
ACCEPTED VERSION 

 

Jochen Deuerlein, Angus R. Simpson, and Idel Montalvo 
Preprocessing of water distribution systems to assess connectivity and solvability in 
the presence of flow control devices 
World Environmental and World Environmental And Water Resources Congress 2012: 
Crossing Boundaries, 2012 / Loucks, E.D. (ed./s), pp.3237-3247 
 
 
© 2012 American Society of Civil Engineers 

10.1061/9780784412312.325 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://hdl.handle.net/2440/90861 

PERMISSIONS 

http://dx.doi.org/10.1061/9780784479018.ch03 

p. 12 – Posting papers on the Internet 

Authors may post the final draft of their work on open, unrestricted Internet sites or 
deposit it in an institutional repository when the draft contains a link to the bibliographic 
record of the published version in the ASCE Civil Engineering Database. “Final draft” 
means the version submitted to ASCE after peer review and prior to copyediting or 
other ASCE production activities; it does not include the copyedited version, the page 
proof, or a PDF of the published version. 

 

 

4 May, 2015 

http://dx.doi.org/10.1061/9780784412312.325
http://hdl.handle.net/2440/90861
http://dx.doi.org/10.1061/9780784479018.ch03


Preprocessing of water distribution systems to assess connectivity and 

solvability in the presence of flow control devices 

 

Jochen Deuerlein
1
, Angus R. Simpson

2
 and Idel Montalvo

3
  

 

1
3S Consult GmbH, Albtalstr. 13, 76137 Karlsruhe, Germany; PH (+49) 721 33503-36; FAX (+49) 

721 33503-13; email: deuerlein@3sconsult.de 

2
School of Civil, Environmental and Mining Engineering, University of Adelaide, Adelaide SA 5005, 

Australia, PH (+61) 88303 5874; FAX (+61) 88303 4359; email: asimpson@civeng.adelaide.edu.au 

3
3S Consult GmbH, Albtalstr. 13, 76137 Karlsruhe, Germany; PH (+49) 721 13218-03; FAX (+49) 

721 33503-13; email: montalvo@3sconsult.de 

ABSTRACT 

Although mathematical modeling of the hydraulics and water quality of drinking 

water distribution networks is widely used in network planning and management 

existing solvers sometimes deliver no results or even wrong results if the 

connectivity of the system is not correctly maintained. In this paper two major causes 

for deficient network connectivity are considered.  

In the first case, the network graph consists of several maximal connected 

components where some of them have no node with a fixed head source. Those 

deficient networks can result from errors in the reference data system (GIS) or during 

data transfer. In the second case, all the links and nodes of the network graph are 

connected. However, some links representing control devices have upper and/or 

lower bounds for the flows. Similar problems as in the first case can be observed if 

the topology of the network is reduced by removing links with active flow control 

devices from the graph resulting in a disconnected system. The problem is that the 

identification of control devices that are active (when an inequality constraint is 

fulfilled be equality) at a certain time step is not straight forward and depends on the 

actual hydraulic state of the distribution system.  

In this paper two preprocessing steps of the hydraulic steady-state or extended period 

simulations are proposed to check the solvability of the mathematical problem with 

respect to the flow constraints. In the first step, the connectivity of the system is 

analyzed and network parts without a fixed head source are identified. In the second 

step, a Linear Program (LP) is formulated that includes the nodal continuity 

conditions plus additional inequality constraints that refer to the operation of the flow 

controlling devices. The optimal objective value of the LP indicates if for the original 

problem either a) a solution exists, b) does not exist or c) exists but has redundant 

control constraints. 



INTRODUCTION 

Mathematical modeling of the hydraulics and water quality of drinking water 

distribution networks is widely used in network planning and management. 

Nowadays, it is common that the network topology is derived from GIS-models and 

may include thousands of nodes and pipes. During model preparation a major issue is 

to check the connectivity of the system. Existing models deliver sometimes either no 

results or wrong results if the connectivity of the system is not correctly maintained.  

