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Abstract 18 

Across avian species total blood haemoglobin concentration (BHC) is the most important 19 

determinant of oxygen-carrying capacity, and most accurately reflects the potential for the 20 

bird to satisfy its oxygen requirements. This creates a close association between high BHC 21 

and high aerobic capacity, and low BHC and states of regenerative or non-regenerative 22 

anaemia. As such total BHC has been suggested to be a reliable indicator of avian health and 23 

condition. We mist netted 160 adult and 26 juvenile New Holland honeyeaters (Phylidonyris 24 

novaehollandiae) from ten sites across South Australia to assess the relationship between 25 



BHC and individual health and condition traits in this species. From each bird we collected 26 

samples for blood haemoglobin estimation, inspected for the presence of external parasites 27 

(ticks), and measured basic morphometric parameters (mass, tarsus length and length of 28 

bilateral tail feathers). A relationship could not be demonstrated between BHC and tick 29 

intensity, body condition or tail feather asymmetry in adult or juvenile birds. Whilst the 30 

measurement of BHC may provide a reliable insight into individual health and condition in 31 

some avian species our results highlight the need to validate this relationship within species 32 

and populations prior to its use in avian health and condition assessments.  33 

 34 
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 39 

Introduction 40 

The One Health concept takes a holistic approach to health, recognising the critical links 41 

between human, animal and environmental health. The primary aim of One Health is to attain 42 

optimal health for humans, animals and the environment through a collaborative effort from 43 

multiple disciplines. In recent years we have seen an increase in the number of zoonotic 44 

disease outbreaks (Harper & Armelagos, 2010; Jones et al., 2013; Morse, 1995), with several 45 

topical examples, avian influenza infection in China (Li et al., 2014) and Salmonella infection 46 

in the U.S. (Centre for Disease Control and Prevention, U.S Department of Health & Human 47 



Services), having strong avian links. This has placed an increasing emphasis on the need for 48 

easy to obtain, reliable and widely applicable measurements of avian health and condition.   49 

 50 

One physiological measure that can indicate avian health and condition is blood haemoglobin 51 

concentrations (BHC) (Minias, 2015). Similar to that in other vertebrates the primary 52 

function of blood haemoglobin in avian species is to transport oxygen from the respiratory 53 

organs to bodily tissues to permit aerobic respiration and synthesise energy for functions of 54 

the bird via metabolic processes. Across avian species the amount of oxygen supplied to the 55 

tissues per unit time (measured by the amount of haemoglobin per total surface area of 56 

erythrocytes) is consistent (Kostelecka-Myrcha, 1997). As a consequence, the ability of a bird 57 

to satisfy its oxygen requirements is most accurately reflected by the oxygen carrying 58 

capacity of its blood, total BHC. This creates a close association between high BHC and high 59 

aerobic capacity, and low BHC and states of regenerative or non-regenerative anaemia in 60 

avian species (Minias, 2015). 61 

.  62 

Regenerative anaemia refers to the production and release of new erythrocytes from the bone 63 

marrow and can be brought on by haemorrhage and haemolysis (Tyler & Cowell, 1996). 64 

Within avian species this likely explains the observed relationship between BHC and 65 

parasitism (Dudaniec, Kleindorfer, & Fessl, 2006; Norte et al., 2013). In contrast, non-66 

regenerative anaemia refers to a situation when the increased response of bone marrow is 67 

inadequate when compared to the increased need for new erythrocytes. This can occur due to 68 

disease, nutritional stress or starvation (Tyler & Cowell, 1996), and likely accounts for the 69 

observed relationships between BHC and many morphological characteristics, such as body 70 

condition indices (Crossin, Phillips, Wynne-Edwards, & Williams, 2013; Lobato, Braga, 71 



