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CCR2 defines in vivo development and homing
of IL-23-driven GM-CSF-producing Th17 cells
Ervin E. Kara1, Duncan R. McKenzie1, Cameron R. Bastow1, Carly E. Gregor1, Kevin A. Fenix1,

Abiodun D. Ogunniyi1,2, James C. Paton1,2, Matthias Mack3, Diana R. Pombal4, Cyrill Seillet5,

Bénédicte Dubois6, Adrian Liston4, Kelli P.A. MacDonald7, Gabrielle T. Belz5,8, Mark J. Smyth7,9,

Geoffrey R. Hill7,10, Iain Comerford1,* & Shaun R. McColl1,11,*

IL-17-producing helper T (Th17) cells are critical for host defense against extracellular

pathogens but also drive numerous autoimmune diseases. Th17 cells that differ in their

inflammatory potential have been described including IL-10-producing Th17 cells that are

weak inducers of inflammation and highly inflammatory, IL-23-driven, GM-CSF/IFNg-

producing Th17 cells. However, their distinct developmental requirements, functions and

trafficking mechanisms in vivo remain poorly understood. Here we identify a temporally

regulated IL-23-dependent switch from CCR6 to CCR2 usage by developing Th17 cells that is

critical for pathogenic Th17 cell-driven inflammation in experimental autoimmune encepha-

lomyelitis (EAE). This switch defines a unique in vivo cell surface signature (CCR6�CCR2þ )

of GM-CSF/IFNg-producing Th17 cells in EAE and experimental persistent extracellular

bacterial infection, and in humans. Using this signature, we identify an IL-23/IL-1/IFNg/

TNFa/T-bet/Eomesodermin-driven circuit driving GM-CSF/IFNg-producing Th17 cell forma-

tion in vivo. Thus, our data identify a unique cell surface signature, trafficking mechanism and

T-cell intrinsic regulators of GM-CSF/IFNg-producing Th17 cells.
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A
n emerging concept in inflammatory T-cell biology is the
existence of a spectrum of T-helper 17 (Th17) phenotypes
that vary in inflammatory potential. In autoimmunity,

Th17 cell subsets that differ both in their developmental
requirements and function have been described1. Transforming
growth factor-b1 (TGFb1) and interleukin-6 (IL-6) drive
differentiation of IL-10-producing Th17 cells2–4, which are
weak inducers of inflammation2–4 and can possess regulatory
function2,5. Conversely, differentiation and effector function of
Th17 cells with pathogenic function is dependent on IL-23
(refs 3,4,6–10), which induces expression of the effector cytokines
granulocyte–macrophage-stimulating factor (GM-CSF) and
interferon-g (IFNg)6,7,11. It is widely appreciated that IL-23-
dependent Th17 cell responses orchestrate numerous CD4þ

T-cell-driven pathologies including experimental autoimmune
encephalomyelitis (EAE), the mouse model of multiple sclerosis
(MS)6,7,12. It has been hypothesized that these two arms of the
Th17 cell response evolved to coordinate different domains of
protective immunity12 wherein Th17 cells with a more limited
inflammatory potential mediate maintenance of barrier tissue
integrity2,5,13, whereas more inflammatory subsets of Th17 cells
amplify inflammation during persistent extracellular bacterial/
fungal infection14,15. Although these models of Th17 cell biology
are a useful construct for conceptualizing how different Th17 cell
phenotypes participate in protective/pathological immune
responses, present knowledge of distinct Th17 cell phenotypes
has predominantly flowed from in vitro-based systems and is
therefore limited. Understanding mechanisms governing
development and trafficking of Th17 cells with pathogenic
function during autoimmune inflammation is of critical
importance as intervention of these processes presents as a
tractable target for novel therapeutics.

Migratory properties of effector Th cells are imprinted during
differentiation with induction of chemokine receptors that enable
their differential trafficking to inflammatory lesions. CCR6 is a
homing receptor shared by Th17 and regulatory T cells (Tregs)16,
hypothesized to ensure that Th17 cell responses are closely
regulated by Tregs to limit superfluous, and potentially damaging,
inflammation17. However, emerging evidence suggests the
existence of additional, more critical receptors in Th17
migration. In EAE, a ‘two-wave’ model for encephalitogenic
Th17-cell recruitment to the central nervous system (CNS) has
been proposed where, in the first wave, CCR6 facilitates entry into
the uninflamed CNS, followed by subsequent waves of CCR6-
independent Th17 cell trafficking into the inflamed CNS18.
Conversely, more recent studies have demonstrated that CCR6 is

largely dispensable for EAE pathogenesis19,20, suggesting that
recruitment of encephalitogenic Th17 cells to the CNS is CCR6
independent. However, the molecular basis for CCR6-
independent trafficking of Th17 cells is unknown and
migratory receptors that differentially recruit Th17 and Tregs to
inflammatory lesions have not been identified.

Here we demonstrate that CCR2, not CCR6, is a key driver of
encephalitogenic Th17 cell recruitment into the CNS. Further, we
identify GM-CSF/IFNg-producing Th17 cells in EAE and
persistent extracellular bacterial infection as bearing a CCR6�

CCR2þ phenotype in mice and in humans. Conversely, Th17
cells with an IL-10þ and IL-9þ cytokine profile, consistent with
published descriptions of Th17 cells of more limited pathogenic
potential, bear a CCR6þCCR2þ phenotype in vivo. Using these
signatures, we demonstrate that an IL-23/IL-1/IFNg/tumour
necrosis factor-a (TNFa)/T-bet/Eomesodermin-driven circuit
drives GM-CSF/IFNg-producing Th17 cell development in vivo.
Thus, we report a unique cell surface signature and novel
developmental features of GM-CSF/IFNg-producing Th17 cells
in vivo and resolve the outstanding question regarding the
molecular control of encephalitogenic Th17 cell trafficking to the
CNS in EAE.

Results
Th17 cells express functional CCR2 during inflammation. To
identify CCR6-independent mechanisms mediating recruitment
of Th17 cells and to compare migratory potential of Th17 and
Tregs, we screened for the expression of all known chemokine
receptors in CCR6þ and CCR6� subsets of Tregs from
B6.Foxp3GFP mice and IL-17A-eYFPþCD4þ T cells from
B6.Il17aCreRosa26eYFP mice, in which Cre recombinase is driven
by Il17a promoter activity to permanently mark cells that
are currently producing or have previously expressed IL-17A
(IL-17Aþ /ex) with enhanced yellow fluorescent protein (eYFP)11

(Supplementary Fig. 1). Notably, high levels of Ccr2 messenger
RNA were apparent in CCR6�CD4þ IL-17Aþ /ex cells (Fig. 1a).
CCR2 protein was minimally expressed by naive, Th1 and Treg
populations from EAE-induced wild-type (WT) mice, whereas
IL-17A-producing CD4þ T cells, hereafter termed Th17 cells,
expressed either CCR6 and/or CCR2 (CCR6þCCR2� ,
CCR6þCCR2þ or CCR6�CCR2þ ) (Fig. 1b). Functionally,
ex vivo transmigration assays demonstrated that Th17 cells were
the most CCL2-responsive CD4þ T-cell subset from EAE mice
(Fig. 1c). In the CNS during EAE, the first detectable Th17 cells
(day (d)5 post immunization) were predominantly

Figure 1 | Th17 cell recruitment to the CNS is temporally regulated by CCR6 and CCR2. (a) Quantitative PCR of Ccr6 and Ccr2 transcript in CCR6þ and

CCR6� subsets of CD4þ IL-17Aþ /ex (currently, or previously Th17) cells (CD3þCD4þCD44hiIL-17AeYFPþ–B6.Il17aCreRosa26eYFP mice) and Tregs

(CD3þCD4þFoxp3GFPþ–B6.Foxp3GFP mice) from the spleen/draining lymph node (dLN) of 5–6 mice d10 post MOG/CFA immunization. Data presented

relative to Rplp0 (mean±s.d.). (b) Representative flow cytometric analysis of CCR6/CCR2 staining on naive CD4þ (CD3þCD4þCD44lo), Th1

(CD3þCD4þCD44hiIL-17A� IFNgþ ), Th17 (CD3þCD4þCD44hiIL-17Aþ) and Tregs (CD3þCD4þFoxp3þ ) from the spleen of B6 mice d10 post MOG/

CFA immunization. Data are representative of three independent experiments with n¼ 3–4 mice per experiment. (c) Transwell chemotaxis to CCL20 and

CCL2 by indicated T-cell subsets from d10 MOG/CFA-immunized B6 mice. Th17 cells from B6.Ccr6� /� and B6.Ccr2� /� mice served as CCL20 and CCL2

controls, respectively. Data are representative of two independent experiments with n¼4 mice per experiment. (d) Representative flow cytometric analysis

of CCR6/CCR2 staining on Th17 cells (CD3þCD4þCD44hiIL-17Aþ) in the dLN, spleen and CNS on d5, 10 and 15 post EAE induction. Data are

representative of four independent experiments with n¼4–6 mice per timepoint. (e,f) EAE-immunized B6 mice were administered 100mg of CCL2ala

