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Abstract 

The discovery that surfaces of the Gram-negative bacteria often carry unique 

polysaccharide signatures predates most seminal discoveries of molecular biology and 

biochemistry of the 20
th

 century. The O-antigen component of the lipopolysaccharide has been 

one of the most intensely studied bacterial polysaccharide surface structures for over 80 years. 

Yet, many questions about the mechanism of biosynthesis of the O-antigen and its transport to 

the cell surface still remain unanswered. In this review we provide an overview of how the 

molecular basis of the O-antigen assembly and trafficking were unraveled in a historical context. 

We pay particular attention to the emergence of novel technological approaches and how they 

fueled the elucidation of the O-antigen maturation process. Moreover, we provide a brief 

perspective on the biosynthesis of enterobacterial common antigen (ECA) and underline the 

similarities and differences between the pathways used to assemble these two surface 

polysaccharides. Finally, we highlight key discoveries that led to the understanding of the 

mechanistic basis of bacteriophage-induced O-antigen modifications. We place special emphasis 

on the regulation of the length of O-antigen polymers and provide a detailed overview of the 

models explaining the O-antigen length determination. Finally, we underscore outstanding 

questions which need to be addressed both structurally and functionally to advance the 

understanding of the O-antigen assembly, trafficking and export within cellular and molecular 

contexts. 

 



 3 

 Introduction 

Lipopolysaccharide (LPS) molecules form the outer leaflet of the outer-membrane of 

many Gram-negative bacteria and are essential components of the bacterial cell envelope. They 

are comprised of a lipid portion, an oligosaccharide core, and a highly variable polysaccharide 

known as the O-antigen. The latter is composed of repeating sequences of three to six sugar 

residues (known as an O-unit). These polymers are remarkably variable due to the chemical 

nature of the individual carbohydrate subunits as well as their chemical linkages. The LPS O-

antigen is one of the essential components of the bacterial survival toolkit, employed in the 

hostile territories of mammalian tissues. A number of human obligate and opportunistic 

pathogens such as Salmonella enterica, Francisella tularensis, Burkholderia cepacia and others 

utilize the O-antigen to avoid phagocytosis and to resist the lytic action of the complement 

system (Murray, et al., 2003, Murray, et al., 2006, Duerr, et al., 2009, Saldias, et al., 2009). O-

antigens have also become a basis for vaccine development against several human pathogens 

including Shigella species (Levine, et al., 2007). Moreover, O-antigens are clinically and 

epidemiologically important for differentiating the various isolates (serotypes). Having a clear 

road map of molecular mechanisms employed by the protein machinery involved in O-antigen 

production is essential for the development of a next generation of therapeutic agents. This, 

however, requires a well-conserved target mechanism across various bacterial species; hence, 

understanding the precise molecular basis underlying O-antigen assembly and controlling its 

maturation in key human pathogens is of utmost biomedical importance. 
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Overview of O-antigen assembly processes 

The building blocks of the O-antigen polymers are oligosaccharide subunits referred to as 

the O-units. Depending on the bacterial species, the O-unit is composed of three to six sugar 

residues, which may be arranged in an unbranched or branched fashion. An individual O-unit is 

assembled on a lipid carrier embedded in the inner membrane and the process takes place in the 

cytosol. The first sugar residue is added via the action of the polyisoprenyl-phosphate N-

acetylaminosugar-1-phosphate transferases (PNPT) or polyisoprenyl-phosphate hexose-1-

phosphate transferases (PHPT) protein family members and further extension occurs by the 

sequential action of specific glycosyl transferases (Samuel & Reeves, 2003). The polymerization 

of the O-units into an O-antigen mostly occurs by two distinct pathways: a Wzy polymerase-

dependent, an ABC transporter-dependent mechanism (Valvano, 2003) (Figure 1A,B). The third 

pathway for the O-antigen biosynthesis is known as the synthase-dependent mechanism and so 

far is known to be present only in one Gram-negative species (Salmonella enterica serovar 

Borreze O:54) and little is presently know about its details (Keenleyside & Whitfield, 1996). It 

will be briefly presented further in the context of its discovery. 

The Wzy-dependent pathway of the O-antigen assembly is named after an inner-

membrane resident oligosaccharyltransferase encoded by a wzy gene. The individual repeat 

units bound to the lipid anchor are transported from the cytoplasmic side to the periplasmic side 

of the inner membrane by the Wzx flippase where they become joined by the Wzy glycosyl 

transferase/polymerase into a long polysaccharide chain (Valvano, 2003). The polysaccharide O-

antigen is then transferred to the inner-core oligosaccharide of the lipid A by the WaaL ligase 

(Figure 1A). The length of the O-antigen molecules on the bacterial surface is not strictly 

uniform. When subjected to SDS-PAGE analysis, purified O-antigens exhibit ladder-like pattern 
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of electrophoretic mobilities with the different bands corresponding to the polymers of varying 

number of O-units (Jann et al, 1975). This property in the Wzy-dependent system is regulated by 

members of the polysaccharide co-polymerase (PCP) protein superfamily. Remarkably, Wzy-

dependent assembly pathway of the O-antigen and other complex glycans operate in the 

periplasmic environment, which is devoid of the ATP energy source. 

In the ABC-dependent O-antigen biosynthesis pathway the mode of polymerization is 

notably different. Rather than using Wzy polymerase, the entire polymer is being assembled in 

the cytosol by dedicated glycosyl transferases and is translocated across the inner membrane by a 

specialized ATP binding cassette (ABC) transporter (Willis & Whitfield, 2013). Unlike the Wzy-

dependent pathway, the regulation of length of the O-antigen polymer in this pathway relies on a 

very different mechanism, which will be described below (Figure1 B). 

Identification and chemical characterization of the carbohydrate 

component of the LPS 

The discovery of the role that bacterial surface polysaccharides play in pathogenicity was 

realized at the onset of modern molecular microbiology and dates back to the studies done on the 

causative agent of bacterial pneumonia at the beginning of the 20
th

 century. Seminal work carried 

out in Oswald Avery’s laboratory led to the identification of the material now known to represent 

the capsule of the Streptococcus pneumoniae (Dochez & Avery, 1917). Avery pursued the 

chemical characterization of the capsule further and together with Heidelberger identified its 

carbohydrate nature (Heidelberger & Avery, 1923). Several years later Avery together with 

Dubos convincingly demonstrated the importance of the polysaccharide capsule for the virulence 

by S. pneumoniae (Avery & Dubos, 1930). The current understanding of the biogenesis of the 

capsular polysaccharides has been reviewed in recent years (Whitfield, 2006, Willis & Whitfield, 



 6 

2013). Here, we provide an overview of the landmark discoveries underlying the biosynthesis of 

the O-specific polysaccharide (also referred to as the O-antigen) of Gram-negative bacteria. 

