system is considered for the analytical derivation, and the special 243 
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case of a reservoir-pipeline-closed valve configuration is also studied in the numerical 244 

analysis. A side-discharge valve located just upstream of the high loss inline valve acts as 245 

the transient generator. Either discrete signals, such as a pulse (Lee et al. 2006), or 246 

continuous signals, such as pseudo random binary signals (Gong et al. 2015a), can be used 247 

as the excitation. In this research, a discrete discharge perturbation is considered as the 248 

input signal to the system, which can be realized by a fast successive opening and closing 249 

valve maneuver. The discharge perturbation then introduces head perturbations in the 250 

pipeline system, which are considered as the output of the system. Note that under linear 251 

system theory, for a system with a specific configuration, the system response function is 252 

independent of the format of the input excitation (or the type of valve maneuver provided 253 

the input is independent of the output). A discharge perturbation can be described by (Lee 254 

et al. 2006) 255 

 
1 1 0

0 1 0

n nq q q
h h

+ ∆       
= +      

       
 (11) 

where q∆  is the discharge perturbation induced by the valve.  256 

Applying the transfer matrix method (Wylie and Streeter 1993; Chaudhry 2014) and the 257 

procedure used in elastic pipelines (Lee et al. 2006; Duan et al. 2012; Gong et al. 2013), 258 

the normalized complex head oscillation (frequency response function) at the downstream 259 

end of the pipeline (upstream side of the high loss valve) can be derived as 260 
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 [ ]
* tanh( )

1 tanh( ) V

Z Lh
Z L Z

µ
µ

=
+

 (12) 

where *h  is the complex head oscillation normalized by the active input q∆ , VZ  is the 261 

impedance of the high loss inline valve, and L  is the length of the pipeline. Note that Eq. 262 

(12) is an expression of the normalized head response for either elastic or viscoelastic 263 

pipeline in a reservoir-pipeline-high loss valve system, and it is independent from the 264 

properties of the excitation. When the VET  and FT  terms as defined in Eqs. (7) and (8) are 265 

used in µ  and Z , the head response is for a viscoelastic pipeline with unsteady friction. 266 

The plot of the absolute value of Eq. (12) versus frequency is known as the Frequency 267 

Response Diagram (FRD) for the pipeline system, and the peaks (i.e. maxima) in the FRD 268 

are resonant responses of the system corresponding to the resonant frequencies (i.e. peak 269 

frequencies).  270 

Determination of the Creep Function using Resonant 271 

Frequencies  272 

This section describes the proposed technique for calibrating the viscoelastic parameters in 273 

the creep function for viscoelastic pipelines. The technique is developed based on the 274 

analytical relationship between the resonant frequencies of a viscoelastic pipeline and the 275 

pipeline viscoelastic and friction-related parameters. As unsteady friction also contributes 276 

to the shifting of the resonant frequencies, an approach is developed to correct the effects 277 

induced by the unsteady friction before the calibration of the viscoelastic parameters. 278 
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Approach 279 

For an intact viscoelastic pipeline in a reservoir-pipeline-high loss valve system, the 280 

resonant responses are obtained when the absolute value of Eq. (12) reaches its maxima, 281 

where the corresponding frequencies are the resonant frequencies. When the inline valve 282 

is a high loss valve or fully closed so that the value of VZ  is much greater than the value 283 

of tanh( )Z Lµ , Eq. (12) can be simplified as 284 

 * tanh( )h Z Lµ=  (13) 

with negligible impacts on the resonant frequencies. 285 

The characteristic impedance Z  is a frequency-dependent function and related to the 286 

viscoelastic and friction terms, but its values are unknown when the viscoelastic parameters 287 

are unknown. Numerical simulations show that Z  is a monotonic function of frequency 288 

(presented later in Figure 7). To simplify the analysis, an assumption is made that the 289 

influence of Z  on the maxima or minima of Eq. (13) can be neglected (implications are 290 

further discussed in the later section Discussions). In other words, it is assumed that the 291 

measured resonant frequencies [which are actually the peak frequencies of the function in 292 

Eq. (12)] are the frequencies where the function tanh( )Lµ  reaches its maxima.  293 

From the mathematic properties of hyperbolic functions (Kreyszig et al. 2011), the 294 

hyperbolic tangent is periodic with respect to the imaginary component and the period is 295 

iπ , where i  represents the imaginary unit. For a complex hyperbolic tangent function 296 
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tanh( )x yi+  with a specific real part x , the maxima of the absolute value of the function 297 

(i.e. tanh( )x yi+ ) are obtained when the imaginary part y  is an odd multiple of / 2π . A 298 

3D mesh plot of function tanh( )x yi+  is given in Figure 2. 299 

The real and the imaginary parts of the propagation operator µ  are monotonic functions 300 

of frequency. The results of tanh( )Lµ  for the practical HDPE pipeline considered in the 301 

Case Studies section are shown as the thick line in Figure 2, which can be considered as a 302 

curved slice of the 3D mesh. It can be seen that the maxima of the function tanh( )Lµ  are 303 

achieved at specific frequencies where the imaginary part of the variable are odd multiples 304 

of / 2π , i.e. 305 

 ( ) ( )Im 2 1
2m L m πµ ω = −    (14) 

where [ ]Im  signifies the imaginary part of the complex number in the brackets, mω  306 

represent the resonant angular frequencies, m  is an integer ( m = 1, 2 , 3 …) and represents 307 

the ordinal number of the resonant peaks.  308 

Substituting Eq. (5) into Eq. (14) and applying mathematical manipulation yields 309 

