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ABSTRACT 

Background: Esophageal adenocarcinoma is a male dominant disease, but the role of 

androgens is unclear.   

 

Aims: To examine the expression and clinical correlates of the androgen receptor (AR) and 

the androgen-responsive gene FK506 binding protein 5 (FKBP5) in esophageal 

adenocarcinoma. 

 

Methods: Expression of AR and FKBP5 was determined by immunohistochemistry. The 

effect of the AR ligand 5α-dihydrotestosterone (DHT) on the expression of a panel of 

androgen-responsive genes was measured in AR-positive and AR-negative esophageal 

adenocarcinoma cell lines. Correlations in expression between androgen-responsive genes 

were analysed in an independent cohort of esophageal adenocarcinoma tissues. 

 

Results: There was AR staining in 75 of 77 cases (97%), and FKBP5 staining in 49 (64%), 

all of which had nuclear AR. Nuclear AR with FKBP5 expression was associated with 

decreased median survival (451 versus 2800 days), and was an independent prognostic 

indicator (HR 2.894, 95% CI 1.396 to 6.002, p = 0.0043) in multivariable Cox proportional 

hazards models. DHT induced a significant increase in expression of the androgen-responsive 

genes FKBP5, HMOX1, FBXO32, VEGFA, WNT5A and KLK3 only in AR-positive cells in 

vitro. Significant correlations in expression were observed between these androgen-

responsive genes in an independent cohort of esophageal adenocarcinoma tissues. 

 

Conclusion: Nuclear AR and expression of FKBP5 is associated with decreased survival in 

esophageal adenocarcinoma. 
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BACKGROUND 

Esophageal adenocarcinoma (EAC) is a dismal disease with a relative five year survival rate 

of 14% [1]. Its incidence has increased more rapidly than any other cancer over the last four 

decades in the West, but most markedly in males [2-4]. The major risk factors are gastro-

esophageal reflux disease and obesity, leading to the only described precursor lesion for the 

cancer, Barrett’s esophagus (BE). The reported ratio of males to females ranges from 7 - 10 

to 1 [4]. This ratio is highest in younger patients and lower in older patients [4], which is in 

part accounted for by an approximately 20 year delay in onset in females for BE [5] and EAC 

[6].  

 

The high ratio of males with this cancer, and the change in the ratio with age, suggests a role 

for the sex steroid hormones: their concentrations differ between males and females, and 

change over the lifespan. Serum estrogen and progesterone levels cycle about a relatively 

high mean in the adult female, and drop abruptly at menopause. Serum androgen levels are 

high in young adult males, and decline progressively throughout adulthood. However, 

evidence that these hormones play a role in EAC is limited. The male dominance could be, at 

least partly, explained by a protective effect of estrogens in females which is lost after 

menopause. Estrogen receptors have been reported in esophageal tissue [7, 8], and there are 

reports which suggest that estrogen is inhibitory to EAC cell lines [9].   

 

Alternatively, androgens could be involved in the biology of this cancer. There have been 

relatively few studies of androgens or androgen receptor (AR) signalling in EAC. Serum 

androgens have been reported to be elevated in both BE [10] and EAC [11]. Three previous 

studies investigated AR protein expression in EAC, but they examined relatively small 

patient cohorts, produced conflicting results, did not examine if AR was functional, and 
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reported no associations with survival [8, 11, 12]. Two epidemiological reports support a role 

for androgens. Prostate cancer patients given anti-androgen therapy had a statistically 

significant 30% risk reduction for EAC [13], and gastro-esophageal cancer was positively 

associated with a family history of prostate cancer [14].  

 

The androgen signalling cascade is activated by androgens, particularly testosterone and its 

metabolite 5α-dihydrotestosterone (DHT), which bind to the AR in the cytoplasm. The 

activated AR translocates to the nucleus and binds to androgen response elements in the 

genome. This binding may then result in the up- or down-regulation of transcription of 

androgen-responsive genes, such as FK506 binding protein 5 (FKBP5) [15-17], heme 

oxygenase 1 (HMOX1) [18], F-box protein 32 (FBXO32) [19], wingless-type MMTV 

integration site family, member 5A (WNT5A) [20], vascular endothelial growth factor A 

(VEGFA) [21] and kallikrein-related peptidase 3 (KLK3) [22]. The actual genes whose 

expression is altered is influenced by the interaction of AR and various co-regulators and is 

tissue and context dependent. FKBP5 expression is often used as an indicator of functional 

AR signaling, as in prostate cancer studies where it reflects better than any other AR target 

gene androgen levels after either short-term or long-term androgen deprivation therapy [23].  

