
 

ACCEPTED VERSION 

M A Lohe 
Conformist-contrarian interactions and amplitude dependence in the Kuramoto model 
Physica Scripta, 2014; 89(11):115202-1-115202-10 
 
 
© 2014 The Royal Swedish Academy of Sciences 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/95954 

 

PERMISSIONS 

http://authors.iop.org/atom/help.nsf/0/F20EC7D4A1A670AA80256F1C0053EEFF?OpenDocume
nt 

3.  Author Rights 
3.1  IOP grants the Named Authors the rights specified in 3.2, 3.3 and 3.4. All such rights must 
be exercised for non-commercial purposes, if possible should display citation information and 
IOP’s copyright notice, and for electronic use best efforts must be made to include a link to 
the online abstract in the Journal. Exercise of the rights in 3.3 and 3.4 additionally must not 
use the final published IOP format but the Named Author’s own format (which may include 
amendments made following peer review, but not any editing, typesetting or other changes 
made by IOP) (the "Accepted Manuscript").  

3.2  The rights are: 
3.2.1  To make copies of the Article (all or part) for teaching purposes; 
3.2.2  To include the Article (all or part) in a research thesis or dissertation; 
3.2.3  To make oral presentation of the Article (all or part) and to include a summary and/or 
highlights of it in papers distributed at such presentations or in conference proceedings; and 
3.2.4  All proprietary rights other than copyright. 

3.3  The additional rights are to: 
3.3.1  Use the Accepted Manuscript (all or part) without modification in personal compilations 
of a Named Author’s own works (provided not created by a third party publisher); and 
3.3.2  Include the Accepted Manuscript (all or part) on a Named Author’s own personal 
website. 

3.4  In addition to the above, no sooner than 12 months from the date of first publication of 
the Article, the Named Authors may: 
3.4.1  Include the Accepted Manuscript (all or part) on websites of the institution (including 
its repository) where a Named Author worked when research for the Article was carried out; 
and 
3.4.2  Include the Accepted Manuscript (all or part) on third party websites including e-print 
servers, but not on other publisher’s websites. 

30 October, 2015 

http://hdl.handle.net/2440/95954
http://authors.iop.org/atom/help.nsf/0/F20EC7D4A1A670AA80256F1C0053EEFF?OpenDocument
http://authors.iop.org/atom/help.nsf/0/F20EC7D4A1A670AA80256F1C0053EEFF?OpenDocument


Conformist-contrarian interactions and amplitude

dependence in the Kuramoto model

M A Lohe

Centre for Complex Systems and Structure of Matter, Department of Physics, The

University of Adelaide, South Australia 5005, Australia

E-mail: Max.Lohe@adelaide.edu.au

Abstract. We derive exact formulas for the frequency of synchronized oscillations

in Kuramoto models with conformist-contrarian interactions, and determine necessary

conditions for synchronization to occur. Numerical computations show that for certain

parameters repulsive nodes behave as conformists, and that in other cases attractive

nodes can display frustration, being neither conformist nor contrarian. The signs of

repulsive couplings can be placed equivalently outside the sum, as proposed in Phys.

Rev. Lett. 106 (2011) 054102, or inside the sum as in Phys. Rev. E 85 (2012) 056210,

but the two models have different characteristics for small magnitudes of the coupling

constants. In the latter case we show that the distributed coupling constants can be

viewed as oscillator amplitudes which are constant in time, with the property that

oscillators of small amplitude couple only weakly to connected nodes. Such models

provide a means of investigating the effect of amplitude variations on synchronization

properties.
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1. Introduction

The Kuramoto model has been widely studied as a model of synchronized behavior in

complex systems, with a variety of applications [1]. In the simplest form the coupling κ

is constant over the network, yet more realistically one would expect to have distributed

couplings which vary in magnitude with the node, or possibly with each link, of the

network. A further generalization [2] is to allow a variable sign for the coupling,

leading to a tension, or frustration, in the system according to whether the negative

couplings restrict or even prevent synchronization occurring. Generally, nodes behave

as contrarian or conformist, as defined in [2], according to the sign of the coupling,

although we find here that other synchronized configurations can also occur. The

role of contrarian nodes in suppressing synchronization is discussed in [3], and general

properties of attractive and repulsive couplings are studied in [4, 5], sometimes for

identical natural frequencies [6, 7]. Of particular interest is the possibility of a glass

transition [8] (see the discussion in [2]), and we find here numerical examples for certain

parameter sets in which some nodes display frustration, behaving as neither conformist

nor contrarian. For applications of phase-repulsive models, see the introductory remarks

in [9], including a discussion of activatory and repressory interactions in phase oscillator

models.

The conformist-contrarian model proposed in [2] consists of a system ofN oscillators

with variables θi(t) defined by the N equations:

θ̇i = ωi +
κi
N

N∑
j=1

sin(θj − θi), (1)

where κi are nonzero coupling coefficients of variable sign that depend only on the node i,

and ωi is the natural frequency of the ith oscillator. Three kinds of long term behaviour

are identified in [2]: incoherent states, π-states, and travelling wave states, depending

on the various parameters and the initial values. The analysis in [2], which is restricted

to the special case N → ∞, has been extended in [10] to more general distributions of

frequencies and couplings κi, see also [11, 12]. Phase lag effects combined with positive

and negative coupling strengths have been investigated in [13], but only for N → ∞.