For calculating the hydraulic behavior of the system in most practical applications 

demand driven analysis is chosen because of its simplicity. In this case, the water 

demand withdrawals by consumers are used as fixed boundary conditions of the 

numerical model. The hydraulic steady-state in the network can be formulated as a 

nonlinear minimization problem of the system content. To solve this formulation, an 

iterative Newton-Raphson based algorithm can be used.  

However, in order to improve the efficiency modern distribution systems include an 

increasing number of control devices (remote or locally controlled). The objective is 

to improve controllability and efficiency of the system. The nature of these control 

devices is that they formulate upper and lower bounds for the flows and pressures at 

particular locations within the system. As a consequence the systems equations 

(including some non-linear equations) of the numerical model are extended by 

inequality constraints. The identification of control devices that are active (where the 

flow is at the set value) at a certain time step is not straight forward and depends on 

the actual hydraulic state of the distribution system.  

In this paper two preprocessing steps of the hydraulic steady-state or extended period 

simulation are proposed to check the solvability of the mathematical problem with 

respect to flow constraints. In the first step, the connectivity of the system is 

analyzed and network parts without a fixed head source are identified. In the second 

step, a Linear Program (LP) is formulated that includes the nodal continuity 

conditions plus additional inequality constraints that refer to the operation of the flow 

controlling devices. The optimal objective value of the LP indicates if for the original 

problem either a) a solution exists, b) does not exist or c) exists but has redundant 

control constraints. Mathematically, redundancy of active constraints results in the 

singularity of the system of equations. The new approach identifies those constraints 

a priori and avoids the problem of a singularity from occurring.  

An additional advantage of the proposed approach is that the flow distribution 

calculated by the LP can be used as starting point for the iterative Newton-Raphson 

method. Therefore an inner point of the polyhedral set that is defined by the flow 

constraints is calculated. The benefit from starting with such an interior point is that 

this point is not only primal but dual feasible as well. That means that all the 

Lagrangian multipliers of inactive inequality constraints are zero at the beginning of 

the iterative calculations. An example implementation of the new approach is shown 



in this paper that uses the two open source software packages EPANET (Version 

2.00.12, Rossman, 2000) and LpSolve (Berkelaar et al., 2004).  

IMPACT OF DISCONNECTED NETWORK MODELS IN EPANET 

The network in Figure 1 can be used as an example to consider the impact of 

disconnected models in the solution process. Note that there are only fixed head 

sources at nodes 3 and 4. Pipe 1 does not have a fixed head source. Do you think the 

model shown in Figure 1 will run successfully? 

 

Figure 1: Example system with disconnected pipe 

Well, it depends: EPANET is prepared to run two “separated networks” inside the 

same model, which is a great advantage in many scenarios but could be a source of 

trouble when the network contains disconnected subnets without a fixed head source 

and the user does not realize that this is occurring. The INP file of the model 

presented is shown in Figure 2 (without sections [TIMES] and [OPTIONS]). 

[JUNCTIONS] 

;ID               Elev         Demand       Pattern          

 1                0            0                             ; 

 2                0            0                             ; 

 5                0            -1                            ; 

[RESERVOIRS] 

;ID               Head         Pattern          

 4                16                            ; 

[TANKS] 

;ID    Elevation InitLevel  MinLevel  MaxLevel   Diameter   MinVol  VolCurve 

 3     0         10           0        20           50         0                 ; 

[PIPES] 

;ID  Node1 Node2 Length Diameter Roughness MinorLoss Status 

1       1       2       6       102.2000     0.1          0            Open   ; 

2      4       5       1000    200          0.01         0            Open   ; 

3       5       3       1000    200          0.01         0            Open   ; 

[COORDINATES] 

;Node             X-Coord          Y-Coord 

 1                177.97           6000.00          

 2                4177.97          6000.00          

 5                2364.41          4355.93          

 4                5838.98          5491.53          

 3                -1194.92         4949.15          

[END] 

Figure 2: EPANET INP-Input data of example system of Figure 1 

If you run the INP-File (see Figure 2) that defines the network in Figure 1 in 

EPANET you will get results without problems. Thus EPANET determined that 

there were two separated “networks” to be analyzed independently. If we check the 

results for the disconnected pipe (Pipe 1) we confirm that there is no flow in the pipe 

and the pressure at its extreme nodes is set to zero. Nevertheless a big surprise results 



if the diameter of the disconnected pipe is changed practically in an insignificant 

way; for example change the diameter from 102.2 mm (the current value) to 

102.20001 mm. From an engineering point of view it is clear that the number is 

practically the same. After running it in EPANET the following warning window 

appears. 