The first steps to establish the chemical nature of the component of the Gram-negative 

bacteria, which are toxic to humans even in minute amounts dates back to the 1930s. The first 

breakthrough in studying this toxin was made by Boivin and Mesrobeanu, who were able to 

extract bacterial endotoxin from several bacterial species (Boivin & Mesrobeanu, 1933, Boivin 

& Mesrobeanu, 1934, Boivin & Mesrobeanu, 1934, Boivin, et al., 1935, Boivin & Mesrobeanu, 

1937). This allowed the chemical characterization of antigenic material and it was discovered 

that the endotoxin was largely made up of polysaccharides and did not contain any protein 

components (Mesrobeanu & Boivin, 1937). The non-proteinaceous nature of the bacterial 

antigen was also confirmed by Raistick and Topley (Raistrick & Topley, 1934, Topley, et al., 

1937) and by Morgan (Morgan, 1937), who employed a slightly different chemical approach of 

the endotoxin extraction. At about the same time Kauffmann recognized the remarkable diversity 

of bacterial surface complex carbohydrates when he realized that endotoxin molecules from 

various Salmonella strains contained unique polysaccharide signatures, now known as the O-

antigens (Kauffmann, 1936). Kauffmann subsequently established that heat-inactivated bacteria 

could be used to immunize rabbits to raise the antibodies, which could then be used to recognize 

specific O-antigens of different bacterial species (Kauffmann, 1944, Kauffmann, 1949, 

Kauffmann, 1954). The antibodies raised by Kauffmann would lead to bacterial clumping or 

agglutination and this property gave rise to serological identification of bacteria, which still 

remains an important diagnostic tool in modern day clinical microbiology. A further advance 

was the realization by Morgan, while studying the extracted surface polysaccharides from 

Shigella dysenteriae, that the polysaccharide constitutes only about 50% of the pure bacterial 
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endotoxin (Morgan, 1937). The chemical nature of the remainder of the molecule emerged from 

the efforts of Luderitz and Westphal, who isolated the lipid portion of the endotoxin and coined 

the term lipid A (Westphal & Lüderitz, 1954), The complete chemical structure of lipid A was 

resolved by NMR almost 30 years later (Takayama, et al., 1983). A detailed overview of the 

milestone discoveries fundamental to understanding the LPS biogenesis and transport has been 

recently provided by Ruiz and colleagues (Ruiz, et al., 2009).  

Kroger realized early on that a subset of Salmonella colonies exhibited a distinctly 

different morphology from the wild-type strains when grown on solid agar under laboratory 

conditions (Kroger, 1953). Owing to their unsmooth, flat and unconvex appearance, these 

colonies were termed ‘rough’. Early work on rough mutants demonstrated that they were much 

more prone to phagocytosis as compared to their smooth counterparts (Skurski, et al., 1959, 

Slopek, et al., 1959) and that they exhibited a strikingly different sensitivity to certain 

bacteriophages (Fukasawa & Nikaido, 1960). In an effort to characterize surface polysaccharide 

signatures of rough mutants, Kauffmann isolated the endotoxins from 25 different rough 

Salmonella strains belonging to different serogroups and noticed that they were completely 

devoid of a surface serotype-specific O-antigen chains. He also discovered that a portion of the 

extracted LPS represented an oligosaccharide and that its chemical composition was identical 

among all of the strains analyzed. The oligosaccharide material was of an identical composition 

irrespective of the serogroup the rough mutant was derived from and was found to contain 

glucose, galactose, N-Acetylglucosamine (GlcNAc), and 3-Deoxy-D-manno-oct-2-ulosonic acid 

(KDO) (Kauffmann, et al., 1961). These discoveries established that in addition to containing a 

highly diverse O-antigen polymer, the lipopolysaccharide also carries an oligosaccharide core, 

which is highly conserved in bacteria belonging to different serogroups (Mäkelä & Stocker, 

http://cancerweb.ncl.ac.uk/cgi-bin/omd?query=Westphal+Karl&action=Search+OMD
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1969). It is now recognized that core oligosaccharides exhibit certain heterogeneity in some 

bacterial species. At least five different core structures have been described for E. coli (Reviewed 

in (Raetz & Whitfield, 2002)). 

The chemistry and enzymology underlying the reactions controlling the O-unit assembly 

were carried out using radioactively
 
labeled nucleotide sugar precursors and Salmonella enterica 

serovar Typhimurium (referred to as S. Typhimurium from here on in) mutants defective in the 

synthesis of such precursors (Nikaido, et al., 1964, Zeleznick, et al., 1965). These latter groups 

discovered that the synthesis of the O-antigen is critically dependent on the presence of the 

membrane fraction (Zeleznick, et al., 1965). Further analysis of the O-unit synthesis by Weiner 

and colleagues led to the discovery that the intermediate products of the O-unit synthesis remain 

covalently bound to lipid (Weiner, et al., 1965). Finally, the exact nature of this lipid was 

delineated by Wright and colleagues who established that the lipid carrier is a C55 

polyisoprenoid compound containing a pyrophosphate (Wright, et al., 1967). Further 

investigations of the O-antigen maturation mechanism had demonstrated that the polymerization 

occurs in such a way that the growing polysaccharide chain is being transferred from the lipid 

undecaprenyl-phosphate to the non-reducing end of a new O-unit (Bray & Robbins, 1967, 

Robbins, et al., 1967). 

Although it was clear that the O-antigen must be present on bacterial surface to be 

agglutinated by the antibodies, the very first unequivocal evidence for its precise cellular 

localization was obtained by Shands  (Figure 3) (Shands, 1965). Shands had used the electron 

microscopy analysis of the negatively stained sections of both E. coli and S. Typhimurium, 

where the O-antigens were labeled by a ferritin-coupled O-antigen specific antibody (Shands, 

1966). These studies revealed that some O-antigens extend as far as 150 nM away from the 
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bacterial surface. Interestingly, in addition to observing the O-antigens on the bacterial surface, 

Shands also detected the presence of O-antigens on the outer side of the bacterial inner 

membrane, within the periplasm. Mulford and Osborn later confirmed that this cellular 

compartment is the site of the O-antigen assembly by employing a combination of pulse-chase 

experiments with radioactively labeled galactose and visualization by transmission electron 

microscopy (Mulford & Osborn, 1983, McGrath & Osborn, 1991). Chemical analysis of the 

actual O-antigen building blocks has been greatly enhanced by the advent of the NMR 

spectroscopy throughout 1970s and particularly by its applications to the studies of the 

carbohydrate chemistry (reviewed in (Bubb, 2003)). This approach has truly transformed the 

ways of how the chemical structures of the O-unit oligosaccharides were being determined and, 

starting from early 80’s, NMR analysis became an essential method of the carbohydrate 

“sequencing” toolbox (Lindberg, et al., 1981, Kenne, et al., 1983). 

