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ABSTRACT

Whispering gallery modes (WGM) within microsphere cavities have demonstrated the ability to provide label-free,
highly sensitive and selective detection down to a single molecule level, emerging as a promising technology for future
biosensing applications. Currently however, the majority of biosensing work utilizing WGMs has been conducted in
resonators made from either silica or polystyrene while other materials have been largely uninvestigated. This work
looks to predict the optimal combinations of material, resonator size and excitation/coupling scheme to provide
guidelines to assist in decision making when undertaking refractive index biosensing in a range of situations.

Keywords: Whispering gallery modes, biosensing, optimization, microsphere

INTRODUCTION

Whispering gallery modes (WGM) with in microsphere resonators have become a well established technique for a large
range of different biological sensing applications due to their demonstrated ability to conduct highly sensitive 1,
selective ¥ and label-free detection of molecules and proteins ), extending down to the single molecule level. WGMs
arise due to light being trapped along the microsphere’s circumference due to total internal reflection along its boundary.
As the light circulates within the microsphere, a fraction of the light extend outside of the resonator into the surrounding
medium through the evanescent field, allowing changes in the outside environment to be monitored. One interesting
properties of WGM resonators is the amount of time the light remains circulating within the resonator and is described
by the quality factor (Q). The Q can be characterized in a range of different ways and is most commonly defined in terms
of quantities such as loss mechanisms of the resonator (absorption, scattering, radiation) %, resonance wavelength and
linewidth as well as the cavity ring down time ", The higher the Q, the narrower the resonance linewidth becomes,
allowing smaller shifts in the resonance position to be detected, which is favorable for sensing applications. Previously,
the majority of work undertaken in the WGM biosensing field has been conducted in predominately two materials,
namely polystyrene % and silica """, The silica microspheres used range typically from 50-100pm in diameter and
are produced via melting the tip of an optical fibre "> '3, After the melting process, the microsphere remains attached to
the fibre, allowing it to be easily secured with an optical set up. Light from a tunable laser can then be coupled into the
sphere via a number of commonly used methods such as, waveguides !'*), coupling prisms !'*! and fiber tapers !, Using
these types of setups, Q factors in silica microspheres have reached as high as ~ 0.8x10'" "), However, precise
alignment is required when using any of these coupling methods, reducing their practicality to be used in some
biosensing situations such as for in-vivo sensing '® as any change in the resonance wavelength peak position due to a
refractive index change or a binding event that is being studied is indistinguishable from any alteration in the coupling
efficiency. This leads to the other commonly used material in polystyrene, as it provides a contrasting method based on
fluorescent dye-doped microspheres that allows for remote sensing, albeit at a significantly lower Q. In order to
capitalize on the benefits of fluorescent based sensing, new materials need to be investigated to help bridge the gap in
sensing performance between the two regimes. One method to begin the investigation, allowing a large number of
different resonator materials and sizes to be examined, is through analytical modeling '>?. By simulating the WGM
spectrum that would be produced, information such as sensitive and Q can be characterized, giving insight into the
sensor performance prior to conducting experiments.
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THEORETICAL MODEL

For any dielectric microsphere of radius R and refractive index 7, the whispering gallery mode (WGM) spectrum can be
generated by extending on classical Mie Scattering theory, as demonstrated by Chew . Consider an arbitrary
distribution of dipoles within a spherical dielectric resonator, of radius R and refractive index n;, within a medium of
refractive index n,, being excited by an incident plane wave. The resulting total average power radiated from the sphere
is given by the sum of the radial and tangential oscillations, as defined in *”’, noting that in the original publication 1**!
the (2n+1)/3 term in the summation of Eq. (1) was omitted from the published equation,
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The positions of the resonance peaks in the WGM spectra generated using the Chew model have been previously shown
to align with those predicted using classical Mie Scattering formulations *'), while recently we have confirmed that the
model is also in agreement with computational simulations based on the Finite-Difference Time Domain (FDTD)
method *?. This is useful as the Chew model is significantly less computationally expensive to run compared with
FDTD simulations, providing a quicker and simpler alternative to examine spectral information of any resonator (R, n;)
combination. However, FDTD still provides insight extending beyond spectral information including transient
phenomena as well as being able to consider other resonator geometries, which is not possible from the Chew model.

