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Abstract 
A new numerical approach, called the “subdomain Chebyshev spectral method” is presented for 
calculation of the spatial derivatives in a curved coordinate system, which may be employed for 
numerical solutions of partial differential equations defined in a 2D or 3D geological model. The 
new approach refers to a “strong version” against the “weak version” of the subspace spectral me-
thod based on the variational principle or Galerkin’s weighting scheme. We incorporate local non- 
linear transformations and global spline interpolations in a curved coordinate system and make 
the discrete grid exactly matches geometry of the model so that it is achieved to convert the global 
domain into subdomains and apply Chebyshev points to locally sampling physical quantities and 
globally computing the spatial derivatives. This new approach not only remains exponential con-
vergence of the standard spectral method in subdomains, but also yields a sparse assembled ma-
trix when applied for the global domain simulations. We conducted 2D and 3D synthetic experi-
ments and compared accuracies of the numerical differentiations with traditional finite difference 
approaches. The results show that as the points of differentiation vector are larger than five, the 
subdomain Chebyshev spectral method significantly improve the accuracies of the finite differ- 
ence approaches. 
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1. Introduction 
With development of computer technology, computer modeling that imitates the underground earth interior be-
comes now a powerful tool to geological, environmental and geophysical problems, e.g. numerical simulations 
of tectonic dynamics [1] [2], underground water flow or geothermal system [3]-[5], seismic wave propagation 
[6]-[9] and geo-electromagnetic fields [10] [11]. Mathematically, computer modeling seeks approximate solu-
tions of partial differential equations (PDE) that govern geological evolution or geophysical fields in the Earth, 
subject to a Dirichlet or Neumann boundary conditions. The simplest method of computer modeling is finite- 
difference approach to the partial derivatives of PDE, e.g. various high-order finite-difference formulae [12] and 
staggered grid schemes [13]. Due to simple principle and easy implementation, they become now widely used 
for many geological and geophysical problems [14] [15]. However, these methods often employ regular grids, 
and consequently suffer from complex geometries of geological models, e.g. various free-surface topography, 
such as hill, trench and folded rocks, which are often encountered in practice. In these cases, the finite-difference 
approach has to refine the free-surface topography and subsurface interfaces by stepwise curves or stepwise 
blocks [16], which cannot exactly match the geometries of geological models. To overcome the disadvantage, 
many researchers prefer the so-called “weak” solutions of PDE, i.e. finite-element method [17] or subspace spec- 
tral element method [18] [19], which is based on the variational principle or Galerkin’s weighting scheme. Al-
ternatively, one has to define a set of coordinate transformations and adapt the finite-difference approach to a 
curved coordinate system so as to match the free-surface topography and subsurface interfaces of geological 
models [20]-[22]. 

Spectral method, e.g. Chebyshev spectral method is superior to the traditional finite-difference approach in 
numerical differentiations because of exponential convergence [23]. Due to its high accuracy, easy computer 
programming, and applicability to complex model geometries, the spectral method becomes one of the most 
popular accurate solvers of PDE [23]-[25]. However, the most disadvantageous aspect of the spectral methods is 
expensive consumption of computer memory and CPU time, because it employs global collocation points in 
calculations of the spatial derivatives, resulting in a fully filling-in differentiation matrix [23]. Therefore, it suf-
fers the disadvantage in computer modeling for a large 3D geological or geophysical model [24] [25]. 

In this paper, we present a subdomain Chebyshev spectral method to calculate spatial derivatives in a curved 
coordinate system, which is similar to subspace spectral element method (weak form) [18] that divides the global 
domain into subdomains (elements) exactly matching the geometry of the model, and then Chebyshev points are 
applied to discretization of physical quantities and calculation of the spatial derivatives in each subdomain. The 
Chebyshev collocation points for the spatial differentiations only involve the local physical samples instead of 
the global values; therefore, the method saves huge computer memory for a 3D computer modeling. Such dis-
cretization results in a sparse assembled matrix like the “weak” version of subspace spectral element method [18] 
[19] and Gaussian quadrature grid approach [9]. We conduct 2D and 3D synthetic experiments and compare the 
results with the finite-difference approaches. The results show that the new method is superior to the traditional 
finite-difference method in numerical differentiations and applicable to complex geological models having arbi-
trary free-surface topography and multiple subsurface interfaces. 