Development of the synthetic sugar substrate analogues in the late 80’s constituted 

another major technological advance toward understanding the enzymatic basis of the synthesis 

of O-antigen building blocks, the O-units (Palcic, et al., 1988). Defined synthetic sugar 

nucleotide acceptor substrates corresponding to various O-unit intermediates could be used in in 

vitro glycosyl transferase reactions containing activated nucleotide sugar donors and purified 

proteins. Synthetic sugar acceptors were conjugated to the hydrophobic moieties, which provided 

a convenient means of purifying the products of such reactions for subsequent analysis by NMR. 

This methodology has proven to be particularly useful in studies characterizing glycosyl 

transferases that operate on the lipid linked sugars such as undecaprenol-(GlcNAc-PP), where 

the intermediate acceptors are difficult to obtain from the natural source or to synthesize 

chemically (Montoya-Peleaz, et al., 2005, Brockhausen, et al., 2008, Greenfield, et al., 2012). 
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The development of the synthetic approaches toward generating sufficient amounts of stable 

acceptor substrates opened up a way to probe glycosyl transferase specificities, greatly aiding the 

functional assignment of this class of enzymes in the O-antigen biosynthetic clusters across 

various species (Montoya-Peleaz, et al., 2005, Brockhausen, et al., 2008, Xu, et al., 2011). 

Identification of Wzy-dependent O-antigen biosynthesis gene cluster 

The early period of discovery of genes involved in surface polysaccharide biosynthesis 

saw parallel efforts of multiple labs working on a variety of organisms that resulted in multiple 

names for homologous genes and made following the progress of the field rather difficult. A 

new, unified gene nomenclature was introduced in 1996 (Reeves, et al., 1996) to systematize the 

field. In the following we adhere to this naming convention and, when appropriate, also provide 

the original names.  

Genes encoding the biosynthetic machinery that is responsible for the production of the 

polysaccharide portion of the LPS were first characterized using genetic linkage analysis 

employing bacterial conjugation and phage transduction in S. Typhimurium species. Subbaiah 

and Stocker identified two distinct genetic loci referred to as rfa and rfb, where mutations at 

these loci gave rise to rough S. Typhimurium devoid of their surface O-antigens (Subbaiah & 

Stocker, 1964). Further investigations led to the discovery that rfa mutants are deficient in the 

synthesis of the LPS core oligosaccharide (Nikaido, et al., 1964) whereas the mutants in the rfb 

locus were defective in the synthesis of the carbohydrate moieties making up the O-antigen 

polymer (Beckmann, et al., 1964). Furthermore, Beckman discovered that strains containing 

mutations in the rfa locus were fully capable of the O-antigen synthesis, yet the polymers were 

of lower molecular weight than those normally covalently bonded to the rest of the LPS 

(Beckmann, et al., 1964). These studies indicated that the synthesis of the two distinct 



 11 

carbohydrate portions of the LPS molecule (the oligosaccharide core and the O-antigen, 

respectively) was controlled by distinct cellular mechanisms. It was also realized that the 

machinery responsible for the transfer of mature O-antigen to the outer core sugars of the LPS 

molecule requires a complete core oligosaccharide, which was compromised in the rfa mutants 

(Beckmann, et al., 1964). However, one of the rough Salmonella mutants discovered by 

Subbaiah and Stocker contained a complete core region, yet the O-antigen polymer accumulated 

in the cell interior instead of populating the cell surface (Kent & Osborn, 1968, Kent & Osborn, 

1968). The mutations responsible for this observation were mapped to a gene waaL (formerly 

rfaL) within the rfa locus and it was proposed that the product of this gene performs the actual 

transfer of the O-antigen from the lipid-precursor to the sugar residues making up the LPS 

oligosaccharide core (Kent & Osborn, 1968, MacLachlan, et al., 1991). Subsequent studies using 

both in vitro reconstituted O-antigen ligation reaction as well as in vivo functional studies have 

confirmed that waaL is indeed the O-antigen ligase responsible for the ligation of the O-antigen 

to the LPS outer core sugars (Abeyrathne & Lam, 2007, Han, et al., 2012, Ruan, et al., 2012). 

Even within the same bacterial species, waaL genes frequently exhibit low sequence 

conservation between strains but the fine points of the catalytic mechanism of the WaaL-

mediated ligation are not currently known. O-antigen ligase was recently proposed to function as 

a metal-independent inverting oligosaccharyltransferase, which utilizes an arginine and a 

histidine residues located within its periplasm-exposed regions to catalyze the transfer of the 

undecaprenol-linked polysaccharide to the outer core of the LPS with formation of a -anomeric 

linkage (Han, et al., 2012, Ruan, et al., 2012). 

WaaL ligase exhibits relaxed substrate specificity with respect to the reducing-end sugar 

residues (GlcNAc vs. Gal) and under some circumstances was even shown to ligate the colanic 
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acid (containing glucose at its non-reducing end) to the outer LPS core (Meredith, et al., 2007, 

Han, et al., 2012, Ruan, et al., 2012). It is therefore not surprising that the expression of entire 

gene clusters for the O-unit synthesis and polymerization in a heterologous host frequently leads 

to functional O-antigen production (Manning, et al., 1986, Morona, et al., 1991, Falt, et al., 

1993). The specificity of WaaL ligase appears to be determined by the nature of the acceptor 

sugar residues comprising the outer LPS core (Heinrichs, et al., 1998, Abeyrathne, et al., 2005, 

Schild, et al., 2005). 

Relying on bacterial conjugation and interrupted mating experiments, which was a 

widely-used tool for genetic mapping analysis at the time, Mäkelä established that the rfb locus 

contained all the genes necessary for biosynthesis of the individual O-antigen building blocks, 

(oligosaccharide O-units). She demonstrated that rfb locus is both necessary and sufficient to 

confer the chemical composition of the O-antigen of the host serotype to the Salmonella species 

of a different serotype (Mäkelä, 1965, Stocker, et al., 1966). The sequence of the entire gene 

cluster was reported in 1991 by Reeves’ group and was found to contain 16 genes encoding 

mainly enzymes necessary for the nucleotide sugar precursor biosynthesis and the corresponding 

glycosyl transferases (Jiang, et al., 1991, Samuel & Reeves, 2003). Mäkelä and colleagues also 

recognized that some S. Typhimurium strains contained only a single O-unit attached to the core 

oligosaccharide, which they termed semi-rough strains (Naide, et al., 1965). They reasoned that 

these mutants must be deficient in their ability to polymerize the corresponding O-units into 

mature polymer. Genetic analysis led to the successful identification of a gene found outside of 

the rfb locus and therefore termed rfc (now known as wzy), which she presumed to be 

responsible for the polymerization activity (Mäkelä, 1966). The unequivocal confirmation of wzy 

being a bone fide O-antigen polymerase was provided some 44 years later by P.G. Wang and co-
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workers, who succeeded in reconstituting the O-antigen assembly pathway in vitro (Woodward, 

et al., 2010). Subsequent sequencing of the rfb loci from other bacteria revealed that in most 

analyzed E. coli and Salmonella species the Wzy polymerase is predominantly found as part of 

the rfb locus, hence the wzy gene originally identified by Mäkelä is atypical (Stevenson, et al., 

1994, Lukomski, et al., 1996, Fitzgerald, et al., 2003, Fitzgerald, et al., 2006). 

