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Zircon Geochemical and Geochronological Constraints
on Contaminated and Enriched Mantle Sources
beneath the Arabian Shield, Saudi Arabia

F. A. Robinson,"* J. D. Foden,* and A. S. Collins*

1. Department of Geological Sciences, Stockholm University, Svante Arrhenius vig 8, SE-106 91 Stockholm,
Sweden; 2. Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences,
University of Adelaide, Adelaide, South Australia 5005, Australia

ABSTRACT

Arabian Shield granitic zircon geochemistry provides insight into the petrogenetic processes involved in generating
one of the planet’s largest tracts of juvenile Neoproterozoic crust. New zircon geochemistry supports previous U-Pb
and whole-rock data that defined four magmatic groups: (1) ~870-675 Ma island arc and synorogenic I-type granitoids
(IA+Syn), (2) ~640-585 Ma I- and A-type granitoids from the Nabitah and Halaban Suture (NHSG), (3) ~610-600 Ma
postorogenic perthitic (hypersolvus) A-type granitoids (POPG), and (4) <600 Ma anorogenic aegirine-bearing perthitic
(hypersolvus) A-type granitoids (AAPG). The low Nb (~1-300 ppm) and intrasuite rare earth element variation in IA+Syn
and NHSG zircons indicates that these suites are derivatives of contaminated mantle followed by fractionation. AAPG
suites, however, have higher Nb content (~10-400 ppm) and are derived from limited crust-enriched mantle interaction.
Each of the IA, Syn, and NHSG suites have discrete granite subsuites distinguished using zircon morphology and geo-
chemistry whose U-Pb ages in each case form three groups. The IA subgroups are ~867, ~847, and ~829 Ma; the Syn
subgroups are ~730, 716, and 696 Ma; and the NHSG subgroups are ~636, ~610, and ~594 Ma. This apparent subevent
repetition suggests some form of magmatic pulsing in the Arabian Shield. It is suggested that IA+Syn suites reflect
typical volcanic arc granite settings and incremental subduction/accretion of eastward-migrating oceanic fragments of
the East African Orogen. The appearance of ~636 Ma A-type magmatism within suture zones (NHSG) is possibly derived
from along-lived (~50 m.yr.) melting, assimilation, storage, and homogenization (MASH) zone resulting from an ~640 Ma
slab tear. These A-types are distinguished from more-enriched anorogenic (<600 Ma) A-types, possibly associated with
lithospheric delamination.

Online enhancements: appendixes.

Introduction

Given its capacity to preserve a geochronological, = chemical compositions record the tectonically con-
isotopic, and coherent trace element record of the  trolled changes in magmatic sources and processes.
magmas from which it crystallized, zircon is in-  The systematic change in ANS tectonic processes
creasingly used as a petrogenetic tool (e.g., Hoskin  provides the ideal opportunity to use zircon geo-
and Schaltegger 2003; Belousova et al. 2006; Grimes ~ chemistry to further constrain existing whole-rock-
et al. 2009). The Arabian-Nubian Shield (ANS)isan  based models. Prior studies have argued that sys-
amalgamated collage of juvenile early Neoprotero-  tematic changes in granite chemistry in part reflect
zoic to Cambrian volcanic arcs and back-arc basins  changes in a mantle component of the granite mag-
(Johnson et al. 2011), and throughout and directly = mas from depleted mid-ocean ridge basalt (MORB)-
following this accretionary history the ANS was in-  like to enriched (Stein and Goldstein 1996; Stoeser
truded by voluminous granites whose diverse geo-  and Frost 2006; Be’eri-Shlevin et al. 2010). Focusing
on A-type granites (Frost et al. 2011), which are
_ _ commonly associated with fractional crystallization
Manuscript received May 10, 2015; accepted July 14, 2015; . .
electronically published October 8, 2015, of magmas produced during 01.rust.al extension (Turner
* Author for correspondence; e-mail: frobinson685@gmail et al. 1992), recent ANS studies in Sinai suggest that
.com. two distinct mantle sources are involved in the tran-
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sition from postcollisional/calcalkaline to anoroge-
nic alkaline granitoids (Eyal et al. 2010; Azer and
Farahat 2011). This apparent source transition com-
bined with a trend toward very voluminous, wide-
spread magmatism following supercontinental amal-
gamation is often attributed to the impact of slab
rollback/tear (Gvirtzman and Nur 1999; Flowerdew
et al. 2013) and/or to lithospheric delamination (Avi-
gad and Gvirtzman 2009). Alternatively, Stein and
Goldstein (1996) also proposed the impact of an en-
riched mantle plume (with or without crustal over-
printing).

To examine the systematic changes in ANS granite
sources, this work focuses on the Saudi Arabian part
of the ANS. Zircon geochemical data are presented
from the four discrete granite evolution stages out-
lined by Robinson et al. {2014): (1) the island arc stage
(~845 Ma), (2) the synorogenic stage (~715-700 Ma),
(3) the postorogenic stage (~640-600 Ma), and (4) the
late anorogenic stage (<600 Ma). The zircon geo-
chemistry in this study is linked with prior whole-
rock data from Robinson et al. (2015) with the aim of
identifying trace element discriminators that sup-
port the progressive changes in granitic sources dur-
ing the accretion and cratonization of the ANS. An
additional tool used in this study is provided by the
morphology of zircon. Prior work (e.g., Pupin 1980;
Belousova et al. 2006) has shown a systematic re-
sponse in zircon crystal morphology both to tem-
perature of crystallization and to magma chemistry.
The zircon morphology from island arc, synoroge-
nic, and postorogenic granites in this study are
coupled to U-Pb data from Robinson et al. (2014),
which led to identification of discrete ages in this
study. These discrete ages are used in a fashion sim-
ilar to that in Gagnevin et al. (2011) and Schaltegger
et al. (2002) to infer magmatic pulsing from lower
crustal sources, which are quite distinct from the
anorogenic A-types associated with an enriched, lim-
ited crust-mantle source.

Arabian Shield Geologic Setting

The Arabian Shield forms a series of tectonostrati-
graphic terranes composed of geochemically diverse
early Neoproterozoic to Cambrian (~850-525 Ma)
granitoids intruding volcanosedimentary basin as-
semblages. With a general younging toward the east
(Stoeser and Camp 1985; Stoeser and Frost 2006;
Johnson et al. 2011), the Arabian Shield is composed
of eight discrete terranes separated by five ophiolite-
bearing suture zones. The Arabian Shield structure
consists of two parts: the western side, comprising the
Midyan, Hijaz, Jiddah, and Asir island arc terranes,
and the eastern side, comprising the Tathlith, Ha’il,
Afif (including Khida subterrane), Ad Dawadimi, and

Ar Ryan terranes (fig. 1). According to Johnson et al.
(2011), these terranes have been deformed by at
least four periods of arc collision and suturing and
are overlain and intruded by postamalgamation
(<640 Ma) basins (e.g., Nettle et al. 2014) and gran-
itoids. The amalgamated terranes have been affected
by multiple exhumation and erosion events. A Cam-
brian regional unconformity postdates the youn-
gest plutons, recently dated at ~525 Ma (Robinson
et al. 2014).

