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 Abstract— Optimization of robotic workcells is a growing 

concern in automated manufacturing systems. This study 

develops a methodology to maximize the production rate of a 

multi-function robot (MFR) operating within a rotationally 

arranged robotic cell. A MFR is able to perform additional 

special operations while in transit between transferring parts 

from adjacent processing stages. Considering the free-pick up 

scenario, the cycle time formulas are initially developed for 

small-scale cells where a MFR interacts with either two or three 

machines. A methodology for finding the optimality regions of all 

possible permutations is presented. The results are then extended 

to the no-wait pick up scenario in which all parts must be 

processed from the input hopper to the output hopper, without 

any interruption either on or between machines. This analysis 

enables insightful evaluation of the productivity improvements of 

MFRs in real-life robotized workcells. 

 
Index Terms— Automated Manufacturing Systems, Cyclic 

Scheduling, Robotic Cells, Multi-function, No-wait 

 

I. INTRODUCTION 

oday's automated systems predominantly incorporate 

material handling robots interacting well with other 

equipment such as computer numerical control (CNC) 

machines, and automated storage and retrieval systems in the 

production line [1]. Any savings in robot movement time 

enhances the competitiveness of world class companies. Two 

classes of problem are Single-Function Robotic Cell (SFRC) 

and Multi-Function Robotic Cell (MFRC) scheduling 

problems, where determining a cyclic robot move sequence 

which yields the highest throughput gain is critical to success.  

The first problem, which addresses a manufacturing cell 

equipped with a pick-and-place robot to perform a single task, 

is common in practice [2]. This kind of transporting robot is 

usually called a Single-Function Robot (SFR). For the second 
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problem, the cell is served by a Multi-Function Robot (MFR), 

which concurrently performs an arbitrary task in addition to 

part transportation tasks. One of the most recent industrial 

developments is the use of these MFRs in manufacturing cells.  

As an instance of MFRs, the application of Grip-Gage-Go 

(GGG) grippers performing in-process control as its additional 

task has become popular in manufacturing cells recently. The 

grippers, installed at the end of a MFR arm, perform quality 

control (e.g. accurately measure diameters) while carrying a 

part to the next machine. Fig. 1 shows an example of these 

grippers used for measuring the diameter of a crankshaft [3]. 

The measuring heads are integrated into the automation by 

adding gages and crankshaft locating features to MFRs [4]. 

Here, we present a detailed study regarding GGG grippers.   

 

 
        Fig. 1. Measurement of crankshaft diameters in transit [3] 

 

Because a gripper is an independent tool at the end of a 

robot’s mechanical arm which can adapt to various production 

environments, the GGG gripper can be attached to a wide 

range of robots. A simple example of this is depicted in Fig. 2 

where a GGG gripper is added to the arm of Fanuc M-

710iB/45 Robot. Hence, the Fanuc M-710iB/45 Robot can 

measure the thickness of shaft in transit between machines [3].  

 

 
Fig. 2. The arm of Fanuc M-710iB/45 Robot equipped by a GGG gripper [3]  
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A SFRC is generally composed of two machines M1 and M2 

or three machines M1, M2, and M3. A stationary base SFR 

rotating on its axis is used in this robotized shop to transfer 

parts from each machine to the next, and between machines 

and a joint input/output hopper I/O. Any arbitrary machine Mj 

placed in the cell performs operation Oj with the 

corresponding processing time Pj [5].  

 

 

 

 

 

 

 

 

 

 

Fig. 3a and 3b show real-life applications of two- and three-

machine SFRCs at Haas Automation Incorporation. 

Physically, one SFR is assigned to each cell to avoid 

collisions. In these manufacturing cells, a SFR is in charge of 

picking up a part from I/O, loading it on CNC machine M1 to 

be processed, transferring it through other machines and 

eventually dropping off this part at I/O where both the raw 

material and completed parts are stored. Two scenarios for 

unloading the part can be considered as soon as the part’s 

operation on a machine is completed. Under the free-pick up 

scenario, which is the predominant type in real-world cells, the 

part can stay indefinitely on the machine waiting for the SFR. 

However, under the no-wait pick up scenario, which is stricter, 

the part must be unloaded from the machine without delay and 

then carried to the down-stream machine. Consequently, the 

SFR must reach the machine on time. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4a and 4b show two- and three-machine rotationally-

arranged MFRCs in which Γj represents the robots’ operation 

while in transit between transferring parts from Mj to Mj+1. 

Also, γj denotes the processing time required by the robot to 

perform Γj. In Fig. 4a and 4b, a single MFR is in charge of 

moving the parts through Γ0→O1→Γ1→O2→Γ2 and 

Γ0→O1→Γ1→O2→Γ2→O3→Γ3, respectively. In fact, the 

MFR is also responsible for performing processes {Γ0, Γ1, Γ2} 

and {Γ0, Γ1, Γ2, Γ3} in transit, respectively. The time taken to 

perform these operations can be shown as {γ0, γ1, γ2} and {γ0, 

γ1, γ2, γ3}. The goal of this paper is to find a periodic MFR’s 

task set that satisfies both the timing and other constraints [7]. 

Thus, the rest of the paper is organized as follows. After 

presenting a brief literature review in Section II, the authors 

describe the problem definitions and notation in Section III. 

Section IV is dedicated to find the optimal permutation in 

MFRCs with the free-pick up scenario. Similar analysis for a 

MFRC with the no-wait pick up scenario is conducted in 

Section V to find an optimal permutation if residency time is 

restricted. Section VI is devoted to the conclusions and 

discussion of future work. 

