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 2 

Abstract 23 

A significant challenge facing the study of arbuscular mycorrhiza is the establishment 24 

of suitable non-mycorrhizal treatments that can be compared with mycorrhizal 25 

treatments. A number of options are available, including soil sterilisation (physical 26 

and chemical), comparison of constitutively mycorrhizal and non-mycorrhizal plant 27 

species, comparison of plants grown in soils with different inoculum potential, and the 28 

comparison of mycorrhiza-defective mutant genotypes with their mycorrhizal wild-29 

type progenitors. Each option has its inherent advantages and limitations. Here, the 30 

potential to use mycorrhiza-defective mutant and wild-type genotype plant pairs as 31 

tools to study the functioning of mycorrhiza is reviewed. The emphasis of this review 32 

is placed on non-legume plant species, as mycorrhiza-defective plant genotypes in 33 

legumes have recently been extensively reviewed. It is concluded that non-legume 34 

mycorrhiza-defective mutant and wild-type pairs are useful tools in the study of 35 

mycorrhiza. However, the mutant genotypes should be well characterised and, ideally, 36 

meet a number of key criteria. The generation of more mycorrhiza-defective mutant 37 

genotypes in agronomically important plant species would be of benefit, as would be 38 

more research using these genotype pairs, especially under field conditions. 39 

 40 

Keywords: Arbuscular mycorrhiza, mycorrhiza-defective mutant genotype, reduced 41 

mycorrhizal colonisation (rmc), Solanum lycopersicum (tomato), Micro-Tom. 42 

  43 
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Introduction 44 

Arbuscular mycorrhiza are associations formed between the majority (80%) of 45 

terrestrial plant species, and arbuscular mycorrhizal (AM) fungi in the soil (Smith and 46 

Read 2008). The formation of mycorrhiza can benefit plants through enhanced 47 

acquisition of nutrients such as phosphorus (P), nitrogen, (N) and zinc (Zn) 48 

(Cavagnaro 2008; Clark and Zeto 2000; Gyaneshwar et al. 2002; Marschner and Dell 49 

1994; Rillig 2004a; Smith and Read 2008). In addition to their beneficial effects on 50 

plant nutrition, mycorrhiza provide other ecosystem services: for example, 51 

improvement of soil structure (Miller and Jastrow 1990; Rillig 2004b; Rillig and 52 

Mummey 2006; Tisdall 1991; Tisdall and Oades 1980), reduction of soil nutrient 53 

losses through leaching (Asghari and Cavagnaro 2011; Asghari and Cavagnaro 2012; 54 

Asghari et al. 2005; Bender et al. 2015; Bender and van der Heijden 2015; van der 55 

Heijden 2010) and the suppression of weeds (Rinaudo et al. 2010; Veiga et al. 2011), 56 

improvement of plant acquisition of nutrients from compost (Cavagnaro 2014; 57 

Cavagnaro 2015), as well as other benefits in the context of a changing climate and 58 

increased abiotic stress (Smith et al. 2010). Consequently, mycorrhiza have an 59 

important role in influencing plant communities, ecosystem productivity, and 60 

potentially agricultural productivity (Hartnett and Wilson 1999; O'Connor et al. 2002; 61 

van der Heijden et al. 1998a; van der Heijden et al. 1998b; Wagg et al. 2011). 62 

In mycorrhizal legume species, where plants can be colonised by mycorrhizal 63 

fungi and nodulating bacteria simultaneously, common signalling pathways for the 64 

formation of mycorrhizal and rhizobial associations have been well studied (Hirsch 65 

and Kapulnik 1998; Horváth et al. 2011; Parniske 2008). This work has resulted in the 66 

identification of numerous genotypes defective for AM colonisation (referred to as a 67 

‘mycorrhiza-defective mutants’ hereafter) in model legume species. While the present 68 
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review focuses on non-legume mycorrhiza-defective mutant genotypes, it is important 69 

to mention that much of the research on the genetic basis of the AM symbiosis has 70 

been conducted using legume mutants (Ané et al. 2004; Endre et al. 2002; Imaizumi-71 