The Arabian Shield preserves a series of discrete
Neoproterozoic tectonomagmatic events initially
defined and described by Bentor (1985) and later by
Stein and Goldstein (1996). In general, the earliest
(~950-650 Ma) oceanic tholeiite and bimodal vol-
canism is confined to the western Arabian Shield,
has island arc chemistry, and is emplaced in intra-
oceanic settings. The younger phases that intrude
large areas of the western and eastern Arabian Shield
and are dominated by ~640-590 Ma calcalkaline bath-
oliths terminating at a stage of regional exhuma-
tion coupled with a switch to ~590-550 Ma alkaline
granites and volcanics (Black and Liegeois 1993). The
~780-600 Ma collision of the Yanbu and B’ir Umgq
Sutures in the west and of the Nabitah and Halaban
Sutures in the east resulted in extensive north-south-
trending granitoid intrusions derived from subduc-
tion and back-arc environments. The north-south-
trending Nabitah Suture forms the most significant
part of this magmatic history and is interpreted to
result from collision between western island arcs
and the eastern partly continental Afif terrane, with
proposed pre-Neoproterozoic continental crust (Stoe-
ser and Camp 1985; Stoeser and Frost 2006). This
suture consists of deformed volcanics/precollision
basins intruded by postcollision granitoids/basins,
and according to Johnson et al. (2011) the diachro-
nous Nabitah Suture initiated at ~680 Ma in the
north (Midyan, Hijaz, and Afif terranes) while sub-
duction continued in the south (Asir, Tathlith, and
Afif terranes). Recent studies conducted by Flower-
dew et al. (2013) demonstrated that the Nabitah Su-
ture south of the Ruwah fault zone separates ju-
venile Neoproterozoic intraoceanic arc terranes and
propose that plutons confined to its southern end
form as a consequence of subduction slab rollback. It
is speculated that the terranes on either side of the
Nabitah Suture were amalgamated by ~640 Ma but
that farther east in the Ar Ryan and Ad Dawadimi
terranes subduction and terrane assembly continued
until after ~600 Ma (Doebrich et al. 2007; Cox et al.
2012).

Recent Arabian Shield geochronological data from
Robinson et al. (2014) distinguished island arc (845
Ma), synorogenic (~715-710 Ma), postorogenic (~640-
600 Ma), and anorogenic (<600 Ma) magmatism
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Figure 1. Geologic map of the Arabian Shield from Robinson et al. (2014) highlighting 20 sampled suites (blue circles) and
their respective tectonic timing. Sample location numbers corresponding to suite names are presented in table 1. a = Yanbu
Suture (~715 Ma collision of Midyan-Hijaz terranes); b = B'ir Umq Suture (~780-680 Ma collision of Hijaz-Asir terranes); ¢ =
Nabitah Suture (~680-640 Ma collision of Hijaz-Afif terranes); d = Nabitah Suture (~680-640 Ma collision of Asir-Afif
terranes); e = Halaban Suture (~700-600 Ma collision of Afif-Ad Dawadimi plus Ar Ryan terranes).
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(fig. 1). These cycles represent different tectonic pro-
cesses in Arabian Shield evolution and produced a
diverse range in granitoid mineralogy. According to
recent whole-rock geochemical classification by Rob-
inson et al. (2015), the island arc and synorogenic
phases are I-type granitoids that are generated in
subduction settings from MORB-like or arc tholeiite-
like mafic parents. The postorogenic magmatism
that appears at the termination of orogenic sutures
(e.g., Nabitah Suture) is also classified as I-type. How-
ever, these suites also include aegirine-bearing A-
type granites. As suggested by Robinson et al. (2015),
the postorogenic granites are generated from con-
taminated island arc tholeiite (IAT) and MORB-like
basic magmas in lower crustal zones followed by
fractionation. Anorogenic suites are also A-type gran-
ites, but they are derived from a distinct heavy rare
earth element (HREE)-enriched source and are inter-
preted to be emplaced in back-arc settings and asso-
ciated with lithospheric delamination. Taking this
diversity into account, this study will maintain the
island arc, synorogenic, postorogenic, and anorogenic
phases defined by Robinson et al. (2014) and use these
as a systematic way to present the zircon geochem-
istry from 19 samples and support the tectonic mod-
els discussed in Robinson et al. (2015). The geo-
chronological and geochemical properties of these
samples are summarized in table 1.

Analytical Techniques

Standard reference geochemistry is presented in ap-
pendix A, tables A1-A19 (apps. A-D are available
online).

Zircon Geochemistry. Following U-Pb geochro-
nology and Hf isotopic investigation in Robinson
et al. (2014), 273 zircons from 19 samples were ab-
lated for geochemical analysis. Zircon grains were
selected on the basis of (a) the availability/size of
zircon surface area, (b) compositional zoning, and
(c) concordancy. Zircons were typically >100 um,
yielded >90% concordant U-Pb ages, and were ab-
lated using a beam diameter of 75 um and a frequency
of 5 Hz. Laser ablation inductively coupled plasma
mass spectrometry (LA-ICPMS) analysis was per-
formed using an Agilent 7500cs ICPMS coupled with
a New Wave 213-nm Nd-YAG laser at Adelaide Mi-
croscopy. Ablation and machine isotope fraction-
ation were corrected using the internationally rec-
ognized National Institute of Standards (NIST) 610
standard (element concentration: 450 ppm [+ 2%-—
5%]; Norman et al. 1996), and internal accuracy was
checked using the NIST 612 standard (element con-
centration: 35 ppm [ +2%-5%]; Norman et al. 1996).
NIST 610 and NIST 612 yielded average trace ele-

ment concentrations of ~440 + 16 ppm (1 SD; n =
160) and ~34 + 2 ppm (1 SD; n = 50), respectively.
Si* was used as the calibration standard for both
the NIST glasses and unknown zircon analyses. All
unknown zircon grains were assigned the value of
31.57 Si0,% (zircon mineral formula: ZrSiO, [SiO, =
31.57% and ZrO, = 58.27%]), which is assumed to be
homogenous across all grains. The error associated
with any SiO, variation—hence, unknown trace ele-
ment data—is considered to be within the error range
of 2%-5%, correlating with NIST 610 and 612 val-
ues. Na?, Mg Al¥, P?!, K¥, Ca*, Ti**, and Fe*” were
used as a monitor for accidental mineral inclusion
ablation (e.g., apatite). Some analyses contained
>10,000-ppm P! and Ca* with many HREE values
in the thousands of parts per million (indicative of
apatite); as a result, they were discarded. This was
also reflected in the isotopic signal, which dis-
played sharp peaks and/or troughs disrupting a
stable signal. Only stable isotope signals were used
in this study, which typically produced REE con-
centrations ranging from 1 to 5000 ppm. This range
was also recorded within a single sample depending
on the zircon morphology and zonation character-
istics. Stable isotope signals were selected and pro-
cessed using GLITTER software (Griffin et al. 2008).

Results

Zircon trace elements are summarized in table 2,
and the raw data are presented in appendix A, ta-
bles A1-A19. The corresponding cathodolumines-
cence images are displayed in appendix B, figures B1-
B19.