0:00:00: System ill-conditioned at node 2 

0:00:00 Reservoir 4 is closed 

0:00:00 Tank 3 is closed at 10.00 m 

System Error 110: cannot solve network hydraulic equations. 

In this simple network it is really easy to identify visually that the situation being 

modeled with a disconnected pipe is unsatisfactory. In a network with a significant 

amount of pipes it could be really difficult to identify fully all disconnected pipes 

using just EPANET. The situation could be even worse when a disconnected pipe is 

superposed or very close to other pipes of the network. We could receive a warning 

window message without having any idea of what is happening exactly and where 

disconnected pipes or disconnected network sections (if any) could be located. 

For the modeler the sensitivity of EPANET-results to very small changes in 

parameters is strange. A similar example can be reproduced making a change in the 

roughness of a disconnected pipe. This issue is really about the identification of the 

network topology rather than an issue with EPANET. Over time bigger and bigger 

models are analyzed using EPANET. Commonly network data is imported from a 

Geographic Information System, an AutoCad DXF file or some other resources. 

Tools for importing data are really useful but sometimes the importation process 

results in a model where some sections of the network (or just some pipes) are 

disconnected from the model.  

The demonstrated behavior of EPANET can be explained by a more detailed 

investigation of the system of equations as well as the way they are solved in 

EPANET. For solution of the network hydraulics the Global Gradient Method 

(Todini and Pilati, 1988) is used that solves the continuity and pipe head loss 

equations at each iteration. For networks that contain disconnected pipes without a 

fixed head node the system matrix is singular. From Linear Algebra it is known that 

a system of equations with a singular coefficient matrix has no solution (if the rank 

of the extended coefficient matrix is larger than the rank of the coefficient matrix) or 

alternatively has an infinite number of solutions. In our case there is an infinite 

number of pressure heads for the nodes of the disconnected pipe. In other words due 

to the missing pressure definition of the single pipe there exists no unique solution.  

However, coming back to the example of Figure 1 the description given above does 

not explain why the system is sometimes successfully solved and after very slight 

changes the solution process terminates with the error message “system ill-

conditioned …”. From the explanation in the previous paragraph it is clear that the 

system of equations is always singular independent of the choice of the diameter of 

the disconnected pipe (Pipe 1). Consequently, the expected outcome would be an 

error message for all conditions. The different behavior can be understood by a 

review of the EPANET source code at the point where possible singularity is 



checked. During the numeric factorization of the matrix (Cholesky factorization) it is 

checked to see if the matrix diagonal is smaller or equal zero. In this case the 

factorization is stopped and the calculation is terminated with the singularity error 

message.  

Now, if the diagonal value in the matrix is not exactly zero but a very small number, 

say for example 1e-10, the singularity is not detected since it is still larger than zero. 

Numerical calculations that include a number of multiplications and divisions are 

always subject to rounding errors. In our example it is a random process if the 

singularity of the system of equations is detected or not for this example of the 

disconnected pipe.  

The risk of random behavior of the solver results in: 

 Unexpected results: After successful calculation runs the program may stop 

with an ill-conditioned error message after minor changes in input data. 

 Impact on post-calculation analysis: Often the network models are used for 

additional purposes like asset management, risk analysis, etc. In case of 

additional disconnected pipes resulting from GIS-errors the outcome of those 

analyses may have a detrimental impact. 

NON-EXISTENCE OF FEASIBLE FLOW DISTRIBUTIONS FOR FLOW 

CONSTRAINT NETWORKS 

In a previous paper (Deuerlein et al., 2008) it was shown that under some 

configurations of flow control devices such as check valves and flow control valves 

hydraulic solvers like EPANET fail to converge or result in infeasible solutions. 