2. Strong Solution 
In general, computer modeling is to solve the following PDE [26]: 

( ) ( ), , ,    
i i jx x x∂ ∂ = ∈ΩL m F s x x ,                            (1) 

subject to some Dirichlet or Neumann boundary conditions. Here ( )⋅L  is often a second-order linear differen-
tial operator depending on model vector m and partial derivatives 

ix ix∂ = ∂ ∂  and 2
i jx x i jx x∂ = ∂ ∂ ∂  (i, j = 1, 

2, 3). The vectors ( )1 2 3, ,x x x=x  and ( )1 2 3, ,F F F=F  represent location and physical field in a 2D or a 3D 
model domain Ω. The right-hand side vector ( )s x  is considered as a source of the physical field F defined in Ω. 
The vectors F and m are different physical quantities according to geological or geophysical problems, e.g. in 
tectonic dynamics, F may consist of pressure field p, deviatoric stress σ ′  and velocity field v, and m comprises 
the density ρ  and viscosity η : { },ρ η=m  of the Earth [1] [2]; in seismic wave modeling, F is the ground 
displacement vector u, or composed of speed v and stress tensor σ , and m includes density ρ  and elastic 
moduli ijklc : { }, ijklcρ=m  [8] [9]; in geo-electromagnetics, F becomes either electric field E or magnetic field 
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H, and m involves electric permittivity ε , magnetic permeability µ  and conductivity σ : { }, ,ε µ σ=m  [7] 
[10] [11]. All these quantities are functions of the spatial coordinates ( )1 2 3, ,x x x=x . In order to match free-surface topography, e.g. hill, trench and ridge, one may employ the global coordinate 
transformations [20]-[22]: 

( ) ( ),    , 1, 2,3i i kx x i kξ= =                                  (2) 

mapping the computational coordinates ( )1 2 3, ,ξ ξ ξ  into the physical coordinates ( )1 2 3, ,x x x . In general, we 
assume F be a component of the vector F, and according to the chain law, we have the first and second deriva-
tives: 

i i kx x kF Fξξ∂ = ∂ ⋅∂ ,                                    (3) 

i j i j k l i j kx x x k x l x x kF F Fξ ξ ξξ ξ ξ∂ = ∂ ⋅∂ ⋅∂ + ∂ ⋅∂ .                          (4) 

Here, summation convention of the repeated integer subscripts k and l has been applied. Accordingly, the dis-
crete versions of Equations (3) and (4) can be written in the following forms 

i ix xF∂ ≈ D F                                        (5) 

i j i jx x x xF∂ ≈ D F                                       (6) 

where 

( )i i kx x k ξξ= ∂ ⋅D D                                      (7) 

( ) ( )i j i j k l i j kx x x k x l x x kξ ξ ξξ ξ ξ= ∂ ⋅∂ + ∂D D D                             (8) 

Here, 
jx kξ∂  (or 

jx lξ∂ ) and 
i jx x kξ∂  are components of the Jacobian and Hessian matrices respectively, 

both can be analytically calculated from the given Equation (2); 
kξ

D  and 
k lξ ξD  are the first and second diffe-

rentiation vectors and have the following generalised forms: 
( ){ } ( )
( ){ } ( ){ }

,    1, 2, , ,

,    1 ,  1, 2, , ,  1, 2, , .

i
i

i l
l l i lp

d N

d p N N N

ξ
ξ α ξ

ξ ξ
ξ ξ ξ ξ ξ

α

α β α β

= =

= = − + = =

i

i

D

D



 

              (9) 