Zircon Geochemistry. Island arc and synoroge-
nic (IA+Syn) zircons have a large range in Al (1.3—
6235 ppm), Mg (2.1-3919 ppm), P (252-4651 ppm), Ti
(3.9-917 ppm), and Fe (18-8032 ppm), and the highest
values are the highest of any suite sampled. They
also have among the highest Na (7.5-1906 ppm), K
(2.7-1119 ppm), and Ca (84-15,985 ppm) concen-
trations. The lowest and highest values correlate to
the synorogenic Jar-Salajah Complex with the excep-
tion of Fe, Na, Ca, and P, which correspond to the
island arc Makkah Suite. IA+Syn zircons also pos-
sess the lowest values of Hf (5298-12,305 ppm), Nb
(0.7-10.1 ppm), U (31-1004 ppm), light rare earth
elements (LREEs; 6-1301 ppm), and HREEs (1149-
10,274 ppm) of any suite sampled. The lowest val-
ues correlate with the Makkah Suite, while the high-
est values (excepting Zr and Hf) correlate with the Jar-
Salajah Complex. As illustrated in figure 2, TA+Syn
zircons form data clusters that are ~10 times lower
in element concentration than other groups. The IA+
Syn zircons are the most primitive in all elements,
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Figure 2. Selected zircon trace element plots for the four age groups sampled in the Arabian Shield. Arabian suite

abbreviations are presented in table 1.

but IA zircons contain among the highest La con-
centrations (fig. 2). IA+Syn trace element signatures
exhibit a positive HREE enrichment gradient but a
depletion in LREE and HREE concentrations com-
pared with other groups (fig. 3). This is particularly
noted with IA zircons, which also display strong neg-
ative La, Pr, Sr, and Nd anomalies and a positive Ce
anomaly. Synorogenic signatures are ~10-fold more
enriched in LREEs than in IA zircons and also con-
tain similar La, Pr, Sr, and Ce anomalies. However,
synorogenic zircons contain negative K and Eu anom-
alies (fig. 3), indicative of feldspar fractionation.

Postorogenic suites have a large range in Na
(3.4-2290 ppm), Mg (0.2-2733 ppm), Al (3.4-2729
ppm), P (105-4061 ppm), Ca (77-23,514 ppm), K
(2.3-998 ppm), Ti (4.1-269 ppm), Fe (25-6705 ppm),
Hf (7218-15,772 ppm), Nb (1.1-317 ppm), U (67—
11,458 ppm), LREEs (21-3983 ppm), and HREEs
(619-14,136 ppm), in which the highest values are
similar to anorogenic abundances and are among
the highest of sampled suites. The lowest and high-
est values correspond to the Kawr Suite and the
Ar Ruwaydah Suite, respectively. Postorogenic zir-
con geochemistry shows extensive mingling with
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Figure 3. Primitive mantle normalized rare earth element patterns of sampled Saudi Arabian zircons. The gray field
is the tectonic group composition range, and the solid and dashed lines are the average values for each sampled suite.
The red line is the average midocean ridge basalt composition from Jenner and O’Neil (2012). Samples were nor-
malized to primitive mantle values from Sun and McDonough (1989).
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anorogenic suites, and alongside anorogenic suites
they form distinct groups isolated from older IA+Syn
zircons (fig. 2). This is particularly notable with Nb,
U, and La. Postorogenic suites have the most diverse
trace element signatures of all magmatic age groups
and exhibit a large composition range with both
LREE and HREE enrichment (fig. 3). The LREE sig-
natures are ~100 times greater than the older IA+Syn
suites and are marginally higher than anorogenic
suites, making these the most enriched of all mag-
matic suites. These have distinctive negative K, Sr,
and Fu depletions indicative of feldspar fraction-
ation, but they are absent of La, Pr, and Ce anomalies
present in similar anorogenic A-type suites (fig. 3).
However, postorogenic suites have half an order of
magnitude greater in middle REE abundances.

Anorogenic zircons have the lowest and highest
concentration of K (2.4-1167 ppm) of any suite sam-
pled in the Arabian Shield. Similarly, Na (3.4-2312 ppm),
Ca (71.4-21,102 ppm), Al (2.5-3342 ppm), Mg (0.2
1068 ppm), P (69-4406 ppm), Ti (4.3-224 ppm), and
Fe (31-5353 ppm) concentrations are also among the
lowest and highest. In general, the Al Bad Suite cor-
relates with the highest values, while the Admar
Suite syenite corresponds with the lowest values.
Trace element values also have a large range and
include Hf (4746-15,090 ppm), Nb (0.6-411 ppm),
LREEs (41-6361 ppm), and HREEs (602-15,258 ppm),
with the highest concentrations the highest of any
suite sampled in the Arabian Shield. The majority of
lowest and highest REE values correlate with the
Admar Suite and the Al Bad Suite, respectively. As
illustrated in figure 2, anorogenic trace elements
have values similar to those of postorogenic suites.
These age groups both have A-type whole-rock geo-
chemistry (Robinson et al. 2015) and unsurprisingly
show extensive mingling with zircon geochemistry.
Most importantly, the most evolved anorogenic geo-
chemistry is consistently separated from older IA+
Syn zircons (fig. 2). However, when utilizing La, Nb,
and Ce, the primitive Admar Suite syenite shows
some mingling with the island arc geochemistry.
Anorogenic trace element signatures exhibit both
LREE and HREE enrichment, and the LREE abun-
dances are ~100 times greater than those in older
TA-+Syn suites (fig. 3). Similarly, they also have strong
negative La, Pr, Sr, and Eu anomalies indicative of
feldspar fractionation. Although anorogenic signa-
tures are similar to those of postorogenic suites, they
are lower in LREEs and possess distinctive positive
Ce and negative Pr anomalies (fig. 3).

Distinguished Zircon Morphology. Zircon mor-
phologies were differentiated by Cl imagery, follow-
ing the work of Pupin (1980), and discrete morpho-
logical subgroups were defined in the island arc

(Makkah Suite), synorogenic (Shufayyah Complex
and Jar-Salajah Complex), and postorogenic (Kawr
Suite, Najirah Granite, and Wadbah Suite) mag-
matic groups (table 3). These suites contain a
mixture of stubby well-zoned, stubby poorly zoned,
elongate well-zoned, and elongate poorly zoned
morphologies that have been thoroughly described
in Robinson (2014). In general, there is a trend to-
ward the oldest I-type suites having zircon mor-
phologies with lower temperatures (~650°-750°C)
and the younger A-type suites having higher tem-
perature morphologies (~750°-850°C). This trend is
consistent with the findings of Belousova et al.
(2006), who also evoke a possible petrogenetic dif-
ference between granites with low and high tem-
perature zircon morphologies. In general, most sam-
pled suites in Robinson et al. (2014) contain zircons
that are entirely one type and/or occasionally one or
two outliers but not a distinct mixture of morphol-
ogy types in abundance. This section will describe
the REE chemistry of the IA+Syn and postorogenic
zircon morphology classes, which are referred to as
MC throughout this section. The values are pre-
sented in table 2.