Anraku et al. 2005; Lévy et al. 2004; Stracke et al. 2002), and thus they have been 72 

invaluable to the study of the AM symbiosis. For example, a symbiotic ‘toolkit’ has 73 

been collated using model legume species, containing 25 molecular components that 74 

work in concert to control AM colonisation (Delaux et al. 2013; Table 1). This 75 

symbiotic ‘toolkit’ provides useful information for developing mutant genotypes in 76 

non-legume plant species by looking for orthologs of genes in non-legumes that have 77 

a known function in AM symbiosis. 78 

The advantage of using non-legume mycorrhiza-defective mutant genotypes is 79 

that they do not form associations with nodulating bacteria, thereby avoiding 80 

complications of multi-trophic interactions (Barker et al. 1998; Cavagnaro et al. 81 

2004a). As well as being important tools for investigating the molecular basis of AM 82 

colonisation (Barker and Larkan 2002), the mutant and wild-type pairs are also useful 83 

for studying the functioning of mycorrhiza because it is possible to compare 84 

mycorrhizal and non-mycorrhizal plants in native soil without any other experimental 85 

manipulation or intervention.   86 

The intention of this review is to explore the potential and advantages of using 87 

pairs of mycorrhiza-defective mutants (as non-mycorrhizal controls) and 88 

corresponding wild-type genotypes to study the role of mycorrhiza in various aspects 89 

of plant and soil ecology, with the aim to stimulate more work using such genotype 90 

pairs. In this context, various alternative methods for establishing non-mycorrhizal 91 

controls are summarised, before describing different non-legume plant species that 92 

have mycorrhiza-defective mutant genotypes characterised and the nature of the 93 
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research they are used for. Emphasis is placed on non-legume mycorrhiza-defective 94 

mutants as legume mycorrhiza-defective mutants have been reviewed in detail 95 

previously (see Barker et al. 2002; Marsh and Schultze 2001; Paszkowski 2006). The 96 

review concludes with a brief discussion of research activities that could benefit from 97 

the use of mycorrhiza-defective mutant and wild-type pairs of non-legumes. 98 

 99 

Non-mycorrhizal treatments in physiological and ecological studies 100 

Most information on the functioning of mycorrhiza has come from studies in which 101 

plants colonised by AM fungi are compared to those that are not colonised by AM 102 

fungi (Rillig et al. 2008; Smith and Smith 1981b). However, there is no universally 103 

accepted method for establishing treatments in which AM fungi are absent but the 104 

remainder of the soil biota are present. This is especially challenging under field 105 

conditions, where the elimination of a single group of soil biota is extremely difficult 106 

(Carey et al. 1992; West et al. 1993). The various techniques used in an attempt to 107 

overcome this challenge do have limitations, but in many cases they are the only 108 

option available, and are therefore most appropriate. 109 

The most widely used method for establishing non-mycorrhizal control 110 

treatments is that of modifying the soil via soil fumigation, disinfection or sterilisation 111 

to inactivate the AM fungal propagules (Endlweber and Scheu 2006; Koide and Li 112 

1989; Smith and Smith 1981a; Smith and Smith 1981b). While these methods 113 

effectively suppress viable AM fungi, they also adversely affect or eliminate other 114 

members of the soil biota. Consequently, such soil manipulation approaches introduce 115 

non-target effects into experiments, which may be potentially confounding (Koide 116 

and Li 1989; Rillig 2004a) and should be taken into account when interpreting results.  117 
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Using a mutant approach to control AM development, by comparing a 118 

mycorrhiza-defective mutant plant genotype to its mycorrhizal wild-type counterpart, 119 

avoids the need to sterilise or disinfect soil, or compare different plant species (Rillig 120 

et al. 2008). A number of mycorrhiza-defective mutant and wild-type genotype pairs 121 

have been described, both in legume and non-legume plant species (see Table 1). The 122 

present review focuses on non-legume mycorrhiza-defective mutants since the use of 123 

legume mutants to compare interactions in mycorrhizal and rhizobial symbioses has 124 

been amply reviewed previously (see Barker et al. 2002; Marsh and Schultze 2001; 125 