In the E. coli species, genetic analysis of O-antigen biosynthesis was carried out by the 

pioneering work of Ørskovs in the early1960s (Ørskov & Ørskov, 1962, Ørskov, et al., 1977). 

They discovered loci similar to the Salmonella rfb. However, Ørskov could not offer an 

explanation for the incompetency of K-12 strain to make the O-antigen (Ørskov & Ørskov, 

1962). The genetic basis for this observation was not uncovered until some ~30 years later when 

the rfb locus of E. coli was sequenced and it was established that the open reading frame 

encoding a rhamnosyl transferase gene contains an insertional element (Liu & Reeves, 1994, 

Stevenson, et al., 1994). The lack of a functional rhamnosyl transferase gene voids the second 

step of the O16 O-unit assembly in K-12 strains such as W3110 and MG1655. Another 

independent mutation was also discovered to occur within the rfb locus in the less frequently 

used WG1 lineage of E. coli K-12. It was mapped to the rmlC gene involved in the synthesis of 

the activated nucleotide derivative dTDP-L-rhamnose (Stevenson, et al., 1994).Thus by the late 

sixties, many of the genes involved in Wzy-dependent O-antigen biosynthesis had been 

identified and the inner membrane and the periplasm emerged as principal cellular sites of the O-

antigen assembly. 

Discovery of the O-antigen biosynthesis initiation enzymes  

While studying phage-sensitivity of S. enterica serovars Minnesota and Montevideo, 

Mäkelä also reported the identification of yet another O-antigen mutant. While synthesis of the 
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oligosaccharide core of the LPS was not affected in these mutants, the O-antigen polysaccharides 

were lacking altogether. (Mäkelä, et al., 1970). The mutation was mapped to the locus distinct 

from any of the ones previously characterized, which was designated as rfe. Mäkelä reasoned 

that the product of this gene somehow primed the lipid carrier for the O-unit assembly but did 

not provide any evidence for this claim (Mäkelä, et al., 1970). The product of this particular gene 

was later found to encode an enzyme capable of transferring an N-acetyl-D-glucosamine-1 

phosphate moiety (GlcNAc-P) to the undecaprenyl-phosphate carrier and is currently known as 

WecA  (Figure 2A) (Meier-Dieter, et al., 1992). The same enzyme catalyzes the first step of 

biosynthesis of another cell-surface polysaccharide present in enteric bacteria, the enterobacterial 

common antigen (ECA), which will be discussed in more detail below. The O-antigen of S. 

Typhimurium LT2 does not contain GlcNAc sugar but instead the O-unit assembly is primed by 

transfer of galactose-1-phosphate to the undecaprenyl phosphate. The gene associated with the 

initiation reaction in this organism was determined by Reeves’ group (Wang and Reeves, 1994). 

They identified a gene within the rfb locus, referred to as wbaP (formerly rfbP), encoding an 

enzyme, capable of catalyzing a transfer of a galactose-1-phosphate moiety to the undecaprenyl 

phosphate (Figure 2B) (Wang & Reeves, 1994). WecA and WbaP belong to the PNPTs 

(polyisoprenyl-phosphate N-acetylaminosugar-1-phosphate transferases) and PHTPs 

(polyisoprenyl-phosphate hexose-1-phosphate transferases) families, respectively, and are 

presently the only known enzymes responsible for the initiation of complex surface 

polysaccharide biosynthesis on a lipid anchor in all enterobacteria.  

Discovery of the O-antigen flippase 

The O-antigen flippase gene, critical to the assembly of O-antigen polymers in Wzy-

dependent systems, escaped detection by genetic mapping analysis of the early years. 
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Sequencing the complete rfb loci from several different organisms in early 1990-ties opened 

effective ways of probing the function of the individual genes using reverse genetics approaches 

(Liu, et al., 1996). Comparison of the rfb gene clusters from different organisms identified a 

gene named wzx (formerly rfbX) that encoded a putative inner membrane protein with at least 12 

transmembrane domains, but with highly divergent sequences across the species (Liu, et al., 

1996). Deletion of this gene led to the accumulation of undecaprenyl-diphosphate linked O-units 

in the cytosol. This strongly implied that the wzx gene encoded a transporter responsible for 

shuttling O-units across the inner membrane (Liu, et al., 1996). The mechanistic details of how 

Wzx accomplishes translocation of the lipid-linked O-units to the periplasm have remained 

obscure. A more detailed understanding started to emerge only recently from a series of 

ingenious experimental approaches undertaken in J.S. Lam’s group on P. aeruginosa (Islam, et 

al., 2010, Islam, et al., 2012). Its Wzx contains 12 transmembrane helices (Islam, et al., 2010) 

and was proposed to translocate the undecaprenyl-linked O-units via an internal cavity rich in 

positively charged residues (Islam, et al., 2012) by a proton-dependent antiporter-like 

mechanism (Islam, et al., 2013). Wzx proteins were assumed to exhibit relaxed substrate 

specificity with respect to the chemical structure of the lipid-linked O-units that they transport 

(Alaimo, et al., 2006, Marolda, et al., 2006). However, a recent report from Reeves’ group 

indicates that the chemical structure of the repeat O-unit cargo is being recognized by the 

flippase as part of the translocation mechanism  (Hong, et al., 2012). The reader is referred to a 

recent review by Islam and Lam to learn more about the Wzx flippases (Islam & Lam, 2013).  

Discovery of the O-antigen chain length regulation. 

The fact that the O-antigens differ not only by their chemical composition but also by the 

number of repeat units incorporated in the polysaccharide chain was realized once the LPS 
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molecules were subjected to SDS-PAGE analysis (Jann, et al., 1975). This analysis demonstrated 

that O-antigen polymers extracted from the same species contained neither the same number of 

repeat units nor a random distribution of lengths but instead consisted of a population of 

molecules of similar but not identical lengths (Jann et al, 1975). The molecular basis for such a 

modal length distribution was attributed to the presence of a specific gene identified by Batchelor 

and colleagues in 1991. This gene was named rol, for Regulator of O-antigen Length (Batchelor, 

et al., 1991), or cld, for Chain Length Determinant (Bastin, et al., 1993), and is now referred to 

as wzzB. The gene encodes a 36 kDa protein containing two transmembrane helices flanking a 

domain exposed to the periplasmic space (Batchelor, et al., 1991). Shortly thereafter, Reeves’ 

group reported identification of the gene encoding the O-antigen chain length regulator 

responsible for the very long O-antigen assembly in the Shigella flexneri species (Stevenson, et 

al., 1995). This gene was found within a stably maintained plasmid and exhibited a high 

sequence identity to the fepE open reading frame found in the operon encoding the iron uptake 

system in the E. coli K-12 strain (Stevenson, et al., 1995). Several years later, Morona and 

colleagues demonstrated that Wzz
FepE

 indeed regulates the assembly of very long O-antigens in 

S. Typhimurium (Murray, et al., 2003).  

The question of how Wzz proteins perform the task of controlling the length of the O-

antigen arose soon after their discovery. What made this question even more intriguing was the 

observation that closely related chain length regulators can be expressed in related bacteria and 

impose the O-antigen length distribution characteristic of their original hosts (Batchelor, et al., 

