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ABSTRACT 

In mass spectrometry (MS), negative ions can be formed by many ion sources, and although 

sometimes less predominant than their cationic counterparts, they can be observed and 

studied to provide complementary molecular, ionic structure and mechanistic information. 

The research presented in this thesis investigates the production and use of negative ions for 

the structural determination of underivatised peptides and proteins and some post-

translationally modified peptides and proteins. An additional application of this research is to 

determine the structure and membrane interaction of some peptides isolated from Australian 

amphibians. 

Phosphorylated Tyr (pTyr) containing peptides undergo SNi cyclisation of the C-terminal 

carboxylate anion at the P of the pTyr to effect transfer of PO3H2 to the C-terminal position. 

(A similar phosphate rearrangement from pTyr to side-chain carboxylate sites or to the side 

chains of Ser/Thr also occurs). Following proton transfer, several rearrangements initiated by 

this phosphate anion can occur, including a specific cyclisation to, and cleavage of, the 

peptide backbone at the central C of the penultimate amino acid residue. When a peptide 

contains two/three phosphate side chains, phosphate groups undergo phosphate/phosphate 

cyclisation to form characteristic di-/tri-phosphate anions. The mechanisms of all 

fragmentation processes are suggested with the assistance of ab initio theoretical 

calculations. 

The major negative-ion fragmentation of Tyr sulfate containing peptides is [(M-H) - SO3]
-
 

and this process normally yields the base peak of the spectrum. Rearrangement reactions 

involving the formation of HOSO3
-
 and [(M-H)

 
- H2SO4]

-
 yield minor peaks with relative 

abundances ≤ 10% and ≤ 2% respectively. A Ser sulfate containing peptide, in contrast, 

shows pronounced peaks due to cleavage product anions [(M-H)
 
- SO3]

-
 and HOSO3

-
. 

Theoretical calculations at the CAM-B3LYP/6-311++g(d,p) level of theory suggest that 

rearrangement of a Ser sulfate to give C-terminal CO2SO3H is energetically unfavourable in 

comparison with fragmentation of the intact Ser sulfate to yield [(M-H) - SO3]
-
 and HOSO3

-
. 

[(M-H) - H2SO4]
-
 anions are not observed in the spectra of peptides containing Ser sulfate, 

presumably because HOSO3
-
 is a relatively weak gas-phase base (Gacid = 1265 kJ mol

-1
). 

The peaks corresponding to anions formed following cyclisation of the sulfate groups are not 

detected in the spectra of energised (M-H)
- 
ions of Ser disulfate containing peptides.  
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Proteolytic digest/negative ion nanospray MS was used to determine the five disulfide units 

and much of the amino acid sequence of ricin, addressing both ricin detection and structural 

confirmation. Negative ion MS is found to be more effective than positive ion MS in 

identification and sequencing disulfide bridged peptides. While positive ion MS only 

provides partial sequences of disulfide containing peptides and often does not specify the 

positions of disulfide resides, negative ion MS gives clear evidence for the presence and 

positions of disulfide linkages via characteristic fragmentations. 

The skin peptide profiles of the red tree frog Litoria rubella (L. rubella) from three locations, 

namely Flinders Ranges, a region of south-western Queensland and Longreach 

(Queensland), have been investigated in an eight-month survey. Nine peptides were 

identified primarily using MS. While the secretion from the L. rubella frogs from Flinders 

Ranges consists of only the major peptide, tryptophyllin L1.2; the L. rubella frogs from the 

south-western Queensland and Longreach (Queensland) produce a number of small 

tryptophyllin peptides and two rubellidins (caeridin type). The primary structures of the 

major peptide tryptophyllin L1.2 and the two rubellidins (caeridin type) 4.1 and 4.2 were 

determined previously. The noticeable findings were the discovery of three tryptophyllin 

metabolite containing peptides including tryptophyllin L1.6, 1.7 and 1.8. The peptide 

profiles of these frog populations added more information about the evolutionary divergence 

of this genus. 

Schwyzer and Zerbe have proposed that certain neuropeptides can transfer from extra-

cellular fluid to attach to a cell membrane prior to moving from that membrane to the 

adjacent active site of a transmembrane receptor. There are differences in the detailed 

mechanisms proposed but the key feature is the initial addition of the neuropeptide to the 

membrane. The Quartz Crystal Microbalance technique with Dissipation (QCM-D) was used 

to see whether certain amphibian neuropeptides are able to add to a mammalian model 

bilayer without destroying that membrane. It appears that the peptides may have different 

modes of interaction with the membrane depending upon overall charges, the charge 

densities, the secondary structures and the free energies of transferring (to water-membrane 

interface and to membrane interior), and that the membrane binding may take part but not 

play a requisite role in a receptor-binding process. 



 Chapter 1: Mass spectrometry based proteomics: an overview 

 1  

CHAPTER 1 

MASS SPECTROMETRY BASED PROTEOMICS: AN OVERVIEW 

1.1 Introduction to mass spectrometry based proteomics 

The fact that the human genome has barely more genes than that of the fly or worm indicates 

that human complexity cannot simply be rationalised by the size of the genome but rather by 

the way the gene products (RNA or proteins) are modified or interact [1]. The systematic 

study of all proteins expressed in a genome, namely proteomics, therefore becomes the focus 

of life science. 

Unlike the relatively unchanged human genome, which consists of about 21,000 genes, the 

dynamic proteome with an estimated size of more than 1 million proteins keeps changing in 

accordance to intracellular and extracellular stress from time to time [2-4]. The increase in 

complexity from the level of the genome to the proteome is due to two mechanisms. The 

first route is by alternative mRNA splicing, resulting in the production of multiple proteins 

from a single gene [5]. The second route is via covalent post-translational modifications 

(PTMs) occurring on the side chains or peptide backbone of nascent proteins after the 

translation process [4, 6]. 

By definition, proteomics not only can provide the protein complement of a given cell at a 

given time but also can reflect the interaction between proteins in a cell, thus opening a 

window into complex cellular regulatory networks. In the biomedical field, proteomics can 

ideally shed light into the causes of disease or identify the initiator of a disease process [3]. 

In order to achieve these ambitious goals, the covalent structures of proteins in a cell must 

firstly be obtained. Such a task is challenging due to the complexity of the cellular proteome 

and the low abundance of modified proteins. In the context of the development of various 

techniques for protein characterisation, mass spectrometry (MS) has emerged as a major 

technique [7-9]. Protein analysis using MS has been rapidly advancing owing to the 

development of MS instrumentation and related methodologies (see section 1.2). However, 

proteomics still faces many technical and experimental challenges, especially related to the 

unambiguous identification of some PTMs (see section 1.10). 
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1.2 Mass spectrometry of peptides and proteins 

MS is an analytical technique used to measure the molecular mass of analytes. This 

technique is based on the generation, separation and detection of ions in the gas phase 

according to their mass-to-charge ratios, providing a means for the elucidation of the 

chemical composition and the structure of molecules. Although the earliest concept of MS 

was introduced in the early 1900s, it was not until 1960s that the success of ionisation of 

large, polar and non-volatile molecules made MS applicable to the solution of biochemical 

and biological problems [10-14]. Since then, MS has become an increasingly valuable tool 

used to examine the structures of peptides/proteins, protein complexes, as well as protein 

interactions. Improvements in MS and tandem MS instrumentation have greatly advanced 

the selectivity, sensitivity and the mass range for peptides and proteins to be detected [15]. 

Peptide and protein identification using MS is determined by the interplay between MS 

instrumentation and gas-phase peptide chemistry. While MS instrumentation defines the 

ways by which peptide and protein molecules are ionised, activated and detected, factors of 

peptide/protein charge state, size, composition and sequence affect the bonds and the rate at 

which these molecules are cleaved in gas phase. Among these factors, developments in 

ionisation, activation methods and mass analysers have contributed significantly to the 

enhancement of the examination of peptide and protein structures. Ionisation techniques 

have progressed from “hard ionisation” to “soft ionisation” such as electrospray ionisation 

(ESI) and matrix assisted laser desorption ionisation (MALDI). These techniques minimise 

the fragmentation of parent ions within the source; allow direct analysis of large, polar and 

non-volatile molecules and are thus well-suited for investigation of thermally labile proteins 

and their complexes [9, 15].  

Different types of mass analysers have evolved along with the development of ionisation 

methods. The early single-magnetic-sector instrument was quickly superseded by double-

sector and tandem-double-sector instruments consisting of both a magnetic and an electric 

component. These have greatly enhanced the resolution, sensitivity and mass range of 

peptides and proteins studied. Four types of mass analysers commonly used now are the 

quadrupole mass analyser, time-of-flight (TOF), quadrupole ion-trap (Q-IT) and fourier 

transform ion cyclotron resonance (FTICR) [16].  



 Chapter 1: Mass spectrometry based proteomics: an overview 

 3  

Some mass analysers can be combined to generate tandem (MS/MS) or MS
n
 instruments [9, 

17-19], known as tandem in space mass spectrometers, such as triple quadrupole (Q-Q-Q) 

[20], quadruple time-of-flight (Q-TOF) [21], TOF-TOF [22], quadrupole linear ion trap (Q-

Q-LIT) [23] and linear-trap-quadrupole Orbitrap (LTQ Orbitrap) [24-26]. In contrast, 

tandem in time instruments refer to mass spectrometers which isolate and fragment ions in 

the same mass analyser with isolation, activation and detection steps being a sequence of 

events separated in time. Linear-trap-quadrupole (LTQ) [27] and FTICR [16] are examples 

of this category. Each has its own strengths and limitations for the analysis of peptides and 

proteins. The characteristics of some commonly used tandem mass spectrometers are 

displayed in Table 1.1. 

Table 1.1. Characteristics of commonly used mass spectrometers in proteomic analysis [8, 

28]. Check marks indicate available, check marks in parentheses indicate optional. +, ++, 

and +++ indicate possible or moderate, good or high, and very high or excellent, 

respectively. Seq., sequential. 

 

IT-

LIT 

Q-Q-

TOF 

TOF-

TOF 

LTQ 

Orbitrap 
FT-ICR Q-Q-Q Q-Q-LIT 

Mass accuracy Low Good Good Excellent Excellent Medium Medium 

Resolving power Low Good High 
Very 

high 

Very 

high 
Low Low 

Sensitivity  Good 
 

High Medium Medium High High 

Dynamic range Low Medium Medium Medium Medium High High 

ESI ✓ ✓ 
 

✓ ✓ ✓ ✓ 

MALDI (✓) (✓) ✓  
   

MS/MS capabilities ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Additional 

capabilities 
Seq. MS

n 
 

Precursor, neutral loss 

monitoring, MRM 

Identification ++ ++ ++ +++ +++ + + 

Quantification + +++ ++ ++ ++ +++ +++ 

Throughput +++ ++ +++ ++ ++ ++ ++ 

Detection of 

modifications 
+ ++ + + +   +++ 
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Proteomic analysis typically involves the isolation and gas-phase dissociation of selected 

precursor ions in tandem mass spectrometers. The resultant product ions can be subjected to 

further fragmentation reactions, which is termed MS
n
 (n-1 is the number of isolation and 

fragmentation rounds), so that structural information can be extracted from mass analysis. 

Some gas-phase dissociation methods include collision-induced dissociation (CID; also 

known as collision-activated dissociation CAD) [29], surface-induced dissociation [30], 

infrared multi-proton dissociation (IRMPD) [31], ultraviolet photodissociation (UVPD) [32], 

femto-second laser induced ionisation dissociation (fsLIID) [33], electron capture 

dissociation (ECD) [34-36], electron transfer dissociation (ETD) [37-38], electron ionisation 

dissociation (EID) [39], and electron-induced dissociation (eID) [40]. Of these techniques, 

CID, ECD and ETD are normally employed to study peptides/proteins and protein 

complexes, especially post-translational modified peptides/proteins [38, 41-42]. 

1.3 Electrospray ionisation 

The idea of production of large gaseous molecular ions from highly charged droplets was 

first suggested by Malcolm Dole in the early 1960s [11] and developed further to the 

electrospray ionisation technique by John Fenn [13]. Electrospray ionisation (ESI) is a 

method that can transfer molecules in solution into the gas phase as ions (Figure 1.1). This 

provides a way to ionise high mass and non-volatile analytes such as polymers, nucleic acids 

and proteins [12, 43-45]. 

The production of isolated gaseous ions from solutes in solution at atmospheric pressure can 

be described as a three-step process, namely (i) formation of charged droplets at the 

electrospray capillary tip; (ii) reduction in size of the charged droplets by solvent 

evaporation to produce very small highly charged droplets; and (iii) production of gas-phase 

ions from very small highly charged droplets. In the first step, the sample is dissolved in a 

polar, volatile solvent and pumped through a narrow, stainless steel capillary (75-150 m) at 

a flow rate of between 1 l/min and 1 ml/min. A potential difference of 2-3 kV is applied 

between the electrospray needle and the counter electrode. Penetration of the imposed 

electric field into the solution at the capillary tip causes polarisation and orientation of 

induced dipoles of the solvent molecules inducing the solution to conduct. This leads to the 

accumulation of the electrolyte ions (with the same polarity as the charge on the needle) near 

the surface of the meniscus, which distorts the liquid surface into a conical shape known as a 
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“Taylor cone”. As the charge intensity at the meniscus increases, the Taylor cone is 

elongated into a jet form that then produces charged droplets as the surface tension exceeds 

the electrostatic force. The approximate equation for the required electric field Eon at the 

onset of droplets’ formation was established by D. P. H. Smith as follows [46-48];  

Eon

2/1

cos2










cor



 

The potential Von required for the onset of electrospray derived from the electric field Eon is 

given by following equation; 

Von 

)/4ln(
2

cos
2/1

0

c
c rd

r















 

where  is the surface tension of the solvent, o is the permittivity of vacuum, rc is the radius 

of the capillary and  is the half-angle for the Taylor cone. 

 

Figure 1.1. Schematic representation of the ESI process. Adapted from [46]. 

As the droplet travels from the needle tip to the cone, solvent evaporation occurs. The 

droplet shrinks until it reaches the point where the surface tension can no longer sustain the 

charge. At this point, the Coulombic force overcomes the cohesive surface tension force 

which causes the droplet to disintegrate. Fission and evaporation re-occur to produce smaller 

analyser (10
-4

-10
-5 

mbar) 

1 mbar 

counter electrode 

sampling cone/orifice 

drying gas 

 solute 

 nebulising gas 

 atmospheric pressure 

skimmer 
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progeny droplets until they only retain few elementary charges with radii in the nanometre 

range. The Rayleigh equation provides the condition for the Coulomb instability as follows; 

2/13)(8 RQ oRy 
 

where QRy is the charge on the droplet,  is the surface tension of the solvent, R is the radius 

of the droplet and o is the permittivity of vacuum. 

Two mechanisms have been suggested to explain the formation of gas-phase ions from very 

small and highly charged droplets. These are the charged residue model (CRM) and the ion 

evaporation model (IEM). The first mechanism proposed by Dole et al. [11, 49] stated that 

continuous solvent evaporation of the charge droplet can lead to the creation of a droplet 

containing one analyte molecule and some ionic charges. In contrast, the IEM suggested by 

Iribarne and Thomson [50] proposed that gaseous ions can be emitted directly from a highly 

charged droplet as soon as the droplet size is reduced to less than 10 nanometres in radius. 

This is due to charge repulsion among the analyte ions in the droplet. While the IEM was 

determined by investigation of small analyte ions such as NaCl, the validity of the CRM has 

been confirmed by investigation of denatured and non-denatured proteins and protein 

complexes [49, 51]. According to the CRM, the solvent evaporation process can result in 

charged droplets containing not only one protein molecule but also dimers, trimers and 

higher multimers of proteins. Experimental observations indicate that the monomers occur 

predominantly, while the abundance of dimers and trimers are much lower and decrease with 

an increase in multimerisation [52]. 

Peptides and proteins are inherently charged analytes since they contain multiple acidic and 

basic residues and can be deprotonated or protonated in the bulk solution or in the 

electrospray droplets. The charging of a protein/peptide is normally assisted by the presence 

of a small amount of an acid such as acetic/formic acid or a base such as ammonium 

hydroxide/triethylamine. Electrospray therefore serves to separate the charged 

peptide/protein from their counter ions and transfer them into the gas phase. However, the 

protonated/deprotonated ions of peptides/proteins formed in solution are not necessarily the 

final ion forms of peptides/protein in gas phase. This is because protons can be transferred 

among the analyte ions and between analytes and solvent molecules due to the difference in 

their gas-phase basicities [48, 53-56]. The charged peptides/proteins can also ion-pair with 
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impurities such as Na
+
, K

+
, Cl

-
, F

-
, NH4

+
 and other ions from glass containers or solvents to 

form adduct ions [57-60]. In the gas phase, protein-Na
+
/K

+
 bonding is so strong that the 

Na
+
/K

+
 forms of peptides/proteins are commonly observed if there is a trace amount of the 

salt present in the solution [55]. Furthermore, the electrospray response of a particular 

peptide/protein ion from an analyte mixture also depends on the surface activity, the ability 

of this peptide/protein to compete for excess charge (the charge on the surfaces of droplets) 

[61-63].  

The choice of solvent composition has been found to have a significant effect on the 

electrospray process. Buffered aqueous solvents are normally the first choice for the solvent 

system in proteomic analysis. However, the use of only water as solvent can initiate electric 

discharge due to its high surface tension. The occurrence of electric discharge is manifested 

by the formation of the solvent cluster (e.g. H3O
+
(H2O)n) which degrades the electrospray 

performance [64-65]. Organic solvents are commonly added to reduce this risk and to assist 

the spraying process. The solvents often used in ESI are a mixture of methanol-water or 

acetonitrile-water. Peptides/proteins which are sensitive to organic compounds can be partly 

denatured in these solvents [66], leading to an increase in the charge state and also a 

characteristic broadening of charge distribution of these peptides/proteins relative to their 

native states [67-68]. In addition, other factors such as the surface tension and vapour 

pressure of solvents have been found to affect the ESI of peptides/proteins [69-71]. A 

significant increase of absolute abundance of high charge states of peptides/proteins and 

synthetic polymer ions is normally observed when certain solvents such as glycerol and 

m-nitrobenzyl alcohol are added into the electrospray solvent. Such a supercharging 

phenomenon is preliminarily brought about by increasing the surface tension of the charged 

droplets by adding of these solvents [69, 72]. Replacement of one organic solvent by another 

may result in a change in the charge state; for instance, the charge state of an analyte is 

gradually enhanced with a change from isopropanol to acetonitrile to methanol [73].  

1.4 Nanospray 

Nanospray is a “microspray” version of ESI, developed by Wilm and Mann [74-75] in order 

to improve the sensitivity and ionisation efficiency of the electrospray technique. A spray 

capillary (metal-coated glass needle) with the entrance end opened is used instead of a 

driven syringe as in ESI. The flow is induced by the pull of the applied electric field on the 
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solution at the capillary tip (diameter of 1-2 m). The droplets produced are usually 1000 

times smaller than those formed by the conventional ESI and evaporate rapidly to generate 

gas-phase ions. The capillary tip therefore can be located close to the sampling orifice, 

minimizing sample loss due to travelling of spraying droplets from the capillary tip to the 

sampling cone. The volume of sample consumed by nanospray is much smaller than ESI in 

the same time period due to its low flow (nl/min). Therefore, a small volume of analyte of 0.2-

10 l is sufficient to obtain a good mass spectrum. In addition, nanospray ionisation can be 

performed in neat water solvent without causing electric gas discharges. It is also less 

affected by contaminants in the solution compared to ESI [76-80].   

1.5 The Q-TOF 2 mass spectrometer 

Most mass spectrometric work in this thesis was carried out using a Q-TOF 2 hybrid 

quadrupole time-of-flight mass spectrometer. A schematic diagram of the principal 

components of this instrument is presented in Figure 1.2.  