(scrambled peptide control; n¼ 5), CCL206–70 (CCR6 antagonist; n¼4) or CCL29–76 (CCR2 antagonist; n¼ 5) i.p. on days 2, 4, 6 and 7 (e) or days 8, 10, 12

and 13 (f). CNS-infiltrating Th17 cells were quantified 24 h after the final antagonist treatment. (g) Schematic of Th17 cell transfer system. (h) Number of

transferred Th17 cells (CD3þCD4þ IL-17AþCD45.2þ ) in CNS 48 h post transfer from CCL206–70 (n¼ 5), CCL29–76 (n¼ 5) or CCL2ala (n¼ 5) treated

B6.Ly5.1 recipients pre-immunized for EAE 5 (left) or 15 (right) days prior. (i) Number of transferred CD45.2þ B6 (n¼ 5) or B6.Ccr6� /� Th17 cells in CNS

48 h post transfer of CCL2ala (n¼6)- or CCL29–76 (n¼ 6)-treated B6.Ly5.1 recipients pre-immunized for EAE 15 days prior. (j) Number of transferred

CD45.2þ Th17 cells in CNS 48 h post transfer of PBS (n¼ 5)- or anti-CCL2 (n¼ 5)-treated B6.Ly5.1 recipients pre-immunized for EAE 15 days prior.

(c,e,f,h,i,j) Data are presented as mean±s.e.m. (e,f,h–j) *Pr0.05, **Pr0.01; (e,f,h) one-way analysis of variance (ANOVA) with Dunnett’s multiple

comparisons test relative to control CCL2ala-treated group; (i) one-way ANOVA with Bonferroni multiple comparisons test; (j) unpaired two-tailed

Student’s t-test.
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CCR6þCCR2� ; however, as disease progressed, CCR2-
expressing Th17 cells bearing CCR6þCCR2þ or
CCR6�CCR2þ phenotypes substantially increased in
frequency (Fig. 1d). This was mirrored in secondary lymphoid
organs (SLOs), as Th17 cells on d5 in the lymph node and spleen
were predominantly CCR6þCCR2� , followed by the emergence
of CCR6þCCR2þ and CCR6�CCR2þ Th17 cells by d10
post immunization (Fig. 1d). Thus, among the major

CD4þ T-cell subsets in EAE, functional CCR2 expression is
restricted to Th17 cells that arise following emergence of CCR6þ

Th17 cells.

CCR2 drives Th17 recruitment to the inflamed CNS. To map
the role of CCR6 and CCR2 in temporal regulation of Th17 cell
recruitment to the CNS during EAE, we treated mice with peptide
antagonists for CCR6 (CCL206–70)21,22 or CCR2 (CCL29–76)23
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during the pre-clinical or effector phases of disease. CCR6
antagonism reduced CNS accumulation of Th17 cells when
administered during the pre-clinical phase, but did not alter Th17
cell population of the CNS when administered during the effector
phase of disease (Fig. 1e,f). Conversely, CCR2 antagonism
administered during the effector phase, but not the pre-clinical
phase of disease, reduced Th17 cell population of the CNS
(Fig. 1e,f). To extend these observations, we transferred ex vivo-
expanded myelin oligodendrocyte glycoprotein (MOG)-reactive
Th17 cells into B6.Ly5.1 recipients pre-immunized for EAE either
5 (pre-clinical) or 15 (chronic) days prior and concomitantly
antagonized CCR6 or CCR2 (Fig. 1g). CCR6 antagonism
inhibited CNS accumulation of transferred Th17 cells during
the pre-clinical but not the chronic phase of EAE, whereas CCR2
antagonism only reduced transferred Th17 cell population of the
CNS when administered during the chronic phase of disease
(Fig. 1h). Furthermore, transferred Ccr6-deficient Th17 cells
accumulated normally in the CNS of d15 pre-immunized
recipients, but this was inhibited by concomitant antagonism of
CCR2 (Fig. 1i). It has been reported that CCL2 levels in the CNS
increase as EAE pathology transitions from pre-clinical to peak
disease24, and CCL2 plays an important role in Th17
accumulation in the inflamed CNS, as transferred Th17 cells
were less abundant in the CNS of CCL2-neutralized recipients
(Fig. 1j). Collectively, these data indicate that CCR6 promotes
recruitment of Th17 cells into the CNS at early phases
of EAE, whereas CCR2/CCL2 drives Th17 cells into the CNS at
later time points, during a CCR6-independent phase of their
trafficking.

Having identified CCR2, and not CCR6, as a key receptor
driving Th17 cell recruitment to the inflamed CNS in chronic
EAE, we next assessed CCR6 and CCR2 function in a model of
relapsing–remitting EAE. CCL20 was detectable in the CNS at
homeostasis, increased during acute disease and remained
abundant during remission and relapse (Fig. 2a). Conversely,
CCL2 was undetectable in the uninflamed CNS and low during
remission, and was most abundant during acute disease and in
EAE relapse (Fig. 2a). In keeping with CNS chemokine
expression, frequencies of CCR6�CCR2þ Th17 cells were
highest during peak acute disease and relapse, whereas CCR6-
expressing populations of Th17 cells were more abundant during
remission (Fig. 2b). To assess the function of CCR6 and CCR2 in
relapse, we treated mice during EAE remission with CCR6 or
CCR2 peptide antagonists and assessed molecular, cellular and
clinical manifestations of disease relapse. Notably, CCR6
antagonism did not alter the incidence or severity of EAE relapse
(Fig. 2c) and led to reduced CNS levels of IL-10, fewer CNS-
infiltrating Tregs and augmented CNS-infiltrating Th17 cells and
Gr1þ leukocytes (mostly neutrophils based on scatter analysis)
(Fig. 2d–f). In contrast, CCR2 antagonism dampened EAE relapse
severity (Fig. 2c) with less IL-17A in the CNS and reduced CNS-
infiltrating Th17 cells (Fig. 2d–f). Fewer CNS-infiltrating

Gr1þ leukocytes and other CD11bþ myeloid cells were also
detected in CCR2 antagonized mice (Fig. 2f). Thus, CCR2
drives EAE relapse and promotes Th17 cell responses in
the CNS, whereas CCR6 supports optimal Treg responses in
these settings.

CCR2 drives GM-CSF-producing Th17 cell homing to the CNS.
CCR2 has been previously shown to drive EAE patho-
genesis24–26; however, a T-cell intrinsic role for CCR2 has not
been clearly demonstrated. Thus, to specifically examine T-cell
intrinsic functions of CCR6 and CCR2 in T-cell trafficking during
EAE, we constructed bone marrow (BM) chimeras, reconstituting
lethally irradiated B6.Ly5.1 recipients with 80% BM from
B6.Tcra� /� donors and 20% BM from either B6, B6.Ccr6� /� ,
B6.Ccr2� /� or B6.Ccr6� /� .Ccr2� /� donors. Notably, T-cell-
specific deletion of Ccr2 reduced CNS-infiltrating Th17 cells and
diminished EAE severity (Table 1 and Fig. 3a,b). In contrast,
deletion of Ccr6 delayed, but ultimately exacerbated EAE without
substantially altering CNS-infiltrating Th17 cells, but reduced
CNS-infiltrating Tregs at peak (d14) and chronic (d25) disease
(Table 1 and Fig. 3a–c). Deletion of both Ccr6 and Ccr2 in T cells
substantially delayed disease onset (Fig. 3a). However, akin to
Ccr6-deficient T-cell chimeras, Ccr6� /�Ccr2� /� T-cell
chimeric mice ultimately manifest EAE, associated with fewer
CNS-infiltrating Th17 cells at peak disease, but also reduced
frequencies of CNS-infiltrating Treg cells at all time points
assessed (Table 1 and Fig. 3a–c). Fewer CNS-infiltrating Gr1þ

leukocytes were present in Ccr2-deficient and Ccr6/Ccr2-deficient
T-cell chimeras at peak disease, consistent with diminished CNS
Th17 cell responses in these mice (Fig. 3d). These data indicate
that CCR2 plays a key role in mediating trafficking of T cells with
pathogenic function to the CNS during EAE, whereas CCR6
functions as an important axis for Treg function in this model.
Recent data have shown that encephalitogenic Th17 cells in EAE
produce the inflammatory cytokine GM-CSF6,7. In keeping with
this, T-cell-specific deletion of Ccr2 reduced GM-CSFþ Th17 cell
abundance in the CNS without altering their development in
SLOs (Fig. 3e). Further, GM-CSF-producing Th17 cells were
more abundant in circulation, suggesting that CCR2 drives
circulation-to-CNS trafficking of encephalitogenic Th17 cells
(Fig. 3e). To more definitively address this point, we transferred
purified Ccr2-deficient CD4þ T-cells into B6.Rag1� /�

recipients and induced EAE. In this model, Th17 cells
with pathogenic function that arise from transferred CD4þ