 ( ) [ ]
2 1

Re ( ) ( ) 2
e

m
VE m F m

am
T T L

πω
ω ω

= −  (15) 
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where [ ]Re  signifies the real part of the complex number in the brackets. Eq. (15) shows 310 

that the resonant frequencies of a viscoelastic pipeline is a function of the elastic wave 311 

speed ea , the viscoelastic term VET , the friction term FT  and the length of pipe L . As a 312 

result, it is possible to calibrate the value of ea  (which is related to the elastic creep 0J ) 313 

and the viscoelastic parameters in VET  and the friction-related parameters in FT  by using 314 

known resonant (angular) frequencies mω , which can be read from a measured FRD as the 315 

peak frequencies. By this approach, the calibration of the viscoelastic parameters in VET  is 316 

transferred to a problem of solving a set of nonlinear equations, defined by Eq. (15), and 317 

the number of equations to be used depends on the number of unknown parameters to 318 

calibrate.   319 

Steps for implementation 320 

The effects of viscoelasticity and friction on the resonant frequencies are coupled as the 321 

product of VET  and FT , which means the solutions may be non-unique if both VET  and FT  322 

are open to calibration. Previous research on elastic pipelines (Lee et al. 2006; Sattar and 323 

Chaudhry 2008) concluded that steady friction does not change the resonant frequencies, 324 

while the influence of unsteady friction on the resonant frequencies is very limited. 325 

Numerical simulations conducted in this research (as shown later in the Case Studies 326 

section) confirm those findings. However, the current research also discovers that, although 327 

neglecting the effects of unsteady friction in a viscoelastic pipeline does not impose much 328 

impact on the calibration of the elastic wave speed, it can have a significant impact on the 329 

calibration of the viscoelastic compliances, especially for the high order K-V elements. The 330 
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explanation is that the higher the order an element is in the K-V model, the less influence 331 

it has to the hydraulic behavior of the pipeline system. This means the elastic modulus of 332 

elasticity, or the elastic wave speed, is the dominant factor and has the greatest influence 333 

on the resonant frequencies, while the influence of the viscoelastic compliances decreases 334 

with the increase in element order. It is also evident from the definition of the creep function 335 

in Eq. (3), where the relative variation in ( )J t  is less sensitive to the relative variation in 336 

the value of higher order kJ . From the perspective of parameter calibration using measured 337 

resonant frequencies, the calibration of the elastic compliance is the least sensitive to errors 338 

in the measured resonant frequencies, while the sensitivity to error increases with the 339 

increase in the order of K-V elements. In other words, it is more difficult to accurately 340 

calibrate higher order K-V elements, because a relatively small error in the measured 341 

resonant frequencies would have to be explained by a relatively greater change in the higher 342 

order kJ  values.   343 

This research proposes a multi-step strategy to implement the calibration of the elastic 344 

wave speed and the viscoelastic compliances. The FRD of a viscoelastic pipeline in a 345 

reservoir-pipeline-high loss valve system can be extracted by hydraulic transient tests and 346 

the resonant frequencies are determined by locating the peaks in the FRD. Without loss of 347 

generality, a high loss inline valve is considered, although a fully closed inline valve is 348 

preferred. The resonant frequencies are shifted due to unsteady friction and viscoelasticity 349 

when compared with those in a theoretical frictionless and elastic pipe. As the calibration 350 

of the viscoelastic parameters is the focus, an approach is proposed to correct the shifting 351 

of the resonant frequencies induced by the effects of unsteady friction before the ultimate 352 
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calibration for the viscoelastic parameters. The elastic wave speed and the viscoelastic 353 

compliances are firstly estimated from the originally measured resonant frequencies by 354 

solving Eq. (15) with neglecting the effects of friction (i.e.  FT = 1). Considering that the 355 

shifting in resonant frequencies due to the unsteady friction is insignificant, the estimated 356 

wave speed should be close to the true elastic wave speed, though the estimated viscoelastic 357 

compliances may have significant error. Using this estimated elastic wave speed and the 358 

friction factor estimated from the steady state, numerical simulations can be conducted to 359 

estimate the resonant frequencies for the scenario elastic and frictionless (EL) and the 360 

scenario elastic with unsteady friction (EL+UF). The contribution of the unsteady friction 361 

to the shifting of the resonant frequencies can be evaluated from the numerical results, and 362 

then corrected from the measured resonant frequencies. The corrected resonant frequencies, 363 

with the unsteady friction-induced shifting largely corrected, are then used in Eq. (15) for 364 

the calibration of the elastic wave speed and the viscoelastic compliances. The detailed 365 

procedure for the systematic evaluation of the elastic wave speed and the viscoelastic 366 

compliances is summarized in the following steps: 367 

1. For a viscoelastic pipeline in a reservoir-pipeline-high loss valve configuration, 368 

determine the Darcy-Weisbach friction factor f  using the steady-state head loss, 369 

and the Reynolds number R  from the steady-state flow. 370 

2. Extract the frequency response diagram (FRD) of the viscoelastic pipeline system. 371 

Techniques for FRD extraction in real pipelines can be found in Lee et al. (2006; 372 