 

Figure 1.2. Schematic diagram of the Q-TOF 2 mass spectrometer [78]. 
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In the Q-TOF 2, the TOF analyser that works as a mass resolving device is placed in an 

orthogonal position to the quadrupole mass analyser and the ion source. The quadrupole 

serves as an ion guide device in MS mode and as a mass selection device (mass filter) in 

MS/MS mode. The quadrupole and TOF analyser in the Q-TOF are separated by a hexapole 

collision cell. In the Z-spray ion source, ionisation in the gas phase is achieved by ESI. The 

resulting ions are drawn through the sample cone to the first analyser by application of an 

electric potential. Manipulation of the applied cone voltage can favour the selection of 

different mass-to-charge ratio ions. Generally, the higher the cone voltage employed, the 

larger the m/z ions and lower charged forms which are attracted into the analyser [81]. 

The quadrupole sector is comprised of four parallel rods (Figure 1.3). Fixed direct current 

(DC) and alternating radiofrequency (RF) potentials are applied on these rods to produce an 

electric field. Ions are introduced as a beam along the central axis of the rods. They 

experience forces from the electric field that cause them to oscillate toward and away from 

the rods (Figure 1.3). For a specific set of DC and RF potentials, only ions of particular m/z 

can have stable trajectories and are thus transmitted to the detector. All other ions with an 

unstable motion will be ejected from the quadrupole. Variation in the strength of DC and 

frequency of RF bring ions of different m/z into focus on the detector [78]. 

 

Figure 1.3. Schematic illustration for the operation of a quadrupole analyser. Adapted from 

[82]. 

In the MS mode, the qudrupole is operated in the RF-only mode, which allows ions of all 

m/z ratios to pass through to the pusher. The pusher accelerates ions so that they all possess 

identical translational energy as they enter into the TOF. The ions are pushed by an applied 

potential difference down the TOF tube towards the reflectron where they are 
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electrostatically reflected back towards the detector. All ions with common charge z leave 

the pusher with the same initial kinetic energy K [82]. 

zeVmvK  22/1 (1) (v is the velocity)  

The velocity v is related to the time t for an ion to pass the length (d) of the tube as follows; 

t = d/v (2) 

From (1) and (2),  

2

22

d

Vt

z

m


 

where m/z is the mass-to-charge ratio of the charged molecule; V is the accelerating voltage. 

If the length of the flight tube and the accelerating voltage are fixed, the time it takes for an 

ion to reach the detector depends only on the ion mass-to-charge ratio. Thus, the ion mass-

to-charge ratio can be determined via time-of-flight measurements. 

An ion mirror or reflectron is built in most TOF mass analyser to reduce the effect of initial 

kinetic energy spread. This is due to spatial distribution of ions in the ion source or their 

proximity to the applied electric field which may cause poor mass resolution. A reflectron is 

constructed of a series of evenly spaced lenses onto which a linear electric field is 

applied. The ions that enter the reflectron are gradually repelled due to the potential applied 

cross the lenses. Using the reflection can improve the mass resolution in the TOF due to the 

increase of the flight tube length and the decrease in arrival time distribution. For ions of the 

same m/z but of slightly different initial kinetic energies, the more energetic ions reach the 

reflectron sooner and penetrate deeper into it than the less energetic ions. Accordingly, the 

difference in flight path and time correct the differences in initial kinetic energies of the ions. 

Thus, they arrive at the detector at the same time [83]. 

In MS/MS mode, the ions of interest are selected by the quadrupole analyser and introduced 

into a hexapole collision cell where they collide with an inert gas, resulting in ion excitation 

and fragmentation. This process is known as CID. In a typical Q-TOF instrument, 

dissociation of ions is achieved by low-energy collision (20-100 eV) with heavy gases such 

as Ar or N2 [84]. This normally results in backbone cleavages ions. These ions may undergo 
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further dissociation as they travel through the collision cell to generate internal fragment ions 

and immonium ions [29].  Side-chain fragments are rarely observed in the low-energy 

collision regime in the Q-TOF2 as they are typically formed under charge-remote conditions 

(see section 1.8.1). The product ions are then accelerated and collected via the pusher for 

subsequent mass determination in the TOF.  

 “MS/MS/MS” data can be achieved using the Q-TOF 2 by increasing the cone voltage to 

induce fragmentation of an ion (parent ion) in the ion source. The source formed fragment 

ion is then selected for MS/MS measurement; equivalent to an MS/MS/MS experiment. 

However, these data may suffer from the possibility of the selected “fragment ion” coming 

from a process different from the required fragmentation of the parent ion [85]. 

1.6 Peptide/protein preparation for mass spectrometry 

The prerequisite requirement for MS analysis of peptides/proteins is to reduce the complexity of 

the peptide/protein sample such that the mass spectrometric response of the ions of interest are 

least affected by other ions in the sample. The general preparation of proteins prior to MS 

includes three key steps: (i) protein separation and digestion, (ii) enrichment of peptides of 

interest after digestion, and (iii) desalting of the peptide mixture prior to MS measurements [86]. 

Each of these three steps can be modified or optimized to suit the analytical purpose or strategy, 

the sample analyzed and the experimental setup [8] (Figure 1.4).  

 

Figure 1.4. Peptide/protein separation/purification procedure for MS analysis. Adapted from 

[86].
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1.6.1 Protein separation 

Protein separation can be implemented by gel electrophoresis or high performance liquid 

chromatography (HPLC) techniques or less frequently by affinity capture. Belonging to the 

gel electrophoresis technique group, two-dimensional electrophoresis (2-DE) has been 

established as a robust technique to separate proteins in complex mixtures such as cellular 

extracts. Generally, it distributes proteins in the first dimension based on the difference in 

isoelectric point (pI) using a pH gradient (isoelectric focusing), and in the second dimension 

based on the difference in molecular weight using SDS PAGE (sodium dodecyl sulfate- 

polyacrylamide gel electrophoresis) [87-89]. The choice of detection method for in-gel 

separation is influential to the success of downstream MS analysis since different visualising 

dyes interact with and modify proteins differently [90-95]. Among three general classes of 

in-gel protein detection methods including detection with organic dyes, silver staining and 

fluorescence, Coomassie Blue staining and detection with fluorescence have been reported 

to provide good compromises between the detection sensitivity and MS compatibility [96-

99]. 

     

Figure 1.5. Principle of 2D gel 

electrophoresis separation: the sample is 

loaded onto a pH gradient gel (A), 

inducing proteins of different isoelectric 

points to accumulate at different 

distances from the OH
-
 side (as they 

reach their pI and have no remaining 

electrical charge) (B), the sample is then 

equilibrated in a SDS-containing buffer 

so all proteins are coated by SDS and 

becoming strongly negatively charged 

(C), finally the proteins are separated on 

the second dimension perpendicular to 

the first dimension due to differences in 

the molecular weights as potential 

difference is applied (D). Adapted from 

[91] 
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On the other hand, several types of HPLC techniques commonly used in MS based 

proteomics include ion exchange (IEX), reverse phase high performance liquid 

chromatography (RP-HPLC), hydrophilic interaction chromatography (HILIC) [28]. Among 

these, RP-HPLC has been recommended as the most suitable method for protein/peptide 

fractionation since it uses volatile solvents and results in no salt containing fractions, which 

is therefore compatible with protein digest or direct MS measurement [100]. The RP-HPLC 

separation of any peptide/protein mixture is dependent upon the strength of the hydrophobic 

interactions of each component in the mixture with the hydrophobic stationary phase and the 

elution strength of the organic solvent in the mobile phase. A gradient elution profile with 

concentration of organic solvents increased gradually is applied causing peptides/proteins 

from low to high hydrophobicity to elute [101-102]. Subtle differences in conformation and 

hydrophobicity of the peptides will determine the partitioning behaviour between two phases 

and consequently, the rate at which the peptides will move through the column [103]. 

The stationary phase commonly used in peptide/protein separation is a column packed with 

alkyl-silica sorbent which contains alkyl-terminating chains between 1 to 18 carbon atoms 

(C1 to C18). If carbon loading is high, smaller or more hydrophilic peptides are recovered 

(e.g. C18). In contrast, if carbon loading is lower, the larger or more hydrophobic peptides 

give higher yield, but the smaller, hydrophilic peptides do not bind [81]. Better resolution of 

separation can be achieved by varying the composition, pH and ionic strength of the mobile 

phase. A small amount of an ionic modifier (0.05-0.1% of the solvent volume) is normally 

added to the mobile phase to adjust the pH, solubilise the peptides and minimise ionic 

interactions between the peptides and the stationary phase. Trifluoroacetic acid (TFA) is 

commonly chosen since it gives high resolution separation and is volatile so can be easily 

removed. Peptides in the eluent are detected using an ultraviolet (UV) detector at a 

wavelength of 214 nm, corresponding to the n-π
*
 transition state of the CO bond [104]. 

Acetonitrile is commonly used as the organic solvent due to its low viscosity and is UV 

transparent at 214 nm. 

1.6.2 Protein digestion 

The resultant protein fractions can then be digested in-gel [105] or in-solution [106] 

depending on the previous protein separation method. Alternatively, proteins can be 

transferred from a gel associated state to solution for in-solution digest by electroelution 

[107-109]. However, the removal of SDS by organic solvents or chromatographic techniques 
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normally results in significant sample loss [106]. The common endoprotease used is trypsin, 

which cleaves proteins mainly at the carboxyl side of the amino acids lysine or arginine, 

except when either is followed by proline. Some other proteases such as chymotrypsin, Lys-

C, and Arg-C can also be utilized to deliberately break certain peptide bonds in order to 

improve sequence coverage and generate overlapping peptide fragments [110-112]. For 

instance, Lys-C can be used to differentiate between isobaric Lys and Gln and to determine 

the number and positions of Lys residues in the sequence [113]. Chymotrypsin cleavage at 

hydrophobic residues (Tyr, Phe and Trp) can provide complementary peptides to the tryptic 

digest [114]. Most digest protocols require protein denaturation to facilitate protease access 

to cleavage sites. Denaturants such as urea, guanidine hydrochloride, disulfide reducing 

agents or organic solvents such as acetonitrile or methanol are preferably used. However, 

these agents have to be removed prior to mass spectrometric analysis to avoid signal 

suppression.  

1.6.3 Peptide clean-up prior to mass spectrometry 

The digested peptide mixture is fractionated by HPLC and subjected to MS either online or 

offline. In online mode, where a HPLC device is coupled with a mass spectrometric detector 

(e.g. LC-MS or LC-MS/MS), a filter is fitted prior to the analytical column to remove salt 

excess. TFA commonly used in LC as an ion-pairing reagent is replaced by formic acid to 

eliminate interference with peptide ionisation [115]. Alternatively, offline purification 

employs a pipette tip, spin column, or syringe column to desalt the peptide sample [116]. 

Some commercial devices available for peptide offline clean-up include Millipore ZipTips 

and Nest Group UltraMicrospin columns [86].  

1.7 Peptide/protein sequencing by mass spectrometry 

Characterisation of proteins and protein complexes can be carried out using two mass 

spectrometric approaches including top-down and bottom-up sequencing. While top-down 

sequencing involves direct protein sequencing of an intact protein in the gas phase [117-

122], bottom-up sequencing is a more popular approach that sequences peptide fragments 

formed by protein digestion [9, 19, 120]. In principle, the mass differences of a series of 

consecutive fragments from the N-terminus (e.g. b-ion series; see section 1.8.2) or C-

terminus (e.g. y-ion series; see section 1.8.2) indicate the amino acid content of a 

peptide/protein [123]. This method is known as de novo sequencing, typically performed 
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without prior knowledge of the sequences of peptides and post-translational modifications 

involved [124-126].  

In most cases of proteomic analysis, sequence assignment of a peptide/protein is not always 

unambiguous due to poor fragmentation and missed cleavages. In addition, with high 

throughput MS/MS where many MS/MS spectra can be produced from the digested peptides 

of a protein sample, manual interpretation of all MS/MS data is not feasible. Computer 

software called tandem mass spectrometry search engine is therefore normally utilised to 

assist peptide/protein identification [124, 127-130]. This software matches the experimental 

spectra with peptide sequences from a protein sequence database using different 

algorithms/approaches such as peptide sequence tag [131], cross-correlation [132] and 

probability based matching [133-134]. Each correlation results in a score reflecting the 

statistical significance of the match between the experimental spectrum and the sequences in 

a database. The correlated peptides will then be used to infer the protein content of the 

sample. The choice of protein database thus impacts the sensitivity, specificity and speed of 

the search. Among many commercial search engines available, only a few have become 

commonly used, including Mascot [133], SEQUEST [135-138], X!Tandem [127] and 

OMSSA [139]. Regardless of the increasing expansion of the protein database and the 

software for MS interpretation, peptide/protein sequencing can be difficult sometimes 

because of poor peptide fragmentation, cleavage abnormalities, low mass accuracy and poor 

resolution [124].  

1.8 Positive ion mass spectrometry 

1.8.1 Proton mobility and fragmentation pathways of low-energy collision-induced 

dissociation 

In contrast with high-energy CID (> 1000 eV) which results in the production of all types of 

fragment ions (by both charge-remote and charge-directed reactions), low-energy CID 

(< 100 eV) produces cleavage ions in a more specific manner, mainly by fragmentations 

along the backbone at the amide bonds [140]. Other non-sequence ions such as the loss of a 

small molecule (water, ammonia…) or side-chain cleavage ions (known to be formed via 

charged-remote mechanisms) are rarely observed in low-energy MS/MS mass spectra. Most 

ion fragmentations in the low-energy collision regime have been found to be charge-

directed, involving the mobility of added protons also known as “mobile protons”. The 
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mobile protons are firstly located on the most basic sites in the peptide/protein ions which 

are the N-terminus, and the side chains of basic residues. Upon activation, these mobile 

protons relocate to less-basic sites in the peptide/protein via various peptide linkages, 

triggering the charge-induced fragmentations of the peptide/protein [141-143]. 

Fragmentations of amide bonds in charge-directed reactions are initiated by proton transfer 

to amide nitrogen from a previously protonated site. This protonation weakens the amide 

bond and facilitates nucleophilic attack of either a carboxyl double bond (the oxazolone 

pathway, Scheme 1.1A) or by an amide nitrogen (the diketopiperazine pathway, Scheme 

1.1B) to produce b and y ions [84]. The ‘mobile’ protons can also migrate to other 

protonation sites, resulting in the formation of immonium, internal fragments, and the loss of 

water or ammonia. However, if the energies required for these proton transfers exceed the 

energies for charge-remote pathways, for instance due to proton sequestration by Arg/Lys 

residues, the charge-remote reactions may occur competitively [143]. 
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Scheme 1.1. Proposed mechanisms of b and y fragmentations of protonated ions of peptides 

in positive ion MS by A oxazolone pathway, B diketopiperazine pathway [143]. 
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1.8.2 Positive ion fragmentations for peptide sequencing 

Amide bond cleavage produces a b ion if the charge locates on the amino-terminal fragment, 

or a y ion if the carboxy-terminal fragment retains the charge (Scheme 1.1). Thus, while the 

b fragmentations allow sequencing of the peptide/protein from the N- terminus, the y 

fragmentations provide the sequence of the peptide/protein from the C-terminal end (Scheme 1.2).  

Apart from the b/y ions, other less prevalent ion types are also utilised in sequence 

interpretation. These include a/x and c/z ions corresponding to the peptide backbone 

cleavages at CH-CO and NH-CH respectively [140, 143-144]. The side-chain cleavage ions 

of d, v and w used to distinguish between isomeric or isobaric ions (e.g., Ile from Leu) are 

observed in high-energy CID but not in low-energy CID. 
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Scheme 1.2. Schematic illustration of a/x, b/y, c/z peptide backbone cleavages and d, v, w 

side-chain cleavages for protonated ions of peptides. 

In addition, immonium ions with the general structure of [RCH=NH2] 
+ 

are produced as a 

secondary fragmentation (a combination of a y and a type cleavage) of the amide bond 

during low energy CID. These ions are considered as diagnostic ions indicating the presence 

of particular amino acids in the peptide sequence [145-146]. 

The appearance of a peptide spectrum or the abundance of different ion types detected in a 

positive MS/MS or MS
n
 experiment may vary with many factors. These include the peptide 

structure, the instrument’s observation time frame, instrument discrimination and the way 

energy is imparted to the system. For instance, in ion-traps, product ions with m/z being less 

than 30% of that of the precursor ion are not observed. Consequently, immonium ions and 

low m/z ions may be absent in ion-trap spectra. More information on default ion types for 

corresponding instrument configurations and restrictions on the ion types based on 
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fragmentation spectra acquired from different instruments is provided by MASCOT (Table 

1.2) [8, 81]. 

Table 1.2. Default ion types for corresponding instrument configurations and restrictions on 

the ion types based on fragmentation spectra acquired from different instruments provided 

by MASCOT. 

 Default 

ESI 

Q-TOF 

MALD

I TOF-

PSD 

ESI 

Trap 

ESI 

QQQ 

ESI 

FTICR 

MALD

I TOF-

TOF 

FTMS 

ECD 

MALD

I Q-

TOF 

1+ fragments x x x x x x x x x 

2+ fragment if precursor 2+ 

or higher 
x x  x x x  x x 

2+ fragment if precursor 3+ 

or higher 
         

Immonium ions   x    x  x 

a series ions x  x    x   

a-NH3 if fragment includes 

RKNQ 
x  x    x   

a-H2O if fragment includes 

STED 
  x    x   

b series ions x x x x x x x  x 

b-NH3 if fragment includes 

RNKQ 
x x x x x x x  x 

b-H2O if fragment includes 

STED 
 x x x x x x  x 

c series ions          

x series ions          

y series ions x x x x x x x x x 

y-NH3 if fragment includes 

RKNQ 
x x  x x x x  x 

y-H2O if fragment includes 

STED 
 x  x x x x  x 

z series ions          

z + H series ions        x  

Internal yb < 700 Da       x  x 

Internal ya < 700 Da       x  x 
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1.9 Negative ion mass spectrometry 

While positive ion MS has developed to a robust state in characterisation of 

peptides/proteins, research on deprotonated ions of peptides and proteins has been limited 

primarily to a small number of research groups. Detailed information regarding the 

fragmentation of peptides/proteins using negative ion MS is currently not comparable to that 

of positive ion MS.  

Bowie and co-workers have used negative ion MS to investigate a range of the (M-H)
-
 

anions of underivatised peptides, from the simplest anions of di, tripeptides to large peptides 

of more than twenty amino acids. Based on this work, the characteristic fragmentations of 

the deprotonated anions of peptides and proteins have been deduced including (i) amide 

backbone cleavages, (ii) backbone fragmentations initiated from some particular side chains 

and (iii) characteristic side-chain fragmentations.  

1.9.1 Amide backbone cleavages 

The first pattern of peptide backbone cleavages is amide backbone cleavage, known as  and 

β cleavages. The  fragmentation produces an amide anion, and the loss of a proton from the 

corresponding ketene corresponds to the β fragmentation. Both cleavages are proposed to be 

initiated by an enolate anion on the peptide backbone which can be produced from the initial 

deprotonation step or by proton transfer to a carboxylate or carboxylamine moiety (Scheme 

1.3) [147-149]. 
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Scheme 1.3. Mechanisms for the formation of  and  ions from the deprotonated ions of 

peptides. Calculations at the HF/6-31G(d)//AM1 level of theory; R1, R2 and R3 are CH3, H 

and H, respectively [147-149].  

The mechanisms of  and β peptide backbone cleavages have been supported by theoretical 

calculations using a model system at HF/6-31G(d)//AM1 level of theory. The  and β 

processes are endothermic by 42 kJ mol
-1

 and 201 kJ mol
-1

 respectively, indicating that the  

fragmentation is energetically more favourable than the β fragmentation [150].  