T cells represent the critical disease-initiating cell type7.
Strikingly, recipient mice receiving Ccr2-deficient T cells
were resistant to EAE (Table 2 and Fig. 3f), exemplifying
the critical requirement for CCR2 in encephalitogenic T-cell
function in this model. Furthermore, although Th17 cell
frequencies were equivalent in SLOs (Supplementary Fig. 2),
Th17 cells and GM-CSFþ CD4þ T cells were markedly

Figure 2 | CCR2 promotes Th17 cell responses in EAE relapse. (a) CCL20 and CCL2 protein abundance in the CNS at indicated stages of EAE in SJL/J

mice as determined by ELISA (n¼ 5 mice per group). (b) Representative flow cytometric analysis and quantification of CCR6/CCR2 staining on CNS-

infiltrating Th17 cells (CD3þCD4þ IL-17Aþ) at peak acute disease (left), remission (middle) and relapse (right) of EAE-induced SJL/J mice. Data are

representative of two independent experiments with n¼6 per experiment. (c) Clinical disease scores of EAE relapse in SJL/J mice treated with CCL206–70

(n¼ 10), CCL29–76 (n¼ 10) or CCL2ala (n¼ 10) i.p. on days indicated by black arrows. Treatment began on the fourth day of remission (disease score r1

after reaching Z2 prior; d0 on graph). (d) IL-17A, IFNg and IL-10 protein abundance in the CNS of mice on d8 following treatment in c as determined by

ELISA (n¼6 per group). (e) Representative flow cytometric analysis of IL-17A and IFNg staining on CNS-infiltrating CD3þCD4þ cells on d8 following

treatment in c (n¼ 6 per group). Right, quantification of IL-17Aþ (Th17), IL-17A� IFNgþ (Th1) and Foxp3þ (Tregs) cells among CNS-infiltrating

CD3þCD4þ cells. (f) Total number of CNS-infiltrating Th17, Th1, Treg cells, Gr1þ leukocytes and other myeloid cells (CD11bþGr1lo/� ) on d8 following

treatment in c (n¼ 6 per group). (a–f) Data are presented as mean±s.e.m.; *Pr0.05, **Pr0.01, ***Pr0.001. (d–f) Each dot represents an individual

mouse. (b) One-way analysis of variance (ANOVA) with Bonferroni multiple comparisons test. (c) Two-way ANOVA with multiple comparisons test. (d–f)

One-way ANOVA with Dunnett’s multiple comparisons test relative to control CCL2ala-treated group.
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reduced in the CNS of B6.Rag1� /� recipients reconstituted
with Ccr2-deficient CD4þ T cells (Fig. 3g). Accordingly,
fewer CNS-infiltrating Gr1þ and Gr1lo/�F4/80þ leukocytes
were present in these mice (Fig. 3h). Importantly, GM-CSF-

producing Th17 cells were substantially reduced in the CNS in the
absence of CCR2 (Fig. 3i). Collectively, these data indicate that
CCR2 drives CNS accumulation of Th17 cells with pathogenic
function.
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CCR6�CCR2þ defines GM-CSF/IFNc-producing Th17 cells.
Recent work has demonstrated that a shift to GM-CSF- and
IFNg-secreting capability enhances the pathogenicity of Th17
cells3,6,7,11,27. Having identified CCR2 as a key receptor driving
GM-CSF-producing encephalitogenic Th17 cell trafficking in
EAE, we next examined a possible relationship between the
cytokine-secreting repertoire of Th17 cells and CCR6/CCR2-
expressing Th17 cell types. Strikingly, expression of GM-CSF and
IFNg was most abundant in CCR6�CCR2þ Th17 cells (Fig. 4a),
which also expressed the highest level of TNFa in the CNS
(Fig. 4b). Conversely, IL-10 and IL-9 were confined to CCR6-
expressing Th17 cells (Fig. 4a,b). IL-2 was most abundant in
CCR6þ Th17 cells in the spleen, although expression in the CNS
at peak disease was equally distributed between CCR6þCCR2þ

and CCR6�CCR2þ populations (Fig. 4a,b). CCR6�CCR2þ

Th17 cells expressed less IL-22 and IL-17F than CCR6þ popu-
lations (Fig. 4a,b). These data indicate that Th17 cell CCR6/CCR2
expression status can delineate distinct cytokine-secreting
phenotypes of Th17 cells in vivo. Specifically, CCR6�CCR2þ

defines GM-CSF/IFNg-producing Th17 cells in vivo previously
described to possess pathogenic function in EAE3,6,7,27, whereas
CCR6þCCR2þ Th17 cells express a distinct cytokine-secreting
repertoire, including IL-10 and IL-9, consistent with descriptions
of Th17 cells with a more limited pathogenic potential2–5.
CCR6þCCR2� Th17 cells that predominate in the early stages
of EAE express a diverse cytokine profile including both
inflammatory (IL-17A/F, TNFa, IL-22 and IL-2) and regulatory
(IL-10) cytokines.

To determine whether these observations also applied in
infectious settings, we examined Th17 cells generated in a model
of persistent Streptococcus pneumoniae nasopharyngeal coloniza-
tion. Colonization using S. pneumoniae strain EF3030 induces
long-term focal infection that resolves in B6 mice by 4 weeks post
inoculation28. Importantly, protection against S. pneumoniae
nasopharyngeal colonization has been shown to require Th17
cells29 and GM-CSF-producing T cells are also produced in
response to this infection30. S. pneumoniae-induced Th17 cells

were detectable in the spleen by day 7, peaked at d21, remained
above baseline 84 days post primary infection and were
substantially expanded 5 days post reinfection (Supplementary
Fig. 3). The majority of initial (d7 post inoculation) Th17 cells
generated in response to infection expressed CCR6 and were
followed by the later emergence of CCR6�CCR2þ Th17 cells by
d21 post infection (Fig. 4c). CCR6�CCR2þ Th17 cells were still
detectable 84 days post primary infection and were substantially
expanded 5 days post secondary infection (Fig. 4c), indicating
that CCR6�CCR2þ Th17 cells contribute to the memory
compartment in this model. Importantly, Th17 populations
generated in response to persistent bacterial infection displayed
similar cytokine-secreting repertoires as observed in EAE, as GM-
CSFþ or IFNgþ Th17 cells were found almost exclusively in the
CCR6�CCR2þ population (Fig. 4d). Thus, CCR6�CCR2þ

defines the GM-CSF/IFNg-producing population of Th17 cells
that arise in a model of persistent extracellular bacterial infection.

GM-CSF- or IFNg-producing Th17 cells are enriched in active
MS brain lesions31,32. Thus, we next examined whether a similar
relationship between expression of these cytokines and CCR2/
CCR6 cell surface status existed in human Th17 cells from
healthy and MS patients. CCR6- and/or CCR2-positive
populations of Th17 cells were detected in the peripheral blood
of both healthy and MS patients, with the majority of these cells
bearing a CCR6�CCR2þ phenotype (Fig. 4e). As in mice,
human Th17 cell expression of GM-CSF and IFNg was confined
to CCR6�CCR2þ populations in both healthy subjects and MS
patients (Fig. 4f). The presence of CCR6�CCR2þ Th17 cells in
healthy subjects was not unexpected given the ability of this
subset to enter memory in response to infection (Fig. 4c,d). Thus,
the CCR6�CCR2þ signature also defines human GM-CSF/
IFNg-producing Th17 cells.

Differentiation of CCR6�CCR2þ Th17 cells in vivo. Our
data suggested that the ‘switch’ from CCR6 to CCR2 usage by
developing Th17 cells was coupled with induction of a

Table 1 | EAE disease parameters in T-cell-specific chemokine receptor-deficient BM chimeras.

Group Incidence Mean day onset (±s.e.m.) Mean max disease (±s.e.m.) Mean cumulative disease (±s.e.m.)