II. RELATED RESEARCH 

Considering the free-pick up scenario, Sethi et al. [8] 

presented a case study of two- and three SFRCs which 

performed drilling and boring operations on twenty pound 

castings to be used in truck differential assemblies. They 

succeeded in optimizing the production lines adapted from 

PRAB Robotic Company. Shortly afterwards, Sethi et al. [9] 

focused on analyzing a class of two- and three-machine 

SFRCs served by two-unit SFRs. Other studies have also 

addressed multiple part-types, for example, scheduling 

multiple part-types in a dual-gripper robot cell was addressed 

in [10]. The developed algorithm in [10] was only able to 

achieve a near optimal permutation with the worst-case 

performance ratio of 3/2. Note that a linear programming 

approach was employed in their research to compute the 

performance ratio without finding a lower bound.  

Considering a case study in metal cutting industries, [11] 

established a unified notational and modelling structure to 

optimize two- and three-machine flexible SFRCs. They 

defined a flexible SFRC as the combination of a flexible 

manufacturing system (FMS) with a flow shop. Then, they 

derived the highest performance which could be obtained by 

changing the assignment of operations to production 

machines. Furthermore, an enumerative technique was applied 

for finding the worst-case performance ratio similar to [10]. 

This worst case performance was 14 
2

7
% for the three-machine 

case, which means the maximum productivity increase of 

using a flexible SFRC instead of inflexible was 14 
2

7
%. Also, 

Nambiar and Judd [12] used max-plus algebra as a tool to 

develop a mathematical model for cyclic production lines. The 

newly-modeled max-plus formulation was able to facilitate the 

calculation of cycle time. In fact, it was used as the underlying 

mechanism to calculate cycle time precisely when an 

improvement heuristic algorithm such as Tabu Search (TS) or 

Genetic Algorithm (GA) was used to search for the optimal 

(or near-optimal) permutation. Subsequently, a reentrant 

SFRC that combined two machines with a SFR in a closed 

environment was optimized in [13]. The employed SFR with 

temporary buffer had the ability to swap a part on a busy 

machine with a part on a busy SFR. The regions of optimality 

of all permutations were presented in [13] after performing a 

comparative analysis. 

The no-wait pick up scenario is more suitable for real-life 

scheduling problems than other simplified scenarios. In this 

regard, Agnetis [14] established polynomial algorithms for 

scheduling of two- and three-machine SFRCs. Also, Paula et 

Fig. 3a. Two-machine SFRCs 

with rotational layout 

 

Fig. 3b. Three-machine SFRCs 

with rotational layout [6] 

Fig. 4a. Two-machine MFRCs 
with rotational layout 
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al. [15] developed a heuristic for a scheduling problem of a 

SFR used by an aircraft manufacturer with the surface 

treatment of component parts attached to both wings of 

transport aircrafts. Afterwards, Alcaide et al. [16] took into 

account a scheduling problem appearing in the electroplating 

line, and established a graph model of operations for this 

small-scale SFRC with no-wait scenario. The SFR used in this 

automated cell was a part of the computer-integrated 

manufacturing system CIM-2000 Mechatronics manufactured 

by DEGEM Systems Company. A real-life radar scheduling 

problem, which is equivalent to single machine SFRC with 

no-wait pick up scenario, was studied in [17]. They proved a 

radar system can be simulated by a no-wait SFRC due to the 

fact that the first task is a wave transmission and the second 

task is reflected wave receiving without delay. 

 

 

 

 

 

 
           : empty machine        : busy machine       : empty I/O        : busy I/O        : cell 

 

Fig. 5. A clustering system for connection between five small-scale MFRCs. 

 

A few recent papers are closely related to MFRCs with the 

free-pick up scenario. For MFRCs where the MFR performs 

both printing and milling operations to supply large printed 

foam structures, an optimal schedule is generated in [18]. A 

MFR transferring the part between two adjacent processing 

stages and simultaneously performing an inspection operation 

in this transit was introduced for the first time in [19]. They 

considered the restricted model of the linearly-configured 

MFRCs producing identical parts, and only compared the 

performance of these MFRCs with SFRCs. The proposed 

approach for this MFRC involved deriving the lower bound of 

cycle time, and then finding some permutations with the cycle 

time as close as possible to this lower bound. It is known that 

the number of feasible permutations for a MFRC with k 

machines is k!, whereas the research by [19] was only 

restricted to studying two permutations. As a consequence, the 

results from [19] could not be fully beneficial to MFRCs 

throughput analysis. Following that, Foumani et al. [20] 

considered rotational MFRCs instead of in-line ones and 

discussed some results for replacing related MFRCs with 

SFRCs. Similar to [19], the parameter values for which only 

two special permutations are optimal were determined. As a 

consequence, once again, the analysis was not complete and 

the impact for the remaining feasible region was not analyzed. 
Therefore, it is vital to develop a detailed analysis that fully 

covers all feasible regions, especially for two- and three-

machine MFRCs.  

The approach proposed in this paper determines the regions 

of optimality of all permutations and performs a comparative 

analysis after computing their cycle time. When the part 

processing routes in MFRCs are complicated, one of the most 

economic strategies is breaking these MFRCs into small-scale 

clusters. A MFR serves within one cluster consisting of two or 

three machines [21]. Fig. 5 provides an example of converting 

a 15-machine semiconductor production line into five MFRCs. 

From the left side to the right side, we have four, three, three, 

two, and three-machine MFRCs. At first, parts must enter to 

the system from left-side I/O and then pass through cells C1, 

C2, C3, C4, and C5. Finally, the part is stored at the right-side 

I/O. This paper also extends the results to the no-wait pick up 

scenario to consider more realistic conditions. 

The most important contribution of this paper is to provide 

managerial insights into the advantages that can be achieved 

by applying MFRs for small-scale cells. In more detail, the 

novelty of this study is developing a methodology to 

maximize the production rate of MFRCs under both the free 

and no-wait pick up scenarios. For all possible combinations 

of parameters, the feasibility and optimality regions of all 

permutations are presented. This research will provide a 

bridge between academic research on MFRCs and relevant 

real-world problems. 