Kuramoto models with variable (asymmetric) couplings κi are well-known, having

been previously considered in the context of synchronization transitions [14], also in

power networks (see for example [15] equations (2.3), and [16] equation (2.8)), but

usually only for κi > 0. Variable couplings also appear in communities of phase

oscillators, see for example [17] (with further references within) with both attractive

and repulsive couplings, and in phase-repulsive networks of oscillators [9]. Other recent

work examines the effect of a pinning force in a conformist-contrarian model [18] for a

system with identical frequencies.

Our considerations apply for arbitrary but finite N and for any ωi. We show that

in the phase-locked synchronized system there is no distinction between π-states and

travelling wave states, and we derive a formula for the synchronization frequency Ω
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which, as noted in [2, 11], differs from the mean of the frequencies ωi. This explicit

formula provides information on allowable synchronized configurations, for example Ω

can be much larger than any local frequency ωi, and singular points of the formula

indicate transitions to different configurations, as we discuss below. We investigate

synchronization properties as a function of the scaling parameter κ, defined as the

maximum norm of the N -vector κi, and observe that κ must exceed a critical value

for synchronization to occur. Numerical results confirm some of the properties found

in [2], such as the grouping of nodes under certain conditions as either conformist or

contrarian, but we also find interesting exceptions such as frustrated configurations.

We show that the separation of nodes into two groups with a phase lag of π, also

discussed in [3], is an artifact of the coordinate definitions, and that the coupling sign

can appear equivalently either outside or inside the sum over j in (1), as proposed in

[19]. In some cases the two models discussed in [2, 19] are dynamically identical, but for

very small couplings there are significant differences. We show that coupling constants

inside the sum can be interpreted as oscillator amplitudes, thereby resolving a difficulty

regarding the modelling of amplitude variations in the standard Kuramoto model, which

is insensitive to distributed amplitudes.

2. Phase-locked synchronization

In phase-locked synchronization all nodes oscillate at a common frequency Ω, and so

solutions to (1) take the form

θi(t) = Ω t+ θ0i , (2)

where the angles θ0i are constant in time. We investigate analytically the conditions

under which these solutions exist, i.e. we study all solutions of (1) which take the

form (2). Such solutions comprise the synchronization manifold ([1], Section 4.1).

We investigate numerically the time-dependent properties of the system (1), such as

stability, and determine numerically whether the system converges to a solution of the

form (2). It is useful to define, as usual, the order parameter r(t) according to

r(t) =
1

N

∣∣∣∣∣
N∑
i=1

eiθi(t)

∣∣∣∣∣ , (3)

then 0 6 r(t) 6 1. We are interested in the asymptotic value of r(t), in particular

whether r(t) is constant for large t, which is characteristic of the phase-locked solutions

(2). Hence, if this limit exists, we define r∞ = limt→∞ r(t) then for the solutions (2) r∞
satisfies

r∞eiψ =
1

N

N∑
i=1

eiθ
0
i (4)

for some angle ψ, which may be regarded as the average of the angles θ0i . A

constant asymptotic value for r(t) does not by itself demonstrate that the system has

synchronized, rather, we evaluate the average frequency Ω =
∑

i θ̇i(t)/N numerically
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at some time in the asymptotic region, and then verify that
∑

i |θ̇i − Ω| is zero within

numerical error. This demonstrates that each node is oscillating at the frequency Ω, i.e.

that phase-locked synchronization has indeed occurred.

It is convenient to define the scaling variable κ by

κ = max
i

|κi|, (5)

together with κ̂i = κi/κ, then |κ̂i| 6 1 for all i, i.e. κ̂i is an N -vector of unit length in

the maximum norm. We regard κ̂i as fixed and derive properties of r∞ as a function of

κ, where κ can be varied by rescaling the time variable t and the frequencies ωi in (1).

By substituting (2) into (1) we obtain the N algebraic equations

Ω = ωi + κi r∞ sin(ψ − θ0i ). (6)

Upon solving these equations for θ0i and substituting into (4), we obtain the complex

consistency equation

r∞ =
1

N

N∑
i=1

exp

[
i sin−1

(
ωi − Ω

κi r∞

)]
. (7)

The imaginary part, which reads
∑

i(ωi − Ω)/κi = 0, leads to the explicit frequency

formula

Ω =

(∑
i

ωi
κi

)/(∑
i

1

κi

)
. (8)

Ω is invariant under rescaling of the couplings κi, and can become arbitrarily large if, for

example, ωi/κi is of order unity for every i and the denominator
∑

i(1/κi) is arbitrarily

small. By choice of reference frame, however, we can always set Ω = 0, since (1) is

invariant under θi → θi + ω0t, ωi → ωi + ω0 for any constant ω0, and so we may always

choose Ω = 0 by a suitable choice of ω0. There is therefore no distinction between the

π-states and the travelling wave states identified in [2], each of which are characterized

by a constant value for r∞, and for either of which we may choose Ω = 0 in a suitable

rotating reference frame.