RESULTS AND DISCUSSION

Implementing the analytic model described above, the whispering gallery mode spectrum for microspheres with
diameters ranging from D = 1 — 20pum and refractive indices ranging from n; = 1.45 — 2.0 immersed in water (n, =
1.3325) were simulated over the wavelength range 600-615nm, corresponding to the fluorescence region of commonly
used organic dyes such as Nile Red '**!, and analyzed to predict the sensing performance. The analysis involves the
identification of the position and intensity of each peak present in the spectrum, along with passing the individual peaks
through fitting routines to calculate the Q while also calculating the refractive index sensitivity by monitoring the change
in the spectrum as the surrounding refractive index was varied. Finally, by combing the sensitivity and Q, the minimum
achievable detection limit is determined for each resonator.

Refractive index sensitivity

The refractive index sensitivity is calculated by considering the shift in the resonant wavelength position due to a change
in the surrounding refractive index.
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Although the sensitivity can be calculated using simpler analytical models that just produce the peak positions, utilizing
the Chew model to generate the entire WGM spectrum allows not only the peak positions to be monitored but also other
information such as how the Q changes during this process, as demonstrated in Fig 1(A).
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Fig. 1. (A) Change in position of the resonance peaks for a 6um radius
polystyrene sphere (n; = 1.59) initially in water (n, = 1.3325) for incremental
increases in the surrounding refractive index n, by 0.01 R.I.U. (B) Comparison
of the predicted sensitivity from the model (red line) to the measured sensitivity
of a R~5um polystyrene sphere in water.

To evaluate the sensitivity across the parameter space, firstly the initial spectrum for the resonator (R, 7;) immersed in
water (n, = 1.3325) was generated and then new spectra are generated by increasing the value of n, (step size 0.005
R.1.U) until the surrounding refractive index has increased by 0.01 R.I.U, monitoring the shift in the position of the
resonance peaks at each step. The predicted sensitivity is compared to the measured sensitivity for a polystyrene sphere
in water with R ~ S5um and the result is shown in Fig 1(B). Good agreement is seen between the model and experimental
data. As expected, the shift in the position of the resonance peaks A1 displays a linear response to the changes in 7, over
the range of An considered, even as extends An to values that are higher than that typically observed in refractive index
sensing experimentally. Non-linear responses in A4 were observed as An became greater than 0.04 R.I.U.

Figure 2 displays the refractive index sensitivity as a function of radius and refractive index of the resonators considered
across the entire parameter space. The solid black line seen running across the figure defines the boundary below which
no peaks would be resolvable above the background fluorescence and so are not considered in the analysis. This arises
because the spectra being produced from the Chew model represents the total averaged power radiating from the
resonator, which is normalized to the bulk values in the surrounding medium [reference], implying that in order to
observed a peak the peak height must be greater than 1. The sensitivity map shows that, as expected, for a given sphere
radius R, the sensitivity decreases with increasing sphere refractive index, as the increasing refractive index contrast
results in the light becoming more tightly confined within the resonator. The region corresponding to the highest
sensitivity is located just above the boundary defined by the peak heights of the spectrum, showing that the higher the
refractive index, the smaller the sphere can be to get the same level of sensitivity.
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Fig.2. Contour plot of the sensitivity derived using the analytical Chew model for
spherical resonators over the parameter space ranging from ¢ = lpum — 10pm and
refractive index range from n; = 1.45 — 2.0 within the wavelength range of 600-
615nm. Note the scale is logarithmic.

Quality factor

Using the Chew model to generate a WGM spectrum, the quality factor of the cavity, Q., can be calculated using the
resonance wavelength A and linewidth AA via,

_ A
0= 3)

Over the entire parameter space, from the generated WGM spectrum, O was evaluated using Eq. (3) for each peak that
appeared in the spectrum, with the peak corresponding to the highest value being recorded. Note that this peak is not
necessarily the same peak that provides the highest sensitivity calculated above. The contour plot of Q¢ calculated over
the parameter space is displayed in Fig. 3, including a limit placed on the achievable Q corresponding to the finite
resolution of the spectrometer if the spectrum were being observed experimentally. With no consideration of such a limit,
the Q would continue to increase exponentially, predicting Q values orders of magnitude grater than what is observed
experimentally. Currently in our experimental set-up, detailed elsewhere !"*** the resolution of the spectrometer is
limited to 4 picometers. Once again, the solid black line seen on the figure represents the boundary below which the
peaks would not be resolvable above the background fluorescence.