III. PROBLEM NOTATION AND DEFINITIONS 

Compact SFRCs generally restrict intermediate hoppers, 

and consequently blocking or delay may happen. Scheduling 

MFR movement is also not deadlock-free and this results in 

the following operational restrictions: The receiving device 

(MFR or anyone of the machines) and sending device (MFR 

or anyone of the machines) must be empty and loaded before 

the load/unload process, respectively [20]. When the pick-up 

scenario is no-wait, there is also an additional feasibility 

constraint: unloading the machine by the MFR with delay is 

not permitted. MFR is subjected to two types of waits, full and 

partial waits, in keeping with these constraints. In fact, after 

loading a part on a machine, MFR either stays on this machine 

until the end of the operation or moves to the next machine to 

remove a part [22]. The MFRC scheduling is expressed 

extending the notations and definitions below from [4]: 

 

ε       The load (or unload) time of machines by MFR  

δ       The time taken by empty MFR  to travel from Mi to Mi+1 

S 
i
jmf  The  j

th
 permutation of a MFRCs in which i, m and f 

denote the number of machines, multi-functionality and 

free-pick up scenario, respectively  

TS
i
jmf  The cycle time of S 

i
jmf 

S 
i
jmw The j

th
 permutation in which i, m and f denote the number 

of machines, multi-functionality and no-wait pick up  

TS
i
jmw The cycle time of S 

i
jmw 

Pl    The processing time of Ml dominating all machines as       

βl-1+Pl+βl≥βi-1+Pi+βi 

wi
  
    MFR’s waiting time at Mi for free- and no-wait scenarios 

 

Definition 1. Having a MFR, 2ε+max{γi,δ} is the time elapsed 

of an activity Ai, ∀i =[0, 1, 2, 3], with sequence: 1) Empty 

MFR unloads a part from busy Mi. 2) MFR carries this part to 

Mi+1. 3) Busy MFR loads this part onto empty Mi+1. 

 

We know two cases may occur when MFR performs 

activity Ai: 1) γi≤δ: this means MFR finishes the operation 

before arriving at Mi+1. Therefore, it loads the part to Mi+1 as 

     

C1 C2 C3 C4 C5 

I/O I/O I/O I/O I/O I/O 



1551-3203 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TII.2014.2371334, IEEE Transactions on Industrial Informatics

 4 

soon as the transfer of the part is finished, which totally takes 

δ. 2) γi>δ: in contrast to previous case, MFR finishes the 

operation after arriving at Mi+1: thus, MFR stops in front of 

Mi+1 to finish the operation and then loads the part to the 

machine. This takes γi time unit. Hence, as mentioned in 

Definition 1, the time taken by busy MFR to perform activity 

Ai is a couple of load/unload operations plus the max term of 

these two values: 2ε+max{γi,δ}. Note SFRC is a simplified 

subdivision of MFRC if γi=0, ∀i∈[0,1, 2, 3]. For simplicity, 

hereinafter βi is used instead of max{γi,δ}. The definition 

below deriving from [8] is applicable to MFRCs as well. 

 

Definition 2. Having a MFR in the cell, a permutation of all 

activities in which one finished parts are dropped at I/O in 

each implementation is called a one-unit permutation. 

 

These permutations are referred to as one-unit since each Ai 

occurs once. Note one-unit permutations are actually the 

easiest to understand, implement and also control in 

comparison to other permutations [9]. Also, focusing on one-

unit permutations gives us insight into the behavior of 

complex permutations [10]. Hence, this study is restricted to 

one-unit permutations. It is also assumed that the empty and 

occupied machines of each permutation are specified in 

advance since this permutation must meet the steady state 

cyclic requirement following from [11].  

 

Definition 3. Having a one-unit permutation starting with A0, 

activity Ai is a pushed (pulled) activity if Ai-1 is completed 

before (after) it. The pushed (pulled) activity Ai implies Mi is 

empty (occupied) at the starting stage of the permutation. 

 

It should be noted Ai-1 is A2 and A3 when i=0 for two- and 

three-machine MFRCs. For example, A1,A2 are pushed and A3 

is pulled for permutation A0,A3,A1,A2 of three-machine case. 

This means M1, M2 are empty and M3 is busy before starting it. 

IV. FREE-PICK UP SCENARIO 

In essence, the robot with multi-functionality never results 

in increasing the number of permutations. Actually, S
2
1mf =A0, 

A1, A2 and S
2
2mf =A0, A2, A1 represent permutations which can 

be occur for MFRCs with two production machines. Note the 

regions of optimality for both S
2

1mf and S
2
2mf should be 

obtained later than reformulating the cycle time of these 

permutations. S
2
1mf only has pushed activities resulting in full 

stop on M1 and M2. This means that TS
2

1mf is made up the 

following independent portions: six load/unload operations, 

three dextrorotary and occupied MFR rotations, and two full 

waiting. So, TS
2
1mf = 6ε+∑ 𝛽𝑖

2
𝑖=0 +P1+P2. Regarding S

2
2mf, MFR 

picks up an unprocessed part from I/O and loads it to M1 

(2ε+β0). Then, based on the activity’s route described above, 

MFR removes the previous part from M2 and drops it at I/O 

after an empty rotation from M1 to M2 and a partial stop on M2 

(δ+w2+2ε+β2). Likewise, the empty MFR comes back M1, 

waits on M1, unloads the part, and loads it on M2 

(δ+w1+2ε+β1), and returns to I/O (δ). So, TS
2

2mf consists of six 

load/unload, three empty MFR rotations, three busy MFR 

rotations, and two partial stops: w1=max{0,P1-(2ε+2δ+β2+w2)} 

and w2= max{0, P2-(2ε+2δ+β0)}. Because the summation of 

stops is max{0, P1-(2ε+2δ+β2), P2-(2ε+2δ+β0)}, we conclude 

TS
2
2mf=6ε+3δ+∑ 𝛽𝑖

2
𝑖=0 +max{0,P1-(2ε+2δ+β2), P2-(2ε+2δ+β0)}.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. The lower and upper bound of TS

