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OPEN

LETTER TO THE EDITOR

The optimal use of PEG-Asparaginase in relapsed ALL—lessons
from the ALLR3 Clinical Trial

Blood Cancer Journal (2014) 4, e203; doi:10.1038/bcj.2014.26;
published online 25 April 2014

Though modern chemotherapy regimens cure over 80% of
children with acute lymphoblastic leukaemia (ALL), the outcome
of relapsed disease remains suboptimal. Current curative strate-
gies for relapsed patients are based on high dose cytotoxic
therapy often followed by an allogeneic stem cell transplant.
Drug-related toxicities limits the intensification of therapy and can
result in treatment delays as well as deaths in remission. The drug
L-Asparaginase (ASNase) is not associated with a dose-limiting
toxicity and has been widely used not only in strategies for
relapsed ALL1 but also in early phase clinical trials.2 ASNase is a
bacterial protein and the main disadvantage of its repeated use is
sensitization leading to clinical hypersensitivity reported in up to
60% or silent inactivation of the drug in 30% of patients receiving
native Escherichia Coli–ASNase.3 As most patients receive intensive
ASNase during frontline therapy, there is then the question of its
continued efficacy on subsequent use in relapsed patients. One
option is the use of the noncross reacting Erwinia product, but
this has a shorter half life and is prohibitively expensive. The
polyethylene-conjugated ASNase (PEG-ASNase) is associated with
less antigenic reactions, as a lower dose is required and it can be
given less frequently. It is thus increasingly being used in both
frontline and relapsed-therapeutic protocols. The optimal dose
remains unclear and the drug is administered ranging from
2500 IU m� 2 (refs. 2, 4) (weekly) to 1000 IU m� 2(ref. 1) (fortnightly).
Before 2003, all de novo childhood ALL patients in UK received
native ASNase. Since then patients have received PEG-ASNase,
1000 IU m� 2 given intramuscularly, twice in induction and once in
delayed intensification with high-risk patients receiving up to an
additional nine doses.5 Relapsed patients in the international
ALLR3 trial (2003–2013, ISCRTN45724312) were given the same
dose of PEG-ASNase, two doses in induction and once during
consolidation1 (Supplementary Figure 1). To assess the effect of
PEG-ASNase given during initial therapy on its subsequent use in
relapse patients, we recruited after obtaining ethical approval and
written consent, patients on the ALLR3 clinical trial who had
previously been treated on the UKALL 2003 protocol. Thirty-three
patients were analysed between Jan 2009—May 2011. Trough
ASNase activity was measured in plasma samples 7–14 days after
each PEG-ASNase dose. ASNase activity was measured using a
modified indoxine method.6 A trough level of X100 IU/l was taken
to represent adequate therapeutic activity.7 Antibodies against
PEG-ASNase and native E. coli–ASNase (Asparaginase Medac) were
measured by indirect enzyme-linked immunosorbent assays
developed and validated at Medac GmbH (Hamburg, Germany)
from samples taken for activity analysis and in a sample obtained
once ASNase therapy was completed but before transplantation
(Supplementary Figure 2). Of the 33 patients recruited (Table 1),
a total of 21 patients had ASNase activity measured at least at one
time point (maximum of three). Only one patient did not show
adequate activity with the rest demonstrating activity X200 IU l� 1

(Supplementary Figure 2). We were able to serially monitor nine
patients. With the exception of the previously described patient

with inadequate levels, the other eight were found to have
adequate activity at more than one time point. Antibody assays
were performed in 19 of the 21 patients with ASNase activity
results and an additional 14 patients in whom we did not have
activity data. Only one of the 33 patients was detected to have
antibody against both PEG-ASNase and native ASNase. This was
the same patient who did not have adequate ASNase activity
levels. Thus 1000 IU m� 2 of PEG-ASNase given intramuscularly
provides adequate therapeutic levels in patients who relapse of a
PEG-ASNase frontline protocol. For patients treated initially with
PEG-ASNase on frontline protocols who subsequently relapse,
silent inactivation does not appear to pose a significant clinical
problem.

At the time these assays were performed, 390 patients,
recruited from participating centres in UK, Netherlands,
Australia and New Zealand, had completed the first three
blocks of therapy containing ASNase (Supplementary Figure 1).1

Patients recruited to ALLR3 with hypersensitivity to
E Coli-derived ASNase (either native or PEG) received the
Erwinia Chrysanthemi derivative Erwinase. We identified 354
patients who received PEG-ASNase, 20 who received Erwinase
and 16 patients who received no ASNase in the ALLR3 trial
(Table 1). For a period of time, Erwinase was not available and
patients with hypersensitivity (n¼ 14) did not receive any
ASNase. Similarly, patients who developed pancreatitis (n¼ 2)
during frontline therapy did not receive any ASNase in ALLR3.
We examined the impact of not receiving ASNase on the
outcome of these relapsed patients. Progression-free and overall
survival were analysed using the Kaplan–Meier plot (unstratified)
and log rank test. The 3-year progression-free survival and
overall survival of the 16 patients who did not receive ASNase
were 42.9 (95% CI 30.3,55.5) and 49.2% (95% CI 36.5,61.9). This
was not significantly different from the progression-free survival
of 46.4% (95% CI 35.4,57.1) (P¼ 0.377) and overall survival of
53.5% (95% CI 41.8,63.9) (P¼ 0.365) of the 354 patients who
received PEG-ASNase (The 20 patients who received Erwinase
when it became available at a later date have not been analysed
here). The outcome of relapsed patients is related to the
duration of first remission, site of relapse and immunopheno-
type,8 with late isolated extramedullary and progenitor-B-cell
phenotype having the best outcomes. In this latter category,
there were no patients who had not received ASNase. To
eliminate bias, a matched case-control analysis with a 3:1 ratio
including all non-PEG patients and the maximum number of PEG
patients randomly selected to obtain balance in both groups
(same percentages) was performed. The progression-free
survival and overall survival in the PEG and non-PEG groups
were not significantly different (Figure 1). Unlike that previously
reported for patients treated on frontline protocols,9 survival
was similar for patients with relapsed ALL irrespective of
whether they received ASNase or not. A recent report from
the frontline ALL2003 trial has also failed to show a difference in
outcome in patients with ASNase-induced pancreatitis who
received no further ASNase.10

