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Abstract

Crop yield in low-rainfall environments is a complex trait under multigenic control that shows significant 
genotype×environment (G×E) interaction. One way to understand and track this trait is to link physiological studies 
to genetics by using imaging platforms to phenotype large segregating populations. A wheat population developed 
from parental lines contrasting in their mechanisms of yield maintenance under water deficit was studied in both 
an imaging platform and in the field. We combined phenotyping methods in a common analysis pipeline to estimate 
biomass and leaf area from images and then inferred growth and relative growth rate, transpiration, and water-use 
efficiency, and applied these to genetic analysis. From the 20 quantitative trait loci (QTLs) found for several traits in the 
platform, some showed strong effects, accounting for between 26 and 43% of the variation on chromosomes 1A and 
1B, indicating that the G×E interaction could be reduced in a controlled environment and by using dynamic variables. 
Co-location of QTLs identified in the platform and in the field showed a possible common genetic basis at some loci. 
Co-located QTLs were found for average growth rate, leaf expansion rate, transpiration rate, and water-use efficiency 
from the platform with yield, spike number, grain weight, grain number, and harvest index in the field. These results 
demonstrated that imaging platforms are a suitable alternative to field-based screening and may be used to pheno-
type recombinant lines for positional cloning.
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Introduction

Drought is a major cause of decreased crop production 
worldwide. In Australian dryland agriculture, grain crop 
yields are approximately 50% of their potential and are 
highly unpredictable. The 2006 drought reduced the total 
Australian wheat (Triticum aestivum L.) yield by 46% (FAO, 
2013). During the 1990s, the rate of productivity increase in 
Australian broadacre cropping improved by 3.4% annually 
but has since slowed to about 1.4%. Yield is the end product 
of a grain crop, integrating the genetic ability of the plant to 
grow, assimilate carbon, and transfer it to the grain, and the 
effects of environmental conditions on these different plant 
processes. Yield is therefore a complex trait under multigenic 
control and is highly influenced by genotype×environment 
(G×E) interactions (Tardieu, 2010).

Although many quantitative trait loci (QTLs) have been 
identified in wheat for yield and yield components in low-
yielding, rain-fed environments (reviewed by Fleury and 
Langridge, 2014), the underlying genes have yet to be cloned. 
Many QTLs called ‘unstable’ across environments are 
observed under specific environmental conditions only (G×E 
interactions). For example, the allele carried by the RAC875 
parental line at the QTL for yield on chromosome 3B in 
wheat is only positive in hot and dry environments where the 
soil is deep, such as in northern Australia and Mexico, but 
not in southern Australia (Bonneau et  al., 2013). In addi-
tion, gene cloning in wheat is still a difficult task due to the 
size (17 Gb) and complexity of the genome: the bread wheat 
genome is hexaploid with three homeologous A, B, and D 
genomes, and contains about 80% repeat sequences (Smith 
and Flavell, 1975; Choulet et  al., 2010). The availability of 
genomic resources has substantially increased in recent years, 
significantly enhancing progress in genetic mapping and gene 
identification (Periyannan et al., 2013; Saintenac et al., 2013). 
As the availability of these resources becomes commonplace, 
phenotypic screening has become a bottleneck in the under-
standing and tracking of complex phenotypes such as yield 
in dry environments.

While plant physiologists have made progress in under-
standing the mechanisms of drought tolerance, this has not 
translated into tools that can be effectively utilized by breed-
ing programmes. Tardieu and Tuberosa (2010) suggested 
that dissecting complex traits into simple components inde-
pendent of many confounding environmental effects could 
be undertaken in highly controlled phenotyping platforms. 
The development of high-throughput phenotyping platforms 
over the last 10 years has improved evaluation of large genetic 
populations (Berger et al., 2010). It is now possible to apply 
these technical advances to the fine-mapping and possible 
cloning of genetic loci underlying QTLs.

The imaging platform of The Plant Accelerator at the 
Australian Plant Phenomics Facility and University of 
Adelaide, Australia, allowed us to image, weigh, and water 
thousands of plants every 2 d (Honsdorf et  al., 2014). We 
developed routines to convert pixels from red/green/blue 
images into biomass and leaf area, to infer growth and rel-
ative growth rate, transpiration, and water-use efficiency 

(WUE) and applied these techniques to the analyses of a 
recombinant inbred line (RIL) population under different 
watering regimes.

The selected genetic population was a set of RILs derived 
from a cross between Drysdale and Gladius, two modern 
bread wheat varieties adapted to the southern region of the 
Australian wheat belt, characterized by a Mediterranean-
type climate. As a consequence of the limited water storage 
in these soils, crops rely on season rainfall, which becomes 
sporadic in spring, leading to cyclic drought from the head-
ing stage until the end of grain filling. Both Gladius and 
Drysdale perform well in a low-to-medium-rainfall environ-
ment but show different mechanisms of response to drought 
(Fleury et al., 2010). Gladius is an erect and waxy leaf variety 
selected for yield under severe drought in South Australia. 
Drysdale is a transpirationally efficient variety, which was 
selected for high carbon isotope discrimination, a surrogate 
for transpiration efficiency (Rebetzke et  al., 2002; Condon 
et al., 2006). Segregation of these traits in Drysdale×Gladius 
progeny makes this population an interesting resource for dis-
secting the genetics of physiological mechanisms of adapta-
tion to drought.

In this study, we used a genetic population with parental 
lines contrasting in their mechanisms of yield maintenance 
under water deficit. We analysed plant growth, transpiration, 
and WUE from imaging and watering data from a phenotyp-
ing platform for plants grown under two different watering 
regimes. The results were compared with QTLs identified for 
yield components in a field environment controlled for tem-
perature and the watering regime. The comparison led to the 
discovery of co-located QTLs for plant growth, transpiration, 
and yield components, indicating that imaging platforms can 
be used to phenotype recombinant lines.