The real part of (7) leads to an equation which implicitly determines r∞(κ) as a

function of κ:

r∞ =
1

N

N∑
i=1

si

√
1−

(
ω′
i

κ r∞

)2

, (9)

where the unknown signs si = ±1 appear in the evaluation of the function cos sin−1,

and

ω′
i =

ωi − Ω

κ̂i
, (10)

which satisfies
∑

i ω
′
i = 0, with Ω given by (8), and κi = κκ̂i. Equation (9) has previously

been investigated in [20] (with positive signs only) and in [21]. If a solution r∞ exists

then |ω′
i| 6 κr∞ 6 κ for all i hence, for synchronization to occur, it is necessary that

κ > maxi |ω′
i|. If κ̂i is very small for some node i then |ω′

i| is very large and so κ must
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be correspondingly large. Generally, κ must be larger than a critical value κc, as shown

in [21], as also follows from our considerations in Section 5.2.

If the system synchronizes then (9) is satisfied for some combination of signs si
which are determined by the stability of the phase-locked solution (2). We confirm this

numerically, however it is not a priori evident as to which combination of signs the

system will select. In those cases where the synchronized solution is only locally stable,

we find that the signs depend on the initial values θi(0). For the standard Kuramoto

model for which κi = κ is positive and independent of i, we have si = 1 for all i, as

is proved in [20]. Consistent with this we find numerically that for many, but not all,

cases considered below si = sgnκi, and so si = 1 whenever κi > 0.

Consider now the limit κ → ∞ in (9), with ω′
i fixed, and let us assume that

limκ→∞ r∞(κ) is nonzero. (This is not always the case, see the discussion in Section

3.4). A solution to (9) then exists only if
∑

i si > 0, since r∞ > 0. If si = sgnκi,

which is the case for the results in [2], then at least 50% of the couplings κi must be

positive, although this is neither a necessary nor sufficient condition for synchronization

to occur. In the example discussed in Section 3.4 we find synchronized configurations for

N = 19 with 10 repulsive nodes and 9 attractive nodes. If we choose identical natural

frequencies ωi = ω, then Ω = ω, as follows from (8), and from (10) ω′
i = 0, and hence

r∞ =
1

N

N∑
i=1

si. (11)

3. Numerical investigations

Of the many solutions r∞ to (9), arising from the various sign combinations, relatively

few lead to stable configurations. We investigate the stability of any solutions

numerically, showing that there exist two types of globally stable solutions (Sections

3.2,3.3) as well as other locally stable solutions (Sections 3.4, 5.3), some of which

display frustration behaviour. Global stability implies that if the system synchronizes

for any particular set of initial values θi(0), then it also synchronizes to the same final

configuration for all other randomly generated initial values. Local stability implies

that the system synchronizes to a given configuration for some but not all initial values;

in some cases it may synchronize for all initial values, but to different equilibrium

configurations.

3.1. Numerical methods

We solve the evolution equations (1) numerically over a wide range of values for N , from

N 6 10 up to N = 1000. For the examples in Sections 3.2–3.4 we choose small N in

order to demonstrate various specific properties. We consider globally coupled networks

(all-to-all coupling), except as described in Section 5.3.

The initial values θi(0) are selected at random from a uniform distribution in [0, 2π].

For nodes with negative couplings the unit coefficients κ̂i are selected at random from a
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uniform distribution in [−1, 0), and for positive couplings from the interval (0, 1], with

an adjustable ratio of positive to negative couplings. We usually choose this ratio so that

50% or more of the couplings are positive, but with some exceptions, see the example

discussed below in Section 3.4. The couplings are normalized so that maxi |κ̂i| = 1. The

natural frequencies ωi appear in (9) only in the ratio ωi/(κκ̂i) and so by a choice of scale

κ we may assume that |ωi/κ̂i| 6 1 for every node i. Hence, for each i we select ωi at

random from a uniform distribution in the interval [−|κ̂i|, |κ̂i| ].
We choose a value for κ which is sufficiently large that the N inequalities (27) below

are all satisfied, which does not, however, guarantee that the system will synchronize,

and we then integrate (1) for 0 6 t 6 tfinal. As a check on the accuracy of this solution

we verify that the constant of the motion defined by (23) below is in fact constant to

within a certain tolerance. Specifically, we define F (t) to be the difference between

the two sides of (23), then we evaluate |F (t)| over a range of points t in the interval

[0, tfinal] and find the maximum such value, which defines the tolerance, i.e. the accuracy

of the solution. For 32-bit arithmetic this tolerance is usually of the order of 10−12, but

by increasing the precision settings in the integration routine we are able to achieve

tolerances of 10−40, sometimes much less. In particular, we have verified that the

synchronized configurations shown in figures 1,2, and their associated properties, are

accurate to within a tolerance of 10−40.