There a number of different outcomes including unreasonable negative pressures or 

flows that contradict the constraints associated with the control devices. These 

problems can be often explained by disconnected network parts that appear during 

the iterative process if the links representing active flow control devices are removed 

from the network graph leading to the same singularity of the system of equations as 

explained in the section above. In fact, the heuristics implemented in EPANET 

replace each active flow control device by a pair of nodal demands (the flow set 

value of the device) at the initial and end node of the link. 

PROPOSED MODIFICATIONS TO EPANET 

For detection of disconnected network parts as well as identification of infeasible 

flow constraints the EPANET source code has been modified in two steps. The first 

step includes a connectivity check at the beginning of a hydraulic calculation. In the 

second step, Linear Programming is used for pre-calculation of the existence of a 

feasible solution in the presence of flow controlling devices. 

Step I: 

The source code of EPANET already includes the function disconnected() for 

checking the connectivity of a network. However, in the existing version 2.00.12 this 

function is called only if a singularity in the system of equations is detected. As 



explained above for numerical reasons it is left to chance if disconnected parts that 

do not contradict the continuity equation are detected or not.  

Therefore we propose to run a connectivity check on at the discretion of the modeler 

or before any hydraulic calculations are made in order to make sure that the network 

is set up properly. In our test implementation a scenario file is written in the case that 

disconnected pipes and nodes are detected. The scenario file can be viewed and this 

helps identifying the disconnected parts. Due to the simplicity of the connectivity 

checking algorithm we are not going into detail but focus on the second step.  

Step II: 

Previously Deuerlein et al. (2008) showed that a feasible or even strictly feasible 

starting point for the iterative calculation can be found by solution of the following 

linear minimization problem. 
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where b1 and b2 are vectors of the set values of flow control devices with inequality 

constraints and equality constraints, respectively. The unknowns are the loop flows u 

and the parameter ξ whose value indicates if there exists a (strictly) feasible solution 

for the original system of linear inequalities or not. Matrix G and matrix H consist of 

the rows of the loop matrix C that correspond to links with inequality flow 

constraints and equality flow constraints, respectively. The difficulty with the 

formulation above is that the loops of the network have to be known. 

In this paper, the method for calculation of an interior point of the feasible set is 

applied to the Global Gradient formulation of the network equations that is 

implemented in EPANET version 2.00.12. It was shown by Todini and Pilati (1988) 

who referred to an earlier paper of Collins et al. (1978) that the solution of the 

hydraulic network equations is equivalent to the minimization of the so called 

content function (Collins, 1978): 
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where C(q) is the system content, m is the number of pipes, q is the vector of pipe 

flows, A is the (m × n) incidence matrix of pipes and demand nodes (number n) and 

Q is the n-vector of nodal demands. The equality constraints consist of the continuity 

equations of the demand nodes. More details on the formulation of the Content 

minimization as an equivalent problem for the calculation of the hydraulic steady-

state can be found in Collins et al. (1978), Todini and Pilati (1988) and Deuerlein et. 

al. (2009). In this paper we are focusing on the flow constraints only. 

Following the theorem of Lagrange, the constrained optimization problem can be 

transformed into an unconstrained one. The necessary conditions (Kuhn-Tucker 

conditions) are the well-known equations of the Global Gradient formulation where 

the Lagrangian Multipliers correspond to the unknown heads of the demand nodes.  

(2) 

 

(1) 

 



So far, the system consists of network elements having resistance only (that is pipes). 

For general networks including control devices like FCVs or check valves additional 

inequality constraints have to be considered. For each link that represents such a 

control device an inequality condition can be added to the constraints of the content 

minimization problem. The extended version of the Content minimization problem 

is: 

FCiii

T

R

Iibq

ts

C
m







,

..