Here, ( )id ξ
α  and ( )i l

pd ξ ξ  stand for components of the vectors ξi
D  and 

lξ ξi
D ; 

i
Nξ  and 

l
Nξ  are the number 

of points in the kξ -direction and lξ -directions, e.g. in Cartesian system, if Equation (2) is i ix ξ= , then the 
Jacobian and Hessian matrices become 

ix k ikξ δ∂ =  and 0
i jx x kξ∂ =  respectively, so Equations (7) and (8) are  

reduced to the simplest forms: 
ix ξ=

i
D D  and 

i j jx x ξ ξ=
i

D D , which become the standard finite-difference or  

spectral differentiation vectors [23]. According to Equation (9), the discrete forms of the field quantity F are ob-  
tained, i.e. { }Fα=F , ( )1,2, ,

k
Nξα =   and { }pF=F , ( ( )1

l
p Nξα β= − + , 1, 2, ,

il
Nξα =  ,  

1, 2, ,
l

Nξβ =  ), corresponding to 
kξ

D  and 
lξ ξk

D , respectively. 
Substituting Equations (5) and (6) into (1), and then applying the PDE to every point { }, 1, 2, ,p p N∈Ω =x   

results in 3N linear equations: 
( ) ( )( ) ( ) ( ) ( ), , ,    1, 2, ,

i i j

p p p
k px x x p N= =L m D D F s x  ,                     (10) 

which have 3N unknowns of ( ) ( ) ( ) ( )( )1 2 3, ,p p p p=F F F F  and gives a linear system. Solving the linear system sub-
ject to Dirichlet or Neumann boundary conditions, one obtains the so-called “strong” numerical solutions: 

( )p
p= ∑F F  due to the same smoothness of F  as F defined in Equation (1). If ( )p

ixD  and ( )
i j

p
x xD  are deter-

mined by the neighbour points of px , e.g. using a fourth-order finite-difference approach, the assembled matrix 
of Equation (10) becomes sparse and saves much computer memory. Then, the linear system can be efficiently 
solved by iterative or parallel solvers for a large 3D geological model [27] [28]. Therefore, the crucial step of 
geological or geophysical modeling is to find accurate and efficient differentiation vectors 

ixD  and 
i jx xD  in 

terms of Equations (7) and (8). 
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It should be noticed that the differentiation vectors 
ixD  and 

i jx xD  given by Equations (7) and (8), are appli-  
cable only if the Jacobian ( )ix kξ∂  and Hessian ( )i jx x kξ∂  matrices are calculable in Ω. This means that Equ-  

ation (2) must be smooth (differentiable) in the domain. In the next section, we present a set of the local coordi-
nate transformations which are applicable for arbitrary free-surface topography and make the numerical diffe-
rentiation vectors 

ixD and 
i jx xD  calculable. 

3. Coordinate Transformation 
In order to exactly match free-surface topography and subsurface interfaces of the Earth, we divide the model 
domain Ω  into non-overlapping subdomains, e.g. in 3D case, we have 

[ ] ( ) ( )1 1 1, , , , ,ijk i i j j k kx x y y z x y z x y− − − Ω = × ×      ( )1 ,1 ,1x y zi N j N k N≤ ≤ ≤ ≤ ≤ ≤ , where ( ),
zNz x y  and 

( ),kz x y  are the free-surface topography and subsurface interfaces if they are present. If there is not any physi-
cal interface in the model domain, ( ),kz x y  are pure mathematical boundaries of the subdomains. In each 
subdomain, we write Equation (2) into the following forms: 

( ) ( )

ˆ2 ,
ˆ2 ,

ˆ, 2 , ,

i i

j j

k k

x x x
y y y

z z x y z x y

ξ
η

ς

= ∆ +

= ∆ +

= ∆ +

                              (11) 

which maps the local coordinates ( ) [ ] [ ] [ ], , 1,1 1,1 1,1ξ η ς ∈ − × − × −  into the global coordinates ( ), ,x y z . Here 
{ }, ,i j kx y z∆ ∆ ∆  and { }ˆ ˆ ˆ, ,i j kx y z  represent the size and central point of the subdomain ijkΩ , respectively, e.g. 
in the z-direction, we have 

( ) ( )
( ) ( )

1

1

, , ,

ˆ , , 2,
k k k

k k k

z z x y z x y

z z x y z x y
−

−

∆ = −

= +  
                             (12) 

and both are functions of x and y. Therefore, Equation (11) gives non-zero components of the Jacobian matrix: 

( ) ( )
2 ,    2 ,    2 ,

ˆ2 ,    , ,
x i y j z k

p p k p k k

x y z

z z z p x y

ξ η ς

ς ς

∂ = ∆ ∂ = ∆ ∂ = ∆

 ∂ = − ∂ ∆ + ∂ ∆ = 
                      (13) 

and non-zero components of the Hessian matrix: 
( )