Belo, & Antonini, 2011; Minias, Kaczmarek, Włodarczyk, & Janiszewski, 2013), 72 

asymmetrical moult (Minias, Kaczmarek, Wlodarczyk, & Janiszewski, 2013), and wing 73 

morphology (Minias, Włodarczyk, Piasecka, Kaczmarek, & Janiszewski, 2014),  74 

physiological parameters, including blood glucose concentrations (Minias, 2014) and plasma 75 

concentrations of proteins (Minias et al., 2014),  and fitness related traits, for example timing 76 

and size of eggs laid (Minias, 2014) and brood size (Minias, Włodarczyk, & Janiszewski, 77 

2015).  78 

 79 

The New Holland honeyeater (Phylidonyris novaehollandiae) is a small passerine, endemic 80 

to southern and eastern Australia. This species has a well-documented life history and is one 81 

of the few model species for host-parasite interactions within Australia. This species favours 82 

habitats with a dense shrub layer. Adult birds are primarily nectivorous and supplement their 83 

diet on manna, insects, lerp and honeydew (Paton, 1982a). Movement patterns vary between 84 

populations and regions but are suggested to be largely dependent upon resource availability 85 

(Higgins et al., 2001). Breeding  behaviour has been documented year round but 86 

predominantly occurs between July and October (Higgins et al., 2001). Adults moult 87 

annually, commencing following the spring breeding season and taking in excess of 100 days 88 

to replace all flight feathers (Paton, 1982b). Within parts of their range New Holland 89 

honeyeaters are commonly parasitised by the first two life stages (larvae and nymph) of the 90 

three host tick, Ixodes hirsti (Oorebeek, Sharrad, & Kleindorfer, 2009). Ticks are found 91 

around the head of infected birds as they are removed from other parts of the body through 92 

preening (Oorebeek and Kleindorfer 2009). Tick intensities range greatly and are similar 93 

within both the adult and juvenile cohorts; although tick prevalence is significantly greater in 94 

juvenile birds (Kleindorfer et al. 2006). Despite the New Holland honeyeater having been the 95 



subject of extensive studies the relationships between BHC and individual health or condition 96 

remain unstudied.  97 

 98 

This study assessed the relationships between BHC and individual health and condition traits 99 

within juvenile and adult New Holland honeyeaters. Birds were mist netted, blood collected 100 

for haemoglobin estimation, inspected for tick infestations, and basic morphometrics 101 

measured (mass, tarsus length and length of bilateral tail feathers) to test the following 102 

hypotheses; 1) BHC reflect tick intensity; 2) BHC reflect body condition; and 3) BHC reflect 103 

tail feather asymmetry.  104 

   105 

Methods 106 

Study sites 107 

Birds were sampled from their natural populations across ten study sites in South Australia.  108 

Six sites on the Fleurieu Peninsula; (1) Sandy Creek Conservation Park (34°36’S, 138°51’E); 109 

(2) Scott Conservation Park (35°24’S, 138°44’E); (3) Aldinga Scrub Conservation Park 110 

(35°17’S, 138°27’E); (4) Scott Creek Conservation Park (35°5’S, 138°40E); (5) Newland 111 

Head Conservation Park (35°37’S, 138°29’E); (6) Cox Scrub Conservation Park (35°19’S, 112 

138°44’E); three sites on Kangaroo Island; (7) Flinders Chase National Park (35°56’S, 113 

136°44’E); (8) Parndana Conservation Park (35°45’S, 137°19’E); (9) Pelican Lagoon 114 

Conservation Park (35°45’S, 137°37’E); and one site on Yorke Peninsula (10) Innes 115 

Conservation Park (35°13’S, 136°53’E). Study sites chosen included all of coastal mallee-116 

heath, shrubland and woodland habitats (Schlotfeldt & Kleindorfer, 2006; Waudby & Petit, 117 

2007).  118 

 119 

Physiological and morphological measurements 120 



We mist netted birds between the months of September and October 2005-2008. Blood 121 

samples (0.01ml) were collected by jugular venipuncture using a 0.5 ml syringe (29G 1/2′′, 122 