2008) and Gong et al. (2015a). The resonant frequencies, mω , are then read from 373 

the measured FRD by locating the peaks of the pressure response.  374 
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3. Solve the set of nonlinear equations defined by Eq. (15) for 1, ,m M=  , 375 

neglecting the influence of the friction term (i.e.  FT = 1) to estimate the elastic 376 

wave speed ea  and the viscoelastic compliances kJ . The number of equations M  377 

(the number of resonant frequencies used in the parameter calibration) has to be 378 

equal or more than the number of unknown parameters. For example, if a three-379 

element K-V model is used and kτ  are fixed to reduce the possibility of non-380 

uniqueness in solutions, as adopted in other studies (Covas et al. 2005; Soares et al. 381 

2008; Keramat and Haghighi 2014), there are four unknowns to determine, 382 

including ea , 1J , 2J  and 3J . As a result, four or more resonant frequencies in the 383 

measured FRD should be used. The values of kτ  used should be significantly 384 

different from one another and all smaller than one half the fundamental pipeline 385 

period (see the sub-section Retardation time and pipe period later in this paper for 386 

more discussion).     387 

4. Calculate the resonant frequencies using Eq. (15) neglecting both the effects of 388 

viscoelasticity and friction (i.e. VET = 1 and FT = 1) for a corresponding frictionless 389 

and elastic pipeline system. This is achieved by substituting the elastic wave speed 390 

ea  determined in Step 3 into Eq. (15). The results, symbolized as _m FLω , are the 391 

estimated resonant frequencies for the corresponding frictionless and elastic 392 

pipeline system.  393 

5. Calculate the resonant frequencies using Eq. (15) neglecting the effects of 394 

viscoelasticity (i.e. VET = 1) for a corresponding elastic pipeline system with 395 

unsteady friction. This is achieved by substituting the Darcy-Weisbach friction 396 

 21 



factor f  and the Reynolds number R  determined in Step 1 and the elastic wave 397 

speed ea  determined in Step 3 into Eq. (15). The results, symbolized as _m UFω , are 398 

the estimated resonant frequencies for the corresponding elastic pipeline with 399 

unsteady friction.  400 

6. Correct the measured resonant frequencies obtained in Step 2 to remove the shifting 401 

induced by unsteady friction. The correction is achieved by the formula 402 

  403 

  _
_

_
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where _m Cω  represents the corrected resonant frequencies. _m Cω  is a good 404 

approximation of the resonant frequencies for the corresponding frictionless 405 

viscoelastic pipeline.  406 

7. Repeat Step 3 to determine ea  and kJ  but use the corrected resonant frequencies 407 

_m Cω  obtained in Step 6. 408 

The effectiveness of the proposed procedure is verified by numerical simulations, as 409 

presented in the section of Case Studies. 410 

Case Studies 411 

Numerical simulations are conducted for an HDPE pipeline bounded by a reservoir and an 412 

inline valve to verify the proposed technique for the calibration of the creep function (the 413 

elastic wave speed and the viscoelastic compliances). A discharge perturbation [defined in 414 
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Eq. (11)] is used as the transient excitation, which can be realized by abruptly opening and 415 

then closing a side-discharge valve located just upstream of the inline valve. Two case 416 

studies are considered: one is a reservoir-pipeline-closed valve system without friction and 417 

another is a reservoir-pipeline-high loss valve system with the consideration of unsteady 418 

friction.  419 

System specifications 420 

The physical details of the pipeline system, as given in Table 1, are adapted from the 421 

experimental pipeline in the Imperial College as reported in Covas et al. (2004), but the 422 

length of the pipe is doubled in the Case Studies to ensure all creep elements fully act 423 

within half period of a water hammer cycle so that they are possible to be calibrated (more 424 

discussion in the later sub-section Retardation time and pipe period). Note that the steady-425 

state flow rate 0.3 L/s is for the reservoir-pipeline-high loss valve configuration (case study 426 

2) and it is zero for the configuration where the inline valve is fully closed (case study 1). 427 

The elastic wave speed ea , which is to be calibrated, is 395 m/s and given in Table 1. The 428 

viscoelastic parameters are from one of the experimentally calibrated results in Covas et al. 429 

(2004), and they are given in Table 2. Research by Covas et al. (2004) showed that the use 430 

of three viscoelastic elements in the K-V model is sufficient enough to describe the 431 

viscoelasticity of a HDPE pipeline. The compliance coefficients 1J  to 3J  are to be 432 

determined by the proposed technique. 433 

 23 



Case study 1: reservoir-pipeline-closed valve 434 

The reservoir-pipeline-closed valve configuration is the suggested configuration for the 435 

calibration of the pipeline viscoelastic parameters. The effects of friction are small because 436 

of the zero steady-state flow and Eq. (13), in which the impedance of the valve is not 437 

involved, is the governing equation for the frequency response function of the system. A 438 

frictionless pipeline is considered in this case study.  439 

Theoretical frequency response diagrams 440 

Using Eq. (13) and neglecting friction, the theoretical frequency response diagrams (FRDs) 441 

for the scenarios: (a) elastic and frictionless (EL) and (b) viscoelastic and frictionless (VE) 442 

are obtained and illustrated in Figure 3. For the scenario of EL (solid line in Figure 3), the 443 

resonant responses are infinite and therefore cannot be fully shown in the figure. The first 444 

four resonant angular frequencies for the two FRDs respectively are read and given in Table 445 

