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In this paper we present calculations of nucleon structure functions in the three-dimensional MIT bag
model. The nucleon wave functions are modified by the Peierls Yoccoz projection in order to give eigen-
states of the total momentum operator. Pair creation by the probe is taken into account. Without this
the quark distributions would not obey normalization requirements. The quark distributions have van-
ishing support for x ) 1. The effect of one-gluon exchange, yielding the N-6 mass splitting, is incor-
porated. This has significant effects on the d/u ratio as well as the spin-dependent gl(x) of the neutron.
Finally, the results are compared to data after allowing for perturbative QCD evolution.

I. INTRODUCTION

In recent years an extensive examination of the deep
structure of nucleons and nuclei has been undertaken.
On the experimental side both the old and new European
Muon Collaboration (EMC) effects have provided hints
that our understanding of this structure was at least in-
complete. More recently, high-statistics measurements of
the gottfried sum rule have indicated once again that the
simplest pictures of the nucleon are inadequate.

On the theoretical side progress has been much less im-
pressive, with predictions usually only being made after
the experimental situation is known. The reason for this
is of course that the fundamental theory for the descrip-
tion of the strong interactions (QCD) is poorly under-
stood in the long-distance, nonperturbative region. Nev-
ertheless, at least some of the observed phenomena
should not have been unexpected in the light of what is
known about the nucleon from low-energy models of the
confinement mechanism. Several of these model calcula-
tions have been performed. Apart from early attempts in
the MIT bag model, especially by Jaffe [1],Hughes [2,3],
and Bell [4,5] there have been more recent attempts by
Celenza and Shakin [6], Miller and Benesh [7—10], as
well as by the Adelaide group. It is the purpose of this
article to describe in detail the calculations of the latter.
The results for the (1+1)-dimensional version of the
model have been presented elsewhere [11—13]. Some re-
sults from the three-dimensional version of the model,
such as the effects of one-gluon exchange, have been
presented previously in a brief format [14—16] but a
comprehensive treatment is still missing in the literature.

The paper is organized in the following manner. In
Sec. II we begin with a short review of the essential for-
malism underlying our work, which is completely model

II. REVIEW OF FORMALISM

It is well known that through the use of the operator-
product expansion the moments of an arbitrary structure
function V(x, Q ) may be expressed in terms of a sum of
coefficient functions C; „((M,Q ) multiplied by matrix ele-
ments A, „((M ) [17]:

f x" 'V(x, g )dx =+A(;„)((M )C(;„)((tt,g ) . (1)

The coefficients C; „((M,g ) are perturbative corrections
which describe the Q evolution of the structure func-
tions and can be reliably calculated by the use of the
renormalization-group equations in perturbative QCD.

The matrix elements A, „((M ) that yield the dominant
contributions at large Q are those of leading twist (2)
and have the form, in the 2 + =0 gauge,

A (; „)—((p,s), le'(o)r, (it)+ )"-'e(o) l(p, s) (2)

where the subscripts p indicate the wave function ap-
propriate at that scale and I; contains Dirac and spin-
Aavor matrices appropriate to the particular structure
function under consideration. (There are in fact addition-
al matrix elements of twist 2 which involve gluonic

independent. In Sec. III, the main part of this paper, we
present the calculation within a model where the hadron
wave functions consist of products of MIT bag quark
wave functions, corrected for center-of-mass motion
effects. In Sec. IV we present the straightforward calcu-
lations for the case where these wave functions are ad-
justed for one-gluon-exchange effects. In Sec. V we com-
pare the numerical results with data and in Sec. VI we
conclude.
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operators. We shall not require these. ) It is important to
note that the matrix elements A; „(p ) are independent
of Q: they depend only on the scale p, which, as op-
posed to Q, need not be large. It is this independence of
large momentum transfers that makes their calculation
possible in models which would be clearly inadequate for
the direct calculation of P(x, Q ). (However, p must be
large enough to warrant the use of perturbation theory in
the calculation of the coefficient functions. )

The wave functions and operators appearing in Eq. (2)
are renormalized ones and so involve the renormalization
scale p,z. Because of our inability to calculate Eq. (2)
from QCD we shall make the following ansatz: We shall
assume that at the renormalization scale the renormal-
ized wave functions, as well as the renormalized quark
field operators, can be approximated by bag wave func-
tions and bag field operators; i.e., we shall calculate the
matrix elements (2) within the bag model at the scale
P Pz