 

Given the conflicting data on AR expression in EAC, and the lack of information as to 

whether, when present, it is functional, the specific aim of this study was to investigate AR 

expression and signalling in EAC. Associations between expression of AR and FKBP5 and 

clinicopathological parameters, including overall survival, were examined using 

multivariable Cox proportional hazards models to adjust for confounding parameters. The 

effect of DHT on the expression of androgen-responsive genes was assessed in AR-negative 

and AR-positive esophageal cancer cell lines. Correlations between the expression levels of 
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putative androgen-responsive genes were assessed using tissues from an independent cohort 

of patients with BE and EAC. 

 

 

MATERIALS AND METHODS 

Tissue microarrays and immunohistochemistry 

Specificity of all antibodies was confirmed by Western immunoblot, which included both 

positive and negative controls. Each antibody labeled a single band at the expected molecular 

weight. Antibodies then were optimized with control tissue blocks before application to the 

tissue microarrays. A tissue microarray composed of one or more representative cores from 

77 cases of EAC was constructed as previously described [24]. None of the patients had been 

given preoperative chemotherapy or radiotherapy. Sequential 4 m sections were mounted on 

polylysine-coated slides, dewaxed and rehydrated. Antigen retrieval was performed by 

heating the sections for 5 min in 10 mmol/L citrate buffer (pH 6) in a microwave pressure 

cooker. After cooling to room temperature, sections were immunostained using an 

Autostainer Plus (Dako, Glostrup, Denmark). Sections were incubated for 60 min with either 

1:50 rabbit anti-human AR (clone N-20, raised against the first 20 amino acids of the N-

terminus of AR) polyclonal IgG (Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA) or 

1:400 rabbit anti-human FKBP5 (FKBP51, clone H-100) polyclonal IgG (Santa Cruz 

Biotechnology Inc.). Slides were then incubated with MACH 4 Universal Horseradish 

Peroxidase-Polymer (Biocare Medical, Concord, CA, USA). Liquid 3,3-diaminobenzidine 

(Dako) was used as the chromogen, and sections were counterstained with Meyer’s 

haematoxylin. The staining was scored by an experienced gastrointestinal pathologist (ARR) 

and ES. Expression of AR was scored separately in the cytoplasm and the nucleus as positive 

(present in ≥ 5% of the tumor epithelial cells) or negative. Expression of FKBP5 was scored 
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as positive (present in ≥ 5% tumor epithelial cells) or negative. 

 

Cell lines 

The EAC cell lines OE33, OE19 and JH-EsoAd1 were maintained in RPMI-1640, and FLO-1 

in DMEM, supplemented with 10% foetal bovine serum, 4 mmol/L L-glutamine, 200 U/ml 

penicillin and 200 g/ml streptomycin. The esophageal squamous cell line TE7 was similarly 

maintained in RPMI-1640 plus supplements. All cells were incubated at 37oC with 5% CO2 

in air.  

 

Stable transduction of cell lines with androgen receptor 

The AR gene was amplified from the expression vector pCMV-AR3.1 using Gateway 

cloning compatible primers (Supplementary Table S1) and transferred into pLV411 plasmid 

using the Gateway cloning system, as previously described [25]. Stably transduced cells were 

selected using two rounds of fluorescence activated cell sorting for green fluorescent protein. 

The mock transduced OE33 and AR expressing cell line (OE33-AR) were maintained in 

phenol red free media supplemented with 10% dextran-coated charcoal-stripped foetal bovine 

serum, 4 mmol/L L-glutamine, 200 U/ml penicillin and 200 g/ml streptomycin (stripped 

medium).   

