The Regulation of the Sclerostin Gene and the

Catabolic Effects of Sclerostin Protein on Bone

A. K. Asiri R. Wijenayaka B.Sc (Biotechnology) B.Sc Hons (Bio and Nano-Materials)

Thesis by Publication submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

January, 2014

The Discipline of Orthopaedics and Trauma

School of Medicine

Faculty of Health Sciences

The University of Adelaide

South Australia

Australia

TABLE OF CONTENTS

Thesis a	Thesis abstract			vii
Declaration			ix	
Acknow	ledgem	ents		xi
Publicat	ions			xii
Publishe	ed abstra	acts an	d scientific communications	xiii
Previou	s public	ations	by the author	xvi
Prizes a	nd awar	ds		xvii
Abbrevi	ations			xviii
Chapte	r1 l	Literat	ture review	01
]	1.1 Bon	e tissu	e	02
]	1.2 Bon	e cells	and tissue remodelling	02
]	.2.1	Osteoclasts	04
]	.2.2	Osteoblasts	05
]	.2.3	Osteocytes	06
1.3 Role of the osteocytes			08	
	1	.3.1	Sensing mechanical loading	09
]	.3.2	Regulating ion homeostasis by acting as a endocrine organ	10
	1	.3.3	Synthesising the bone matrix	11
	1	.3.4	Initiating and regulating bone remodelling	12
1.4 Sclerostin protein and the SOST gene			14	
	1	.4.1	Mode of sclerostin action	21
			1.4.1.1 Sclerostin as an inhibitor of the canonical	
			Wnt signalling pathway	21
			1.4.1.2 Sclerostin may act as an inhibitor	

		of hMSC differentiation into osteoblasts	24
		1.4.1.3 Sclerostin may be capable of promoting	
		the apoptosis of osteoblasts and osteocytes	25
		1.4.1.4 Sclerostin may be an inhibitor of matrix	
		mineralisation by osteocytes	25
1	.4.2	Cellular targets of sclerostin	26
1	.4.3	Regulation of the SOST gene expression	26
		1.4.3.1 PTH	27
		1.4.3.2 Inflammatory mediators	27
		1.4.3.3 Oncostatin M	28
		1.4.3.4 TGF β1	28
		1.4.3.5 Hypoxia	29
		1.4.3.6 Cell death	29
		1.4.3.7 Mechanical strain	30
		1.4.3.8 Bone anti-resorptive and anabolic drugs	30
1	.4.4	Clinical significance of sclerostin	31
1.5 Research questions			33
1.6 Hypothesis			39
1.7 Aims	1.7 Aims		
1.8 Theoretical framework and methods			40
1	.8.1	Sclerostin regulation of osteoclastogenesis	40
1	.8.2	Sclerostin regulating the microenvironment around the	
		osteocyte lacunae (osteocytic osteolysis)	40
1	.8.3	Regulation of SOST by vitamin D, potentially working thro	ugh a
		vitamin D response element (VDRE) in the promoter	41

	1.9 Si	gnifican	ce of the research	41
	1.10 R	Referenc	es	42
Chapt	er 2	Sclero	stin stimulates osteocyte support of osteoclast activity	
		by a R	ANKL dependent pathway	61
	2.1 Ał	ostract		64
	2.2 Int	troductio	on	64
	2.3 M	aterials	and Methods	65
		2.3.1	Ethics statement	65
		2.3.2	Recombinant cytokines and antibodies	65
		2.3.3	Cells and culture media	65
		2.3.4	In situ immunofluorescence	65
		2.3.5	Preparation of total RNA and RT-PCR	65
		2.3.6	Gene expression experiments	65
		2.3.7	Osteoclastogenesis assays	65
		2.3.8	Caspase activity assays	66
		2.3.9	Assesment of nuclear morphology	66
		2.3.10	Statistical analysis	66
	2.4 Re	esults		66
		2.4.1	Effect of exogenous sclerostin on gene expression during	
			osteoblast differentiantion	66
		2.4.2 E	Effect of sclerostin on MLO-Y4 support of osteoclastogenesi	is67
		2.4.3 E	Effect of sclerostin on MLO-Y4 support of osteoclast activity	y 68
		2.4.4 E	Effect of rhSCL on MLO-Y4 apoptosis	68
	2.5 Di	scussion	1	68
	2.6 Acknowledgments70			