0.33 mm × 12.7 mm) (Campbell, 1995). Each sample was immediately placed into a 123 

microcuvette and a haemoglobin measurement (g/dL) obtained using a portable 124 

haemoglobinometre (HemoCue HB 201, HemoCue AB) (Dudaniec et al., 2006). Length 125 

measurements using a standard 30 cm ruler were taken to the nearest 1 mm for mature lateral 126 

tail feathers from the follicle to the feather tip, and tail feather asymmetry assessed as the 127 

difference in length between the left and right feathers. All birds were weighed to the nearest 128 

0.1 g and their tarsus measured to the nearest 0.1 mm, using digital scales and callipers 129 

respectively. We used these measures in a linear regression analyses to determine the 130 

standardized residuals to represent each individual’s average body condition, as done in other 131 

studies (Husak, 2006). The sex of birds was genetically determined (Myers, 2011), and their 132 

age class based on the presence of adult or juvenile characteristics (including colour of gape 133 

and irides) (Disney, 1966). 134 

 135 

Parasite sampling 136 

All birds caught were carefully examined for the presence of ticks. Extensive visual searches 137 

were conducted around the head of birds in particular as ticks have only been observed on 138 

this region of the body at the study sites (Kleindorfer, Lambert, & Paton, 2006; Oorebeek & 139 

Kleindorfer, 2008a, 2008b, 2009). Ticks could be easily seen by deflecting the feathers in this 140 

region. All ticks found were removed with forceps and preserved in 90% ethanol. Ticks had 141 

previously been identified as Ixodes hirsti using molecular techniques (Chapman, Marando, 142 

Oorebeek, & Kleindorfer, 2009).  143 

 144 

Statistical analysis 145 



We assigned birds to separate categories for tick intensity (two categories in total for 146 

juveniles and four for adults) and tail feather asymmetry (four categories in total for juveniles 147 

and seven for adults) according to their degree of infestation or asymmetry (Cat. 1 = 1 tick/1 148 

mm tail feather asymmetry, Cat. 2 = 2 ticks/2 mm tail feather asymmetry, etc). Similarly, 149 

birds were assigned to one of two body condition categories, ‘above average’ or ‘below 150 

average’ if they had a body condition score of ≥0 or <0 respectively (these categories were 151 

chosen based on the way in which we derived body condition, standardised residuals of a 152 

linear regression analysis of mass on tarsus length). For both juvenile and adult birds we 153 

tested if the effect of our three variables of interest (tick intensity, body condition and tail 154 

feather asymmetry) on BHC varied across years and conservation parks using a two-way 155 

ANOVA. However, significant interaction effects must be interpreted with caution as for 156 

adult birds our data violated the assumption of homogeneity of variances under the two-way 157 

ANOVA design, and for both adult and juvenile birds sampling was not conducted at all 158 

parks in all years. Furthermore, cell sample sizes for juvenile birds were small, ranging from 159 

0-10 with a mean of 2.6 (SD = 2.49). Main effects were investigated using a one-way 160 

ANOVA and Tukey pairwise comparisons post hoc testing as under the one-way ANOVA 161 

design data satisfied the assumptions of normal distribution and homogeneity of variances. 162 

All statistical tests were conducted in IBM SPSS Statistics 22. 163 

 164 

Results  165 

Eight of ten sites sampled for New Holland honeyeaters supported resident tick populations. 166 

From these 10 sites 186 birds were examined, 160 of which were adults and 26 juveniles.  167 

 168 

Juveniles 169 



Within the juvenile cohort BHC ranged from 138 to 225 g/dL, with a mean of 184 (SD = 22) 170 

g/dL. Twelve birds had tick infestations of 1 to 2 ticks, giving an overall prevalence of 46%. 171 

Tick intensity varied; 58 % had 1 tick, and 42 % had 2 ticks. For tick infested juvenile birds 172 

the median tick intensity was 1 (95 % CI = 1, 2). Fifteen birds showed some degree of tail 173 

feather asymmetry, ranging from 1 to 4 mm, with the median difference between bilateral tail 174 

feathers being 1 (95 % CI = 0, 2) mm. Sixteen birds had a body condition below average, 175 

with the mean body condition score for juvenile birds being 1.31 (SD = 0.94). 176 

