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Difan Tang, Lei Chen, and Zhao Feng Tian 
 

School of Mechanical Engineering, The University of Adelaide, Australia 

 

ABSTRACT 
 

A new policy-iteration algorithm using neural networks 
(NNs) is proposed in this paper to synthesize optimal control 
laws online for continuous-time nonlinear systems. Latest 
advances in this field realize synchronous policy iteration but 
meanwhile require an additional tuning loop or a logic switch 
mechanism to maintain system closed-loop stability. A new 
algorithm is thus derived in this paper to address this limita-
tion. The optimal control law is found by solving the Hamil-
ton-Jacobi-Bellman (HJB) equation for the associated value 
function via synchronous policy iteration in a critic-actor 
configuration. As a major contribution, a new form of NN 
approximation for the value function is proposed, offering 
the closed-loop system asymptotic stability without addition-
al tuning scheme or logic switch mechanism. As a second 
contribution, an extended Kalman filter (EKF) is introduced 
to estimate the critic NN parameters for fast convergence. 
The efficacy of the new algorithm is verified by simulations. 
 

Index Terms — machine learning, neural network, poli-
cy iteration, optimal control, nonlinear system 

 

1. INTRODUCTION 
 

Optimal control for nonlinear systems involves solving a 
Hamilton-Jacobi-Bellman (HJB) equation. This differential 
equation is nonlinear and difficult to solve directly. As an 
alternative, the so-called ‘policy iteration’ can be used [1, 2], 
which is basically a two-step iteration between policy evalua-
tion and policy improvement. The term ‘policy’ is specifically 
used in the field of dynamic programming [1] and refers to a 
control strategy or control law. By repeating these two steps, 
the initial non-optimal control strategy evolves to an optimal 
one. To implement policy iteration, the value function in the 
HJB equation needs to be approximated by a suitable agent. 
Neural networks (NNs), possessing universal approximation 
properties, are ideal candidates [3]. 

An early approach for policy iteration based on NNs is an 
offline method that takes control saturation into account [4]. 
The control law obtained is nonlinear and optimal in respect 
to saturated actuators, outperforming its linear counterpart, 
the linear-quadratic regulator (LQR), which is only optimal 
when actuators are not saturated. With some modification, 
this algorithm can be put online and eliminates the need for 
knowledge of system internal dynamics [5]. The associated 
policy iteration then becomes a sequential process that takes 

place with one step starting on completion of the previous 
step, resulting in discrete update of the control strategy. To 
initialize the process, an initial stabilizing control law must be 
specified. Discontinuities in control should be smoothed by 
appropriate methods but are nonetheless not considered. 
Though the impact of using a discount factor for the infinite-
horizon cost is further discussed in [6], the limitations in [5] 
are not addressed. Comparatively, a synchronous policy-
iteration technique in [7] offers more advantages. Instead of 
the step-by-step iteration, both the two steps are performed 
simultaneously and continuously, contributing to continuous 
update of the control law and hence smoother control. The 
critic-actor structure constructed by two NNs guarantees the 
stability of the entire closed-loop system during NN online 
tuning without the necessity of providing an initial stabilising 
control strategy. 

The theory framework of the online synchronous policy 
iteration method for synthesizing optimal control in nonlinear 
systems have been enormously enriched by recent and latest 
advances in dealing with more complicated uncertainties and 
nonlinearities as well as performance improvement. To tackle 
uncertainties and nonlinearities, one may need techniques of 
partial/complete model-free design [8-10], NN-based states 
estimation [11], optimal disturbance rejection [12, 13], ro-
bust optimal control with upper-bounded costs [14], and 
optimal control under actuator saturation [10, 15]. To fur-
ther improve algorithm performance, one may consider faster 
online tuning [9], handling finite approximation errors that 
sometimes may prevent proper convergence of the value 
function and the associated optimal control [16], or gaining 
more insights into the mechanism of the policy iteration, its 
convergence, uniqueness of the solution, and the sufficient 
conditions [17]. However, to guarantee the stability of the 
closed-loop system, the available online synchronous policy 
iteration methods either require an additional tuning loop for 
the actor NN, or rely on a logic algorithm to switch between 
different tuning modes. The additional tuning can bring more 
uncertainties into the system, and the logic switch mechanism 
can cause discontinuities in control. 