Materials and methods

Plant material
Genetic analysis was undertaken in a RIL population of 5000 lines 
from a cross between Drysdale and Gladius, two spring wheat vari-
eties with the following respective pedigrees: Hartog×3 Quarrion 
for Drysdale, and RAC875/Krichauff//Excalibur/Kukri/3/RAC875/
Krichauff/4/RAC875//Excalibur/Kukri for Gladius. Four sets of 
lines were used for different purposes. Set 1 consisting of 250 ran-
domly chosen RILs was used for the simple sequence repeat (SSR) 
and diversity arrays technology (DArT) genetic map construction 
and phenotyping under semi-controlled field conditions in polyu-
rethane tunnels (polytunnels) in 2010. A  subset of 150 lines (set 
2) flowering in a 6 d window was chosen from set 1 in order to apply 
the drought stress at a similar stage of development. This set was 
complemented with 100 randomly chosen RILs to construct the sin-
gle nucleotide polymorphism (SNP) genetic map (set 3). The 115 
RILs (set 4) common between sets 1 and 3 were genotyped to con-
struct an integrated SSR, DArT, and SNP map.

Field trials
Two experiments were carried out under semi-controlled field con-
ditions in the polytunnel facility of the University of Adelaide 
(Urrbrae, South Australia, Australia, 35° S 139° E). This facil-
ity includes bird nets and polytunnels, equipped with automatic 
watering systems (drippers) and weather stations (MEA, Adelaide, 
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Australia) recording air temperature and humidity at 2 m height 
and at the plant canopy level, as well as soil temperature and wind. 
Gypsum blocks (MEA) were used for measuring soil water tension 
at three different soil depth (15, 30, and 40 cm from the soil surface, 
eight sensors per watering regime). All climatic data were averaged 
and stored every 10 min in a data logger (MEA).

Plant growth conditions
In 2010, 250 RILs of set 1 were grown under well-watered and 
water-deficit treatments. This trial was sown on 9 June, later than 
the normal commercial sowing time (April/May) for wheat in South 
Australia, in order to expose plants to drought stress during flower-
ing and grain filling. In both treatments, micro-plots (10 × 120 cm, 
16 plants, density of 133 plants m–2) were randomly distributed and 
partially replicated (two replicates for 60 RILs and three replicates 
for the parental lines). On both sides of each lane of micro-plots, a 
micro-plot was sown with genotype Gladius (not analysed) to pre-
vent any border effect. Both treatments were sown under bird nets 
and maintained as well watered (soil water tension > –0.1 MPa) dur-
ing vegetative growth using a dripper system. In the drought treat-
ment, watering was stopped at stem elongation, and a polytunnel 
was installed as a rain shelter. When the soil dried below –0.6 MPa, 
a light watering of 15 mm was applied three times before harvesting 
the plants. In the well-watered treatment, watering was maintained 
until 15 d after flowering. Plants were fertilized (Aquasol, Hortico, 
Clayton, VIC, Australia) twice in both treatments: at stem elon-
gation stage and at flowering stage. A  fungicide (Bayfidan; Bayer 
Australia, Pymble, NSW, Australia) was applied at booting and 
flowering stages.

Plants experienced similar shoot micro-environments in both water 
regimes, with air temperature from 3.8 to 31 °C (average 12.4 °C) and 
a maximum vapour pressure deficit (VPD) of 3.5 kPa. Soil water 
tension in the well-watered treatment stayed above –0.1 MPa until 
15 d20°C (equivalent day at 20 °C, explained in ‘Thermal compensa-
tion of time and rates’) after flowering when plants experienced a 
moderate water deficit (> –0.4 MPa) for 10 d.  In the water-deficit 
treatment, the soil started to dry when irrigation was stopped and 
reached –0.6 MPa around 5 d20°C after flowering. The soil water ten-
sion was then kept around –0.6 MPa with light watering.

In 2011, 148 lines of the Drysdale/Gladius RIL set 2 were grown 
in the same platform under two water regimes: well watered and 
water deficit. This experiment was sown on 14 July, with micro-plots 
of 40 × 60 cm (32 plants, 133 plants m–2). Both treatments were well 
watered until stem elongation. Then, watering was stopped in the 
drought treatment and lightly watered as in 2010. Urea (Manutec, 
Cavan, SA, Australia) was mixed with the top soil before sowing 
(N rate 225 kg ha–1); the fertilizer and fungicide regime during plant 
growth was the same as in 2010.

In both water regimes, air conditions were warmer and dryer than 
in 2010, due to the later sowing, with air temperature from 4.8 to 
35.2  °C (average 15.2  °C) and a maximum VPD of 4.9 kPa. Soil 
water potential stayed above –0.1 MPa until 10 d20°C before flower-
ing in both treatments and then started to dry at different speeds 
depending on treatment. Soil water potential reached –0.6 MPa 
around flowering in the water-deficit treatment and around 20 d20°C 
after flowering in the well-watered treatment.

Plant measurements
Heading time (d; six first spikes appeared in the plot), and Flowering 
time (d; six spikes flowering on one-third of the spike length) were 
scored every day from the first spike appearance. All tillers were 
manually harvested, and the number of tillers per plant (Tiller num-
ber) and spikes per plant (Spike number) were counted. After drying 
(10 % moisture content), Stem weight (g), Grain weight (g), and total 
plant weight (Biomass, g) were measured and calculated per plant. 
A sample of 100 ml of seed was weighed, and the seeds were counted 
with a seed counter (Pfueffer GmBH, Germany) to estimate Single 

grain weight (g) and total Seed number per plant. Grain weight 
per plot was converted to Yield (t ha–1) for an easier comparison 
with other trials. Harvest index was calculated as the ratio of Grain 
weight/Biomass.

