CHARACTERIZATION OF RAT RETINAL RESPONSES TO A CONVENTIONAL RETINAL LASER AND A NOVEL SHORT PULSE DURATION LASER

O'SAM SHIBEEB BSc MBBS

DISCIPLINE OF OPHTHALMOLOGY & VISUAL SCIENCES SCHOOL OF MEDICINE UNIVERSITY OF ADELAIDE

A THESIS SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF PHILOSOPHY (OPHTHALMOLOGY)

MAY 2014

ABSTRACT

Retinal laser photocoagulation is the process whereby laser energy is directed onto the retina and converted to heat within the melanosomes of the retinal pigment epithelium (RPE). Its principle clinical purposes are to reduce macula oedema, inhibit angiogenesis, and create chorioretinal scars. The exact biological mechanisms by which destruction of RPE/photoreceptors leads to a therapeutic resolution of oedema remain to be elucidated. However, it is well documented that laser photocoagulation causes thermal injury to the overlying photoreceptors. The desire to produce a clinically effective and safer retinal laser motivated the development of a novel 3nanosecond pulse duration laser, Retinal Regeneration Therapy (2RT; Ellex Pty. Ltd., Adelaide), which delivers approximately 0.2% of the energy per pulse compared to a conventional continuous wave photocoagulation laser. Recent laboratory and clinical research has demonstrated that the 2RT laser caused remarkably little destructive injury to the overlying photoreceptor layer, but still effectively ablated RPE cells. The retinal glial response to this laser had not been characterized. Furthermore, previously published research indicated that retinal lasers can stimulate endogenous production of neuronal survival factors, such as heat shock proteins and trophic factors, but the effect of 2RT on retinal trophic factors was unknown. Hence, this thesis was motivated by the notion that 2RT may be capable of inducing an endogenous neuroprotective response in the retina without causing collateral retinal damage.

The aims of Part I were: (1) to study the RPE/retinal damage profiles and neuronal effects of a CW laser and the short pulse duration 2RT laser; and (2) to characterize in detail the glial and inflammatory responses to the above retinal lasers.

The aims of Part II to were: (1) to examine whether multiple preconditioning pathways are activated by CW and 2RT lasers; (2) to examine whether preconditioning with either laser is neuroprotective in a rat model of retinal ganglion cell degeneration caused by calibrated optic nerve crush.

Pigmented Dark Agouti rats were used and treated with either a conventional, thermal, continuous wave (CW; 532nm, 100ms pulse duration) or a short-pulse (2RT; 532nm, Q-switched, 3ns pulse) laser. Settings were at visible threshold for the CW laser (12.7J/cm2/pulse) and at supra- and sub-visible threshold for the 2RT laser ("High", 2RT-H, 163mJ/cm2/pulse; "Low", 2RT-L,

109mJ/cm2/pulse). At various time points after lasering, rats were killed and analysed for histology, immunohistochemistry, RT-PCR and Western immunoblotting. In Part II, groups of rats were killed at 6 hours, 1 day and 1 week following the laser treatment. Samples were taken for immunohistochemistry, RT-PCR and Western immunoblotting. Rats were randomly assigned to one of three treatment groups: sham, CW or 2RT. For the CW and 2RT groups, 20 laser spots were applied to the mid-central retina of the right eye, while left eyes remained untreated. At 1 day or 7 days after lasering, rats in all three groups received ON crush in the right eye. The left ON remained intact. Rats were allowed to recover and killed 1 week or 2 weeks after optic nerve crush for quantification of RGCs in wholemounts.

The results of chapters 2 & 3, showed both lasers caused focal loss of RPE cells with no destruction of Bruch's Membrane; RPE cells were present at lesion sites again within 7 days of treatments. There were no obvious effects to horizontal, amacrine or ganglion cells, as defined by immunolabeling, but an activation of PKC α within bipolar cells was noted. There was little discernible damage to any cells other than the RPE with the 2RT-L treatment. The CW laser caused outer retinal lesions that were associated with photoreceptor death, astrocyte and Müller cell activation, and infiltration of macrophages and neutrophils. Furthermore, inflammatory cytokines, heat shock proteins, endogenous trophic factors, and matrix metalloproteinases were induced. In comparison, all of these changes were drastically attenuated when the 2RT laser was used, particularly at the sub-threshold setting.