The work in this paper thus derives a new synchronous 
policy iteration method without actor NN tuning or logic 
switch mechanism but still capable of maintaining closed-
loop system stability. As a major contribution, a new form of 
value function approximation based on a single-layer NN is 
proposed. Similar to the aforementioned methods, the critic-
actor NN configuration is adopted. But differently, only the 
critic NN needs to be tuned, via an extended Kalman filter 



(EKF), with faster parameter convergence than traditional 
gradient-based methods. This is another contribution of this 
paper because none of the aforementioned methods use the 
EKF for NN tuning to solve for optimal control in nonlinear 
systems. 

 

2. CONTINUOUS-TIME HJB EQUATION AND 

POLICY ITERATION 
 

The continuous-time nonlinear system below is considered: 

 ( ) ( ( ), ( )); ( ) 00t t tx F x u x x , (1) 

the control-affine dynamics of which is: 

 ( ) ( ( )) ( ( )) ( ( )); ( ) 00t t t tx f x g x u x x x , (2) 

where ( ) ntx  denotes system states; ( ) mtu  refers 
to control inputs; ( ( )) ntf x  describes system internal 
dynamics; ( ( )) n mtg u  represents control input dynam-
ics. 

Assumption 1: ( )0 0f ; ( ( )) ( ( )) ( )t t tf x g x u  is Lip-
schitz continuous on a set n  containing the origin; the 
system as in Eqs. (1) and (2) can be stabilised by ( )u  
that are admissible [18]. 

Assumption 2: ( ( )) ( )ft b tf x x , ( ( )) gt bg x , 
where constants fb , and gb  are known. 

The control problem is to determine a control policy 
( )tu  to minimise the following performance index (cost 

function): 

 ( ) [ ( ( )) ( ( ))]0
0

V Q U dx x u , (3) 

with ( ( ))Q tx  and T( ( )) ( ) ( )U t t tu u Ru  being positive-
definite monotonically increasing functions, in which 

m mR  is a positive-definite weighting matrix. 
Differentiating Eq. (3) yields its infinitesimal version that 

is a nonlinear Lyapunov equation (LE), written as: 

 T ( )[ ( ) ( ) ( )] ( ) ( ) ,0x Q UV x f x g x u x x u  (4) 

with ( )0 0V  . 

Let *( )V x  denote the optimal (minimal) cost function, 
which is named as the ‘value function’, and its derivative 

* *( ) ( )x VV x x x , and then the corresponding optimal 
control policy is given by: 

 * T *( ) ( ) ( )11
2 xu x R g x V x , (5) 

which satisfies the following Hamilton–Jacobi–Bellman 
(HJB) equation based on Eq. (4): 

T* T *( ) ( ) ( ) ( ) ( ) ( ) ( )11
0

4 x xQ Ux x f x V x g x R g x V x . (6) 

That is, by solving Eq. (6) for *( )V x , the optimal control 
policy can then be obtained as in Eq. (5) given that the sys-
tem internal dynamics ( )f x  and control input dynamics 

( )g x  are known. 
Note that the HJB equation is nonlinear and difficult to 

solve directly. Instead, it can be solved recursively through 
the successive approximation method introduced in [19], 
which is generally recognised as a policy iteration approach 
[2]. Despite different forms of realisation, the policy iteration 
algorithm basically involves two basic steps – policy evalua-
tion (solving for 

( )

( )
i

V u x  associated with ( ) ( )iu x ) and pol-

icy improvement (updating ( ) ( )1iu x  according to 
( )

( )
i

x
uV x ). Starting with an initial admissible control policy 
( ) ( )0u x , the algorithm proceeds until convergence is 

reached at *( )V x  and *( )u x . 
 