 

In vitro transactivation assay 

Cells were seeded at 15,000 cells per well in 96-well plates in stripped medium and incubated 

for 24 h. Cells were transiently transfected with either 50 ng of the synthetic minimal 

androgen-responsive luciferase probasin-driven promoter tk81-PB3 (PB3-luc) or 50 ng of 

PB3-luc and 2.5 ng of the androgen receptor expression vector pCMV-AR3.1 (AR) and 

incubated for 4 h, as previously described [26]. Cells were treated with either vehicle (V; 
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0.1% ethanol), 10 nmol/L DHT, 10 mmol/L of the anti-androgen bicalutamide (B), or 10 

nmol/L DHT and 10 mmol/L B (DHT + B) in stripped medium and incubated for 16 to 20 h. 

Cells were lysed and luciferase activity was measured using a FLUOstar Optima (BMG 

Labtech, Ortenberg, Germany). Whole-cell lysates from six replicate wells were pooled and 

analysed for protein expression by Western immunoblot. 

 

Western immunoblot analysis 

Cells were seeded at 2 x 105 cells per well in 6-well plates in stripped medium and incubated 

for 72 h. Cells were treated with either V, or 10 nmol/L DHT for 16 h. Whole-cell lysates 

were prepared and 15 g of protein was resolved by denaturing electrophoresis on 4-15% 

Mini-Protean TGX precast polyacrylamide gels (Bio-Rad Laboratories, Hercules, CA), 

transferred to Hybond-C membrane (Amersham Biosciences, Castle Hill, NSW, Australia), 

and immnostained using 1:10,000 rabbit anti-human AR (N-20) polyclonal IgG, 1:4000 

rabbit anti-human FKBP5 (H-100) polyclonal IgG, and 1:5000 mouse anti-human -actin 

(clone AC-15) polyclonal IgG1 (Sigma-Aldrich, St Louis, MO). Immunoreactivity was 

detected using the appropriate horseradish peroxidase-conjugated IgG and visualized using 

enhanced chemiluminescence (Amersham). 

 

Measurement of gene expression by quantitative real-time reverse-transcription PCR 

Cells were seeded in stripped medium at 5 x 105 cells per well in 6-well plates, and incubated 

for 24 h. Cells were treated with either V or 10 nmol/L DHT in stripped medium and 

incubated for 4, 8 or 24 h. Total RNA was isolated using the RNeasy Mini Kit with on-

column DNase I digestion (Qiagen, Hilden, Germany). Total RNA (1 g) was reverse 

transcribed using the iScript cDNA Synthesis Kit (Bio-Rad Laboratories) in a final volume of 

20 L. Gene expression was determined using iQ SYBR Green Supermix (Bio-Rad 
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Laboratories) in a final volume of 10 L, containing 0.1 L of cDNA and a final 

concentration of 0.2 mol/L of each forward and reverse primer (Supplementary Table S1). 

Triplicate reactions were performed using a CFX (Bio-Rad Laboratories) at 95oC for 3 min, 

then 40 cycles of 95oC for 15 s, 60oC for 15 s and 72oC for 30 s, followed by a final extension 

of 72oC for 1 min. The products were melted to confirm specificity. Normalized fold 

expression (∆∆Cq) was calculated using -actin (ATCB) and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) as reference genes using the CFX software. 

 

Statistical analysis 

The statistical software used was SAS 9.3 (SAS Institute Inc., Cary, NC, USA) and Prism 

6.0d for Macintosh (GraphPad Software, San Diego CA, USA; www.graphpad.com). Hazard 

ratios (HR), 95% confidence intervals (CI) and p values were calculated from univariate and 

multivariable Cox proportional hazards models. The proportional hazards assumption was 

found to be upheld for each univariate and multivariable regression. Initially each confounder 

that had a significant HR in univariate analysis (p < 0.1) was included in the multivariable 

model with the predictor being AR nuclear localization or FKBP5 expression or AR nuclear 

localization and FKBP5. However, there were too few observations to account for the ten 

covariates. Therefore, backwards stepwise elimination was performed. The confounder with 

the highest p value was eliminated, one at a time, until the final most parsimonious model 

had all confounders with p < 0.05 or p < 0.2 depending on the model. Normalized fold 

expression data were compared using unpaired t-test. Correlations between androgen-

responsive genes in esophageal tissues were determined using linear regression. All statistics 

were considered significant when the two-tailed p < 0.05. 
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RESULTS 