Zircons from the island arc Makkah Suite gabbro-
diorite are divided into three morphological classes:
MCI1, stubby poorly zoned zircons; MC2, elongate
well-zoned zircons; and MC3, elongate poorly zoned
zircons (fig. 4). The lowest and highest values of Mg,
Al, Ti, and Fe correlate to MC3 and MCl1, respec-
tively, while the lowest and highest values of Na, K,
P, and Ca correspond to MC1 and MC3, respectively.
MCI1 has a higher abundance of HREEs and a lower
concentration of LREEs, while MC3 contains lower
HREEs and higher LREEs. Similarly, the Shufayyah
Suite tonalite is divided into stubby poorly zoned
(MC1), stubby well-zoned (MC2), and elongate well-
zoned (MC3) zircons (fig. 4). The lowest and high-
est values of Na, Mg, Al, Ti, and Fe belong to MC1
and MC3, respectively, while P, K, and Ca are more
ambiguous, with MC1, MC2, and MC3 containing
similar concentrationranges. Interestingly, the LREE
and HREE values show the opposite trend from the
Makkah Suite, with the lowest and highest levels
correlating to MC1 and MC3, respectively. Zircons
from the Jar-Salajah Complex granodiorite are di-
vided into stubby well-zoned (MC1), stubby poorly
zoned (MC2), and elongate well-zoned (MC3) zircon
morphologies (fig. 4). Similar to zircons of the Makkah
Suite, these zircons have the lowest Mg, Al, Ti, and
Fe values, correlating to MC1, and the lowest P, K,
and Ca values, correlating to MC3. The highest val-
ues of all major elements, aside from Na, correspond
to MC2. The lowest and highest concentrations of
Nabelong to MC3 and MCl, respectively. Jar-Salajah
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Figure 4. Representation of the three zircon morphologies and corresponding analyzed rare earth element (REE) and
206Ph /238U age data spots found in the island arc (Makkah Suite), synorogenic (Shufayyah and Jar-Salajah Complexes), and
postorogenic (Najirah Granite, Kawr, and Wadbah Suites) magmatic groups. Morphology classes (MCs) and associated
numbers refer to the number of zircons with similar morphology. The numbers 1 and 2 refer to the photographic scale

assigned to the given suite.
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zircons are defined from older suites by their large
LREE array and elevated HREEs. The lowest and
highest LREE and HREE abundances correlate to
MC1 and MC3, respectively.

The postorogenic Kawr Suite granite has stubby
well-zoned (MC1), elongate well-zoned (MC2), and
elongate poorly zoned (MC3) zircon morphologies
(fig. 4). The lowest and highest values of Na, Mg,
Al, P, Ca, Ti, and Fe correlate to MC1 and MCS3,
respectively, while the highest values of K cor-
relate to MC2. Similarly, the lowest and highest
abundances of LREEs and HREEs correspond to
MCI1 and MC3, respectively. However, U is the ex-
ception, with MC1 correlating to the highest con-
centrations. The Najirah Granite is divided into
stubby well-zoned (MC1), elongate well-zoned (MC2),
and elongate poorly zoned (MC3) zircons (fig. 4). In-
terestingly, this shows patterns identical to those of
the Kawr Suite. The lowest and highest values of Na,
Mg, Al, P, Ca, Ti, and Fe correlate to MC1 and MC3,
respectively. Once again, MC2 has the highest val-
ues of K, while the lowest correlates to MC1. Trace
element abundances yield similar results, with the
lowest and highest LREE and HREE values corre-
sponding to MC1 and MC3, respectively. The Wad-
bah Suite alkali granite contains stubby well-zoned
(MC1), elongate poorly zoned (MC2), and elongate
well-zoned (MC3) zircons (fig. 4). The lowest and
highest Mg and Fe abundances correlate to MC1
and MC3, respectively. Similarly, the lowest values
of Al and Ti also belong to MC1, but instead MC2
corresponds with the highest values. Interestingly,
Na, P, K, and Ca show the opposite trend, with the
lowest abundances correlating to MC3 and the high-
est to MC2. Trace element concentrations display
similar results, with the lowest and highest LREE
and HREE values corresponding to MC2 and MCI1,
respectively.

The REE-analyzed zircon morphologies were com-
pared with their respective 2°°Pb/?**U age from Rob-
inson et al. (2014) and appear to show age scatter
consistent with the three distinct morphology
classes (fig. 5). It should be noted that the Y-axis ele-
ment concentration is independent of the X-axis zir-
con age; thus, any element illustrated will fluctuate
according to concentration, but the age will remain
the same. Consequently, Hf is chosen to highlight
this scatter because it is a REE in abundance across
all zircons. As illustrated in figure 5, there is also a
trend toward increasing Hf concentration with de-
creasing age. This helps to reinforce the identifica-
tion of three morphology groups in island arc, syno-
rogenic, and postorogenic samples.

Discrete Crystallization Ages. The identification
of three distinguished zircon morphologies and geo-

MANTLE SOURCES BENEATH THE ARABIAN SHIELD 475

chemistries in figure 5 appear to illustrate three
geochronological groups. Following this, the spot
206Ph /238U ages are used to calculate a weighted av-
erage age for each morphology group (table 4). To
investigate whether these morphological discrete
ages are statistically one age or multiple ages, the
Gaussian distribution component and the 2°°Pb/>U
age for each sample are examined. The raw zircon age
data and discrete ages are presented in appendix C,
tables C1-Cé.

Zircons from the Makkah Suite, Shufayyah Com-
plex, and Wadbah Suite yield tight 2°Pb/***U crystal-
lization ages of 845.6 + 4.9 Ma (MSWD: 1.6, 715.4 +
3.6 Ma (MSWD: 1.2), and 615.9 = 4.9 Ma (MSWD:
2.0), respectively, and suggest that all data lie in a
near-Gaussian distribution and form a single age
(fig. 6). However, three morphology groups yield dis-
tinct 2°°Pb/***U weighted means of 867.9 + 8.5,
847 + 5.3, and 829.2 + 6.8 Ma (Makkah Suite);
7309 + 7.2, 716.7 + 4.1, and 696.3 = 7.1 Ma
(Shufayyah Complex); and 629.8 + 5.7, 614 + 5.2,
and 601.1 + 6.5 Ma (Wadbah Suite), respectively;
this hints that more than one age may exist in the
combined data, which is unresolvable by the rela-
tively imprecise LA-ICPMS technique. In addition,
these suites illustrate a small break and skewed dis-
tribution in the data when a linearized probability
plot from Isoplot software is used (Ludwig 2000,
which may represent more than one age (fig. 6). Sta-
tistical studies from Melnykov and Maitra (2010) and
Sambridge and Compston (1994) describe the separa-
tion of data clusters and multimodel distributions and
highlight that multiple Gaussian distributions can
add together to produce a single normal Gaussian
distribution and/or that the data may not be Gaussian
at all. It is suggested that this may be the case for
the Makkah, Shufayyah, and Wadbah Suites, but it
is unresolvable using LA-ICPMS.