3. NN-BASED VALUE FUNCTION 

APPROXIMATION 

 
Note that solving for 

( )

( )
i

V u x  in a direct way is difficult. To 
allow implementation of the policy iteration, an appropriately 
structured representation of *( )V x  is necessary, which can 
be a neural-network approximation. Unlike the methods of 
previous studies discussed in Section I, we propose a new 
form of value function approximation as: 

 * T T( ) ( ) ( )V x x Px W x x , (7) 

where ( ) [ ( ), , ( )] :1
n N

N
Tx x  is a set of NN 

activation functions which are nonlinear; NW  is a vec-
tor of ideal NN weights; x xn nP  is a positive-definite 
matrix; ( )x  is the approximation error. The approxi-
mation error ( )x can be arbitrarily small with a sufficient 
number of hidden layer neurons ( )x [4]. 

The derivative of *( )V x  with respect to x  is: 

 
*

* T( )
( ) ( ) ( )x

V x
V x Px xW x

x
ε , (8) 

where 
T

( )
( )

x
x

x
 denotes the gradient of ( )x . 

Assumption 3: For constants b  and b , 
there exist ( ) bx x  and ( ) bx xε . 

Due to the approximation error ( )x , the associated 
control law under this approximation scheme is a nearly op-
timal control as: 

 T T( ) ( ) ( )11
2

u x R g x Px xW  . (9) 

Eq. (7) is a single-layer NN, which is nonlinear in the 
hidden layer ( )x  but linear in the output layer weights W . 
To implement policy iteration, W  need to be tuned dynami-
cally so that Eq. (7) approximates a target value function. 
Let Ŵ  be the estimate of ideal weights, then: 

 T Tˆ ˆ( ) ( )
1
2

V x x Px W x . (10) 

The resulting nonlinear LE then becomes: 

 

T T Tˆ ˆ( ) [ ( ) ( ) ( )]

ˆ( ) ( ) HQ U

x P W x f x g x u x

x u
, (11) 

where H  is the difference caused by the approximation er-
ror ( )x  as in Eq.(7), and  is the error due to imperfect 
weight estimate during a tuning process. 

An appropriate tuning algorithm is now needed for uni-
form convergence of Ŵ  to the ideal W  so that  is mini-
mised. In this paper, an extended Kalman filter (EKF) is used 
for NN weights tuning/estimation. Since Ŵ  is the parameter 
vector to estimate, Eq. (11) can be rearranged in the follow-
ing form: 

 
( ) ( , , )Hy t h t v

W w

W
, (12) 



where w  and v  are white-noise inputs with covariance ma-
trix 0fQ  and 0fR  , respectively, 

 T T( ) [ ( ) ( ) ( )] ( ) ( )y t Q Ux P f x g x u x x u ,  

and  T( , , ) ( )[ ( ) ( ) ( )]H Hh tW W x f x g x u x .  

Note that ( )y t  is known from measurements. The un-
known ideal W  needs to be estimated according to ( )y t  
and the partially known dynamics ( , , )Hh tW . White-noise 
inputs w  and v  are artificially introduced in order to im-
plement EKF. 

Introducing EKF into the system described by Eq. (12) 
yields: 

 
ˆ ˆ( ) ( )

ˆˆ( ) ( , , )

f

H

y t y t

y t h t v

W K w

W
, (13) 

where Ŵ  and ˆ( )y t  denote the estimate of W  and corre-
sponding output, 1N

fK  is the EKF gain. 

The EKF gain fK  can be computed from: 

 T 1
f fK SH R , (14) 

with 
ˆ( , , )

ˆ
Hh tW

H
W

, (15) 

and T 1
f fS Q SH R HS , (16) 

where 1NH  is the observation matrix of Eq. (12) line-
arized around Ŵ , N NS  is symmetrical positive-
definite diagonal matrix with T( ) ( )0 0 0t tS S . 

 

4. CONVERGENCE AND STABILITY ANALYSIS 
 

Given the ideal NN parameter W , the estimation error W  
is defined as ˆW W W . Similar to most adaptive con-
trol problems that require online tuning of parameters, per-
sistence of excitation (PE) is needed for proper convergence 
of NN parameters [20]. 