Expression of AR and FKBP5 in esophageal adenocarcinoma tissues 

The protein expression of AR and FKBP5 was investigated by immunohistochemistry in 

resection tissue from 77 cases of EAC (Fig. 1). Low to medium intensity staining of AR in 

tumor epithelial cells was observed in 75 of the 77 cases (97.4%). Nuclear localisation was 

observed in 70 cases (90.9%). There was nuclear only staining in seven cases (9.1%), 

cytoplasmic only in five (6.5%), and both nuclear and cytoplasmic in 63 (81.8%). 

 

Low to high intensity staining of FKBP5 in tumor epithelial cells was observed in 49 cases 

(63.6%). All of the FKBP5 positive cases also had nuclear localisation of AR. Of the 28 cases 

that did not express FKBP5, 21 had nuclear localisation of AR and seven did not. There was 

a significant association between FKBP5 expression and AR nuclear localisation (p = 

0.0005). These data suggest that in primary EAC epithelial cells, nuclear localisation of the 

AR is necessary but not sufficient for FKBP5 expression. 

 

Clinical significance of AR and FKBP5 in esophageal adenocarcinoma 

To determine the clinical significance of the expression of AR and FKBP5, we examined 

associations with clinicopathological data which was available for 76 of the cases. The 

median age of these patients at surgery was 64 years (range 36 to 81), the median follow-up 

time was 865 days (range 37 to 4,661), and the 5-year overall survival rate was 36.7%. 

 

Nuclear localisation of AR was significantly associated with the presence of BE 

(Supplementary Table S2; p = 0.0009). It was detected in all tissues from patients who had 

co-existing BE, but only 76.7% of tissues from patients without BE. There was no significant 
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difference in AR staining for patient age or gender. Patients with nuclear AR had a median 

overall survival of 671 days compared to 1,321 days for those without (Fig. 2A). 

 

Similarly, the expression of FKBP5 was more prevalent in patients with BE observable on 

endoscopy or in the resection specimen (Supplementary Table S2; p = 0.0495). Patients with 

FKBP5 expression had a median overall survival of 451 days compared to 1,338 days for 

those that were FKBP5-negative (Fig. 2B). For those patients who were FKBP5-negative but 

had nuclear AR (nuc AR+/FKBP5-), the median overall survival was 2,800 days (Fig. 2C). 

 

To investigate the difference between hazards of dying, univariate and multivariable Cox 

proportional hazards models were used. In univariate models neither AR nuclear localization 

nor FKBP5 expression were associated with a significant difference in risk of death 

(Supplementary Table S3). In multivariable models when adjusting for confounders, AR 

nuclear localization (HR 3.290, 95% CI 1.125 to 9.620, p = 0.0296) and FKBP5 expression 

(HR 3.043, 95% CI 1.417 to 6.531, p = 0.0043) were associated with a significant increase in 

risk of death (Supplementary Table S3). For the subset of patients who had AR nuclear 

localization, FKBP5 expression was not associated with a significant difference in risk of 

death in the univariate model (Table 1; HR 1.829, 95% CI 0.904 to 3.701, p = 0.0930). 

However, in the multivariable model, after adjusting for confounders, patients who had AR 

nuclear localization and FKBP5 expression had 2.9 times the hazard of dying (Table 1; HR 

2.894, 95% CI 1.396 to 6.002, p = 0.0043). 

 

AR and FKBP5 in esophageal cancer cell lines 

The expression of AR and FKBP5 protein was measured in esophageal cancer cell lines (Fig. 

3A). AR was not detected, nor induced by DHT, in OE33, OE19, JH-EsoAd1, FLO-1 or TE7. 
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FKBP5 expression was low in OE33, OE19, JH-EsoAd1 and TE7, higher in FLO-1, and not 

upregulated by DHT in any of these cell lines. 