If the matrix elements had been calculated within
QCD, p, would be an (arbitrary) parameter in the calcula-
tion. The final results for the structure functions would
not explicitly depend on it. Within a model calculation,
however, it is an undetermined input and can only be ob-
tained by comparison with data. It is common to fix it by
using evolution equations to determine at which scale all
the hadron's momentum is carried by the quarks, given
that only about 50% is carried by them at Q of about 10
GeV . This may easily be an untrustworthy procedure as
there is no guarantee that the actual momentum distribu-
tion, not only its second moment, is fitted by the model.
Moreover, in the bag model not all the energy of the had-
ron is carried by the quarks; in any case, roughly a quar-
ter of it is associated with the bag surface. In short, we
shall prefer to fit the scale p by comparing our prediction
for the entire distribution of the valence quarks with the
data. A11 other structure functions are then calculated

using this scale as input.
The matrix elements A,. „(p ) can be written in terms

of moments of quark and antiquark distribution functions
[18]:

q)~(x)=p+g 5(p+(1 —x)—p„+)l(n l'Ii+ &(0) p, s )
l

(3)

and

q& (x)=p++ 5(p+(I —x) —p„+)l(n l%'+ &(0)lp, s ) l2

Here $ $ indicates the helicity projections [(I+y )/2 for
the quarks and (1-+y )/2 for the antiquarks], the sum is
over all intermediate states, f distinguishes fiavors, and
all + components of momenta k are defined by
k+=k +k'. For positive p+ and p„+, q&(x) and q&(x)
are nonzero for x ~ 1. They both have support for nega-
tive x but as has been shown by Jaffe [19] there are other
(semiconnected) contributions in this region, not included
in Eq. (3). It is only for o~x ~1 that q/(x) and q&(x)
give the full contribution, and therefore it is only in this
region that we have an interpretation of the structure
functions in terms of parton distributions.

It is easy to show [18] that Eq. (3) satisfies the normali-
zation condition

dx qftl x —qftl x =NfTl —Nf (4)
0

Here X& and N&, roughly speaking, count the numbers
—Tl

of quarks and antiquarks in the target respectively. To
prove this, note that because q(x) and q(x) do not have
support above x =1 the upper limit of the integral may
be extended to + ac. By writing the 6 function appearing
in Eq. (3) in its integral representation and translating the
field operator + we obtain

f dx[q& "(x)—q& "(x)]= —f dx f dg e '"i' ~ [(p,sl'Ii+ &(g )qi+ &(0)lp, s),
—(p, s ~Ii+ &(g )~Ii+ &(0) p, s), ]

The subscript c indicates a restriction to connected matrix elements. Interchanging the two fermion field operators in
the second matrix element introduces a minus sign. Furthermore, by using the translational invariance of this matrix
element and changing the integration variables to —x and —g, we obtain

f dx [qj (x)—q& (x)] = f dx dg e ' i' & (p, sl@+t~&(g )+t+~&(0)lp, s ),
=p+

& p, sir', "/(0)e", /(0) lp, s &, (6)

which counts the number of quarks minus antiquarks, as
required. We therefore reiterate: the nonzero support
for Eq. (3) for x ~0 in model calculations should not be
seen as a problem that needs to somehow be overcome;
contributions at negative x are simply irrelevant. Howev-
er, what may be a problem in model calculations, includ-
ing the one presented here, is that some of the properties
that are assumed of the matrix elements that lead to ex-

pression (6) may not be satisfied. In particular the matrix
elements should be translationally invariant, the set of in-
termediate states should be a complete set, the inter-
change of field operators that is required in arriving at
Eq. (6) should be valid, and both the intermediate and ini-
tial states should be eigenstates of the operator p+. In
the model calculation that we present here the last re-
quirement is not satisfied exactly and we therefore do not
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%~, when expanded in a complete set of states, each gives
two distinct contributions. 4 may destroy a quark con-
tained in the initial state leaving a two-quark intermedi-
ate state, or it may create an antiquark resulting in a
three-quark —one-antiquark intermediate state. Similarly

may take an antiquark out of the initial state (this,
however, will give no contribution for our choice of mod-
el wave function, which shall consist of only three
valence quarks) or insert a quark. These processes are
depicted in Fig. 1. We know of no reason why the pro-
cesses with the four-quark (or one-antiquark, three-
quark) intermediate states should not contribute to the
scattering process. Certainly within the model that we
describe in the next section they formally give a contri-
bution, although not a large one.