B6.Tcra� /� :B6 16/16 8.56±0.74 2.02±0.10 28.14±2.00
B6.Tcra� /� :B6.Ccr6� /� 18/18 11.83±0.37 2.67±0.17 26.75±2.76
B6.Tcra� /� :B6.Ccr2� /� 15/16 10.53±0.60 1.17±0.17 14.47±2.71
B6.Tcra� /� :B6.Ccr6� /� .Ccr2� /� 17/18 14.88±0.41 2.64±0.23 23.44±1.84

BM, bone marrow; EAE, experimental autoimmune encephalomyelitis

Figure 3 | CCR2 drives recruitment of Th17 cells with pathogenic function into the inflamed CNS. (a) EAE clinical disease scores of T-cell-specific

chemokine receptor-deficient bone marrow (BM) chimeras. T-cell-specific knockout (KO) chimeric mice were generated by transferring BM derived from

B6.Tcra� /� (80%) and B6 (n¼ 16), B6.Ccr6� /� (n¼ 18), B6.Ccr2� /� (n¼ 16) or B6.Ccr6� /� .Ccr2� /� (n¼ 18) (20%) into lethally irradiated B6.Ly5.1

recipients. Data are pooled from two independent experiments. (b) Representative flow cytometric analysis and quantification of CNS-infiltrating Th17 cell

frequencies in T-cell-specific KO chimeras on d14 EAE. B6 (n¼9), B6.Ccr6� /� (n¼ 10), B6.Ccr2� /� (n¼9) and B6.Ccr6� /� .Ccr2� /� (n¼9). (c)

Frequency and total number of CNS-infiltrating Tregs in T-cell-specific KO chimeras on d14 (top) and d25 (bottom) EAE. B6 (d14: n¼ 9; d25: n¼ 7),

B6.Ccr6� /� (d14: n¼ 10; d25: n¼8), B6.Ccr2� /� (d14: n¼ 9; d25: n¼ 7) and B6.Ccr6� /� .Ccr2� /� (d14: n¼ 9; d25: n¼9). (d) Number of Gr1þ

leukocytes (top) and Gr1lo/-F4/80þ leukocytes (bottom) in the CNS of T-cell-specific KO chimeras on d14 EAE. B6 (n¼9), B6.Ccr6� /� (n¼ 10),

B6.Ccr2� /� (n¼9) and B6.Ccr6� /� .Ccr2� /� (n¼ 9). (e) Representative flow cytometric analysis and quantification of GM-CSF-producing Th17 cells

(CD3þCD4þ IL-17Aþ) in the draining lymph node (dLN), spleen, blood and CNS of B6 (n¼9) and B6.Ccr2� /� (n¼ 9) T-cell chimeras 14 days post EAE

induction. (f) EAE clinical disease score of B6.Rag1� /� reconstituted with 8� 106 purified CD4þ T cells from B6 (n¼ 5) or B6.Ccr2� /� mice (n¼ 5).

Number of CNS-infiltrating (g) IL-17AþGM-CSF�, IL-17AþGM-CSFþ and IL-17A�GM-CSFþ CD4þ T cells, and (h) Gr1þ and Gr1lo/�F4/80þ

leukocytes on d25 EAE in B6.Rag1� /� reconstituted mice (black bars, B6; white bars, B6.Ccr2� /� ). (i) Representative flow cytometric analysis and

quantitation of GM-CSF-producing cells among CNS-infiltrated Th17 cells on d25 EAE of B6.Rag1� /� reconstituted mice (black bars, B6; white bars,

B6.Ccr2� /� ). (a–i) Data are presented as mean±s.e.m.; *Pr0.05, **Pr0.01, ***Pr0.001, ****Pr0.0001. (b–d) One-way analysis of variance (ANOVA)

with Bonferroni multiple comparisons test. (e,g–i) Unpaired two-tailed Student’s t-test. (f) Two-way ANOVA with multiple comparisons test.
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cytokine-secreting profile reported to promote Th17 cell patho-
genicity in EAE3,6,7,27. Differentiation of Th17 cells from naive
precursors and their subsequent acquisition of pathogenicity are
coordinated by various distinct cytokine signals12. It has been
reported that initial Th17 cell differentiation in vivo occurs
independently of IL-23 (ref. 8); however, this cytokine is critical
for their subsequent survival, expansion and consequent
acquisition of pathogenicity6–8. Thus, we first examined the role
of IL-23, in relation to TGFb1 and IL-6, in regulation of CCR2þ

Th17 cell development by stimulating splenocytes from d5 EAE
mice ex vivo with MOG35–55 in the presence or absence of these
cytokines. Ex vivo stimulation with MOG35–55 promoted

generation of Th17 cells displaying a CCR6þCCR2þ

phenotype, whereas addition of IL-23, and not TGFb1/IL-6,
drove development of CCR6�CCR2þ Th17 cells (Fig. 5a and
Supplementary Fig. 4). To interrogate the role of IL-23 in CCR2þ

Th17 cell development in vivo, we assessed mice deficient in
IL-23 (B6.Il23p19� /� ) or its receptor (B6.Il23rgfp/gfp). As
expected8,9,33, Th17 cell frequency was reduced in B6.Il23p19� /�

and B6.Il23rgfp/gfp spleen (Fig. 5b,d). Notably, this reduction could
essentially be accounted for by the absence of Th17 cells bearing
the CCR6�CCR2þ phenotype (Fig. 5c,e). Similar results were
obtained using Il12p40-deficient mice (Supplementary Fig. 5a,b).
These processes were independent of IL-12, as B6.Il12p35� /�
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mice retained WT frequencies of CCR6�CCR2þ Th17 cells
(Supplementary Fig. 5c,d). To determine whether these effects of
IL-23 were intrinsic to CD4þ T cells, we generated B6.Il23rgfp/gfp

mixed BM chimeric mice. In these mice, Il23r-deficient CD4þ T
cells with a Th17 phenotype were profoundly reduced (Fig. 5f), of
which those bearing a CCR6�CCR2þ profile were selectively
curtailed (Fig. 5g). Furthermore, in agreement with previous
reports that GM-CSF expression in T cells relies on IL-23/IL-
23R6,7, Il23r deficiency ablated GM-CSF production by
CCR6�CCR2þ Th17 cells, which was not compensated for in
CCR6-expressing Th17 cell populations (Fig. 5h). Thus, our data
demonstrate that CCR6�CCR2þ Th17 cell development is reliant
on IL-23 and encompass GM-CSF/IFNg-secreting Th17 cells.

Taking advantage of our novel strategy to map IL-23-driven,
GM-CSF/IFNg-producing Th17 cells in vivo, we next assessed the
importance of key cytokines reported to shape both Th17 cell
development and pathogenicity in EAE. A dual role for IL-1 in
Th17 cell biology has been described: functioning as a polarizing
factor for initial Th17 cell differentiation34 and acting on Th17
cells to promote their inflammatory potential6. Accordingly,
neutralization of IL-1R1 inhibited Th17 cell generation
(Supplementary Fig. 6a) and shifted the balance towards the
CCR6þCCR2þ phenotype and away from the CCR6�CCR2þ

phenotype (Supplementary Fig. 6b).
TNFa plays little to no role in Th17 lineage commitment35, but

is reported to promote in vitro generation of GM-CSFþ Th17
cells6. Tnf deficiency reduced Th17 cell development (Supple-
mentary Fig. 7a), with a modest defect in CCR6�CCR2þ Th17
cell frequency (Supplementary Fig. 7b). Mixed BM chimera
experiments revealed that this reduction in Th17 cell
development was not due to T-cell intrinsic TNF receptor
(TNFR)1 or TNFR2 function (Supplementary Fig. 7c,e); however,
CCR6–CCR2þ Th17 cell development required T-cell intrinsic
TNFR1, but not TNFR2 signalling (Supplementary Fig. 6d,f).
Further, TNFR1 signalling was shown to promote CCR6�

CCR2þ Th17 expression of GM-CSF, although conversely
TNFR1 or TNFR2 signalling inhibited IFNg expression
(Supplementary Fig. 7g,h).

IFNg is reported to inhibit Th17 cell differentiation from naive
precursors36,37, but has also been shown to promote development
of IFNgþT-betþ Th17 cells from committed Th17 cells38. Ifngr

deficiency enhanced Th17 cell differentiation (Supplementary
Fig. 8a), with a specific increase in generation of CCR6�CCR2þ

Th17 cells (Supplementary Fig. 8b). Similar results were obtained
using neutralizing antibodies to IFNg (Supplementary Fig. 8c),
suggesting that IFNg selectively suppresses CCR6�CCR2þ Th17
cell generation in vivo. However, assessment of Ifngr-deficient
Th17 cells in mixed BM chimeras revealed that IFNg promotes
the development of CCR6�CCR2þ Th17 cells in a T-cell
intrinsic manner (Supplementary Fig. 8d,e). In line with this,
IFNg expression in CCR6�CCR2þ Th17 cells was also
promoted by T-cell intrinsic IFNg/IFNgR signalling
(Supplementary Fig. 8f).

Together, these experiments demonstrate that IL-23 drives the
later emergence of the CCR6�CCR2þ Th17 cell population, that
the CCR6�CCR2þ signature defines IL-23-driven GM-CSF/
IFNg-producing Th17 cell development, that IL-1 and TNFa play
important accessory roles in CCR6�CCR2þ Th17 cell differ-
entiation, and that IFNg plays a dual role in Th17 biology, acting
on non-CD4þ T cells to indirectly inhibit CCR6�CCR2þ Th17
differentiation, while also directly promoting their development
in a T-cell intrinsic manner.