Two alternative mechanisms for amide backbone fragmentations have also been suggested 

by the Harrison group involving the formation of a β cyclic fragment. While one of these 

pathways is initiated by an amide anion (Scheme 1.4), the other proposes the cleavage of 

amide backbone by the cyclisation from an enolate anion (Scheme 1.5) [151-154]. 
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Scheme 1.4. Formation of α and  fragments induced by an amide anion from the 

deprotonated ions of peptides;  R1, R2 and R3 are amino-acid side chains [151, 154].  
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Scheme 1.5. Formation of α and  fragments induced by an enolate anion from the 

deprotonated ions of peptides; R1, R2 and R3 are amino-acid side chains [154]. 

1.9.2 Side-chain induced backbone cleavages 

The second type of peptide backbone cleavage involves NH-CH bond cleavage which is 

initiated by particular side-chains. The production of amide anions is known as  

fragmentation, while deprotonation of the corresponding C-terminal portion will yield  

anions. This type of backbone dissociation is generally observed in peptides containing 

amino-acid side chains that can form stabilised anions RCH
-
 such as Asp, Asn, Glu, Gln, 
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Phe, Tyr, His and Trp containing peptides [149]. The cleavages (e.g. for Asp) are most likely 

to be initiated by a side-chain enolate anion as illustrated in Scheme 1.6 [155-156].  
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COR2R1HN
(R1NH- )

CHCO2H

CHCOR2
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Scheme 1.6. Proposed mechanisms for the formation of  and  ions from the deprotonated 

ions of peptides containing Asp. Calculations at the HF/6-31G(d)//AM1 level of theory; R1 

and R2 are CH3CO and NHCH3, respectively [155-156]. 

Theoretical calculations for  and  fragmentations were performed at the HF/6-

31G(d)//AM1 level of theory on a model system containing Asp. They showed that the  

process is significantly the more favourable by - 42 kJ mol
-1

 while the  ion formation is 

unfavourable (+ 310 kJ mol
-1

). Consequently, the  peak is usually more intense than the 

corresponding  peak in negative ion spectra. 

Two other mechanisms for  and  cleavages of Glu and Gln containing ions are also 

proposed. These involve the cyclisation reactions initiated by (i) a carboxylate anion on Glu 

side chain (Scheme 1.7) or (ii) an enolate anion (Scheme 1.8).  
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Scheme 1.7. The mechanism of  fragmentation initiated by the carboxylate anion in the 

deprotonated ions of peptides containing Glu. Calculations at the HF/6-31G(d)//AM1 level 

of theory; R1 and R2 are CH3 [156-157].  
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Scheme 1.8. The mechanism of  fragmentation initiated by the enolate anion in the 

deprotonated ions of peptides containing Glu. Calculations at the HF/6-31G(d)//AM1 level 

of theory; R1 and R2 are CH3 [156-157]. 

Theoretical calculations for a model system containing Glu revealed that the formation of  

ion via the carboxylate nucleophilic substitution is energetically more favourable than the 

three-member-ring cyclisation reaction induced by the side-chain enolate anion. This is 

because the first process is unfavourable by 100 kJ mol
-1

, whereas the second requires + 377 

kJ mol
-1

. Formation of the  ion is always followed by the loss of H2O in the cases of acidic 

side chains (Asp and Glu) or by the loss of NH3 in the cases of amide side chains (Asn and 

Gln) [155].  

1.9.3 ’ (beta prime) fragmentation 

The backbone NH-CH cleavages can also be observed occasionally at amino acid residues 

which cannot initiate  and  fragmentations. This fragmentation, named ’ (beta prime), is a 

cyclisation/cleavage process involving either a carboxylate cyclisation cleavage (Scheme 

1.9) or backbone enolate cyclization (Scheme 1.10) [158].  
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(+ 199 kJ mol-1)

(+ 150 kJ mol-1)(0 kJ mol-1)  

Scheme 1.9. The mechanism of ’ fragmentation initiated by the carboxylate anion in the 

deprotonated ions of peptides. Calculation at the CAM-B3LYP/6-311++g(d,p) level of 

theory; R1 and R2 are CH3 [158].  
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Scheme 1.10. The mechanism of ’ fragmentation initiated by the enolate anion in the 

deprotonated ions of peptides. Calculation at the CAM-B3LYP/6-311++g(d,p) level of 

theory [158]. 

1.9.4 Characteristic side-chain fragmentations 

The presence of some amino acids in a peptide sequence can be recognised from their 

characteristic side-chain fragmentations in negative ion MS [149]. Characteristic fragments 

are produced by the loss of alkyl radicals such as Me

, Pr


, Bu


 from Ala, Val, Leu or Ile 

respectively, or by the loss of a particular molecular mass, for instance, the loss of 106 from 

Tyr or the loss of H2O from Glu and Asp etc. [159-160]. The characteristic negative ion 

fragmentations within side-chains of amino acid residues from the (M-H)
-
 ions in small 

peptides are summarised in Table 1.3. 

For some listed amino acids in Table 1.3, this feature is suppressed with an increase in 

peptide size, while the production of characteristic side-chain fragmentations of some amino 

acids (including the loss of H2O from Asp, Glu, the loss of NH3 from Asn, Gln and the 

losses of CH2O/MeCHO from Ser/Thr) are not dependent upon peptide size and sometimes 

are more pronounced than , ,  and  backbone cleavage anions [149]. 
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Table 1.3. Characteristic side-chain fragmentations in negative ion MS. 

Amino acid Loss (or formation) Mass (m/z) 

Ala Me
 15 

Val Pr
 43 

Leu (Ile) Bu
 57 

Phe (PhCH2
-
) 91 

Tyr 

(p-CH2-C6H4-CH2
-
) 

O= C6H4=CH2 

107 

106 

Trp 
N

CH2

 

129 

Ser CH2O 30 

Thr CH3CHO 44 

Cys H2S 34 

Met CH3SH 48 

Asp/Glu 

Glu 

H2O 

N
H

O CO2
-

 

18 

128 

Asn/Gln NH3 17 

Arg HN=C=NH 42 

 

1.10 Post-translational modification 

Post translational modifications (PTMs) are chemical alterations to protein structures 

resulting from addition of modifying functional groups or proteolytic cleavage [161], which 

result in an improvement in the complexity of gene products and a change in properties of 

the modified protein. As many as 300 PTMs are currently known including a wide range of 

functionalities such as phosphorylation, sulfation, ubiquitination and disulfide formation. 

Some common PTMs are displayed in Table 1.4. Each of them adds a particular mass to the 

original protein, plays a different role in cellular processes, and possesses different stability 

(reversible or irreversible PTMs) [162-163]. MS analysis of PTMs is used not only to 
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determine the amino acid sequences of post-translationally modified proteins, but also the 

type and site of the modifications. Due to such multiple tasks, identification of PTMs in a 

protein by MS is more complicated than that of an unmodified protein. 

Table 1.4. Some common and important post-translational modifications [161]. Stability: + 

labile, ++ moderately stable, +++ stable in tandem MS. 

PTM type Mass (Da) Stability  Functions and notes 

Phosphorylation 

pTyr 

pSer/Thr 

 

+80 

+80 

 

+++ 

+/++ 

Reversible, activation/inactivation of enzyme 

activity, modulation of molecular interaction, 

signalling 

Acetylation +42 +++ Protein stability, protection of N-terminus. 

Regulation of protein-DNA interactions (histones) 

Methylation +14 +++ Regulation of gene expression 

Glycosylation 

N-linked 

O-linked 

 

>800 

203, >800 

 

+/++ 

+/++ 

Excreted proteins, cell-cell recognition/signalling 

O-GlcNAc, reversible regulatory functions 

Sulfation (sTyr) +80 + Modulator of protein-protein and receptor-ligand 

interactions 

Disulfide bond 

formation 

-2 ++ Intra- and intermolecular crosslink, protein stability 

Deamidation +1 +++ Possible regulator of protein-ligand and protein-

protein interactions, also a common chemical 

artifact 

Pyroglutamic acid -17 +++ Protein stability, blocked N-terminus 

Ubiquitination >1,000 +/++ Destruction signal. After tryptic digestion, 

ubiquitination site is modified with the Gly-Gly 

dipeptide 

GPI anchor >1,000 ++ Glycosulphosphatidylinositol (GPI) anchor. 

Membrane tethering of enzymes and receptors, 

mainly to outer leaflet of plasma membrane 

Hydroxyproline +16 +++ Protein stability and protein-ligand interactions 
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In a general mass spectrometric strategy for mapping PTMs, a modified protein is firstly 

purified and enriched by several methods such as chromatographic purifications [164-165] 

or antibody affinity [166-169]. The purified protein is then enzymatically digested into a 

collection of peptides that are more readily characterised than the intact protein. The 

peptides can be further fractionated and/or subjected to MS experiments (MS/MS or MS
n
). 

Even though multiple endoproteases are commonly used to achieve the highest sequence 

coverage possible, it is unavoidable that some peptide fragments (including the fragments 

containing PTMs) may be missed during the mapping process due to the instrumental 

detection limit or the size and ionisability of peptides [9]. In addition, the MS analysis of 

modifications such as phosphorylation, sulfation, glycosylation and disulfide bonds 

frequently encounter difficulties of low stoichiometry, low ionisability and unusual 

fragmentation behaviour of the modifying groups in the positive ion mode [163]. 

Each modification has its own characteristic fragmentation which may be an advantage or a 

disadvantage to their detection and localization using positive ion MS. For instance, some 

modifications are quite stable and remain attached to the modified residues during the 

mapping process. Examples are acetylation (+ 42 Da), which occurs on the N termini or on 

Lys residues [170], and arginine methylation (+ 14 Da) [171]. The fragmentation patterns of 

the peptides containing these groups will thus reveal their locations. In contrast, some 

modifications are labile and lost during ionisation or during collision activation, for 

examples, sulfation of Tyr/Ser/Thr (+ 80 Da) [172] and O-linked N-acetylglucosamine 

(GlcNAc: + 203 Da) [173]. For the peptides containing these modifications, the loss of these 

groups can be used as reporters to detect them. The presence of low-mass characteristic ions 

in mass spectra or the loss of a particular mass from the parent ions (see 2.1.1 for a detailed 

description of precursor ion and neutral loss scanning method) is normally used for 

identification of PTMs in peptides. In such cases, the modifications are identified but not 

their locations. Difficulties associated with PTMs detection and localisation make 

identification of modified peptides challenging either via manual or computer-assisted 

interpretation. 

The CID cleavages at side-chain groups normally precede backbone fragmentations in 

positive ion mode because of the high lability of modifying groups. In order to alleviate this 

problem, some other activation methods have been introduced. The two popular alternatives 

to dissociation of post-translational modified peptides are electron capture dissociation 
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(ECD) and electron transfer dissociation (ETD). In brief, the multiply-charged peptides 

interact with near-thermal (< 0.2 eV) electron (ECD) or radical anions (ETD) to form 

peptide radicals which fragment preferentially along the peptide backbone, thus reducing 

cleavage of modifying groups (see section 2.1 for detail of ECD and ETD [37, 174]).  

On the other hand, negative ion MS has been found to be more sensitive than positive ion 

mode for detecting particular PTMs owing to their nucleophilic nature. For examples, PO3
- 

(79 Da) and H2PO4
-
 (97 Da) are commonly observed and used as diagnostic ions to detect 

phosphorylated peptides. However, negative ion CID fragmentation of post-translationally 

modified peptides have not been studied extensively, and so far, only play the role of the 

detector for some common modifications such as phosphorylation, sulfation, cysteine bond 

formation and nitrosylation. Therefore, more work needs to be done to shed light on the 

reaction mechanisms of deprotonated ions of modified peptides/proteins. 

In order to gain more insight into the fragmentation mechanisms of the (M-H)
-
 anions of 

modified peptides/proteins and to examine the efficiency of negative ion MS as an analytical 

tool in characterisation of PTMs, the research described in this thesis investigates the 

identification of some common PTMs including phosphorylation, sulfation and disulfide 

using negative ion MS via an array of synthetic and natural peptides and proteins. An 

additional application of this research is to identify peptides secreted from the frog Litoria 

rubella in some areas in Australia. The interaction of these peptides with biomimetic lipid 

bilayers is investigated to ascertain whether membrane binding is the event preceding the 

addition of these peptides in order to act on membrane receptors.  
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CHAPTER 2 

INVESTIGATION OF PHOSPHORYLATED PEPTIDES BY 

NEGATIVE ION MASS SPECTROMETRY 

2.1 Introduction to phosphoproteome analysis by mass spectrometry 

Phosphorylation is one of the most important and intensively studied post-translational 

modifications, which is controlled by two classes of enzymes, namely protein kinases and 

phosphatases [175-176]. It specifically occurs on Ser, Thr, Tyr and sometimes on His 

residues in eukaryotic proteins (Figure 2.1) [177-179]. Reversible phosphorylation regulates 

many cellular processes such as cell-cycle progression, cellular differentiation, intercellular 

communication, apoptosis, cytoskeleton arrangement, and neuronal and immunological 

functions [180-181]. It is also estimated that at least 30% of all proteins in a cell are 

phosphorylated at any given time [182]. A variety of biochemical and analytical chemical 

approaches have been developed to enrich and examine phosphorylated proteins and 

peptides. Among these, MS has emerged as a core technology for identification of 

phosphoproteins and phosphopeptides, determination of phosphorylation sites and 

quantitation of phosphorylation [183-184].  
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Figure 2.1. Structures of phosphorylated Ser, Thr, Tyr and His. 
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2.2 Tandem mass spectrometry and dissociation techniques for phosphoproteome 

analysis 

2. 2.1 Phosphopeptide detection 

Studies of phosphorylated proteins have frequently encountered the challenge of detecting 

phosphopeptides in the pool of peptides created by proteolytic digestion of the protein of 

interest [185-186]. Phosphopeptides are typically present in lower abundance than other 

digest peptides, and hence their mass spectrometric response is suppressed by the presence 

of other peptides and also the unphosphorylated counterparts [187-188]. In order to improve 

the MS signal of phosphorylated peptides, a number of enrichment strategies have been 

implemented. These include separation by HPLC [189], selective binding of the phosphate 

moiety to metal ions by immobilised affinity chromatography (IMAC) [190], strong cation 

exchange (SCX) [191], barium or calcium precipitation [192-193], immuno-precipitation of 

targeted peptides by antibodies [194], chemical tagging of phosphorylation sites [195-196], 

or some combination of the independent techniques. 

Recognition of phosphopeptides by MS generally relies on the lability of the phosphate 

group in CID in combination with phosphatase treatment of the interested protein. In tandem 

MS, precursor ion scanning and neutral loss scanning are two common mass spectrometric 

approaches to detect phosphate side chains in protonated peptides/proteins [183, 197]. These 

are implemented most effectively on triple quadrupole (Q-Q-Q) or quadrupole linear ion trap 

(Q-Q-LIT) [8] and recently on Q-TOF instruments via software programming [198-199]. 

Precursor ion scanning is a mass spectrometric detection method which generates spectra of 

parent ions instead of fragment ions (as normal acquired data mode). In this scan mode, the 

first mass analyser is the mass scanner and the second mass analyser is the mass filter. The 

second mass analyser (located after the collision cell) is set to allow the passage and thus 

detection of one particular ion, while the first mass analyser scans and detects all parent ions 

which produce that particular fragment ion [18]. The phosphotyrosine immonium ion 

(
+
NH2=CH-CH2-C6H4-O-PO3H2) (m/z 216.043) is formed exclusively from phosphate Tyr 

residues and thus is used for selective detection of Tyr phosphorylated peptides by precursor 

ion scanning [197, 200-203]. 
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In neutral scanning mode, both mass analysers are scanned in a linked fashion so that a 

constant neutral loss is maintained [18, 204]. The losses of HPO3 (80 mass units) and H3PO4 

(98 mass units) are observed predominantly in spectra of phosphorylated peptides. 

Therefore, detection of phosphate residues can be facilitated by neutral loss scanning of 

these losses [184, 205-206]. 

Phosphate recognition by these two scanning modes was first described using triple 

quadrupole mass spectrometers [207]. However, there has been a general replacement of this 

type of instrument by higher resolution mass spectrometers such as Q-TOFs to provide more 

accurate detection of phosphate moieties [197, 200-203]. In addition, phosphatase treatment 

followed by mass analysis can be performed to confirm the presence of phosphate groups in 

these peptides [208-209]. 

The loss of H3PO4 was found to be the most abundant fragmentation in positive ion mass 

spectra of phosphoserine (pSer) and phosphothreonine (pThr) containing peptides, and 

decreases from pSer to pThr. Several charge-directed mechanisms were suggested for this 

loss including a charge-directed E2-elimination reaction and an SN2 neighbouring group 

participation (Scheme 2.1a and b) [210-211]. A charge-remote pathway (-elimination) was 

also proposed to explain the prevalence of this neutral loss in partial or non-mobile 

conditions of ionising protons (Scheme 2.1c) [212-213]. The H transfers and elimination in 

charge-directed and charge-remote pathways are different. The phosphate group is cleaved 

with the mobile proton in charge-directed pathways whereas the charge-remote pathway 

abstracts a hydrogen atom from C- of the phosphorylated residue (Scheme 2.1a-c). H/D 

exchange studies suggest that these reactions occur competitively but that charged-directed 

pathways are more dominant [210-211].  
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Scheme 2.1. Pathways of H3PO4 loss from the MH
+
 ion of a pSer/pThr. (a): E2-elimination, 

(b) intramolecular SN2 mechanism, (c): charge-remote -elimination. The hydrogen involved 

with the loss of phosphoric acid is coloured in red. 

In contrast with pSer/pThr peptides, CID MS/MS of protonated ions of pTyr show a more 

prevalent loss of HPO3 than H3PO4. In the case of pTyr, H3PO4 cannot be eliminated by any 

of mechanisms (a), (b) or (c). Several alternatives have been suggested to explain this 

phenomenon. For instance, the loss of phosphoric acid could come from concomitant losses 

of HPO3 and H2O from different residues of pTyr-peptides. Alternatively, HPO3 could be 

transferred to an Asp residue or unmodified Ser or Thr facilitating the cleavage of H3PO4 

[213-215].  
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There are several factors that determine the extent of neutral losses within phosphopeptides, 

namely (i) the chemical structure of the phosphorylated amino acid residue (pTyr, pSer or 

pThr), (ii) the amino acid sequence, (iii) the precursor ion polarity and charge state, (iv) ion 

mobility, (v) the input collision-energy and (vi) the timescale for CID. Increasing the charge 

on the studied peptides was reported to cause a decrease in neutral losses due to more 

“mobile protons” being available for charge-directed backbone cleavage which is in 

competition with neutral-loss pathways [211]. Phosphate losses in an ion trap were found to 

be more prevalent than in a tandem mass spectrometer such as a triple quadrupole or Q-TOF 

mass spectrometer [205-206], since the low-energy dissociation pathways of neutral losses 

are favoured by ion-trap instruments where the energy is deposited at a lower level and a 

slower rate compared to that of tandem in space mass spectrometers [183, 216].  

2.2.2 Phosphorylation site localisation and peptide sequencing by positive ion mass 

spectrometry 

Although the facile losses of HPO3 and H3PO4 facilitate the detection of the phosphate 

group, they hinder the formation of phosphorylated fragments required for peptide 

sequencing and phosphorylation-site localisation. Optimisation of mass spectrometric 

conditions based on the knowledge of the gas-phase chemistry responsible for phosphate 

losses (as mentioned above) could partially improve phosphate retainment but not 

completely eliminate phosphate losses. Therefore, determination of a phosphate position 

within peptides/proteins frequently has to be managed in phosphate-loss condition.  

Several acquisition methods have been developed to obtain the structural information of 

phosphate containing peptides. Of these, multistage CID MS3 [217-221] and “pseudo-MS3” 

[222] are frequently used. CID MS3 method involves isolation and further fragmentation of 

the phosphate-loss fragment. On the other hand, “pseudo-MS3” activates the precursor ion 

and the resultant 98 Da neutral loss simultaneously. The “pseudo-MS3” method produces a 

composite spectrum of fragments originating from both the parent ion and the neutral loss 

species with the loss of backbone fragments due to the ion-isolation step being reduced. The 

sites of phosphorylation are preliminarily indicated by the presence of backbone fragments 

with the loss of 18 Da from Ser or Thr (due to loss of H3PO4 as in Figure 2.1) [211]. 