2
1mf ≤ TS

2
2mf 

 

Fig. 6 above illustrates the optimality regions of S
2
1mf and 

S
2
2mf by applying their cycle times. Obviously, S

2
1mf is optimal 

when P1+P2≤3δ, and S
2
2mf is optimal in the rest of feasible 

area. Optimizing three-machine MFRCs are complicated in 

comparison with two-machine ones because the number of 

permutations grows from two to six permutations below:  

 

S
3
1mf =A0,A1,A2,A3      S

3
2mf =A0,A2,A1,A3         S

3
3mf =A0,A1,A3,A2                 

S
3
4mf =A0,A3,A1,A2      S

3
5mf =A0,A2,A3,A1         S

3
6mf =A0,A3,A2,A1 

 

We name S
3
1mf and S

3
6mf uphill and downhill permutations, 

and the rest of permutations rolling hill permutations. For the 

sake of simplicity, the cycle time of two the most complex 

ones, S
3
2mf and S

3
6mf, are calculated, and then the rest of cycle 

times are shown in this section. Since S
3
2mf =A0, A2, A1, A3, 

total load/unload time, empty MFR rotation, busy MFR 

rotation, and partial waiting times is 8ε+4δ+∑ 𝛽𝑖
3
𝑖=0 +∑ 𝑤𝑖

3
𝑖=0 . 

Clearly, 8ε+4δ+∑ 𝛽𝑖
3
𝑖=0  is a constant value, whereas w1, w2, w3 

are variable values below: w1= max{0, P1-(2ε+3δ+β2+w2)}, 

w2= max{0, P2-(4ε+2δ+β0+β3+w3)}, w3= max{0, P3-(2ε+3δ+ 

β1+w1)}. Each one of waiting times w1, w2, w3 can be zero or 

nonzero meaning there are eight subdivisions as follows: 

 w1=0,w2=0,w3=0→∑ 𝑤𝑖
3
𝑖=0 =0 

 w1=0→ w3=max{0, P3-(2ε+3δ+β1)} 

∑ 𝑤𝑖
3
𝑖=0 =max{0,P2-(4ε+2δ+β0+β3),P3-(2ε+3δ+β1)} 

 w2=0→ w1=max{0, P1-(2ε+3δ+β2)} 

∑ 𝑤𝑖
3
𝑖=0 =max{0,P1-(2ε+3δ+β2),P3-(2ε+3δ+β1)} 

 w3=0→ w2=max{0, P2-(4ε+2δ+β0+β3)} 

∑ 𝑤𝑖
3
𝑖=0 =max{0,P1-(2ε+3δ+β2),P2-(4ε+2δ+β0+β3)} 

 w1=0,w2=0→∑ 𝑤𝑖
3
𝑖=0 = w3= max{0, P3-(2ε+3δ+β1)} 

 w1=0,w3=0→∑ 𝑤𝑖
3
𝑖=0 =w2=max{0,P2-(4ε+2δ+β0+β3)} 

 w2=0,w3=0→∑ 𝑤𝑖
3
𝑖=0 = w1= max{0, P1-(2ε+3δ+β2)} 

 w1≠0,w2≠0,w3≠0 

3
δ
 

max{0, γ1- δ} 

6ε +3δ+∑ 𝛽𝑖
2
𝑖=0  

P1+P2 

 

T 

 

6ε +∑ 𝛽𝑖
2
𝑖=0  

S2
2mf 

 

2ε +3δ+max{0,max{γ0, γ2}- δ} 

 
4ε +3δ+max{0, γ0-δ}+max{0, γ2-δ} 

 
2ε +max{0,min{γ0, γ2}-δ} 

 

TS21mf 

Upper bound of TS22mf 

Lower bound of TS22mf 

2ε+3δ+max{0,min{γ0, γ2}- δ} 

 

4ε+6δ+max{0, γ0-δ}+max{0, γ2-δ} 
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It is easy to calculate all combinations, excluding the last 

one. The simplex method is applied for computation of the last 

∑ 𝑤𝑖
3
𝑖=0 . Assuming A=P1-(2ε+3δ+β2), B=P2-(4ε+2δ+β0+β3), 

and C=P3-(2ε+3δ+β1), we rewrite w1, w2, and w3 as: 

 

w1≥0, w1≥P1-(2ε+3δ+β2+w2)→ w1+w2≥A                  

w2≥0, w2≥P2-(4ε+2δ+β0+β3+w3)→ w2+w3≥B      

w3≥0, w3≥P3-(2ε+3δ+β1+w1)→ w1+w3≥C                  

 

If s1, s2, s3 were slack variables of these three inequalities, 

the execution of this algorithm is as Table I. The algorithm 

deals with the maximization problem, whereas our goal is 

minimizing ∑ 𝑤𝑖
3
𝑖=0 . Thus, ∑ 𝑤𝑖

3
𝑖=0 =A+

𝐶−𝐴+𝐵

2
= 

𝑃1+𝑃2+𝑃3

2
 – 

(4ε+4δ+
1

2
∑ 𝛽𝑖

3
𝑖=0 )=max{0, P1-(2ε+3δ+β2), P2-(4ε+2δ+β0+β3) 

, P3-(2ε+3δ+β1), 
𝑃1+𝑃2+𝑃3

2
 -(4ε+4δ+

1

2
∑ 𝛽𝑖

3
𝑖=0 )}. 