T-bet and Eomes drive CCR6�CCR2þ Th17 cell formation.
To provide new insights into the transcriptional regulation of
these distinct Th17 cell phenotypes in vivo, we screened for the
expression of key transcription factors reported to direct Th17
cell differentiation in CCR6/CCR2-expressing Th17 types. A
defining feature of in vitro-generated pathogenic Th17 cells is
expression of T-bet3,27, whereas the transcriptional activators of
Il10, c-Maf and AHR are abundant in TGFb1/IL-6-induced
in vitro-generated IL-10-producing Th17 cells3,4,39. Accordingly,
high expression of T-bet was apparent in CCR6�CCR2þ Th17
cells (Fig. 6a), whereas c-Maf and Aryl hydrocarbon receptor
(AHR) were abundant in the CCR6þCCR2þ Th17 population
(Supplementary Fig. 9). Moreover, the expression of IRF4 and
BATF, essential mediators of early specification of Th17 cells
from naive precursors40, was highest in CCR6þCCR2þ Th17
cells (Supplementary Fig. 9). RORgt expression was marginally
lower in CCR6�CCR2þ Th17 cells than other Th17 populations
(Supplementary Fig. 8). Notably, novel Eomes-Cherry reporter

Table 2 | EAE disease parameters in CD4þ T cell reconstituted Rag1-deficient mice.

Group Incidence Mean day onset (±s.e.m.) Mean max disease (±s.e.m.) Mean cumulative disease (±s.e.m.)

B6-B6.Rag1� /� 5/5 15.2±0.86 2.0±0.77 13.8±5.29
B6.Ccr2� /�-B6.Rag1� /� 0/5 NA 0.0±0.00 0.0±0.00

NA, not applicable.

Figure 4 | The CCR6�CCR2þ signature defines murine and human GM-CSF/IFNc-producing Th17 cells in vivo. (a) Representative flow cytometric

analysis and quantification of GM-CSF, IFNg, TNFa, IL-2, IL-9, IL-10, IL-17F and IL-22 staining in naive CD4þ (CD3þCD4þCD44lo), CCR6þCCR2� ,

CCR6þCCR2þ and CCR6�CCR2þ Th17 cell populations (CD3þCD4þCD44hiIL-17Aþ) from the spleen of mice immunized for EAE 10 days prior. Data

representative of three independent experiments with n¼4–5 mice per experiment. (b) Percent cytokine positive among CCR6þCCR2þ and

CCR6�CCR2þ Th17 cells (CD3þCD4þCD44hiIL-17Aþ) in the CNS d15 post EAE induction. Data are pooled from three independent experiments with

n¼ 8 CNS pooled per experiment. (c) Representative flow cytometric analysis of CCR6/CCR2 staining on Th17 cells (CD3þCD4þ IL-17Aþ) in the spleen

of B6 mice colonized in the nasopharynx with S. pneumoniae strain EF3030 7, 21 and 84 days post primary (1o) immunization and 5 days (d89) post

secondary (2o) immunization. Data are representative of n¼ 5–6 mice per timepoint. (d) Expression of GM-CSF and IFNg among CCR6þCCR2� ,

CCR6þCCR2þ and CCR6�CCR2þ Th17 cell populations (CD3þCD4þ IL-17Aþ) from the spleen of B6 mice 21 days post 1o S. pneumoniae strain EF3030

nasopharyngeal colonization (n¼4). (e) Representative flow cytometric analysis of CCR6/CCR2 staining on circulating human Th17 cells (CD4þCD8� IL-

17Aþ) from an MS patient. (f) Representative flow cytometric analysis and quantification of IFNg and GM-CSF staining on CCR6þCCR2� ,

CCR6þCCR2þ and CCR6�CCR2þ human Th17 cell subsets from the peripheral blood of healthy (n¼ 7) and MS patients (n¼ 12). (a,b,d,f) Data are

presented as mean±s.e.m.; *Pr0.05; **Pr0.01; ***Pr0.001; ****Pr0.0001; one-way analysis of variance with Bonferroni multiple comparisons test.
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mice (Supplementary Fig. 10) revealed that, among Th17 cells,
the expression of Eomesodermin was confined to CCR6-
expressing Th17 cell populations (Fig. 6b).

Given that T-bet and Eomesodermin were differentially
expressed in CCR6þ and CCR6�CCR2þ Th17 cells, we
examined the T-cell intrinsic function of these transcription

factors using mixed BM chimeras. T-bet negatively regulates
Th17 cell development from naive precursors41 but its function in
pathogenic Th17 cell biology is contentious27,42. Consistent with
prior reports27,41, we found that Tbx21 deficiency increased Th17
cell frequency in a T-cell intrinsic manner (Fig. 6c). Assessment
of CCR6/CCR2 expression on Tbx21-deficient Th17 cells revealed
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that T-bet is critical for the development of CCR6�CCR2þ

Th17 cells (Fig. 6d). Moreover, Tbx21 deficiency ablated IFNg
production and reduced GM-CSF expression by CCR6�CCR2þ

Th17 cells (Fig. 6e), implicating T-bet as a crucial regulator
of CCR6�CCR2þ GM-CSF/IFNg-producing Th17 cell
development in vivo.

The function of Eomesodermin in Th17 cell differentiation
in vivo, to our knowledge, is unknown. Eomes deficiency in
CD4þ T cells using B6.Cd4CreEomesfl/fl-mixed BM chimeras
reduced Th17 cell generation in a T-cell intrinsic manner
(Fig. 6f), identifying Eomesodermin as a novel regulator of
Th17 cell development in vivo. Strikingly, despite abundant
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expression in CCR6-expressing Th17 cells, deletion of Eomes
curtailed the development of CCR6�CCR2þ Th17 cells
(Fig. 6g), but did not alter IFNg or GM-CSF production by
these cells (Fig. 6h). Collectively, these data indicate that T-bet
negatively regulates differentiation of IL-17-secreting CD4þ

T cells, but is required for the ontogeny of GM-CSF/IFNg-
producing CCR6�CCR2þ Th17 cells, whereas Eomesodermin is
required for Th17 cell differentiation in vivo by promoting
CCR6�CCR2þ Th17 cell development.

Discussion
In the present study, we demonstrate that CCR2 is a critical driver
of encephalitogenic GM-CSF-producing Th17 cell recruitment to
the CNS in EAE. Further, we show that CCR6 functions to
promote homing of Th17 cells only during initial phases of
inflammation and is more critically required for Treg trafficking.
This ‘switch’ from CCR6 to CCR2 usage by Th17 cells appeared
to be temporally regulated during priming as the earliest Th17
cells predominantly expressed CCR6, followed by later emergence
of CCR6þCCR2þ and CCR6�CCR2þ populations in SLOs.
The latter population required IL-23 and, to a lesser extent, IL-1,
TNFa and IFNg, and the transcriptional regulators T-bet and
Eomesodermin for development. Assessment of cytokine expres-
sion among Th17 populations in humans and in murine models
of autoimmunity and persistent bacterial infection revealed that
CCR6�CCR2þ Th17 cells align with previously described
GM-CSFþ /IFNgþ pathogenic Th17 cells, while CCR6þCCR2þ

Th17 cells resemble previously reported Th17 cells with a more
limited pathogenic potential. Thus, we define a molecular
mechanism governing encephalitogenic Th17 cell recruitment to
the CNS and identify unique cell surface signatures and differen-
tiation requirements of phenotypically distinct Th17 cells in vivo.

Manipulation of the chemokine system has been considered a
tractable target for therapeutic intervention in CD4þ T-cell-
driven immunopathologies for many years43. Central to the
rational design of such approaches is a detailed understanding of
unique spatio-temporal homing signals used by inflammatory
and regulatory subsets of T cells to infiltrate lesions. Although
CCR2 has been reported to be expressed on subsets of T cells
previously44,45, until now the functional significance of this was
unknown. With regard to Th17 migration, most focus has fallen
on CCR6 with an early report demonstrating a critical
requirement for this receptor in encephalitogenic T-cell
migration in EAE18. However, this has been challenged with
the results of more recent studies demonstrating a largely
redundant role for CCR6 in EAE pathogenesis19,20. Our data
demonstrate that CCR6 promotes early infiltration of Th17 cells,
but this is dispensable for the development of EAE, which is

driven by CCR2-dependent recruitment of encephalitogenic
Th17 cells. However, our experiments using mice with
Ccr6� /�Ccr2� /� T cells indicate that when T cells lack
CCR6, pathological inflammation ensues even in the absence of
CCR2 on T cells. This indicates that although CCR2 strongly
promotes encephalitogenic T-cell recruitment to the CNS, a
degree of CCR2-independent recruitment of encephalitogenic
T cells must also occur, but these cells are constrained from
causing disease in a CCR6-dependent manner, probably by
CCR6þ Tregs. From a clinical perspective, our data, and those of
others19,20, suggest that therapeutic targeting of CCR6 will have
detrimental effects on Treg function without restraining
pathogenic T cells and emphasize CCR2 as a prospective target
for the treatment of inflammatory T-cell-driven pathologies such
as MS. This notion is strengthened by our findings that GM-CSF-
and IFNg-producing Th17 cells bear a CCR6�CCR2þ

phenotype in humans, other studies demonstrating that IFNg-
producing Th17 cells are preferentially recruited in MS lesions31,
the observation that IL-17A/GM-CSF co-expressing CD4þ T
cells are enriched in MS brain lesions32 and the well-established
dependency on CCR2 for monocyte infiltration of the CNS46.