Having found a numerical solution we evaluate r(t) as defined by (3). Phase-locked

synchronization occurs, following an initial transient, at a time t = tasymp when r(t)

attains a constant asymptotic value. Failure to achieve a constant value can indicate

that: (a) a larger value of κ is required, i.e. the chosen value for κ is less than the critical

value κc; (b) the number of positive couplings is not large enough to allow the system to

synchronize; (c) the system is only locally stable for the selected parameters ωi, κi, and

might synchronize for some, but not all, sets of initial values θi(0). In order to determine

the accuracy of the synchronization we evaluate the maximum value of |r(t)− r(tfinal)|
over a range of points t in the interval [tasymp, tfinal]; if this is not sufficiently small (i.e.

close to or less than the tolerance achieved as described above), we increase both tasymp

and tfinal, sometimes by several orders of magnitude, until |r(t) − r(tfinal)| is less than

the preset tolerance for all t in [tasymp, tfinal].

The common frequency of oscillation is determined at or near t = tfinal as the average

Ω =
∑

i θ̇i/N . We then verify that
∑

i |θ̇i − Ω| is numerically zero, i.e. is less than the

preset tolerance, which confirms that all nodes are indeed oscillating at the common

frequency Ω, and that all trajectories θi(t) are numerically indistinguishable from the

solutions (2) of the synchronization manifold. In all cases where synchronization occurs

we find that this computed value of Ω agrees numerically with the formula (8). We

also verify that (9) is satisfied for some combination of signs si. As already mentioned,

synchronization occurs only if the percentage of positive couplings is sufficiently large,

and only if κ is larger than a critical value which depends on the coefficients κ̂i and

the frequencies ωi. Evidently, there must be enough attractive nodes, and of sufficient

strength, to overcome the repulsive nodes.
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The synchronized configurations are generally of two types, depending on the sign

of the denominator in (8), but we have also detected exceptional cases, discussed in

Section 3.4 below and later also in Section 5.3. Define the average unit coupling κav by

1

κav
=

1

N

N∑
i=1

1

κ̂i
, (12)

as appears in the denominator of (8). The configurations for which κav > 0 are discussed

in Section 3.2, and those for which κav < 0 are discussed in Section 3.3, and are in both

cases globally stable, whereas the configurations in Section 3.4 are only locally stable.

In our simulations the parameters ωi, κi are selected at random, so that zero values

of either the denominator or numerator in (8) do not occur, which also means that we

do not detect any special synchronized configurations that can occur only for particular

combinations of parameters.

3.2. Positive average coupling

If κav > 0 and the system has synchronized, then (9) is satisfied with the signs given by

si = sgnκi. This is consistent with the results in [2], except that we do not distinguish

between π-states and travelling waves, as previously explained. The repulsive and

attractive nodes each group together with contrarian/conformist behaviour, respectively,

as described in [2]. The example in figure 1(a) for N = 50, κ = 30, with κav > 0, shows

the synchronized nodes plotted on a common unit circle, with the 27 attractive nodes

marked in blue, and the remaining 23 repulsive nodes in red. The separation into

conformist and contrarian groups according to the sign of κi is evident. The computed

frequency Ω agrees with the formula (8) to within the tolerance 10−40, and similarly

equation (9) is satisfied to the same tolerance. The synchronized configuration is globally

stable, and so the final state of the system is independent of the initial values.

We evaluate the phase difference between the two groups (red and blue) shown

in figure 1(a) by defining the average phase ψ of each group according to the formula

(4), except that the sum extends only over either the repulsive or attractive nodes. We

find that the difference between these two averages is approximately, but not exactly,

π, corresponding to the fact that the two groups are diametrically opposed. This

corresponds well with Figure 1(c) of [2].

It is instructive to consider the special case in which the frequencies ωi are identical,

ωi = ω for all i, but where the parameters κ̂i are generated at random as described above.

Then from (8), Ω = ω and ω′
i = 0, where ω′

i is defined in (10), and r∞ is given by (11). If

there are p positive nodes, N−p negative nodes, and κav > 0, then for the configurations

considered in this section (with si = sgnκi) we always have r∞ = (2p−N)/N , as may be

verified numerically. The conformist and contrarian groups are co-located, respectively,

i.e. the offset angles θ0i given by (2) are all equal within each group. The phase difference

in such cases is π, within numerical tolerance, regardless of whether ω is zero or nonzero.
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3.3. Negative average coupling

The case κav < 0 occurs when there are one or more small negative coefficients κ̂i. Then,

provided the system has synchronized, we find that (9) is satisfied with the signs given

by si = sgnκi for all i, except for one particular negative (repulsive) node for which

si = 1. This node corresponds to the repulsive node i of maximum value, that for which

1/|κi| takes its maximum value. We consider here the case where there is precisely

one such node. Because of the sign change, this particular repulsive node behaves as

a conformist. In figure 1(b), for which the parameters ωi, κ̂i are unchanged from those

of figure 1(a) except for the value of κ̂i at the repulsive node of maximum value, we

have κav < 0, and the plot shows that this repulsive node (red) is now grouped with the

positive nodes (in blue). Again, the synchronized configuration is globally stable.