Of the 354 patients who received PEG-ASNase as part of their
relapse therapy, 241 and 113 patients, respectively had received
native or PEG-ASNase during frontline treatment. Twenty-two (6%)
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patients, 12/241(5%) who had received native ASNase and 10/113
(9%) who had received PEG-ASNase in frontline therapy reported
grade 3-4 toxicities associated with ASNase. Ten developed
pancreatitis, seven had thrombosis, four had encephalopathy
and one had hypersensitivity. The toxicity data for patients in
ALLR3 who received E. Coli–ASNase or PEG-ASNase in the frontline
protocol are comparable, though the slightly lower incidence with
previous native ASNase may reflect the expected higher incidence
of silent antibodies. PEG-ASNase at this dose can be administered
at relapse, with no excess toxicity in patients who have previously
received E. Coli–ASNase in frontline therapy.

The numbers analysed here are small, a reflection of the rarity of
the disease, and thus interpretations of this data must be viewed
cautiously. However we feel that our data will inform consortiums
in the rational design of therapeutic strategies incorporating
ASNase for those with recurrent ALL. This includes optimising both
the dose and timing of ASNase. For patients relapsing of a
frontline protocol using PEG-ASNase exclusively, the drug may be
used again safely and a dose of 1000 IU m� 2 appears to be
adequate for most patients. Furthermore, as in ALLR3, the timing

of PEG-ASNase administration can be optimised to potentially
maximise the effect of dexamethasone,11 as well as high dose
methotrexate and cytarabine blocks in a Capizzi design.12 All
patients in this study analysed for ASNase activity relapsed of the
UKALL 2003 trial and received 3-12 doses (based on risk
stratification) of PEG-ASNase at a dose of 1000 IU m� 2.5 Thus we
do not have comparable activity data from patients who initially
received E. Coli–ASNase in earlier frontline protocols, though we
found no differences in toxicity. The use of PEG-ASNase after
E. Coli–ASNase has been previously reported to be associated with
a high incidence of hypersensitivity and drug inactivation owing
to the presence of antibodies.13 However if antibody titres are low,
PEG-ASNase may still provide adequate activity levels.14 A dose of
2500 IU m� 2 given weekly has been shown to provide therapeutic
levels in relapsed ALL patients who have previously received
E. Coli–ASNase.15 The monitoring of ASNase activity/antibody and
increasing the dose of PEG-ASNase in those who have inadequate
activity/silent antibodies could optimise drug administration and
lead to a better outcome. This merits investigation in future trials
for relapsed ALL.
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Figure 1. Kaplan–Meier estimates of (a) progression-free and (b)
overall survival in relapsed ALL patients who received no
asparaginase (n¼ 16) and a 3:1 risk-stratified matched cohort of
those who received PEG-Asparaginase (ASNase) (n¼ 48).

Table 1. Distribution of patients in the study

PEG-ASNase None Assayed
patients

n 354 % 16 % 33 %
Sex
Male 224 63.3 9 56.3 24 72.7
Female 130 36.7 7 43.8 9 27.3

Age at first relapse (years)
Median (IQR) 9.3 (6.9–13.3) 8.3 (5.9–11.3) 8.6 (7–11.4)
o10 193 54.5 11 68.8 24 72.0
X10 161 45.5 5 31.3 9 27.3

Immunophenotype
B cell 302 85.3 14 87.5 27 81.2
T cell 52 14.7 2 12.5 6 18.2

Time to relapse (months)
Median (IQR) 39 (25–55) 30 (19–42.5) 34 (18–48)
Very early 46 13.0 4 25.0 8 24.2
Early 117 33.1 7 43.8 10 30.3
Late 191 54.0 5 31.3 15 45.5

Site of relapse
Isolated extramedullary 89 25.1 0 0.0 14 42.4
Isolated marrow 205 57.9 11 68.8 15 45.5
Combined 60 16.9 5 31.3 2 6.1

Risk group
Standard 21 5.9 0 0.0 3 9.1
Intermediate 234 66.1 8 50.0 17 51.5
High 99 28.0 8 50.0 13 39.4

Cytogenetics
High hyperdiploid 54 15.3 6 37.5 8 24.2
ETV6-RUNX1 37 10.5 1 6.3 2 6.1
Intermediate 68 19.2 3 18.8 10 30.3
Poor 39 11.0 3 18.8 1 3.0
Unknown 156 44.1 1 6.3 12 36.4

Outcome
Alive and well 184 52.0 7 43.8 16 48.5
Refractory to treatment 25 7.1 3 18.8 2 6.1
Second relapse 74 20.9 3 18.8 4 12.1
Disease-related death 10 2.8 0 0.0 0 0.0
Treatment-related death 40 11.3 2 12.5 6 18.2
Withdrawn 19 5.4 0 0.0 4 12.1
Lost to followup 1 o1 0 0.0 0 0.0
Second malignancy 1 o1 1 6.3 1 3.0

Abbreviation: IQR, interquartile range.
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