Our data indicate that initial Th17 cells differentiate in an
IL-23-independent manner, bear a CCR6þCCR2� phenotype
and are recruited to the uninflamed CNS via CCR6. Reboldi
et al.18 proposed that an early CCR6-dependent wave of Th17
cells initiates CNS inflammation in EAE. CCR6þCCR2� Th17
cells express a unique cytokine profile including IL-17A/F, IL-22,
IL-2, TNFa and IL-10, and although mice deficient in Il17a, Il17f,
Il22 or Tnf do not display substantial defects in EAE patho-
genesis47–49, it is possible that these CCR6þCCR2� Th17 cell-
derived factors may synergistically contribute to the initiation of
CNS inflammation. Importantly however, our data clearly
demonstrate that the absence of this CCR6-driven wave of
Th17 cells does not prevent subsequent CCR2-driven population
of the CNS by encephalitogenic Th17 cells or the development of
clinical EAE, challenging notions that these cells form an essential
component of EAE pathogenesis.

Subsequent to the generation of CCR6þCCR2� Th17 cells is
the emergence of CCR2-expressing Th17 cell populations.
CCR6þCCR2þ Th17 cells express IL-10 and IL-9, consistent
with published descriptions of Th17 cells with a more limited
pathogenic potential2–5. Conversely, CCR6�CCR2þ Th17 cells
express abundant GM-CSF and IFNg, and probably constitute the
previously described pathogenic Th17 cell3,4,6,7,11. Th17 cells with
pathogenic function are reported to derive from committed
TGFb1/IL-6-driven Th17 precursors in the presence of IL-23
(refs 6–8) and from naive precursors via TGFb3 and IL-6
(ref. 4), or independently of TGFb1 in an IL-6-, IL-1b- and
IL-23-dependent manner3. Here we demonstrate that the absence

Figure 5 | IL-23 drives differentiation of CCR6�CCR2þ Th17 cells in vivo. (a) Representative flow cytometric analysis and quantification of CCR6/CCR2

staining on Th17 cells (CD3þCD4þCD44hiIL-17Aþ) 5 days post MOG/CFA immunization (d5 ex vivo) and after 3 days ex-vivo culture with MOG35–55 in

the presence of either no cytokines (� ), TGFb1/IL-6 or IL-23. Data are representative of two independent experiments, n¼4. (b,c) Analysis of B6 (n¼ 5)

and B6.Il23p19� /� (n¼ 5) mice d10 post MOG/CFA immunization. (b) Frequency and total number of Th17 cells in the spleen; (c) representative flow

cytometric analysis and quantification of CCR6/CCR2 staining on Th17 cells. (d,e) Analysis of B6 (n¼ 6) and B6.Il23rgfp/gfp (n¼ 6) mice d10 post MOG/

CFA immunization. (d) Frequency and total number of Th17 cells in the spleen; (e) representative flow cytometric analysis and quantification of CCR6 and

CCR2 staining on Th17 cells. (f) Representative flow cytometric analysis and quantification of CD45.2þ (B6.Il23rgfp/gfp) cells (right) within naive CD4þ

(CD3þCD4þCD44lo) and Th17 cells (CD3þCD4þCD44hiIL-17Aþ) (left) in the spleen of B6.Il23rgfp/gfp mixed BM chimeric mice immunized with MOG/

CFA 10 days prior (n¼ 7). (g) Representative flow cytometric analysis and quantification of CCR6/CCR2 staining on CD45.2� (B6.Ly5.1) and CD45.2þ

(B6.Il23rgfp/gfp) Th17 cells in mixed BM chimeras immunized with MOG/CFA 10 days prior (n¼ 7). (h) Representative flow cytometric analysis of GM-CSF

and IFNg staining among CD45.2� (B6.Ly5.1) and CD45.2þ (B6.Il23rgfp/gfp) CCR6�CCR2þ Th17 cells in B6.Il23rgfp/gfp (n¼ 7) mixed BM chimeric mice

10 days post MOG/CFA immunization. Right, GM-CSF and IFNg expression among CCR6/CCR2-expressing Th17 cell populations in B6.Il23rgfp/gfp mixed

BM chimeras. (a–h) Each dot represents an individual mouse; *Pr0.05; **Pr0.01, ***Pr0.001, ****Pr0.0001. (a–d) Data are presented as mean±s.e.m.

(a) One-way analysis of variance with Bonferroni multiple comparisons test. (b–e) Unpaired two-tailed Student’s t-test. (f–h) Paired two-tailed Student’s

t-test.
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of the IL-23/IL-23R axis specifically curtails the development of
GM-CSF-producing CCR6�CCR2þ Th17 cells, suggesting that
the CCR6�CCR2þ signature defines the IL-23-driven
pathogenic/inflammatory Th17 cell subset in vivo that may
represent an advanced differentiated state of Th17 cells that arise
from early CCR6þ precursors. Recent reports have demonstrated
that the fate of Th17 cells in chronic inflammatory settings
includes transdifferentiation to an IL-17A� IFNgþ Th1-like
phenotype (termed Th1ex-Th17 cells) via IL-23 (ref. 11) or an IL-
10-secreting, anti-inflammatory T regulatory type-1 cell (termed
Tr1ex-Th17 cells) via TGFb1 (ref. 50). Our data suggest that this
phenotypic segregation of Th17 cells may arise before
transdifferentiation, although the relationship between IL-10-
producing CCR6þCCR2þ Th17 cells, IL-23-driven GM-CSF/
IFNg-producing CCR6�CCR2þ Th17 cells and Tr1ex-Th17/
Th1ex-Th17 cells remains to be determined.

Our data indicate that the transcriptional regulators T-bet and
Eomesodermin drive CCR6�CCR2þ Th17 cell development
in vivo. TGFb1-mediated repression of Eomesodermin is required
for in vitro Th17 differentiation51; however, although Eomes can
be induced in committed TGFb1/IL-6-driven Th17 cells by
inflammatory cytokines27, ectopic Eomes expression did not
promote IL-12-driven IFNgþ Th17 cell development in vitro27.
We found that among Th17 cells, Eomesodermin expression is
restricted to CCR6-expressing Th17 cell populations but is not
required for their development in vivo. Instead, Eomes deficiency
led to a selective defect in CCR6�CCR2þ Th17 cell generation,
implicating Eomesodermin as a key regulator of the switch from
CCR6 to CCR2 expression during Th17 cell development. T-bet
function in pathogenic Th17 cell biology is controversial with
data indicating that these cells develop independently of T-bet42

and reports demonstrating that IL-23/IL-12 induce T-bet11,27,
which, in collaboration with Runx1, promote conversion of Th17
precursors into pathogenic IFNg-producing Th17 cells27. Our
data demonstrate that in the absence of T-bet, Th17 cell
development is amplified but arrested at an early developmental
stage with a selective defect in CCR6�CCR2þ GM-CSF/IFNg-
producing Th17 cell formation. T-bet interactions with Runx1
suppress Runx1-mediated transactivation of Rorc and sequester
‘available’ Runx1 that would otherwise form transcriptionally
active Runx1:RORgt complexes required for Il17a and Il17f
induction in CD4þ T cells41. Further, Eomesodermin directly
represses Rorc and Il17a transcription51. Thus, we speculate that
Eomesodermin and T-bet shape Th17 differentiation and
plasticity by implementing changes to the transcriptional
landscape of Th17 cells, such as repression of Rorc and Il17a,
and induction of Ifng and Csf2 (directly or indirectly), as they
differentiate from IL-17Aþ CCR6þCCR2þ /� Th17 cells,

through IL-17Aþ CCR6�CCR2þ GM-CSF/IFNg-producing
Th17 cells and perhaps towards an ‘ex-Th17’ phenotype in
chronic inflammation11.

Taken together, our data support a step-wise model of Th17 cell
differentiation and homing (Fig. 7). Initial CCR6þCCR2� Th17
cells develop independently of IL-23 and migrate to effector sites
via CCR6. Continuing antigen exposure in SLOs drives transition
of CCR6þCCR2� Th17 cells to CCR2þ Th17 cell populations.
More specifically, persistent antigen drives the development of
CCR6þCCR2þ Th17 cells and the cytokines IL-23, IL-1, IFNg
and TNFa promote CCR6�CCR2þ GM-CSF/IFNg-producing
Th17 cells that develop in a T-bet- and Eomesodermin-dependent
manner. CCR2 drives subsequent waves of Th17 cell recruitment
to inflammatory sites where it is likely to be that a balance
between CCR6�CCR2þ GM-CSF/IFNg-producing Th17 cells,
CCR6þCCR2þ IL-10-producing Th17 cells, other effector T-cell
populations and CCR6þ Tregs dictates whether amplification or
resolution of inflammation results. This switch from CCR6 to
CCR2 as Th17 cells develop greater inflammatory potential
identifies a novel temporally regulated recruitment mechanism
that amplifies T-cell-dependent inflammation, a finding that has
important implications for understanding regulation of auto-
immune inflammation and protective immunity.