Imaging platform experiment
Plant growth conditions  An experiment with 150 RILs of set 2 was 
performed in The Plant Accelerator (Honsdorf et al., 2014) green-
house facilities in Urrbrae, South Australia, Australia (34°58′16.18″ 
S; 138°38′23.88″ E). Two watering regimes were applied (well watered 
and stable drought), and each line was replicated twice. Well-watered 
and drought-stressed plants of the same line and replicate number 
were placed next to each other. Single plants were grown in 2.5 l 
plastic pots filled with 3 kg of potting mix (50% coco/peat mix, 50% 
clay/loam). Three seeds per pot were sown and thinned to one plant 
per pot at the three-leaf stage. Two pots per treatment contained 
artificial plants and were placed in the middle of the greenhouse, 
under the same watering regimes as pots with plants in order to esti-
mate the evaporation from the soil surface.

During the first 3 weeks, plants were manually well- watered (> 
–0.02 MPa) in both treatments. Plants were then transferred to the 
imaging platform of The Plant Accelerator, where each pot was 
placed onto a cart on a conveyor belt until flowering. Plants were 
imaged using a LemnaTec 3D Scanalyzer (LemnaTec, GmbH, 
Aachen, Germany). Three red/green/blue images (2056 × 2454 pix-
els) were taken with top and two side views with a 90° horizontal 
rotation (Honsdorf et  al., 2014). Background–foreground sepa-
ration was then applied to separate the plant tissue area from the 
background, and pixel numbers per image were counted after noise 
removal.

Environmental conditions fluctuated naturally in the greenhouse 
as plants experienced natural lighting and temperature ranking from 
17 °C (night) to 25 °C (day). Every second day, pots were automati-
cally weighed and watered to –0.02 and –0.05 MPa (well-watered 
and drought treatments, respectively). Soil water content was meas-
ured by automatically weighing the pots. Differences in weight were 
attributed to changes in soil water content, after correction for the 
increase in plant Biomass mean (see below). A water-release curve of 
the soil was obtained on additional pots. Five pots containing three 
plants were dried from soil water retention capacity to –1.6 MPa. 
After long nights (>12 h) in a growth chamber with air saturated with 
water, pre-dawn leaf water potential was measured on non-expand-
ing leaves using a Scholander-type pressure chamber (Soil Moisture 
Equipment Corp., Santa Barbara, USA). A Van Genucheten curve 
(Van Genuchten, 1980) was fitted to these data (soil water potential 
vs soil water content), thereby allowing calculation of the mean soil 
water potential in each pot at each weighing time (Supplementary 
Fig. S1, available at JXB online). Water loss per pot between two 
watering events was considered as plant Transpiration after correct-
ing for soil evaporation measured using pots with artificial plants.
Calibration by plant destructive measurements  A separate experi-
ment with similar conditions of culture was carried out on the two 
parental lines in order to convert pixel values obtained by image 
analysis into biological variables. From 2 weeks after sowing to flow-
ering, three plants per genotype and per treatment were harvested 
twice a week. Plants were directly weighed (Plant weight, g). Leaf 
area (mm2) was measured with a planimeter (PATON electronic belt 
driven planimeter, CSIRO, Canberra, Australia). Biomass (g) was 
measured after 1 week at 65 °C.

Data analysis
Analysis of variance (ANOVA) and correlation analysis was per-
formed for data obtained from different experiments using PROC 
GLM and PROC CORR, respectively, in SAS Software v.8.1 (SAS 
Institute, 2000). Broad-sense heritability (h2) was calculated from 
variance components according to Kearsey and Pooni (1996). Data 
obtained from the imaging platform was analysed using R Software 
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(R Development Core Team, 2013). Non-linear models were fitted 
with the nls function of the R package.

Thermal compensation of time and rates
Time and rates were expressed as thermal time as described by 
Parent et al. (2010) and Parent and Tardieu (2012). Briefly, the tem-
perature responses of development processes were described by the 
equation of Johnson et al. (1942), modified by Parent and Tardieu 
(2012), and applied in different studies of developmental processes 
(Parent et al., 2009, 2010; Louarn et al., 2010):
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where F(T) is the considered rate, T is the temperature (K), ∆HA
‡ (J mol–1) 

is the enthalpy of activation of the process and determines the curva-
ture at low temperature, α (dimensionless) determines how sharp the rate 
decrease is at high temperature and is fixed at 3.5 for developmental pro-
cesses (Parent and Tardieu, 2012), T0 (K) determines the temperature at 
which the rate is maximum, and A is the trait scaling coefficient.

For any measured rate J(T) at temperature T, a temperature com-
pensated rate was calculated as the equivalent rate at 20 °C.
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with F(T) being the response of development to temperature. As 
developmental time (or thermal time t20°C) is the reciprocal of devel-
opment rate, it results in:
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with t20°C being expressed either as equivalent hour at 20 °C (h20°C) or 
equivalent day at 20 °C (d20°C), depending on the unit of t.

Analysis pipeline for platform data
An analysis pipeline was developed to convert pixels from platform 
images into variables of biological interest such as Biomass, Plant 
weight, Leaf area, Average growth rate or WUE.
Converting pixels into projected areas by using simple trigonometric 
equations  A length measured in pixels (side.distance) from a side-
view image can be converted to a distance in mm with a single coef-
ficient (side.coeff), the size of a pixel:

	

side distance side distance. .

