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The capability of manipulating light at subwavelength scale has fostered the applications of flat

metasurfaces in various fields. Compared to metallic structure, metasurfaces made of high

permittivity low-loss dielectric resonators hold the promise of high efficiency by avoiding high con-

ductive losses of metals at optical frequencies. This letter investigates the spectral and angular char-

acteristics of a dielectric resonator metasurface composed of periodic sub-arrays of resonators with a

linearly varying phase response. The far-field response of the metasurface can be decomposed into

the response of a single grating element (sub-array) and the grating arrangement response. The anal-

ysis also reveals that coupling between resonators has a non-negligible impact on the angular

response. Over a wide wavelength range, the simulated and measured angular characteristics of the

metasurface provide a definite illustration of how different grating diffraction orders can be selec-

tively suppressed or enhanced through antenna sub-array design. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901735]

The development of flat metasurfaces has recently

become a flourishing research field that demonstrates the

exciting functionality of nanostructures to manipulate and

control light at subwavelength scale. Conventionally, optical

components, such as lenses and waveplates, rely on a differ-

ence in optical path lengths for beamshaping. On the other

hand, metasurfaces manipulate transmitted or reflected wave-

fronts by modifying their phase through local reso-

nance.1,22,23 This degree of freedom enables us to shape the

wavefront in unusual ways at virtually any frequency

range.2,24 Therefore, flat metasurfaces not only have advant-

age of compactness but also open perspective for the creation

of novel devices, with significant impact on various fields

such as holography, imaging, sensing, communications, and

high performance data processing.3–5

In general, metasurfaces are created from subwave-

length resonant elements arranged with subwavelength peri-

ods on a planar surface. These resonant elements can impart

phase discontinuities, ranging from 0 to 2p, to the incident

waves. The local phase response can be adjusted by changing

geometrical parameters such as size, shape, and orientation

of the resonators. Under the effective medium consideration,

the operation of metasurfaces can be interpreted by using the

Huygens’ principle, for which each point on the surface is

treated as a new source of a spherical wave with a controlla-

ble phase response. As for metasurfaces operated in reflec-

tion, the design concept is closely related to the reflectarray

theory developed in the microwave frequency range.6

Most existing metasurfaces are constructed from metallic

resonators. However, as the operation frequency of

metasurfaces approaches the visible regime, metals become

lossy owing to the plasmonic effect.7 As an alternative, high

permittivity dielectric resonators operate via displacement

currents instead of electric currents as in their metallic coun-

terpart. Thus, they do not suffer from the Ohmic loss in met-

als.7–9,21 Recently, metasurfaces based on dielectric resonators

have attracted considerable research interests.10–15 In our ear-

lier study,10 a dielectric resonator metasurface for beam

deflection was experimentally validated for operation at a sin-

gle wavelength of 633 nm. In this letter, the spectral and angu-

lar responses are experimentally observed via visible-light

spectroscopy. Further, its observable responses are analyzed

in relation to the diffraction and array theories.16

In brief, the metasurface is composed of cylindrical

nano-size dielectric resonators patterned on a silver film. The

dielectric resonators are made of TiO2 (titanium dioxide), a

material that combines manufacturability at nano-scale, high

relative permittivity (�rk ¼ 8:29 and �r? ¼ 6:71), and low

loss (tan d¼ 0.01) at the desired wavelength.10 The phase of

the reflected beam is controlled by varying the diameter of the

dielectric resonators across the reflective surface. The phase

response as a function of the resonator diameter can be deter-

mined from infinite uniform arrays as shown in Fig. 1(a). By

properly designing the lattice size and dimensions of the reso-

nators, the phase change can nearly cover a 360� cycle. Phase

wrapping allows a periodic design consisting of sub-arrays,

each with only a few resonators. In the realized design, six

dielectric resonators with a lattice constant of 310 nm and

height of 50 nm have been selected to form a sub-array with a

phase gradient of D/¼ 60�. The selected diameters of cylin-

drical resonators are indicated as the red dots in Fig. 1(a). As

shown in Fig. 1(b), the gradient metasurface is designed fora)Electronic mail: christophe.fumeaux@adelaide.edu.au

0003-6951/2014/105(19)/191109/4/$30.00 VC 2014 AIP Publishing LLC105, 191109-1
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beam deflection at 19.9� away from specular reflection

according to the equation derived from the reflectarray

theory17

sin h ¼ D/
k0d

; (1)

where h is the deflection angle, k0 is the free-space wave-

number at 633 nm, and d is the distance between the centres

of two adjacent elements (i.e., lattice constant). Fig. 2(a)

shows a render of the designed dielectric metasurface. A

scanning electron micrograph of the fabricated metasurface

is shown in Fig. 2(b), along with the actual dimensions. The

maximum difference between designed and fabricated

dielectric resonator dimensions is about 6%.