Zircons from the Jar-Salajah Complex, the Naji-
rah Granite, and the Kawr Suite, however, yield
206Ph/28U crystallization ages of 709.5 + 8.4 Ma
(MSWD: 3.5), 607 = 7.9 Ma (MSWD: 2.9), and
611.7 + 6.5 Ma (MSWD: 2.4), respectively, and
their multipeaked probability plots coupled with
large MSWD values suggest that these data form a
non-Gaussian distribution with more than one age
present in each distribution (fig. 6). Three morphol-
ogy groups also yield distinct 2°°Pb/***U weighted
means of 710 + 5.0,693.2 + 7.5,and 676.5 + 5.0 Ma
(Jar-Salajah Complex); 631.4 + 9.1, 606.5 + 6.0, and
585.4 + 8.8 Ma (Najirah Granite); and 636.6. = 8.4,
609.9 + 5.7, and 594.7 = 7.6 Ma (Kawr Suite), re-
spectively; this suggests that more than one age
is present. Statistically, the Jar-Salajah Complex ap-
pears to have a distribution consistent with two ages,
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Figure 5. Identified zircon morphology classes (MCs) from island arc (Makkah Suite), synorogenic (Shufayyah and

Jar-Salajah Complexes), and postorogenic (Najirah Granite, Kawr, and Wadbah Suites) magmatic groups plotted with
corresponding 2°°Pb/***U age spots from Robinson et al. (2014).

resulting in two peaks in the probability density dis-
tribution. The Najirah Granite has three steps in the
data reflecting the three discrete ages, and the Kawr
Suite has a distribution suggestive of two ages (fig. 6).
Once again, it is suggested that the limitations of the
LA-ICPMS technique cannot resolve three discrete
ages in the Jar-Salajah Complex and Kawr Suite.
Overall, six samples contain three distinct age groups,
and with the collection of additional U-Pb data more
discrete ages could be identified, but they are not
statistically supportable in this study (e.g., the Mak-
kah Suite and the Jar-Salajah Complex have four to
five steps in the data). As described in appendix D
and shown in figures D1 and D2, the three discrete
ages are not the product of ablation drift or Pb/Th
isotope fluctuations. To help reduce Pb loss as a

factor for the younger age groups, Pb, U, and Th con-
tent are plotted with age in appendix D, figures D1
and D2. Only the Jar-Salajah Complex has elevated
U, which may indicate Pb loss. This is in agreement
with Robinson et al. (2014).

Discussion

Zircon geochemistry data presented in this study
support the four magmatic groups defined in Robin-
son et al. (2014): island arc (~845 Ma), synorogenic
(~715-700 Ma), postorogenic (~640-600 Ma), and
anorogenic (<600 Ma). Trace elements identify a dis-
tinction between older (I-type) zircons associated
with subduction and younger (A-type) zircons formed
in extensional environments. However, geochemical
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similarities, combined with identified discrete ages
and similar spatial distributions (suture zones), sug-
gest a link between island arc plus synorogenic I-type
and postorogenic A-type sources. Following the re-
cent studies of Robinson et al. (2014, 2015), these
sources are derived from MORB-like and/or arc
tholeiite-like geochemistry and are distinguished
from the enriched, limited crust-mantle interaction
of anorogenic A-type granites. To provide further
evidence for this discrimination, the zircon geo-
chemical properties and their relationship with whole-
rock data from Robinson et al. (2015) will be discussed
first. This will be followed by a discussion of the sig-
nificance of the multiple discrete ages, and some
plausible petrogenetic mechanisms will be suggested.

Contaminated and Enriched Mantle Sources beneath
the Arabian Shield. Whole-rock data presented by
Robinson et al. (2015) suggest the involvement of
two distinct mantle sources in Arabian Shield gran-
itoid generation using Nd isotopic signatures and
Nb and Y trace elements. Robinson et al. (2015) sug-
gest that island arc, synorogenic, and postorogenic
I-S-A-type granites have intrasuite variation con-
trolled by a combination of crustal assimilation of
normal MORB (N-MORBJ-like and/or arc tholeiite~
like mafic parents and fractional crystallization in
volcanic arc settings. By contrast, anorogenic A-type
magmatism is enriched in HREE and incompatible
elements (e.g.,, Nb, Rb, Ga, Nd, Zr, and Y) has lim-
ited crustal interaction, and is emplaced into within-
plate and back-arc settings. Zircon geochemistry
also supports the intrasuite variation and identifi-
cation of two mantle sources (fig. 7). Zircon ages and
corresponding Nb values separate the four magmatic
groups and highlight a depleted parental source
(low Nb) from ~850-600 Ma. This supports Robin-
son et al. (2015), who suggest that island arc, syn-
orogenic, and postorogenic suites are derived from
low incompatible MORB-like and/or arc tholeiite-
like mafic parents. As illustrated in figure 7, these

MANTLE SOURCES BENEATH THE ARABIAN SHIELD 481

magmatic groups are isolated from the enriched
source defined by the AAPGs. This change in source
correlates well with the change in tectonic process
described in Robinson et al. (2014).

As an example, the change in zircon source chem-
istry is pronounced between the zircons from the
~600 Ma Admar and the ~525 Ma Mardabah sye-
nites (fig. 7). Both syenites reside in the Hijaz ter-
rane (western Arabian Shield) and have similar pet-
rographic and chemical properties (Robinson et al.
2015), but the ~525 Ma Mardabah zircons contain an
order of magnitude greater Nb, suggesting a more
enriched source. The zircon compositional field de-
fined by the enriched mantle granitoids is also over-
lapped with zircons from the Nabitah and Halaban
Sutures (Kawr, Wadbah, Ibn Hashbal, and Najirah
Suites) and the northern end of the Arabian Shield
(Idah Suite). When these trends are isolated into
individual components, the Nabitah and Halaban Su-
ture Granitoids (NHSG] illustrate a large range in Nb.
This variation is present from the ~636 Ma final Na-
bitah collision (older zircon populations) and evolves
to younger zircon populations with ~100 times the
Nb concentration of the older populations within
the same suite (fig. 7). The increase in Nb within the
same suites is interpreted to resemble fractionation,
which supports the whole-rock data from Robinson
et al. (2015). This fractionation is also assumed to be
the same for the highly evolved postorogenic perth-
itic (hypersolvus) A-type granitoids (POPG,; e.g., Idah
Suite), which is derived from a similar source to the
POPG Admar syenite (i.e., MORB-type and/or arc
tholeiite-type source).

The difference between the enriched and depleted
sources and the extent of the fractionation within the
NHSG suites are emphasized using Nb and Y (fig. 7).
The zircon geochemistry defines two trends desig-
nated as enriched and contaminated sources in a man-
ner similar to the Nb-versus-Y whole-rock data in
Robinson et al. (2015). As illustrated in figure 7, the