Paszkowski 2006; Shtark et al. 2010; Stacey et al. 2006).  126 

 127 

Generation and screening of mycorrhiza-defective mutants 128 

Mycorrhiza-defective mutants can be generated in a number of ways, including via 129 

fast neutron bombardment (Li et al. 2001) and ethyl methanesulfonate (EMS) 130 

generally used to generate mutant plant genotypes (Engvild 1987; Froese-Gertzen et 131 

al. 1963; Koornneeff et al. 1982). Whatever the method used, M2 generation mutants 132 

are screened in the mutagenised populations for non-mycorrhizal phenotypes by 133 

growing the entire population of plants in soil containing AM fungal inoculum, 134 

together with the wild-type genotype, in order to compare their AM colonisation 135 

phenotype. Potential mycorrhiza-defective mutant genotypes are assessed at the M3 136 

generation and later (up to M9 in David-Schwartz et al. (2001) to ensure that a stable 137 

non-mycorrhizal phenotype persists. Paszkowski et al. (2006) screened for 138 

mycorrhiza-defective mutant genotypes in maize (Zea mays) in a novel manner. 139 

Maize roots that are colonised by AM fungi accumulate yellow pigment, which can be 140 

detected macroscopically (Klingner et al. 1995). Potential mycorrhiza-defective 141 

mutant genotypes from a Mutator-mutagenised population of maize were grown in 142 
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soil inoculated with G. mosseae. Plants with roots that displayed altered intensity or 143 

distribution of yellow pigmentation relative to the wild-type genotype, underwent 144 

further microscopic visual screening, ultimately revealing several non-mycorrhizal 145 

mutant maize plants. 146 

The fast neutron bombardment method is a classical reverse genetics 147 

technique (Li et al. 2001). In consequence, the gene sequence(s) controlling 148 

mycorrhizal colonisation is not known until further research is undertaken. Both map-149 

based sequencing and transcriptomic analyses have been used to identify gene 150 

sequences that had been disrupted using this approach in mycorrhiza-defective plant 151 

mutants (see below). Creation of fast neutron mutagenised seed libraries, and their 152 

subsequent screening for desired phenotypes, is a labour-intensive, albeit effective, 153 

method for generating and identifying mycorrhiza-defective mutant genotypes.  154 

 There are a number of desirable phenotypes that need to be considered when 155 

identifying potential mycorrhiza-defective mutant genotypes, and suitable criteria 156 

have been summarised by Rillig et al. (2008) as follows: (1) a non-mycorrhizal 157 

genotype should not, while the mycorrhizal genotype should, be colonised by AM 158 

fungi in the presence of a full suite of soil biota, and (2) the mutant and wild-type 159 

genotype pair should have matched growth properties, and similar soil microbial 160 

communities, when grown in a soil where AM fungi are absent. With these criteria in 161 

mind, currently reported legume mutant genotypes are first briefly listed (see Marsh 162 

and Schultze (2001) for details), and non-legume mutant genotypes are reviewed in 163 

more detail, including their method of mutagenesis, colonisation phenotype (where 164 

relevant), and use in research.  165 

 166 

Currently described mycorrhiza-defective mutant genotypes  167 
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A number of mycorrhiza-defective mutant and wild-type genotype pairs, in both 168 

legume and non-legume species are available, although many more have been 169 

characterised in legumes. In legumes, mycorrhiza-defective mutants obtained using 170 

different mutagenic approaches have been identified in several plant species including 171 

pea (Pisum sativum) and fababean (Vicia faba) (Duc et al. 1989), lucerne (M. sativa) 172 

(Bradbury et al. 1991), barrel medic (Medicago truncatula) (Sagan et al. 1995), bean 173 

(Phaseolus vulgaris) (Shirtliffe and Vessey 1996), and Lotus japonicus (Senoo et al. 174 

2000), but these are not the focus of this review. In terms of non-legume species, there 175 

are currently reports of mycorrhiza-defective mutant and wild-type genotype pairs in 176 

tomato (Solanum lycopersicum) (Barker et al. 1998; David-Schwartz et al. 2001; 177 

David-Schwartz et al. 2003, Kapulnik and Bonfante, unpublished), maize 178 

(Paszkowski et al. 2006), rice (Oryza sativa) and petunia (Petunia hybrid) (Chen et al. 179 

2007; Chen et al. 2008; Gutjahr et al. 2008; Reddy et al. 2007) (see Table 1).  180 