 
TABLE I. THE IMPLEMENTATION OF THE SIMPLEX ALGORITHM FOR S3

2MF 

 w1 w2 w3 s1 s2 s3 Z 

 1 1 1 0 0 0 0 

s1 1 1 0 -1 0 0 A 

s2 0 1 1 0 -1 0 B 

s3 1 0 1 0 0 -1 C 

 0 0 1 1 0 0 -A 

w1 1 1 0 -1 0 0 A 

s2 0 1 1 0 -1 0 B 

s3 0 -1 1 1 0 -1 C-A 

 0 0 1 1 0 0 -A 

w1 1 0 -1 -1 1 0 A-B 

w2 0 1 1 0 -1 0 B 
s3 0 0 2 1 -1 -1 C-A+B 

 0 0 0 1/2 1/2 1/2 -A-(𝐶 − 𝐴 + 𝐵) 2⁄  

w1 1 0 0 -1/2 1/2 -1/2 A-B+(𝐶 − 𝐴 + 𝐵) 2⁄  

w2 0 1 0 -1/2 -1/2 1/2 B-(𝐶 − 𝐴 + 𝐵) 2⁄  
w3 0 0 1 1/2 -1/2 -1/2 (C-A+B)/2 

  

Also, S
3
6mf is made up four closed loops. Note the 

corresponding machine is located in the center of each one of 

them (See Fig. 7), and the required time is 4ε+2δ+βi-1+βi+wi-

1+wi. Due to overlap between closed-loops, TS
3
6mf = 8ε+8δ+ 

∑ 𝛽𝑖
3
𝑖=0 +w1+w2+w3 where w1=max{0, P1-(4ε+6δ+β2+ 

β3+w2+w3)}, w2=max{0, P2-(4ε+6δ+β0+β3+w3)}, w3=max{0, 

P3-(4ε+6δ+β0+β1+w1)}. This means that w1+w2+w3={0, P1-

(4ε+6δ+β2+β3),  P2-(4ε+6δ+β0+β3), P3-(4ε+6δ+β0+β1)}.  

 

 

 

 

 

 
Fig. 7. The closed-loop i of three-machine MFRCs 

 

We can conclude that the cycle times of six permutations are:  

 

TS
3
1mf  = 8ε+∑ 𝛽𝑖

3
𝑖=0 +P1+P2+P3                                              (1) 

TS
3
2mf = 8ε+4δ+∑ 𝛽𝑖

3
𝑖=0 +max{0, P1-(2ε+3δ+β2), P2-(4ε+2δ+ 

β0+β3), P3-(2ε+3δ+β1),
𝑃1+𝑃2+𝑃3

2
-(4ε+4δ+

1

2
∑ 𝛽𝑖

3
𝑖=0 )}            (2) 

TS
3
3mf = 8ε+4δ+∑ 𝛽𝑖

3
𝑖=0 +P1+max{0, P2-(2ε+3δ+β3), P3-

(4ε+2δ+β0+β1+P1)}                                                               (3) 

 TS
3

4mf = 8ε+4δ+∑ 𝛽𝑖
3
𝑖=0 +P2+max{0, P1-(2ε+3δ+β3), P3-

(2ε+3δ+β0)}                                                                           (4) 

TS
3
5mf = 8ε+4δ+∑ 𝛽𝑖

3
𝑖=0 +P3+max{0, P1-(4ε+2δ+β2+β3+P3),  

P2-(2ε+3δ+β0)}                                                                      (5) 

TS
3
6mf = 8ε+8δ+∑ 𝛽𝑖

3
𝑖=0 +max{0, P1-(4ε+6δ+β2+β3),  P2-

(4ε+6δ+β0+β3) ,  P3-(4ε+6δ+β0+β1)}                                   (6) 

 

Now, let us find the optimality regions of these 

permutations. The results about the regions of optimality for 

six possible permutations are depicted in Table II. Giving an 

example, the common region where S
3
1mf dominates all 

permutations must be obtained to introduce S
3
1mf as the 

optimal permutation. This common region is the intersection 

of all possible dominant conditions. Therefore, S
3
6mf is optimal 

if P1+P2+P3≤4δ as can be seen from Table II. Giving other 

example,    S
3
6mf is optimal if βl-1+Pl+βl≥4ε+6δ+∑ 𝛽𝑖

3
𝑖=0  or 

P1+P2+P3≥8ε+16δ+∑ 𝛽𝑖
3
𝑖=0 . The reason behind this is that the 

last part of Table II lists the conditions in which S
3

6mf 

dominates any one of another  permutations, and the 

intersection of them equals to βl-1+Pl+βl≥4ε+6δ+∑ 𝛽𝑖
3
𝑖=0  or 

P1+P2+P3≥8ε+16δ+∑ 𝛽𝑖
3
𝑖=0 . This table gives a practical 

framework to use the robot’s permutation with maximum 

production rate for two- and three machine MFRCs with free-

pick up scenario. This framework makes a meaningful 

contribution to industrial automation, and assists industry in 

designing and developing appropriate MFRCs. 

V. NO-WAIT PICK UP SCENARIO 

There is no study which concentrated on MFRCs with no-

wait pick up scenario arising when the part must be 

immediately unload from the machine when its process is 

finished by the machine. This kind MFRC where machines 

cannot act as intermediate hoppers is generally called the no-

wait MFRC. Since MFR also does operation on the part in 

transit, the no-wait restriction is not applicable about MFR’s 

operation. The reason behind this is that MFR does secondary 

operations such as inspection, not primary operations. All 

secondary operations have same nature and do not respect to 

no-wait restriction [20]. Finding an optimal permutation for a 

MFRC with no-wait pick up scenario is a two-phase problem 

where all feasible permutations are determined in the first 

phase, and then optimal one is found in the second phase. To 

make the feasibility condition more clearly, let us present the 

following counterexample: For ε=0.5, δ=1, P1=5, P2=3, β0=2, 

β1=1, β2=2, the cycle S
2

2mw is infeasible because MFR cannot 

unload a part from M2 as soon as it is processed by M2. In fact, 

the time taken for MFR returns to M2 is 5, whereas P2=3.  