2.7 Au	uthor con	ntributions	71
2.8 Re	eference	s	71
Chapter 3	Sclero	stin regulates release of bone mineral by osteocytes by	
induction of	carboni	c anhydrase 2	73
3.1 Al	bstract		76
3.2 In	troductio	on	76
3.3 M	aterials a	and methods	77
	3.3.1	Ethics statement	77
	3.3.2	Recombinant cytokines and antibodies	77
	3.3.3	Cells and culture media	77
	3.3.4	Preparation of total RNA and RT-PCR	77
	3.3.5	Western blot analysis	78
	3.3.6	In situ immunofluorescence	78
	3.3.7	Measurement of intracellular and extracellular pH	78
	3.3.8	Measurement of calcium levels	78
	3.3.9	Calcein incorporation	78
	3.3.10	siRNA knockdown	78
	3.3.11	Measurement of ex vivo osteocyte lacuna size and CA2	
		expression	79
	3.3.12	SOST-transgenic mice	79
	3.3.13	Statistical analysis	79
3.4 Re	esults		79
	3.4.1	Effect of exogenous sclerostin on gene expression in osteo	cyte-
		like cells	79

		3.4.2	Effect of sclerostin on CA2 protein expression in osteocyte	e-like
			cells	79
		3.4.3	Intracellular and extracellular pH change in MLO-Y4 cells	5
			treated with rhSCL	80
		3.4.4	Effect of sclerostin on extracellular mineral release	80
		3.4.5	Effect of Car2 siRNA knockdown on MLO-Y4 cells	81
		3.4.6	Effect of sclerostin receptor knockdown	83
		3.4.7	Effect of sclerostin on osteocyte lacunar size	83
	3.5 Di	scussio	n	84
	3.6 Di	sclosure	es	86
	3.7 Ac	cknowle	edgments	86
	3.8 Re	eference	S	86
	3.9 Su	ppleme	ntary figure	89
Chap	ter 4	The h	uman SOST gene is 1α,25-dihydroxyvitamin D sensitive;	
		identi	fication of a putative vitamin D response element (VDRE	E)90
	4.1 Ał	ostract		94
	4.2 Int	troducti	on	95
	4.3 M	aterials	and methods	98
		4.3.1	Reagents and plasmids	98
		4.3.2	Bone tissue, cells and culture media	98
		4.3.3	Preparation of total RNA and RT-PCR	99
		4.3.4	Oligonucleotides and plasmid constructs	100
			4.3.4.1 Plasmids containing the minimum	
			predicted VDRE sequence	100
			4.3.4.2 Plasmids containing the native extended	

		SOST promoter	101
	4.3.5	Luciferase assays	103
	4.3.6	Electrophoretic mobility shift assays	103
	4.3.7	Ex vivo human and mouse bone culture	104
	4.3.8	Immunostaining and confocal microscopy	104
	4.3.9	Statistics	105
4.4	Result	ts	105
	4.4.1	The SOST gene is responsive to 1,25D treatment	105
	4.4.2	In silico analysis of the proximal SOST promoter	106
	4.4.3	Transient expression of the minimum VDRE	
		sequence in expression vectors	107
	4.4.4	Predicted SOST VDRE binds proteins from nuclear extract	cts 108
	4.4.5	Specificity of the SOST VDRE	108
	4.4.6	The predicted VDRE is critical for the response of the	
		native 6.3 kb SOST promoter to 1,25D	109
4.5	Discus	ssion	111
4.6	Ackno	owledgements	114
4.7	Refere	ences	115
4.8	Figure	es	122
Chapter 5	Concl	uding remarks	146
5.1	Concl	uding remarks	146
5.2	Refere	ences	153

THESIS ABSTRACT

Age and disease-related bone loss is a major health issue. Bone tissue is constantly remodelled throughout life in order to maintain a healthy skeleton and bone loss is caused by an imbalance in the remodelling process. Bone remodelling is a highly coordinated process between osteoclasts, osteoblasts and osteocytes, with bone targeted for renewal being resorbed by osteoclasts and the resorbed bone replaced by the activities of osteoblasts and osteocytes. During the synthesis of new bone organic matrix, osteoblasts become embedded and differentiate into osteocytes. Osteocytes were previously thought to be terminally differentiated, quiescent cells. However, a wealth of recent evidence suggests that osteocytes play important and dynamic roles.