3. It can be seen from Figure 3 and Table 3 that the pipe wall viscoelasticity introduces 446 

non-uniform shifting of the resonant frequencies and non-uniform reduction of the 447 

amplitude of the resonant responses.  448 

Parameter evaluation 449 

The calibration of the elastic wave speed ea  and the viscoelastic parameters 1J  to 3J  is 450 

relatively easy when the effect of friction is negligible. The procedure is as described in 451 

Steps 1 to 3 in the sub-section Steps for implementation. Once the first four resonant 452 

frequencies mω  (m = 1 to 4) are determined (as given in Table 3), four nonlinear equations 453 

can be established from Eq. (15). Solving the four nonlinear equations gives the elastic 454 
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wave speed ea  and the viscoelastic parameters 1J  to 3J  and the results are summarized in 455 

Table 4. In this research, the shuffled complex evolution (SCE) algorithm (Duan et al. 1993) 456 

is used to search the values for ea  and 1J  to 3J  by minimizing the objective function 457 
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Note that VET  is given in Eq. (7) and is a function of ea  , kJ  and mω . The search space is 458 

limited to the range of [350, 450] for ea  and [1E−11, 1E−9] for the kJ , as these are 459 

physically plausible ranges for a HDPE pipe according to the study by Covas et al. (2005). 460 

It can be seen from Table 4 that the calibrated results are very close to the theoretical results 461 

used in the original model. The difference is due to the simplifications and approximations 462 

used in the derivation of Eq. (15). The calibrated FRD is compared with the theoretical 463 

FRD for the scenario of viscoelastic and frictionless in Figure 4. The close similarity 464 

between the calibrated and the theoretical FRDs indicates that the calibrated results can 465 

appropriately represent the viscoelastic behavior of the pipeline system. Case study 1 466 

verifies that the proposed technique is valid for a frictionless viscoelastic pipeline.  467 

Case study 2: reservoir-pipeline-high loss valve 468 

The reservoir-pipeline-high loss valve configuration is studied in this case study. Due to 469 

the existence of steady-state flow, the effects of friction are typically not negligible in the 470 
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calibration of the viscoelastic parameters. Eq. (12) is the governing equation for the 471 

frequency response function of the system.  472 

Theoretical frequency response diagrams 473 

The theoretical frequency response diagrams (FRDs) of the reservoir-pipeline-high loss 474 

valve system are simulated by Eq. (12) for the scenarios: (a) elastic and frictionless (EL); 475 

(b) elastic with steady and unsteady friction (EL+UF); (c) viscoelastic and frictionless (VE); 476 

and (d) viscoelastic with steady and unsteady friction (VE +UF), and the results are given 477 

in Figure 5. The first four resonant angular frequencies for the four FRDs respectively are 478 

read and given in Table 5. 479 

It can be seen from Figure 5 and Table 5 that both the unsteady friction and the 480 

viscoelasticity shift the resonant frequencies of the pipeline system, although the shifting 481 

induced by the unsteady friction is much less than that induced by the viscoelasticity. The 482 

scenario of VE +UF experiences the greatest shifting from the theoretical resonant 483 

frequencies of the EL case. The numerical results also confirm that both the unsteady 484 

friction and the viscoelasticity can introduce non-uniform reduction in the size of the 485 

resonant responses.    486 

Parameter evaluation 487 

The elastic wave speed  and the viscoelastic compliances 1J  to 3J  are determined using 488 

the procedure proposed in the sub-section Steps for implementation. In addition to the 489 

steady-state hydraulic condition, it is assumed that only the FRD (or the resonant 490 

ea
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frequencies) of the scenario of VE+UF is known because this is the scenario for a real 491 

reservoir-pipeline-high loss valve system.  492 

Estimate the elastic wave speed neglecting friction:  493 

The elastic wave speed is estimated using the measured resonant frequencies by following 494 

the instructions in Steps 1 to 3. Four equations are established using Eq. (15) for m = 1 to 495 

4. The SEC is used to solve the equations and the results of the calibration using the 496 

resonant frequencies from the scenario VE+UF and neglecting the effect of friction are 497 

given in Table 6. The result for the elastic wave speed ea  is very close to the value of 395 498 

m/s used in the original model. The calibrated kJ  have significant discrepancies from the 499 

values used in the original model, which indicates that the effects of friction cannot simply 500 

be neglected in the calibration process for this case study.  501 

Correct the shifting in resonant frequencies induced by unsteady friction: 502 

Steps 4 to 6 are conducted to correct the effects of unsteady friction on the shifting of the 503 

resonant frequencies. The approximation of the resonant angular frequencies ( _m Cω ) for 504 

the viscoelastic and frictionless (VE) scenario is obtained, and the results are given in Table 505 

7. The resonant angular frequencies for the scenarios of EL and EL+UF are calculated 506 

using Eq. (15) with the elastic wave speed ea  = 396.9 m/s as calibrated in Step 3. The 507 

approximation of the resonant angular frequencies ( _m Cω ) for scenario VE is obtained from 508 

Eq. (16). It can be seen that the estimated resonant frequencies is very close to the 509 
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theoretical results for the scenario VE shown in Table 5 where unsteady friction is not 510 

included in the model. 511 

Calibration using the corrected resonant frequencies: 512 

The final stage for the parameter evaluation is the Step 7 in the proposed procedure. The 513 

estimated resonant frequencies for the scenario VE are substituted into Eq. (15) and the 514 