( ) ( ) ( ) ( ) ( ){ }
( )

2

2

2 ,

ˆ ˆ ˆ2 2 ,

           , , .

ipz p k k

pq k pq k p k q k k p k q k q k p k pq k

z z

z z z z z z z z z z

p q x y

ς

ς ς

∂ = − ∂ ∆ ∆

   ∂ = − ∆ ∂ ∆ − ∂ ∆ ∂ ∆ ∆ − ∂ ∆ ∂ + ∂ ∆ ∂ + ∂   
=

  (14) 

Equations (13) and (14) indicate that the Jacobian and Hessian matrices depend on the derivatives ( )p kz∂ ∆ , 
ˆp kz∂ , ( )pq kz∂ ∆  and ˆpq kz∂ ( ),p x y= . According to Equation (12), these derivatives require the subdomain  

boundaries ( ){ }, ,kz x y k∀  to be differentiable in the global domain. For this requirement, we apply cubic-  

spline interpolation functions to the boundaries ( ),kz x y  [29] [30], e.g. in a 3D case, 

( ) ( ) ( ) ( ) ( )
4 11

1 1
, 1

, ,    ,ijk
k i j ijkz x y a x x y y x y

βα
αβ

α β

−−
− −

=

= − − ∈Ω∑ ,                 (15) 

where ( )ijkaαβ  are coefficients defined in the subdomain ijkΩ  and determined from the known samples  

( ),k i jz x y ( ){ }, ,  1, 2, , ,  1, 2, ,i j x yx y i N j N= =   at the boundaries of the subdomains. Spline interpolation 
theory has shown that arbitrary scattered or regularly-distributed free-surface topography ( ),

zN i jz x y  or sub-
surface interface ( ),k i jz x y  can be expressed by Equation (15), and these expressions are differentiable eve-
rywhere in the model domain. Therefore, Equation (15) guarantees the partial derivatives ( )p kz∂ ∆ , ˆp kz∂ , 

( )pq kz∂ ∆  and ˆpq kz∂  ( ),p x y=  for computing the Jacobian and Hessian matrices involved in Equations (13) 
and (14). 

4. Subdomain Chebyshev Spectral Method 
In the transformed subdomain [ ] [ ] [ ]1,1 1,1 1,1ijkΩ = − × − × − , we apply Chebyshev points [23] 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

cos π 1 ,    1, 2, , ,

cos π 1 ,    1, 2, , ,

cos π 1 ,    1, 2, , ,

N N N

N N N

N N N

α ξ ξ ξ

β η η η

ν ς ς ς

ξ α α

η β β

ς ν ν

 = − − = 
 = − − = 
 = − − = 







                     (16) 

to three coordinates ( ), ,ξ η ς , where Nξ , Nη  and Nς  are numbers of the points in the three directions. Geo- 
metrically, these points are visualized as the projections on [ ]1,1−  of equispaced points on the upper half of the 
unit circle. Figure 1 gives the two subdomains of the 1D case. One can easily extend it to 2D and 3D cases. 
Substituting the Chebyshev points into equation (11), one obtains the global coordinates ( ), ,x y zα β ν  that de- 
monstrate a one-to-one mapping between the two coordinate systems. All these Chebyshev points form a grid 
that discretizes the model parameters m and physical field vector F in Equation (1). This grid may be called 
“subdomain Chebyshev differentiation grid”, which is similar to the “Gaussian quadrature grid” we used to 
sample the physical quantities in the elements [8] [9]. Basing on the subdomain Chebyshev differentiation grid, 
we construct the Lagrange interpolation polynomials with the Chebyshev points in the subdomain, so that we 
have the first differentiation vectors 

( ) ( ) ( ){ } ( )
( ) ( ) ( ){ } ( )
( ) ( ) ( ){ } ( )

,    1, 2, , ,  , ,

,    1, 2, , ,  , ,

,    1, 2, , ,  , ,

l l l N

l l l N

l l l N

ξ α β ν ξ

η α β ν η

ς α β ν ς

ξ η ς α β ν

ξ η ς β α ν

ξ η ς ν α β

′= = ∀

′= = ∀

′= = ∀

D

D

D







                    (17) 

and second differentiation vectors 

( ) ( ) ( ){ } ( )
( ) ( ) ( ){ } ( )
( ) ( ) ( ){ } ( )
( ) ( ) ( ){ } ( )
( ) ( ) ( ){ }