III. DISTRIBUTIONS IN THE BARE BAG

A. The two-quark component

FIG. I. Processes contributing to the twist-2 piece ofA.

automatically obtain the correct normalization. We shall
return to this point later.

Let us now look in more detail at the quark and anti-
quark distributions in Eq. (3). The field operators 4 and

Let us concentrate first on those contributions with a
two-quark intermediate state. We define the action of the
operator %' on a three-quark state through

%(x)
~ x,x2x3 &

=5(x—x3) ~ x,x2 & +permutations

and similarly for two-quark states. Inserting complete
sets of states in Eq. (3) we obtain straightforwardly

gf (x)=,y &pl&f,.lp &&(M(1—x) —p„') I dx, dx, (p„ lx, x, & (x,x,a."'~0&
(2~)' „

Here ~p& is the spin-fiavor wave function of the initial
state which we have taken to be at rest and I'f is a pro-
jection operator onto fiavor f and any other required
quantum numbers a. In our case, where we assume that
all initial quarks are in the lowest-energy states, o. may be
taken to be synonymous with the quark spin projection
rn. Unless the initial wave function consists of three
quarks moving only in the z direction (i.e. , the naive par-
ton model), there will be a contribution from I =+—,

'

and m = —
—,
' for both q)(x) and q)(x) separately.

Let us now describe our choice for the model wave
function. We choose wave functions inspired by those of
the MIT bag; however, we modify these by a projection,
the Peierls-Yoccoz projection [20], which ensures that
the wave functions are momentum eigenstates and hence
the translational invariance of the matrix elements ap-
pearing in Eqs. (5) and (6). Explicitly we have in the
coordinate representation

(x,x2x3~p &
= f d Re'~ 'P(x, —R)%(x2—R)1

3 p

Xe(x,—R) .

Here $3(p) is given by the normalization requirement

or, explicitly,
3

~P,(p)~'= J dxe '~'" J dy 4 (y —x)%(y)

The wave function for the diquark state has an analogous
normalization.

Before we make use of this wave function let us remind
the reader of the deficiencies of the Peierls-Yoccoz pro-
cedure. Although it creates a momentum eigenstate,
there still is an unphysical dependence on the momentum
in the internal wave function. It is possible to eliminate
this through a further projection, the Peierls-Thouless
projection [21]; however, the wave functions that result
are in practice completely intractable to work with.
Furthermore, the Peierls-Yoccoz projection is a nonrela-
tivistic approximation and is not equivalent to a boost.
For the initial state, which is at rest, this is probably a
reasonable assumption. For the intermediate state, the
approximation is only valid for the region where
p„~ (M„(M„ is the mass of the intermediate two-

particle state). As we shall see shortly, this corresponds to
the region of x less than about 0.6—0.7.

Using Eq. (9) in Eq. (8) gives
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qft
"(x)= g &pIPf lp& Jdp„5(M(1 —x) —p„)I%'+ f(p„)l

(2 )' (12)

t+ f(p„)—:jdxe " Vt+"f(x) . (13)
Jdp„5(M(1 —x) —p„)

j [~2( ~ )2 ~2]gp~( ) )~

(14)

It is easiest to do the integration by choosing the magni-
tude of p„and its transverse components p„as integra-
tion variables, as well as using the 5 function to do the p„
integration. One obtains

where

pi=2M(1 —x)QM„+p„—M (1—x) —M„

is understood. Equation (12) therefore becomes

(15)

&(p„)I'
(16)

U= —,u =lp„lR .lxln
2R

The Fourier transform of + becomes

I
+' "(p„)I'=-,'

I f (p„)+(—I )-+'"g(p„)],
where

( )
mR 1

(0 —sin 0)
Z

X s, (u)+2 s, (u)sz(u)+sz(u)
PnnlxI

Jo R Xm
and

e(R —lxl),(x)=X
IIlx

+m ( )
mR 1

~z z~
5'n

s, (u)+2l Q' 'XJ ) Sj 0 Sp Q
Pn

+ 1 —2
Ip. l

where R is the bag radius,
s~(u)

1 0
4~R 0 —sin 0

It is from this equation that one can read ofF when one
might expect the nonrelativistic approximation for the in-
termediate state to be a reasonable one. The main contri-
bution to the integral comes from the region of small p„
so the nonrelativistic approximation should be valid as
long as the lower limit of the p„ integration is less than
M„—this is true for x less than about 0.7 for M„=—,'M.