Figure 7. A, Zircon geochemistry indicates multiple sources involved in Arabian Shield granitoids. This supports
Robinson et al. (2015), who suggest that I-S-A-type granitoids from 850-600 Ma (green, yellow, black, blue/purple) are
derived from mid-ocean ridge basalt-like and/or arc tholeiite-type sources followed by fractionation, while those
from <600 Ma (red) are associated with an enriched source. This also coincides with the change in tectonic process at
~600 Ma described by Robinson et al. (2014). B, Zircon geochemistry defines two trends: (1) contaminated source
defined by I-A-type granitoids with contaminated isotopic signatures in subduction settings (Robinson et al. 2015) and
(2) enriched source defined by the most enriched A-type granites. The graph on the right isolates the A-type zircons
associated with the sutures. It is suggested that an initial contamination at ~636 Ma (Kawr Suite, Al Hafoor Suite) is
followed by a decrease in crustal component at ~630-610 Ma (Wadbah Suite, Najirah Granite, Ibn Hasbal Suite) and
continued fractionation to the most juvenile zircons at <610 Ma (Kawr Suite, Najirah Granite). The G labels within
the TA+Syn and postorogenic suites refer to the identified discrete morphologies/ages. Suite abbreviations are dis-
played in table 1. AAPG = <600 Ma anorogenic aegirine-bearing perthitic (hypersolvus) A-type granitoids; POPG =
~610-600 Ma postorogenic perthitic (hypersolvus) A-type granitoids; NHSG = ~640-585 Ma I- and A-type granitoids
from the Nabitah and Halaban Suture; IA+Syn = ~870-675 Ma island arc and synorogenic I-type granitoids.
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contaminated source trend is defined by the A-type
Admar syenite (POPG), island arc and synorogenic
I-type granitoids (IA+Syn), A-type Haml and Al Khu-
shaymiyah Suites (POPG, Afif terrane), A-type Kawr
and Al Hafoor Suites (NHSG, Asir-Afif collision), and
finally the A-type Ar Ruwaydah Suite (NHSG, Ad
Dawadimi-Halaban Suture). According to Robinson
et al. (2015), these suites have isotopic signatures and
geochemistry associated with crustal contamination
of MORB and/or arc-tholeiite (REE-depleted) sources
in volcanic arc settings; hence, the contaminated
source trend. By contrast, the enriched trend is de-
fined by enriched anorogenic aegirine-bearing perth-
itic (hypersolvus) A-type granitoid (AAPG) suites and
fractionated NHSG A-type granites (fig. 7). Zircon
geochemistry presented in this study also illustrates
the decreasing crustal component beneath the Na-
bitah Suture. The ~636 Ma final collision of the Na-
bitah Suture is marked by the crustally contaminated
Kawr and Al Hafoor Suite A-type granites (fig. 7).
Following this, the lower limit of the enriched source
trend is defined by the ~630-610 Ma Wadbah and Ibn
Hashbal Suite A-type granites. It is suggested that
these suites represent a decrease in the crustal com-
ponent of the melt beneath the suture zone. With
continued fractionation, the ~610 Ma A-types of the
Kawr Suite appear and are the most juvenile end
members beneath the suture (fig. 7). This process
of decreasing crustal input in MORB and/or arc-
tholeiite sources, in conjunction with remelting/
fractionation (REE enrichment), may explain the
overlap between enriched and contaminated A-type
granites. However, it suggests that the enriched AAPG
suites are not derived from the same source or pet-
rogenetic mechanism, which is in agreement with
the whole-rock data in Robinson et al. (2015) and
the change in tectonic process at ~600 Ma from Rob-
inson et al. (2014).

Magmatic Pulsing. A critical phenomenon found
in the Arabian Shield geochronology is the separa-
tion of discrete magmatic ages and zircon morphol-
ogies within a given suite. This is found within the
IA+Syn suites associated with accretion but also
within NHSG A-type intrusions affiliated with the
Nabitah and Halaban Sutures. Within each of these
suites, the data typically span ~50 m.yr., which is a
significant temporal window of magmatism consid-
ering the duration of other Arabian A-type activity
(AAPG suites). Even if doubt is placed on discrete
age separation, differences between zircon morphol-
ogy and geochemistry are undeniable. It is therefore
important to highlight the complex mingling field
relationships observed in both IA+Syn (Makkah
Suite) and NHSG (Kawr Suite) intrusions described
in Robinson (2014). The former ranges from gabbro

to granodiorite, while the latter ranges from gabbro
to aegirine-bearing alkali granite. It would therefore
be unsurprising if the samples reveal not only differ-
ent geochemical parameters but also discrete zircon
populations.

Given the discrete age and mingling evidence,
there is still the possibility that the age differences
are afunction of inheritance or metamorphism. How-
ever, this is deemed unlikely because the ages of any
country rocks surrounding the postorogenic intru-
sions are at least >50 m.yr. older and the TA+Syn
suites are among the oldest granitoids in the Arabian
Shield (with the exception of the Paleoproterozoic
Khida terrane). Inheritance would likely be reflected
in the U-Pb concordia as >50-m.yr. age gaps between
zircon groups and/or Pb loss, but the discrete ages
presented here are <20 m.yr. apart and exhibit no Pb
loss (the Jar-Salajah Complex is possibly the excep-
tion). According to Robinson et al. (2014), all suites
exhibit no age difference between cores and rims, as
one might expect, which also rules out metamor-
phism. In addition, metamorphism is deemed very
unlikely for the undeformed, postorogenic, aegirine-
bearing alkali granites generated in extensional en-
vironments. It is possible that the youngest ages are
simply inheritance (Pb loss) from older related mag-
matism within the same suite (e.g., Kawr Suite gran-
ite crystallization at 636.6 Ma, 609.9 Ma [inheritance],
and 594.7 Ma [inheritance]); however, inherence in
A-type magmatism is an undocumented phenome-
non and regardless would still imply a long-lived
magmatic event. It is therefore suggested that the
TIA+Syn and NHSG suites have multiple ages that
represent discrete magmatic pulses within the same
suite. A similar study was undertaken by Schaltegger
et al. (2002), who explain multiple discrete ages and
mantle sources within a given suite (Kohistan Is-
land Arc, Pakistan) as the result of magmatic pulses.
This is also found by Gagnevin et al. (2011), who in-
vestigated the Tuscan Magmatic Province, but the
continuous magmatism expands only <3 m.yr.

I-Type Petrogenesis within Arabian Subduction Zones.
According to Robinson et al. (2014), the island arc age
magmatism of the Makkah Suite represents the ini-
tiation of western island arc magmatism in the Ara-
bian Shield and reflects the eastward-subducting
ocean plates of the East African Orogen (EAO; Stern
1994). As mentioned previously, the Makkah Suite
has contaminated zircon and whole-rock geochem-
istry, which suggests the incorporation of a crustal
component in the melt that generates these I-type
granites (fig. 8). In addition, this suite exhibits mul-
tiple crystallization ages of ~867, ~847, and ~829 Ma,
which are interpreted to resemble incremental sub-
duction in an island arc and, farther abroad, the clo-
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Figure 8. Tectonic model representing the island arc and synorogenic I-type magmatism in the western Arabian
Shield, constructed using zircon geochemistry presented in this study and whole-rock geochemistry from Robinson
et al. (2015). The Makkah Suite is the oldest unit dated from the sampled Arabian suites and is suggested to resemble
incremental subduction in a contaminated island arc setting and closure of oceanic fragments in the East African
Orogen. Farther north, the synorogenic magmatism of the Shufayyah and Jar-Salajah Complexes is interpreted to
resemble the closure of these oceanic basins (evidenced by ophiolite sutures) and incremental calcalkaline subduction

magmatism. MORB = mid-ocean ridge basalt.

sure of migrating ocean fragments in the EAO in in-
cremental phases (Meert 2003; Li et al. 2008). The
Makkah Suite is itself undeformed, but its three
magmatic pulses are consistent with the timing of
frontal arc rocks of the nearby At Ta’if Group (~840-
815 Ma; Johnson 2006), which has low-grade (green-
schist) metamorphism and westward-trending thrust
kinematics (Robinson 2014).