Recently, the osteocyte expressed protein, sclerostin, was identified to be a major regulator of bone formation. Various pharmaceutical companies are currently in the process of developing therapies to neutralise sclerostin, in order to reverse its antianabolic effects on bone. In pre-clinical and clinical studies to date, neutralising sclerostin had bone anabolic effects, and although anti-catabolic effects were also observed, these were usually reported as incidental events. Stemming from observations made by our group of pro-catabolic stimuli up-regulating sclerostin expression, it was hypothesised that sclerostin may have a catabolic action in addition to its anti-anabolic actions. Subsequent work identified the pre-osteocyte/osteocyte as cellular targets of sclerostin, and gene microarray analyses of osteocyte-like cells treated with recombinant sclerostin, led to the discovery of two novel mechanisms, by which sclerostin may act in a catabolic manner. As presented in Chapter 2, the work undertaken for this thesis demonstrated that sclerostin promotes osteocyte support of osteoclast formation and activity, consistent with recent reports by other groups that suggest osteocytes play a central role in regulating the formation and activity of osteoclasts.

As presented in Chapter 3, sclerostin can also increase the expression by osteocytes of resorption-related molecules, in particular carbonic anhydrase 2. The importance of this observation is that acidification of the extracellular space by osteocytes could promote osteocytic release of mineral and increase of the osteocyte lacunar size, a process termed 'osteocytic osteolysis'. The results presented in Chapter 3 provide the first mechanistic evidence for this process.

As presented in Chapter 4, 1α ,25-dihydroxyvitamin D (1,25D) was also identified as a regulator of *SOST*/sclerostin expression and a putative vitamin D response element (VDRE) was shown to be present in the proximal 6.3 kb *SOST* promoter.

In summary, the novel work presented in this thesis expands our knowledge of the activity and regulation of sclerostin. Together, these findings suggest that a subset of pro-catabolic stimuli may induce sclerostin expression, which in turn may act to promote both osteoclastic and osteocytic removal of bone. This research has implications for the pharmacological inhibition of sclerostin, which is currently being pursued commercially. In embarking on such therapy, it is essential to understand the biology of sclerostin as completely as possible.

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution to Asiri Wijenayaka and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis as listed below resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, *via* the University's digital research repository, the library catalogue, the Australian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time

List of copyright holders

Wijenayaka, A.R., M. Kogawa, H.P. Lim, L.F. Bonewald, D.M. Findlay, and G.J. Atkins (2011). *Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway.* PLoS One. **6**(10): p. e25900. © 2011 Wijenayaka *et al.* Published by Public Library of Science. PLOS applies the Creative Commons

Attribution License (CCAL) to all works we publish. Under the CCAL, authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in PLOS journals, so long as the original authors and source are cited. No permission is required from the authors or the publishers.

Kogawa, M., A.R. Wijenayaka, R.T. Ormsby, G.P. Thomas, P.H. Anderson, L.F. Bonewald, D.M. Findlay, and G.J. Atkins (2013). *Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2.* Journal of Bone Mineral Research. **28**(12): p. 2436-48.

Published by John Wiley and Sons behalf of the American Society for Bone and Mineral Research.

Asiri R Wijenayaka

ACKNOWLEDGEMENTS

The completion of this thesis was indeed an intellectually fulfilling, as well as a personally rewarding experience. The sense of achievement I have would not have been possible if not for the wonderful people whose support helped me throughout this amazing journey.