1992, Morona, et al., 1995). Thus, it was clear that the regulation of the O-antigen length was 

being intrinsically defined by the chain-length regulator protein, in spite of the differences in the 

chemical structures of the corresponding carbohydrate constituents and despite low sequence 
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conservation among the other components of the polysaccharide trafficking machinery (flippase, 

ligase and polymerase).  

In 2008, the first crystal structures of several O-antigen chain length regulators were 

reported by Cygler and colleagues who solved the structures of the periplasmic domains of both 

WzzB and Wzz
FepE

 as well as the PCP family member involved in the ECA (enterobacteria 

common antigen) synthesis (Wzz
ECA

) (Tocilj, et al., 2008). These crystal structures demonstrated 

that chain length regulators assemble into the bell-shaped oligomers of varying composition, 

ranging from pentamers (for WzzB) to octamers (for WzzE) to nonamers (for Wzz
FepE

). The 

structural analysis also revealed that all these chain length regulators adopt a similar three-

dimensional fold in spite of sharing very little sequence identity (Tocilj, et al., 2008). This 

finding strongly suggested a common molecular mechanism utilized by these molecules for 

glycan chain length control.  

Proposed models of the O-antigen chain-length regulation in the 

Wzy-dependent assembly 

Several models were put forth to explain how chain length regulation may take place. 

Prior to the discovery of the chain-length regulator Goldman and Hunt proposed, based on a 

mathematical modeling approach, that the polymerase and the ligase exhibit certain specificity 

toward the O-antigens of certain lengths (Goldman & Hunt, 1990). However, work by McGrath 

and Osborn demonstrated that O-antigens achieve their proper lengths even if they cannot be 

ligated to the core oligosaccharide; this excluded the notion of the ligase influence on chain 

length determination (McGrath & Osborn, 1991). Similarly, Daniels and Lam studying P. 

aeruginosa came to the conclusion that polymerization of modal chain length-distributed O-

antigen occurred before ligation to the lipid A core (Daniels, et al., 2002). Furthermore, 
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identification of the gene encoding the O-antigen chain regulator protein indicated that the 

activity of the polymerase is likely to be influenced by a new factor not accounted for in 

Goldman and Hunt’s model. Reeves and colleagues proposed another model whereby Wzz 

proteins were proposed to control the activity of the wzy polymerase by switching between the 

extension (polymerization) and transfer modes. They speculated that Wzz molecules from 

different species are capable of interacting with different O-antigen polymerases, however, they 

provided no experimental evidence to back this claim up. Another model was proposed by 

Morona and colleagues who suggested that the length of the O-antigen chain is being determined 

by virtue of Wzz acting as a chaperone capable of organizing Wzy (the polymerase) and WaaL 

(the ligase) in a certain fashion (Morona, et al., 1995). Morona reasoned that different Wzz 

molecules could influence the kinetics of O-antigen polymerization via their ability to 

differentially organize multiprotein complexes resulting in different stoichiometric ratios of the 

O-antigen ligase and the O-antigen polymerase (Morona, et al., 1995).  

Despite the availability of the Wzz structures, insight into the mechanism of chain length 

regulation was limited. The observation that the chain length regulators assembled into 

oligomers of varying composition in crystals provided further support for the Morona model. It 

was suggested that the differences in the O-antigen chain length distribution were related to the 

oligomeric composition of the specific Wzz protein, with Wzz molecules forming larger 

oligomers, thus being capable of recruiting greater numbers of Wzy polymerases for continuous 

polymerization of the O-antigen (Morona, et al., 2009). Nevertheless, the stoichiometric cellular 

distribution of Wzz with respect to Wzy-polymerases does not align well with the proposed 

mechanism since it is well established that Wzz proteins are a lot more abundant than the Wzy-

polymerase (Wong, et al., 1999, Carter, et al., 2009). 
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The proposed models explaining how the length of the O-antigen may be established 

center around Wzz and Wzy interplay. Reconstitution of the complete O-antigen biosynthesis 

pathway by Wang and colleagues in vitro using purified components provided further 

experimental evidence to support this notion (Woodward, et al., 2010). This study demonstrated 

that the length of the mature O-antigen depends solely on the presence of the Wzy polymerase 

and Wzz chain length regulator and is independent of any other protein components of the O-

antigen biosynthetic machinery.  

Moreover, increasingly more clues obtained in several recent in vivo studies point to the 

existence of the Wzz-Wzy protein complex. Recent work on the D3 bacteriophage of P. 

aeruginosa revealed that the serotype switching mechanism is critically dependent on a small 

hydrophobic 3kDa protein (Iap), which mimics the N-terminal transmembrane domain of the 

Wzz proteins and uses it to compete with chain-length regulators for binding to the endogenous 

Wzy-polymerase (Taylor, et al., 2013). In addition, an extensive mutational analysis of Wzy-

polymerase from P. aeruginosa by Islam and Lam identified several mutations within the C-

terminal cytosolic loops of Wzy polymerase, which influenced the proper length specification of 

O-antigen polymers (Islam & Lam, 2013). These discoveries imply that the N-terminal 

transmembrane domain of the chain-length regulator proteins and the C-terminal regions of Wzy 

may form a critical interface of the Wzy-Wzz protein complex.  However, in spite of an 

accumulating body of evidence for the existence of such complexes, no physical associations 

between the polymerase and the chain length regulator have been reported to date (Carter, et al., 

2009) (Valvano personal communication, Kalynych and Cygler unpublished data; Morona 

unpublished data).  
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Discovery of the ABC-dependent pathway for O-antigen 

biosynthesis  

In 1975 Kopmann and Jann reported that not all enteric bacteria assembled their O-

antigens in the same fashion. The E. coli serotypes O9 and O8 were found to use a distinctly 

different mechanism from the Wzy-dependent pathway known at the time (Kopmann & Jann, 