For the case of identical frequencies ωi = ω we have Ω = ω as before. If there are p

attractive nodes and if κav < 0, there are p + 1 positive signs si, and so now according

to (11), r∞ = (2p+ 2−N)/N . Again, all nodes are co-located within each group, with

a phase difference of π.

For both examples (a,b) synchronization occurs also for all values of κ larger than

the plotted value (κ = 30), with the respective groupings being maintained, except that

the grouping becomes tighter as κ increases; also the phase difference between the two

groups approaches π as κ increases. We have also performed simulations for larger values

of N up to N = 1000, for randomly generated parameters κi, ωi, and find behaviour

similar to that shown in figures 1(a,b). Synchronized configurations correspond to one

of these figures depending on the sign of κav, and both the frequency formula (8) and

equation (9) are in all cases satisfied to within tolerance.

HaL HbL

Figure 1. Separation of nodes for (a) κav > 0 into conformist (blue) and contrarian

(red) groups, and (b) for the case κav < 0, showing one repulsive node (in red) grouped

with the conformist nodes (in blue).
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3.4. Locally stable configurations

There also exist synchronized configurations which unlike those in the previous Sections

3.2,3.3 are only locally stable. In such cases we find that the signs si differ from sgnκi
at one or more nodes depending on the initial values θi(0), as is indicated by the value of

r∞ which takes different values depending on θi(0). Stability for such cases is therefore

only local, and depends on a delicate balance of strength between competing attractive

and repulsive nodes.

Frustrated synchronization occurs when one or more nodes is neither conformist

nor contrarian. Two examples of frustration, for N = 19, κ = 1000, with 10 repulsive

nodes and 9 attractive nodes, are shown in figures 2 (a,b), where the parameters κi, ωi
are the same for each figure, only the initial values are different. In each case there is one

particular node, the one corresponding to the minimum positive value of κi, which does

not group with either the conformist or contrarian nodes. There is also one repulsive

node which groups with the conformist nodes, even though κav > 0, as is evident in both

figures. For this particular example there are also other locally stable configurations not

shown, but always with the same frustrated node. The system synchronizes to one of

these locally stable configurations for any set of initial values.

This frustration behaviour is maintained as κ increases to arbitrarily large values.

This occurs because r∞(κ), regarded as a function of κ, becomes arbitrarily small as κ

increases, and we find numerically that κ r∞(κ) is constant for large κ. By contrast, for

the configurations of the previous Sections 3.2,3.3, r∞ is nonzero for large κ.

HaL HbL

Figure 2. An example for N = 19 of two synchronized configurations for identical

parameters but different initial values showing frustration, in which one node (circled)

is neither conformist nor contrarian, even for large κ.

There are also locally stable configurations to which the system synchronizes for

some initial values, but does not synchronize at all for other values. This can occur when

the frequencies ωi are identical, for example ωi = 0 at all nodes, with couplings κi for

which κav < 0. We have found an example with three such repulsive nodes, each with an

identical value for κi that is also the largest negative value, where synchronization occurs

in which two repulsive nodes, not just one as described in Section 3.3, group together
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with the conformist nodes. Because the frequencies are identical all nodes group into

two separate co-located groups with a phase difference of π; one group consists only of

repulsive nodes, the other consists of all the attractive nodes plus the two repulsive

nodes. We do not consider these configurations further, as our investigations are

restricted primarily to generic parameter sets, which take random values. We mention

other locally stable configurations in Section 5.3.

4. Phase lag equivalence

It is observed in [2] for the configurations analyzed there that contrarian nodes differ in

their collective phase from conformist nodes by approximately π, see Figure 1 in [2]. This

is evident also in figure 1(a) above, and we have also defined and calculated the precise

phase difference as described in Section 3.2. Since the signs that appear in (9) are given

in this case by si = sgnκi, the separated nodes correspond precisely to the positive and

negative signs of κi. The equivalence of this model and the phase lag model of Sakaguchi

and Kuramoto [22] has been noted in [2], also [3]. We can make this equivalence precise

by writing the interaction terms of (1) in the form |κi|
∑

j sin(θj − θi − αi)/N , where

the phase lag αi is given

αi =
π

2
(1− sgnκi) , (13)

and is equal to zero (κi > 0), or π (κi < 0). We consider therefore the following

Sakaguchi-Kuramoto model with distributed phase lag αi defined by

θ̇i = ωi +
κi
N

N∑
j=1

sin(θj − θi − αi). (14)

The model (1) is equivalent to the (14) with κi replaced by |κi|, with a phase lag of

either αi = 0 or αi = π at the ith node. Define

φi = θi − αi, (15)

then with respect to these φi variables the synchronized nodes group together when

plotted on a common unit circle, since the transformation (15) affects only the repulsive

nodes. Hence, the π-states, in which the variables θi separate into two diametrically

opposed groups according to the sign of κi, can be regarded as an artifact of the

parametrization.