S
2
1mw has no partial waiting; thus, it is always feasible and 

its cycle time is TS
2
1mw = 6ε+∑ 𝛽𝑖

2
𝑖=0 +P1+P2 regardless of the 

values of different parameters. However, S2 has two partial 

stops on M1 and M2 which maybe cause of infeasibility. So, 

S
2
2mw is called feasible when both these partial stops satisfy. In 

fact, MFR must arrive at M1 and M2 not later than finishing the 

part processing. This means P1≥2ε+2δ+β2 and P2≥2ε+2δ+β0 

are feasibility conditions of S
2

2mw.  

As mentioned before, I/O is similar to auxiliary machine 

which should not meet the no-wait restriction. So, a strategy 

i 

i-1 i+1 

Pi 

  

γi-1 γi 

 

2δ 

ε ε 

ε ε 
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for making S
2
2mw feasible is that the part enters the MFRC with 

a time delay. This release time is indicated by R to calculate 

TS
2
2mw. Clearly, the cycle time is TS

2
2mw =R+6ε+3δ+∑ 𝛽𝑖

2
𝑖=0  

+w1+w2 where R and w1+w2 are not constant parts. We have: 

                                                            

w1= P1-(2ε+2δ+β2+w2) and w2= P2-(2ε+2δ+β0+R)                (7) 

↔w1+w2= P1-(2ε+2δ+β2)                                                       (8) 

↔R= max{0, P2+β2-(P1+β0)}                                                 (9) 

 

So, TS
2
2mw is shown by the double-sided function max{4ε+δ 

+β0+P1+β1,4ε+δ+β1+P2+β2}. After derivation of TS
2
1mw and 

TS
2
2mw, the performance of S

2
1mw and S

2
2mw should be compared 

to optimize two-machine MFRCs with no-wait scenario.  

Since TS
2

1mw> TS
2
2mw, we can conclude that S

2
2mw is certainly 

optimal if it be feasible. It is only enough to check S
2

2mw meets 

the feasibility conditions (P1≥2ε+2δ+β2 and P2≥2ε+2δ+β0).  

Optimizing three-machine MFRCs are complicated in 

comparison with two-machine ones. This is even more 

difficult when pick up scenario is no-wait. In fact, it is 

possible that no overlap exist between three machine 

operations and four MFR operations. In other words, every 

one of machines and MFR is potentially critical equipment if 

it shortly processes the part. Initially, we should take problem 

feasibility into consideration to better formulate no-wait 

restriction and estimate the gain of productivity. The cycle 

time and feasibility region of six permutations are listed in 

Table III. This table indicates that the scheduling problem is 

never infeasible because S
3
1mw always gives a guarantee of 

feasibility. For the sake of simplicity, we present the process 

of cycle time calculation for S
3
3mw and S

3
4mw here, to show how 

we obtained the rest of cycle times and feasibility conditions 

except for S
3

2mw in Table III. At first glance in S
3
3mw, there are 

two partial waits on M2 and M3. Only these two critical points 

may make S
3
3mw infeasible. Indeed, P2 and P3 must not be 

smaller than the time elapses between when the corresponding 

machine was loaded and when MFR come back to remove it. 

Two inequalities P2≥2ε+3δ+β3 and P3≥4ε+2δ+P1+β0+β1 cover 

the state space of S
3
3mw in keep with A0,A1,A3,A2. Also, TS

3
3mw 

=R+8ε+4δ+∑ 𝑀𝑅𝑃𝑖
3
𝑖=0 +P1+w2+w3 where w1 and w2 are: 

 

w2= P2-(2ε+3δ+β3+w3) and w3=P3-(4ε+2δ+β0+ β1+ P1+R) (10) 

↔w2+w3= P2-(2ε+3δ+β3)                                                     (11) 

 

Therefore, R=max{0, P3+δ+β3-(P1+P2+2ε+β0+β1)} and 

TABLE II. THE OPTIMALITY REGION OF SIX PERMUTATIONS OF THREE-MACHINE MFRCS WITH FREE-PICK UP SCENARIO.  
S3

1mf S3
2mf S3

3mf 
Compared 

permutations 
Dominant Conditions 

Compared 

permutations 
Dominant Conditions 

Compared 

permutations 
Dominant Conditions 

2&1 P1+P2+P3≤4δ 1&2 P1+P2+P3≥4δ   1&3 P2+P3≥4δ   

3&1 P2+P3≤4δ 3&2 
P3-P1≤2ε+3δ+β1                    or 

P3-P1-P2≤β1-β3     
2&3 

P3-P1≥2ε+3δ+β1                                   and 

P3-P1-P2≥β1-β3     

4&1 P1+P3≤4δ 4&2 

P2≥β3-β2                               or 

P1-P2≤2ε+3δ+β2                  or 

P1-P2-P3≤β2+β0                         and 

P2≥β0-β1                               or 

P3-P2≤2ε+3δ+β1                  or 

P3-P1-P2≤β1+β3 

4&3 
P1≤ P2                                                      or 

P2+P3-P1≥2ε+3δ+β0 

5&1 P1+P2≤4δ 5&2 
P1-P3≤2ε+3δ+β2                 or 

P1-P2-P3≤β2+β0 
5&3 

P1≤P3                                                       or 
P2+P3-P1≥2ε+3δ+β0                              and 

P1+P3-P3≤2ε+3δ+β3                                or 

P1-P3≤ β3+β0 

6&1 P1+P2+P3≤8δ 6&2 

P1≤2ε+7δ+β2                             and  

P2≤4ε+6δ+β0+β3             and 

P3≤2ε+7δ+β1                   and 

P1+P2+P3≤8ε+16δ+∑ 𝛽𝑖
3
𝑖=0  

6&3 

P1≤4δ                                                    and 

P1+P2≤2ε+7δ+β3                                 and 
P3≤4ε+6δ+β0+β1   

S3
4mf S3

5mf S3
6mf 

Compared 

permutations 
Dominant Conditions 

Compared 

permutations 
Dominant Conditions 

Compared 

permutations 
Dominant Conditions 

1&4 P1+P3≥4δ   1&5 P1+P2≥4δ   1&6 

P1+P2+P3≥8δ                                           or 
P1≥4ε+6δ+β2+β3                                                   or 