SCE algorithm is run to obtain the results, which are presented in Table 8. The results show 515 

that the elastic wave speed and the viscoelastic compliances are all calibrated with 516 

acceptable accuracy compared with the values used in the original pipeline model. The 517 

viscoelastic compliances are much better calibrated when compared with the results in 518 

Table 6, where the effects of friction were simply neglected. The significant improvement 519 

in accuracy verifies that the proposed approach for correcting the effects of unsteady 520 

friction is useful.  521 

The FRD for the scenario viscoelastic and frictionless (VE) is simulated using Eq. (12) 522 

with the calibrated parameters in Table 8. The results are given in Figure 6 as the dashed 523 

line, with the comparison to the theoretical FRD for scenario VE (the solid line) obtained 524 

from the values of these parameters in the original model. A generally good match is 525 

observed in Figure 6 between the calibrated FRD and the theoretical FRD, which indicates 526 

that the calibrated parameters can be used to describe the viscoelastic characteristics of the 527 

pipeline system. 528 
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Discussions 529 

The outlined numerical case study shows that the proposed technique for the calibration of 530 

the creep function of viscoelastic pipelines is effective even when unsteady friction is 531 

present. However, a few practical issues that may bring challenges in future field 532 

applications are identified and discussed as follows:  533 

Retardation time and pipe period 534 

The proposed technique calibrates the elastic wave speed and the viscoelastic compliances 535 

based on resonant frequencies and a set of preselected retardation times. The numerical 536 

Case Studies reported in a previous section used a pipe length two times that in the original 537 

laboratory pipeline system in Covas et al. (2004). The increase in length was adopted to 538 

ensure that the pipe is long enough that all the K-V elements have enough time (within the 539 

half period of any water hammer cycle) to significantly respond before a change in the 540 

pressure loading. Research in the time domain showed that compliances with a retardation 541 

time greater than one half the period are unable to be calibrated with accuracy because the 542 

retardation effects from them are not fully expressed before a change in loading (Keramat 543 

and Haghighi 2014). In the Case Studies, the viscoelastic parameters are kept the same as 544 

those in Covas et al. (2004) so that the viscoelastic properties of the pipeline are kept the 545 

same. The third retardation time 3τ  is 1.5 s and is greater than one half the period of the 546 

water hammer cycle (approximately 1.4 s as estimated by 2 / eL a ) if the original pipe 547 

length of 277 m is used. As a result, the pipe length was doubled in the Case Studies to 548 

make sure all the K-V elements can fully respond within one half the period of the water 549 

hammer cycle. 550 
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Extra numerical simulations are conducted in this research after modifying the length of 551 

the pipe to 277 m [the original length of the laboratory system in Covas et al. (2004), half 552 

the length considered in the Case Studies section]. A reservoir-pipeline-closed valve 553 

configuration is considered and the pipeline is assumed as frictionless in the original model. 554 

While keeping the viscoelastic compliances ( 1J  to 3J )  the same as those used in the Case 555 

Studies, two sets of retardation time ( 1τ  to 3τ ) are used to generate two theoretical FRDs 556 

by Eq. (13). The first set are the same as those used in the Case Studies and they are 1τ  = 557 

0.05 s, 2τ  = 0.5 s and 3τ  = 1.5 s. The second set are 1τ  = 0.05 s, 2τ  = 0.25 s and 3τ  = 1.0 558 

s so that the retardation time are significantly different from one another and all are smaller 559 

than one half the period of the water hammer cycle (approximately 1.4 s). Two sets of the 560 

elastic wave speed and the viscoelastic compliances are then calibrated from the two 561 

theoretical FRDs by following the Steps 1 to 3 presented in the sub-section Steps for 562 

implementation (same procedure as used in Case study 1).  The results are summarized in 563 

Table 9. 564 

Comparing the results shown in Table 9 with the results of the previous Case study 1 in 565 

Table 4, it can be seen that when the length of the pipe is changed from 554 m (Table 4) to 566 

277 m (Table 9) but the viscoelastic parameters are all kept the same, 2J  and 3J  cannot be 567 

calibrated with acceptable accuracy because the 3τ  is greater than one half the period of 568 

the water hammer cycle. However, when the second set of the retardation times ( 1τ  = 0.05 569 

s, 2τ  = 0.25 s and 3τ  = 1.0 s) are used in the original model and also in the calibration 570 

process, all the viscoelastic compliances are calibrated with high accuracy. Several other 571 
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sets of retardation times that satisfy the criteria “significantly different from one another 572 

and all smaller than one half the period of the water hammer cycle” are also studied and 573 

they all yield successful calibration.  574 

The numerical simulations confirm that the selection of the set of retardation times is 575 

critical for the calibration of viscoelastic compliances. For a real viscoelastic pipeline with 576 

a specific length and elastic wave speed, the set of retardation times should be selected as 577 

significantly different from one another and all smaller than one half the period of the water 578 

hammer cycle. Further analysis on the importance of pipe system scale, in particular pipe 579 

length and diameter, on viscoelastic behavior in pipe transients is suggested for future 580 

research.  581 

Influence of the characteristic impedance 582 

In the proposed parameter evaluation technique, it is assumed that the measured resonant 583 

frequencies (which are actually the peak frequencies of the function tanh( )Z Lµ ) are the 584 

frequencies where the function tanh( )Lµ  reaches its maxima. This inevitably introduces 585 