To make this clear, we write (14) in terms of the φi variables as:

φ̇i = ωi +
κi
N

N∑
j=1

sin(φj − φi − αj), (16)

where the phase lag now appears under the sum as αj, but leaving the dynamics of the

system unchanged. The transformation of (1) into (16) by means of (15), with αi given
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by (13), moves the sign of the coupling constant κi from outside the sum, as sgnκi, to

inside the sum as sgnκj. This means that the equations

θ̇i = ωi +
1

N

N∑
j=1

κj sin(θj − θi) (17)

can be equivalently written as

φ̇i = ωi +
sgnκi
N

N∑
j=1

|κj| sin(φj − φi), (18)

where φi = θi−αi, i.e. the signs can always be placed outside the sum, for either model

(1) or (17).

The two models (1) and (17) have been discussed by Hong and Strogatz [2, 19]

with the conclusion that for the latter model “the π-state and travelling-wave state

do not appear for the coupling type considered here” and that putting the coupling

inside the sum “makes a world of difference”. As we have shown, however, the two

models are closely related since the signs can appear equivalently outside or inside the

sum. Indeed, for the simplest case in which |κi| = κ is independent of the node i, i.e.

every coupling is given by κi = ±κ for some scaling parameter κ, the two models are

dynamically identical, being related by the transformation (15). There are significant

differences, however, in other cases particularly for very small or large coupling strengths;

for example synchronization in the model (1) is sensitive to any small value of κ̂i, with

a correspondingly large scaling parameter κ being required in order to synchronize the

system. (This is because in the limit κi → 0 for some i, the system cannot synchronize

because the frequency of the ith node is fixed at ωi). By contrast, if the coupling

κj inside the sum is small for some node j, then that node has little influence on the

synchronization properties of the system as a whole. This may be understood by viewing

the coupling κj as the oscillator amplitude, as we now explain.

5. Amplitude dependence

A fundamental property of the standard Kuramoto model is that the dynamics are

independent of the oscillator amplitudes, as is evident from the defining equations (1)

which involve the phases θi but not the amplitudes of the oscillators. As a consequence

each oscillator, even one with a vanishingly small amplitude, contributes equally to the

synchronized frequency Ω =
∑

i ωi/N (putting κi = κ in (8)). Amplitude independence

was first assumed by Winfree [23] (1967) who argued that in the limit of weak coupling

amplitude variations could be neglected, and that the oscillators could be described

solely by their phases along their limit cycles. This “phase model reduction” was also

used (1975) by Kuramoto [24] and later others [25], but we show that the assumption

of uniform amplitudes is unnecessary. In any case, there are models where amplitude

variations are significant (such as optomechanical arrays [26]) indeed, the dynamics

of large systems which allow time-varying amplitudes have long been studied, see for
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example [27] (1991). Amplitude independence is essential, however, when the Kuramoto

model is regarded as a quantum system, since such systems are measured by probabilities

that are ratios of amplitudes, i.e. physical properties are invariant under a rescaling of

local wavefunctions |ψi⟩. The Kuramoto model (1) can be viewed as a spin 0 nonlinear

quantum system [28], with the normalized wavefunction given by |ψi⟩ = e−iθi , and has

amplitude independent properties, as is appropriate for a quantum system.

Distributed amplitudes which are constant in time but vary according to the node,

without restriction, can be incorporated into the Kuramoto model by first writing the N

defining equations in the following complex form (a special case of the matrix equations

given by equation (2) in [29]):

iżiz
−1
i = ωi −

iκ′i
2N

N∑
j=1

aij
(
zi z

∗
j − zj z

∗
i

)
, (19)

where zi is a complex function of t, κ′i are real parameters and (aij) is any real matrix.

The right hand side of (19) is real and therefore iżiz
−1
i = −i(z−1

i )∗ż∗i , which implies that

z∗i zi, and hence the amplitude, is constant at each node i. The N complex equations

(19) are the Euler-Lagrange equations of a Lagrangian in which the amplitudes are

constrained to take constant values by means of Lagrange multipliers. More general

oscillator models with distributed amplitudes that are constant in time can also be

constructed by choosing the right hand side of (19) to be any real function of the

complex variables.

Parametrizing zi = λie
−iθi , we may write (19) as

θ̇i = ωi +
κi
N

N∑
j=1

aijλj sin(θj − θi), (20)

where κi = κ′iλi. Evidently these equations combine the two models (1,17) proposed

in [2, 19], with the coupling parameter λj inside the sum now regarded as the constant

oscillator amplitude. This requires λj to be positive for all j but, as shown in equations

(18), negative signs can be moved outside the sum by the change of variable (15).

Models in which the summand contains the symmetric combination λiλj as in (20) are

well-known, see for example Daido [30] (1987) where the corresponding parameters si
are regarded as random variables. The model (20) has previously been considered also

in [31], but only for positive values of the coupling constants.