The evaluation of the normalizations Pz(p„) and $3(0),
as well as 4 (p„), is straightforward but tedious. Using
the MIT bag wave functions with lowest energy,

(23)

(24)

(25)

(26)

and Q is the lowest-energy solution of

jo(fl)=j,(Q), i.e. , 0=2.04,
one obtains

(19)

Here

1 sin(u —0) sin(u +0)
u u —n u+n (27)

4 R
9sz(u)=2jo(Q)j, (u) ——s&(u) .

where

(0 —sin 0) o v
(21)

If we assume that Ip & is the 56-piet SU(6) wave func-
tion for the proton with m =+—,

' we get, using the matrix
elements

& p I &„ i I p &
= —', ,

sin 0 . 1 sin2Q
T(U) = Q — —

U sin2U — —+0 2 2A
cos2U &pl& Ip&=-,',

1 sin2Q
2 2Q

sin 0
U

2

Q
(22) &pl&, alp&= —,', (29)

and we have made the substitutions & pl&„ i Ip & =-', ,
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0-8—

G2(x) / F2 (x )

and

f [IT(x)+Ig(x)]'[IT(x)——,'I~(x)]dx
G(2)(x)dx =

f [IT(x)+I~(x)] dx

=0.789 for 0=2.04 . (33)

0.2
l

0.4 0.6 1.0

FICJ. 2. Quark distributions in the bare bag.

that

u(2)(x) =F(2)(x)+—', G(2)(x) (30)

and

d (t2t) (x)= —,'F(2) (x ) + —,
'

G(2) (x), (31)

B. Normalization of the two-quark component and lg„ /g„l

As expected, the distributions F(2)(x) and G(z)(x) do
not saturate the normalization requirement [Eq. (4)]. Be-
fore we discuss the contributions from the four-particle
intermediate states we want to draw attention to an in-
teresting property of F(2)(x) and G(2)(x). Their integrals
from —~ to ~ (or, equivalently, from —ae to 1) can be
evaluated analytically and are given by

1f F„,(x)dx =1 (32)

where F(z)(x) and G(z)(x) correspond to those parts of
Eq. (12) originating in Eqs. (25) and (26), respectively. [u
and d refer to the up- and down-quark distributions. The
subscript (2) reminds us that we have up to now only cal-
culated the contributions of the two-quark intermediate
state. ]

We note that the formalism predicts quite naturally a
different x behavior of the helicity-dependent from that
of the helicity-independent structure functions. This
difference is due to the nonzero p~ of the quarks and is
therefore absent in the naive parton model. Numerically,
for a bag radius of 0.8 F and an intermediate diquark
mass of M„=—,'M, F(2)(x) and G(2)(x)/F(2)(x) are shown
in Fig. 2. F(2)(x) and G(2)(x) are peaked near
x =1—M„/M and we see that the difFerence between the
helicity-dependent and helicity-independent distributions
is greatest in the small-x region, i.e., where lptl is large
compared with p+.

Here IT(x) and I~(x) are

ITB(x)=f dy +TB(y x)+T,B(y) (34)

O'Tz refers to the top and bottom parts of the spinors
(17), respectively. The important point about Eqs. (32)
and (33) is that they are independent of all parameters ex-
cept, in the case of the latter, the quark energy Q.

Let us consider what would happen if we allowed the
bag radius R to become very large. In this case the
spread of quark momenta around p =0 decreases and
the distributions F(z)(x) and G(2)(x) tend towards 5 func-
tions at x =1—M&/M. This also is true for the four-
particle intermediate states, except that in this case, be-
cause M& )M, the 5 functions move to negative x and
hence do not contribute to the normalization. We there-
fore conclude that the integrals (32) and (33) over all x at
finite R yield the same results as the integrals from 0 to 1

of all contributions of Fig. 1; i.e., the renormalization re-
quirement of Eq. (4) is satisfied by Eqs. (32) and (33).
They therefore give a useful guide as to how much of the
normalization is carried by the contributions from the
four-quark intermediate states.