.

mm

pixel side coeff mm pixel

( ) =

( ) × ––1( ) 	
(4)

with side.coeff=0.5156 mm pixel–1 for the camera settings used.
For a top-view image, this coefficient (top.coeff, mm pixel–1) depends 
on plant height. First, the size of a pixel is calculated depending on 
the distance between the object and the camera:

	 top coeff cm pix. . . .= × +top slope top offset 	 (5)

with top.slope (0.0001097 mm pixel–2) and top.offset (0.2899 mm 
pixel–1) as the linear parameters of the relationship and cm.pix (pixel) 

as the y-coordinate of the centre of mass of the plant obtained from 
the side view images.

The projected areas can then be calculated as:

	 side area side area. . .mm pixel side coeff2 2( ) = ( ) × 	 (6)

	
top area top area. . .mm pixel top coeff2 2( ) = ( ) ×

	
(7)

Linear models converting projected areas to Biomass, Plant weight, 
and Leaf area  For each biological variable (Biomass, Plant weight, 
or Leaf area), the complete linear model with projected areas at the 
second order was tested, as well as all derived simpler models on 
data from the second experiment with destructive measurements. 
The complete model is:
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(8)

These models were compared using the Bayesian information crite-
rion (BIC) and the model with the lowest value was selected.

This procedure produced similar results for Biomass and Leaf 
area but different results for Plant weight (Table  1). The models 
were used to infer biological variables with the same parameters for 
well-watered plants and drought-stressed plants, but the error was 
higher for Biomass than for Plant weight and Leaf area (Fig. 1). It 
was decided to keep the same model for plants under well-watered 
and water-deficit conditions to better compare the treatments and 
to allow the calculation of variable responses to soil water potential.
Fitting growth curves to experimental data  Different models for fit-
ting Biomass, Plant weight, or Leaf area over time have been tested 
with the R function for non-linear regression (nls(), with our own 
self-start functions) on the two parental lines Gladius and Drysdale: 
exponential, linear, logistic with three (Chen et  al., 2014) or four 
parameters, thye equation of Richards with four or five parameters, 
Gompertz with four parameters (Chen et al., 2014), and Weibull with 
three or four parameters. Some models were not adapted to all data-
sets. Only the linear, exponential, and logistic three parameters con-
verged for all plants, but the logistic equation fitted best (BIC tests; 
results not shown) and was therefore applied to all data (Fig. 2).
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e
final
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(9)

In this equation, t0 is the inflexion point and is considered as the 
transition from the vegetative to the reproductive stage. K is the 
Maximum relative growth rate (KRGR).

A logistic curve was fitted for each plant for Biomass, Plant weight, 
and Leaf area with time expressed as d20°C. This model for Biomass, 
Plant weight, and Leaf area fitted well with experimental data, even 
for Biomass (Fig. 2).
Water-use calculations  Soil water potential was calculated at each 
date using a water-release curve (Supplementary Fig. S1), measuring 
pot weight and calculating Plant weight using the logistic equation 
applied to plant images.

Average transpiration rate (TR, g d20°C
–1) was calculated from water 

loss between days 35 and 50 after sowing (vegetative stage in all gen-
otypes), taking into account the soil evaporation and plant weight. 
Average transpiration rate per unit of leaf area (TRarea, g mm–2 d20°C

–1)  
was calculated from the leaf area inferred by the growth model:

	
TR

water loss soilevaporation
leaf area

area =
−



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(10)

Derived variables such as Growth, RGR, and WUE  For the three 
variables (Biomass, Plant weight, or Leaf area), their growth rate 
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and Average relative growth rate (RGR) were derived from their 
growth curve:

	
Growth rate =

dVariable
dt 	

(11)

	
RGR

growth rate
variable

=
	

(12)

In this analysis, Growth (g d20°C
–1) is the increase of biomass with 

time, and Average leaf expansion rate (LER, mm2 d20°C
–1) is the 

increase of leaf area. RGR (d20°C
–1) is the relative increase of bio-

mass and Average relative leaf expansion rate (RER, d20°C
–1) is the 

relative increase of Leaf area. Average growth rate (Growth.AVE, g 
d20°C

–1) and Average leaf expansion rate (LERAVE, mm2 d20°C
–1) were 

calculated from day 35 to day 50.
WUE (g g–1) was calculated as the Average growth rate divided by 

transpiration from day 35 to day 50.

	
WUE

growth rate
water loss soil evaporation

=
− 	

For all of these variables, their relative response to soil water poten-
tial (Ψ) was calculated as:

	

Relative response
to soil water potential D=

−Variable Variablewww

D WWΨ Ψ− 	
(13)

with VariableWW and VariableD, respectively, being the value of the 
considered biological variable in well-watered and drought condi-
tions and ΨWW and ΨD, respectively, being the value of Ψ in well-
watered and drought conditions.

Genetic map construction
DNA was extracted from 2.0 g of bulked leaf tissue (three to six 
plants per line) of 8-week-old plants using a mini prep ball bearing 
extraction method with minor modifications (Pallotta et al., 2000). 
The RIL sets 1 and 3 were genotyped with markers for genes that 
control phenology in wheat: vernalization genes Vrn-A1 and Vrn-
D1, and photoperiod genes Ppd-B1 and Ppd-D1, as described by 
Maphosa et al. (2014). For each line to be genotyped with SNP mark-
ers (set 3), approximately 100 ng μl–1 of DNA (30 μl) was sent to the 
Department of Primary Industries, Victoria, to be assayed on an 9k 
SNP iSelect BeadChip array as described by Akhunov et al. (2009).

Table 1.  Models selected for inferring Leaf Area, Plant Weight and 
Biomass from projected areas

Side and top are the average projected shoot area (mm2) on the side 
view and the projected shoot area on the top view (mm2), respectively. 
Models have been selected with BIC. ***P<0.001, **P <0.01, and (.), 
P<0.1 in an ANOVA test. Where no sign is given, this predictor was 
not selected by the BIC test.