 177 

We found no significant effect of tick intensity on BHC across conservation parks (F (1, 19) 178 

= 1.60, N = 26, P = 0.22) and no significant difference in the mean BHC for juveniles with 179 

varying levels of tick intensity (F (2, 23) = 0.54, N = 26, P = 0.59) (Figure 1). The effect of 180 

tick intensity on BHC across years was unable to be calculated due to insufficient mean 181 

square values. Body condition showed a significant effect on BHC across years (F (1, 22) = 182 

7.26, N = 26, P = 0.13) and across conservation parks (F (3, 18) = 3.44, N = 26, P = 0.04), but 183 

there was no significant difference in the mean BHC for juveniles in above and below 184 

average body condition (F (1, 24) = 2.50, N = 26, P = 0.95) (Figure 2). Tail feather 185 

asymmetry showed no significant effect on BHC across years (F (2, 18) = 0.74, N = 26, P = 186 

0.49) or conservation parks (F (5,13) = 0.72, N = 26, P = 0.62), and there was no significant 187 

difference in the mean BHC for juveniles with varying levels of tail feather asymmetry (F (4, 188 

21) = 0.43, N = 26, P = 0.79) (Figure 3).  189 

 190 

Figure 1____________________________________________________________________ 191 

Figure 2____________________________________________________________________ 192 

 193 

Adults 194 



Within the adult cohort BHC ranged from 123 to 235 g/dL, with a mean of 188 (SD = 20) 195 

g/dL. Seventeen birds had tick infestations of 1 to 4 ticks, giving an overall prevalence of 11 196 

%. Tick intensity varied; 47 % had 1 tick, 35 % had 2 ticks, 6% had 3 ticks, and 12 % had 4 197 

ticks. For tick infested adult birds the median tick intensity was 2 (95 % CI = 1, 2). One 198 

hundred and twenty five birds showed some degree of tail feather asymmetry, ranging from 1 199 

to 7 mm, with the median difference between bilateral tail feathers being 1 (95 % CI = 1, 1) 200 

mm. Sixteen birds had a body condition below average, with the mean body condition score 201 

for adult birds being 1.67 (SD = 1.32). 202 

 203 

We found no significant effect of tick intensity on BHC across years (F (3, 149) = 0.51, N = 204 

160, P = 0.68) or conservation parks (F (6, 140) = 0.85, N = 160, P = 0.53), and no significant 205 

difference in the mean BHC for adult birds with varying levels of tick intensity (F(4, 155) = 206 

0.39, P = 0.82) (Figure 1). Body condition showed no significant effect on BHC across years 207 

(F (3, 152) = 0.49, N = 160, P = 0.69) or conservation parks (F (8, 141) = 0.62, N = 160, P = 208 

0.76), and there was no significant difference in the mean BHC for adults in above and below 209 

average body condition (F (1, 158) = 1.39, N = 160, P = 0.24) (Figure 2). Tail feather 210 

asymmetry showed no significant effect on BHC across years (F (11, 138) = 1.05, N = 160, P 211 

= 0.41) but did show a significant effect on BHC across conservation parks (F (20, 123) = 212 

2.00, N = 160, P = 0.01), and a significant difference in the mean BHC for adult birds with 213 

varying levels of tail feather asymmetry (F (7, 152) = 2.17, N = 160, P = 0.04) (Figure 3). 214 

Tukey pairwise comparisions tests showed no significant difference in the mean BHC for 215 

adult birds across all combinations of tail feather asymmetry (Table 1).  216 

 217 

Figure 3____________________________________________________________________ 218 

Table 1_____________________________________________________________________ 219 



 220 

Discussion 221 

We found no significant difference in mean BHC for adult or juvenile birds across all levels 222 

of tick intensity. Tick infestations in birds have previously been suggested to have both 223 

detrimental effects (Norte et al., 2013) and no effect (Williams & Hair, 1976) on BHC. 224 