The reduction of the integral of G(2)(x) from 1 is indi-
cative of the spin dilution in relativistic models of nu-
cleon structure. In fact, with the use of the Bjorken sum
rule we may write down the value of the axial-vector cou-
pling constant gz, i.e.,

gv
=f (b, u —hd )dx

0

1= —', f G(p)(x)dx =1.32 (35)

This is larger than the famous —,'0/3(Q —1)= 1.09 of the
MIT bag model because we have included center-of-mass
motion corrections through the use of the Peierls-Yoccoz
projection.

C. The four-quark intermediate states

We now turn to the other processes depicted in Fig. 1.
Their contributions can be calculated in the same manner
as those of the two-quark intermediate states and are
given by

2

q('~') /(x)™,& &plP/" Ip& fdp. ", ~(M(1 —x) —p„+)I+(")+ (p„)l'(2~)' ' "
IP,(0)l'

for the 3-quark —1-antiquark intermediate state, and

(36)



A. W. SCHREIBER, A. I. SIGNAL, AND A. %.THOMAS

2

q(~) I(x)= 3 &pIP&~' Ip& J dp„5(M(1 —x) —p„+)I)p("")+ (p„)l
(2m ) p3(0) '

for the 4-quark intermediate state. The spinor
q'(q) .(P. ) is that corresponding to an antiquark bagTl

wave function

u (4) (x) =2F(4)(x)+—'G(4}(x),

d(4)(x)= —5F(4)(x)+ —,'G(4)(x) .
(43)

(x)=X
(q), m

Qr'~'rJ
& Xm

QR
Jo ~ Xm

e(R r)—

The projection operators appearing in Eqs. (36) and
(37) count the number of possible quark or antiquark in-
sertions allowed by the Pauli principle:

(41)

(42)

Here we have again assumed SU(6) proton wave func-
tions. As expected, the number of up quarks that can be
inserted at four (two states being already occupied), while
the number of down quarks is five.

Finally then, the contributions from the four-quark in-
termediate states can be written down in an analogous
form to Eqs. (30) and (31): i.e. ,

u ((~i)(x) =d((4') (x)=3F(„)(x)

and yields

(p ) =p[f( p )+( 1) g( p )] (39)

where f and g have been defined previously.
The integral in Eq. (37) involves the Hermitian conju-

gate of the quark wave function and gives the same con-
tribution as that in Eq. (36) because

(40)

F&4] and G~4] need not be written down explicitly; they
have the same form as F~2~ and G~2~, with the replace-
ments of ()(2 by p4 and )p+" (p„) by (p+ ( —p„), as in-
dicated in the above discussion. For a four-particle state
mass of M& =

—,'M, and again a bag radius of 0.8 fm, F[4]
is shown in Fig. 2. It is very much smaller than F[2] and
concentrated at small x, with a fallo6'reminiscent of a sea
distribution.

D. Normalization revisited

We are now in a position to evaluate the normalization
[Eq. (4)] explicitly. Using Eqs. (30), (31), and (43) we get

1

dx [u (2) (x ) + u (4) (x ) —u (4) (x ) ]
1= I dx [d(2)(x)+d(~)(x) —d(4)(x)]

0
1

dx [F(2)(x ) +F(g) (x ) ]
0

(44)

The numerical values for various bag radii are tabulated
in Table I. The intermediate state masses have been kept
fixed at —,

' and —,
' of the proton mass for the di- and four-

quark masses respectively. We see that for reasonable
nucleon radii of -0.8 fm the normalization consists of
about 75% from the two-quark intermediate state and
2% from the four-quark (-antiquark) states. About 23%
1s mlsslng.

Both the integral of F(2)(x) as well as that of F(4)(x)
are a function of the mass of the relevant intermediate
state. Without a way to calculate the intermediate-state
masses in a consistent manner within the model it is im-
possible to satisfy the normalization requirement explicit-
ly. The best we can do is to adjust the masses in order to
saturate the integral. Alternatively, and this is the course
that will be taken when we compare results with data, we
shall just parametrize the four-particle contribution such
that the normalization is satisfied [(1—x) gives an excel-
lent approximation to the shape shown in Fig. 2].