Methods
Mice. C57Bl/6 (B6), SJL/J, B6.Ly5.1 and B6.Rag1� /� mice were purchased from
the Animal Resource Center (WA, Australia) or bred and maintained in-house
at the University of Adelaide Animal Facility. B6.Il17aCreRosa26eYFP (ref. 11),
B6.Foxp3GFP (ref. 52), B6.Ccr6� /� (ref. 53) and B6.Ccr2� /� (ref. 54) mice were
bred and maintained in-house. B6.Il23p19� /� (ref. 55), B6.Il23rgfp/gfp (ref. 33),
B6.Il12p40� /� (ref. 56), B6.Il12p35� /� (ref. 57) and B6.Ifngr� /� (ref. 58) mice
were bred in-house at QIMR Berghofer Medical Research Institute, Herston,
Australia. B6.Tnf� /� (ref. 59), B6.Tnfrsf1a� /� (ref. 60) and B6.Tnfrsf1b� /�

(ref. 61) mice were kindly provided by Professor Bernhard Baune (University of
Adelaide, Adelaide, Australia). B6.Tbx21� /� (ref. 62) and B6.Cd4CreEomesfl/fl

(ref. 63) mice were bred in-house at The Walter and Eliza Hall Institute of Medical
Research, Parkville, Australia. B6.EomesCherry reporter mice were generated
(validation in Supplementary Fig. 10) at The Walter and Eliza Hall Institute of
Medical Research, Parkville, Australia. B6.Tcra� /� (ref. 64) mice were kindly
provided by Professor Carola Vinuesa (John Curtin School of Medical Research,
Canberra, Australia). B6.Ccr6� /� . Ccr2� /� mice were generated and maintained
in-house. All B6 lines were on the C57Bl/6J background. Male and female mice
between the ages of 6–12 weeks were used in experiments. Mice in each experiment
were age and gender matched. All experiments were conducted in accordance to
the guidelines outlined by the Animal Ethics Committee at the University of
Adelaide.

Generation of B6.EomesCherry reporter mice. The Eomes targeting construct used
the pKW11 vector consisting of a splice acceptor, stop codons in all reading frames,
an IRES, mCherry complementary DNA, an SV40 polyadenylation signal and a
PGK-Neor gene. Genomic DNA containing loxP flanked Eomes exons 2–3, con-
taining the entire Eomes coding region was cloned in front of the pKW11 insert.

Figure 6 | T-bet and Eomesodermin promote CCR6�CCR2þ Th17 cell differentiation in vivo. (a) Representative flow cytometric analysis and

quantification (geometric MFI) of T-bet expression in naive CD4þ T cells (grey, filled; CD3þCD4þCD44lo) and CCR6þCCR2� (red, open),

CCR6þCCR2þ (blue, open) and CCR6�CCR2þ (black, open) Th17 cells (CD3þCD4þCD44hiIL-17Aþ) from the spleen d10 post MOG/CFA

immunization. Geometric MFI (gMFI) of T-bet expression in Th17 cell populations is presented after subtraction from concurrent naive CD4þ T-cell T-bet

gMFI. Data are representative of two independent experiments with n¼4–5 mice per experiment. (b) Representative flow cytometric analysis of Eomes-

Cherry expression in naive CD4þ T cells, CCR6þCCR2� , CCR6þCCR2þ and CCR6�CCR2þ Th17 cells (all gated and presented as in a) from the spleen

of B6.EomesCherry/þ reporter mice d10 post MOG/CFA immunization. Data are representative of two independent experiments with n¼4 mice per

experiment. (c,f) Representative flow cytometric analysis and quantification of CD45.2þ cells within naive CD4þ (CD3þCD4þCD44lo) and Th17 cells

(CD3þCD4þCD44hiIL-17Aþ) in the spleen of B6.Tbx21� /� (n¼ 5) (c) and B6.Cd4CreEomesfl/fl (n¼6) (f) mixed BM chimeric mice immunized with

MOG/CFA 10 days prior. Data are representative of two independent experiments. (d,g) Representative flow cytometric analysis and quantification of

CCR6/CCR2 staining on CD45.2� (B6.Ly5.1) and CD45.2þ (indicated KO) Th17 cells in B6.Tbx21� /� (d) and B6.Cd4CreEomesfl/fl (g) mixed BM chimeras

d10 post MOG/CFA immunization. Data are representative of two independent experiments. (e,h) Representative flow cytometric analysis and

quantification of IFNg and GM-CSF staining within CD45.2� (B6.Ly5.1) and CD45.2þ (indicated KO) CCR6�CCR2þ Th17 cells (CD3þCD4þ

CD44hiIL-17Aþ) in B6.Tbx21� /� (e) and B6.Cd4CreEomesfl/fl (h) mixed BM chimeras d10 post MOG/CFA immunization. Data are representative of two

independent experiments. (b–h) *Pr0.05, **Pr0.01, ***Pr0.001, ****Pr0.0001. (b,c) Data are presented as mean±s.e.m.; one-way analysis of variance

with Bonferroni multiple comparisons test. (d–h) Each dot represents an individual mouse; paired two-tailed Student’s t-test.
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Homology arms of 5,700 bp (50) and 2,667 bp (30) were amplified from an Eomes-
containing bacterial artificial chromosome and cloned into the final targeting vector.
The linear targeting vector was introduced into the Eomes locus by homologous
recombination in C57Bl/6 embryonic stem (ES) cells. Neomycin-resistant clones
were screened by Southern hybridization using 50 (digested with Sph1, giving WT

12,293 kb and EomesflmCherry 9,198 kb) probes. Targeted ES cell clones were
injected into BALB/c blastocysts, to obtain chimeric founders. Germline trans-
mission was achieved with two clones resulting in the generation of two indepen-
dent lines. Founders for the reporter lines lacked the 50 loxP site and were
designated as Eomes reporter (EomesmCherry/þ ).
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Figure 7 | Proposed model of Th17 cell development and homing in EAE. (a) Initial Th17 cell differentiation from naive precursors occurs independently of

IL-23 and gives rise to CCR6þCCR2� Th17 cells. These cells gain access to the CNS via CCR6 (first wave) and may contribute to the initiation of CNS

inflammation via the provision of inflammatory cytokines including IL-17A/F, TNFa, IL-22 and IL-2. (b) Meanwhile in the SLOs, persistent antigen drives the

emergence of CCR2þ Th17 cell population whereby prolonged TCR stimulation gives rise to CCR6þCCR2þ Th17 cells, which express IL-10 and IL-9,

whereas the presence of IL-23 and, to a lesser extent, IL-1, TNFa and IFNg drives differentiation of GM-CSF/IFNg-producing CCR6�CCR2þTh17 cells in a

T-bet and Eomesodermin-dependent manner. Encephalitogenic Th17 cells gain access to the CNS via CCR2, independently of CCR6 (second wave), where

the balance between CCR6þCCR2þ IL-10-producing Th17 cells, CCR6�CCR2þ GM-CSF/IFNg-producing Th17 cells, other effector T cells (not depicted)

and CCR6þ Tregs determines the outcome of disease.
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Human samples. Heparinized blood was collected following informed consent
and rested for 4 h at 22 �C before peripheral blood mononuclear cell isolation using
lymphocyte separation medium (MP Biomedicals). Peripheral blood mononuclear
cells were frozen in 10% Dimethyl sulphoxide (Sigma) and stored at � 80 �C before
analysis. Properties of the study population are described in Supplementary
Information (Supplementary Table 1). All experiments were conducted in
accordance to the guidelines outlined by the ethics committee at the University
of Leuven.

BM chimeras. B6.Ly5.1 mice were lethally irradiated with 1,000 Rads and
reconstituted with 4–5� 106 total BM cells intravenously (i.v.) of genotypes
indicated in-text. A minimum of 8 weeks was allowed for reconstitution before
experimentation.

Experimental autoimmune encephalomyelitis. Mice on the B6 background were
immunized subcutaneously with 100mg MOG35–55 (GL Biochem) emulsified in
100ml Complete Freund’s Adjuvant (CFA) containing 85% mineral oil (Sigma),
15% mannide manooleate (Sigma) and 8.33 mg ml� 1 Mycobacterium tuberculosis
strain H37RA (Difco Laboratories). SJL/J mice were immunized subcutaneously
with 100 mg proteolipid protein (PLP)139–151 emulsified in 100 ml CFA (as above
with the addition of 0.5 mg ml� 1 Mycobacterium butyricum (Difco Laboratories)).
Mice received 300 ng pertussis toxin (List Biological Laboratories) intraperitoneally
on days 0 and 2. For B6.Rag1� /� EAE experiments, 8� 106 CD4þ T cells
(CD4þ T-cell isolation kit, StemCell Technologies) from B6 or B6.Ccr2� /� mice
were transferred i.v. into B6.Rag1� /� recipients, which were immunized for EAE
the next day as described above.