 181 

Loss-of-function mycorrhiza-defective mutant genotypes 182 

In addition to the identification and characterisation of mutant genotypes that cannot 183 

be colonised by AM fungi, mutants that are defective in an aspect of mycorrhizal 184 

functioning have also been characterised. A mutant in Medicago truncatula that is 185 

defective in the gene encoding for the mycorrhiza-induced phosphate transporter, 186 

MtPT4, and affected in colonisation by AM fungi (Javot et al. 2007), has been used in 187 

a number of studies (Grønlund et al. 2013; Javot et al. 2011, Watts-Williams et al., 188 

unpublished). In rice (Oryza sativa) and Chinese milk vetch (Astragalus sinicus), 189 

similar mutants have been characterised for the genes OsPT11 and AsPT4, 190 

respectively, orthologues of MtPT4 (Xie et al. 2013; Yang et al. 2012). Isotope tracer 191 

studies, used in conjunction with the MtPT4 and OsPT11 mutants, confirmed that the 192 
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mycorrhizal pathway of P uptake had been successfully shut down (Yang et al. 2012, 193 

Watts-Williams et al., unpublished). Future work using these mutants, and work on 194 

developing other loss-of-function mutants in mycorrhiza-induced nutrient transporter 195 

genes (including nitrate and ammonium transporters) will contribute considerably to 196 

the understanding of plant-AM fungus nutrient relations. 197 

 198 

Mycorrhiza-defective tomato mutants 199 

76R and rmc 200 

The mycorrhiza-defective tomato mutant rmc (reduced mycorrhizal colonisation) was 201 

first identified and described by Barker et al. (1998), and it has since been used 202 

widely by researchers, alongside its wild-type progenitor 76R, in a number of field 203 

and glasshouse studies covering many aspects of soil and plant ecology. Field studies 204 

have been undertaken on sites in Australia and the United States, and glasshouse 205 

studies have used a range of AM fungal species and soils containing native AM 206 

fungal communities (from Europe, Australia and the United States).  207 

The degree to which the 76R and rmc genotypes are colonised, and the 208 

colonisation phenotypes they express, is highly influenced by fungal identity (Gao et 209 

al. 2001). Consequently, a number of different colonisation phenotypes have been 210 

described (see Gao et al. 2001 for photos of colonisaiton phenotypes). Before 211 

discussing these phenotypes, it is important to note that there has recently been a 212 

major revision of the nomenclature of AM fungi (Krüger et al. 2012; Redecker et al. 213 

2013). In this review, for the sake of clarity, the names of the AM fungi are used as in 214 

the original publications; however, the revised species names are also provided, for 215 

ease of comparison with future work.  216 
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Several species of AM fungi that colonise the wild-type 76R genotype 217 

normally are unable to colonise the rmc genotype, giving the Pen
-
 phenotype: 218 

Rhizophagus irregularis (formerly known as Glomus intraradices Schenck and Smith 219 

[DAOM 181602]), G. fasciculatum [Thaxter] Gerd. & Trappe emend. Walker & 220 

Koske [LPA7], and G. etunicatum Becker and Gerdemann [UT316 A-2]) (Gao et al. 221 

2001; Manjarrez et al. 2008). The rmc genotype displays the Coi
-
 phenotype with 222 

other species of AM fungi which can penetrate the root epidermal cells but cannot 223 

colonise cortical cells (Scutellospora calospora [Nicolson & Gerdemann] Walker & 224 

Sanders [WUM 12(2)], Gigaspora margarita Becker and Hall, G. coronatum 225 

Giovannetti [WUM16], formerly known as G. ‘City Beach’, and G. mosseae 226 

[Nicholson & Gerdemann] Gerdemann and Trappe [NBR4-1]) (Gao et al. 2001; 227 

Manjarrez et al. 2008). For S. calospora, the AM fungal symbiosis can be functional 228 

(in terms of C transfer from plant to fungi) but colonisation is of an intermediate 229 

morphology, and is restricted to root epidermal cells (Gao et al. 2001; Manjarrez et al. 230 

2010; Manjarrez et al. 2008; Poulsen et al. 2005). Interestingly, for 231 

G. intraradices Schenck and Smith WFVAM23 (referred to 232 

as G. versiforme [Karsten] Berch in (Gao et al. 2001), see (Gao et al. 2006)), full, 233 

functional mycorrhizal development (Myc
+
) has been shown to occur in rmc roots, 234 

although the rate of colonisation is much slower than in 76R roots (Gao et al. 2001; 235 