However, the loss of water (also 18 Da) from an unmodified reside may confuse the 

identification of a phosphorylation site, and hence a fragment containing an attached 

phosphate group is required to unequivocally determine the site of phosphorylation.  
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In addition, software tools and scoring programs (such as delta score, Ascore [223], 

MSQuant [217, 224]) have also been developed to auto-localise phosphate sites . These 

programs calculate the probability of phosphorylation sites based on the fragmentation 

spectra of the investigated phosphopeptide. The site of phosphorylation is then assigned 

corresponding to the localisation with the highest score. Mismatching or erroneous 

determination of phospho-sites may occur as peptides contain multiple Ser, Thr or Tyr 

residues next to each other and/or peptide backbone fragments are produced.  

Phospho-site localisation using positive ion MS has sometimes been hampered by the 

rearrangement of the phosphate group in the gas phase. Beside the rearrangement of a pTyr 

phosphate group to Asp, (which was proposed to explain the formation of phosphoric acid 

from protonated ions containing pTyr), it is evident that the phosphate group may be 

transferred to another hydroxyl-containing amino acid mediated by hydrogen bonding 

interactions between the phosphate group and basic residues (e.g. see Scheme 2.2) [216, 

225]. This phenomenon was found exclusively in ion-trap instruments where the activation 

time is in the millisecond range, while there have been no such reports of phosphate 

rearrangements in other types of mass spectrometers as the collision time is much shorter. 

These gas phase rearrangements are more prevalent for phosphopeptides with low charge 

states [211]. 
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Scheme 2.2. Proposed mechanism for the gas-phase phosphate group rearrangement from 

pThr to pSer mediated by hydrogen bonding interactions between the phosphate group and 

basic residues. 

The use of electron-based fragmentation methods such as electron capture dissociation 

(ECD) and electron transfer dissociation (ETD) have been reported to alleviate the problem 

of neutral losses and rearrangements, improve backbone fragmentations, and thus provide 

more accurate phosphate identification and sequence information [226-229]. These 
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activation techniques are well suited for analysis of highly charged peptides (typically more 

than 3+) [230-233]. A general mechanism for these dissociations was proposed [234]. A 

near-thermal electron (< 0.2 eV) is attached to protonation sites of peptides such as a Lys -

ammonium group, an Arg guanidinium group, a His imidazolium ring, or an N-terminal 

ammonium group. This attachment induces the transfer of a hydrogen atom from the 

protonation sites to the nearby carbonyl oxygen on the backbone. The newly formed 

aminoketyl intermediate dissociates to yield c and z ions (Scheme 2.3). An alternative 

mechanism, namely the Utah-Washington (UW) mechanism, was also provided to explain 

the dissociations of N–Cα bonds that for steric reasons may not be able to receive a 

hydrogen atom from the protonation sites of the precursor ions in their initial 

conformation(s). It involves electron capture of the  bond (of the amide C=O group) to 

form a ketyl radical anion, which then abstracts a proton from a charge carrying group to 

form an aminoketyl. This is followed by the dissociation of the N-Cα to generate c and z 

ions (Scheme 2.3).  
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Scheme 2.3. Proposed ECD/ETD fragmentation mechanisms of phosphorylated peptides. R 

groups are neutral side-chain groups. 
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2.2.3 Peptide/protein phosphorylation under investigation of negative CID mass 

spectrometry 

While studies of phosphorylated peptides and proteins using positive ion MS has shown 

significant progress, fewer investigations in this area have utilised negative ion MS. The 

characteristic formation of m/z 97 (H2PO4
-
), and loss of 98 (H3PO4) from the (M-H)

-
 and 

multi-charged (M-nH)
n-

 ions of pSer/pThr peptides have been reported [212, 235-238] 

(Scheme 2.4). Calculations (at the MP2/6-31++G(d,p)//HF/6-31++G(d,p) level of theory) 

indicated that the two processes are exothermic
 
[238] and the G values for   the formation 

of H2PO4
-
 and the loss of  H3PO4 are  - 8 kJ mol

-1
 and - 43 kJ mol

-1
, respectively [239]. 

These two fragmentations are kinetically more favourable than the standard  and  negative 

ion backbone cleavages of peptide (M-H)
-
 ions (Scheme 2.5), since the energy barrier for the 

phosphate related processes is much lower [238-239]. 
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Scheme 2.4. Proposed mechanisms for the loss of H3PO4 and formation of H2PO4
-
 from the 

(M-H)
-
 anion of a model system containing pSer. Calculations at the MP2/6-

31++G(d,p)//HF/6-31++G(d,p) level of theory; R1 and R2 are CH3CO and NHCH3, 

respectively [238-239].  
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Scheme 2.5.  Calculations for the formation of  and  ions from the deprotonated ions of 

peptides in negative ion MS, at the HF/6-31G(d)//AM1 level of theory by Dr. Tianfang 

Wang; R1, R2 and R3 are CH3, H and H, respectively. Gibbs energies (G) were provided. 

In contrast, the characteristic fragmentations of pTyr are different, namely, [(M-H)
- 
-
 
HPO3] 

and (M-H)
-
 PO3

-
. The processes are energetically less favourable than the fragmentations 

of pSer and pThr shown in Scheme 2.4. Calculations at the modest HF/6-31++G(d,p)//AM1 

level of theory showed that the formation of PO3
-
 (m/z = 79) and the loss of HPO3 from pTyr 

have G values of + 83 kJ mol
-1

 and + 237 kJ mol
-1

, respectively (Scheme 2.6) [238-239]. 
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Scheme 2.6. Proposed mechanisms for the loss of HPO3 and formation of PO3
-
 from the (M-

H)
-
 anion of a model system containing pTyr. Calculations at the HF/6-

31++G(d,p)//AM1level of theory; R is CH3CO [238-239]. 
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Formation of H2PO4
-
 and [(M-H) - H3PO4]

-
 ions (the two diagnostic cleavages of pSer and 

pThr) were also identified in the negative ion spectra of monophosphorylated Tyr containing 

peptides [240-241]. It was suggested that the formation of these ions were initiated by 

nucleophilic attack of the carboxylate end group on the phosphorus of the phosphate, 

effecting transfer of PO3H2 from Tyr to the C-terminal carboxylate group. This rearranged 

species can then liberate H2PO4
-
 and also form [(M-H)

 
- H3PO4]

-
 following pathway A or B 

(Scheme 2.7) [241].  

H2C

CH

C

NH

CH2

C
O

-
OO

P

O

OH
HO

O

NHCHO

H2C

CH

C

NH

CH2

C
O

OO
-

P

O

OHO

O

NHCHO

H

CH

H2C

C
NH

-
CH

C

O

B

NH

HC C O -O

P

O OH

OH
+

CH

H2C

C

NH

CH2

C O

O
O

-

PO

OH

OH

A

CH

H2C

C

NH

CH2

C

O
O

+

OH

O

O

CH

H2C

C

OH

O

OHCHN

OHCHN
OHCHN

OHCHN O

-O

P

O OH

OH

PO

OH

OH

O

(0 kJ mol-1)
(+ 28 kJ mol-1)

(+ 187 kJ mol-1) (+ 180 kJ mol-1)

TS

(+ 60 kJ mol-1)

 

Scheme 2.7. Proposed mechanisms for the loss of H3PO4 and formation of H2PO4
-
 from the 

(M-H)
-
 anion of a model system containing pTyr. Calcualtions at the HF/6-

31++G(d,p)//AM1level of theory [241]. 
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Even though phosphate transfers from pTyr (and to a lesser extent from pSer/Thr) to the 

carboxyl group, side-chain hydroxyl groups and the amide functionality have been reported 

[240], details of these phosphate rearrangements and subsequent fragmentations have not 

been studied in detail. For instance, how does phosphate rearranges from Tyr to carboxylate 

containing moieties, or to Ser/Thr (and vice versa), and do these rearrangements take place 

to the same extent? In addition, do the phosphate rearrangements initiate any subsequent 

fragmentations? The present study investigates: 

1. Whether pTyr, pSer and pThr transfer phosphate to C-terminal carboxylate anions 

and to the carboxyl anion side chains of Asp and Glu. Are there any characteristic 

cleavage reactions accompanying these rearrangements? 

2. Whether there is any change in the propensity of phosphate group transfers if the 

location of the phosphorylated residue is altered; for instance, when the phosphate 

group is moved further away from the C-terminal carboxylate end of the peptide or 

the distance between the phosphorylated residues and non-phosphorylated residues 

are varied.  

3. Whether the phosphate group can be transferred between Tyr, Ser and Thr and if 

such a rearrangement is followed by a characteristic fragmentation reaction. 

4. Whether the phosphate groups in di- and tri-phosphorylated serine containing 

peptides interact with each other or aggregate. 

5. Finally, the mechanisms for phosphate rearrangement and cognate cleavage reactions 

are considered by experimental observation with the assistance of theoretical 

calculations (carried out by Dr. Tianfang Wang, the University of Adelaide). 

2.3 Results and discussion 

2.3.1 pTyr containing peptides: phosphate rearrangement to the C-terminal 

carboxylate anion followed by cyclisation/cleavage reactions of the resultant (M-H)
-
 

anions  

One of the aims of this study was to investigate whether the phosphate rearrangement 

(illustrated in Scheme 2.7) still occurs when the pTyr residue is moved further away from 

the C-terminal carboxylate anion. Thus, a series of monophosphorylated peptides was 

examined containing pTyr residues at positions 3, 4, 5 and 9 amino acid residues away from 

the C-terminus. These peptides were prepared deliberately to contain amino acids with 
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neutral side chains so that only the reactive carboxylate end group can approach and interact 

with the phosphate side chain. Studied peptides are listed in Table 2.1. 

Table 2.1. Studied pTyr peptides. 

Peptide Sequence 

1 GApYGL(OH) 

2 GApYGLG(OH)     

3 GApYGLGL(OH) 

4 GApYGLGLGLGL(OH) 

The Q-TOF 2 negative ion spectra of 1 and 3 are summarised in Table 2.2, whereas the 

spectra of 2 and 4 are recorded in Figure 2.2 and 2.3, respectively. 

Table 2.2. Negative ion mass spectra of 1, 3 

1 GApYGL(OH), (M-H)
-
 m/z 558. 

CID MS/MS of m/z 558 [Q-TOF 2, m/z (loss or formation) relative abundance (%)]:  

558 (M-H)
- 

28; 540 (H2O) 16; 478 (HPO3) 8; 460 (H3PO4) 15; 307 [GAY(NH
-
)] 24; 97 

(H2PO4
-
) 100; 79 (97-H2O) 32.  

m/z 307 CID MS/MS/MS (Orbitrap mass spectrometer) 

 ions, m/z 250, 179 [GAY(NH2)];  ions, m/z 127; Y3, m/z 144; Y3, m/z 162 

m/z 307 - C7H6O  m/z 201 [GAG(NH
-
)] 

Sequence of m/z 307: GAY(NH
-
) 

3 GApYGLGL(OH), (M-H)
-
 m/z 728. 

CID MS/MS of m/z 728 [Q-TOF 2, m/z (loss or formation) relative abundance (%): 
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728 (M-H)
- 

14; 710 (H2O) 18; 648 (HPO3) 22; 630 (H3PO4) 43; 597 (1) 6; 540 (2) 5; 477 

[GAYGL(NH
-
)] 100, 460 (477-NH3) 16; 420 (477-G) 8; 349 (477-GA) 6; 307 [477-

LG(’)] 42; 97 (H2PO4
-
) 43; 79 (PO3

-
) 19. 

GAYGL(NH2) (M-H)
-
 m/z 477.  

CID MS/MS of m/z 477 listed in nominal masses of andcleavages.
 

 cleavages; m/z 420, 349, 186.  cleavages; m/z 127. Sequence GAYGL(NH2) 

 

 

Figure 2.2. CID MS/MS of the parent (M-H)
-
 anion of 2 [GApYGLG(OH)]. Multiplication 

ranges as follows: m/z 100-350 (x10). Q-TOF 2 mass spectrometer. The CID high resolution 

MS/MS/MS data (Orbitrap) for the [(M-H) - HPO3]
-
 show  cleavage anions at m/z 460, 

347, 290 and 127 indicating a sequence GAYLG(OH).  
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Figure 2.3. CID MS/MS data for the (M-H)
-
 anion of 4 [GApYGLGLGLGL(OH)]. 

Multiplication ranges as follows: m/z 51-100 (x4), 102-295 (x36), 296-805 (x6). Q-TOF 2 

mass spectrometer. 

All spectra of the peptides 1-4 show peaks at m/z 97 (H2PO4
-
) and peaks corresponding to 

loss of H3PO4 from (M-H)
-
 anions. The data suggest that the phosphate group migrates from 

pTyr to the terminal carboxylate anion, even in the peptide that has seven amino acid 

residues between pTyr and the carboxylate terminus. The full sequencing information of 

each peptide is achieved from the fragmentation of the corresponding anion [(M-H)
 
- HPO3]

-

. In addition, four major fragment ions (three of them are the most abundant fragments) in 

the spectra of the peptides 1-4 namely m/z 307, 364, 407, 817 respectively have one thing in 

common, they are all amide anions formed by cleavage of the [(M-H)
 
- HPO3]

-
 anions at the 

centre carbons of the penultimate amino acid residues, as shown in Table 2.3.  

Table 2.3. 

m/z 558  m/z 307 [GApYGL(OH) - H]
-
  [GAY(NH2) - H]

-
   5 

m/z 615  m/z 364 [GApYGLG(OH) - H]
-
  [GAYG(NH2) - H]

- 
 6 

m/z 728  m/z 477 [GApYGLGL(OH) - H]
- 
 [GAYGL(NH2) - H]

-
   7 

m/z 1068  m/z 817 [GApYGLGLGLGL(OH) -H]
-
  [GAYGLGLGL(NH2) - H]

- 
  8 
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The structures of the fragment anions 5-7 were confirmed by MS/MS/MS high resolution 

data obtained with an Orbitrap mass spectrometer. Negative ion MS/MS measurements of 

the (M-H)
-
 anion 4 (m/z 1068) and the energised source formed ions m/z 988 [(M-H) - 

HPO3]
-
 and m/z 817 were carried out (data not presented here) which provide the sequencing 

data of the fragment ions as illustrated in Scheme 2.8 and Figure 2.3. 

[G A Y  G  L  G  L  G  L  G  L(OH)-H]-

G A Y  G  L  G  L  G  L(NH-)



 m/z 988

m/z 817


  

Scheme 2.8. Schematic representation of backbone cleavages of the energised source formed 

ions m/z 988 [(M-H) - HPO3]
-
 and m/z 817. 

Despite having the same structures as  anions (see section 1.9.2 in Chapter 1), the anions 5-

8 cannot be formed by the classical  backbone cleavage because a  peptide backbone 

cleavage does not occur for Gly or Leu residues. Thus, this diagnostic fragmentation must 

involve a phosphate involved reaction as shown in Scheme 2.9. The C-terminal-carboxylate 

phosphate rearrangement is followed by H transfer (to the Tyr residue) to generate a 

phosphate anion. The phosphate anion then attacks the electrophilic carbon centre of the 

penultimate amino acid residue in an SNi reaction. N-C bond cleavage is the last step to 

produce the product anion and a cyclic phosphate containing moiety. The formation of 

H2PO4
-
 and the amide anion (m/z 817) from peptide 4 [with pTyr at 7 amino acids away from 

the last residue Le(OH)] indicates that the parent anion has a flexible conformation such that 

the C-terminal carboxylate anion can approach and interact with the phosphate to allow the 

phosphate transfer. It can be concluded that phosphate rearrangement takes place 

irrespective of the position of the pTyr residue in the studied peptide sequence. 
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Scheme 2.9. Proposed mechanism for the SNi cyclisation/cleavage reaction at the 

penultimate amino acid residue of a pTyr containing peptide to produce an amide anion. 

Careful investigation of negative ion MS/MS data for 1-8 reveals that the phosphate 

SNi/cleavage reaction above may occur with certain amino acid residues further along the 

backbone toward the N-terminal end of the peptide but to a lesser extent than the sequence 

shown in Scheme 2.9. This is best demonstrated by the spectrum of peptide 4 (Figure 2.3) 

with the formation of a series of low abundant amide anions at m/z 647 [GAYGLGL(NH
-
)], 

534 [GAYGLG(NH
-
)], 477 [GAYGL(NH

-
)], 364 [GAYG(NH

-
)], 307 [GAY(NH)

-
] and 144 

[GA(NH
-
)]. Similar fragmentation behaviour is also observed in the negative ion spectra of 

peptides 1-3.  

The mechanism illustrated in Scheme 2.9 is supported by theoretical calculations at the 

modest HF/6-31+g(d)//AM1 level of theory for a simple model shown in Scheme 2.10. 

Following the C-terminal-carboxylate phosphate rearrangement, the cyclisation process is 

mediated by the formation of the H-bonded intermediate (-28 kJ mol
-1

), in which the 

phosphate anion is locked in a convenient position so that it can interact with the central 

carbon of the penultimate amino acid residue. Although the phosphate rearrangement to C-

terminal carboxylate is quite favourable energetically, the subsequent cleavage reaction 

occurs via a surprisingly high transition state of +240 kJ mol
-1

. The overall reaction sequence 

is calculated to have Greaction of +184 kJ mol
-1

.  
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Scheme 2.10. The SNi cyclisation/cleavage process of the rearranged C-terminal phosphate 

anion. Calculations at the HF/6-31+g(d)//AM1 level of theory by Dr. Tianfang Wang. 

2.3.2 pTyr rearrangement to an internal carboxylate anion of Asp or Glu 

The pTyr/C-terminal -CO2
-
 rearrangement was observed for all pTyr containing peptides 

investigated. The next question is whether this phosphate transfer can occur for another 

carboxylate site such as Asp or Glu side-chain carboxylate. In order to answer this question, 

a series of peptides 9-12 were prepared and their negative ion spectra were examined (Table 

2.4). 

Table 2.4. Peptides containing pTyr and Asp/Glu studied. 

Peptide Sequence 

9 GLGpYDVGV(OH) 

10 GLGpYEVGV(OH) 

11 GLpYGVDGV(OH) 

12 GLpYGVEGV(OH) 
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The spectra of 9 and 11 are displayed in Figure 2.4 and 2.5, whereas the CID MS/MS 

tandem data for the (M-H)
-
 parent ions of 10 and 12 are provided in Table 2.5, respectively. 

 

Figure 2.4. CID MS/MS data for the (M-H)
-
 anion of 9 [GLGpYDVGV(OH)]. 

Multiplication ranges as follows:  m/z 100-690 (x16), 780-845 (x10). D* is NHCH(-

CH=CO)-CO. Q-TOF 2 mass spectrometer. 

 

Figure 2.5. CID MS/MS data for the (M-H)
-
 anion of 11 [GLpYGVDGV(OH)]. Multiplication 

ranges as follows:  m/z 100-250 (x24), 260-500 (x6), 510-735 (x4). D* is NHCH(-

CH=CO)CO. Q-TOF 2 mass spectrometer. 
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Table 2.5. Negative ion CID MS/MS data from the (M-H)
-
 anions and fragment anions 

derived from 10 and 12. (Q-TOF 2 mass spectrometer).  