In chapter 4, the results showed that both the CW and 2RT lasers induced local glial cell activation and induced localized upregulations of a number of well-documented (CNTF, FGF-2 Hsp27, pAKT) or putative (cFOS, ATF-3, IL-6) RGC survival factors. However, neither laser caused sustained increases in other factors associated with neuronal preconditioning, such as BDNF, Hsp70, IGF-1, bcl-2, and nitric oxide synthase. As regards neuroprotection, analysis of the data revealed that ON crush resulted in the loss of approximately 70% of Brn3a-labelled RGCs after 1 week.

In conclusion the CW laser photocoagulation caused death of RPE cells with associated damage to the outer retina but negligible impact on the inner retina. The 2RT laser, at the lower setting, was able to selectively kill RPE cells without causing collateral damage to photoreceptors.

It was demonstrated that the CW laser produced astrocyte and Müller cell activation, and infiltration of macrophages and neutrophils. Furthermore, inflammatory cytokines, heat shock proteins, endogenous trophic factors, and matrix metalloproteinases were induced. Similar changes were observed when the 2RT laser was used, but the effects were less striking. Furthermore, both CW and 2RT lasers activated multiple preconditioning pathways but the stimulation of these pathways was insufficient to augment RGC survival after optic nerve crush.

PUBLICATIONS RELEVANT TO THIS THESIS

- Wood JP, Shibeeb O, Plunkett M, Casson RJ, Chidlow G. Retinal Damage Profiles and Neuronal Effects of Laser Treatment: Comparison of a Conventional Photocoagulator and a Novel, 3Nanosecond Pulse Laser. *Invest Ophthalmol Vis Sci.* 2013; 28;54 (3):2305-18.
- Chidlow G, Shibeeb O, Plunkett M, Casson RJ, Wood JP. Glial Cell and Inflammatory Responses to Retinal Laser Treatment: Comparison of a Conventional Photocoagulator and a Novel, 3Nanosecond Pulse Laser, *Invest Ophthalmol Vis Sci.* 2013; 28;54 (3):2319-32.
- Shibeeb O, Wood J, Casson RJ, P Chidlow G. Effects of a Conventional Photocoagulator and a 3Nanosecond Pulse Laser on Preconditioning Responses and Retinal Ganglion Cell Survival after Optic Nerve Crush. *Exp Eye Res.* 2014;127:77-90.

PRESENTATIONS RELEVANT TO THIS THESIS

- Shibeeb O. Preconditioning with a Novel Retinal Laser (2RT) in Experimental Glaucoma. 2013 RANZCO SA Branch Conference; Clinical and Experimental Glaucoma in SA and Beyond, Barossa Valley, South Australia
- 2. Shibeeb O. Effects of Retinal Lasers on Retinal Ganglion Cell Survival After Optic Nerve Crush Presented at *ARVO 2012, Ft. Lauderdale, U.S.A.*
- Shibeeb O. Rat Retinal Responses to Treatment with a Photocoagulation Laser and a Nanosecond pulse Laser. *Clinical Experimental Ophthalmology*, 2011; 39 (Suppl 1). Presented at *RANZCO Scientific Congress 2011*, Canberra, Australia.

ACKNOWLEDGEMENT

Firstly, I would like to thank my supervisor Professor Robert Casson, for so generously accepting me as a Master student and for his constant encouragement and his friendship. It has been a great privilege to have been supervised by Professor Casson. I am grateful for his guidance and the support. His belief in my ability to undertake this work created the opportunity for me to undertake this study.

My greatest acknowledgment and appreciation must go to my associated supervisors Drs Glyn Chidlow and John Wood for their constant support, constantly discussed ideas, co-authored manuscripts, and friendship. In particular my gratitude is extended to Dr Chidlow for the countless hours of support and providing help on demand. In addition his constant encouragement and belief in me was paramount in my success, without which, the undertaking of this project would have been difficult to achieve.

Special thanks to Mark Daymon for his knowledge and expertise, technical assistant with my laboratory work, patience, good humour and friendship. Mark has been extremely helpful in running difficult experiments despite of his own commitments.