,    1, 2, , ,  , ,

,    1, 2, , ,  , ,

,    1, 2, , ,  , ,

,    1, 2, , ,  1, 2, , ,  ,

,    1, 2, , ,  1, 2, , ,

l l l N

l l l N

l l l N

l l l N N

l l l N N

ξξ α β ν ξ

ηη α β ν η

ςς α β ν ς

ξη α β ν ξ η

ξς α β ν ξ ς

ξ η ς α β ν

ξ η ς β α ν

ξ η ς ν α β

ξ η ς α β ν

ξ η ς α ν

′′= = ∀

′′= = ∀

′′= = ∀

′ ′= = = ⋅⋅⋅ ∀

′ ′= = = ⋅⋅⋅

D

D

D

D

D









( )
( ) ( ) ( ){ } ( )

 ,

,    1, 2, , ,  1, 2, , ,  ,l l l N Nης α β ν η ς

β

ξ η ς β ν α

∀

′ ′= = = ⋅⋅⋅ ∀D 

              (18) 

where ( ) ( ) ( ){ }, ,l l lα β νξ η ς  are cardinal functions, ( ){ }, , ,pl p α β ν′ ⋅ =  and ( ){ }, , ,pl p α β ν′′ ⋅ =  are their first 
and second derivatives. These differentiation vectors have exponential convergences of numerical differentia-
tions in the subdomains and avoid the Runge phenomenonthe errors increase exponentially in the equispaced 
case [23]. 

Substitutions of Equations (13) and (17) for (7), we obtain general forms of the first differentiation vectors 
with respect to the global coordinates: 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

ˆ2 2 ,

                         1, 2, , ,  1, 2, , ,  ,

ˆ2 2 ,

        

x x x x

i x k x k k

y y y y

j y k y k k

l l l x z z l l l z

N N

l l l y z z l l l z

ξ η ς

α β ν α β ν

ξ ς

ξ η ς

α β ν α β ν

ξ η ς

ξ η ς ς ξ η ς

α ν β

ξ η ς

ξ η ς ς ξ η ς

= ∂ ⋅ + ∂ ⋅ + ∂ ⋅

′ ′ = ∆ − ∂ ∆ + ∂ ∆ 

= = ∀

= ∂ ⋅ + ∂ ⋅ + ∂ ⋅

′ ′ = ∆ − ∂ ∆ + ∂ ∆ 

D D D D

D D D D

 

( )

( ) ( ) ( ){ } ( )

                 1, 2, , ,  1, 2, , ,  ,

2 ,      1, 2, , .
z z z z

k

N N

l l l z N

η ς

ξ η ς

α β ν ν

β ν α

ξ η ς

ξ η ς ν

= = ∀

= ∂ ⋅ + ∂ ⋅ + ∂ ⋅

′= ∆ =

D D D D

 



          (19) 

Similarly, substituting Equations (13), (14) and (19) into (8), we obtain the second differentiation vectors with 
respect to the global coordinates { }, , , , ,xx yy zz xy xz yzD D D D D D . These substitutions are more or less tedious and 
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involve computations of the second derivatives ( ),xx kz x y∂ , ( ),yy kz x y∂  and ( ),xy kz x y∂  for ( )pq kz∂ ∆  and 
ˆpq kz∂ . We omitted them here for saving space. However, the following simple method may be used to calculate 

these second differentiation vectors, e.g. according to Equation (5), we have following identity: 

( )
( ) ( ) ( )
( ) ( ) ( )( )

( ) ( )

T

1 2

T

1 2

, , ,

, , ,

  ,

xy x y

x y y y N

y y y
x N

x y

d F d F d F

d d F

ξ

ξβ β β β β β

α β αβ

=

 =  
 

=

=

D F D D F

D D F D F D F

D





                         (20) 

and obtain 

( ){ } ( ) ( ){ } ( )( ),    1 ,  1, 2, , ,  1, 2, ,xy xy x yp
p N N Nη ξ ηα β

α β α β= = = − + = =D D D D          (21) 