 

Functional AR activity was not measured by transactivation assay in cell lines which were 

transiently transfected just with the synthetic minimal androgen responsive luciferase 

probasin-driven promoter tk81-PB3 (PB3-luc; Fig. 3B and 3C). No luciferase activity was 

induced over a broad concentration range of DHT (0.01 to 1000 nmol/L) in OE33 or at 10 

nmol/L in OE19, JH-EsoAd1 and FLO-1. However, transient co-transfection of both the AR 

expression vector pCMV-AR3.1 (AR) and the PB3-luc resulted in DHT induced luciferase 

expression (Fig. 3B and 3C). Expression of AR in these transiently co-transfected cells was 

confirmed by Western immunoblots (data not shown). Luciferase activity was dependent on 

the concentration of DHT, and was blocked by the anti-androgen bicalutamide. These results 

show that although functional AR was not expressed in the cell lines, they were competent 

for AR signalling. 

 

In order to examine the effect of AR signalling we stably transduced OE33 cells with AR, 

designating them OE33-AR. Expression of AR was confirmed by Western immunoblot (Fig. 

3A) and AR function was confirmed by transactivation assay (Fig. 3D). Treatment with DHT 

did not alter FKBP5 mRNA expression in the untransduced, AR-negative, OE33 cells (Fig. 

3E), but did induce a time-dependent increase in OE33-AR (Fig. 3F). Furthermore, the 

abundance of FKBP5 protein steady state levels in the OE33-AR cells was increased by DHT 

(Fig. 3A).   

 

Androgen-responsive genes in AR-positive cell line and esophageal tissues 
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To further explore the effect of functional AR in cell lines, we measured the effect of DHT 

on the expression of a panel of putative, clinically relevant androgen-responsive genes. 

Androgen-responsive genes have not been defined in EAC, so we measured expression of 

genes known to be androgen-responsive in other tissues and cell lines. DHT significantly 

increased the expression of HMOX1 (23-fold), FBXO32 (19-fold), WNT5A (4-fold), and 

VEGFA (3-fold), and induced the expression of KLK3 in the AR-positive OE33-AR, but not 

in the AR-negative OE33 (Fig. 4).   

 

To determine if this panel of androgen-responsive genes was also altered in an independent 

cohort of esophageal tissues, we looked for correlations between the genes in a publicly 

available transcriptional microarray dataset [27]. There were significant correlations between 

FKBP5 and each of the genes in the panel in EAC (Fig. 5). In contrast, there was no 

significant correlation in esophageal squamous mucosa (SQ) and the only correlations in BE 

were observed for FBXO32 and KLK3. 

 

 

DISCUSSION 

We observed AR protein expression in tumor epithelial cells in 75 of 77 patients with EAC. 

There was nuclear localisation in 91% of these. The androgen-responsive gene FKBP5 was 

expressed in 64% of these tissues, but only in those which also had nuclear localisation of 

AR. Expression of either AR or FKBP5 was associated with decreased overall survival by 

multivariable analysis. We created an AR-positive EAC cell line, OE33-AR, by stably 

transducing the gene for AR into the AR-negative OE33. We found that DHT induced a time-

dependent increase in FKBP5 expression in the OE33-AR cells, but not the AR-negative 

OE33. Also, DHT increased expression of the androgen-responsive genes HMOX1, 
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FBXO32, WNT5A, VEGFA and KLK3. Correlations between the expression of these 

androgen-responsive genes were observed in an independent cohort of EAC tissues, 

consistent with functional AR being expressed in EAC.   

 

Ours is the largest cohort to date used to investigate AR protein expression in EAC. Three 

previous studies of AR expression in EAC have produced conflicting results. Focal staining 

was reported in one of 20 patients [8], in the tumor epithelial cells in five of 11 patients with 

no stromal expression [12], and in the stroma in 13 of 18 patients with no expression in the 

tumor epithelial cells [11]. In contrast, we observed a significantly higher incidence of AR 

expression and nuclear localisation in EAC tumor epithelial cells than the previous reports. 