1975, Flemming & Jann, 1978). The O-units in these strains were found to be entirely composed 

of mannose residues (Kopmann & Jann, 1975, Prehm, et al., 1976). The O-antigen assembly did 

not require a polymerase protein (Wzy) and occurred on the lipid acceptor, which was identified 

to also be undecaprenol (Weisgerber & Jann, 1982). Synthesis of the polymer was found to be 

critically dependent on the WecA protein, which was initially proposed to catalyze the 

formation of a gluco-lipid intermediate (-glucosyl di-phospho-undecaprenol), on which the 

rest of the mannose homo-polymer is assembled (Weisgerber, et al., 1984). The initiation 

reaction was later revisited by Rick and coworkers who demonstrated that the acceptor of 

mannose resides for the E. coli O8 O-antigen is actually the GlcNAc pyrophosphoryl-

undecaprenol (Rick, et al., 1994). This was more consistent with the function of the WecA as a 

GlcNAc-1-phosphate transferase established a few years before (Meier-Dieter et al, 1992). The 

rfb locus of the E. coli O9 strain was reported in 1995 and it was realized that this gene cluster 

contained the genes encoding the ATP-dependent transporter of the ABC-2 superfamily (Kido, 

et al., 1995). Other groups made similar observations. Zhang and colleagues sequenced the O-

antigen biosynthesis cluster from Yersinia enterocolitica O:3 a few years earlier and identified 

two genes essential for the export of the O-antigen (Zhang, et al., 1993). The sequence of both 

proteins was strikingly similar to those involved in the ABC-dependent export of the capsular 

polysaccharide in E. coli and it was concluded that the export of the O-antigen proceeds in an 
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ATP-dependent fashion (Zhang, et al., 1993). The same observation was also made by Whitfield 

and coworkers, who discovered a consensus ATP-binding domain in one of the genes of the rfb 

locus in Klebsiella pneumoniae O1 species (Bronner, et al., 1994). The ABC transporters 

mediating export of the O-antigen polysaccharide belong to the family of two-component 

transporters where the nucleotide binding domain (the ATP hydrolyzing engine) and the actual 

transporter (the substrate channel) are encoded by two separate genes exemplified by wzt and 

wzm of E. coli O8, O9, and O9A, and O52 (reviewed in (Greenfield & Whitfield, 2012)). The 

same configuration is found in the transporters mediating the export of class II capsular 

polysaccharides in other bacterial species such Haemophilus influenzae, E. coli, Neisseria 

meningitidis, and others (Whitfield, 2006, Cuthbertson, et al., 2010, Willis & Whitfield, 2013). 

The strongest evidence to date proving further support of this type of O-antigen export 

was shown by the Whitfield group. They used electron microscopy to demonstrate accumulation 

of O-linked products in the cytosol of the Klebsiella pneumoniae O1 cells devoid of genes 

encoding the transporters (Bronner, et al., 1994). For a long time, the ABC-dependent transport 

was considered to be limited to the export of O-antigens comprised of homo-oligosaccharides 

only. However, it was later discovered that a number of species rely on this pathway for the 

export of hetero-oligosaccharide O-antigens as well (Bronner, et al., 1994, Saigi, et al., 1999, 

Izquierdo, et al., 2003, Feng, et al., 2004).  

It appears that the ABC-dependent transport of O-antigen polysaccharides is much less 

prevalent than the Wzy-dependent mechanism. Interestingly, in P. aeruginosa, both pathways of 

O-antigen biogenesis operate in parallel (Kintz & Goldberg, 2008, Lam, et al., 2011). The Wzy-

dependent pathway gives rise to the serotype-specific O-antigen known as the B-band while the 

ABC-transporter mediating the assembly of the common antigen referred to as the A-band, 
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giving rise to two populations of LPS molecules, which co-exist in the same cell (Lam, et al., 

2011). Recently, sequencing of the Vibrio de O31 genome also revealed the presence of both 

gene clusters in this microorganism (Aydanian, et al., 2011). 

ABC-dependent O-antigen assembly machinery does not employ Wzz proteins but 

utilizes a completely different mode of chain length regulation. The length of the O-antigen in 

this system is regulated either by a covalent modification of the terminal carbohydrate residues, 

as exemplified by methylation in E. coli O9a (Clarke, et al., 2004), or appears to depend on 

stoichiometry of the ABC-transporter relative to other components of the O-antigen biosynthetic 

machinery, as was shown to be the case in Klebsiella pneumoniae O2 (Kos, et al., 2009). 

Discovery of the Synthase-dependent O-antigen assembly 

mechanism 

In addition to the two pathways utilized for O-antigen export and assembly described 

above, Whitfield and Keenleyside identified yet another O-antigen assembly pathway 

operational in the Salmonella enterica O54 serotype (Keenleyside & Whitfield, 1996). In this 

organism, the O-antigen appears to be polymerized by a protein from a processive 

glycosyltransferase family known as the synthase, which also includes proteins involved in the 

synthesis of various bacterial polysaccharides, such as hyaluronan and chondroitin, as well as 

bacterial cellulose (Romling, 2002, Weigel & DeAngelis, 2007). Molecular details of this mode 

of O-antigen assembly still remain elusive. Synthase-dependent O-antigen polymerization in 

Salmonella enterica O54 is WecA dependent and proceeds on undecaprenyl-pyrophosphate 

(Keenleyside, et al., 1994). The details of the chain-length regulation of the synthase-made O-

antigens are not currently established but in Gram-positive organisms the length of the polymer 

appears to be controlled by the cytosolic levels of specific nucleotide-sugar precursors (Forsee, et 
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al., 2009). The synthase is assumed to be involved in the simultaneous export and 

polymerization of the carbohydrate polymer operating on a range of lipid acceptors. Moreover, 

different synthases appear to extend the polymer chain at either the reducing (Tlapak-Simmons, 

et al., 2005) or non-reducing end (Forsee, et al., 2009). It remains to be seen which molecular 

mechanisms underlie the function of the synthase involved in the O-antigen assembly in Gram-

negative enteric bacteria.  

Overview of the ECA biosynthesis 

Yet another highly abundant polysaccharide decorating bacterial surfaces was discovered 

in the 1960s. Unlike the O-antigen, this polysaccharide was found to be remarkably conserved 

across all Enterobacteria (Kunin, et al., 1962, Kunin, 1963) and was thus named the 

Enterobacterial Common Antigen or ECA (Mäkelä & Mayer, 1976). Its chemical structure was 

fully elucidated in 1983 when it was determined that it consists of a trisaccharide repeat unit 

composed GlcNAc, N-acetyl-D-mannosaminuronic acid (ManNAcA), and 4-acetamido-4,6-

dideoxy-D-galactose (Fuc4NAc) (Mänel & Mayer, 1978, Lugowski, et al., 1983). The pathway 

for the ECA polysaccharide assembly was found to share many similarities with the O-antigen 

biosynthesis. Individual repeat units of both polymers are assembled on the same C55 isoprenoid 

lipid carrier, undecaprenol diphosphate (Rick, et al., 1998). Both pathways utilize the same 

initiating enzyme (WecA in E. coli) for the formation of the undecaprenyl-diphosphate linked 

sugar intermediate, which serves as a primer for the subsequent repeat unit assembly (Barr & 

Rick, 1987). Furthermore, it is widely accepted that the ECA biosynthesis pathway utilizes the 

same general mechanism of chain elongation mediated by the WzyE polymerase (Barr, et al., 

1999, Kajimura, et al., 2005). Moreover, much like the O-antigen, the length of the ECA chains 
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exhibit a modal length distribution which is being regulated by a dedicated ECA chain-length 

regulator protein encoded by a wzzE gene (Barr, et al., 1999).  