Assumption 4: During online tuning, system states relat-
ed signals T T( ) [ ( ) , ( ), ( )]tz x f x g x  satisfy the follow-
ing PE condition: 

 T( ) ( ) ;
0

0
1 2 0 0

t

t
t t d tI z z I ,  

where 1  , 2 , , and I  is an identity 
matrix of appropriate dimensions. 

It is one of the contributions in this paper that EKF is em-
ployed to tune single-layer NN parameters online specifically 
for synthesising optimal control laws in a continuous-time 
nonlinear system. Parameter convergence is shown in the 
following theorem. 

Theorem 1: Under Assumptions 1 to 4 and the EFK es-
timation scheme provided by Eqs. (13) to (16), nearly opti-
mal control laws for the nonlinear system as in Eq. (2) are 
given by an actor NN 

 T T ˆˆ ( ) ( ) ( )11
2

u x R g x Px xW  (17) 

in an online tuning manner, with the adaptive variable Ŵ  
converging to the ideal value W  within an error bound: 

3 6 2 2

2

6 36 32

2

x G Rf x G Rf Rf G
W

Rf G

b b b n b b b n m n m
b

n m
W . 

Proof: Due to space limit, the proof is not presented 
herein. 

Remark 1: Although convergence of W  is shown to 
be uniformly ultimately bounded (UUB) under the tuning 
scheme provided by the EKF, the evolution path of Ŵ  may 
not provide stabilising control. This has been widely docu-
mented in literature as discussed in Section 1. Without add-
ing a stabilising tuning scheme to the actor NN (Eq.(17)), the 
closed-loop stability of the overall system needs to be further 
analysed. 

Theorem 2: Given Assumptions 1 to 4 and the EFK es-
timation scheme provided by Eqs. (13) to (16), the nonlinear 
system as in Eq. (2) remains asymptotically stable during 
online tuning under the nearly optimal control given by Eq. 
(17), if P  in Eq. (7) is selected large enough such that for 
some constant Pm , PmP , where 

 

2
1 1 22 2p p G p

P
G

c c m c
m

m
, 

with 1
1 1
2 2p G W G G Wc b b n b b b b b  , 

and 

2
2

2

1 1
2 4

1
4

p G W G f f W

G W Q DWW

c b b b n b b b b b b b

b b n b m m

. 

Proof: Due to space limit, the proof is not presented 
herein. 

Remark 2: The proposed new form of value function ap-
proximation is a major contribution of this paper. It main-
tains the stability of the closed-loop system during online 
tuning without the necessity of adding an additional stabilis-
ing tuning scheme to the actor NN or adding a stabilising 
switch mechanism to the critic NN. Moreover, to the best of 
our knowledge, the proposed algorithm is the first successful 
approach to provide nonlinear systems as in Eq. (2) with 
asymptotic stability among available methods in literature. 

 

5. SIMULATIONS 
 

Two simulation examples are given in this section. Finding 
the optimal control law for a linear time-invariant (LTI) 
model is demonstrated first to compare the proposed algo-
rithm with the well-established linear-quadratic regulator 
(LQR) for LTI cases. A nonlinear model with a known value 
function is then introduced to further verify the convergence 
and stability of the proposed algorithm. These two examples 
are the same as in [7] and hence the performance of the pro-
posed method can be compared with that in [7]. 
 

5.1. Linear Example 

 
The following continuous-time LTI model is consider: 



 

. . .

. . .

1 01887 0 90506 0 00215 0

0 82225 1 07741 0 17555 0

0 0 1 1

ux x . 

Note that a specific form of ( )Q x  in the cost function is 
not given in Eq. (3). For this example, let T( )Q x x Qx  
with 3 3Q I  and 1R . 