It is clear that the arbitrariness of this procedure will
introduce some uncertainty into the Anal results. Be-
cause of the shape of the four-quark contribution this un-
certainty is concentrated at small x. In fact, after the

1f dx [F(,)(x)+F(„)(x)]R (fm)

TABLE I. The normalizations of F(&) and F(4&, using M„=
4 and 4 for the two- and four-particle in-

termediate states, respectively.
1 1f dx F(p)(x) f dx F(4)(x)

0.2
0.6
0.8
1.0
2.0

0.32
0.65
0.75
0.82
0.98

0.026
0.029
0.023
0.018
0.003

0.35
0.68
0.77
0.84
0.98
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model distributions have been evolved to a scale where
they can be compared with data, say g =10 GeV, the
affected region moves to yet smaller x. We must there-
fore conclude that the results obtained at small x will be
less reliable than those at larger x and hence care should
be taken not to read too much into the results in this re-
gion.

IV. M~ AND ONE-GLUON EXCHANGE

Having presented the basic formalism in the previous
section, we now turn to refinements of the model. One
physical effect that we have neglected up to now, but that
has been known for a long time to affect the spin-Aavor
dependence of the quark distributions [22], is one-gluon
exchange. Specifically, it is clear from Eqs. (30) and (31)
that so far all spin-independent distributions have the
same shape [i.e. , that of F~2~(x)], and similarly the spin-
dependent distributions all have a shape proportional to
G~2~(x) [we neglect here the modifications at small x due
to F~4~(x) and G~4~(x), respectively]. We would therefore
predict that quantities such as d„(x)/u, (x) are constant

(the subscript v here stands for valence), while the asym-
metry 2xg, (x)/F2(x) will have the same shape as
G~2~(x)/F~2~(x), shown in Fig. 2. Both of these predic-
tions are in stark contrast to the experimental situation.

Because of its importance, the effect of the one-gluon-
exchange mechanism is frequently built into model
descriptions. It manifests itself in a similar way as the
hyperfine splitting in atomic physics, in that the spectator
diquark mass depends on whether it is in its spin-singlet
(lower-mass) or spin-triplet (higher-mass) configuration.
The magnitude of the splitting can be obtained, for exam-
ple, from the N —b, mass difference (assuming that this
has the same origin). Explicitly, one finds that the spin-
triplet state is around 50 MeV heavier than a diquark
without hyperfine splitting, and the singlet state is 150
MeV lighter. The unsplit diquark mass we again assume
to be roughly the viral theorem is —,

' of the (unsplit)
baryon's mass. Further details may be found in [14] (an
identical procedure is also followed in a recent paper by
Meyer and Mulers [23]).

The spin-fiavor matrix elements appearing in Eq. (16)
depend on the spin state of the spectator quarks and are
given by

(p s =olP +i)2lp s o) (p s=llP +iy2lp s=1)=—
(p, s =olP. —I/2lp, s =0) =0, (p, s =llP, —ir2lp, s =1)=

—, ,

(p, s =0IPd+yq2lp , s =0)=0, (p, s =llPd, +~q2lp s =1&=—, ,

(p, s =OlP, lp, s =0)=0, (p, s = 1lP„, lp, s =1)=
—,

(45)

This gives the quark distributions

u ~z~(x) = [ —,'F, (x)+ —,'F, (x)]+—', [—,'G, (x)——,'G„(x)],

d~2i(x) = ,'F„(x)+—,'G, (x—),
(46)

where the subscripts s and U refer to the relevant inter-
mediate state masses to be used when evaluating F~z~(x)
and G~z~(x).

