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1. Abstract 
By-pass surgery and heart transplantation are traditionally used to restore the heart’s functionality after a myocardial 
Infarction (MI or heart attack) that results in scar tissue formation and impaired cardiac function. However, both 
procedures are associated with serious post-surgical complications. Therefore, new strategies to help re-establish heart 
functionality are necessary.  
Tissue engineering and stem cell therapy are the promising approaches that are being explored for the treatment of MI. 
The stem cell niche is extremely important for the proliferation and differentiation of stem cells and tissue regeneration. 
For the introduction of stem cells into the host tissue an artificial carrier such as a scaffold is preferred as direct injection 
of stem cells has resulted in fast stem cell death. Such scaffold will provide the proper microenvironment that can be 
altered electronically to provide temporal stimulation to the cells.   
We have developed an electroactive polymer (EAP) scaffold for cardiac tissue engineering. The EAP scaffold mimics 
the extracellular matrix and provides a 3D microenvironment that can be easily tuned during fabrication, such as 
controllable fibre dimensions, alignment, and coating. In addition, the scaffold can provide electrical and 
electromechanical stimulation to the stem cells which are important external stimuli to stem cell differentiation. We 
tested the initial biocompatibility of these scaffolds using cardiac progenitor cells (CPCs), and continued onto more 
sensitive induced pluripotent stem cells (iPS). We present the fabrication and characterisation of these electroactive 
fibres as well as the response of increasingly sensitive cell types to the scaffolds. 

2.  Introduction 
Myocardial infarction (MI), commonly referred to as a heart attack, is a leading cause of death worldwide with a high 
associated health care cost for survivors. After an MI the cardiac tissue damaged due to lack of oxygen causes a wound 
healing response that replaces the damaged cardiac tissue with non-contractile scar tissue. This results in reduced cardiac 
function, leading to reduced quality of life and further complications for the patient.  
Cardiac stem cell therapy is an approach that aims to replace and regenerate new functional cardiac tissue, through the 
introduction of targeted stem cells that will differentiate into cardiomyocytes around the affected areas within the heart. 
Stem cell therapy has advantages over current therapies, such as by-pass graft surgery or complete organ transplantation, 
as it does not require donor organs or complicated open heart surgeries. However, current clinical trials of cardiac stem 
cell therapy have been unsuccessful; high stem cell mortality within the first few days after injection and low retention 
are major contributors to this lack of clinical efficacy.[1] The cardiac environment is also quite difficult for injected cells 
to survive due to immune responses, inadequate vascularization, fibrosis and inadequate access to nutrients.[2,3]  
 
For these reasons, the direct injection of stem cells into cardiac tissue is not a beneficial approach; instead, delivering the 
stem cells on an implantable platform, or cardiac patch, would provide a more stable environment and allow the stem 
cells time to develop into effective tissue[4]. Grafting stem cells onto bio-engineered tissue scaffolds can address the 
majority of the issues that currently limit the efficacy of cardiac stem cell therapy. The use of electrospun fibres for the 
support of cardiac cells has an advantage due to similarity to extracellular matrix morphology, as well as the ability to 
tailor fibres in dimension, composition, and functionality. Different types of fibre materials have been used for stem cell 
graft materials, such as nano- and micro-sized fibres with different polymer compositions [5] and bio-functionalised 
fibres [6]. The 3-dimensional morphology provided by the fibres makes for a good basis for a cardiac patch.  
The introduction of an electroactive material to the fibres provides another aspect to the influence and control of the stem 
cells on the fibres[7]. Electroactive polymers (EAP), such as polypyrrole (PPy), are conductive and when 
reduced/oxidized they will mechanically actuate [8]. This provides the possibility to stimulate stem cells both electrically 
and mechanically while growing on the cardiac patch. Electrical and mechanical stimuli have demonstrated in the past to 
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stimulate stem cells and to influence differentiation into cardiac type cells[9-11]. EAP coated fibres have been 
demonstrated to work as support for many types of cells, including neural, myogenic, and cardiac cells [12-15].  
Following on from this foundation, we will produce EAP coated fibres using PPy to investigate the response from 
primary and stem cells. Our previous work has demonstrated the efficacy of using PPy materials prepared with 
dodecylbenzenesulfonate (DBS), as the polymer showed to be biocompatible with endothelial progenitor cells and 
cardiac progenitor cells (CPCs)[16]. CPCs are resident cardiac stem cells with the ability to generate cardiomyocytes, 
smooth muscle, and endothelial cells and have the potential to generate new functional cardiac tissue [17,18]. Hence, we 
begin this study observing PPy(DBS) coated fibre materials and the response from CPCs to observe how primary cells 
respond. We will then move onto iPS cells, which are generally more sensitive and difficult to culture successfully[19] 
but offer true pluripotency compared to the CPCs. Comparing the behavior of the two cell types will help elucidate the 
suitability of EAP coated fibres for cardiac tissue engineering. 

3. Materials & methods 

3.1. Scaffold fabrication 
The electroactive scaffolds are prepared in a step-by-step process as shown in the scheme in Figure 1. 50:50 poly(lactic-
co-glycolic acid) was prepared as a 17.5% wt/wt solution in chloroform. The PLGA solution was electrospun at a voltage 
of 20 kV with a flow rate of 0.5 mL/hour with a throw distance of 120 mm(Fig.1A). The electrospun PLGA fibres were 
then collected and dried over night to evaporate any remaining solvent. The fibres were then coated with a solution of 
5% wt/wt iron (III) chloride in methanol using a spincoater (WS-400B-6NPP/LITE, Laurell Tech. Corp., USA) with an 
initial step of 1000 RPM for 120 seconds, followed by 2500 RPM for 30 seconds (Fig. 1B). The FeCl3 coated fibres were 
then dried over night to evaporate any remaining solvent. The fibres are then exposed to pyrrole (Py) vapour in a sealed 
vessel at 50°C for 60 seconds (Fig. 1C). An aqueous monomer solution of 0.1M Py and 0.1 M dodecylbenzenesulfonic 
acid (TCI) was prepared.  
For electropolymerisation the aqueous pyrrole solutions were prepared with 0.1 M concentration of dopant (DBSA) and 
0.1 M pyrrole. The VPP coated mesh was then placed into the aqueous pyrrole/dopant solution in a 3 point 
electrochemical cell (Fig. 1D) The counter electrode was a gold coated silicon wafer, and the reference a Ag/AgCl 
reference electrode. A constant potential of 0.67 V was applied to the electrochemical cell for 600 or 1800 sec. The ECP 
coated mesh was then lightly rinsed three times with DI water, dried gently with N2 gas, and stored in a Petri dish. All 
chemicals are supplied from Sigma Aldrich unless indicated otherwise. 
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This study demonstrates a new approach to creating new functional fibre materials, specifically fibres coated with an 
electroactive material. These EAP fibres are designed for use in new cardiac tissue engineering research, to provide th

e 

possibility of electrical and mechanical stimulation alongside the 3-dimensional morphological advantage of the fibres. 
The presence of the EAP coating on the fibres does result in slightly lower CPC cell density than plain PLGA fibres, b

ut 

overall the viability is good with a high live cell percentage and density. The iPS cells display the ability to grow an
d 

spread on the fibres after 10 days in culture without severe apoptosis, indicating that they are also compatibile with th
e 

EAP fibres. This study leads the way to introducing external stimulus via the electroactive coating in the future, to 
provide further control and direction over stem cell fate for cardiac tissue regeneration. 
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