The model however, assumes a perfect dielectric sphere with no loss mechanisms; therefore to provide a more realistic
value comparable with experimental observations, material, scattering (due to surface imperfections) and radiation losses
also need to be considered. Expressing QO in terms of these loss mechanisms, where Q,,, is the material loss, QO is the
scattering loss due to surface imperfections, 0, is the radiation loss and Q. is as above,
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Fig. 3. The quality factor, O, derived using the analytical Chew model for spherical
resonators, including the limit placed on the observable Q of fluorescence based WGM
due to the finite resolution of the spectrometer used, over the parameter space ranging
from ¢ = lym — 20um and refractive index range from n; = 1.45 — 2.0 within the
wavelength range of 600-615nm. Note the logarithmic scale.

Radiation loss is significant only in situations where total internal reflection can no longer trap light within the resonator,
i.e. when the resonators with small radii or a low refractive index contrast. The maximum value of Q, has been
demonstrated to increase exponentially with resonator size, for example, for a silica sphere in water if the ratio R/A > 15
then O, > 10" "), For materials such as polystyrene and glasses with higher refractive indices **, this limit is even
higher, indicating that the contribution to Q is negligible.

Scattering losses can be calculated by modeling the surface roughness as a function of changing dielectric constant and
has been used to determine upper limits on the Q of large silica spheres *). An expression for the Q limitation due to
surface scattering is given by,

3
0-tw e 5)
1+K,, 8n7" B o

where K7 is defined as the ratio of complete scattered power over the power scatter into the angles satisfying angular
cutoff conditions as defined elsewhere *°' | B is the length and o is the variance of the surface roughness. As a
preliminary test, Qs was calculated based on the parameters that describe the surface of polystyrene, typically
corresponding to a roughness of 15nm or greater *”. The result produced similar values as that of Q., indicating that its
contribution to Q through Eq. (3) is insignificant. Adjusting the value of B and ¢ and monitoring the value of O it was
only when the surface roughness was increased towards 50nm that the Qs value had an effect on Q. This level of surface
roughness is unlikely to be seen in any of the materials considered.

For the material absorption, the loss can be characterized by considering the absorption of light by both the surrounding
medium and the resonator using an absorption decay constant, a,,, as,

_ 27n,
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Over the wavelength range considered, an assumption is made that the absorption displayed by the resonators is the same
as that of polystyrene and it has previously been shown that the upper limit Q,, is at least an order of magnitude larger
than the Q observed experimentally for polystyrene ***!, making its contribution to O negligible.

Despite the consideration of the three loss mechanisms, there remains a noticeable difference in the measured and
predicted Q values (Q ~ 1000 *! measured and Q ~ 2x10° predicted for a 15um polystyrene sphere in water), as their
individual contributions are not noticeable. This difference is though to be a result of one of the assumptions made in
deriving the Chew model, namely that the resonator being considered is a perfect dielectric sphere. In reality, the
microsphere will not be perfect spherical, and even small deformations in the resonator shape away from a perfect sphere
would result in a decrease in the Q.

Consider for example the spectra of three spheres with radii 4.995um, 5.00um and 5.005um, Fig 4(A). Even a small
difference of 0.5nm in the radius results in a distinguishable change in the position of the resonance peaks. In each case,
the spheres are still assumed to be perfectly spherical and so each of the three spectra show peaks with very similar
intensities. If, however, the resonator being considered is not perfectly spherical, i.e. elongated along one axis, then the
light being coupled in with experience a range of difference radii, assuming that any deformations are small enough as so
the resonator can still sustain WGMs. The final WGM spectrum observed will then be a combination of all the resonance
peaks corresponding to each of the radii, resulting in a broadening in the peak. An example of this is shown in Fig 4(B)
where a deviation of +/- 0.5nm in the radius of a Sum polystyrene sphere was considered.