10 GLGpYEVGV(OH) (M-H)
-
, m/z 871 

 [(M-H) - HPO3]
-
, m/z 791 (identification of pY4) 

 ions; m/z 734, 621, 401, 272, 173, 116 

 ions; m/z 674, 226 

E5: m/z 406 (); 384 () 

m/z 564(5) – C7H6O  m/z 440  

Sequence [GLGYEVGV(OH)] 

There are three possible (M-H)
-
 anions (m/z 871) and the presence of the appropriate 

backbone cleavages identify them as follows: 

(a) [GLGpYEVGV(OH) - H]
-
, (m/z 871) 

 ions; m/z 814, 701, 401, 173, 116 [GL(GpY)(EV)GV(OH)] 

 ions; m/z 697 

E5; m/z 384 

Sequence [GL(GpY)EVGV(OH)] 

(b) [GLGYEVGV(OPO3H2) - H]
-
, (m/z 871) 

 [(M-H) - H3PO4]
-
, m/z 773 and H2PO4

-
, m/z 97

 ions; m/z 814, 701 [GL-] 
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 ions; m/z 674, 617, 226 [(GL)(YE)VGV(OPO3H2)]  

Sequence [(GL)(YE)VGV(OPO3H2)] 

m/z 634; SNi/cleavage ion from [GLGYEVGV(OPO3H2) - H]
-
, (m/z 871) 

 ions; m/z 464, 407, 244, 115 [(GL)GYEV(NH2) 

 ions; m/z 169, 389, 518 [(GL)(GY)EV(NH2)] 

E5: m/z 406 (); 227 () 

Sequence [(GL)GYEGV(NH
-
)] 

(c) [GLGYE(PO3H)VGV(OH) - H]
-
, m/z 871 

 ions; m/z 814, 701, 644, 272, 173, 116 {GLG[YE(PO3H)]VGV(OH)]}  

 ions; m/z 697, 389, 226, 169 {(GL)GY[E(PO3H)V]GV(OH)} 

Sequence [GLGYE(PO3H)VGV(OH)] 

12 GLpYGVEGV(OH) (M-H)
-
, m/z 871 

Rearranged phosphate [GLYGVEGV(OPO3H2) - H]
-
 produces the cleavage ions  

GLYGVE(NH
-
) [m/z 634 (base peak)] with GLYGV(NH

-
) [m/z 505] and GLY(NH

-
) [m/z 

349] of small abundance (≤ 10%). 

[(M-H) - H3PO4]
-
 anion, m/z 773. [GLYGVEG*V - H]

-
 [*V is NHC(C3H7)=C=O]: 

 ions, m/z 716, 603, 440, 383, 284 [(GL)YGV(EG*V)] 

 ions, m/z 674, 488, 332 [(GL)(YG) E (G*V)] 

,  ions, m/z 186 (Y3). 267 (E6), 505 (E6) 
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Sequence GLYGVE(G*V) 

Rearranged phosphate [GLYGVE(PO3H)GV(OH)] gives the cyclisation product m/z 505 

[GLYGV(NH
-
)]. 

[(M-H) - H3PO4]
-
 , m/z 773, [GLYGV*EGV(OH) - H]

-
 [*E is NHC(CH2CH=C=O)CO]: 

 ions, m/z 603, 440, 383, 284, 173, 116 [(GL)YGV*EGV(OH)] 

 ions, m/z 559, 488, 332. {332(GV)*E[GV(OH)]} 

Sequence [(GL)YGV*EGV(OH)]  

The major peaks m/z 620 (from 9 and 11 in Figure 2.4 and 2.5) and m/z 634 (from 10 and 12, 

Table 2.5) corresponding to the SNi cyclisations/cleavages at the centre carbons of the 

penultimate amino acid residues of these peptides (cf Scheme 2.10) are still observed in the 

spectra of the (M-H)
-
 anions of 9-12. The formation of H2PO4

-
 (m/z = 97) and the [(M-H) - 

H3PO4]
-
 anions indicating the phosphate Tyr/C-terminal carboxylate transfer are also noted.  

 

Figure 2.6. CID MS/MS data for the [(M-H)
 
- H3PO4]

-
 anions of 9 [GLGpYDVGV(OH)]. 

Multiplication ranges as follows: m/z 50-230 (x6), 330-436 (x16). V* is NHC(C3H7)=C=O. 

Q-TOF 2 mass spectrometer. 
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The CID MS/MS tandem mass spectrum of m/z 759 (loss of H3PO4 from the deprotonated 

ion of 9) is recorded in Figure 2.6. Scheme 2.11 displays two possible structures of this 

species including A formed by the loss of H3PO4 from a rearranged C-terminal phosphate 

anion and B formed by the loss of H3PO4 from a rearranged phosphate Asp analogue. 

[G  L  G  Y  D  V  G  NH-C(C3H7)=CO - H]-




m/z 759

702 589 532 155 98

660603504389226169

[G  L  G  Y  NHCHCO   V   G   V(OH)  - H]-




m/z 759

702 589 532

389226169

A

CH=C=O 173 116

486 585

406
352

B  

Scheme 2.11. Schematic representation of backbone cleavages of A formed by the loss of 

H3PO4 from a rearranged C-terminal phosphate anion and B formed by the loss of H3PO4 

from a rearranged phosphate Asp analogue of peptide 9.  

The spectrum of the [(M-H) - H3PO4]
-
 ion of 9 (Figure 2.6) shows the fragment anions 

depicted in Scheme 2.11 indicating that some of the anions m/z 759 have the structure A and 

some have the structure B. In other words, the phosphate group of the precursor ion m/z 857 

may migrate to either carboxylate site before loss of H3PO4 to form A and B. The key 

fragmentations of B are noted in Figure 2.6 and Scheme 2.11. A similar scenario is observed 

for the (M-H)
-
 ion of peptide 11 where Asp is moved further away from the pTyr residue 

(Scheme 2.12). It is interesting that there is no evidence for pTyr/Glu side-chain carboyxlate 

rearrangement in the spectrum of [(M-H) - H3PO4]
-
 of 10. Instead there is dominant pTyr/C-

terminal carboxylate transfer. In conclusion, in the cases of the (M-H)
-
 anions of 9 and 10, 

the phosphate group of pTyr undergoes competitive rearrangement to the C-terminal and 

Asp carboxylate groups. 
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 [G  L  Y  G  V  *D  G  V(OH)- H]-       m/z 759    C

702 589 426 173 116369

642585488389169

186





[G  L  Y  G  V  D  G  *V- H]-       m/z 759    D

702 589 426 155 98369

660603488389169

505

253





*D is NHCH(CH=CO)CO, *V is NHC(C3H7)=C=O  

Scheme 2.12. Schematic representation of backbone cleavages of C formed by the loss of 

H3PO4 from a rearranged C-terminal phosphate anion and D formed by the loss of H3PO4 

from a rearranged phosphate Asp analogue of peptide 11. 

The phosphate rearrangement to a side-chain Asp-carboxylate is now confirmed. Perhaps, 

the rearranged pAsp anion may undergo a similar cyclisation/cleavage reaction as that 

displayed in Scheme 2.9. According to this scenario, the phosphate rearranged anion should 

attack the central carbon of the amino acid located two amino acids before the Asp residue. 

The spectrum of the (M-H)
-
 anion of 9 [GLGpYDVGV(OH)] (Figure 2.4) shows that there 

is no major product ion of [GLG(NH
-
)] (m/z 243) corresponding to that process. There are, 

however, two other possibilities for further reaction of the rearranged Asp anion involving 

six and seven-centred cyclisations as shown in Scheme 2.13. The product anion m/z 272 has 

the same structure as the 5 anion (originating from the (M-H)
-
 ion of peptide 9), while the 

product anion m/z 406 has the same structure as the 5 anion. Thus, although there is the 

presence of the peak m/z 406 in the spectrum of the (M-H)
-
 anion of 9, it is impossible to 

confirm experimentally from this data whether this peak comes from the  peptide backbone 

cleavage or from the cyclisation reaction depicted in Scheme 2.13.  
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Scheme 2.13. Two possible cyclisation/cleavage processes of the rearranged phospho-Asp 

anion of 9. 

In this case, it turns out that theoretical calculations can assist with determination of the 

origin of the fragment m/z 406. At the modest HF/6-31G(d)//AM1 level of theory, a simple 

model basically containing only the Asp residue shows an unfavourable  fragmentation 

with the Greaction barrier of 200 kJ mol
-1

 and an overall Greaction of + 310 kJ mol
-1

 (Scheme 

2.14). In comparison, a model consisting of pTyr located next to the Asp residue is 

calculated to undergo a six-centred cyclisation sequence through several intermediates as 

shown in Scheme 2.15. The process commences with the favourable Tyr/Asp phosphate 

rearrangement (Greaction of - 44 kJ mol
-1

). The following SNi(P) cyclisation/cleavage is 

endothermic by + 180 kJ mol
-1 

which proceeds over a barrier of + 246 kJ mol
-1

 (Scheme 

2.15). The theoretical study therefore suggests that the rearrangement/cyclisation is more 

energetically favourable than the  fragmentation process. 

-CHCO2H

COR2R1HN
(R1NH- )

CHCO2H

CHCOR2

R1NH- +
CHCO2H

CHCOR2

R1NH2 +
CHCO2

-

CHCOR2

(+ 310 kJ mol-1) (- 42 kJ mol-1)

TS

(+ 200 kJ mol-1)


(0 kJ mol-1)

 

Scheme 2.14.  Calculations for the formation of  and  ions from the deprotonated ions of 

peptides containing Asp at the HF/6-31G(d)//AM1 level of theory by Dr. Tianfang Wang. R1 

and R2 are CH3CO and NHCH3, respectively. 
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Scheme 2.15. The rearrangement of an (M-H)
-
 ion of pTyr/Asp to an (M-H)

-
 ion Tyr/pAsp 

followed by the cyclisation/cleavage of the pAsp species [R1-Tyr-NHCH(CH2CO2PO3
-

)COR2] to form R1-Tyr(NH
-
). R1 is CHO and R2 is OCH3. Calculations at the HF/6-

31G(d)//AM1 level of theory by Dr. Tianfang Wang. 

2.3.3 Phosphate rearrangement from pSer/Thr to carboxylate anion centres 

It has already been shown that pTyr may transfer the phosphate group to both C-terminal and 

internal carboxylate anions. The next question is whether the same processes may occur for 

pSer/pThr. In order to investigate these scenarios, a series of (M-H)
- 

ions from synthesised 

peptides (listed in Table 2.6) were subjected to CID MS/MS. The CID mass spectrum of the 

(M-H)
-
 ion of 14 is displayed in Figure 2.7 while CID MS/MS data for 13 and 15 are 

summarised in Table 2.7. The (M-H)
-
 anion of 14 undergoes two series of  and β 

fragmentations corresponding to both the non-rearranged [GLpTGVA(OH) - H]
-
 and the 

rearranged species [GLTGVA(OPO3H2) - H]
-
. The first series is displayed schematically on 

Figure 2.7, indicating the sequence GL*TGVA(OH) [*T is NHCH(=CHCH3)CO] (the loss 

of phosphoric acid from the unrearranged deprotonated ion of 14). On the other hand, the 

phosphate rearrangement to C-terminal carboxylate is evidenced by the presence of  and β 
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fragments originating from GLTGV*A [*A is NHCH(CH3)CO2PO3H2]. These 

fragmentations are shown in the formula drawn on Figure 2.7. Similar fragmentations of the 

deprotonated ions of 13 and 15 are summarised in Table 2.7. Thus phosphate migration to a 

C-terminal carboxylate anion may occur from pTyr, pSer and pThr.  

Finally, observation of the product ion GLTG(NH
-
) (m/z 344) and the loss of CH3CHO from 

this ion (see Figure 2.7) suggests that phosphate rearrangement and subsequent SNi(P) 

cyclisation/cleavage occurs in the same fashion as observed for pTyr (cf Scheme 2.15) 

Table 2.6. Peptides containing pSer and Asp/Glu studied. 

Peptide Sequence Peptide Sequence 

13 GLpSGVA(OH) 21 GAYpSGL(OH) 

14 GLpTGVA(OH) 22 GApYTGL(OH) 

15 GLpSGVGVA(OH) 23 GAYpTGL(OH) 

16 GLpSDVG(OH) 24 GLpSGSGV(OH) 

17 GLpSEVG(OH) 25 GLSGpSGV(OH) 

18 GLpTDVG(OH) 26 GLpSGLGLSGV(OH) 

19 GLpSVGDGV(OH) 27 GLSGLGLpSGV(OH) 

20 GApYSGL(OH)   
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Figure 2.7. CID MS/MS of the (M-H)
-
 precursor anion of 14 GLpTGVA(OH). *A is 

NHC(CH3)=C=O. Multiplication ranges:- m/z 100-246 (x20), 247-495 (x6). Q-TOF 2 mass 

spectrometer. 

Table 2.7. Negative ion data for (M-H)
-
 and some fragment anions from 13 and 15. [*S is 

NHC(=CH2)CO; *A is NHC(CH3)=C=O].  

13 GLpSGVA(OH) (M-H)
-
, m/z 581; [(M-H)

 
- H3PO4]

-
, m/z 483, base peak. 

m/z 483 (unrearranged),  ions, m/z 426, 313, 244, 187 [GL*SG(VA(OH))] 

                                        ions, m/z 394, 238, 169 [(GL)*S(GV)A(OH)] 

Sequence GL*SGVA(OH) 

[GLSGVA(OPO3H2) - H]
-
, m/z 581   GLSG(NH

-
), m/z 330 

m/z 483 (rearranged),  ions, m/z 426, 313, 226, 169 [GLSG(V*A)] 

                                    ions, m/z 313, 169  [(GL)(SG)(V*A)] 

 15   GLpSGVGVA(OH) (M-H)
-
, m/z 737; [(M-H) - H3PO4]

-
, m/z 639, base peak. 
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 m/z 639 (unrearranged),  ions, m/z 582, 469, 400, 343, 244, 187, 88                                       

[GL*SGVGVA(OH)]. 

                                                  ions,  m/z 550, 394, 169 [(GL)(*SGV)(GV)A(OH)] 

Sequence GL*SGVGVA(OH) 

[GLSGVGVA(OPO3H2) - H]
-
, m/z 737  GLSGVG(NH

-
), m/z 486; GLS(NH

-
), m/z 273. 

m/z 639 (rearranged),   ions, m/z 582, 469, 382, 325  [GLSG(VGV*A)] 

                                      ions, m/z 469, 412, 313  [(GLSG)VG(V*A)] 

Sequence  GLSGVG(V*A) 

 

The CID mass spectrum of the (M-H)
-
 anions of 18 (Figure 2.8) is examined to determine 

whether the phosphate group can migrate from pThr to the side-chain carboxylate moiety of 

Asp. The  and backbone cleavages of the two [(M-H) - H3PO4]
-
 species [GLTDV

*
G - H]

-
 

(
*
G is NHCH=C=O) and [GL

*
TDVG(OH) - H]

-
 (

*
T is NHC(=CHCH3)CO) observed in 

Figure 2.8 are shown in Scheme 2.16. These data indicate the co-occurrence of two 

phosphate migration processes, namely (i) to the C-terminal carboxylate and (ii) to side-

chain carboxylate anion of Asp. Diagnostic SNi(P) cyclisation/cleavages also occur, with the 

formation of [GLTD(NH
-
)] (m/z 402) from [GLTDVG(OPO3H2) - H]

-
 and [GLT(NH)

-
] (m/z 

287) from [GLTD(PO3H
-
)VG(OH)]. Both m/z 402 and 287 lose CH3CHO to give m/z 358 

and 243, respectively. The relative abundances of the fragments originating from non-

rearranged (schematically displayed on Figure 2.8) and rearranged anions infer that these 

processes are comparable. 

Similar phosphate rearrangements are observed for (M-H)
-
 anions of pSer peptides 16, 17 

and 19 (listed in Table 2.8) regardless of distance between pSer and Asp residues. It can 

therefore be concluded that the phosphate groups of pSer and pThr undergo the same 

rearrangement processes to C-terminal carboxylate and side-chain carboxylate moieties 

which is followed by similar cyclisation/fragmentations to that of pTyr. 
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Figure 2.8. CID MS/MS of the [M-H]
-
 precursor anion of 18 GLpTDVG(OH). *T is 

NHC(=CHCH3)CO. Multiplication ranges: m/z 60-250 (x10), 290-490 (x15). Q-TOF 2 mass 

spectrometer. 

253

G  L  T  D  V  *G





371 270

270169

155

385

m/z 541

G  L  T  *D   V  G(OH)





371 270

270169

173

385

74

466

[*G is NHCH=C=O; *D IS NHCH(CH=C=O)CO]  

Scheme 2.16. Schematic representation of backbone cleavages of the two [(M-H) - H3PO4]
-
 

species originated from 18. 
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Table 2.8. Negative ion data for (M-H)
-
 and selected fragment anions from 16, 17 and 19. 

*S is NHC(=CH2)CO, *A is NHC(CH3)=C=O], *G is NHCH=C=O, *D is 

NHCH(CH=C=O)CO and *E is NHCH(CH2CH=C=O)CO.  

 16 GLpSDVG(OH) (M-H)
-
, m/z 625; [(M-H)

 
- H3PO4]

-
, m/z 527 (base peak). 

m/z 527 (unrearranged),  ions, m/z 357, 288, 173, 74 [(GL)*SDVG(OH)] 

                                       ions, m/z 452, 353, 238, 238, 169 [(GL)*SDVG(OH)] 

D4, m/z 255; D4, m/z 271 

 Sequence (GL)*SDVG(OH). 

[GLSDVG(OPO3H2 - H)]
- 
 GLSD(NH

-
), m/z 388; GL(NH

-
), m/z 186. 

m/z 527(C-term rearranged),  ions, m/z 357, 270, 155 [(GL)SD(V*G)] 

                                          ions, m/z  256, 169 [(GL)S(DV*G)] 

              D4, m/z 273; D4, m/z 253 

Sequence (GL)SD(V*G) 

[GLSD(PO3H
-
)VG(OH)]     GLS(NH

-
), m/z 273. 

m/z 527 (D rearrangement),  ions, m/z 357, 270, 173, 74 [(GL)S*DVG(OH)] 

                                              ions, m/z  452, 353, 169 [(GL)(S*D)VG(OH)] 

Sequence  (GL)S*DVG(OH) 

17 GLpSEVG(OH) (M-H)
-
, m/z 639; [(M-H) - H3PO4]

-
, m/z 541. 

 m/z 541 (unrearranged).  ions, m/z 484, 371, 302, 173, 74 [GL*SEVG(OH)] 

                                           ions, m/z 466, 238 [(GL*S)(EV)G(OH)] 
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  Sequence [(GL*SEVG(OH) 

 [GLSEVG(OPO3H2 - H]
-
, m/z 639  GLSE(NH

-
), m/z 402, GL(NH

-
), m/z 186. 

 m/z 541 (C-term. rearranged),  ions, m/z 484, 371, 284 [GLS(EV*G)] 

                                                  ions, m/z 484, 256;  E4, m/z 267 [(GLS)EV*G] 

  Sequence  GLSEV*G 

  GLSE(PO3H
-
)VG(OH), m/z 639    

  m/z 541 (E rearrangement),  ions, m/z 484, 371, 284, 173, 74 [GLS*EVG(OH)] 

                                                ions, m/z 466, 256 [(GLS)(*EV)G(OH))] 

Sequence GLS*EVG(OH)  

19 GLpSVGDVG(OH) (M-H)
-
, m/z 781; [(M-H)

 
- H3PO4]

-
. m/z 683, base peak. 

m/z 683 (unrearranged),  ions, m/z 513, 444, 345, 288, 173 [(GL)*SVGD(VG(OH))] 

                                         ions, m/z 608, 509, 337, 169 [(GL)(*SV)(GD)VG(OH))] 

                                        D6 ion, m/z 411 

Sequence [(GL)*SVGD(VG(OH))] 

[GLSVGDVG(OPO3H2) - H]
-
, m/z 781  GLSVGD(NH

-
), m/z 544 

m/z 683 (C-term. rearranged),  ions, m/z 513, 426, 327, 270, 155 [(GL)SVGD(V*G)] 

                                          ions, m/z 527, 412, 169 [(GL)(SVG)DV*G] 

        D6, m/z 429; D6, m/z 253 

Sequence [(GL)SVGDV*G] 
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[GLSVGD(PO3H
-
)VG(OH), m/z 781  GLSVG(NH

-
), m/z 429 

m/z 683 (D rearrangement),  ions, m/z 513, 426, 327, 270, 173 [(GL)SVG*D(VG(OH))] 

                                         ions, m/z 608, 509, 412, 169 [(GL)(SVG)*DVG(OH)] 

Sequence  [(GL)SVG*DVG(OH)] 

 

2.3.4 Phosphate migration between modified and unmodified amino acid residues of 

Tyr, Ser and Thr in monophospho-peptides (M-H)
-
 anions 

The next problem to be addressed is whether a phosphate group can migrate from 

monophosphorylated Tyr to unphosphorylated residues of Ser and Thr (and vice versa). The 

pTyr/Ser to Tyr/pSer (and vice versa) rearrangements were studied by examinination of the 

spectra of (M-H)
-
 anions of the peptide GApYSGL(OH) 20 (Figure 2.9) and 

GAYpSGL(OH) 21 (Figure 2.10). Both display similar fragmentation patterns with the most 

abundant peaks being [(M-H)
 
- H3PO4]

-
 and H2PO4

-
. Considering the spectrum of the 

deprotonated ion of 20, the formation of these anions is partially attributed to the 

rearrangement of the phosphate group to the C-terminal carboxylate anion, confirmed (i) by 

the fragmentations of the [(M-H) - H3PO4]
-
 anion of sequence GAYSG*L (m/z 547) [*L is 

NHC(C4H9)=C=O)] and (ii) by the presence of the characteristic SNi(P) cyclisation/cleavage 

fragment GAYS(NH
-
) (m/z 394). There is also apparent phosphate transfer from pTyr to Ser 

to form [GAYpSGL(OH) - H]
-
. This transfer is evident from the observation of  and  

backbone cleavages from the [(M-H) - H3PO4]
-
 species GAY*SGL (m/z 547) (shown 

schematically in Figure 2.9). On the other hand, in the CID mass spectrum of the (M-H)
-
 ion 

of 21 (Figure 2.10), the peak at [(M-H)
-
- HPO3] (the diagnostic fragment of pTyr) is low in 

abundance (0.3%) indicating that the pSer to Tyr process is at best a minor one.  
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Figure 2.9. CID MS/MS data of the (M-H)
-
 precursor anion of GApYSGL(OH). *L is 

NHC(C4H9)=C=O. *S is NHC(=CH2)CO. Multiplication ranges: m/z 100-200 (x6), 300-547 

(x4), 550-640 (x4). Q-TOF 2 mass spectrometer. 