Manjarrez et al. 2008; Poulsen et al. 2005). 236 

 Recently, a meta-analysis was conducted on 22 published studies that have 237 

compared the 76R and rmc genotype pair in terms of growth and tissue nutrient 238 

concentrations (Watts-Williams and Cavagnaro 2014). Tissue P concentrations were 239 

generally higher (often significantly so) in the 76R genotype than the rmc genotype, 240 

in both root and shoot tissue, in soils with low and high P concentrations. A similar 241 
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trend was recorded for tissue copper and sulphur concentrations, with concentrations 242 

in the 76R plants higher than that in rmc plants. Furthermore, the meta-analysis 243 

confirmed that the colonisation phenotype displayed by the AM fungi had a 244 

significant influence on the extent to which roots were colonised. The results of the 245 

meta-analysis also highlighted that there was no substantial mycorrhizal growth 246 

response in either of the two tomato genotypes. It is important to note that, with 247 

respect to the criteria for assessing suitable mycorrhiza-defective mutant and wild-248 

type pairs by Rillig et al. (2008), the 76R/rmc pair are matched in terms of growth in 249 

the absence of AM fungi in all studies (Cavagnaro et al. 2004a; Facelli et al. 2010; 250 

Poulsen et al. 2005) except one (Marschner and Timonen 2005).  251 

The precise genome location of the Rmc locus has been identified and found to 252 

include a close match to the CYCLOPS/IPD3 gene (Larkan et al. 2013). This gene is 253 

essential for intracellular regulation of both rhizobial and mycorrhizal symbioses in 254 

legumes (Larkan et al. 2013). So far, nearly all cloned legume genes required for 255 

nodulation and AM colonisation have their putative orthologs in non-legume plants 256 

(Zhu et al. 2006). This is because the two symbioses share some signalling pathways 257 

(Zhu et al. 2006), suggesting that the more recent symbiosis between nodulating 258 

bacteria and plants may have evolved from the ancient symbiosis between AM fungi 259 

and plants (Doyle 1998; Parniske 2008; Wang et al. 2010). Further identification of 260 

the gene sequences associated with the Rmc locus will be useful information for past 261 

and future work using the rmc mutant (Larkan et al. 2013). 262 

The 76R and rmc genotypes continue to be valuable for numerous studies 263 

focusing on different aspects of plant nutrition (Cavagnaro et al. 2010; Cavagnaro et 264 

al. 2007b; Poulsen et al. 2005; Watts-Williams and Cavagnaro 2012; Watts-Williams 265 

et al. 2013; Watts-Williams et al. 2015; Watts-Williams et al. 2014), plant 266 
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competition (Cavagnaro et al. 2004a; Facelli et al. 2010; Neumann and George 2005), 267 

mycorrhizal formation and colonisation phenotypes (Cavagnaro et al. 2004b; Gao et 268 

al. 2001; Manjarrez et al. 2010; Manjarrez et al. 2008; Manjarrez et al. 2009), soil 269 

ecology (Cavagnaro et al. 2012; Cavagnaro et al. 2007a; Cavagnaro et al. 2006; 270 

Hallett et al. 2009; Marschner and Timonen 2005), soil greenhouse gas emissions 271 

(Cavagnaro et al. 2012; Cavagnaro et al. 2008; Lazcano et al. 2014), and plant 272 

genetics (Barker et al. 2005; Gao et al. 2006; Larkan et al. 2007; Ruzicka et al. 2013; 273 

Ruzicka et al. 2012). 274 

Micro-Tom mutants 275 

Micro-Tom, which is a model tomato genotype that has been used extensively in 276 

genetic studies because of its small size and rapid life cycle (Carvalho et al. 2011; 277 

Meissner et al. 1997), has also been used to create three mycorrhiza-defective mutant 278 

genotypes (David-Schwartz et al. 2001; David-Schwartz et al. 2003). The mutants 279 

M20 and M161 were obtained by fast-neutron bombardment mutagenesis, whilst the 280 

BC1 mutant is an F2 segregant of the cross between wild-type and M161 genotypes. 281 