I would also like to acknowledge the Discipline of Ophthalmology and Visual Sciences and the South Australian Institute of Ophthalmology for allowing me to undertake this project. Special thanks to Julia Winnick for her assistance with administration and support.

I would like to thank Malcolm Plunket from Ellex Pty Ltd, (Ellex Adelaide) for partially funding this project, and for financial assistance to travel to the 2011 RANZCO Scientific Congress in Canberra and ARVO 2012 in Ft. Lauderdale to present the findings of this research.

Finally I would like to extend my thanks to my wife, Meriam for her constant support, encouragement, advice and much needed distraction.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University of Adelaide and where applicable, any partner institution responsible for the joint-award of this degree.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library Search and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

The experiments in this thesis were performed at the Ophthalmic Research Laboratory in the Hanson Institute, Adelaide.

MAY 2014

TABLE OF CONTENTS

CHAPTER 1	
GENERAL INDRODUCTION	1
1.1 Part I: RETINAL RESPONSE TO LASER THERAPY	2
1.1.1 BASIC ANATOMY OF THE VERTEBRATE RETINA	2
1.1.2 Glial Cells	5
1.1.3 The Retinal Pigment Epithelium	5
1.2 Retinal Blood Supply	7
1.3 BASIC FUNCTION OF THE VERTEBRATE RETINA	7
1.4 Retinal Laser Therapy	7
1.4.1 History of Retinal Laser Photocoagulation	7
1.4.2 The Effect of Laser on the Retina and Changing Roles in Clinical Practice	8
1.4.3 Novel Lasers	11
1.2 Part II: Retinal Response to Preconditioning to Retinal Lasers	14
1.2.1 Retnal Ganglion Cells	14
1.2.2 Retinal Ganglion Cell Death	14
1.2.3 Rat Models of Retinal Ganglion Cell Death	15
1.2.4 Retinal Ganglion Cell Trophic and Survival Factors	16
1.2.5 Neuroprotection of Retinal Ganglion Cells	18
1.2.6 Preconditioning and Neuroprotection	19
1.2.7 Retinal Lasers and Preconditioning	21
1.3 THESIS AIMS	24
1.3.1 PART I AIMS:	24
1.3.2 PART II AIMS:	24

CHAPTER 2	. 25
Photocoagulator and a Novel, 3-Nanosecond Pulse Laser	25
ABSTRACT	27
2.2 INTRODUCTION	28
2.3 MATERIALS AND METHODS	30
2.3.1 Lasers	30
2.3.2 Treatment of Animals	30
2.3.3 Tissue processing and histology	31
2.3.4 Immunohistochemistry	32
2.3.5 Quantification of cell-specific immunohistochemical labelling	33
2.3.6 Western immunoblotting of retinal extracts	.34
2.4 RESULTS	35
2.4.1 Effects on retinal morphology	35
2.4.2 Effects on RPE cells and Bruch's Membrane	36
2.5 DISCUSSION	47
2.5.1 Traditional, CW-applied laser photocoagulation	48
2.5.2 2RT laser irradiation	51
CHAPTER 3	. 54
Glial Cell and Inflammatory Responses to Retinal Laser: Treatment: Comparison of a Conventional Photocoagulator and a Novel, 3-Nanosecond Pulse Laser	54
ABSTRACT	56
3.2 INTRODUCTION	57
3.3 MATERIALS AND METHODS	59
3.3.1 Lasers	59
3.3.2 Treatment of Animals	59

3.3.3 Tissue processing and immunohistochemistry60	
3.3.4 Western Immunoblotting of Retinal Extracts	
3.3.5 Real-time RT-PCR	
3.4 RESULTS63	
3.4.1 Expression of intermediate filaments63	
3.4.3 Cell proliferation	
3.4.4 Expression of trophic factors67	
3.4.5 Expression of heat shock proteins	
3.4.6 Early activation of microglia and expression of pro-inflammatory cytokines72	
3.4.7 Infiltration of leukocytes75	
3.4.8 Microglia/macrophage responses at later time points	
3.5 DISCUSSION	
3.5.1 CW laser	
3.5.2 2RT laser	
CHAPTER 4	
Effects of a Conventional Photocoagulator and a 3-Nanosecond Pulse Laser on Preconditioning Responses	
and Retinal Ganglion Cell Survival after Optic Nerve Crush	
ABSTRACT	
4.2 Introduction91	
4.3 Materials and Methods93	
4.3.1 Lasers	
4.3.2 Treatment of Animals93	
4.3.3 Study Design94	
4.3.4 Tissue processing and immunohistochemistry95	
4.3.5 Western immunoblotting96	