Younger synorogenic I-type granitoids of the Shu-
fayyah and Jar-Salajah Complexes (Hijaz terrane) in-
trude the ophiolite-decorated Yanbu Suture, which
defines accretion between western terranes and east-
ward impingements of the EAO (Robinson et al.
2014). Calcalkaline subduction magmatism is initi-
ated at ~730 Ma by the Shufayyah Complex and con-
strains the closure of the Yanbu Suture, which is in
agreement with Johnson et al. (2011). This eastward-

subducting plate produces another pulse at ~716 Ma,
which is then followed by the generation of Jar-
Salajah Complex at ~710 Ma in the same vicinity.
The Shufayyah Complex produces one last pulse at
~696 Ma, and the Jar-Salajah Complex generates
another two at ~693 and ~676 Ma. This series of
magmatic pulses is again interpreted to represent in-
cremental subduction and fractionation from slab-
derived melts (fig. 8).

A-Type Petrogenesis beneath Arabian Sutures. The
subtle differences between zircon morphology and
contaminated zircon geochemistry trends presented
in this article support the suggestion by Robinson
et al. (2015) of a long-lived, lower crustal melting,
assimilation, storage, and homogenization (MASH)
zone (Smithies et al. 2011) below the Nabitah and
Halaban Sutures. Following Flowerdew et al. (2013)
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and Johnson (2006), it is suggested that the southern
end of the Nabitah Suture is associated with exten-
sion and A-type magmatism, signifying the termi-
nation of microplate accretion at ~640 Ma. The data
in this study support this, with the generation of the
~636 Ma Al Hafoor Suite and first magmatic pulse
of the Kawr Suite. These two suites represent the
initial melting of the lower crust (contaminated
N-MORB and TAT mafic parents) that results from
the influx of hot mantle via slab tear (fig. 9). This
long-lived (~50 m.yr.)] MASH zone undergoes
continuous remelting and fractionation, which de-
creases the crustal component and taps off the first
magmatic pulses of the ~630 and 614 Ma Wadbah
Suite and the ~618 Ma Ibn Hashbal Suite (fig. 9).
Continued remelting and fractionation produces an-
other ~610 Ma Wadbah Suite pulse and the ~610 and
~594 Ma Kawr Suite pulses, which have the most
juvenile and enriched geochemistry (fig. 9). Following
this, the hot mantle influx providing the heat to the
lower crust homogenizes and thermally relaxes,
resulting in the termination of the lower crustal
MASH zone. This model helps to explain the long-
lived A-type magmatism beneath sutures and tran-
sition from contaminated, magnesian, volcanic arc
granite (VAG) affinities of the early I-A-type end
members to the juvenile, ferroan, within-plate granite
(WPG) characteristics of the youngest end members
within the same suite. In addition, this model also
supports Flowerdew et al. (2013), who suggest a ~640
Ma tear in the Asir-Tathlith subduction zone.

East of the Afif terrane, westward subduction mag-
matism continued until after ~600 Ma in the Ar Ryan
terrane (Doebrich et al. 2007; Cox et al. 2012). The
long-lived lower crustal MASH model is assumed
to be the petrogenetic mechanism for the Najirah
Granite intruding the Halaban Suture. This A-type
granite lies east of the ~615 Ma forearc sedimentary
basin described in Cox et al. (2012) and has zircon
and whole-rock geochemistry similar to the A-types
in the Nabitah Suture. It is interpreted that the
westward-subducting Ar Ryan terrane developed a
slab tear at ~631 Ma, which generated the first
magmatic pulse of the Najirah Granite from the
lower crustal MASH zone. This contaminated melt
continued to fractionate and produced the ~611 Ma
Ar Ruwaydah Suite that intrudes the Najirah Gran-
ite. Following this, continued fractionation gener-
ated the second magmatic pulse of the Najirah
Granite at ~606 Ma and finally another at ~585 Ma,
which helps constrain the accretion age of the
Halaban Suture and eastern Arabian Shield amal-
gamation (fig. 10). Other contaminated A-types, such
as the Haml, Al Khushaymiyah, Idah, and Admar
Suites (POPG), do not possess multiple crystalliza-

tion ages. However, they have similar zircon and
whole-rock geochemistry that is quite distinct from
AAPG suites. It is therefore suggested that POPG
suites are also generated by lower crustal melting in
VAG settings but are not long-lived. It is possible
that this short-lived A-type magmatism is related to
the rate of hot mantle influx beneath the lower
crust. This may be controlled by the extent of the
tear and/or the angle of the subducting plate.
A-Type Petrogenesis within Back-Arc and Within-
Plate Settings. The generation of <600 Ma AAPG
suites in the Arabian Shield is consistent with a
more enriched mantle source with limited crust-
mantle interaction and coincides with the ~600 Ma
final consolidation of the ANS (Collins and Pisa-
revsky 2005). According to Robinson et al. (2014),
these suites are generated in back-arc and within-
plate settings and indicate a change in tectonic pro-
cess from older A-types associated with suture zones.
Fortunately, the Midyan and Hijaz terranes in the
western Arabian Shield provide an excellent exam-
ple to explore this petrogenetic transition. As previ-
ously mentioned, the eastward-subducting Midyan
plate generated the ~730-675 Ma contaminated VAG
I-type magmatism emplaced into the Hijaz plate (con-
ventional subduction-zone melting). Following this,
the appearance of the ~600 Ma contaminated VAG
A-type Admar syenite signifies ANS accretion ces-
sation, and the resulting extension developed a tear
in the Midyan plate ~75 m.yr. after I-type genera-
tion (fig. 11). There is also no reintroduction of
calcalkaline magmatism following this A-type, which
one would expect with a continued migrating slab.
Farther north, the 597 Ma Al Bad Suite (WPG A-type
batholith) is generated in a within-plate or back-
arc setting in the Midyan plate with a distinctive
enriched source (fig. 11). It is interpreted that the Al
Bad Suite is the product of lithospheric delamina-
tion, which is discussed by Avigad and Gvirtzman
(2009) as the petrogenetic mechanism for ~600 Ma
ANS A-type granitoids. This enriched (ocean island
basalt [OIB]-like) mantle is the result of extensive
crustal thinning, lithospheric root removal, upwell-
ing asthenospheric mantle, and thermal relaxation.
Lithospheric delamination is the preferred mech-
anism to explain the limited crust-mantle interac-
tion and enriched source of the AAPG suites. It may
be argued that AAPG suites are simply highly frac-
tionated A-types generated in a manner similar to
the most juvenile lower crustal MASH zone suites
(e.g., the Kawr Suite), but this is deemed invalid.
Zircon geochemistry presented in this study, com-
bined with whole-rock data from Robinson et al.
(2015), separate the highly fractionated A-types from
enriched A-types, such as the Al Bad Suite. In addition,
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Figure 9. Tectonic model representing the Asir-Tathlith terrane A-type generation, constructed using zircon geochemistry
presented in this study and whole-rock geochemistry from Robinson et al. (2015). The ~636 Ma Kawr and Al Hafoor Suites
represent the initial tear in the subducting slab, which provides the heat influx to melt the lower crust beneath the Nabitah
Suture and generate the lower crustal melting, assimilation, storage, and homogenization (MASH) zone. Remelting and frac-
tionation decreases the crustal component within this zone and produces the younger Ibn Hashbal and Wadbah Suite magmatic
pulses. Following this, continued fractionation produces the most juvenile and rare earth element (REE)-enriched A-types,
correlating with the final pulses of the Wadbah and Kawr Suites. MORB = mid-ocean ridge basalt; IAT = island arc tholeiite.
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Figure 10. Time-space plot modified from Robinson et al. (2015) highlighting the spatial relationship and mecha-
nisms of the four tectonic groups sampled in the Arabian Shield. The age range boxes in each terrane are compiled
from an Arabian-Nubian Shield data set presented in Robinson et al. (2014). Note the multiple crystallization ages
associated with I- and A-type granites generated within subduction settings (island arc plus synorogenic) or beneath
suture zones immediately following extension (postorogenic). Dashes = gabbro; squares = I-type granite; triangles =
S-type granite; circles = hypersolvus A-type granite; hexagon = hypersolvus aegirine-bearing A-type granite. Dashes
inside squares and crosses inside circles/hexagons represent suites with gabbroic and gabbroic/dioritic/monzonitic
samples, respectively. MORB = mid-ocean ridge basalt; EAO = East African Orogen.