 

Figure 2.10. CID MS/MS data of the (M-H)
-
 precursor anion of GAYpSGL(OH). *L is 

NHC(C4H9)=C=O. *S is NHC(=CH2)CO. Multiplication ranges: m/z 100-250 (x16), 260-

547 (x10), 550-640 (x4). Q-TOF 2 mass spectrometer. 

The negative ion MS data of two other phosphopeptides, GApYTGL(OH) 22 and 

GAYpTGL(OH) 23 (Table 2.9), were also examined to ascertain whether the negative ion 

chemistry of pThr is similar to that of pSer. The phosphate rearrangement between pTyr and 

Thr is generally comparable with those of their Ser analogues. The pTyr/Thr to Tyr/pThr 
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rearrangement is a predominant one while the reverse reaction (pThr/Tyr to Thr/pTyr ) is not 

observed.  

Table 2.9. Negative ion data for (M-H)
-
 and selected fragment anions of 22 and 23. 

*T is NHC(=CHCH3)CO; *L is NHC(C4H9)=C=O. 

22 GApYTGL(OH) (M-H)
-
, m/z 659; [(M-H) -H3PO4]

-
, m/z 561. 

[GAYpTGL(OH) - H]
-
, m/z 659  GAY(NH

-
), m/z 307 

m/z 561 (T rearrangement),  ions, m/z 504, 433, 270, 187, 130 [GAY*TGL(OH)] 

                                              ions, m/z 430, 290, 127 [(GA)Y(*TG)L(OH)] 

Sequence  GAY*TGL(OH) 

[GAYTGL(OPO3H2) - H]
-
, m/z 659  GAYT(NH

-
), m/z 408; GA(NH

-
), m/z 144. 

m/z 561 (C-terminal rearranged), ions, m/z 504, 433, 270, 169 [GAYT(G*L)] 

                                                        ions, m/z 391, 290, 127 [(GA)YT(G*L)] 

Sequence  GAYTG*L 

23 GAYpTGL(OH) (M-H)
-
, m/z 659; [(M-H)

 
- H3PO4]

-
. m/z 561. 

[GAYpTGL(OH) (unrearranged)   GAY(NH
-
), m/z 307. 

m/z 561 (unrearranged),  ions, m/z 504, 433, 270, 187, 130 [GAY*TGL(OH)] 

                                          ions, m/z 430, 290, 127 [(GA)Y(*TG)L(OH)] 

Sequence  GAY*TGL(OH) 

[GAYTGL(OPO3H2) - H]
-
, m/z 659  GAYT(NH

-
), m/z 408, GA(NH

-
), m/z 144 
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m/z 561 (C-terminal rearranged),  ions, m/z 504, 433, 270, 169 [GAYT(G*L)] 

                                          ions, m/z 391, 290, 127 [(GA)YT(G*L)] 

Sequence  GAYT(G*L) 

 

2.3.5 Phosphate rearrangement between two serine residues in the (M-H)
-
 of 

monophosphorylated peptides 

It has been shown above that phosphate translocation from pTyr to Ser/Thr is more feasible 

than that from pSer/pThr to Tyr. The next question is that, if the peptide contains two Ser 

residues with only one phosphorylated, will phosphate transfer between the two sites still 

occur? In addition, does the phosphate rearrangement still occur if these two Ser residues are 

moved further away from each other? These questions were investigated using the four 

peptides 24-27 (Table 2.6). The first pair has two Ser residues at three amino acid residues 

apart while the last pair has them at six residues apart.  

The CID MS/MS spectrum of 27 is presented in Figure 2.11 while the fragmentation data of 

the deprotonated ions of 24-26 are recorded in Table 2.10. There are several observations 

necessary to point out from mass analysis of these four peptides. Each pair of peptides (24-

25 or 26-27) produces very similar CID MS/MS spectra, indicating that each pair undergoes 

the same rearrangements to create the same mixture of precursor ions. The mass spectrum of 

each of the four peptides shows phosphate transfer from one Ser to the other and to the C-

terminal carboxylate moiety, with the fragments originating from the pSer to Ser rearranged 

species of lower abundance compared to those from the un-rearranged species and C-

terminal carboxylate rearranged counterparts. The pSer to Ser rearrangement still occurs 

when they are located six amino acids away from each other, indicating that in gas phase the 

deprotonated ion (e.g. of 27) has to adopt a random conformation so that phosphate group on 

Ser8 can approach and interact with Ser3. 

More details of the pSer to Ser rearrangement can be elucidated by looking at Figure 2.11. 

This spectrum presents three sets of  and β fragmentations corresponding to three structures 

of precursor (M-H)
- 
anions, namely the unrearranged species, the pSer/C-carboxylate anion 
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and pSer/Ser rearranged species. The sequence track of the non-rearranged [(M-H)
 
- H3PO4]

-
 

is shown in schematic form, whereas the fragmentations of pSer to Ser rearranged are 

displayed on the formula in Figure 2.11. In addition, following the C-terminal carboxylate 

phosphate transfer, characteristic cyclisation/cleavage reactions also occur which are evident 

by the presence of the diagnostic products of m/z 700 [GLSGLGLS(NH
-
)], m/z 443 

[GLSGL(NH
-
)], m/z 330 [GLSG(NH

-
)] and m/z 186 [GL(NH

-
)]. These anions (except m/z 

186) undergo intensive loss of CH2O from a Ser side chain. The backbone cleavages of the 

[(M-H) - H3PO4]
-
 ion derived from [GLSGLGLSV(OPO3H2) - H]

- 
are listed in the caption to 

Figure 2.11. Among the three rearrangement processes, the C-terminal carboxylate 

phosphate rearrangement is the predominant one as most of the peaks corresponding to this 

migration are pronounced, or subsequently fragment further to produce pronounced peaks. 

 

Figure 2.11. CID MS/MS of the (M-H)
-
 precursor anion of 27 GLSGLGLpSGV(OH). *S 

is NHC(=CH2)CO. *V is NHC(C3H7)=C=O. Multiplication ranges: m/z 60-835 (x15). 

Fragmentations of the C-terminal [(M-H)
 
- H3PO4]

-
 rearrangement anion GLSGLGLS*V 

(m/z 839) are as follows:  ions, m/z 582, 525, 412, 355, 242 [(GLS)GLGL(SG*V)].  ions, 

m/z 740, 596, 483, 426, 313, 256 [(GLS)GLGL(SG)*V]. Q-TOF 2 mass spectrometer. 
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In conclusion, the phosphate rearrangements from pSer/Thr to unmodified Tyr, internal 

acidic side-chain and C-terminal carboxylate moieties are observed. Of these processes, the 

internal acidic side-chain and C-terminal carboxylate rearrangements are more prevalent 

compared to the phosphate transfers between Tyr, Ser and Thr residues. The propensity for 

phosphate migration from Tyr to Ser/Thr is higher than that from Ser/Thr to Tyr.  

Table 2.10. Negative ion data for (M-H)
-
 and fragment anions of 24-26. *S is 

NHC(=CH2)CO, *V is NHC(C3H7)=C=O. 

24 GLpSGSGV(OH) (M-H)
-
, m/z 654; [(M-H)

 
- H3PO4]

-
, m/z 556 

m/z 556 (unrearranged),  ions, m/z 499, 386, 317, 260, 173, 116 [GL*SGSGV(OH)] 

                                         ions, m/z 439, 382, 295, 238, 169 [(GL)*SGSGV(OH)] 

Sequence GL*SGSGV(OH)] 

m/z 556 (S rearranged),  ions, m/z 499, 386, 299, 242, 173, 116 [GLSG*SGV(OH)] 

                                          ions, m/z 439, 382, 313, 256, 169 [(GL)SG*SGV(OH)] 

Sequence  GLSG*SGV(OH)] 

[GLSGSGV(OPO3H2) - H]
-
, m/z 654  GLSGS(NH

-
), m/z 417, GL(NH

-
), m/z 186 

m/z 556 (C-terminal rearranged),  ions, m/z 499, 386, 299, 242, 155 [GLSGS(G*V(OH))] 

                                         ions, m/z 457, 400, 313, 256 [(GLS)GSG*V] 

Sequence GLSGSG*V 

25 GLSGpSGV(OH), (M-H)
-
, m/z 654; [(M-H)

 
- H3PO4]

-
, m/z 556 

m/z 556 (unrearranged),  ions, m/z 499,386, 299, 242, 173, 116 [GLSG*SGV(OH)] 

                                          ions, m/z 439, 382, 313, 256 [(GLS)G*S(GV(OH))] 
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Sequence  GLSG*SGV(OH) 

m/z 556 (S rearranged),  ions, m/z 499, 386, 317, 173, 116 [GL*S(GS)GV(OH)] 

                                        ions, m/z 439, 382 [382 (GV(OH))] 

Sequence GL*S(GS)GV(OH) 

[GLSGSGV(OPO3H2) - H]
-
, m/z 654  GLSGS(NH

-
), m/z 417; GL(NH

-
), m/z 186 

m/z 556 (C-terminal rearranged), ions, m/z 499, 386, 299, 242, 155 [GLSGS(G*V)] 

                                                         ions, m/z 457, 400, 313, 256 [(GLS)GSG*V] 

Sequence GLDGSG*V 

26 GLpSGLGLSGV(OH) (M-H)
-
, m/z 937; [(M-H) - H3PO4]

-
, m/z 839 

m/z 839 (unrearranged),  ions, m/z 782, 669, 600, 543, 430, 373, 260, 173, 116 

[GL*SGLGLSGV(OH)] 

                 ions, m/z 722, 665, 578, 465, 408, 295, 238 [(GL*S)GLGLSGV(OH)] 

Sequence GL*SGLGLSGV(OH) 

m/z 839 (S rearrangement),  ions, m/z 782, 669, 582, 525, 412, 355, 242, 173 

[GLSGLGL*S(GV(OH))] 

                 ions, m/z 722, 665, 596, 483, 426, 313, 256 [(GLS)GLGL*SGV(OH)] 

Sequence GLSGLGL*SGV(OH) 

[GLSGLGLSGV(OPO3H2) - H]
-
, m/z 937  GLSGLGLS(NH

-
), m/z 700; GLSGL(NH

-
), m/z 

443; GL(NH
-
), m/z 186 
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m/z 839 (C-terminal rearranged),  ions, m/z 782, 669, 582, 525, 412, 355, 242 

[GLSGLGLS(G*V)] 

               ions, m/z 596, 483, 426, 313, 256 [(GLS)GLGL(SG*V)] 

Sequence GLSGLGLS(G*V) 

 

2.3.6 Migration behaviour of the phosphate group in di- and tri-phosphorylated serine 

containing peptides 

The aggregation of phosphate groups in di-phosphorylated peptides containing Ser, Thr and 

Tyr to form characteristic di-phosphate anions has been reported [242]. The fragment anions 

m/z 177 (H3P2O7)
-
, 159 (HP2O6)

-
, and sometimes [(M-H) - H4P2O7]

-
 are usually found in the 

spectra of these peptides. The formation of m/z 177 (H3P2O7
-
) is initiated by an 

intramolecular nucleophilic attack of the oxygen next to CH2 of one pSer with the 

phosphorus of the second pSer residue. The P-O bond cleavage with concomitant proton 

transfer is the last step to produce X (m/z 177) (Scheme 2.17). The overall process is 

thermodynamically favourable with G of -299 kJ mol
-1

 (and a barrier of 112 kJ mol
-1

) 

[242]. The loss of H2O from X to generate Y or Z (m/z 159) (Scheme 2.18) takes place 

subsequently since X is formed with such significant excess energy. 
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Scheme 2.17. The cyclisation of two phosphorylated Ser residues to form m/z 177 (H3P2O7
-
), 

calculations at the HF/6-31 + G(d)//AM1 level of theory [242]. 
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Scheme 2.18. Two possible structures of HP2O6
-
 (m/z 159). 

In the present study, a tri-phosphorylated Ser containing peptide was investigated to 

determine whether a similar aggregation of three phosphate groups may occur. The tri-

phospho peptide has the sequence GpSGLGpSGLGpSGL(OH) in which the three phosphate 

groups are five amino acids away from each other. The negative ion mass spectrum of the 

(M-H)
-
 anion (m/z 1199) is shown in Figure 2.12. 
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Figure 2.12. CID MS/MS data for the (M-H)
-
 anion of GpSGLGpSGLGpSGL(OH). 

Multiplication ranges: m/z 1-150 (x186), 151-260 (x10), 261-910 (x25). Q-TOF 2 mass 

spectrometer. 

The CID MS/MS spectrum shows the peak m/z 905 corresponding to the loss of three 

phosphoric acid molecules from the parent ion. A negative ion MS/MS measurement of the 

source formed [(M-H) - 3H3PO4]
-
 anion was carried out to provide the sequencing data of 

this species as illustrated in Figure 2.12 and Scheme 2.19.  





G  *S  G  L  G  *S  G  L  G  *S  G  L(OH)

 

Scheme 2.19. Schematic representation of backbone cleavages of the source formed [(M-H) 

- 3H3PO4]
-
 anion of peptide GpSGLGpSGLGpSGL(OH). 

It can be seen in Figure 2.12, apart from anions of m/z 97 (H2PO4
-
) and m/z 177 (H3P2O7

-
), 

there is a peak corresponding to m/z 257 (H4P3O10
-
). This indicates the aggregation of three 

phosphate groups to form this species. MS/MS/MS measurements on m/z 1101, 1003 and 

905 were implemented using an LTQ Orbitrap XL ETD hybrid mass spectrometer, with 

mass resolution of 30,000. Data (not provided here) confirm atomic compositions of major 
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fragment anions. CID MS/MS of the doubly charged (M-2H)
2-

 anion of this tri-

phosphorylated peptide also produces the same fragment anions of m/z 177, 159 and 259, but 

not the doubly charged counterparts. 

Two possible mechanisms for the formation of the tri-phosphate anion have been 

investigated. The first involves simultaneous migration of the two phosphate moieties to the 

third (Scheme 2.20). The second mechanism is an extended version of the mechanism shown 

in Figure 2.12, in which the phosphate groups attach to each other in a stepwise manner 

(Scheme 2.21). 
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Scheme 2.21. The cyclisation of three phosphorylated Ser residues to form m/z 257 

(H4P3O10
-
). Calculations at the HF/6-31+G(d)//AM1 level of theory by Dr. Tianfang Wang. 
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Theoretical calculations at the HF/6-31+G(d)//AM1 level of theory have been carried out on 

both mechanisms to determine which one is more likely. The transition state for the first 

mechanism could not be found, whereas the second mechanism occurs based on the same 

principle shown in Figure 2.12; namely internal nucleophilic substitutions [SNi(P)] with 

concomitant proton transfer. Energies for transition states and products are displayed on 

Scheme 2.21. 

2.4. Summary and conclusions 

The phosphate group in mono-pTyr, Ser and Thr containing peptides may migrate to the C-

terminal carboxylate anion, which then initiates a characteristic SNi cyclisation/cleavage 

reaction at the central carbon of the penultimate amino acid residue. 

A similar phosphate rearrangement from pTyr to side-chain carboxylate sites also occurs. 

The rearranged species may undergo the SNi cyclisation/cleavage reaction as above to 

produce a fragment amide anion or may proceed via six or seven centred cyclisations. 

pTyr may transfer phosphate to the side chains of Ser and Thr. The reverse reaction, namely 

transfer of a phosphate group from pSer/pThr to Tyr is at best, only a minor process. 

pSer can transfer phosphate to non-phosphorylated Ser. In general, the unrearranged (M-H)
-
 

species provides more abundant fragment anion peaks than does its rearranged pSer 

counterpart. 

 The triphosphoSer peptide GpSGLGpSGLGpSGL(OH) produces the singly-charged 

cyclised anions m/z 177 (H3P2O7
-
) and m/z 257 (H4P3O10

-
) from both (M-H)

- 
and (M-2H)

2-
 

anions. The formations of these multi-phosphate anions are energetically favourable, with 

overall G of - 299 kJ mol
-1

 (see Scheme 2.17) and - 245 kJ mol
-1

 (see Scheme 2.21) 

respectively at the HF/6-31+G(d)//AM1 level of theory. 

In conclusion, fragmentations of energised precursor anions should not be used to determine 

the positions of phosphorylated residues in phospho-peptides in the following circumstance. 

If a phospho-peptide containing any or all of Ser, Thr and Tyr is not completely 

phosphorylated, negative ion cleavages will determine the number of phosphate groups, 

normally the positions of Ser, Thr and Tyr, but not which residues are phosphorylated. This 
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is a consequence of the various processes (outlined above) which involve migration of a 

phosphate group following formation of the initial (M-H)
- 
species.  

2.5 Experimental 

2.5.1 Peptide synthesis 

All pTyr containing peptides used in this study were synthesized by Hongkong GenicBio 

Biotech Co., Ltd (Shanghai, China). Purities were > 80% as evidenced by HPLC and MS 

(Shimadzu LCMS-2010) data. No attempt was made to further purify the phosphopeptides 

because of the possibility of hydrolysis. 

The tri-phosphorylated GpSGLGpSGLGpSGL(OH) was prepared in house by Dr. Denis 

Scanlon, using Fmoc solid phase peptide synthesis. All listed chemicals were purchased 

from Sigma-Aldrich, St. Louis, MO, USA, 63178.  

2.5.2 Mass spectra  

Electrospray tandem mass spectra were obtained using a Micromass Q-TOF 2 hybrid 

orthogonal acceleration TOF mass spectrometer (Waters/Micromass, Manchester, UK) with 

a mass range to m/z 10,000. The Q-TOF 2 is fitted with an ESI source in an orthogonal 

configuration with a Z-spray interface. Samples (25 g) were dissolved in acetonitrile/water 

(1:1 v/v) and infused into the electrospray source at a flow rate of 8 l min
-1

. Experimental 

conditions were as follows: capillary voltage 2.9 kV, source temperature 80 
o
C, desolvation 

temperature 150 
o
C, and cone voltage 45 V. The argon collision gas energy was 35 eV. All 

masses for anions shown either in Figures or in Tables are nominal masses (i.e. the sum of 

the integral masses of the amino acid residues). 