error into the parameter calibration because Z  is a frequency-dependent function rather 586 

than a constant number. As defined in Eq. (6), the values of Z  depend on the viscoelastic 587 

and the friction terms, and they are typically unknown or have great uncertainties for real 588 

pipeline applications. As a result, the effects from Z  on the resonant frequencies are 589 

difficult to assess or correct before the parameter calibration. 590 
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However, the values of Z  are calculated numerically for the pipeline system discussed in 591 

the Case Studies, and its absolute values are plotted in Figure 7. The effects of Z is 592 

evaluated for the Case Studies by calculating the difference between the peak frequencies 593 

of tanh( )Z Lµ  and those of tanh( )Lµ , both for the VE scenario, and the results are given 594 

in Figure 8. 595 

It can be seen from Figure 7 that Z  is a monotonic function of frequency. From Figure 8, 596 

the differences in the peak frequencies between the functions tanh( )Z Lµ  and  tanh( )Lµ  597 

are observed to be small. Numerical simulations in Case study 1 showed that the effects of 598 

the assumption on the determination of the elastic wave speed and the viscoelastic 599 

compliances are small (the maximum relative error induced was less than 4% as shown in 600 

Table 4). A more detailed analysis of the influence of Z  is recommended for future 601 

research. 602 

Determination of the resonant frequencies 603 

The successfully application of the proposed technique relies on the accurate determination 604 

of the resonant frequencies of a pipeline system. The determination of the resonant 605 

frequencies typically requires the extraction of the frequency response diagram (FRD). 606 

Two challenges exist (which also apply to all FRD-based techniques): the bandwidth of the 607 

transient excitation and the specific boundary condition required (Lee et al. 2013). 608 

Fortunately, the proposed technique for the calibration of the creep function only requires 609 

the first few resonant peaks to be measured and viscoelastic pipelines typically has a low 610 

fundamental frequency due to low wave speeds. Consider the pipeline used in the Case 611 
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Studies as an example (a 557 m HDPE pipe with an elastic wave speed of 395 m/s), the 612 

bandwidth of the transient excitation is required to be just higher than 1.2 Hz, which is easy 613 

to achieve even by a manual valve closure. The specific boundary condition required for 614 

the proposed technique is a reservoir-pipeline-valve (RPV) configuration. This is typically 615 

not readily available in complex pipeline networks. Lee et al. (2005)  proposed a technique 616 

to subdivide complex systems into individual single pipes for the purpose of FRD 617 

extraction by using a close in-line valve and a junction as the boundaries. The side-618 

discharge valve-based transient generator recently developed by the authors (Gong et al. 619 

2015a) can be useful in extracting the FRD of a viscoelastic pipeline by using persistent 620 

pseudo random binary signals. However, experimental verification is needed in the future. 621 

Effects of complexities in real pipelines   622 

In addition to frictional effects, real pipelines may have complexities such as faults and 623 

significant fluid structure interaction (FSI). Studies on elastic pipelines show that the 624 

influence of discrete faults, including leaks and discrete blockage, on the resonant 625 

frequencies of a pipeline system is negligible (Lee et al. 2005). However, extended wall 626 

deterioration, such as extended blockages, can slightly alter the resonant frequencies (Lee 627 

et al. 2013). FSI, in particular the axial oscillation of the pipeline during transient events, 628 

may also have some impact on the resonant frequencies (Keramat et al. 2012), but the 629 

details are yet to be explored in the future.   630 
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Conclusions 631 

A new technique has been proposed for calibrating the elastic wave speed and the 632 

viscoelastic compliances in viscoelastic pipelines using hydraulic transient analysis, which 633 

is the first viscoelastic parameter estimation technique developed in the frequency domain. 634 

The transfer matrix of a viscoelastic pipeline, with steady and unsteady friction considered, 635 

has been derived from the time-domain one-dimensional continuity and momentum water 636 

hammer equations, where an extra viscoelastic term is included in the continuity equation 637 

to represent the retarded strain. A generalized Kelvin-Voigt (K-V) model with multiple 638 

viscoelastic elements is used to describe the creep function. It has been found that the use 639 

of a viscoelastic term in the continuity equation in the time-domain is equivalent to the use 640 

of a frequency-dependent complex wave speed (or modulus of elasticity) in the frequency-641 

domain. The frequency response function (FRF) of a viscoelastic pipeline in a reservoir-642 

pipeline-high loss valve configuration has been derived, from which the relationship 643 

between the resonant frequencies and the pipeline elastic wave speed and viscoelastic 644 

compliances are analytically established. A parameter calibration technique has been 645 

proposed for the evaluation of these parameters using the resonant frequencies. Detailed 646 

steps for implementing the technique have been presented, including an approach for 647 

correcting the shifting in resonant frequencies induced by unsteady friction. The parameter 648 

evaluation is achieved by solving a set of nonlinear equations, which is much more 649 

computational efficient (less than 2 s in this study for solving four equations using the 650 

shuffled complex evolution algorithm) than the conventional inverse transient analysis 651 