P2≥4ε+6δ+β0+β3                                    or 

P3≥4ε+6δ+β0+β1 

2&4 

P1-P2≥2ε+3δ+β2                or 
P3-P2≥2ε+3δ+β1                 and 

P2≤β3+β2                            or 

P3-P1-P2≥β1+β3                 and 
P1-P2-P3≥β2+β0                  or 

P2≤β0+β1    

2&5 
P1-P3≥2ε+3δ+β2               and 

P1-P2-P3≥β2-β0     
2&6 

P1≥2ε+7δ+β2                                                               or 

P2≥4ε+6δ+β0+β3                                   or  
P3≥2ε+7δ+β1                                         or 

P1+P2+P3≥8ε+16δ+∑ 𝛽𝑖
3
𝑖=0  

3&4 
P2≤ P1                             and 

P2+P3-P1≤2ε+3δ+β0 
3&5 

P3≤P1                                   or 
P1+P2-P3≥2ε+3δ+β3            and 

P2+P3-P1≤2ε+3δ+β0           or 

P1-P3≥β3-β0     

3&6 

P1≥4δ                                                     or 

P1+P2≥2ε+7δ+β3                                   or 
P3≥4ε+6δ+β0+β1 

5&4 
P2≤P3                              and 

P1+P2-P3≤2ε+3δ+β3 
4&5 

P3≤P2                                    or 

P1+P2-P3≥2ε+3δ+β3 
4&6 

P2≥4δ                                                     or 

P1+P2≥2ε+7δ+β3                                   or 

P2+P3≥2ε+7δ+β0 

6&4 
P2≤4δ                              and 
P1+P2≤2ε+7δ+β3            and 

P2+P3≤2ε+7δ+β0  

6&5 
P3≤4δ                                  and 
P1≤4ε+6δ+β2+β3   and 

P2+P3≤2ε+7δ+β0  

5&6 
P3≥4δ                                                     or 
P1≥4ε+6δ+β2+β3                                  or 

P2+P3≥2ε+7δ+β0 
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TS
3
3mw=max{6ε+δ+β0+β1+β2+P1+P2, 4ε+2δ+β2+β3+P3}. 

Also, S
3
4mw=A0,A1,A3,A2  has two partial waits P1-2ε+3δ+β3 

and P3-2ε+3δ+β0+R on M1 and M3, respectively. Since both of 

these partial waiting must be positive; the intersection of 

P1≥2ε+3δ+β3 and P3≥2ε+3δ+β0 shows feasible state space of 

S
3

4mw. Also, the cycle time of S
3

4mw is TS
3

4mw=R+8ε+4δ+ 

∑ 𝛽𝑖
3
𝑖=0 +P1+w1+w3 where w1+w3=P1-(2ε+3δ+β3). This result: 

 

R=max{0, P3+β3-(P1+β0)}                                                   (12) 

TS
3
4mw=max{6ε+δ+β0+β1+β2+P1+P2,6ε+δ+β1 

+β2+β3+P2+P3}                                                                   (13) 

 

S
3

2mw is a tough permutation to deal with. Indeed, MFR has 

three partial stops in addition to artificial stop R at I/O during 

execution of this permutation. Note R can be called w0 or w4. 

The constant portion of S
3
2mw is 8ε+4δ+∑ 𝛽𝑖

3
𝑖=0 , whereas 

w1+w2+w3+R is the variable portion of it that should be 

minimized. w1+w2+w3+R is built up four sub portions w1=P1-

(2ε+3δ+β2+w2)≥0, w2=P2-(4ε+2δ+β0+β3+w3+R) ≥0, w3=P3-

(2ε+3δ+β1+w1)≥0, and w4=R≥0. We rewrite this minimization 

problem as the following formulation reassuming A=P1-

(2ε+3δ+β2), B=P2-(4ε+2δ+β0+β3), and C=P3-(2ε+3δ+β1): 

 

Mini Z=w1+w2+w3+w4                                                              (14) 

Subject to      w1+w2=A                                                         (15) 

                      w2+w3+w4=B                                                   (16) 

                      w1+w3=C                                                         (17) 

                      w1, w2, w3, w4≥0 

 

Z= w1+B is an indirect result from (16). Thus, it is enough 

to find minimum amount of w1 which is presented in four sub-

cases representing the corner points the feasibility region: 

 

1. w1=0, w2=A≥0, w3=C≥0, w4=B-(A+C)≥0 → B≥A+C 

2. w1=A≥0, w2=0, w3=C-A≥0→C≥A, w4=B-(C-A)≥0→A+B≥C 

3. w1=C≥0, w2=A-C≥0→A≥C, w3=0, w4=B-(A-C)≥0→B+C≥A 

4. w1=(A+C-B)/2 → A+C≥B, w2=(B+A-C)/2 → A+B≥C 

  w3=(B+C-A)/2 → B+C≥A, w4=0 

 

  Let us assume B=A+C is the breakpoint dividing the 

feasible regions of corner points 1 and 4. The corner points 1 

is feasible for the left side of this breakpoint (B≥A+C), and the 

amount of w1=0 for this corner point is smaller than the 

amount for second and third corner points (w1=A≥0 & 

w1=C≥0). On the other hand, the corner points 4 is feasible for 

the right side of (B<A+C). Then, the amount of w1 of the 

corner point 4 is 0≤w1≤A and 0≤w1≤C if A≤C and C≤A. This 

prove that the amount w1 of the corner point 4 is smaller than 

both 2 and 3 which are w1=A & w1=C. So, the corner points 2 

and 3 should be omitted from the formulation of TS
3
2mw in that 

one of the corner points 1 or 4 always dominates both of them 

and has smaller w1. Note it is impossible to execute S
3

2mw if 

B+C<A or A+B<C. In fact, B+C=w1+w2+2w3+w4≥A=w1+w2 

and A+B=w1+2w2+w3+w4≥C=w1+w3 with respect to (15)-(17). 