High resolution mass data were obtained with an LTQ Orbitrap XL ETD hybrid mass 

spectrometer (Thermo Fisher Scientific, MA, USA) equipped with an ESI source. Samples 

were infused at 5 l min
-1

 delivered by a built-in-syringe pump and a spraying voltage of 3.2 

kV. A mass resolution of 30,000 (at m/z 400) was used. Tandem MS
n
 (n=2 or 3) experiments 

were performed using collision energy dissociation set to 25%. 
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CHAPTER 3 

INVESTIGATION OF SULFATED PEPTIDES BY NEGATIVE ION 

MASS SPECTROMETRY  

3.1 Introduction to sulfoproteome 

Sulfation has been estimated to be the most abundant post-translational modification of Tyr 

(Figure 3.1a) with about 1% of the Tyr residues in the eukaryotic proteome being sulfated 

[243-244]. Protein Tyr sulfation was first observed by Bettelheim in bovine fibrinopeptide B 

in 1954 [245] and later found in many species of animals and plants including secretory 

proteins [246-247], plasma membrane proteins [247], adhesion molecules [248-249], 

coagulation factors [250], plasma proteins [251], immune components [252], G-protein-

coupled receptors [253] and the neuropeptide cholecystokinin [254]. The sulfation of 

tyrosine residues takes place in the trans-Golgi network and is mediated by two 

tyrosylprotein sulfotransferases, namely TPST-1 and TPST-2 [255-256]. Tyrosine sulfation 

has been found to be the key modulator of protein-protein interactions of secreted proteins 

and membrane-bound proteins [257-258]. It is involved in a variety of pathophysiological 

processes such as the mediation of inflammation, leukocyte adhesion, chemokine receptor 

signalling and the blood coagulation cascade [255, 258-262]. Sulfation of Ser and Thr have 

also recently been reported to occur in several eukaryotic proteins (Figures 3.1b and 3.1c) 

[263]. The ongoing increase in the number of sulfated peptides and proteins discovered 

implies that sulfation is more ubiquitous than currently perceived.  
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Figure 3.1. Structures of (a) sulfated Tyr, (b) sulfated Ser and (c) sulfated Thr. 

Although sulfation and phosphorylation are both monoester modifications of their respective 

acids resulting in an increase of a nominal mass of 80 Da, they possess different chemical 

stabilities which lead to differences in their analysis and characterisation. While phosphate 

peptides/proteins are quite stable, sulfated compounds are highly sensitive to conditions used 

in peptide/protein preparations and analysis such as low pH, high temperature and high 

energy deposition [257, 264]. The ease of acidic hydrolysis of sulfate-ester moieties limits 

the number of biochemical methods which have been utilised for sulfoproteome analysis 

[265]. For instance, traditional Edman sequencing cannot be used due to the involvement of 

TFA in the cleavage of the anilinothialione derivaties of the amino acids. Several 

biochemical approaches have still been considered to be useful in detection of sulfation in 

peptides/proteins such as radioactive labelling of 
35

S or amino acid analysis with 
3
H-labelled 

Tyr/Ser/Thr [266]. However, each of these methods has its own short-comings which 

sometimes result in ambiguous determination of the presence and the position of sulfation in 

peptides and proteins [266].  

3.2 Mass spectrometry based methods for analysis of sulfation 

On the other hand, a multitude of studies of sulfated peptides/proteins using MS have been 

carried out in the last decades. Identification of sulfated moieties within a protein normally 

requires proteolytic digests to produce peptide fragments which are more readily 

characterised by MS. Apart from trypsin and chymotrypsin normally used in proteomics, 

Asp-N and/or Glu-C have been highly recommended for enzymatic digests of sulfated 

proteins since Asp and Glu are two residues most prevalently found in close proximity to 

sulfoTyr residues of proteins [267-269]. Proteolytic cleavages using carboxypeptidase Y 
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and/or aminopeptidase M may be needed to differentiate between adjacent sulfoTyr residues 

[267]. In addition, the proteolysis of sulfoTyr containing proteins with chymotrypsin and/or 

carboxypeptidase Y may be reduced or even precluded if sulfoTyr residues are close to the 

cleavage sites [270]. 

The fragment peptides resulting from enzymatic digests of a sulfated protein can be enriched 

before being subjected to MS. In contrast with a multitude of well-developed strategies for 

phosphorylation enrichment, there is a lack of reagents for enrichment of sulfated 

peptides/proteins. So far, only one anti-sulfoTyr monoclonal antibody which selectively 

enriches sulfoTyr-containing peptides/proteins has been identified by Hoffhinen’s group 

[271]. In addition, only a small number of techniques including RP-HPLC [272], capillary 

electrophoresis [273] and ion exchange methods [272, 274] are employed prevalently in 

separation and enrichment of sulfated peptides. However, care must be taken with the 

solvent used in order to avoid acidic hydrolysis of the sulfate group. For example, the buffer 

solution in RP-HPLC, 0.1% TFA solution, is replaced by ammonium acetate at a pH near 

neutral in the separation of sulfated peptides [272]. 

3.2.1 Detection of sulfation in sulfated peptides/proteins 

In positive MS mode, suppression of ionisation by the negatively-charged sulfate esters and 

the high lability of the sulfate group have been reported to be two major obstacles for 

detection of sulfated peptides/proteins. Sulfate residues are easily lost in the ion source 

region even during ‘soft’ ionisation [264]. Complete losses of sulfate moieties in matrix 

assisted laser desorption/ionisation (MALDI) and to a slightly lesser extent in electrospray 

ionisation (ESI) are observed when standard ionisation conditions are used [275-276]. 

Sulfate moieties are therefore prone to be identified falsely as unsulfated residues. Some 

non-standard ionisation conditions have been suggested to mitigate this phenomenon such as 

by decreasing source potentials for electrospray, or careful regulation of laser power for 

MALDI TOF MS [199, 264, 268, 275]. An alternative strategy for determination of the site 

and stoichiometry of Tyr O-sulfation in proteins makes use of chemical labelling and the 

lability of sulfate groups in positive mode. The peptides/proteins of interest are acetylated by 

reacting with S-NHSAc (sulfosuccinimidyl acetate) using imidazole as a catalyst. This only 

modifies tyrosyl hydroxyl and primary amino groups, leaving the sulfated Tyr moieties 

unmodified. During MS analysis in the positive ion mode, the sulfuryl groups of 
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sulfotyrosine residues are lost but the acetylTyr is stable. The detection of unblocked Tyr(s) 

thus indicates the site of sulfation [277].  

Regardless of the ionisation method used, the extent of sulfate loss in negative mode has 

been reported to be less than that in positive mode [257, 264, 278-279]. This observation 

indicates that the loss of SO3 is likely to be a proton-induced process, thus when the sulfated 

ester is deprotonated in negative mode, the loss of sulfate is diminished [278]. The rationale 

is suggested based on the mechanism proposed for the cleavage of SO3 from a sulfoTyr in an 

acidic environment. According to this mechanism, the rate-determining step is the 

dissociation of a zwitterionic intermediate (ZI) or the attack of a proton to phenyl oxygen 

causing the elimination of SO3 (Scheme 3.1) [280]. The decisive role of the proton in the 

sulfated Tyr dissociation is further evidenced by increased stability of the sulfated Tyr 

containing peptide [Na]
+
 adducts compared that of their protonated counterparts [267]. The 

sulfoester groups can also be stabilised by intramolecular salt bridge formation with basic 

residues such as Arg and His, or by complexation with an external peptide containing 

multiple Arg residues [281].  
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Scheme 3.1. Proposed mechanism for the cleavage of SO3 from a sulfoTyr in an acidic 

environment. 

3.2.2 Differentiation of sulfation and phosphorylation modifications 

 Another challenge in sulfation analysis by MS is distinguishing the sulfated side chains 

from the isobaric phosphorylated moieties because they have the same nominal mass of 80 

Da. The monoisotopic mass of the sulfate group is 79.9568 Da whereas phosphate addition 

is 79.9663 Da. These modifications can be in principle differentiated by high mass accuracy 



  Chapter 3: Investigation of sulfated peptides by negative ion mass spectrometry 

 77  

measurements using a FTICR mass spectrometer (or some other high resolution instruments) 

due to their 9.5 mDa mass difference. However, this method encounters the challenges of, 

for example, the use of expensive FIICR instruments and interfering chemical noise [282]. 

For other MS instruments, phosphorylation can be differentiated from sulfation owing to the 

differences in their stabilities and fragmentation patterns [263, 283-288]. For instance, while 

sulfated Tyr containing peptides display intensive loss of sulfate moieties, phosphated Tyr 

peptides shows no loss of phosphate groups in positive mode MALDI-TOF mass spectra 

[285, 289-291]. Thus, this has been used as a means to differentiate these two modifications. 

In addition, the loss of H3PO4 (98 Da) is principally observed for deprotonated ions of 

pSer/pThr and to lesser extent for pTyr [292] whereas peaks corresponding to the loss of 

sulfuric acid (MW is also 98 Da) are hardly found in the spectra of sulfated peptides due to 

the high acidity of this acid [293-294]. However, discrimination between sulfate and 

phosphate peptides/proteins in this way depends heavily on the type of instrument used, the 

length of the modified peptides, their charge states and amino acid compositions [281, 295]. 

For example, the sulfate lability measured by MALDI mass spectrometers can be altered if 

the peptides contain multiple sulfate moieties or multiple basic residues [295]. 

Finally, the presence of sulfate residues can be verified by specific chemical or enzymatic 

removal of sulfate groups followed by MS analysis. Desulfation is normally carried out by 

acid or sulfatase treatment and the shift of 80 mass units in the mass spectra of the peptides 

before and after desulfation confirms the presence of sulfate groups [296].  

3.2.3 Localization of sulfation sites by mass spectrometry 

To date, identification of sulfation sites in peptides and proteins has still remained a 

challenge for mass spectrometric analysis due to the high lability of sulfate groups as 

mentioned above. It should be noted that the loss of SO3 from sulfate residues occurs at the 

O-S bond not at the C-O bond, resulting in unmodified Tyr/Ser/Thr residues, leaving no 

trace of the location of sulfated moieties. Therefore, the requisite requirement for 

determination of sulfation sites is the retention of sulfate groups on their original sites by 

manipulating ionisation conditions (see section 3.2.1) and dissociation methods.  

Some electron-radical based dissociation methods such as electron capture dissociation 

(ECD) and electron transfer dissociation (ETD) (for details see Chapter 2 section 2.2.2) have 
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been reported to enhance peptide sequencing and site determination of post-translational 

modifications [34, 297]. They cleave the peptide backbone randomly, not at the weakest 

bonds first. Thus, more structural information and less loss of labile sulfate groups have been 

achieved by these techniques compared to CID [298-299]. However, they are only 

applicable to sulfonated peptides containing at least one basic amino acid and multiple 

charges [300]. Charge enrichment by the formation of a divalent metal cation-peptide 

complex or Na
+
 peptide complex may improve ionisation efficiency and modification 

retainment of sulfate groups in ECD [300-301].  

In order to take advantage of the highly efficient ionisation of acidic sulfated peptides in the 

negative mode, several new dissociation methods have been introduced to characterise this 

class of peptide; for example electron detachment dissociation (EDD) [302], negative ETD 

(NETD) [303], negative ion ECD (niECD) [304] and metastable atom-activated dissociation 

(MACD) [279] to characterise this class of peptide. However, these techniques usually 

require costly FTICR instruments and not much information is available about the efficiency 

of these dissociation methods in sulfoproteome analysis to date [279].  

A variety of phosphate rearrangement processes within deprotonated (M-H)
-
 anions of 

phosphopeptides has been described [41, 239, 241-242, 292, 305]. This may preclude the site 

determination of this type of post translational modification by negative ion MS. In addition, 

both sulfate and phosphate residues possess high electron affinities and labilities under 

negative ion ESI CID conditions. Do sulfate groups behave similarly to phosphate groups in 

negative mode in terms of rearrangement reactions, and can negative ion ESI CID be used to 

determine sulfate sites in peptides/proteins? In order to answer these questions, this study 

considers the negative ion fragmentations of (M-H)
-
 anions of a number of synthetic sulfated 

peptides to determine (i) the characteristic fragmentations of sulfate moieties, and (ii) 

whether sulfate anions can undergo rearrangement analogous to those reported for phosphate 

anions. The mechanisms for characteristic fragmentations of sulfated peptides observed 

experimentally are proposed with the assistance of theoretical calculation at the CAM-

B3LYP/6-311++g(d,p) level of theory. All theoretical calculations in this study were carried 

out by Dr. Tianfang Wang. 
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3.3 Results and discussion 

3.3.1 Formation of deprotonated ions of sulfated peptides 

A problem with peptide negative ion fragmentations is knowing which deprotonated species 

is the precursor anion of a particular process, and whether that precursor is formed directly 

by ESI process, or by collision-induced dissociation of another more stable deprotonated 

anion following ESI. In this study, several precursor anions may be involved including: 

sulfate (-OSO3
-
), carboxylate (-COO

-
), amide (-CON

-
-R), enolate (either backbone or side 

chain) and methoxyl (-CH2O
-
). Deprotonation of the sulfate moiety to form a sulfate anion is 

the most energetically feasible and thus normalised to be 0 kJ mol
-1

. The formation of other 

anions relative to the deprotonation of the sulfate anion requires some 100, 120-160, 200-225, 

300 kJ mol
-1

 respectively (calculations at the CAM B3LYP/6-311++g(d,p) level of theory). 

There are three possible scenarios for the formation/origination of these ions, namely (i) the 

exclusive formation of sulfate anion due to the energetic favourability of this process 

compared to others, CID of the sulfate anions can then effect proton transfers to form other 

anions, (ii) all anions (or most of the anions mentioned) are generated simultaneously in the 

ionisation source; and (iii) some combination of (i) and (ii) may constitute the collection of 

precursor ions of sulfated peptides.  

A. Sulfated Tyr fragmentations 

The synthetic peptides containing Tyr(SO3H) investigated in this study are listed in Table 

3.1. All peptides contain Tyr sulfate in position 3, except for the third peptide (Tyr sulfate in 

position 4). Peptides (1) and (2) have sequences with the only difference being the C-

terminal carboxylate for peptide (1) and C-terminal CO-NH2 for peptide (2). Peptide (4) was 

synthesized to test the sulfate rearrangement between Tyr and Ser, and thus contains Ser in 

position 5. 
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Table 3.1. Sulfated Tyr containing peptides investigated. 

Peptide Sequence 

(1) 

(2)  

(3)  

(4) 

GLY(SO3H)GVA(OH) 

GLY(SO3H)GVA(NH2) 

GLGY(SO3H)VA(OH) 

GLY(SO3H)GSA(OH)  

3.3.2 Loss of SO3 from sulfated Tyr  

The negative ion CID MS/MS data for the deprotonated ion of peptides (1) and (3) are 

shown in Figures 3.2 and 3.3 respectively, while the fragmentation data of the (M-H)
-
 anions 

of peptide (2) is summarised in Table 3.2. The fragmentation patterns of peptide (1) and (2) 

are comparable, with the exception that the peaks corresponding to certain fragment ions are 

1 mass unit different in the two spectra due to the different masses of the C-terminal CO2H 

and CONH2 termini. 

 

Figure 3.2. CID MS/MS of [GLY(SO3H)GVA(OH) - H]
-
. Multiplication ranges m/z 60-570 

(x70). Q-TOF 2 mass spectrometer.    
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Figure 3.3. CID MS/MS of [GLGY(SO3H)VA(OH) - H]
-
. Multiplication ranges m/z 60-565 

(x24). Q-TOF 2 mass spectrometer.  

Table 3.2. CID MS/MS of (M-H)
-
 ion of (2) Mass (loss or formation) relative abundance 

(%).  

GLY(SO3H)GVA(NH2), (M-H)
-
, m/z 656. 

656 (M-H)
- 
16: fragmentations from the (M-H)

-
 anion as follows: 576 (SO3) 32; 470 (SO3+ 

C7H6O) 58; 469 (2) 12; 412 (3) 5; 406 (’4[GLYG(NH
-
)]) 60; 349 (’5[GLY(NH

-
)]) 

0; 300 (’4 - C7H6O) 100; 243 ([’5 - C7H6O] or 3) 85; 186 ([GL(NH
-
)] or 7 ) 53; 169 (4) 

20; 97(HOSO3
-
) 20; 73 [G(NH

-
)] 17. 

[GLY(SO3H)GVA(NH2) - SO3]
-
, m/z 576. 

 ions: m/z 519 (1) 7; 406 (2) 47; 243 (3) 77; 186 (4) 48; 87 (5) 2. 

 ions: m/z 169 (4) 14. 

m/z 413 (1 - C7H6O) 18; 300 (2 - C7H6O) 100; 226 (3 - C7H6O) 15. 

Sequence [GLYGVA(NH2)] 
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The most abundant peaks in the negative CID MS/MS spectra of peptides (1)-(3) correspond 

to the [(M-H) - SO3]
-
 species. Due to the fact that several deprotonated precursor ions can in 

principle be formed upon deprotonation of the peptides (see section 3.3.1), there may be 

several mechanistic pathways for the loss of SO3 from these precursor ions. In principle, 

sulfur trioxide can be eliminated from a sulfate side chain by a charge-directed/charge-

induced mechanism or a charge-remote mechanism. The charge-induced reaction requires 

the negative charge to be located on the sulfate group in order to initiate the cleavage 

reaction, while a charge-remote reaction occurs remote from and uninfluenced by the anionic 

site(s) of the (M-H)
-
 species.  

The charge-directed mechanism for the elimination of SO3 from (M-H)
-
 ion is shown in 

Scheme 3.2, whereas the charge-remote counterpart is displayed in Scheme 3.3. Direct loss 

of SO3 from sulfate anion 1 to form Tyr-phenoxyl anion 2 has a Greaction of + 156 kJ mol
-1

. 

The Tyr-phenoxyl anion may undergo internal proton transfer to give the more stable 

carboxylate anion 3. The overall reaction sequence from 1 to 3 is endothermic by + 103 kJ 

mol
-1

. On the other hand, the charge-remote reaction is the four-centre neutral reaction 

initiated from carboxylate anion 4. In this case, the negative charge is sequestered on C-

terminal carboxylate anion and thus does not interact with the active sulfate site. This 

reaction is endothermic by only + 3 kJ mol
-1

 and has a transition state of + 109 kJ mol
-1

.  

From the energy profiles of Scheme 3.2 and 3.3, the charge-remote reaction for the 

elimination of SO3 seems to be more energetically favourable than the charge-directed 

counterpart. However, it should be noted that they start with different precursor anions. 

While the sulfate anion is the initial anion in the charge-induced reaction, the charge-remote 

mechanism commences with a carboxylate anion, and hence requires an extra energy of 

about 100 kJ mol
-1

 to convert the sulfate to the carboxylate if the later is not formed directly 

during ESI. Thus, if these two reactions start with the same sulfate anion, the energy profile 

of the charge-remote reaction would be 100 kJ mol
-1

 more than those shown in Scheme 3.3. 

In other words, the sulfate cleavage reaction is likely to be charge-directed, if the (M-H)
-
 

anions correspond principally to the sulfate anion 1. In contrast, if carboxylate anions are 

formed directly by the electrospray deprotonation process, the charge-remote mechanism is 

more energetically feasible. 



  Chapter 3: Investigation of sulfated peptides by negative ion mass spectrometry 

 83  

H3C
C N

H
C

H
N C

OH

O

O

O

OSO3
-

1

(+ 156 kJ mol-1)

H3C
C N

H
C

H
N C

OH

O

O

O

O-

+ SO3

2

(0 kJ mol-1)

H3C
C N

H
C

H
N C

O

O

O

O

OH

+ SO3

3

(+ 103 kJ mol-1)

Charge-induced

 

Scheme 3.2. Charge-directed mechanism for the elimination of SO3 from (M-H)
-
 species. 