Disease scores in MOG35–55-induced and PLP139–151-induced EAE were
assigned as described previously21,65. Disease state in the SJL/J/PLP139–151 model
was assigned as follows: peak acute disease: score Z2; remission: previously score
Z2, now score r1 for minimum of 2 days; relapse: reached peak acute disease and
remission, and is now score Z2. In Fig. 2c, mice in remission were randomly
allocated to experimental groups by two independent researchers by drawing an
experimental group number (at equal odds) in a blinded manner. EAE disease
scores were assigned in a blinded manner by two independent researchers. For
isolation of CNS leukocytes, mice were perfused through the left cardiac ventricle
with PBS, the brain and spinal cord harvested and dissociated through 70-mm
nylon filters (BD), followed by 40% Percoll gradient centrifugation.

S. pneumoniae nasopharyngeal colonization. S. pneumoniae strain EF3030
(serotype 19F) was obtained from Professor David E. Briles (University of Alabama
at Birmingham, USA). The EF3030 strain was chosen as it causes long-term
nasopharyngeal colonization in mice, with no detectable bacteremia66,67. For
mouse challenge, EF3030 was grown in serum broth (nutrient broth containing
10% vol/vol heat-inactivated horse serum) at 37 �C in 5% CO2 to A600¼ 0.17
(B5� 107 CFU ml� 1). Serotype 19F-specific capsule production was confirmed by
the Quellung reaction. Bacteria were harvested by centrifugation at 3000g, washed
once in PBS and resuspended in PBS to 5� 108 CFU ml� 1. Mice were challenged
with 10 ml (5� 106 CFU) of bacterial suspension by microtip instillation into both
nares without anaesthesia. The challenge dose was confirmed retrospectively by
serial dilution and plating of the inocula on blood agar.

In vivo neutralization/antagonism. Mice were administered 100 mg CCL2ala

(scrambled peptide control)22,23, CCL29–76 (CCR2 receptor antagonist)23 or
CCL206–70 (CCR6 receptor antagonist)21,22 intraperitoneally using the dosing
regimen indicated in-text. Neutralizing antibodies to CCL2 (BioXCell; clone 2H5;
300mg per dose), IFNg (BioXCell; clone XMG1.2; 250 mg per dose) and IL-1R1
(BioXCell; clone JAMA-147; 250 mg per dose) were administered intraperitoneally
using the dosing regimen indicated in-text.

Flow cytometry. Antibodies used in this study are described in Supplementary
Information (Supplementary Tables 2 and 3). For assessment of intracellular
cytokine expression in murine cells, cells were first stimulated with phorbol
12-myristate 13-acetate (PMA; 20 ng ml� 1) (Invitrogen), Ionomycin (1 mM)
(Invitrogen) and GolgiStop (BD; as per the manufacturers’ instructions) in
complete IMDM for 4–5 h before surface staining. Dead cells were excluded using
LIVE/DEAD fixable near-infrared dye (Molecular Probes). Cells were stained in
PBS containing 0.04% sodium azide and 1% BSA (Sigma) or 2% FCS. Fc receptors
were blocked before surface staining with 1 mg ml� 1 murine g-globulin
(Rockland). For detection of CCR2, 106 cells were stained with 5.5 mg ml� 1 pur-
ified rat anti-mouse CCR2 (Clone MC21). Goat anti-rat IgG-Alexa Fluor 647 (Life
Technologies) secondary antibody pre-adsorbed in 1% normal mouse serum and
murine g-globulin (0.5 mg ml� 1; Rockland) was used to detect primary rat anti-
body. Following secondary antibody staining, cells were incubated in rat g-globulin
(1 mg ml� 1; Rockland) before directly conjugated surface antibodies. Intracellular
staining was performed using the BD Cytofix/Cytoperm kit (staining cytokines
only) or eBioscience Foxp3/Transcription Factor Staining Buffer Set (transcription
factor and cytokine staining) as per the manufacturers’ instructions. For detection
of transcription factors (excluding Foxp3), antibodies were pre-adsorbed in 2%

normal mouse serum and 2% normal rat serum for 20 min before staining. Data
were acquired on BD LSRII, BD FACSCanto, BD FACSAria or BD LSRFortessa
flow cytometers. BD FACSAria was used for sorting experiments. For assessment of
cytokine expression in human cells, thawed cells were stimulated for 5 h in 1� Cell
Stimulation Cocktail (plus protein transport inhibitors) (eBioscience). Stimulated
cells were surface stained, then fixed and permeabilized using Cytofix/Cytoperm
(BD) before staining for cytokines. Data were acquired on a BD FACSCantoII. All
data were analysed using FlowJo software (Treestar).

Ex vivo MOG-reactive Th17 cell culture and T-cell transfers. Splenocytes from
d5 MOG/CFA-immunized mice were cultured (106 cells per ml) in complete
IMDM (Gibco) containing MOG35–55 (10 mg ml� 1; GL Biochem), anti-IFNg
(10 mg ml� 1; Clone XMG1.2, BioXCell) and anti-IL-4 (10mg ml� 1; Clone 11B11,
BioXCell) with the addition of either no cytokines, TGFb1 (2 ng ml� 1;
eBioscience) and IL-6 (20 ng ml� 1; eBioscience), or IL-23 (10 ng ml� 1;
eBioscience). Cells were analysed after 3 days of culture. For transfer experiments,
donor mice were immunized subcutaneously with 100 mg MOG35–55/CFA in
footpads and hind flanks. Popliteal and inguinal lymph nodes were harvested
10 days post immunization and MOG-reactive Th17 cells expanded ex vivo in
complete IMDM (Gibco) containing MOG35–55 (10mg ml� 1; GL Biochem) and
IL-23 (3 ng ml� 1; eBioscience) at a cell density of 106 cells per ml for 3 days. Before
transfer, numbers of MOG-reactive Th17 (TCRbþCD4þ IL-17Aþ ) cells in culture
were determined following restimulation with PMA/Ionomycin/GolgiStop in
complete IMDM for 4–5 h using flow cytometry. MOG-reactive Th17 cells
(3� 105) were adoptively transferred i.v. into pre-immunized congenic recipient
mice as described in text.

Ex vivo chemotaxis assays. Splenocytes from d10 MOG35–55/CFA-immunized
mice were rested at 37 �C in complete RPMI 1640 for 3–4 hr. Chemokines
(recombinant mouse CCL20 or recombinant mouse CCL2; kindly provided by the
late Professor Ian Clark-Lewis) diluted in 150ml chemotaxis buffer (RPMI 1640
with 0.5% BSA and 20 mM HEPES) were added to lower chambers of 96-well
Transwell chemotaxis plates (5-mm pore size; Corning). Rested cells were exten-
sively washed in chemotaxis buffer and loaded into the upper chambers at 2� 106

cells per well in 50ml of chemotaxis buffer and incubated for 3 h at 37 �C. To
enumerate Th17, Th1 and Treg cell migration, cells were harvested from the
bottom chambers, restimulated in complete IMDM containing PMA/Ionomycin/
GolgiStop as described above for 4 h before flow cytometric analyses. Cells of
interest were gated as follows: Th1: CD3þCD4þFoxp3� IL-17A� IFNgþ ; Th17:
CD3þCD4þFoxp3� IL-17Aþ ; Treg: CD3þCD4þ IL-17A� IFNg�Foxp3þ .
Migration index was calculated by dividing the number of positive events in test
wells by the number of positive events in which no chemokine was added to the
bottom chamber. Migrated cells of interest were enumerated using CaliBRITE
beads (BD) as an internal reference.

Quantitative PCR. Primer sequences used in this study are described in
Supplementary Information (Supplementary Table 4). RNA was harvested from
cells using the Qiagen microRNeasy kit with on-column DNase treatment as per
the manufacturers’ instructions. cDNA synthesis was performed using the
Transcriptor First Strand cDNA synthesis kit (Roche) and used as template in
reactions using LightCycler 480 SYBR Green master mix I (Roche) according to the
manufacturers’ instructions. Relative abundance of transcript was calculated as
2�DCT, that is, DCT¼ (CTTarget�CTRplp0).

ELISA. Supernatants from homogenized CNS samples were stored at � 80 �C in
PBS containing a protease inhibitor cocktail (Sigma) until the day of analysis.
ELISA were conducted as previously described65. CCL2 and CCL20 ELISA: capture
and detection antibody from R&D; IL-10 and IFNg ELISA: capture and detection
antibody from eBioscience; IL-17A ELISA: capture antibody, purified clone TC11-
18H10 from BD; and detection antibody, biotinylated clone TC11-8H4 from BD
were used.

Statistics. Data were analysed with Prism 6 (GraphPad Software) using two-tailed
unpaired or paired Student’s t-tests, one-way or two-way analysis of variances with
appropriate post tests as indicated in text. For all analyses, Pr0.05 was considered
significant. Sample or experiment sizes were determined empirically for sufficient
statistical power. No statistical tests were used to predetermine the size of
experiments. No data points were excluded from statistical tests. Statistical analysis
was performed on groups with similar variance. Limited variance was observed
within sample groups.
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