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Completion of the fi rst reference human genomes, now 
nearly 15 years ago, was a mammoth achievement. 
Expectations were high and predictions of revolutionary 
eff ects on science, and medical practice in particular, 
justifi able. However, we had to wait another 5 years to 
read individual genomes aff ordably, and another 5 years 
before we started to use the information to address the 
genetics of rare human diseases. The past 5 years have 
been spectacular, with almost daily novel gene discoveries, 
not only for rare mendelian diseases but also for 
complex and multifactorial disorders. With the collected 
knowledge from the tens of thousands of individuals’ 
exomes and genomes available, and the thousands 
now being generated daily worldwide, we have come to 
realise the vastness of individually rare genetic variation 
in human genomes. We have learned much about the 
frequency of de-novo mutations and their relevance 
to disease. In particular, study of neurodevelopmental 
diseases such as intellectual disability,1 autism,2 epilepsy,3 
and schizophrenia4 has benefi ted, together with that of 

cancers.5 Several excellent how-to exome guides, most of 
which tackle the diffi  cult tasks of sorting pathogenic from 
non-pathogenic DNA and protein variants, using disease 
inheritance models or a de-novo mutation hypothesis 
combined with an appropriate selection of bioinformatics 
tools and laboratory validation methods, have been 
proposed.6–8 With these approaches, genome-scale 
sequencing technologies are fi nally entering medical 
practice more broadly as unifying tests for diagnosis of 
genetic disorders.

In The Lancet, Caroline Wright and colleagues9 report a 
robust and scalable diagnostic whole exome sequencing 
workfl ow, and its practical use when applied to data 
for 1133 patients collected as part of the Deciphering 
Developmental Disorders (DDD) study in the UK. The 
report outlines the processes taken from recruitment, 
data management, and processing, the choices made to 
do both automatic and manual variant fi ltering of around 
80 000 variants per individual, and the framework for 
reporting results. Great care has been taken at every 
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fi eld status is the gold standard, and visual fi eld sensitivity 
is also important to patients. Nevertheless, in recent years 
some researchers have stated that studies using visual 
fi eld endpoints take too long, and that it is too diffi  cult 
to assess the eff ects of new drugs or other treatments. 
Garway-Heath and colleagues clearly show that this view 
is pessimistic, and that, with frequent testing with widely 
available clinical instruments, important studies can be 
completed within a very reasonable time. I expect this to 
be the fi rst of a series of papers reporting UKGTS results; 
additional fi ndings will be reported in future, notably 
those that compare the results obtained with visual fi eld 
testing with those of ophthalmic image analysis. 
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stage to ensure that accurate diagnoses are achieved, 
incidental fi ndings minimised, and that there is a clear 
path for release of data relating to solved and unsolved 
cases for research purposes, with appropriate patient 
consent. An overall diagnostic yield of 27% was achieved. 
This involved manual review of genotype–phenotype 
correlations, taking advantage of a curated list of 
more than 1000 known developmental disease genes 
(Developmental Disorders Genotype-to-Phenotype 
database, DDG2P). The main focus was on de-novo 
(72%) and segregating variants. A major, ten-fold, 
reduction in the number of potentially causal variants 
needing examination in sporadic cases was achieved by 
inclusion of parents. This eff ectively reduced the number 
of potentially clinically relevant variants to one in most 
patients. The identifi cation of multiple clinically relevant 
fi ndings in 17 (2%) of 1133 cases is notable, because often 
the diagnostic odyssey stops with one major fi nding. The 
international community will be watching with interest 
to see whether and how the proportion of such cases 
with multiple clinically relevant variants will grow with 
growing numbers of DDD cases completed, regular re-
analyses, and continuing novel disease gene discovery.

For investigators looking to set up their own 
diagnostic exome service for heterogeneous groups 
of developmental disorders, take heed—a diagnostic 
yield of 27% and the need for manual review is what 
you might conservatively expect because it is mirrored 
in the independent work of Lee and colleagues,10 
achieving 26% (95% CI 23–29) with a similarly sized 
cohort (814) and using a similar approach.

The decision not to search actively for incidental 
fi ndings, even if in clinically relevant genes as 
recommended by the American College of Medical 
Genetics and Genomics,11 although at this stage 
justifi ed by the DDD team and explored further in their 
associated ethics study,12 will no doubt be a point of 
debate. The authors argue that although the analysis 
framework could be adapted to search for incidental 
fi ndings in selected genes, the additional resources 
and time needed would be signifi cant. Recent studies 
indicate that 1–2% of individuals sequenced will have 
an actionable incidental fi nding.13 The extra resources, 
expertise, and cost needed to detect and deal eff ectively 
with all medically actionable fi ndings from diagnostic 
exomes, incidental or not, appears too high now, but 
isn’t it what we should ultimately aim for?

The 1133 patients represent the tip of the iceberg 
for the DDD project, which looks to eventually enrol 
12 000 patients by April, 2015. A simple extrapolation 
predicts that at least 3240 families will be diagnosed 
from this study alone. It will not end there, however, 
because the fl ow from controlled public release of these 
data using the existing DECIPHER infrastructure will 
mean that variants of hitherto unknown function that 
are currently sitting in databases in many research and 
clinical diagnostic laboratories might suddenly have a 
disease to call home. For forward-thinking molecular 
and clinical geneticists looking for guidance on how 
to incorporate genomic technologies into standard 
practice, and for research laboratories looking for that 
elusive second family, this work and that to follow from 
the DDD study is a must read.
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