Unlike the O-antigen, however, ECA molecules bound to the lipid A can only be 

observed in the bacterial strains incapable of producing the O-antigen (Mäkelä & Mayer, 1976). 

In a vast majority of bacterial species, the ECA present in the outer membrane is found 

covalently bound to the phosphoglyceride via a phosphodiester linkage (ECAPG) (Kuhn, et al., 

1983). Another subpopulation of ECA molecules is found in the periplasm in a water-soluble 

lipid-free form and is referred to as ECAcyc owing to its cyclic nature (Dell, et al., 1984, 

Kajimura, et al., 2005). Both forms of ECA are assembled by the same enzymatic machinery, 

consisting of dedicated flippase and polymerase proteins (encoded by wzxE and wzyE genes 

respectively) (Rick, et al., 2003, Kajimura, et al., 2005).  

Bacteriophage-induced O-unit modifications 

Even before the biochemical basis of the O-antigen biosynthesis was uncovered, it was 

realized that the chemical structure of the monosaccharides making up the O-antigen repeat unit 

can be modified as a result of the prophage integration in several Salmonella species (Iseki & 

Sakai, 1953). This phage-induced conversion of the O-antigen structure was thought to confer 

the resistance to other homologous phages, which may use the O-antigen as a recognition 

receptor for cellular entry (Lerouge & Vanderleyden, 2002). O-antigen modifications range from 

the addition of the O-acetyl and glycosyl groups to selected sugar residues, to the alternation of 

the chemical linkage between the consecutive repeat unit oligosaccharides (reviewed in (Lerouge 

& Vanderleyden, 2002)).  

Early studies of phage-mediated serotype conversion revealed that phages rely on their 

own enzymatic machinery to accomplish modification of the O-units. Robbins and colleagues 
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had shown that the lack of the O-unit acetylation in Salmonella anatum upon the infection with 

the lysogenic phage 15, was due to repression of the endogenous trans-acetylase protein 

(Robbins, et al., 1965). The same 15 phage was also known to change the nature of the 

glycosidic linkage between the consecutive repeat O-units from -galactosyl to -galactosyl 

type. Losick demonstrated that the phage utilizes an inhibitor of the native bacterial polymerase 

and employs its own polymerase to alter the type of the anomeric linkage (Losick, 1969). A 

strikingly similar type of the O-unit modification mechanism was found deployed by the 

lysogenic phage D3 involved in the P. aeruginosa serotype conversion some thirty years later 

(Newton, et al., 2001). The D3 bacteriophage-encoded short hydrophobic peptide known as Iap 

was found to suppress the long O-antigen production by associating with the endogenous Wzy 

polymerase through the transmembrane helix-mediated interactions (Taylor, et al., 2013).  

Further understanding of the molecular mechanisms underlying phage-mediated rewiring 

of the O-antigen biosynthetic pathways has been greatly advanced as a result of the work carried 

out on Shigella flexneri throughout the 1990s and 2000s. In 1991 Verma had identified a phage 

protein responsible for the O-acetylation of the third rhamnose residue within the tetrasaccharide 

repeat unit. This protein was an inner membrane O-acetyl transferase (Verma, et al., 1991).  

Glucosylation was recognized to be yet another common phage-induced modification of 

the Shigella flexneri O-antigen repeat unit and, depending on the bacteriophage, can occur on 

any one of the four monosaccharides making up the O-unit. The prophage proteins responsible 

for this type of modification were identified in the late 1990s. Morona and colleagues (Mavris, et 

al., 1997) and Huan and colleagues (Huan, et al., 1997) demonstrated that glucosylation is not 

catalyzed by a single gene product but is rather dependent on three integral membrane proteins 

known as the GtrA, GtrB, and GtrX. The first two genes are fairly well conserved and are 
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exchangeable among the different serotypes but the latter is very divergent and encodes a 

serotype specific glucosyl transferase (Guan, et al., 1999). Guan and colleagues proposed a 

model based on the experimental evidence, which states that the glucose residue is transferred to 

the growing O-antigen in the periplasmic space from the undecaprenyl-phosphate-glucose 

intermediate via the action of GtrX. GtrB was demonstrated to catalyze the transfer of glucose-

phosphate to the undecaprenyl lipid carrier on the cytosolic face of the inner membrane, while 

GtrA was shown to mediate the transfer of the undecaprenyl-phosphate-glucose conjugate to the 

periplasm. 

Interestingly, bacteriophage induced O-antigen glucosylation has been directly linked to 

the invasiveness of Shigella flexneri in the rabbit model of shigellosis (West, et al., 2005). West 

and colleagues established that the Gtr protein mediated glucosylation of the O-antigen building 

blocks results in more compact and overall shorter O-antigen chains, which greatly enhances the 

function of the type III secretion system used to deliver effector virulence factors into the host 

cells (West, et al., 2005). This finding further underscores the importance of an in-depth 

understanding of the molecular basis for the O-antigen modifications by bacteriophages as it may 

have far reaching therapeutic implications. 

Future Directions 

Despite a significant progress over the past 60 years in understanding the genetic, 

biochemical and structural basis for O-antigen biosynthesis (Figure 4), a number of critically 

important questions remain to be answered.  

The precise mechanism governing the O-antigen chain length control still remains 

elusive. Interaction of the chain-length regulator proteins with the growing O-antigen chain 
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needs to be rigorously investigated to gain some insights into how these proteins regulate the 

length of the growing chain with little dependence on the chemical structure of O-units. The 

existence of the Wzy-Wzz protein complex has been a long-lasting uncertainty and to date their 

physical association in the inner membrane has not been resolved. Are these the only interactions 

among the components of O-antigen synthesizing machinery? Based on genetic interactions, the 

Wzx flippase has also been proposed to be part of the O-antigen biosynthesis multiprotein 

assembly (Marolda, et al., 2006). This has to be investigated further. Biochemical 

characterization of these protein-protein interactions will be essential to gaining insights into the 

organization of the cellular O-antigen biosynthesis apparatus. A major high throughput 

proteomic effort is currently underway, aimed at identification of the membrane-bound protein 

complexes in E. coli K-12 by TAP-tagging and mass spectrometry (A. Emili and M. Babu, 

personal communication). This approach holds great potential for confirming or refuting the 

presence of physical associations among the aforementioned components of the O-antigen 

processing machinery. 