Here, we used ( ) ( )x
x dαα

=D  and ( ) ( )y
y dββ

=D  to stand for their components so as to clearly indicate the  

relationship between xyD  and { },x yD D . Calculating yxD F , gives the same result as Equation (21). This 
shows that the second differentiation vector xyD  given by Equation (21) satisfies Clairaut’s theorem xy yx=D D , 
and can be obtained by multiplication of two first differentiation vectors xD  and yD . The advantage of Equa-
tion (21) is avoidance of computing the second derivatives of coordinate transformations, so that computation of 
the second differentiation vectors becomes much simpler than using Equation (6). 

It should be noticed that Equations (19) and (21) are valid for the points inside the subdomains. At a boundary 
point of the subdomains, they may yield different values of the partial derivatives due to multiple subdomains’ 
sharing. For the “strong” solution, the partial derivatives at the boundary points must be unique, for which we 
pick up half of Chebyshev points from the connecting subdomains (see points in the “boundary domain” in Fig-
ure 1) and construct the Lagrange interpolation polynomials given by Equation (17) and (18). Consequently, 
Equations (19) and (21) become well defined (uniqueness) for the partial derivatives at the boundary points. 
Apparently, the differentiation vectors at the boundary points differ from the ones at the points inside the sub-
domains due to the different distributions of Chebyshev points in the boundary domains and the ordinary sub-
domains (see Figure 1). This difference does not break down Equations (19) and (21), and on the contrary, it 
makes them applicable to any point in the whole domain. We call these differentiation schemes the “subdomain 
Chebyshev spectral method”, because it applies the Chebyshev points to the subdomain rather than the globe 
domain presented in standard spectral method [23]. Particularly, if we replace the Chebyshev points with equis-
paced points in the subdomains, Equations (19) and (21) become the central finite-difference approaches. It 
shows that the subdomain Chebyshev spectral method may regress to the finite-difference approaches. 

5. Numerical Experiments 
To demonstrate the capability of the new approach, we designed a 2D and a 3D geological model (see Figure 2). 
 

 
Figure 1. Illustration of the 1D subdomain Chebyshev 
differentiation scheme. In each subdomain, five Cheby-
shev points are applied. At a boundary point, half Che-
byshev points are taken from the neighbour subdomains 
(see the points in “boundary domain”). 

Sub-domain  1 Sub-domain  2

Boundary domain

Boundary
point
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Figure 2. 2D and 3D geological models used for numerical experiments. The subdomain 
Chebyshev differentiation grids are plotted in the backgrounds and applied to compute the 
partial derivatives. 

 
The former is a valley and the latter represents a ridge, both have two interfaces under the ground. With the 
given model geometries, we used subdomain Chebyshev points to discretise the model domain and obtained the 
subdomain Chebyshev differentiation grids. Figure 2 shows the grids of the two models, from which one can 
see 10 × 8 and 10 × 10 × 10 bent subdomains of the 2D and 3D geological models, respectively. The grids ex-
actly match free-surface topography and subsurface interfaces. 

In order to examine the accuracy of the subdomain Chebyshev spectral method, we employed the following 
testing functions as the physical quantities defined in the two models: 

( ) ( ) ( )2D : , cos 2π cos 2πx zf x y x L z L=                             (22) 

( ) ( ) ( ) ( )3D : , , sin 2π cos 2π sin 2πx y zf x y z x L y L z L=                        (23) 

Here, Lx, Ly, and Lz are lengths of the model domain in three coordinate directions. From the two functions, 
one can analytically calculate the first and second partial derivatives, which are used to check the accuracies of 
the subdomain Chebyshev spectral method. Figure 3 gives five partial derivatives ( ), , , ,x z xx zz xzf f f f f∂ ∂ ∂ ∂ ∂  
(left column) and their absolutely relative errors (right column) of the 2D model, computed by the presented 
method. In these experiments, we applied seven Chebyshev points ( )7N Nξ ζ= =  in the horizontal and vertical 
directions in each subdomain, and 11 points for the 1D spline interpolation functions matching the free-surface 
topography and subsurface interfaces. The left column shows that x f∂  and xz f∂  are odd functions of x; 