The activation function set is defined as 
T( ) [ , , , , , ]2 2 2

1 1 2 2 1 3 2 3 3x x x x x x x x xx , 
and the critic NN weight are 

Tˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , , , , , ]1 2 3 4 5 6W W W W W WW . 
In the simulation, 

x xn nP I , and the EKF takes 

6 6fQ I  , 1fR  , and ( )0 0tS . When implementing 
the proposed algorithm as in Theorem 2, a small probing 
noise is added to perturb the system to satisfy the PE condi-
tion. The convergence of NN weights are plotted in Fig. 1. It 
can be seen that uniform convergence is quickly reached 
within 40 seconds, much faster than the 800 seconds needed 
by the algorithm of [7]. 

It is known that the linear optimal feedback control law 
obtained by means of the LQR algorithm is in the form of 

 LQRu K x , 

with [ 0.1352, 0.1501, 0.4329]LQRK . 

Rewriting Eq. (17) as 

T T ˆˆ ( ) ( ) ( )11
2 NNu x R g x Px xW K x , 

and using 
Tˆ [0.9243, 2.3371, 0.2714, 0.9343, 0.2987, 0.0677]W

 sampled at 100 seconds to compute the feedback gain gives 
[ 0.1357, 0.1493, 0.4323]NNK . As can be seen from 

[ . , . , . ]0 0005 0 0008 0 0006LQR NNK K , the proposed 
algorithm provides adequate accuracy in finding the linear 
optimal control in an online tuning manner. 

 

5.2. Nonlinear Example 
 
A nonlinear system in the form of Eq. (2) is considered, with 

 ( )
. . cos( )

1 2

2
1 2 10 5 0 5 1 2 2

x x

x x x
f x  , 

and ( )
cos( )1

0

2 2x
g x . 

For 2 2Q I  and 1R , the corresponding optimal 
value function and optimal control are known to be 

 *( ) . 2 2
1 20 5V x xx  and *( ) cos( )1 22 2u x x x , 

respectively, as given in [7]. 
The NN activation function set are selected as: 

 T( ) [ , , ]2 2
1 1 2 2x x x xx , 

and the NN weights are: 

 Tˆ ˆ ˆ ˆ[ , , ]1 2 3W W WW . 

In the simulation, 
x xn nP I , and the EKF takes 

6 6fQ I  , 1fR  , and ( )0 0tS . Similar to the linear 
example, a small probing noise is added to meet the PE con-
dition. The online tuning reaches convergence within 10 sec-
onds (see Fig. 2), faster than the 80 seconds of the algorithm 
of [7]. At 100 seconds, Tˆ [ , , . ]0 0 0 5W , and by substitut-
ing these values back into Eqs. (10) and (17), it can be easily 
verified that convergence is reached with good accuracy. 

Remark 3: It is worth emphasis that the proposed algo-
rithm only requires to tune the critic NN without additional 
tuning for the actor NN. No stabilising switch mechanism is 
needed either. This is a major difference of the new critic-
actor algorithm from its counterparts in literature. As shown 
by the two examples, the overall implementation is simplified 
with only one NN tuning loop and with faster online tuning 
without jeopardising the closed-loop stability. This is a sig-
nificant improvement to the online synchronous policy itera-
tion theory framework. 

 

6. CONCLUSIONS 
 
A new synchronous policy-iteration algorithm implemented 
online for infinite-horizon optimal control of continuous-time 
nonlinear systems is proposed in this paper. Major contribu-
tions lies in that a new form of value function approximation 
is proposed and an EKF is used for NN tuning. The new 
algorithm eliminates the need for additional stabilizing tuning 
of the actor NN or stabilizing logic-switch mechanism for the 
critic NN. Convergence analysis shows an important ad-
vantage of the proposed technique over other synchronous 
policy-iteration algorithms in that asymptotic convergence of 
system states is guaranteed. As a result, the new critic-actor 
structure with EKF tuning simplifies the online adaptive con-
troller implementation and meanwhile provides satisfactory 
stabilizing control. In addition, parameter convergence of the 
proposed algorithm is generally faster than the method of [7] 
as shown in simulations. 
 

Fig. 1. NN parameters convergence history during online tuning 

 

Fig. 2. NN parameters convergence history during online tuning 
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