Structural analysis of other proteins involved in the assembly of the O-antigen, aside 

from the polysaccharide co-polymerases, so far has been limited either to the topology mapping 

or to the modeling approaches (Islam, et al., 2010, Islam, et al., 2012). These difficulties have 

been mostly attributed to the inner membrane-residence of many of the key players involved. Yet 

the precise understanding of the O-antigen maturation will require establishing atomic-level 

snapshots of the O-antigen assembly process including reaction intermediates. High resolution 

atomic models of the Wzy-polymerase, Wzx flippase and WaaL ligase along with their 

substrates would constitute a major breakthrough toward understanding the catalytic mechanisms 

of these oligosaccharyltransferases. Recent advances in membrane protein crystallography 



 28 

including more effective expression and purification methods (Wagner, et al., 2006), novel 

crystallization approaches (Cherezov, 2011, Ujwal & Bowie, 2011), along with the rapid 

development of micro-focus synchrotron beamlines allowing data collection from smaller 

crystals, make structural studies of these proteins achievable.                 

Another unanswered question has to do with the molecular mechanism of O-antigen 

transport to the bacterial surface. The components responsible for the LPS transport have been 

identified in E. coli K-12, which lacks O-antigen polymers (Wu, et al., 2006, Sperandeo, et al., 

2007, Sperandeo, et al., 2008). They were proposed to shuttle LPS to the surface using the 

energy of the cytosolic ATP hydrolysis through a trans-envelope spanning translocation channel 

(Okuda, et al., 2012). It appears, however, that they recognize the lipid A portion only and are 

‘ignorant’ as to the presence of O-antigen polymers decorating their cargo (Sperandeo, et al., 

2009). It is not clear as to how the transport system can accommodate such a high molecular 

weight modification; this will require establishing a better understanding of the intracellular 

architecture of the LPS transport machinery at the atomic level. Work by the Kahne group 

utilizing incorporation of the unnatural amino acid and UV cross linking demonstrates that the 

LPS molecules are shielded from the hydrophilic environment of the periplasm by binding 

within the -jellyroll fold of LptA and LptC proteins with core oligosaccharides presumably 

facing the solvent (Okuda, et al., 2012). A structural snapshot of the LptA/C-LPS complex 

would clarify how the LPS transport machinery may accommodate O-antigen polysaccharides. 

The same question applies to the outer-membrane LPS exit tunnel formed by the plugged -

barrel complex consisting of the LptD (-barrel) and LptE (the plug) proteins (Freinkman, et al., 

2011). LPS molecules traverse the outer membrane through the LptD-LptE channel before being 

incorporated into the outer leaflet of the outer membrane and, indeed, the purified LptE protein 
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was shown to bind LPS (Chng, et al., 2010). Teasing out the structural details of LptE-LPS 

interaction would be necessary to rationalize how O-antigen bearing LPS molecules may be 

exported to the cell surface. 

Precise spatial organization of the O-antigen assembly factories is not currently well 

understood. Early work by Muhlardt and colleagues utilizing whole-cell electron microscopy-

based analysis of S. Typhimurium indicated that the newly made LPS molecules emerge at 

specific sites found on bacterial surface before being evenly distributed throughout the outer 

membrane. Interestingly, the authors noticed a co-localization of the newly synthesized LPS 

molecules with adhesion sites connecting the outer and inner membrane (Muhlradt, et al., 1973), 

frequently referred to as Bayer junctions (Bayer, 1979, Bayer, et al., 1987, Bayer, 1991). The 

trans envelope spanning passage formed by the LPS transporting Lpt proteins may in fact 

represent adhesion sites between an outer and an inner membrane observed by Muhlradt and 

Bayer (Bayer, 1979, Bayer, et al., 1987, Bayer, 1991). However, the very existence of Bayer 

junctions has been controversial and could not be unequivocally confirmed by other electron 

microscopy studies (Matias, et al., 2003). Recent technological advances in cryo-electron 

microscopy and cryo-electron tomography (Rigort, et al., 2012, Grigorieff, 2013, Lucic, et al., 

2013) should allow the resolution of these intriguing outstanding questions. By obtaining three 

dimensional views of various bacterial sub-compartments and docking high resolution atomic 

structures of individual components into the tomography maps, understanding of the spatial 

organization of the O-antigen assembly and export machinery in the enteric bacteria will be 

greatly advanced.  
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Figure legends 

Figure 1. Maturation and export of O-antigens to the cell surface. A) Wzy-dependent pathway: 

The lipid and oligosaccharide core components of lipid A are synthesized by the Lpx 

pathway and by the sequential action of glycosyl transferases, respectively (I). Lipid A is 

flipped into the periplasm by an ABC-transporter MsbA (II). O-units are synthesized via 

glycosyltransferases in a step-wise fashion on the undecaprenyl diphosphate lipid anchor 

(1) and are transported into the periplasm by Wzx flippase (2). In the periplasm, the O-

units undergo polymerization by Wzy polymerase (3) to yield mature O-antigens of 

certain length. The length of the O-antigen polymer is controlled by Wzz. The O-antigens 

are transferred to the lipid A outer core by WaaL ligase (4). The LPS-Oag complex is 

extracted from the inner membrane by LptBFG complex (5) and is transported to the 

outer membrane via a transenvelope passage formed by LptC and LptA proteins (6). At 

the outer membrane, LPS-Oag is recognized by LptE-LptD proteins, which complete its 

transfer to the surface; B) ABC-transporter dependent O-antigen biosynthesis: O-antigens 

are assembled in the cytosol by corresponding glycosyltransferases (1) and are 

transferred to the periplasm via an ABC-transporter (2). Mature O-antigens are ligated to 

the outer core of the lipid A via WaaL ligase (3). The polymers are transported to the cell 

surface as described in A. 

Figure 2. Outline of the cytosolic O-antigen synthesis initiation reaction involving a transfer of 

an activated nucleotide sugar donor to the undecaprenyl phosphate acceptor catalyzed by 

either A) a polyisoprenyl-phosphate N-acetylhexosamine-1-phosphate transferase 

(PNPT) (WecA) mediating the transfer of N-acetyl-glucosamine-phosphate to the 

undecaprenyl-phosphate yielding undecaprenyl diphosphate-N-acetyl-glucosamine or B) 
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a polyisoprenyl-phosphate hexose-1-phosphate transferase (PHPT) WbaP catalyzing the 

transfer of galactosyl-phosphate to the undecaprenyl phosphate and yielding 

undecaprenyl-diphosphate-galactose.  

Figure 3. Electron micrograph of Escherichia coli published by Shands in 1965, where the O-

antigen was labeled with a ferritin-coupled antibody to demonstrate the cellular 

localization of the O-antigen polysaccharide chains (reproduced with permission from the 

publisher). 

Figure 4. The timeline of the key discoveries underlying the understanding of the O antigen 

biosynthesis.  
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 58 

Figure 4 

 