Intercept Leaf area Plant weight Biomass

Side *** *** ***
Top (.) ***
Side2 ** *** **
Top2 *** ***
Side:top *** (.) ***

Fig. 1.  Plots of observed/calculated variables for Plant weight (A), 
Biomass (B), and Leaf area (C). Circles are data for well-watered plants 
and squares are for drought-stressed plants. The line is the 1:1 line. The 
scale is logarithmic for better data visualization but models were selected 
on raw data. (This figure is available in colour at JXB online.)
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Three linkage maps were used. The first was based on DArT, SSR, 
and gene-based markers on RIL set 1 (Maphosa et al., 2014). The 
second map was constructed using SNP and gene-based markers on 
RIL set 3, which consisted of a mixture of random and a selection 
of mid-maturing lines. The third map was based on DArT, SSR, and 
SNP using RIL set 4. The method of genetic map construction was 
described by Maphosa et al. (2014).

QTL mapping
QTL analysis was performed for the mean spatial adjusted value of 
traits using PROC GLM, SAS software (v.9). Initially, single marker 
analysis was used for each trait to identify markers associated with 
variation for traits. Further evaluation was carried out by composite 
interval mapping with a 15 cM window and a maximum of 15 marker 
co-factors per model using Windows QTL Cartographer version 2.0 
(Wang et al., 2004). As the 150 lines of set 2 were still segregating for 
the Vrn-A1, Vrn-D1, Ppd-B1, and Ppd-D1 genes (Beales et al., 2007; 
Zhang et al., 2008), the model was adjusted to remove their effect on 
growth and yield. Tests were performed at 1 cM intervals, and effect 
of these genes was selected as the co-factor by forward–backward 
stepwise regression (Model 6). Genome-wide, trait-specific threshold 
values (α= 0.05) of the likelihood ratio test statistic for declaring the 
presence of a QTL were estimated from 1000 permutation tests by 
random sampling of phenotypic data (Churchill and Doerge, 1994; 
Doerge and Churchill, 1996). The phenotypic variation explained 
by a QTL (R2) conditioned by the composite interval mapping co-
factors included in the model was calculated at the most likely QTL 
position. The additive effect of an allelic substitution at each QTL 
was also obtained. The log of odds (LOD) peak of each significant 
QTL was considered as the QTL location on the linkage map.

The QTL analysis of the imaging platform experiment on RIL 
set 2 was done using the SNP map. All QTL intervals were located 

on the SSR–DArT–SNP map and the SNP map for comparing the 
position of QTLs for different traits and platforms.

Results

Analysis of the imaging platform data

Biomass, Plant weight, Leaf area, Average growth rate, 
and WUE were calculated using the new analysis pipeline. 
The same pipeline was adapted to plants for all genotypes 
and treatments (Fig.  2). These data were then used for 
genetic analysis. Transgressive segregation and significant 
genetic variation among the lines was observed for most of 
these traits (Table 2). As expected, large differences were 
observed between the two watering regimes, so each treat-
ment was analysed separately. The broad-sense heritabil-
ity (h2) values ranged from 0 to 54%, indicating that the 
proportion of  genetic-to-environmental variation differed 
among traits.

We compared the data from the 2011 experiments in 
semi-controlled field conditions (polytunnel) and from the 
platform experiment, both performed on the same RIL. No 
significant correlations were found between traits measured 
in the imaging platform in pots (growth, transpiration, 
and WUE) and traits measured in the polytunnel (yield, 
yield components, and phenology), with r values ranging 
from –0.3 to 0.2 (Supplementary Fig. S2, available at JXB 
online).

Well-Watered Water Deficit
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Fig. 2.  Growth curves for calculated Biomass over thermal time in parental lines. Growth curves were calculated on single plants and these plots are 
examples of single plants. Circles indicate the calculated data. The solid line indicates the logistic (three-parameter) models. (This figure is available in 
colour at JXB online.)

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv320/-/DC1
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QTLs for plant growth using the imaging platform

Using a genetic map of 3200 SNP markers and 783 loci, a 
total of 21 QTLs were identified for the platform variables 
in the Drysdale/Gladius population (Table 3). We identified 
a total of 14 QTLs for traits related to plant growth in both 
water treatments. Four QTLs showed strong effects rang-
ing from 16 to 43% of the genetic variation of the trait on 
chromosomes 1A and 1B. GrowthAVE was controlled by four 
QTLs, which altogether explained 61% of the variation. Six 
QTLs for traits related to transpiration were identified.

We found overlaps between QTLs for different variables 
measured in the platform on three regions of chromosomes 
1B, 2A, and 5B (Table  4). On chromosome 1B, the QTL 
QGRO.atw-1B for GrowthAVE and QLERAVE.atw-1B.1 for 
Average leaf expansion rate coincided with the QTL peak of 
QTR.atw-1B for Average transpiration rate. These three QTLs 
carried Drysdale as a positive allele. When looking at pools 
of RILs carrying Gladius or Drysdale alleles at the marker 
wsnp_CAP11_c1902_1022590 (Fig.  3), it appeared that the 
higher transpiration rate and higher growth rate for plants 
carrying the Drysdale allele were observed in both treat-
ments. This QTL effect seemed intrinsic rather than specific 
to well-watered conditions.

Overlap between QTLs detected with the imaging 
platform and field trials

In two experiments run in semi-controlled field conditions 
that included two watering treatments, a total of 84 QTLs 
(Supplementary Table S1, available at JXB online) were 
found for traits related to biomass, yield and phenology. All 
QTL identified using the imaging platform, the polytunnel 
experiments and the field data from Maphosa et  al. (2014) 
were positioned on the SSR–DArT–SNP map and the SNP 
map. This enabled us to identify seven regions with co-located 
QTLs (Tables 4 and 5).