Contrasting results are unlikely to be explained by differences in the parasitising tick life 225 

stage, as the majority of tick infestations in birds are by immature life stages (larvae and 226 

nymphs). Difference in tick intensity between studies is the most probable cause of 227 

contrasting relationships.  228 

 229 

We recorded a maximum tick intensity for juvenile and adult birds of 2 and 4 ticks 230 

respectively, substantially lower than those at which significant relationships between BHC 231 

and tick infestation have been found (Norte et al., 2013).  Other studies reporting significant 232 

relationships between BHC and other parasites have likewise documented higher average 233 

parasite loads (Dudaniec et al., 2006; Krams et al., 2013; O'Brien, Morrison, & Johnson, 234 

2001). Low levels of parasite infestation may be insufficient to cause a noticeable reduction 235 

in BHC in birds due to their ability to rapidly produce red blood cells (Campbell, 1995; 236 

Sturkie, 2012). Whilst immature red blood cells are only capable of synthesising a fraction of 237 

the amount of haemoglobin when compared to mature cells (O'Brien et al., 2001), this may 238 

be enough to mask the effects of low level tick infestation on BHC.  239 

    240 

Blood haemoglobin concentrations did not reflect the body condition of adult or juvenile 241 

birds. This was in contrast to that expected based on previous studies on Great Tits (Parus 242 

major) in central Sweden (Dufva, 1996), nestling Welcome Swallows in south-eastern 243 



Australia (Lill, Rajchl, Yachou-Wos, & Johnstone, 2013), and Bar-tailed Godwits in the 244 

Netherlands (Dufva, 1996; Lill et al., 2013; Piersma, Everaarts, & Jukema, 1996). A 245 

relationship between BHC and body condition is commonly seen in migratory birds when 246 

fuel stores are accumulated prior to departure (Minias, Kaczmarek, Włodarczyk, et al., 2013). 247 

This increases the oxygen-carrying capacity of their blood to meet the high metabolic 248 

requirements of long distance migrations. A similar relationship may also arise during 249 

periods of starvation when the production of red blood cells is suppressed (McCue, 2010). 250 

New Holland honeyeaters most commonly remain in areas with a constant supply of nectar 251 

and are said to be resident or sedentary, with some populations documented to be nomadic 252 

(Higgins et al., 2001). Not having the need to accumulate fuel stores or increase BHC for 253 

extended periods of flight, and having a constant supply of nectar supplemented by other 254 

food resources, may explain the lack of relationship between BHC and body condition in this 255 

species. Avian species in which BHC may better reflect indices of body condition are likely 256 

those that suffer greater levels of dietary or metabolic stress from variable and unpredictable 257 

resource availability, for example arid zone and migratory birds.   258 

 259 

Furthermore, individuals with a below average body condition relative to the population 260 

mean are not necessarily in poor condition. If the entire population is in exceptional body 261 

condition then birds below the population average may still be in reasonable body condition, 262 

and still well above the stage at which the production of red blood cells is suppressed due to 263 

nutrient deficiency.  264 

 265 

No significant difference was found in the mean BHC at all levels of tail feather asymmetry 266 

for juvenile birds. In contrast, the mean BHC across all levels of tail feather asymmetry for 267 



adult birds was not equal. Further investigation using pairwise comparisons found no 268 

significant difference in mean BHC for all combinations of tail feather asymmetry, indicating 269 

that BHC and tail feather asymmetry were not significantly related within the adult cohort. 270 

Significant relationships between BHC and plumage asymmetry have previously been 271 

recorded during moult (Minias, 2015). The moulting period involves extensive 272 

vascularisation of growing quills. This is accompanied by a substantial increase in water 273 

consumption during this period, which likely increases blood plasma volume and 274 

consequently decreases BHC as total erythrocyte count remains constant (Chilgren & 275 

deGraw, 1977). New Holland honeyeaters moult annually, commencing following the spring 276 

breeding season (end of October/start of November) and taking approximately 130 days 277 