)(min



QqA

q
q

 

IFC denotes the index set of links with inequality flow constraints,  1,1i  stands 

for lower bounds or upper bounds (value bi), respectively. In this case, the affine 

feasible set of the original problem is generalized to the polyhedral set described by 

the continuity equations and the lower and upper flow bounds imposed by the flow 

controlling devices.  

The calculation of the hydraulic steady-state is equivalent to the solution of the 

constrained convex nonlinear optimization problem. There is a rich literature on the 

solution of this type of problem. Interior point methods are known for example as 

barrier methods where the inequality constrained problem is transferred to an 

unconstrained one by adding a barrier function to the objective. Interior point 

methods require a starting point in the relative interior of the feasible set. Therefore 

as for Linear Programming, the term Phase I methods is used. The so called Phase I 

includes the calculation of an interior point. In our case this method shall be used for 

determining if a solution exists and for finding a good starting point for the iterative 

calculation.  

In hydraulic solvers like EPANET the iterative calculation starts with an arbitrary 

estimate of pipe flows - such as a velocity of 1 ft/s in all pipes. Inequality constraints 

are not considered at this time in EPANET and later treated by heuristic methods. 

For example, if the flow through a Check Valve is reversed during the iterative 

calculation the corresponding link is treated like a closed link in subsequent iteration 

steps. This method works well in most cases, however, in some cases it results in 

severe problems as explained above. Moreover it does not allow for a secure 

statement as to whether a feasible flow distribution exists at all. As a consequence it 

is highly desirable to know if the feasible set is empty or not. In addition it is an 

advantage to know as well if there exists an interior point that can be used as starting 

point for the iterative calculations. The main advantage of starting with such an 

interior point is that the state of the flow control devices is uniquely determined. All 

flow control devices are in an inactive state. This is important to avoid flipping of the 

status of flow control devices since the chosen values of the starting flow vector 

coincide with the valve states. In contrast, in the current heuristics it starts with the 

assumption of active state for all devices and the flows such that they could be in 

contradiction to the valve states.  

(3) 

 



The objective is to determine if such an interior point exists and where it does exist 

to calculate an arbitrary interior point as the starting flow distribution for the 

network. For that reason the following linear optimization problem (LP) is 

considered: 
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It can be shown that the LP defined by Eq. (4) is always strictly feasible (Boyd and 

Vandenberghe, 2004). Depending on the sign of the optimal value ξ
* 

it can be 

concluded if the original problem of minimizing the system content has a feasible 

solution or not. Three cases can be distinguished: 

ξ
* 
< 0: The polyhedral set defined by the continuity equation and the inequality 

constraints of flow control devices is non-empty. Thus, q
*
 is an interior point of the 

feasible set. This implies that all the control devices are in an inactive state.  

ξ
* 
> 0: The polyhedral set defined by the continuity equation and the inequality 

constraints is empty. Thus, there is no feasible solution to the original problem. 

ξ
* 
= 0: The polyhedral set defined by the continuity equation and the inequality 

constraints of flow control devices is non-empty but an interior point does not exist. 

In this case the corresponding flow vector q
*
 is on the boundary of the feasible set. 

This implies that there are flow control devices that are always in an active state. 

These flow control devices can be identified. If the inequality is fulfilled by equality 

for some values of the optimal flow vector q
*
 the corresponding device can never 

reach an inactive state. 

In a modified version of EPANET developed in this research the open source 

software LpSolve (Berkelaar et al., 2004) has been linked to the hydraulic solver. 

After the connectivity check as explained above and in advance of the iterative 

hydraulic calculations the LP of Eq. (4) is solved and the calculated flows are used as 

initial values for the subsequent iterative procedure. Depending on the optimal value 

of the LP the calculation terminates with an error message or continues with the 

execution of the GGA. 

EXAMPLE NETWORK 

For illustration the simple system in Figure 3 is considered. It consists of a single 

source R and a single demand node (N5, Q = 100 L/s). The demand node is 

connected to the source node by two alternative paths each of them including a Flow 

Control Valve (V1 and V2). The system is symmetrical in terms of pipe 

characteristics. It is easy to see that if the sum of set flows of the valves is below the 

demand Q a feasible solution does not exist. If the sum of set flows equals Q we get 

redundant constraints and the solution is non-unique in terms of the nodal heads (N2, 

N4 and N5).  