Because of the presence of the metallic plane, the

dielectric resonators operate only in their magnetic dipole

mode when excited by a normally incident plane wave, as

shown in Fig. 3. This magnetic dipole mode is qualitatively

similar to the fundamental HEM11d mode of a dielectric res-

onator at microwave frequencies.18 However, whereas at

microwave frequencies the metal plane can be modeled as a

perfect electric conductor, at optical frequencies the electric

field can penetrate into the metal and couple with collective

electron oscillations or surface plasmons, as observable from

Fig. 3(b). This effect prevents a direct scaling behavior of

the optical dielectric resonators by reducing the size of

dielectric resonators.7

The far-field spectral and angular response of the meta-

surface can be analyzed by using grating and array theories.

According to the diffraction theory,16 the response of a sin-

gle grating element (sub-array) is convolved with the grating

arrangement in the near-field. This convolution in the near-

field translates into the product of the two angular responses

after Fourier transformation into the far-field.

Grating: In the realized metasurface, the periodicity K
is defined by the sub-arrays arrangement, i.e., K¼ 1.86 lm

for the considered 6-element sub-array. The pattern of this

grating is calculated independently using the array factor as

defined in antenna theory.19 This results in a first order dif-

fraction towards 19.9� at the wavelength of 633 nm, which

corresponds to the designed deflection angle according to the

reflectarray theory Eq. (1). The spectral far-field behavior of

this grating is shown in Fig. 4(a), where the grating lobes or

diffraction orders m¼�1, 0, and þ1 are clearly identified.

The results are shown here for an arrangement of N¼ 5 peri-

odic repetitions and the diffracted beam width will decrease

with an increase in the aperture size, i.e., the number of sub-

arrays. Side lobes characteristic of antenna arrays are clearly

observed when using a plane wave excitation.

Far-field pattern of a single sub-array: In the simula-

tion with the Lumerical FDTD Solutions software, one

sub-array composed of the six resonators with periodic boun-

daries is excited with a wide band plane wave at normal inci-

dence. The spectral scattering behavior of a single sub-array

is shown in Fig. 4(b). Using the terminology of antenna tech-

nology, the represented pattern is the so-called “embedded

patterns,” i.e., it is retrieved for a single element (sub-array)

embedded in an infinite periodic arrangement that is respon-

sible for edge coupling. In other words, periodic boundaries

are utilized to maintain the same coupling for the first and

last resonators. The far-field pattern in Fig. 4(b) is the contri-

bution of one such sub-array. The sub-array pattern shows a

deflected beam pointing towards around 20� at the targeted

wavelength, where the elements size are chosen according to

FIG. 1. (a) Numerically resolved phase responses of dielectric resonators at

633 nm wavelength. The responses vary as a function of the resonators diam-

eter, for a fixed height of 50 nm and lattice constant of d¼ 310 nm. The dots

indicate the selected diameters for a periodic metasurface made of 6-element

sub-arrays. (b) Schematic of a deflected light wavefront manipulated by six

resonators.

FIG. 2. (a) Schematic showing a partial view of a dielectric metasurface

made of 6-element sub-arrays. (b) Scanning electron micrograph of fabri-

cated metasurface with measured resonators size and lattice constant with a

unit in nm.

FIG. 3. Numerically resolved instantaneous field distribution with an x-

polarized plane wave excitation. (a) Top view and (b) side view for the elec-

tric field E and magnetic field H distributions, represented as vectors and

colormap.

191109-2 Zou et al. Appl. Phys. Lett. 105, 191109 (2014)
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the curve of Fig. 1(a). At longer wavelengths, most of the

elements will be far from resonance and in the flat part of the

phase curve, and thus specular reflection will become

dominant.