First I would like to express my great appreciation to my Supervisors Associate Professor Gerald Atkins and Professor David Findlay for their guidance, wisdom and kind words of encouragement. I would like to thank members of the Bone Cell Biology Group at the University of Adelaide Centre for Orthopaedic and Trauma Research; Dr Masakazu Kogawa, Dr Nobuaki Ito, Dr Matt Prideaux, Ms Shelley Hay, Miss Renee Ormsby and Ms Katie Welldon for their help and support. Likewise I would also like to thank my fellow PhD students Dr Duminda Kumarasinghe, Dr Dongqing Yang and Dr Kamarul Khalid. I would also like to thank Associate Professor Paul Anderson and Dr Andrew Turner from the Endocrine Bone Research Group at the University of South Australia, and Mr Coung Pham, Mrs Kathy Fridakis and all the colleagues from Directorate of Chemical Pathology at SA Pathology.

I would like to thank Miss Nethmi Karunarathna for her support and love throughout my candidature. Finally, I would like to thank my loving parents Karunasena Wijenayaka and Asoka Wijenayaka as well as my brother Lahiru Wijenayaka. If not for your generosity, patience and support I would not have achieved my goals.

PUBLICATIONS

Wijenayaka, A.R., M. Kogawa, H.P. Lim, L.F. Bonewald, D.M. Findlay, and G.J. Atkins, *Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway*. PLoS One, 2011. **6**(10): p. e25900.

Published: October 4, 2011

Thomson ISI Impact Factor in 2012 3.720

61 citations as of 14th January 2014

Kogawa, M* and **A.R. Wijenayaka***, R.T. Ormsby, G.P. Thomas, P.H. Anderson, L.F. Bonewald, D.M. Findlay, and G.J. Atkins, *Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2*. J Bone Miner Res, 2013. **28**(12): p. 2436-48. *Equal first authors.

Published: November 19,2013

Thomson ISI Impact Factor in 2012 6.128

05 citations as of 14th January 2014

PUBLISHED ABSTRACTS AND SCIENTIFIC

COMMUNICATIONS

Asiri R. Wijenayaka, Kam Ying Kun, Prem Dwivedi, Masakazu Kogawa, Paul H. Anderson, Dongqing Yang, Renee Ormsby, David M. Findlay and Gerald J. Atkins (2010) The SOST gene encoding the osteocyte secreted bone protein sclerostin is responsive to 1α ,25(OH)₂ vitamin D₃. The University of Adelaide, Faculty of Health Sciences Postgraduate research expo. (Poster)

Asiri R. Wijenayaka, Masakazu Kogawa, Hui Peng Lim, Lynda F. Bonewald, David M. Findlay, Gerald J. Atkins (2011) Sclerostin induces osteocyte support of osteoclast formation and osteoclast activity. Australia New Zealand Bone and Mineral Society, Gold Coast, Queensland, Australia. (*Oral presentation*)

Asiri Wijenayaka, Masakazu Kogawa, Hui Peng Lim, Lynda F.Bonewald, David M.Findlay, Gerald J.Atkins (2011) *Sclerostin induces osteocyte support of osteoclast formation and osteoclast activity*. The University of Adelaide, Faculty of Health Sciences Postgraduate research expo. (*Poster*)

Asiri Wijenayaka, Masakazu Kogawa, Hui Peng Lim, Lynda F.Bonewald, David M.Findlay, Gerald J.Atkins (2011) *Sclerostin induces osteocyte support of osteoclast formation and osteoclast activity*. Australian Orthopaedic Association, SA Branch Meeting. Adelaide, Australia. (*Oral presentation*)

<u>Asiri R. Wijenayaka</u>, Masakazu Kogawa, David M. Findlay, Gerald J. Atkins (2012) *Sclerostin as a pro-osteoclastogenic 'cytokine'*. 7th Clare valley bone meeting, Clare Valley, South Australia. (Oral Presentation) <u>Asiri R. Wijenayaka</u> (2012) Sclerostin Stimulates Osteocyte Support of Osteoclast Activity by a RANKL-Dependent Pathway. School of Medicine Grand Round presentations, The University of Adelaide. Adelaide. (Oral Presentation)

Asiri Wijenayaka, (2012) Sclerostin induces osteocyte support of osteoclast formation and osteoclast activity. Australian Health and Medical Research Council annual meeting. Adelaide, Australia. (Oral presentation)