All mycorrhiza-defective mutant genotypes of the Micro-Tom variety are pre-282 

mycorrhizal infection (pmi) mutants. Specifically, the M161 mutant displayed the 283 

Myc
-
 phenotype, and was unable to form mycorrhiza when grown in soil inoculated 284 

with G. intraradices spores (David-Schwartz et al. 2001). However, a low level of 285 

AM colonisation (vesicular and arbuscular) occurred when ‘whole’ inoculum (spores, 286 

root segments, external hyphae) was applied to the soil, or when M161 was grown in 287 

a field soil (Rillig et al. 2008). When the M161 mutant was grown in the presence of 288 

its AM-colonised wild-type progenitor, arbuscules, vesicles and internal hyphae 289 

developed in roots at a rate similar to that of the wild-type. Similarly, the M20 mutant 290 

displayed the Myc
-
 colonisation phenotype, and was able to resist AM fungal 291 
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colonisation in the presence of spores or (dead) pieces of mycorrhizal root, but was 292 

not resistant to colonisation in the presence of a live mycorrhizal wild-type progenitor 293 

plant (David-Schwartz et al. 2003). A third Micro-Tom mutant (BC1) has been 294 

identified, which is highly resistant to AM fungal colonisation when grown in field 295 

soil (1.2% root length colonised) (Rillig et al. 2008). However, this genotype has not 296 

yet been tested for resistance to AM fungal colonisation when grown in the presence 297 

of the mycorrhizal wild-type plant. 298 

That mycorrhiza-defective Micro-Tom mutants can be colonised when grown 299 

in the presence of the wild-type plant needs to be taken into consideration when using 300 

these mutant genotypes. In contrast to Micro-Tom mutant genotypes, the rmc mutant 301 

genotype cannot be colonised in the presence of its wild-type progenitor or other 302 

nurse plants (Cavagnaro et al. 2004a). Rillig et al (2008) tested the Micro-Tom mutant 303 

genotypes for the selection criteria (see above) for mycorrhiza-defective mutant 304 

plants. They found that only the BC1 mutant met all the prescribed criteria while the 305 

other two mutants did not, for the following reasons: the M161 plants had a larger 306 

root biomass than wild-type when both were grown in the absence of AM fungi, and 307 

M20 gave rise to more soil microbial biomass than the wild-type. The Micro-Tom 308 

mutant M161 has so far been used in two published studies comparing mycorrhizal 309 

and non-mycorrhizal plants for root exudates involved in signal exchange between 310 

host plants and AM fungi (Gadkar et al. 2003; Sun et al. 2012). These mycorrhiza-311 

defective mutant and wild-type Micro-Tom pairs could be of considerable utility in 312 

the study of mycorrhizal functioning. 313 

 314 

Other non-legume mutants 315 
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In maize, Mutator-mutagenised F2 families of the normal line W64A were screened 316 

by Paszkowski et al. (2006) for alteration in yellow root pigmentation compared to 317 

wild-type roots (see above for detail on screening). From this screen, the authors 318 

described seven mycorrhiza-defective mutants in maize and categorised them into 319 

three colonisation phenotype classes: nope1 (no perception 1) mutants, which showed 320 

a marked reduction in intraradical colonisation by G. mosseae, but displayed 321 

occasional root sectors containing normal mycorrhizal structures (appressoria and 322 

arbuscules), taci1 (taciturn 1) mutants, which had lower colonisation levels than the 323 

wild-type genotype (45% compared to 86% root length colonised) and slightly 324 

modified fungal structures, and Pram1 (Precocious arbuscular mycorrhiza 1) 325 

mutants, which are in fact colonised more rapidly and intensely than the wild-type, 326 

becoming saturated with intraradical fungal structures (arbuscules and vesicles) much 327 

earlier. These maize mutants represent the first mycorrhiza-defective mutant plants to 328 

be characterised in an agronomically important cereal crop. Future research using 329 

these mutants will be very useful for research into nutrient uptake in cereal crops, 330 

especially in field trials. However, to our knowledge, no such studies have yet been 331 

reported in the literature. 332 

 Reddy et al. (2007) used a transposon-mutagenised population of petunia 333 

(W138, Gerats et al. 1990) in order to identify and characterise a mycorrhiza-334 

defective genotype in this line. The resulting mycorrhiza-defective petunia genotype, 335 

pam1 (penetration and arbuscule morphogenesis1), displayed a strong decrease in 336 