We calculate two possible subcases of R using the original 

value of A, B, and C. Then, TS
3
2mw is obtained from the 

summation of the constant potion 8ε+4δ+∑ 𝛽𝑖
3
𝑖=0  and the 

variable portion Z=w1+w2+w3+w4=w1+B. This result: 

 

𝑅 {
𝑃2 + 4𝛿 + 𝛽1 + 𝛽2 − (𝑃1 + 𝑃3 + 𝛽0 + 𝛽3) 𝐵 ≥ 𝐴 + 𝐶           

0 𝐵 < 𝐴 + 𝐶   (18)
 

𝑇𝑆 2𝑚𝑤
3 {

4𝜀 + 2𝛿 + 𝛽1 + 𝛽2 + 𝑃2                      𝐵 ≥ 𝐴 + 𝐶             

4𝜀 +
∑ 𝛽𝑖

3
𝑖=0 + 𝑃1 + 𝑃2 + 𝑃3

2
               𝐵 < 𝐴 + 𝐶     (19)

 

 

Considering feasibility condition of S
3

2mw, (18) and (19) are 

rewritten by two max terms in the second row of Table III. 

Now, we need an algorithm to reach the optimal permutation 

using the outcome of the Table III. This algorithm is: 

 
Search Algorithm: Finding the feasible and optimal permutation. 

Input: State information (Machines and MFR’s process times, empty 

MFR travel time, load/unload time). 

  for j=1 to 6 

      if S3
jmw is feasible according to conditions in Table III then 

          S ← S + S3
jmw 

      end 

Initialization of T*
=  ∞  

  for x=1 to s 

      if TS
3
xmf  ≤  T*  then 

          S* ← S3
xmw 

          T* ← TS
3
xmf 

         else 

          S* ← S* 

          T* ← T*
 

      end 

Output: The optimal permutation S*
 and its cycle time T*   

 

As shown above, Search Algorithm is constructed from 

Table III. The mechanism to reach the optimal permutation in 

TABLE III. THE CYCLE TIME AND FEASIBILITY REGION OF SIX PERMUTATIONS OF THREE-MACHINE MFRCS WITH NO-WAIT PICK UP SCENARIO.  
Permutation Feasibility Conditions Release Time Cycle Time 

S3
1mw Always 0 8ε+∑ 𝛽𝑖

3
𝑖=0 +P1+P2+P3 

S3
2mw 

P1≥2ε+3δ+β2 

P2≥4ε+2δ+β0+β3 

P3≥2ε+3δ+β1 

B+C≥A  &   A+B≥C 

max{0, P2+4δ+β1+β2-(P1+P3+β0+β3)} max{4ε+2δ+β1+β2+P2, 4ε+ 
∑ 𝛽𝑖

3
𝑖=0 +𝑃1+𝑃2+𝑃3

2
} 

S3
3mw 

P2≥2ε+3δ+β3  

P3≥4ε+2δ+p1+β0+β1 
max{0, P3+δ+β3-(P1+P2+2ε+β0+β1)} max{6ε+δ+β0+β1+β2+P1+P2, 4ε+2δ+β2+β3+P3} 

S3
4mw 

P1≥2ε+3δ+β3 

P3≥2ε+3δ+β0 
max{0, P3+β3-(P1+β0)} max{6ε+δ+β0+β1+β2+P1+P2, 6ε+δ+β1+β2+β3+P2+P3} 

S3
5mw 

P1-P3≥4ε+2δ+β2+β3 

P2≥2ε+3δ+β0 
max{0, P2+P3+2ε+β2+β3-(P1+δ+β0)} max{4ε+2δ+β0+β1+P1, 6ε+δ+β1+β2+β3+P2} 

S3
6mw 

P1≥4ε+6δ+β2+β3 

P2≥4ε+6δ+β0+β3 

P3≥4ε+6δ+β0+β1 

max{0, P2+β2-(P1+β0), P3+β2+Β3-(P1+β0+β1)} max{4ε+2δ+β0+β1+P1, 4ε+2δ+ β1+β2+P2, 4ε+2δ+β2+β3+P3} 
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trivial time is defining the set of feasible permutation s∈S, and 

then finding the optimal permutation S
*
 and its cycle time T

* 

using two For Loops. Anyone of permutations is stopped 

when an infeasible activity occurs in its activity route. In brief, 

it is expected the outcome of this algorithm be a practical help 

for robotic cell manufacturers who face difficult task of 

forming and scheduling a no-wait MFRC. 

VI. CONCLUSION 

An effective methodology was developed in this study for 

addressing the issue of industrial robots’ functionality within a 

cellular production system. Two and six feasible permutations 

are developed for two- and three-machine MFRCs with the 

free pick up scenario, and the optimality regions of these 

permutations and their formulas are determined. Then, the 

results are extended to the no-wait pick up scenario. Through 

this research it was found there is no unique optimal 

permutation for MFR movement between different stations 

with different parameter inputs. To state the matter differently, 

it should be noted any one of the permutations has the chance 

of obtaining optimality considering different values of ε, δ, P1, 

P2, P3, γ0, γ1, γ2, γ3. It is enough to check whether it meets the 

optimality conditions or not. The scheduling method 

developed in this research can be broadened for multi-unit 

permutations in future research directions. In addition, some 

mathematical formalism such as max-plus algebra can be an 

important tool for research in this area to simplify the 

procedure for determination of cycle times. In fact, the 

analysis of all partial waits can be eliminated using max-plus 

algebra since synchronization is an inherent property of max-

plus algebra systems. Lastly, reentrant MFRCs where a part 

visits a machine more than once in its processing route can be 

taken into account in future work.  
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