z f∂ , xx f∂  and zz f∂  are even functions of x; and xx f∂  equals zz f∂ , all of which are predicted from exact 
derivatives of Equation (22). The right column demonstrates that accuracies of the derivatives with respect to the 
vertical direction, i.e. z f∂  and zz f∂  are much higher than the derivatives with respect to horizontal direction, 
i.e. x f∂ , xx f∂  and xz f∂ . This is because of the linear transformation from ζ  to z and non-linear relation-
ship between ζ  and x in Equation (11), which defines the changes of free-surface topography and subsurface 
interfaces in the horizontal direction. However, one can find that all absolutely relative errors are less than 0.3%. 
These results prove that the subdomain Chebyshev spectral method can provide accurate spatial derivatives in a 
2D geological model. 

In order to compare the subdomain Chebyshev spectral method with the traditional finite-difference approach, 
we repeated the above numerical experiments with finite-difference method and compared the average and 
maximum absolutely relative errors of the two methods. Meanwhile, five algorithms have been implemented 
three finite-difference approaches (FDM0, FDM1, FDM2) and two subdomain Chebyshev spectral methods 
(SCSM1, SCSM2). Here, the number “0” denotes the algorithm applying Lagrange interpolation functions to the 
free-surface topography ( )

zNz x  and subsurface interfaces ( )kz x  instead of spline interpolation functions. 
The integers “1” and “2” stand for the algorithms using Equation (8) and (21), respectively, for computing the 
second differentiation vectors, i.e. xxD , xzD  and zzD . As mentioned above, the difference between the two 
algorithms is inclusion or exclusion of the high-order derivatives of the free-surface topography and subsurface 
interfaces, i.e. ( ),xx kz x y∂    , ( ),yy kz x y∂     and ( ),xy kz x y∂    . 

Figure 4 shows the average absolutely relative errors of five partial derivatives computed by the subdomain-
Chebyshev spectral methods and finite-difference approaches. From these results, four facts are observed: firstly,  
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Figure 3. First and second partial derivatives and their absolutely relative errors computed 
by subdomain Chebyshev spectral method for the 2D geological model shown in Figure 2. 
Seven Chebyshev points were applied to each subdomain. 

 
replacement of the global spline interpolations with local Lagrange interpolations, to match free-surface topo-
graphy and subsurface interfaces, will lead numerical differentiation to fail in convergence (see FEM0-curves in 

x∂ -diagram, xx∂ -diagram and xz∂ -diagram of Figure 4). This is because Lagrange interpolations of the topo-
graphy and subsurface interfaces cannot guarantee differentiability of the coordinate transformations defined by 
Equation (11) [29], which are required in the computation of the differentiation vectors 

ixD  and 
i jx xD  given 

by Equations (7) and (8); secondly, the convergence curves of the derivatives z f∂ and zz f∂ computed by the 
two methods are slightly different (see z f∂ -diagram and zz f∂ -diagram in Figure 4). This is because of linear 
transformation from ζ  to z  (see Equation (11)); thirdly, the two algorithms of FDM2 and SCSM2 performs  

fx∂

fz∂

fxx∂

fzz∂

fxz∂
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Figure 4. Convergence curves of the 2D geological model. FDM0, FDM1 and FDM3 are 
three finite-difference methods. SCSM1 and SCSM2 are two subdomain Chebyshev spectral 
methods. “0” denotes the scheme that applies Lagrange interpolations to free-surface topo-
graphy and subsurface interfaces. “1” and “2” stand for the algorithms using and not using 
high-order derivatives in coordinate transformations, respectively. 

 
better convergences than the algorithms of FDM1 and SCSM1 in computations of the second derivatives, be-
cause the former does not require high-order derivatives ( )xx kz x∂     and actually reduces the order of smooth- 
ness in the coordinate transformations; finally, increasing the points in the subdomains (larger than five), the 
subdomain Chebyshev spectral methods significantly improve accuracies of the finite-difference approaches, 
and show achievement of almost one-order higher accuracies than the finite-difference methods. 