A region on chromosome 1B showed QTLs for Spike num-
ber in the polytunnel (QSnp.apw11-1B) in 2011 and for plant 
growth-related traits (QGRO.atw-1B and QLERAVE.atw-1B.1) 

and transpiration (QTR.atw-1B) in the platform (Table 4 and 
Fig.  3). All these QTLs were found in plants grown under 
well-watered conditions, but some effects could be seen under 
water deficit. It is worth noting that QGRO.atw-1B, which 
explained 43% of the genetic variation of Growth under well-
watered conditions, overlapped with QSnp.apw11-1B, which 
explained 20% of the variation of Spike number.

Two regions of chromosome 2A showed overlapping 
QTLs between the platform and the polytunnel experiments 
(Table  4). QGRO.atw-2A.2 for Average growth rate in the 
imaging platform overlapped with three QTLs for Yield, 
Grain number, and Grain weight in the polytunnel. The sec-
ond overlap was between two polytunnel QTLs for Yield and 
Grain weight and a QTL that explained 9% of the genetic 
variation of Average growth rate in well-watered conditions. 
It also overlapped with a QTL for WUE in the drought treat-
ment in the platform.

Two QTLs for platform and polytunnel traits were found in 
close proximity on chromosome 4B (Table 4). The QTL QTR.
atd-4B.1 for Average transpiration rate was mapped near the 
QTL for Tiller number in the polytunnel, QTil.apd10-4B.2.

Chromosome 5B showed an overlap of loci found in the 
platform under drought and a QTL controlling Harvest index 
in the polytunnel 2011 experiment (Table 4). Four QTLs asso-
ciated with Average leaf expansion rate, for T0, for leaf expan-
sion curves, and for Harvest index were co-mapped on the 
interval 106.9–133.1 cM of the long arm of this chromosome. 
Although the Harvest index QTL was found for the irrigated 
treatment, the environmental conditions were hot and dry in 
2011 with a maximum VPD of 4.9 kPa in 2011 (vs 3.5 kPa 
in 2010).

Two regions showed co-location of QTLs from the imag-
ing platform and field when compared with the results of 
Maphosa et al. (2014) (Table 5). A QTL for Average transpi-
ration rate in the platform overlapped on chromosome 3A 
with seven QTLs for yield, grain number, and screenings in 
the field previously found by Maphosa et al. (2014) (Table 5). 
The transpiration QTL QTR.atd-3A was identified under 
drought, which matched with the conditions where the yield-
related QTLs were expressed: in rain-fed conditions of New 

Table 2.  Descriptive statistics and heritability (h2, %) for the traits measured on the 150 Drysdale/Gladius RIL phenotyped in the imaging 
platform

SD, standard deviation; Min, minimum, Max, maximum; ***P<0.001, **P<0.01, *P <0.05 and NS, P >0.05 (not significant) in an ANOVA test.

Variable Well watered Drought

Name Acronym Mean±SD (Min – Max) h2 P Mean±SD (Min – Max) h2 P

Average growth rate GrowthAVE (g d20°C
–1) 0.332 ± 0.076 (0.108–0.533) 40.8 *** 0.121 ± 0.047 (0.032–0.27) 51.1 ***

Average relative growth rate RGR (d20°C
–1) 0.102 ± 0.008 (0.076–0.126) 5.3 NS 0.075 ± 0.014 (0.038–0.117) 46.1 ***

Inflexion point in growth curves Txgrowth (d20°C) 56.11 ± 2.83 (50.43–65.14) 6.6 NS 51.41 ± 7.75 (38.84–97.06) 43.3 ***
Maximum relative growth rate KRGR (d20°C

–1) 0.143 ± 0.014 (0.113–0.188) 3.2 NS 0.130 ± 0.023 (0.079–0.215) 30.0 ***
Average leaf expansion rate LERAVE (mm2 d20°C

 –1) 3062 ± 725     (997–4842) 37.4 *** 999 ± 364 (329–2137) 41.1 ***
Average relative leaf expansion rate RER (d20°C

–1) 0.092 ± 0.007 (0.072–0.110) 35.7 *** 0.056 ± 0.010 (0.031–0.084) 47.6 ***
Maximum relative leaf expansion rate KRER (d20°C

–1) 0.122 ± 0.010 (0.086–0.146) 24.4 *** 0.102 ± 0.014 (0.070–0.139) 53.8 ***
Average transpiration rate TR (g d–1) 88.9 ± 16.0 (46.6–123.2) 14.1 * 38.2 ± 7.1 (25.1–78.7) 22.2 **
Average transpiration rate per unit leaf area TRarea (g mm–2 d20°C

–1) 2.98 ± 0.47 (1.24–4.68) 11.9 * 2.08 ± 0.37 (1.40–3.61) 25.7 **
WUE WUE (g g–1) 0.003 ± 0.001 (0.002–0.006) 21.7 *** 0.003 ± 0.001 (0.001–0.005) 44.6 ***

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv320/-/DC1
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South Wales and South Australia, and under cyclic drought 
in South Australia semi-irrigated conditions.

Discussion

Using imaging platforms for analyses of drought 
responses

One role of imaging platforms, such as The Plant Accelerator, 
is to enable phenotyping of large numbers of plants using 

stable environmental conditions and consistent methods 
across experiments. Previous reports have shown the potential 
of imaging platforms for QTL mapping and the identifica-
tion of heritable traits in barley (Chen et al., 2014; Honsdorf 
et al., 2014). However, for the last 10 years, most studies using 
such platforms have focused on platform development and 
analysis procedures (see examples in this special issue), more 
than application to specific biological questions related to 
crop improvement. In this study, known procedures of phe-
notyping have been linked through an operational analysis 

Table 3.  QTLs for traits measured using the imaging platform

The additive effect is expressed in specific trait units. A positive value means that the trait increase is due to the Drysdale allele, while a negative 
value indicates the Gladius allele. Chr, chromosome. R2 is the percentage of the genetic variation of the trait explained by the QTL.