(4) 

 



 

Figure 3: Example system with two FCVs 

The LP for the example system is  
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Case 1: Feasible solution exists (QS,V1=50, QS,V2 =60, Q = 100):  

qP1 = qV1=qP3=45, qP2 = qV2=qP4=55, ξ=-5. 

Case 2: Feasible solution does not exist (QS,V1=50, QS,V2 =50, Q = 110):  

qP1 = qV1=qP3=qP2 = qV2=qP4=55, ξ=+5. 

Case 3: Feasible solution exists with redundant constraints (QS,V1=50, QS,V2 =50, Q = 

100): 

qP1 = qV1=qP3=qP2 = qV2=qP4=50, ξ=0. 

In case 1 the situation is clear. A feasible solution exists and the number of active 

valves depends on the properties of the pipes. The modified and the original version 

of EPANET deliver the same results.  

In case 2 where a feasible solution does not exist the results calculated by EPANET 

are wrong. The calculation is terminated with a warning message: “Negative 

pressures at time 0:00:00 hrs”. Both valve states are set to active and the flows are 

55.0 L/s exceeding the set value of 50.0 L/s. In the modified version the calculation 

stops after the LP run with the following error message: 

“ERROR 401: System infeasible at 0:00:00 hrs. Check flow constraints of links: 

V2: Upper bound (flow setting) of FCV 

V2:  Upper bound (flow setting) of FCV 

Contradictory flow constraints. Hydraulic calculation has not been carried out.” 

(5) 

 



In case 3 the active flow constraints together with the continuity equtions form a 

redundant system of linear equations. The hydraulic steady-state is non-unique in 

terms of nodal heads. This can be explained by means of the Kuhn-Tucker-

Conditions from Nonlinear Programming. A necessary condition for the existence of 

unique Lagrange Multiplieres is that a suitible constraint qualification (CQ) holds. 

One such a CQ is the Linear Constraint Qualification (LICQ). This LICQ is violated 

in case 3 since the continuity equations form a redundant system with the FCV 

constraints. Imagine that the system in Figure 2 includes no control devices. The 

network has one loop and the flows are dependent on the properties of the pipes. 

After one flow control device is added the flow of the entire system is defined if the 

valve is active. Each additional FCV either contradicts the existing flow leading to 

infeasible states or is redundant. Now imagine that both valves are active with 

feasible set flows (case 3), then the heads of the nodes in between the valves are not 

uniquely defined since each minor headloss at valve 1 has a unique corresponding 

value at valve 2. In this case EPANET sets one of the valves to an open state. In the 

modified version this behavior is not changed. However, a warning message is 

created since the choice of the active valve is left to chance and could lead to 

misinterpretations. 

CONCLUSION AND OUTLOOK 

Problems of existing hydraulic simulation engines like EPANET with networks 

containing disconnected subgraphs have been discussed. A two-step preliminary 

analysis for the identification of disconnected parts and the investigation of the 

polyhedral set described by the continuity equations and inequality flow constraints 

resulting from flow control devices has been presented. The second step is based on 

the solution of a Linear Programming Problem whose optimal value indicates if 

either a) a feasible solution exists or b) does not exist or c) the solution is non-unique 

in terms of nodal heads.  

For solution of the LP, the open source software LpSolve has been combined with 

EPANET. Its applicability was successfully tested for small example systems as well 

as large real world networks. However, the formulation of the LP including the 

continuity equations results in comparable long calculation times. The situation could 

be improved starting with a flow distribution of a spanning tree and formulation of 

the LP in the corresponding loop flows. One shortcoming of this method in 

comparison to the method proposed in this paper is that a more intensive topological 

analysis has to be carried out in advance that includes the identification of a spanning 

tree and the loops. Another approach could be to “help” the LP by providing a flow 

distribution that solves the continuity equations and can be calculated by the 

common EPANET solver within the first iteration. 
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