AM fungal colonisation compared to its wild-type progenitor. G. intraradices formed 337 

complex appressoria on pam1 roots but could not easily penetrate the epidermal cells. 338 

Where the fungus did penetrate epidermal cells, the resulting hyphae were distorted 339 

compared to those in the wild-type roots, and did not progress further except in the 340 
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rare instance where hyphae produced lateral branches between cells and small lateral 341 

appendages. In addition, two stabilised pam1 mutant lines (pam1S1 and pam1S2) 342 

were isolated and characterised. The two stabilised mutant lines displayed reduced 343 

extra- and intra-radical AM fungal colonisation compared to pam1, and thus the 344 

pam1S1 line was used for subsequent experiments (Reddy et al. (2007). As with the 345 

Micro-Tom mutants, the pam1S1 mutant could be colonised by AM fungi when 346 

grown in the presence of a nurse plant. However, intraradical colonisation lacked 347 

arbuscule formation, and there was no contribution to the plant’s shoot P or Cu 348 

nutrition as a result of root colonisation. 349 

In rice, a large number of mycorrhiza-defective mutant genotypes were 350 

characterised by Gutjahr et al. (2008), who were interested in identifying rice lines 351 

that were defective in one of a number of signalling steps in the common SYM 352 

pathway both upstream and downstream of Ca
2+

 spiking (see Parniske (2008) for 353 

recent review). The authors searched for relevant insertion lines in both T-DNA and 354 

Tos17 databases and found one insertion in CASTOR, three in POLLUX, two in 355 

CCMAK, and three in CYCLOPS (IPD3, see Table 1). The nine sym mutants were 356 

then grown in soil inoculated with spores of G. intraradices and assessed for 357 

colonisation phenotype. Root colonisation in all the mutants was restricted to hyphal 358 

colonisation in the epidermal cells, with no cortical colonisation and thus no 359 

arbuscules or vesicles forming in any of the mutants.  360 

A gene required for mycorrhizal colonisation in rice, OsDMI3 (does not make 361 

infections 3), has been identified. Chen et al. (2007) searched a rice Tos17 mutant 362 

database for OsDMI3 insertion lines, identifying two, but ultimately using just one 363 

(NF8513) for subsequent experiments. When grown in soil inoculated with G. 364 

intraradices, the OsDMI3 mutant roots showed occasional penetration of the cortical 365 
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cells, without any arbuscule formation. However, most observed fungal growth 366 

(appressoria and external hyphae) was restricted to the root surface. 367 

 Similarly, Chen et al. (2008) characterised three knockout mutants defective in 368 

AM fungal colonisation (NC0263, NC2713, NC2794), by searching for putative 369 

Tos17 insertion lines available for OsIPD3, another gene required for mycorrhiza 370 

formation in rice. When inoculated with G. intraradices, the root epidermal cells of 371 

the three OsIPD3 mutants could not be penetrated, and there was no intraradical 372 

colonisation of the roots by the AM fungi (i.e., no hyphae, arbuscules or vesicles) 373 

except in one root segment of a NC2713 mutant, that displayed aborted intracellular 374 

fungal hyphae. There is no explanation given for this observation in NC2713, but it is 375 

assumed that the observed aborted hyphae did not confer functionality of the 376 

symbiosis. Chen et al. (2008) noted that the colonisation phenotype displayed by the 377 

OsIPD3 mutants was comparable to that of the previously identified OsDMI3 mutant 378 

genotype (Chen et al. 2007). 379 

 380 

Future directions 381 

Mycorrhiza-defective plant mutant genotypes have the potential to be used in a broad 382 

range of studies. Future uses of both legume and non-legume mutant genotypes may 383 

be extended to areas of study where mycorrhiza have previously been shown to 384 

improve plant or soil health but hypotheses have not yet been tested using a 385 

mycorrhiza-defective mutant, such as soil nutrient cycling (Jeffries and Barea 1994; 386 

Read and Perez-Moreno 2003) and interactions with foliar-feeding insects (Gange and 387 

West 1994; Gehring and Whitham 1994; Wamberg et al. 2003) and foliar pathogens 388 