We note that the distribution of u quarks is dominated
by the scalar (i.e., lower mass) intermediate state while
the d quark is entirely given by the vector (i.e., higher
mass) intermediate state. As we saw in the previous sec-
tion the distributions peak near x =1—M&/M, so it fol-
lows that the u-quark distribution peaks at a larger x
than that of the d quark, leading to a vanishing
d„(x)/u, (x) ratio as x ~1. Similarly, the asymmetry can
be written explicitly as

V. COMPARISON OF MODEL
CALCULATIONS WITH DATA

0.8

0.6
/ F2{x}

0.4

0.2 „{x}

Given the model for the matrix element A. ~„~ that has
been described in the previous sections, we may now
proceed to compare some of the predictions with data. As
pointed out earlier, this requires a knowledge of the
momentum scale p at which the bag mode is expected to

2xg, (x)
Fz(x)

6G, (x)—G, (x) —+1 as x~1 .
6F,(x)+ 3F,(x)

(47)
0.2 0.4 0.6

I

0.8 1.0
In Fig. 3 we show some typical results for these two

quantities, using a bag radius of 0.8 fm and diquark
masses of 650 and 850 MeV for the singlet and vector di-
quark case, respectively.

FICx. 3. Asymmetry and d /u ratio with inclusion of
hyper6ne splitting. The dashed (dotted) line is the d/u ratio
(asymmetry) without the one-gluon exchange.
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be a reasonable approximation to QCD. We ftt this scale
by comparing the predictions for the (isospin-singlet)
valence distribution to data. Having fixed the scale we
are then free to evaluate all other quantities that may be
of interest.

Before we do this we need to decide what to do about
the normalization of the distributions. Our procedure
will be as follows: We shall choose parameters (bag ra-
dius, diquark-state mass) for the two-quark component
and shall then add in a term, corresponding to the four-
quark component, to Ax the normalizations. For simpli-
city we shall mimic the behavior of the four-quark term
by (1—x ) . This is a very good approximation to the ac-
tual behavior of the four-quark term shown in Fig. 2.
The qualitative behavior of the results is not affected
greatly by the precise form of this function, especially for
x )0.3. We shall compare our results with a recent com-
pilation by Charchula et al. [24] of four different parame-
trizations of data (all rescaled to Q =10 GeV ): (1)
Eichten-Hinchliffe-Lane-Quigg, set I [25] (solid curves);
(2) Martin-Roberts-Stirling, set I [26] (dotted curves); (3)
Duke-Ownes, set I [27] (dashed curves); (4) Diemoz-
Ferroni-Longo, set II [28] (dot-dashed curves). The
difference between these parametrizations we take to be
indicative of the experimental uncertainties.

One obtains reasonable fits to the valence distribution
for bag radii of around 0.6 to 0.8 fm and scalar (vector)
diquark masses of 650 (850) to 850 (1050) MeV. In Fig. 4
we show a typical result, corresponding to R =0.6 fm,
M, =550 MeV, M, =750 MeV. For these parameters p
is rather low, about 0.26 GeV. Higher values of p, up to
0.46 CxeV, are necessary if the diquark masses are to-
wards the upper part of the above range. Using
A&CD=200 MeV, this corresponds to a coupling constant
cx at the scale p of 2.5 and 0.8, respectively. Both values
are rather higher than one would comfortably like them
to be for leading-order QCD corrections to be dominant.
Similar [7,23] values of a((M), or even higher [29] ones,
have been found in other model calculations.

0.8

0.6
X

X 0.4
X

0.2

0.2 0.4 0.6 0.8 1.0

FIG. 5. The ratio of valence distributions of the down and up
quarks for the same parameters as those in Fig. 4.

Using this value of p we may now predict other struc-
ture functions without introducing any more parameters.
In Fig. 5 we show the ratio u„(x,Q )/d„(x, Q ) plotted
against the parametrizations of the data. There is quite
reasonable agreement for most of the range of x, except
in the large-x region. It is in this region where the sharp-
ness of the bag boundary makes itself felt, something that
was especially noticeable in the two-dimensional calcula-
tion of Signal et al. [30].

In Fig. 6 the corresponding results for g~((x) are
shown, together with the available data from the Europe-
an Muon Collaboration (EMC) [31,32]. For x )0.2 there
is good agreement; however, for small x the prediction is
significantly above the data. At present it is not possible
to state with certainty what the origin of this discrepancy
is, but let us make several remarks. In the model present-
ed here the spin of the proton is carried completely by
the quarks [the integral of g~((x) is —,', fdx G(2) =0.22]
and it is well known that the data are probably in
disagreement with this. Efremov, Teryaev, Altarelli,
Ross, and others [33—36] have shown that there is an
anomalous gluon contribution to the integral of g~((x)