(ITA)-based parameter calibration. For the first time, the elastic wave speed is calibrated 652 

together with the viscoelastic compliance in the frequency domain, rather than being 653 
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estimated separately in the time domain. The proposed technique only uses information 654 

about the resonant frequencies, which is not subject to discrete faults (such as leaks) in 655 

pipelines.   656 

Numerical case studies have been conducted on an HDPE pipeline to verify the proposed 657 

technique. A three K-V element model has been used to simulate the pipeline viscoelastic 658 

effects.  For a frictionless pipeline (case study 1), the elastic wave speed and viscoelastic 659 

compliances are calibrated with high accuracy (less than 4 % relative error compared with 660 

the theoretical values used in the original pipeline model). When unsteady friction is 661 

considered (case study 2), the approach correcting the unsteady friction-induced shifting 662 

of the resonant frequencies is proved to be useful and significantly improves the accuracy 663 

of the calibration. It is also worth noting that the elastic wave speed can be calibrated with 664 

a high accuracy (less than 1% relative error compared with the theoretical value) no matter 665 

whether the effect of unsteady friction is corrected or not. Practical issues that may bring 666 

challenges in future field applications, including the selection of the retardation times, the 667 

influence of the characteristic impedance, the determination of the resonant frequencies 668 

and some complexities in real pipeline systems, have been discussed in the section 669 

Discussions in the paper.  670 

Overall, the proposed frequency-domain technique is a step forward towards accurate 671 

calibration of the creep function of viscoelastic pipelines. The elastic wave speed and the 672 

viscoelastic compliances can be calibrated with satisfactory accuracy provided that a few 673 

resonant frequencies of a viscoelastic pipeline system are known. 674 
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Notation 678 

The following symbols are used in this paper:  679 

A  = pipe cross sectional area (m2); 

ca  = frequency-dependent complex wave speed derived from the use 

of retarded strain term (−); 

ea  = elastic wave speed (m/s); 

*a  = frequency-dependent complex wave speed derived from 

complex modulus of elasticity (−); 

D  = internal pipe diameter (m); 

0E  = elastic modulus of elasticity (Pa); 

kE  = modulus of elasticity for the k th viscoelastic element (Pa); 

e  = wall thickness of a pipe (m); 

( )F  = objective function (−); 

f  = Darcy-Weisbach friction factor (−); 

g  = gravitational acceleration (ms-2); 

H  = piezometric head (m); 

0H  = steady-state head (m); 

h  = complex head oscillation (m); 
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fh  = head loss per unit length due to friction (m); 

*h  = normalized complex head oscillation (m-2s); 

i  = imaginary unit (−); 

( )J  = creep (compliance) function (Pa-1); 

0J  = elastic compliance, 0E -1 (Pa-1); 

kJ  = viscoelastic compliance, kE -1 (Pa-1); 

L  = length of pipe (m); 

M  = total number of resonant frequencies used (−); 

N  = total number of viscoelastic elements used (−); 

Q  = flow rate (m3s-1); 

q  = complex flow oscillation (m3s-1); 

R  = resistance coefficient (sm-3); 

sR  = resistance from steady friction (sm-3); 

usR  = resistance from unsteady friction (sm-3); 

R  = Reynolds number (−); 

FT  = friction term in the characteristic impedance and propagation 

operator (−); 

VET  = viscoelastic term in the characteristic impedance and 

propagation operator (−); 

t  = time (s); 

x  = spatial coordinate (m); 

Z  = characteristic impedance (m-2s); 
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 680 

Greek symbols: 681 

q∆  = discharge perturbation (m3/s); 

α  = pipeline restraint factor (−); 

rε   = total retarded strain (−); 

kη  = viscosity for the k th viscoelastic element; 

µ  = propagation operator (m-1); 

ρ  = fluid density (kgm-3); 

kτ  = retardation time for the k th viscoelastic element (s); 

ω  = angular frequency (rad); 

mω  = resonant angular frequency (rad); 

_m Cω   = approximation of the resonant angular frequency for a 

frictionless viscoelastic pipeline (rad);  

_m ELω  = calculated resonant angular frequency for a frictionless elastic 

pipeline (rad); 

_m UFω  = calculated resonant angular frequency for an elastic pipeline 

with steady and unsteady friction (rad); 
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Figure 1. Generalized Kelvin-Voigt model for a viscoelastic solid. 



 

Figure 2. Results of the absolute value of hyperbolic tangent function (the mesh) and a 

realization of the function tanh( )Lµ  (the thick line) for the practical HDPE pipeline 

considered in the Case Studies. 
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Figure 3. Theoretical FRDs of the reservoir-pipeline-closed valve system (case study 1) for 

the scenarios: (a) elastic and frictionless (EL, solid line) and (b) viscoelastic and frictionless 

(VE, dash-dotted line). 
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Figure 4. Comparison between the theoretical FRD (the solid line) and the calibrated FRD 

(the dashed line, using parameters calibrated in case study 1) for scenario VE of a reservoir-

pipeline-closed valve system. 
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Figure 5. Theoretical FRDs for the scenarios: (a) elastic and frictionless (EL, solid line); (b) 

elastic with steady and unsteady friction (EL+UF, dashed line); (c) viscoelastic and 

frictionless (VE, dash-dotted line); and (d) viscoelastic with steady and unsteady friction (VE 

+UF, dotted line). 
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Figure 6. Comparison between the theoretical FRD (the solid line) and the calibrated FRD 

(the dashed line, use parameters calibrated in case study 2) for scenario VE of a reservoir-

pipeline-high loss valve system. 
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Figure 7. Absolute value of the characteristic impedance for the pipeline system in the Case 

Studies. 
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Figure 8. Difference in the peak frequencies between the functions tanh( )Z Lµ  and 

tanh( )Lµ  for the scenario viscoelastic and frictionless (VE) in the Case Studies.  
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Tables 