<u>Asiri Wijenayaka</u>, Masakazu Kogawa, Anak Dharmapatni, David Haynes, David M. Findlay, Gerald J. Atkins (2012) *Sclerostin mediates pro-osteoclastogenic effect through the LRP4 receptor on osteocytes*. Australia New Zealand Bone and Mineral Society, Perth, Western Australia. (*Poster*)

<u>Asiri Wijenayaka</u>, Masakazu Kogawa, Anak Dharmapatni, David Haynes, David M. Findlay, Gerald J. Atkins (2012) *Sclerostin mediates pro-osteoclastogenic effect through the LRP4 receptor on osteocytes*. The University of Adelaide, Faculty of Health Sciences Postgraduate research expo. (*Poster*)

<u>Asiri Wijenayaka</u>, (2013) 'Sclerostin' Bad to the Bone. Three minute thesis competition (3MT) The University of Adelaide. Adelaide, Australia. (Oral presentation)

Asiri R. Wijenayaka, Masakazu Kogawa, Lynda F. Bonewald, David M. Findlay, Gerald J. Atkins (2013) *Sclerostin Exerts a Coordinated Pro-osteoclastogenic Effect via its Action in Osteocytes*. Australia New Zealand Bone and Mineral Society, Melbourne, Victoria. (*Oral presentation*)

Asiri R. Wijenayaka, Masakazu Kogawa, Lynda F. Bonewald, David M. Findlay, Gerald J. Atkins (2013) Sclerostin has a pro-osteoclastogenic effect, working via autocrine and paracrine stimulation of osteocytes to express pro-osteoclastogenic mediators. American Society for Bone Mineral Research, Baltimore, Maryland, USA. (Poster)

Asiri R. Wijenayaka, Masakazu Kogawa, Lynda F. Bonewald, David M. Findlay, Gerald J. Atkins (2013) Sclerostin has a pro-osteoclastogenic effect, working via autocrine and paracrine stimulation of osteocytes to express pro-osteoclastogenic mediators. The University of Adelaide, Faculty of Health Sciences Postgraduate research expo. (Poster)

PREVIOUS PUBLICATIONS BY THE AUTHOR

Atkins GJ, Rowe PS, Lim HP, Welldon KJ, Ormsby R, **Wijenayaka AR**, Zelenchuk L, Evdokiou A, Findlay DM. (2011) *Sclerostin is a locally acting regulator of lateosteoblast/preosteocyte differentiation and regulates mineralization through a MEPE-ASARM-dependent mechanism.* J Bone Miner Res. PMID: 21312267.

Atkins GJ, Welldon KJ, **Wijenayaka AR**, Bonewald LF, Findlay DM. (2009) *Vitamin K promotes mineralization, osteoblast-to-osteocyte transition, and an anticatabolic phenotype by {gamma}-carboxylation-dependent and -independent mechanisms*. Am J Physiol Cell Physiol. PMID: 19675304

Vincent C, Findlay DM, Welldon KJ, **Wijenayaka AR**, Zheng TS, Haynes DR, Fazzalari NL, Evdokiou A, Atkins GJ. (2009) *Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts.* J Bone Miner Res. PMID: 19292615

Wijenayaka AK, Colby CB, Atkins GJ, Majewski P. (2009) *Biomimetic hydroxyapatite coating on glass coverslips for the assay of osteoclast activity in vitro*. J Mater Sci Mater Med. PMID: 19259788

PRIZES AND AWARDS

- 2010 Adelaide University International Postgraduate Research Scholarship (IPRS)
- 2011 Amgen ANZBMS Outstanding Abstract Award, Basic, presented at the Joint Meeting of the International Osteoporosis Foundation and the Australian New Zealand Bone and Mineral Society Gold Coast, QLD, September 2011.
- 2013 ANZBMS Roger Melick Young Investigator Award 2013, presented at the Annual Scientific Meeting of the Australian New Zealand Bone and Mineral Society, Melbourne, VIC, September 2013.
- 2013 ASBMR President's Poster Competition finalist at the Annual Meeting of the American Society for Bone and Mineral Research, Baltimore Convention Center, Baltimore, MD, USA, October 2013.