(Paton, 1982b). Our sampling period (September October) coincided with the breeding 278 

season to capture maximum tick densities. This sampling period is prior to the 279 

commencement of moult for the majority of birds, and likely explains the lack of relationship 280 

between BHC and tail feather asymmetry found in this study.   281 

 282 

Blood haemoglobin concentrations have previously been identified to be related to a large 283 

number of ecological, morphological, physiological and fitness related traits, and as a result 284 

have been suggested to be reliable indicators of avian health and condition. However, this 285 

study has found no relationship between BHC and tick intensity, body condition or tail 286 

feather asymmetry in adult or juvenile New Holland honeyeaters. We recognise that 287 

confounding variables, such as the year and location of sampling, may obscure variation in 288 

relation to the variables of interest (tick intensity, body condition and tail feather asymmetry) 289 

although consider this unlikely based on the interaction terms calculated. Whilst the 290 

measurement of BHC may provide a reliable insight into individual health and condition in 291 

some avian species our results highlight the need to validate this relationship within species 292 



and populations prior to its use in avian health and condition assessments. Further 293 

investigation into other morphological, physiological and fitness related traits that display a 294 

stronger association with BHC may also prove useful in avian health and condition 295 

assessments, such characteristics may include faecal parasite loads, body mass or fat loads, or 296 

wing feather asymmetry. Finally, one must ask the question, if strong relationships were to 297 

exist between BHC and morphological, physiological or fitness related traits, but there is 298 

nothing we can do to reduce the associated risks, are BHC worth testing? In many cases it 299 

may not be possible to manage or mitigate population health or condition risks, whilst in 300 

others the eradication of parasites or increasing of food resources, as seen for New Zealand 301 

forest birds, to ensure population persistence is possible (Armstrong et al., 2002). This 302 

illustrates that solutions to possible avian population health and condition risks must be 303 

considered prior to the commencement of population health and condition assessments to 304 

safeguard scarce and valuable conservation funds.  305 

 306 
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Table 1: Tukey pairwise comparisons for the blood haemoglobin concentrations (g/dL) of 416 

adult New Holland honeyeaters (Phylidonyris novaehollandiae) across all levels of tail 417 

feather asymmetry (difference in length (mm) between bilateral tail feathers). 418 

 419 

Diff. = difference, SE = standard error, CI = confidence interval  420 

 421 

(I) Tail 

Asymmetry 

(J) Tail 

Asymmetry 

Mean Diff. (I-J) SE P Lower 95 % CI Upper 95 % CI 

0 / Symmetrical 1 / 1 mm 6.94 4.10 0.690 -5.64 19.53 

 2 / 2 mm 15.51 5.06 0.051 -0.03 31.06 

 3 / 3mm 1.74 7.30 1.000 -20.70 24.18 

 4 / 4 mm 21.03 8.09 0.164 -3.83 45.89 

 5 / 5 mm -0.97 8.09 1.000 -25.83 23.89 

 6 / 6 mm 7.89 8.09 0.977 -16.97 32.74 

 7 / 7 mm 12.49 10.31 0.927 -19.19 44.18 

 422 

 423 

 424 
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 433 

Figure1: Mean blood haemoglobin concentration (g/dL) for each level of tick intensity (number 434 

of ticks on bird) for juvenile and adult New Holland honeyeaters (Phylidonyris 435 

novaehollandiae). Error bars represent +/- 1 standard deviation.  436 

Birds were sampled from their natural populations across ten study sites in South Australia.   437 

 438 



 439 

Figure 2: Relationship between mean blood haemoglobin concentration (g/dL) and body 440 

condition (a score of relative body mass in relation to body size) for juvenile and adult New 441 

Holland honeyeaters (Phylidonyris novaehollandiae). Error bars represent +/- 1 standard 442 

deviation.  443 

Birds were sampled from their natural populations across ten study sites in South Australia.  444 

 445 



 446 

Figure 3: Mean blood haemoglobin concentration (g/dL) for each level of tail feather 447 

asymmetry (difference in length (mm) between bilateral tail feathers) for juvenile and adult 448 

New Holland honeyeaters (Phylidonyris novaehollandiae). Error bars represent +/- 1 standard 449 

deviation.  450 

Birds were sampled from their natural populations across ten study sites in South Australia.   451 
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