the ~525 Ma Mardabah syenite (located in the Hijaz
terrane next to the contaminated ~600 Ma Admar
syenite) has the same enriched source as the Al Bad
Suite and is associated with localized crustal exten-
sion (Robinson et al. 2014). It is assumed that if al-
lowed to continue to fractionate, these syenites would
produce the same isotopic and geochemical proper-
ties as the more evolved A-types in their respec-
tive fields.

Both contaminated and enriched A-types result
from regional extension, but their petrogenetic mech-
anisms differ (i.e., slab tear/lower crustal melting vs.
within-plate delamination). This change in tectonic
process at ~600 Ma appears to complement Be’eri-

Shlevin et al. (2010) and Stoeser and Frost (2006),
who propose a more depleted mantle beneath the
ANS influenced by pre-Neoproterozoic crust, but also
Stein and Goldstein (1996) for an enriched mantle.
Although these data cannot rule out ~600 Ma man-
tle enrichment created by upwelling plumes that
can be geochemically traced back to ~1000 Ma (Stein
and Goldstein 1996), it does not substantiate this
mechanism for ANS magmatism between ~845 and
600 Ma. Instead, this study suggests subduction and
accretion between ~845 and 600 Ma involving con-
taminated MORB-like and/or arc tholeiite-like mag-
matism, slab tear, and melting of the lower crust.
This is then followed by lithospheric delamination
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Figure 11.

Tectonic model representing the postorogenic and anorogenic magmatism in the western Arabian Shield,

constructed using zircon geochemistry presented in this study and whole-rock geochemistry from Robinson et al. (2015).
The ~599 Ma Admar Suite is a magnesian-rich A-type syenite associated with extension and slab tear resulting in
lower crustal melting of a mid-ocean ridge basalt (MORB)-like source above the Hijaz plate. Farther north, the ~597 Ma
Al Bad batholith is a ferroan A-type granite associated with an enriched source and limited crust mantle generated
by within-plate lithospheric delamination. The ~525 Ma Mardabah Complex syenite is also a within-plate A-type
associated with the same enriched mantle source, but its age and isolated nature suggest localized extension possibly
linked to final Gondwana assembly (Robinson et al. 2014). OIB = ocean island basalt; VAG = volcanic arc granite.

associated with upwelling enriched mantle (OIB-
like) confined to within-plate and back-arc settings,
which is in agreement with Avigad and Gvirtzman
(2009).

Conclusions

Arabian Shield igneous zircon geochemistry indi-
cates that both contaminated and enriched mantle
sources are involved in Arabian Shield evolution.
Overall, zircon geochemistry distinguishes and sup-
ports four magmatic groups defined in Robinson et al.
(2015): (1) ~870-675 Ma island arc and synorogenic
granitoids (IA+Syn), (2) ~640-585 Ma granitoids from

the Nabitah and Halaban Suture (NHSG), (3) ~610-
600 Ma postorogenic perthitic (hypersolvus) gran-
itoids (POPG), and (4) <600 Ma anorogenic aegirine—
bearing perthitic (hypersolvus) granitoids (AAPG).
Groups 1, 2, and 3 include suites ranging from I-S- to
A-type granites that have parental magmas with low
Nb contents (~1 ppm) and fractionate toward high
Nb values (~300 ppm). These also possess intrasuite
variation within LREE and HREE signatures and de-
fine the contaminated source trend utilizing Nb and
U trace elements. By contrast, group 4 suites have
parental magmas that are enriched in Nb with low-
est and highest values of ~10 and 400 ppm, respec-
tively, and define the enriched source trend associ-
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ated with limited crust-mantle interaction. These
contaminated and enriched source trends support
the whole-rock Nb-versus-Y trends described in Rob-
inson et al. (2015).

Discrete zircon morphologies and U-Pb ages are
identified within the IA+Syn I-type and NHSG
A-type granites, which exhibit extensive magma min-
gling. These are interpreted as discrete crystallization
ages reflecting magmatic pulsing from contaminated
MORB-like and/or arc tholeiite-like mantle. It is
suggested that TA+Syn I-type granitoids reflect lower
crustal melting within typical VAG settings and in-
cremental subduction of eastward-migrating oceanic
fragments in the EAO. This process of lower crustal
melting and eastward migration is initiated in the
Asir terrane by the Makkah Suite (~867, ~847, and
~829 Ma). Younger synorogenic calcalkaline mag-
matism correlating to the Shufayyah (~730, 716, and
696 Ma) and Jar-Salajah (~710, 693, and 676 Ma)
Complexes is suggested to define the accretion of
the western terranes with eastern components of
the EAO. The appearance of ~640 Ma A-type mag-
matism within suture zones (NHSG suites) is a re-
sponse to the onset of extension at the termination
of orogenesis. These A-type suites illustrate a tran-
sition from contaminated mantle (~636 Ma) to en-
riched mantle with a decrease in crustal input (~630-
610 Ma) and finally to juvenile, enriched mantle
with limited crustal interaction (<610 Ma). This long-
lived A-type magmatism with multiple age groups is
interpreted to resemble an initial slab tear associ-
ated with slab rollback and the development of a
lower crustal MASH zone via hot mantle influx.
The subsequent magmatic pulses emitted ~20 m.yr.
apart from this MASH zone become increasingly

more juvenile by remelting and fractionation. This
process accounts for the transition from magnesian-
rich VAG end members to ferroan-rich WPG end
members within the same suite. The appearance of
enriched AAPG suites (<600 Ma) in within-plate or
back-arc settings is consistent with the final colli-
sion of Neoproterozoic India with the African conti-
nents as central Gondwana formed (Robinson et al.
2014). The Midyan and Hijaz terranes illustrate the
transition of A-type magmatism associated with
lower crustal melting and slab tear (POPG) to A-type
magmatism generated by within-plate lithospheric
delamination and asthenospheric upwelling. Litho-
spheric delamination can account for the short-lived
(<20 m.yr.) A-type magmatism associated with lim-
ited crust-mantle interaction and enriched geochem-
istry presented both in this study and in Robinson
et al. (2015).
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