2 ‘ ‘ \ 2.8 : ‘ :
—R=5.00pm ) —R=5.00pm (B)
—R=5.005um 2.6f —R =5.00 +/710.005 p m ]

L8 —R=4.995 um A 2l

Intensity (A.U)
Intensity (A.U)

Il Il Il 0 Il Il Il
608 610 612 614 616 §08 610 612 614 616
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Figure 4. Demonstration on the effect of deformation of the sphere on the
Q. (A) WGM spectra of a polystyrene sphere of radius R = 5 um (blue
line), R = 5.005 um (Red) and R = 4.995 um (Green) showing the
noticeable change in position of the resonance peaks due to a small
change in the sphere radius. (B) Assuming the sphere is not deformed too
much, the majority of the light will still see the original radius and the
other radii will only see a fraction of the light, resulting in a broadening of
the peak (black line) from the original perfectly spherical sphere (blue
line).

Therefore, over this wavelength range and materials being considered, it is reasonable to conclude that asphericity in the
resonator shape is responsible for the large differences between the predicted and measured Q values. This effect is
planned for further future investigation.

Detection Limit

The sensitivity and Q provide insight into the performance of the resonator, but for biological sensing applications, the
detection limit of the sensor is the key parameter as it determines the smallest viruses, proteins and change in
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environmental refractive index that can be measured. An expression for the detection limit can be found by considering
the smallest change in the refractive index that can be measured and how it is related to the minimum line with of the
resonances (from Q), so through combining Eq. 2 and Eq. 6,

1
Orop *—5 (7)

oS

In practice however, further considerations ! for the proteins or molecules being sensed such as molecular weight,
excess polarizability, wavelength being utilized along with the fact that only a fraction of the shift in the resonance
wavelength position can be observed are to be added as required. The detection limit using Q¢ and S calculated over the
parameter space is displayed in Fig. 5. As in the maps above, the solid black line running across the figure represents the
boundary below which the peaks would not be observable above the background fluorescence. The dotted black line that
has been placed on the figure represents the region that corresponds to the minimum detection limit, i.e. where the
combination of Q. and S is maximized. This line correlates with the limit on the Q enforced due to the finite resolution of
the spectrometer indicating that for fluorescence based WGM refractive index sensing over this parameter space, the
resolution of the spectrometer limits the performance of the resonator. This is expected for this parameter space, as the
loss contributions from scattering and absorption are negligible, allowing the Q to continue to increase until it hits the
imposed limit. For different parameter spaces, such as at higher wavelengths and larger sphere sizes, this may not be the
case with contributions from scattering and absorption losses playing a larger role, shifting the location of the minimum
detection limit, and the ideal resonator size and material combination.
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Fig. 5. Detection limit O, mapped over the parameter space @ = 1pum — 20pm

and refractive index n; = 1.45 — 2.0 within the wavelength range 600-615nm.
The dotted line represents the minimum value of the detection limit (i.e. where
the product OS is maximized). Note the logarithmic scale.

CONCLUSION

By using an analytical model to generate the WGM spectrum of any size and material spherical microresonator, this
work demonstrates how the spectral information can be used to predict sensing performance of fluorescence based WGM
refractive index sensors. The predicted refractive index sensitivity is shown to have good agreement with measured
sensitivity, displaying the expected linear response in the resonance peak position to changes in the surrounding
refractive index. The predicted Q however displayed an overestimate of the achievable Q, with the difference being
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identified as a result of the model assuming the resonator to be perfectly spherical and in reality small deviations in the
resonators shape naturally occur. Taking into about such deviations, the resulting broadening and reduction in intensity
of the resonance peaks aligned with what is expected experimentally. Combining the two parameters, sensitivity and Q, a
figure of merit for the detection limit was derived whereby additional specific information related to the application of
interest can be simply added in where needed, providing a versatile tool. A demonstration of the models potential was
provided, looking at fluorescence based WGM refractive index sensing in polymer based materials over a common used
wavelength range (600-615nm). It was shown that for this parameter set, the resolution of the spectrometer was the
limiting factor on the performance of the sensor. Different parameter sets, i.e. other wavelength ranges, higher refractive
indices and larger resonators, the contributions from all the loss mechanisms will be different as so the optimal
combinations of size and material will change. Overall, this model provides a relatively easy method for the generation
and analysis of the WGM spectrum for any combination of resonator size and material over a given wavelength range,
and serves as an initial step in the process of selecting a resonator to be used for biosensing application.
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