(Campos-Soriano et al. 2012; Nair et al. 2015; West 1997). Research that directly 389 

compares plant nutrient uptake via the direct (i.e., via root epidermal cells) and 390 
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mycorrhizal pathways could utilise appropriate mycorrhiza-defective mutant and 391 

wild-type genotype pairs (Poulsen et al. 2005), in conjunction  with the use of stable 392 

or radioactive isotopes (Merrild et al. 2013; Watts-Williams et al. 2015). It would also 393 

be useful for future studies using mycorrhiza-defective mutant and wild-type pairs to 394 

continue to integrate molecular biology methods (e.g., quantification of gene 395 

expression) with more commonly reported physiological variables (e.g., plant nutrient 396 

concentration).  397 

 The intention of this review was to explore the potential to use mycorrhiza-398 

defective mutant genotypes to study the formation and functioning of mycorrhizas in 399 

non-legumes. This approach has both strengths and limitations. Nevertheless, such 400 

mutant and wild-type genotype pairs are proving to be useful tools in the study of 401 

arbuscular mycorrhiza, and it is hoped that this review will stimulate and inform 402 

further research using this approach.  403 
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Table 1. List of non-legume mycorrhiza-defective mutant genotypes and their properties. ‘Stage affected’ category follows the steps in AM symbiosis proposed 

by Delaux et al. (2013). 

 



 

 

Mutant Plant species Stage affected Method of mutagenesis Reference 

rmc 
Tomato (Solanum lycopersicum L. 

cv 76R) 

Dependent on AM fungal 

isolate, see text 
Fast neutron mutagenesis Barker et al. (1998) 

M161 
Tomato (Solanum lycopersicum L. 

cv. Micro-Tom) 
Pre-symbiotic Fast neutron mutagenesis 

David-Schwartz et al. 

(2001) 

M20 
Tomato (Solanum lycopersicum L. 

cv. Micro-Tom) 
Pre-symbiotic Fast neutron mutagenesis 

David-Schwartz et al. 

(2003) 

BC1 
Tomato (Solanum lycopersicum L. 

cv. Micro-Tom) 
Pre-symbiotic 

F2 segregate of wild-type and 

M161 

Kapulnik and Bonfante 

(unpublished) cited in 

Rillig et al. (2008) 

nope1 Maize (Zea mays) W64A Pre-symbiotic Transposon mutagenesis (Mutator) Paszkowski et al. (2006) 

taci1 Maize (Zea mays) W64A Intraradical colonisation Transposon mutagenesis (Mutator) “” 

Pram1 Maize (Zea mays) W64A 
Intraradical colonisation 

(enhanced) 
Transposon mutagenesis (Mutator) “” 

pam1, pam1S1, pam1S2 Petunia (Petunia hybrida) W138 Intraradical colonisation Transposon mutagenesis Reddy et al. (2007) 

OsDMI3 (NF8513) 
Rice (Oryza sativa L. cv. 

Nipponbare) 
Pre-symbiotic 

Retrotransposon Tos17 insertion 

line 
Chen et al. (2007) 

OsIPD3 (NC0263, NC2713, 

NC2794) 

Rice (Oryza sativa L. cv. 

Nipponbare) 
Pre-symbiotic 

Retrotransposon Tos17 insertion 

lines 
Chen et al. (2008) 

CASTOR (1B-08643) 
Rice (Oryza sativa L. ssp. 

japonica cv. Dongjin) 
Pre-symbiotic T-DNA insertion Gutjahr et al. (2008) 

POLLUX (1C-03411) 
Rice (Oryza sativa L. ssp. 

japonica cv. Hwayoung) 
Pre-symbiotic T-DNA insertion “” 

POLLUX (NC6423, ND5050) 
Rice (Oryza sativa L. cv. 

Nipponbare) 
Pre-symbiotic 

Retrotransposon Tos17 insertion 

lines 
“” 

CCAMK (NE1115, NF8513) 
Rice (Oryza sativa L. cv. 

Nipponbare) 
Pre-symbiotic 

Retrotransposon Tos17 insertion 

lines 
“” 

CYCLOPS (IPD3) (NG0782, 

NC2415, NC2713) 

Rice (Oryza sativa L. cv. 

Nipponbare) 
Pre-symbiotic 

Retrotransposon Tos17 insertion 

lines 
“” 
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