In the 3D case (see Figure 2), we once again applied the subdomain Chebyshev spectral method to compute 
nine partial derivatives ( ), , , , , , , ,x y z xx yy zz xy xz yzf f f f f f f f f∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  and their absolutely relative errors. 
Figure 5 shows an example in which seven points were also employed for the subdomain Chebyshev differen-
tiation vector, and 10 × 10 points were applied to 2D cubic spline interpolations defining the free-surface topo-
graphy ( ),

zNz x y  and subsurface interfaces ( ),kz x y . In this figure, we give two panels: (a) and (b), present-
ing the computed derivatives and absolutely relative errors, respectively; both have three sections at y = −20, 0, 
+20 km showing the patterns of the derivatives and distributions of the absolutely relative errors in the model 
domain. From these results, one can see that patterns of the numerical results are completely consistent with the 
analytic derivatives, e.g. Figure 5(a) show that xz f∂  is an even function of x and y and that yz f∂  is an odd 
function of x and y; meanwhile, xx f∂  equals yy f∂ . Figure 5(b) shows that most of the errors appear at the 
boundaries of the subdomains and places of the rough free-surface and subsurface interfaces; the maximum ab-
solutely relative errors are less than 0.7% for the second derivatives. These performances show that the subdo-
main Chebyshev spectral method is an accurate tool for spatial derivatives in such a 3D geological model. 

Figure 6 gives overall comparisons of the subdomain Chebyshev spectral method with the finite-difference 
approaches in the 3D case. The average absolutely relative errors of nine spatial derivatives are plotted against 
points of the differentiation vectors. These results exhibit similar performances to the 2D case, e.g. the conver- 
gence curves of z f∂  and zz f∂  have slight difference between two methods due to the linear transformation 
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xx f∂                                      
yy f∂                                       zz f∂  

 
X-distance (km)                           X-distance (km)                          X-distance (km) 

(a) 

xx f∂                                      
yy f∂                                       zz f∂  

 
(b) 

Figure 5. Second derivatives (a) and their absolutely relative errors (b) computed by the subdomain Chebyshev spectral 
method for the 3D geological model shown in Figure 2. Seven points in each direction were applied to the subdomains. 
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Figure 6. Convergence curves of four numerical differentiation schemes: SCSM1 and SCSM2 are two algorithms of sub-
domain Chebyshev spectral method, FDM1 and FDM2 are two finite-difference approaches. Here, the integers “1” and “2” 
denote the algorithms involving and excluding the high-order derivatives of spline interpolations. 

 
from ζ  to z. Other curves demonstrate that, as the points of differentiation vectors are larger than 5, the sub-
domain Chebyshev spectral method significantly improve accuracies of the finite-difference approaches. There-
fore, through the 3D experiments, we once again show that the subdomain Chebyshev spectral method is supe-
rior to the finite-difference approximation in numerical differentiation with curved coordinate system. 

6. Conclusions 
We have demonstrated a subdomain Chebyshev spectral method to numerical differentiations in a curved coor-
dinate system, which may be employed to seek a “strong” solution of PED defined in ageological or a geophys-
ical model. The new method employs a set of non-linear local coordinate transformations, global spline interpo-
lations and subdomain Chebyshev points to make the discretization grid automatically match free-surface topo-
graphy and subsurface interfaces, and guarantees the numerical solution converging to the “strong” solution of 
partial differential equations. The new method possesses advantages from the traditional finite-difference ap-
proaches, i.e. simple discretization procedure and sparse assembled matrix, but it has stronger capability to deal 
with complex geometries of geological models and better accuracies in numerical differentiations. Methodolog-
ically speaking, the subdomain Chebyshev spectral method may replace the finite-difference approaches in geo-
logical or geophysical computer modelling and enables us to easily hand free-surface topography and signifi-
cantly improve accuracy of modelling results. 

2D and 3D synthetic experiments demonstrate the accuracies and capabilities of the subdomain Chebyshev 
spectral method. As points of the differentiation vectors are large than 5, the subdomain Chebyshev spectral 
method can reach one-order higher accuracy in numerical differentiations than the traditional finite-difference 
approaches in curved coordinates systems. Two algorithms of the subdomain Chebyshev spectral method (SCSM1, 
SCSM2) are both valid for numerical differentiations in PDE, but the algorithm SCSM2 is more efficient in 
computations than SCSM1, due to exclusion of computing the high-order derivatives of the coordinate trans- 
formations. 
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