5.1. Synchronized frequency

We derive an explicit frequency formula, valid for arbitrary amplitudes λi, which

generalizes the formula (8) for the common frequency Ω of oscillation in the synchronized

system. Multiply both sides of (20) by λi/κi and sum over i to obtain:

N∑
i=1

λiθ̇i
κi

=
N∑
i=1

λiωi
κi

+
1

N

∑
i,j

aijλiλj sin(θj − θi), (21)
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where, assuming now that (aij) is a symmetric matrix, the last term vanishes by

symmetry (interchanging i, j). For synchronized solutions we have, from (2), Ω = θ̇i to

give:

Ω =

(
N∑
i=1

λiωi
κi

)/(
N∑
i=1

λi
κi

)
. (22)

This formula has properties similar to (8), for example Ω is invariant under separate

rescaling of the parameters κi, λi, and can become arbitrarily large for small values of

the denominator and, as before, can always be set to zero by choosing a suitable rotating

reference frame. The formula (22) also applies to synchronized systems with nontrivial

network topologies, such as those considered in [4, 5, 14]; it is necessary only that (aij)

be symmetric.

Equation (21) can be integrated to obtain a nontrivial constant of the motion:

N∑
i=1

λiθi(t)

κi
= t

N∑
i=1

λiωi
κi

+
N∑
i=1

λiθi(0)

κi
, (23)

where θi(0) are the initial values of the system. This equation holds exactly at all times

for all solutions of (20), whether the system has synchronized or not. It may be used to

eliminate any angle in favour of the remaining angles or, alternatively, as described in

Section 3.1, to provide a check on the numerical accuracy of any computation.

5.2. Static equations and critical parameters

We demonstrate that there exist critical values of the parameters κi, λi which determine

the onset of synchronization, by deriving properties of the static equations which

the synchronized system must satisfy. In this case iżiz
−1
i = Ω and so, substituting

zi = xi + iyi into (19), we find that the following 2N equations, quadratic in the 2N

real variables xi, yi, must be satisfied:

1

N

∑
j ̸=i

aij(xjyi − xiyj) =
Ω− ωi
κ′i

, x2i + y2i = λ2i . (24)

Define

ai =
1

N

∑
j ̸=i

aijyj, bi =
1

N

∑
j ̸=i

aijxj, ci =
λi(Ω− ωi)

κi
, (25)

where κi = κ′iλi. If we fix the variables xj, yj for all j ̸= i, then ai, bi, ci are also fixed,

and (24) describes a straight line aixi − biyi + ci = 0 in the xi, yi plane, which must

intersect the circle x2i + y2i = λ2i in order for the system to synchronize. Intersection

occurs if and only if

|ci| 6 λi

√
a2i + b2i =

λi
N

∣∣∣∑
j ̸=i

aijzj

∣∣∣, (26)

where the synchronized solution zj takes the form, according to (2), zj = λje
−iΩte−iθ0j .

There are at most two solutions, corresponding to the plus/minus signs si that appear
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in (9). Stability considerations determine which of these solutions is attained in the

synchronized system.

This geometrical viewpoint shows that critical values of the underlying parameters

occur when equality holds in (26) at one or more nodes, i.e. when the line is tangent to

the circle in the xi, yi plane for some i. If the parameters ωi, λi are fixed then there is a

critical value for each κi, because for large κi the line always intersects the circle (since

ci is small) but as κi decreases, a critical point is reached at which the line is tangent to

the circle. If we write κi = κ̂i κ, where κ is defined by (5), and fix λi, ωi, κ̂i while varying

κ, then there is also a critical value κ = κc at which the line, for some i, is tangent to

the circle. Since ci decreases as κ increases, solutions to (24) then exist for all κ > κc.

It follows from (26) by means of the triangle inequality using |zj| = λj, or directly

from (20), that∣∣∣∣Ω− ωi
κi

∣∣∣∣ 6 1

N

∑
j ̸=i

λj|aij|, (27)

which comprises a set of N easily-checked inequalities that are necessary, but not

sufficient, restrictions on the underlying parameters of the model in order for the system

to synchronize. Again, this applies for any symmetric matrix (aij), and hence for

arbitrary network topologies.

5.3. Numerical simulations

We find numerically that synchronized configurations in the model (20), with distributed

amplitudes λi, appear with properties similar to those found in Sections 3.2–3.4, in

particular the grouping of conformist and contrarian nodes corresponds to those shown

in figures 1(a,b). If the denominator in the expression (22) is positive, then the

conformist/contrarian nodes separate into diametrically opposed groups according to

the sign of κi, but if the denominator is negative, exactly one repulsive node groups

with the conformist nodes similar to that shown in figure 1(b). These configurations

are globally stable, like those discussed in Sections 3.2,3.3. There are also locally stable

configurations similar to those described in Section 3.4. We provide examples here of all

such types for nontrival amplitudes λi, including an example of a frustrated configuration

for a nontrivial network.

We select the unit N -vector κ̂i with variable signs as described in Section 3.1 and

define the couplings κi = κ κ̂i for a scaling constant κ of variable magnitude. The

positive amplitudes λi are selected at random from a uniform distribution in (0, 1] (with

an exception for the example shown in figure 3(b) with respect to one negative node),

and are normalized so that maxi λi = 1. We solve the equations in the form (20), with

the negative signs placed outside the sum, hence conformist and contrarian nodes do

not combine into a single group as observed in [19], but separate into two groups.