2.0 (

1.5
X

a
X
+ 1.0
X

0.5

R =0.6 fm

0.2

X
L 0 1
CA

X

I I I I I I I
(

R =0.6 fm

~ = 0.26 GeV

Q

0'
0 0.2 Q.4 0.6 0.8 1.0

FICr. 4. The valence distribution for the bare bag, corrected
for one-gluon exchange. The thick curves correspond to the
theoretical results, both at the model scale p and at
Q'=10 GeV'. The light curves are parametrizations of data
(see text).
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FIG. 6. g~(x) for the same parameters as those in Fig. 4.
The data are that of the EMC.
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0.04

0.03—
R=0.6 frn

~= 0.26 6eV

0.02
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CA

x 0.01—

—0.01
0.01 0.1

X

FICz. 7. g I (x) for the same parameters as those in Fig. 4.

g", (x, g ), even if g", (x,p )=0, because the singlet and
nonsinglet parts evolve differently. The effect is typically

of the size of the effect considered here. ] The large
peak in gi(x, p ) at large x as well as the value of p
causes the region where g i (x, Q = 10 GeV ) is negative
to move to rather small x. It will be interesting to com-
pare this with data. A significantly larger value for the
intercept would indicate that the bag-model scale should
not be as low as we have made it here, once again an indi-
cation that pionic corrections to the nucleon wave func-
tion are important. Apart from changing the scale p
these cause further change to the SU(6) wave function of
the nucleon. The changes to g", (x) are of the same order
as the ones considered here (indeed they even result in a
nonzero value for the integral).

due to the Adler-Bell-Jackiw anomaly [37,38] and it has
been suggested that via this mechanism the dynamically
generated glue of leading (and next-to-leading) order
QCD evolution is sufficient [39,40] to explain the
discrepancy. Even if one accepts the validity of this
mechanism (for contrary points of view see [41—43]),
with no polarized gluon at the bag scale and the above
value of p, the gluonic contribution to the integral would
be about —0.04, which is not sufficient to bring the
theoretical value into agreement with the experimental
one of 0. 126+0.010 (stat) +0.015 (syst). A value of p
sufficiently close to AQcD would enable sufficient gluons
to be generated; however, it would also shift all calculat-
ed structure functions to smaller x. An inspection of Fig.
4, for example, indicates that this will probably cause
serious disagreement with experiment for F3 (x ). Further
discussion of this point may be found in [44].

A decrease in g~i(x) for small x could be achieved by
raising p. This would be the effect of the correction to
the nucleon wave function from the inclusion of a pion
cloud. The pions carry some of the momentum of the nu-
cleon at the scale p and so the range of evolution would
have to be decreased compared with the case considered
here, i.e., where the valence quarks (and the bag surface)
carry all of the momentum of the proton at the model
scale. The precise correction to gi(x) will depend on the
change to the spin-isospin structure of the wave function.
This calculation is presently being done and will be pub-
lished elsewhere.

Finally, in Fig. 7 we show the results for g", (x). In an
SU(6)-symmetric model g", (x) is zero everywhere. The
splitting arising from one-gluon exchange causes it to be-
come finite, although the first moment still vanishes.
[The QCD evolution also induces a small value of

VI. CONCLUSION

In this paper we have presented a calculation of nu-
cleon structure functions from bag model wave functions.
The wave functions we have used are translationally in-
variant and the structure functions we have calculated
have nonzero support only between 0 &x & 1. An impor-
tant effect is the inclusion of four-particle intermediate
states, without which the quark distributions would not
obey normalization requirements. The effect of the
hyperfine splitting due to one-gluon exchange has also
been incorporated. This produces significant effects,
especially in ratios of structure functions or quark distri-
butions.

The results have been compared with parametrizations
of data. It is encouraging that despite the crudity of the
model there is qualitative agreement between theory and
experiment. There are, however, some potentially serious
discrepancies, essentially at low x. To understand these,
two improvements are essential. At present, the relative
importance of the contributions from the 2- and 4-quark
intermediate state can only be estimated because of poor
knowledge of their masses. Furthermore, a pion cloud
will carry some of the momentum of the nucleon, as well
as change its spin-isospin distribution. It is essential to
include this in order to make further progress—
especially if one intends to make meaningful predictions
for g", (x).
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