Table 1. Specifications of the pipeline system used in the case studies 

Parameter Value 

Length (m)  554 

Inner diameter  (mm) 50.6 

Wall thickness  (mm) 6.3 

Kinematic viscosity  (m2/s)  1.004E−6 

Fluid density (kg/m3) 998.2 

Head of reservoir (m) 45 

Steady-state flow rate (L/s) 0.3 

Restraint coefficient  1.07 

Darcy-Weisbach friction factor  0.02 

Reynolds number  7519 

Elastic wave speed  (m/s) 395 
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Table 2. Viscoelastic parameters used in the case studies 

Retardation time  

k  (s) 

Compliance  

kJ  (10E−10 Pa-1) 

1  = 0.05 
1J  = 1.044 

2  = 0.5 
2J  = 1.037 

3  = 1.5 
3J  = 1.145 

 

 

  



Table 3. Theoretical resonant angular frequencies for the reservoir-pipeline-closed valve 

system under the scenarios: (a) elastic and frictionless (EL) and (b) viscoelastic and 

frictionless (VE). 

Peak 

number 

m 

Theoretical resonant frequency (rad) 

EL VE (
m ) 

1 1.120 0.978 

2 3.360 3.078 

3 5.600 5.208 

4 7.840 7.347 

 

  



Table 4. Results of parameter evaluation using the resonant frequencies from the scenario 

viscoelastic and frictionless (VE) for Case study 1 

Parameter 
Original 

model 

Calibrated from 

VE 
Relative error 

ea  (m/s) 395 394.1 -0.23% 

1J  (10E−10 Pa-1) 1.044 1.025 -1.78% 

2J  (10E−10 Pa-1) 1.037 1.070 3.14% 

3J  (10E−10 Pa-1) 1.145 1.191 3.98% 

*Relative error = (Calibrated − Original)/ Original × 100% 

 

 

  



Table 5. Theoretical resonant angular frequencies for the reservoir-pipeline-high loss valve 

system under the scenarios: (a) elastic and frictionless (EL); (b) elastic with steady and 

unsteady friction (EL+UF); (c) viscoelastic and frictionless (VE); and (d) viscoelastic with 

steady and unsteady friction (VE +UF). 

Peak 

number 

m 

Theoretical resonant frequency (rad) 

EL EL+UF  VE  VE+UF (
m ) 

1 1.120 1.088 0.974 0.943 

2 3.360 3.303 3.075 3.019 

3 5.600 5.528 5.205 5.135 

4 7.840 7.757 7.345 7.264 

 

 

 

 

  



Table 6. Results of parameter evaluation using the resonant frequencies from the scenario 

viscoelastic with steady and unsteady friction (VE+UF) neglecting the effects of friction, for 

Case study 2. 

Parameter 
Original 

model 

Calibrated from  

VE+UF 
Relative error 

ea  (m/s) 395 396.9 0.49% 

1J  (10E−10 Pa-1) 1.044 1.314 25.83% 

2J  (10E−10 Pa-1) 1.037 1.473 42.05% 

3J  (10E−10 Pa-1) 1.145 1.736 51.64% 

*Relative error = (Calibrated − Original)/ Original × 100% 

  



Table 7. Resonant angular frequencies calculated based on the elastic wave speed calibrated 

in the first attempt for the scenarios: (a) elastic and frictionless (EL); (b) elastic with steady 

and unsteady friction (EL+UF), and the estimated resonant angular frequencies for the 

scenario of viscoelastic and frictionless (VE). 

Peak 

number 

m 

Calculated resonant frequency (rad) 

EL 

(
_m FL ) 

EL+UF 

(
_m UF ) 

VE approx. 

(
_m C )  

1 1.125 1.093 0.971  

2 3.376 3.318 3.072  

3 5.627 5.554 5.203  

4 7.878 7.794 7.342  

 

 

 

 

 

 

  



Table 8. Results of parameter evaluation using the resonant frequency approximations for 

scenario viscoelastic and frictionless (VE), for Case study 2. 

Parameter Original model 
Calibrated from  

VE approx. 
Relative error 

ea  (m/s) 395 393.1 -0.49% 

1J  (10E−10 Pa-1) 1.044 0.983 -5.88% 

2J  (10E−10 Pa-1) 1.037 1.158 11.64% 

3J  (10E−10 Pa-1) 1.145 1.373 19.89% 

*Relative error = (Calibrated − Original)/ Original × 100% 

  



Table 9. Results of parameter evaluation for the modified pipeline system with a length of 

277 m (half of that used in the previous Case Studies) 

Parameter 
Original 

model 

Calibrated 

with 1  = 0.05 

s, 
2  = 0.5 s, 

3  = 1.5 s 

Relative 

error 

Calibrated 

with 1  = 0.05 

s, 
2  = 0.25 s, 

3  = 1.0 s 

Relative 

error 

ea  (m/s) 395 395.1 0.03% 395.3 0.07% 

1J  (10E−10 Pa-1) 1.044 1.086 3.98% 1.097 5.07% 

2J  (10E−10 Pa-1) 1.037 7.261 -29.98% 1.043 0.62% 

3J  (10E−10 Pa-1) 1.145 2.598 126.88% 1.190 3.92% 

*Relative error = (Calibrated − Original)/ Original × 100% 
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