For figure 3(a), where N = 200 with 120 positive nodes and 80 negative nodes, the

denominator in (22) is positive and the synchronized nodes separate into two groups

according to the sign of κi, with an average phase difference between the two groups
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approximately equal to π; this difference, calculated as described in Section 3.2, differs

from π by less than 1%. Figure 3(b) shows a synchronized configuration for N = 200,

with 100 positive and negative couplings each, where for simplicity we have chosen

κ̂i = ±1. The amplitudes are generated randomly as before, except that we have selected

one amplitude at a negative node which is two orders of magnitude larger than the

remaining amplitudes. This ensures that the denominator in (22) is negative and, similar

to the example discussed in Section 3.3, this negative node of largest amplitude groups

with the conformist nodes, as shown in figure 3(b). For both examples the systems

are globally stable, and we have performed the same numerical checks as described in

Section 3.1.

HaL HbL

Figure 3. Synchronized configurations with nontrivial amplitudes for N = 200 nodes

for (a) a positive denominator in equation (22) showing separation into conformist

(blue) and contrarian (red) groups, and (b) for a negative denominator showing one

repulsive node (in red) grouped with the conformists.

Figures 4(a,b) show two synchronized configurations where frustration is evident, in

which one node remains separate from both the conformist and contrarian nodes, even

for very large κ. For this example with N = 40 there are 24 positive couplings and 16

negative couplings, with the fixed parameters κ̂i and λi generated randomly as before.

The symmetric connectivity matrix (aij) is nontrivial, however, with elements equal to

either 0 or 1, where the zeroes are generated randomly; in this example 131 of the 780

elements above the diagonal are zero, and the remaining 649 elements are equal to 1.

The system always synchronizes, for κ larger than a critical value, to one of the two

configurations shown in figures 4(a,b), depending on the initial values. Stability of each

configuration is therefore only local. As with the examples in figures 2(a,b), there is also

one repulsive node (in red) which groups with the conformist nodes, although here the

denominator in (22) is negative, unlike the example of figures 2(a,b). It is noticeable

that the relative positions of the nodes in the configurations shown in figures 4(a,b) are

maintained even for very large values of κ, as observed also for those in figures 2(a,b).

There are also other locally stable synchronized configurations which appear for

various random choices of the underlying parameters ωi, κ̂i, (aij), generally for small
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N . We briefly mention these in order to show that there are many different possible

configurations. In one example an attractive node behaves as a contrarian while another

repulsive node is conformist. In another example there are attractive and repulsive nodes

neither of which group with the conformist nor the contrarian nodes, i.e. frustrated nodes

can be a mixture of both attractive and repulsive nodes and, in another example, two

conformist nodes group together with the contrarians. As before, we have performed the

same numerical checks as described in Section 3.1, for example the exact solution (23)

is satisfied within the preset tolerance at all times, and the synchronization property,

that
∑

i |θ̇i − Ω| is zero within tolerance at or near t = tfinal, is also verified, as are the

equations (24) which define the synchronization manifold. The computed frequency Ω

agrees with (22) in all cases, confirming that this formula is valid also for nontrivial

network topologies.

HaL HbL

Figure 4. An example for N = 40 with nontrivial network couplings, showing two

synchronized configurations for identical parameters but different initial values; the

frustrated node (circled) is neither conformist nor contrarian, even for large κ.

6. Conclusion

We have investigated the Kuramoto model in which the distributed couplings can

have variable sign, and have shown numerically that various stable synchronized

configurations can occur, including some with frustrated nodes that are neither

conformist nor contrarian. We have found that attractive/repulsive nodes do not always

correspond to conformist/contrarian nodes, respectively, in the synchronized system. We

have considered the models proposed in [2, 19], with the couplings either outside or inside

the sum, and in the combined form (20), and have shown that although the two models

are similar or even identical in some cases, there are significant differences at very small

couplings κi, as is evident from the explicit frequency formulas. We have interpreted

the parameters λi under the sum as oscillator amplitudes, thereby providing a means of

investigating the effects of both small and large amplitude variations on synchronization.

We have shown by geometrical arguments that the underlying parameters of the model
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must exceed certain critical values and have also derived conditions such as (27), which

are necessary for synchronization to occur.

Because of their numerous applications we believe that these models merit further

investigation, in particular we have found that repulsive couplings affect synchronization

in subtle ways which requires further study. A minimum number of positive couplings,

for example, is necessary for synchronization to occur, even at large coupling strengths,

depending on the model parameters in ways that are not yet understood.

References

[1] Arenas A, Dı́az-Guilera A, Kurths J, Moreno Y and Zhou C 2008 Phys. Rep. 469 93

[2] Hong H and Strogatz S H 2011 Phys. Rev. Lett. 106 054102
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[9] Levnajić Z 2011 Phys. Rev. E 84 016231
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