Trait QTL Chr LOD thresholda Marker interval QTL (cM) LOD Additive effect R2 (%)

Well-watered
GrowthAVE QGRO.atw-1B 1BL 3.3 Ex_c5296_9365847 68.2 6.2 +0.030 43

CAP7_c4778_2155754
QGRO.atw-2A.1 2AS 3.3 JD_c18695_17091254 52.1 4.3 +0.025 9

Ex_rep_c66709_65042923
QGRO.atw-2A.2 2AL 3.3 BF475068A_Ta_2_1 63.2 3.8 –0.010 5

Ex_rep_c69799_68761171
QGRO.atw-5A 5AL 3.3 Ex_c32414_41076471 8 5.3 +0.060 4

Ex_c2505_4679749
LERAVE QLERAVE.atw-1B.1 1BL 3.5 Ex_c5296_9365847 68.8 4.4 +242 26

CAP7_c4778_2155754
QLERAVE.atw-1B.2 1BL 3.4 Ex_c5296_9365847 60.6 6.4 –304 16

CAP11_c1902_1022590
RER QRER.atw-1A 1AL 3.6 Ra_c2227_4304970 50.3 3.6 +0.002 30

Ex_c15377_23637176
TR QTR.atw-1B 1BL 3.1 Ex_c5296_9365847 72.8 4.9 +6.2 15

CAP7_c4778_2155754
TRarea QTRarea.atw-2D 2DL 2.9 Ex_rep_c69782_68740893 38.1 3 +0.036 3

Ra_c3057_5773026
Drought
GrowthAVE QGRO.atd-5B 5BL 3.3 Ex_c35398_43558614 111.1 4.8 –0.020 9

Ex_c11951_19164786
RGR QRGR.atd-4A 4AL 3.4 Ex_c5487_9686018 120.8 3.4 –0.001 10

Ex_c14478_22481430
Txgrowth QTxgrowth.atd-7D 7DS 2.8 Ex_c17914_26681837 3.5 3.2 +2.75 10

Ex_c11813_18968198
LERAVE QLERAVE.atd-5B 5BL 3.3 Ex_c35398_43558614 112.4 4.4 –130 10

Ex_c11951_19164786
TxLER QTxLER.atd-5B 5BL 3.3 Ex_c35398_43558614 113.6 3.6 –2.7 6

Ex_c11951_19164786
TR QTR.atd-3A 3AL 2.8 Ex_c11877_19055556 97 31 +2.1 2

Ex_c15674_24004810
QTR.atd-4B 4BL 2.8 Ex_c28687_37791888 61.6 4.6 –2.6 3

Ex_c17211_25859780
WUE QWUE.atd-2A 2AL 3.0 BE406351A_Ta_2_3 66.5 4 –0.0003 3

Ex_rep_c69799_68761171
Relative response to soil water potential
KRGR QKRGR.atr-5A 5AS 3.3 JD_c5795_6955031 32.9 3.9 –0.2 3

Ra_c8898_14972290
KRER QKRER.atr-3A 3AL 3.1 Ex_c11910_19101291 67.2 4.1 –0.1 2

Ku_c38911_47455674
TRarea QTRarea.atr-6A 6AS 1.8 CAP12_c1663_836753 6.7 2 +0.2 10

Ex_c965_1846161

a The LOD threshold was empirically estimated at α= 0.05 from 1000 permutation tests by random sampling of phenotypic data for each trait.
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pipeline to support the genetic analysis of quantitative traits 
from non-destructive measurements. This allowed not only 
calculation of dynamic profiles but also derived traits such 
as soil water potential and transpiration, taking into account 
the plant weight, and the transpiration per unit leaf area or 
dynamic WUE.

Although the heritability values were generally low, QTLs 
of strong effect were found on chromosomes 1A and 1B using 
the imaging platform that explained between 26 and 43% of 
the genetic variation (Fig. 3). The G×E interaction could be 
reduced to some extent by using dynamic variables such as 
biomass increase and leaf expansion over time in response to 
the water treatment.

It is worthwhile noting that different sets of QTLs were 
identified in well-watered and drought conditions. Four QTLs 
on chromosomes 1A, 2D, and 6B were specifically expressed 
under well-watered conditions. Five QTLs were found only 
in the drought treatment of the platform on chromosomes 
3A, 4A, 4B, 5B, and 7D and are therefore drought responsive. 

For fine-mapping and positional cloning, only one watering 
condition would be required, allowing phenotyping of a large 
number of lines.

Genetics of growth, transpiration, and WUE in wheat

To the best of our knowledge, this study is the first to describe 
QTLs for leaf expansion and plant growth in wheat. Fourteen 
QTLs were found for growth-related traits. Since several of 
the variables measured are mathematically dependent, some 
QTLs are likely to represent the same loci identified using dif-
ferent equations. These QTLs are readily identified since they 
are located in the same genetic position and show the same 
additivity. Using these criteria, the total number of loci con-
trolling growth traits in our study is 11.

QTLs for transpiration efficiency have been found previ-
ously in wheat (Rebetzke et al., 2008; Wu et al., 2011) using 
the carbon isotope discrimination method. By comparing our 
results with those of Rebetzke et al. (2008), the QTL QTR.