Far-field pattern of a finite repetition of sub-arrays:

The multiplication of the scattering pattern of a single sub-

array with the finite grating behavior results in the overall

metasurface response shown in Fig. 4(c). This periodic

arrangement can be interpreted, in principle, as a blazed dif-

fraction grating.16 The behavior of the metasurface is how-

ever different from a conventional grating, in the sense that

the angular scattering response of the individual sub-arrays

of discrete elements is superimposed to the grating response.

In the present case, as shown in Fig. 4(c), the best per-

formance of the gradient metasurface occurs for maximum

ratio of deflection to reflection. This is observed at the wave-

length of 610 nm instead of the desired 633 nm. The corre-

sponding angular patterns at 633 nm and 610 nm are shown

in the second row of Figs. 4(d)–4(f) and third row of Figs.

4(g)–4(i), respectively. This discrepancy of a few percent

can be attributed to coupling effects: The phase curve in Fig.

1(b) is obtained from infinite uniform arrays, whereas in the

actual metasurface design, a difference in the diameter of ad-

jacent dielectric resonators influences the inter-element cou-

pling between dielectric resonators. This effect introduces,

as a result, a slight phase offset for each dielectric resonator,

compared to the phase obtained in an infinite uniform array.

This phase offset causes the optimal operation to slightly

deviate from the designed wavelength. In order to reduce the

impact from the coupling effects, the metasurface is illumi-

nated with TE polarized light, i.e., the E field is aligned

along the x axis in Fig. 2(a). For a given dielectric resonator

array, the coupling between resonators is significant in the E

field direction.25 However, since the diameter of resonators

on the metasurface is uniform along the x axis, the coupling

effect is similar to that in the uniform array, and hence, the

local phase response and far-field performance are reason-

ably preserved. A slightly decreased performance is

observed when the metasurface is illuminated with TM-

polarized light. A final optimization of the local phase

responses in the subarray design can increase the efficiency

further by compensating coupling effects.

To validate the simulation results, the spectral behavior

of the metasurface has been measured under white TE polar-

ized light illumination, at the back focal plane of a

Side lobe

Side lobe

FIG. 4. Simulated reflected power of (a) the grating with K¼ 1.86 lm, (b) a single 6-element dielectric resonator sub-array with a pitch of 310 nm, and (c) the

multiplication of (a) and (b). (d)–(f) and (g)–(i) Corresponding angular patterns at 633 nm and 610 nm, respectively. The reflection is normalized to the maxi-

mum reflected power from the silver surface.

FIG. 5. Spectral measurement of the reflectance of the dielectric resonator

metasurface. The white dotted and dashed lines indicate the wavelength of

633 nm and the calculated deflection angle h using Eq. (1).

191109-3 Zou et al. Appl. Phys. Lett. 105, 191109 (2014)
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microscope setup.20 In Fig. 5, the measured result has been

calibrated with the reflection from a mirror to obtain the

same incident power over all wavelengths. The white dashed

line indicates the deflection angle h calculated by using Eq.

(1). The measured angle is slightly larger than predicted

because the realized lattice of about 300 nm is slightly

smaller than the desired lattice of 310 nm, as shown in Fig.

2(b). The beam width observed in the experiment is broader

than that from the simulation. A plane wave illumination is

employed in the simulation, while the metasurface is illumi-

nated by a Gaussian beam in the experiment. This nonuni-

form illumination (which resembles a low-side lobe

distribution in array theory) increases the beam width, while

decreasing the side lobe level. The best performance of the

metasurface moves to the wavelength of 650 nm due to the

fabrication imperfection, i.e., a variation in the size and lat-

tice constant of corresponding resonators in each sub-array.

The reflectance pattern at wavelength of 633 nm shows that

around 50% power has been deflected towards an angle of

about 20�.
In conclusion, we have experimentally observed the

spectral and angular responses of the gradient metasurface

made of dielectric resonators with a linearly varying phase

response. The diffraction theory and equivalently the array

theory have been applied to analyze the observed response

of this metasurface. The far-field response of the metasurface

corresponds to the multiplication of the single subarray

response with the grating response. The analysis and results

offer generic understanding towards the behavior of periodic

gradient metasurfaces.
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