4.3.6 Real-time RT-PCR	96
4.3.7 Quantification of RGCs in retinal wholemounts	97
4.4 RESULTS	98
4.4.1 Histology of laser lesions	98
4.4.2 Preconditioning responses to laser treatment: transcription factors	98
4.4.3 Preconditioning responses to laser treatment: pro-inflammatory mediators	100
4.4.4 Preconditioning responses to laser treatment: anti-inflammatory mediators	101
4.4.5 Preconditioning responses to laser treatment: heat shock proteins	102
4.4.6 Preconditioning responses to laser treatment: trophic factors	104
4.4.7 Preconditioning responses to laser treatment: nitric oxide and free radicals	105
4.4.8 Preconditioning responses to laser treatment: apoptosis-related proteins	107
4.4.9 Preconditioning responses to laser treatment: Akt signalling	107
4.4.10 Effect of laser treatment on RGC viability in healthy retinas	108
4.4.11 Effect of laser treatment on RGC survival after optic nerve crush: experiment 1	109
4.4.12 Effect of laser treatment on RGC survival after optic nerve crush: experiment 2	110
4.6 DISCUSSION	113
4.6.1 Effect of retinal lasers on preconditioning pathways	113
4.6.2 Effect of retinal lasers on RGC survival	115
Chapter 5	119
GENERAL DISCUSSION	119
5.1 General Discussion	120
5.1.1 Part I	120
5.1.2 Part II	123
5.2 General Conclusions	125
5.3 Study Limitation	126

5.4 Future Directions	126
6.1 Appendix	128
REREFENCES	138

TABLE OF FIGURES

Figure 1.1 Schematic drawing of the primate eye	3
Figure 1.2 Paraffin histological section from the posterior pole of a normal rat retina	4
Figure 2.1 Representative images of retinal histology following treatment with CW or 2RT laser	36
Figure 2.2 Representative images of the RPE at 1d following treatment with CW or 2RT laser	37
Figure 2.3 Representative images of the RPE cell layer at 3d following treatment with laser	38
Figure 2.4 Analysis of Bruch's Membrane following treatment with CW or 2RT laser	39
Figure 2.5 Analysis of RPE status 7 days after focal irradiation of retinas	39
Figure 2.6 TUNEL labelling and photoreceptor cell death following laser	41
Figure 2.7 Representative images of horizontal cells following treatment with CW or 2RT laser	43
Figure 2.8 Representative images of bipolar cells following treatment with CW or 2RT laser	44
Figure 2.9 Representative images of amacrine cells following treatment with CW or 2RT laser	46
Figure 2.10 Representative images of RGCs following treatment with CW or 2RT laser	47
Figure 2.11 Quantification of numbers of horizontal cells, bipolar cells, amacrine cells and RGCs	48
Figure 3.1 Induction of GFAP expression following treatment with CW	65
Figure 3.2 Induction of nestin expression following treatment with CW or 2RT-H	67
Figure 3.3. Representative images of PCNA	68
Figure 3.4 Expression of trophic factors following treatment with CW or 2RT-H laser	69
Figure 3.5 Representative images of α B-crystallin at 1d following treatment with CW	71
Figure 3.6 Up-regulation of Hsp-27 following treatment with CW or 2RT laser,	72
Figure 3.7 Representative images of Hsp-32 immunolabelling following treatment with CW or 2RT .	73
Figure 3.8 Representative images of early microglial activation following treatment with CW or 2RT	`74
Figure 3.9 Expression of proinflammatory mediators following treatment with CW or 2RT laser	76
Figure 3.10 Effect of CW and 2RT laser, used at high (2RT-H) and low (2RT-L)	78
Figure 3.11 Representative images of microglial activation and macrophage infiltration at later time .	80
Figure 4.1. Representative images of microglial activation and macrophage infiltration at later time	100
Figure 4.2 Upregulation of activating ATF-3 and c-fos after treatment with CW	101
Figure 4.3 Effect of CW or 2RT laser on expression of pro-inflammatory mediators	103
Figure 4.4 Effect of CW or 2RT laser on expression of anti-inflammatory mediators	104
Figure 4.5 Effect of CW or 2RT laser on expression of Hsps	105
Figure 4.6 Effect of CW or 2RT laser on expression of trophic factors	107
Figure 4.7 Responses of nitric oxide and NADPH oxidase following CW or 2RT laser treatment Figure 4.8 Effect of CW or 2RT laser on expression of anti-apoptotic mediators bcl-2 and bcl-xl	108 109
Figure 4.9 Effect of CW or 2RT laser on expression of the pAKT	110