Fig. 3.  Difference between lines with the Drysdale or Gladius alleles at marker wsnp_CAP11_c1902_1022590 (position 74.3 on chromosome 1B) for 
their growth curve and Average transpiration rate (TR) in the well-watered treatment of the experiment in the imaging platform. The graphs show growth 
curves for lines with the Gladius allele (lower curve) or the Drysdale allele (upper curve) at this locus. Curves are the logistic inference±standard deviation 
obtained with 1000 bootstrap replicates (function boot in R) on all lines having the considered allele at this locus. Insets show boxplots of TR per unit leaf 
area for lines with the Gladius (G) or Drysdale (D) allele at this locus. (This figure is available in colour at JXB online.)

Table 5.  Co-localization of QTLs for traits studied in the imaging platform and in the field (Maphosa et al., 2014)

Position on the SSR–DArT–SNP map (1) and SNP map (2). Light-grey shading indicates a positive additive allelic effect (Drysdale); dark grey 
shading indicates a negative additive allelic effect (Gladius).

Genetic map Imaging platform QTL Field QTL

Chr cM (1) cM (2) TR KRGR Yield Grain number Screening

3AL 60.5 116.2
62.0 NSW09
67.2 QTR.atd-3A NSW10 SAU10 SAU10D
67.0 102.4
69.4 SAB09 NSW09 SAU10D
74.7 94.4

5AS 21.6 SAR08 SAR09 MEX11 NSW09
NSW09 SAU10, SAU10D

26.2 QKRGR.atr-5A
27.6
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atw-1B of Drysdale/Gladius may be collocated with a QTL 
for carbon isotope discrimination found on the long arm of 
chromosome 1B, but more markers will be needed to compare 
the two map positions. The five QTLs of Drysdale/Gladius 
for transpiration and WUE on chromosomes 2D, 6A, 3A, 
4Bs and 2A were not detected previously by Rebetzke et al. 
(2008) or Wu et al. (2011).

Two QTLs for average transpiration rate per unit leaf area 
(QTRarea.atw-2D and QTR.atd-4B) were found on chro-
mosomes 2D and 4B. These chromosomes also carry the 
Reduced height (Rht) semi-dwarfing genes known to control 
plant development in wheat (Ellis et al., 2002, 2005). Since 
TR is calculated from plant biomass, developmental genes, 
such as the Rht genes, are likely to influence TR. However, the 
locations of Rht8 (Gasperini et al., 2012) and QTRarea.atw-
2D do not match, and the Rht1 diagnostic marker (Ellis et al., 
2002) was monomorphic in Drysdale/Gladius. Therefore, Rht 
genes do not explain the transpiration QTLs. Further investi-
gations will be needed to identify candidate genes underneath 
these QTLs.

Common loci for growth and transpiration rates, and 
yield components

There were no significant genetic correlations between 
growth, transpiration, or WUE data from experiments in the 
platform and yield component traits in the polytunnel. Low 
correlation is often observed when comparing very different 
traits (vegetative growth and transpiration vs grain yield) 
under different growth conditions (glasshouse vs field, and 
pot vs plot). However, we identified some common QTLs 
between the platform and the field experiments, which indi-
cate a common genetic basis for both traits. For example, the 
QTL for biomass increase in pots on chromosomes 1B and 
2A under well-watered conditions overlapped with QTLs for 
yield components in the polytunnel. This indicates that these 
QTLs might control plant growth across environments, which 
could be translated into grain yield.

Co-location of QTLs for transpiration traits and yield 
were also found by Maphosa et al. (2014) by comparing their 
data with the studies of Rebetzke et al. (2008) and Wu et al. 
(2011). However, the only co-locations found were in the Ppd-
B1 and Ppd-D1 regions, which control phenology. This is a 
well-known drought escape mechanism where the plant cycle 
is accelerated so that plants flower before the onset of severe 
drought late in the cropping season. Since these loci are well 
known, our study aimed to identify loci that were not related 
to phenology. Consequently, the effects of these two genes 
were excluded by including their genotypes in the QTL model 
so that the QTLs we identified are likely to control yield and 
growth-related traits per se.

A locus on chromosome 1B (86.7–112.9 cM) showed three 
overlapping QTLs controlling LERAVE and GrowthAVE in the 
platform under well-watered conditions, and spike number 
in the polytunnel in 2011 (Table 4). The higher transpiration 
rate for plants carrying the Drysdale allele was mainly driven 
by a higher leaf  area and biomass. This QTL seems to be 
constitutive, as some effects have been found in well-watered 

as well as under drought conditions (Fig. 3). Several other 
QTLs for yield and yield components have been detected 
on chromosome 1B under rain-fed, well-watered, and 
drought-stressed environments in different wheat mapping 
populations in Australia, China, India, Mexico, and Spain 
(Quarrie et al., 2005; Kuchel et al., 2007; Kumar et al., 2007; 
Maccaferri et al., 2008; Wang et al., 2009; Pinto et al., 2010; 
Edwards, 2011; Bennett et al., 2012). There is a strong asso-
ciation between the number of  stems per plant and relative 
growth rate in wheat (Dreccer et al., 2013). Our result sug-
gests that the QTL on 1B could control plant growth rate 
during the vegetative phase, which could affect the number 
of  spikes and grain yield. This QTL would be an interesting 
target for cloning to identify genes controlling yield across 
environments in wheat.

Supplementary data

Supplementary data are available at JXB online.
Supplementary Fig. S1. Water-release curve of experiment 

in the imaging platform.
Supplementary Fig. S2. Correlation between the traits 

from the platform and the polytunnel experiments.
Supplementary Table S1. QTLs identified for phenology, 

biomass, and yield-related traits in the polytunnel experi-
ments run in 2010 and 2011 in Urrbrae (South Australia).
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