There are several possible explanations for the discrepancy. There may be differences in the 

sensitivity of the staining methods or reporting thresholds, particularly as the abundance of 

AR in EAC is relatively low compared to, for example, prostate or breast cancer. Two of the 

studies used a different antibody to ours [11, 12], and although these two studies used the 

same antibody, one reported no staining of AR in the tumor epithelial cells, the other staining 

in 45% of cases. Variability of positivity and staining intensity between studies is not 

unusual. AR is expressed across a wide range of cancers, but for most cancers, just as with 

EAC, the published rates of expression vary widely, for reasons that are not clear [28].  

 

To determine if the AR signalling pathway was functional in EAC, we stained for the 

androgen-responsive gene FKBP5. Expression was only found in a subset of tumors which 

had nuclear localization of AR, suggesting that AR activation was required, but not 

sufficient, for FKBP5 expression. This was consistent with our cell line data, where DHT did 

not alter FKBP5 expression in the AR-negative EAC cell lines, but did in the AR-positive 

cell line, OE33-AR. 
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One explanation for our survival data is that the expression of FKBP5 is a marker of a 

functional AR signalling pathway which alters the expression of one or more genes which 

then reduce overall survival. In the nuclear AR-positive, FKBP5-negative cells, the AR 

pathway might not be functional, or is regulating different androgen-responsive genes from 

those in the FKBP5-positive tissues. This is consistent with recent studies which show that 

AR signalling is not a simple ligand-receptor-bind to specific DNA receptor elements model. 

Rather AR, like other steroid receptors, derives cell-specific transcription activity from 

interactions with various co-regulators and DNA-binding proteins that regulate receptor 

binding, and lineage-specific chromatin organization [29]. Alternatively, FKBP5 itself may 

influence survival, but in our tissues it is only expressed in cells with a functional AR 

signalling pathway, while in other contexts it may be expressed as a result of progestin or 

glucocorticoid signalling. 

 

Overexpression of FKBP5 has been reported in a range of solid tumors [30], including 

melanoma [31], glioma [32], colon [33], and prostate [34-37]. FKBP5 can inhibit apoptosis 

and promote cell proliferation in normal, premalignant and malignant tissues. In melanoma, 

expression correlated with tumor aggressiveness and was maximal in metastatic lesions [31] 

and in glioma expression correlated with stage and overall patient survival [32]. In contrast, 

down-regulation of FKBP5 has been reported in pancreatic cancer, and decreased expression 

resulted in hyperphosphorlyation of Akt and decreased cell death following genotoxic stress 

in cell lines [38]. These reports do not detail the AR status of the cancer tissues. Thus FKBP5 

may either be acting as a surrogate marker of a particular AR activated set of genes, or it may 

be the responsible gene itself. 
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None of the four common EAC cell lines we examined expressed AR. Lack of AR 

expression in cultured cell lines does not mean that the receptor was not present in the 

primary tissue from which the cell line was derived. Protein expression of steroid receptors, 

such as AR, present in cells of the primary tissue are frequently lost from the cells following 

culture, by mechanisms that are not clearly understood [39] [40]. However, these esophageal 

cell lines expressed the necessary co-regulators for AR signalling, as they exhibited AR 

transactivation activity following either transient transfection or stable transduction with the 

AR gene. We further showed that FKBP5, HMOX1, FBXO32, WNT5A, VEGFA and KLK3 

were androgen-responsive genes in the OE33-AR cell line following treatment with DHT. 

 

This is the largest study of AR expression in EAC and it shows that in most patients tumor 

epithelial cells express AR. This is the first study to show AR to be functional in the majority, 

but not all, cases of EAC, as defined by nuclear localisation and expression of the androgen 

responsive gene FKBP5. Significantly, it was sufficiently powered to show that AR and the 

androgen-responsive gene FKBP5 were independently associated with decreased overall 

survival. The correlation between nuclear localisation of AR and expression of FKBP5 in our 

cohort of EACs and the correlations between the expression of androgen-responsive genes in 

an independent cohort of patients, suggests that AR is functional in at least the majority of 

tumors. It further suggests that AR, FKBP5 or other androgen responsive-genes influence 

survival. These findings raise the possibility of novel therapeutic options for EAC, such as 

the use of drugs which target AR signaling, or the androgen-responsive genes.   
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