Abbreviations

1,25D	1α ,25-dihydroxyvitamin D ₃ (1,25D) / 1,25(OH) ₂ D
ACP5/Acp5	tartrate-resistant acid phosphatise
ANZBMS	Australian and New Zealand Bone and Mineral Society
APC	Adenomatous polyposis coli
ASBMR	American Society for Bone and Mineral Research
ATCC	American Type Culture Collection
ATP	Adenosine triphosphate
BMD	bone mineral density
BMPs	bone morphogenetic proteins
BMSCs	bone marrow stromal cells
BMU	basic multicellular unit
bp	base pairs
BSP-1	bone sialoprotein-1
CA2/Car2	carbonic anhydrase 2
CBP	cAMP response element-binding protein
ChIP	Chromatin Immunoprecipitation
CSF-1	colony stimulating factor 1
CTSK/Ctsk	cathepsin K
Cx43	connexin-43 ()
DAPI	4',6-diamidino-2-phenylindole
DKK1	Dickkopf-related protein 1
DMEM	Dulbecco's Modified Eagle Medium

DMP-1 dentin matrix acidic phosphoprotein 1

Dsh	disheveled
ECD	extracellular domain
ECRs	evolutionary conserved regions
EMSA	electrophoretic mobility shift assays
FCS	foetal calf serum
FGF23	fibroblast growth factor 23
FITC	fluorescein isothiocyanate
Fn14	factor-inducible gene 14
Fzd	frizzled
GFP	green fluorescence protein
GSK3b	glycogen synthase kinase 3 beta
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HIF1a	hypoxia-inducible factor 1-alpha
hMSC	human mesenchymal stem cell
hOCy	osteocyte-like cells
IGF	insulin-like growth factors
kb	kilo base
kDa	kilo dalton
LDLa	laminin-G-like domain
LRP	low density lipoprotein
MAPK	mitogen activated protein kinase
M-CSF	macrophage colony stimulating factor
MEPE	matrix extracellular phosphoglycoprotein
mRNA	messenger ribonucleic acid
NCBI	National Center for Biotechnology Information

NHBC	normal human bone derived cells
NHMRC	National Health and Medical Research Council of Australia
OCN	osteocalcin
ODF	osteoclast differentiation factor
OPGL	osteoprotegerin ligand
OPN	osteopontin
OPPG	osteoporosis pseudoglioma
OS	osteosarcoma
OSM	Oncostatin M
OSX/Osx	osterix
OVX	ovariectomized
PBMC	peripheral blood mononuclear cells
PBS	Phosphate-Buffered Saline
PGE ₂	prostaglandin E2
PHEX	phosphate-regulating gene with homologies to endopeptidases on the X-
	chromosome
pHi	intracellular pH
рНо	extracellular pH
PPi	pyrophosphate
PTH	parathyroid hormone
RANK	receptor activator of NF-KB
RANKL	receptor activator of NF-KB ligand
rh	recombinant human
rhSCL	recombinant human sclerostin
RT-PCR	Reverse transcription polymerase chain reaction

RUNX2	runt related transcription factor 2 ()
RXR	retinoid X receptor
SCL	sclerostin
sCTx	serum C-telopeptide of collagen
SDS-PAGE	Sodium dodecyl sulphate-Polyacrylamide gel electrophoresis
SIBLING	small integrin binding N-linked glycoprotein
siRNA	small interfering RNA
TBE buffer	Tris/Borate/EDTA Buffer
TCF/LEF	T cell factor/lymphoid enhancer binding factor
TGFβ	Transforming growth factor-beta
ТК	thymidine kinase
TNF	tumor necrosis factor alpha
TNSAP	tissue non-specific alkaline phosphatase
TRANCE	TNF-related activation-induced cytokine
TRAP	tartrate resistant acid phosphatase 5
TSS	transcription start site
TWEAK	TNF-like weak inducer of apoptosis
TZDs	thiazolidinediones
UHMWPE	ultra-high molecular weight polyethylene
VDR	vitamin D receptor
VDRE	vitamin D response element
Wnt	wingless integration
αΜΕΜ	α-Minimum Essential Media