Figure 4.10 Effect of CW or 2RT laser on RGC survival	. 111
Figure 4.11 Representative images of the effect of CW or 2RT laser on RGC survival	. 112
Figure 4.12. Effect of CW or 2RT laser on RGC survival, as delineated by quantification of Brn3a	. 113
Figure 4.13 Effect of CW laser on RGC survival, as delineated by quantification of NeuN neurons	. 114
Figure 6.1.S1 Expression of calbindin, PKCa, calretinin and Brn3a following treatment	. 130
Figure 6.2.S1 Representative GFAP and actin Western immunoblots	. 131
Figure 6.2.S2 Quantification of FGF-2 mRNA levels at 6h, 1d, 3d and 7d after laser	. 131
Figure 6.3.S3 Expression of osteopontin following treatment with CW or 2RT laser	. 132

LIST OF TABLES

TABLE 6.3.1 Antibodies used in the study.	
Table 6.3.S1 Primer Sequences for mRNAs Amplified by Real-Time RT-PCR	134

ABBREVIATIONS

ATP	Adenosine triphosphate
Bcl-2	B-cell lymphoma protein
BDNF	Brain-derived neurotrophic factor
cAMP	Adenosine-3'5' -cyclic monophosphate
cDNA	Complementary deoxyribonucleic acid
CNS	Central nervous system
CNTF	Ciliary neurotrophic factor
CW	Continuous wave
eNOS	Endothelial nitric oxide synthase
FGF-2	Basic fibroblast growth factor
GAPDH	Glyceraldehyde phosphate dehydrogenase
GCL	Ganglion cell layer
GDGF	Glial-derived neurotrophic factor
GFAP	glial fibrillary acidic protein
Hsps	Heat shock proteins
ILM	Inner limiting membrane
INL	Inner nuclear layer
(ICAM)-1	Intercellular adhesion molecule
IL-1β	Interleukin-1ß
iNOS	Inducible nitric oxide synthase
IOP	Intraocular pressure
IPC	Ischaemic preconditioning
IPL	Inner plexiform layer
JNK	JUN N-terminal kinase

MHC	Major histocompatability
MMP-9	Matrix metalloproteinase-9
Nd:YAG	Neodymium-doped yttrium aluminium garnet
NFL	Nerve fibre layer
NT-3	Neurotrophin-3
NT-4	Neurotrophin-4
NGF	Nerve growth factor
NMDA	N-mthyl-D-aspartate
NO	Nitric Oxide
NOS	Nitric Oxide Synthase
OLM	Outer limiting membrane
ONL	Outer nuclear layer
ON	Optic nerve
OPL	Outer plexiform layer
PBS	Phosphate buffered saline
РКСα	Protein kinase Ca
PCNA	Proliferating cell nuclear antigen
PCR	polymerase chain reaction
ROS	Reactive oxygen species
RPE	Retinal pigment epithelial
2RT-H	Retinal Rejuvenation Therapy-High
2RT- L	Retinal Rejuvenation Therapy-Low
RT-PCR	Reverse-transcription polymerisation chain reaction
RTK	Tyrosine kinase receptor
TF	Transcription factor
ΤΝΓα	Tumor necrosis factor-a
Trk	Protein tyrosine kinase