Calculation at the CAM-B3LYP/6-311++g(d,p) level of theory by Dr. Tianfang Wang.  
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Scheme 3.3. Charge-remote mechanism for the elimination of SO3 from (M-H)
-
 carboxylate 

anion. Calculation at the CAM-B3LYP/6-311++g(d,p) level of theory by Dr. Tianfang 

Wang.  

Even though [(M-H) - SO3]
-
 fragment anions dominate the negative ion spectra of sulfated-

Tyr peptides, fragment anions of low abundance containing the intact sulfated-Tyr residue 

were still observed at low abundance. Particularly, fragmentation of peptide (1) gives 

cleavage anions containing the Tyr-sulfate moiety at m/z 412 and 469 (Figure 3.2). The 

fragmentation of the (M-H)
-
 anion of peptide (1) is illustrated in Scheme 3.4. 

 G   L   sY   G   V   A(OH)





244 187 88

469412  

Scheme 3.4. 
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The CID source-formed MS/MS data for the [(M-H) - SO3]
-
 fragment of peptide (3) is 

reproduced in Figure 3.4. The standard peptide backbone  and β’ fragmentations are shown 

schematically on the spectrum which allows sequencing of the [(M-H) - SO3]
-
 species. The 

characteristic loss of CH2=C6H4=O (106 Da) from the Tyr side chain of the [(M-H) - SO3]
-
 

fragment anion is also observed.  

 

Figure 3.4. CID MS/MS of source-formed {[GLGY(SO3H)VA(OH) - H] - SO3}
-
. 

Multiplication ranges: m/z 250-570 (x4). Q-TOF 2 mass spectrometer. 

3.3.3 Sulfate rearrangement from sulfate Tyr (sTyr) to a C-terminal carboxylate anion 

The formation of HOSO3
-
 (m/z 97) and [(M-H) - H2SO4]

-
 from the deprotonated ions of 

peptide (1) and (3) can be seen in Figures 3.2 and 3.3. Examination of the MS/MS data for 

peptide (3) (Figure 3.3) and CID source-formed MS/MS data for the corresponding [(M-H) - 

SO3]
-
 fragment of peptide (3) (Figure 3.4) infers that anion m/z 559 in Figure 3.3 is formed 

exclusively by the loss of sulfuric acid from the deprotonated ion of peptide (3). The two 

fragment anions HOSO3
-
 (m/z 97) and [(M-H) - H2SO4]

-
 are of minor abundance, which is in 

marked contrast to major rearrangement peaks in the cognate negative ion spectra of 

peptides containing Tyr phosphate (see Chapter 2 section 2.2).  

Each of these two fragment anions can only be formed directly from a sTyr side chain if the 

system is energised enough to break the aromatic C-O bond of Tyr; calculations at the CAM-
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B3LYP/6-311++g(d,p) level of theory showed that this requires some + 350 kJ mol
-1

. The 

formation of these cleavage anions is therefore not energetically feasible, and the sulfate 

group must be transferred to another site (the carboxylate terminal anion in this case) to 

effect these cleavages. In addition, the CID MS/MS data for source formed m/z 559 shown in 

Figure 3.5 is consistent with an anionic structure produced by the loss of H2SO4 from a 

sulfate-rearranged C-terminal group, suggesting that the sulfate group has migrated to the C-

terminal carboxylate site preceding the elimination of sulfuric acid. 

 

Figure 3.5. CID MS/MS of source-formed {[GLY(SO3H)GVA(OH) - H] - H2SO4}
- 

(m/z 

559). Q-TOF 2 mass spectrometer.  

Possible mechanisms for the formation of HOSO3
-
 (m/z 97) and the loss of sulfuric acid from 

(M-H)
-
 of sulfated peptides are shown in Scheme 3.5. The overall process commences with 

an SNi(S) reaction which converts the initial carboxylate anion 4 to the sulfate modified C-

terminal carboxylate anion 5. This species rearranges further into the key intermediate 6, 

which then fragments to form HOSO3
-
 (m/z 97) and/or [(M-H) - H2SO4]

-
. Both 

fragmentations are endothermic by 29 and 137 kJ mol
-1

 respectively, with the highest energy 

barrier being + 144 kJ mol
-1

 for the sulfate migration step. If the reaction commences with a 

sulfate anion instead of a carboxylate anion, it requires some 100 kJ mol
-1

 to reach the 

transition state for the proton transfer reaction. The overall process is therefore more 

energetically unfavourable compared to the reaction shown in Scheme 3.5.  



  Chapter 3: Investigation of sulfated peptides by negative ion mass spectrometry 

 86  

H3C
C N

H

CH
C

H
N

C
H2

C

O
-

O

H2C
O

O

O S

O

OH

O

4

+ H2SO4

H3C
C N

H

CH
C

N
-

C C O

CH2
O

O

HO

H

H3C
C N

CH
C

H
N

CH2
O

O

HO

HOSO3
-+

H

(+ 137 kJ mol-1)

H3C
C N

H

CH
C

N
C C

OH

O

CH2
O

O

HO

S

O

O

O

H

H

H

(+ 29 kJ mol-1)

(0 kJ mol-1)

(- 20 kJ mol-1)

5

TS

(+ 144 kJ mol-1)
H3C

C N
H

CH
C

H
N

C
H2

C

O

O

H2C
O

O

O
-

S
O

OH

O

TS

(+
 3

2 
kJ

 m
ol-

1 )

6

(- 113 kJ mol-1)

C C O

H

 

Scheme 3.5. Proposed mechanism for the rearrangement of the sulfate of tyrosine to the 

carboxylate anion of the model system [RY(SO3H)G (OH) - H]
-
 (R=CH3CO). Calculation at 

the CAM-B3LYP/6-311++g(d,p) level of theory by Dr. Tianfang Wang. Relative energies in 

kJ mol
-1

 from 4 (depicted as a nominal 0 kJ mol
-1

). 

3.3.4 Sulfate rearrangement from sTyr to Ser 

It has been reported from studies of negative ion fragmentations of peptides containing Tyr 

phosphate that the phosphate readily migrates from Tyr to Ser. Does a similar reaction occur 

for Tyr sulfate? In order to answer this question, the CID MS/MS data for the (M-H)
-
 ion of 

peptide (4) [GLY(SO3H)GSA(OH)] and the corresponding [(M-H) - H2SO4]
-
 anion were 

investigated. The spectra are displayed in Figures 3.6 and 3.7, respectively. The elimination 

of SO3 and the characteristic loss of CH2O from the Ser residue are observed, with the 

former constituting the base peak of the spectrum of peptide (4). Peptide sequencing is 

possible from both [(M-H) - SO3]
-
 and [(M-H) - (SO3 + CH2O) ]

-
 as illustrated in Figure 3.6. 
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Peaks corresponding to sulfate rearrangements are also found with the abundance of the 

HOSO3
-
 (m/z 97) and [(M-H) - H2SO4]

-
 (m/z 547) anion being 10% and 2%, respectively.  

The negative ion mass spectrum of m/z 547 (Figure 3.7) is complex and clearly shows peaks 

resulting from sulfate migration from the Tyr to the Ser side chain. This is evidenced by the 

presence of the modified Ser residue [NHC(=CH2)CO] in various , β and ’ [158, 306-307] 

cleavage anions originating from m/z 547. Even though there is no unambiguous evidence 

for the competitive sulfate rearrangement to a C-terminal carboxylate anion, this possibility 

cannot be excluded. It may contribute, at least in part, to the formation of HOSO3
-
 (m/z 97) 

and [(M-H) - H2SO4]
-
 in this system. 

 

Figure 3.6. Negative ion electrospray CID MS/MS of [GLY(SO3H)GSA(OH) - H]
-
.  *S 

is -NHC(=CH2)CO-. Multiplication ranges m/z 50-120 (x5), 121-530 (x34). Q-TOF 2 mass 

spectrometer.  
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Figure 3.7. CID MS/MS of source-formed {[GLY(SO3H)GSA(OH) - H] - H2SO4}
-  

[GLYG*SA(OH)-H]
-
, (m/z 547). *S is NHC(=CH2)CO. Q-TOF 2 mass spectrometer.  

B. Sulfated Ser fragmentations 

The Ser sulfate containing peptides chosen for study are listed in Table 3.3. Two of the 

peptides contain Ser sulfate in the C-terminal amino acid position, and two related peptides 

have C-terminal CO2CH3 (instead of CO2H) groups. The remaining six-residue peptides 

have Ser sulfate in position 3 with Val, Asp or Ser sulfate in positions 5. 

Table 3.3. Sulfated serine containing peptide investigated. 

Peptide Sequence Peptide Sequence 

(5) GS(SO3H)(OH) (7) GLS(SO3H)GVA(OH) 

(6) GAVS(SO3H)(OH) (8) GLS(SO3H)GDA(OH) 

(5a) GS(SO3H)(OCH3) (9) GLS(SO3H)GS(SO3H)A(OH) 

(6a) GAVS(SO3H)(OCH3)   
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3.3.5 Fragmentations of (M-H)
-
 ions of peptides with Ser(SO3H) in the C-terminal 

position. Formation of HOSO3
-
 and [(M-H) - H2SO4]

-
 

The negative ion spectra of energized (M-H)
-
 ions of (5), (5a) and (6a) are summarised in 

Table 3.4, while those of the (M-H)
-
 and [(M-H) - SO3]

-
 ions of GAVS(SO3H)(OH) (6) are 

shown in Figures 3.8 and 3.9 respectively. 

Table 3.4. CID MS/MS of (M-H)
-
 ions from (5), (5a) and (6a).  Mass (loss or formation) 

relative abundance (%).  

 

(5). GS(SO3H)(OH), (M-H)
-
, m/z 241.  

241(M-H)
-
16: fragmentations from the (M-H)

-
 anion as follows:- 223 (H2O) 2; 179 

(H2O+CO2) 5; 161 (SO3) 56; 131 (SO3+CH2O) 10; 97 (HOSO3
-
) 100; 74 

(SO3+H2O+G)1. 

(5a). GS(SO3H)(OCH3), (M-H)
-
, m/z 255. 

255 (M-H)
- 
12; 97 (HOSO3

-
) 100. 

(6a). GAVS(SO3H)(OCH3), (M-H)
-
, m/z 425. 

425 (M-H)
- 
15; 97 (HOSO3

-
) 100. 
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Figure 3.8. CID MS/MS of (M-H)
-
 of GAVS(SO3H)(OH) (6). Multiplication ranges: m/z 

420-300 (x10) and 295-100(x10). Q-TOF 2 mass spectrometer.  

 

 

Figure 3.9. CID MS/MS of source formed [(M-H)-SO3]
-
 of GAVS(SO3H)(OH) (6). Q-

TOF 2 mass spectrometer.  

The negative ion CID MS/MS spectra of two Ser sulfate containing peptides (5) and (6) 

show a base peak at m/z 97 (HOSO3
-
) and pronounced peaks corresponding to [(M-H) - 

SO3]
-
 anions. Most other fragment peaks in the spectra occur from an [(M-H) - SO3]

-
 anion 
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including the characteristic loss of CH2O from Ser along with the ,  and ’ backbone 

cleavage ions. However, no peak corresponding to [(M-H) - H2SO4]
-
 fragments are observed 

in these spectra. This is in marked contrast to negative ion fragmentations of peptides 

containing Ser phosphate, where formation of H2PO4
-
 is always accompanied by loss of 

phosphoric acid from (M-H)
-
 ions.  

The lack of an [(M-H) -H2SO4]
-
 anion in the negative ion spectra of the sulfated peptides is 

likely due to the low basicity of HOSO3
-
 in the gas phase. The deprotonation processes of 

phosphoric acid and sulfuric acid show corresponding Gacid values being 1351 and 1261 kJ 

mol
-1

, respectively. Obviously, HSO4
-
 is a poorer gas-phase base than H2PO4

-
 and therefore 

it shows less protonation efficiency in gas phase. In addition, the Gacid value for 

deprotonation of the carboxyl centres on, for example, Gly is 1406 kJ mol
-1

 or Ser is 1363 kJ 

mol
-1 

[308-309], and is much higher than the Gacid of HSO4
-
 . Thus, HOSO3

-
 can 

deprotonate these residues only if particular systems containing either of these amino acids 

are significantly energised.  

H3PO4 H2PO4
-
 + H

+
       Gacid = 1351 kJ mol

-1
 [310] 

H2SO4 HSO4
-
 + H

+
        Gacid = 1265 kJ mol

-1
 [311] 

The major concern of studies of negative ion fragmentations of sulfated peptides is whether 

the sulfate group remains on modified amino acid residues (Tyr/Ser) or it undergoes various 

rearrangement processes like phosphorylated peptides. Can negative ion mass spectrometry 

be used to determine sulfate sites in peptides and proteins? The ultimate aim of this study is 

therefore to determine whether the major fragmentations [(M-H) - SO3]
-
 and HOSO3

-
 of Ser 

sulfate originate directly from an intact Ser sulfate, or whether the sulfate group migrates to 

anion sites within the peptide such as the C-terminal carboxylate, a side-chain carboxylate 

group of Asp or another Ser to effect these fragmentations.  

The first scenario examined is the formation of HOSO3
-
 and [(M-H) - SO3]

-
 following sulfate 

rearrangement to the C-terminal carboxylate anion. In order to give such rearrangement the 

best chance to succeed, the Ser sulfate is placed in the C-terminal position. Experimentally, 

18
O-labelled on the C-terminal CO2H (or on Ser side chain) could be used to track the 

genesis of HOSO3
-
. If the HOSO3

-
 ion is formed after C-terminal rearrangement of the 

sulfate group, it has m/z 99 instead of 97. However, this method might not be efficient due to 
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sulfate hydrolysis during the long procedure of 
18

O-labelled attachment. In addition, the 

labelling technique cannot clarify the origin of the [(M-H) - SO3]
-
 fragment anion. An 

alternative approach that was chosen in this study was to block any sulfate transfer to the C-

terminal carboxylate, by esterifying the C-terminal carboxylic group so that it cannot interact 

in an SNi (S) reaction with the Ser sulfate group. 

Consider the CID MS/MS data of the carbomethoxy derivatives (5a) and (6a) recorded in 

Table 3.4. Sulfate transfer to the C-terminal carboxylate group in these two peptides is 

blocked because the C-terminal CO2H has been converted to CO2CH3. The two peptides 

give simple negative ion mass spectra with the base peak corresponding to the HOSO3
-
 (m/z 

97) anion and other peaks are less than 1% intensity of the base peak. The presence of 

HOSO3
-
 in the spectra of (5a) and (6a) suggests that this anion is formed directly from the 

intact Ser sulfate. Surprisingly, no loss of SO3 is observed in these mass spectra. Therefore, 

it is proposed that the formation of [(M-H) - SO3]
-
 anions must require the presence of an 

adjacent C-terminal CO2H group. 

The direct formation of HOSO3
-
 from a C-terminal Ser(SO3H) is also supported by 

theoretical calculations at the CAM-B3LYP/6-311++g(d,p) level of theory for a simple 

model RNHCH(CH2OSO3
-
)CO2H (R=COCH3). Among several mechanistic pathways 

proposed for this fragmentation, the lowest-energy process is displayed in Scheme 3.6, 

involving proton transfer through an enolate anion. On the other hand, the formation of 

HOSO3
-
 following Ser sulfate to C-terminal carboxylate migaration is much more energy 

demanding and thus an unlikely possibility (data is not presented here). 

H
C

CH2

O
S

OO

O-

NHR

CO RNH-C(=CH2)CO2H (-OSO3H)

RNH-C(=CH2)CO2H + HSO4
-

RNH-C(=CH2)CO2
- + H2SO4

(TS + 175 kJ mol-1)

(+ 27 kJ mol-1)

(+ 90 kJ mol-1)

(- 52 kJ mol-1)

OH

 

Scheme 3.6. Mechanism for direct formation of HOSO3
-
 and the loss of H2SO4 from a C-

terminal Ser(SO3H) via a six-centred transition state involving proton transfer of an enolate 

hydrogen (R=COCH3). Calculation at the CAM-B3LYP/6-311++g(d,p) level of theory by 

Dr. Tianfang Wang. 
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3.3.6 Fragmentations of (M-H)
-
 ions of peptides with Ser(SO3H) in the C-terminal 

position. The formation of [(M-H) - SO3]
-
 

At this stage of the investigation, the mechanisms for the loss of SO3 from the (M-H)
-
 anions 

of sulfated Ser containing peptides and the reason for its absence when the C-terminal 

carboxylate is blocked needs to be explored using theoretical calculations. Several 

mechanistic pathways for [(M-H) - SO3]
-
 formation were proposed and calculated at the 

CAM-B3LYP/6-311++g(d,p) level of theory. Two possible mechanisms for direct loss of 

SO3 from Ser sulfate are shown in Scheme 3.7 and 3.8, while Scheme 3.9 displays the 

formation of [(M-H) - SO3]
-
 anion mediated by C-terminal sulfate rearrangement.  

OH
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Direct loss
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Scheme 3.7. Mechanism for the direct cleavage of SO3 from RNHCH(CH2OSO3
-
)CO2H 

(R=COCH3). Calculation at the CAM-B3LYP/6-311++g(d,p) level of theory by Dr. 

Tianfang Wang.  
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Scheme 3.8. Mechanism for the cleavage of SO3 accompanied by proton transfer from the 

carboxyl group of RNHCH(CH2OSO3
-
)CO2H (R=COCH3). Calculation at the CAM-

B3LYP/6-311++g(d,p) level of theory by Dr. Tianfang Wang.  
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Scheme 3.9. Mechanism for the cleavage of SO3 from RNHCH(CH2OH)C(=O)OSO3
-

(R=COCH3) 11, following sulfate transfer from RNHCH(CH2OSO3
-
)CO2H 7 to 11. 

Calculation at the CAM-B3LYP/6-311++g(d,p) level of theory by Dr Tianfang Wang.  

In Scheme 3.6, the Ser sulfate anion 7 directly dissociates to yield the Ser alkoxide anion 8 

in an endothermic process of + 235 kJ mol
-1

. The Ser alkoxide anion may be converted to a 

more stable carboxylate anion 9 by proton transfers. This pathway of fragmentation is highly 

energy demanding and occurs independent of the nature of the C-terminal group.  

The process shown in Scheme 3.8 requires the presence of a C-terminal carboxylic group. 

Loss of SO3 in this case is mediated by proton transfer via a six-centred transition state 

involving the C-terminal CO2H. This reaction is more energetically favourable than that 

displayed in Scheme 3.6 with a transition state of only + 105 kJ mol
-1

, and has a Greaction 

of + 93 kJ mol
-1

. It is also consistent with the absence of an [(M-H) - SO3]
-
 fragment from 

peptides containing C-terminal CO2CH3 groups (Table 3.4).  

The loss of SO3 facilitated by rearrangement of the sulfate from Ser to the C-terminal CO2
-
 is 

explored in Scheme 3.9. The sulfate anion 7 is first converted to the carboxylate anion 10 

(+ 69 kJ mol
-1

), which then attacks the sulphur atom of the sulfate group in an SNi(S) 

reaction to effect the transfer of this group to form the C-terminal sulfate anion 11. The 

sulfate anion decomposes further to the products 9 and SO3. The overall reaction sequence 
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has a high transition state of + 250 kJ mol
-1

; and as a result, this is not an energetically 

feasible process compared with that shown in Scheme 3.8. 

3.3.7 The formation of [(M-H) - SO3]
-
 from a non-C-terminal Ser(SO3H) 

Peptides (7)-(9) have been studied in order to examine the fragmentation behaviour of a Ser 

sulfate located at a non-C-terminal position. The negative ion mass spectra of these peptides 

show peaks due to HOSO3
-
 and [(M-H) - SO3]

-
 with the later normally being the base peak. 

The spectrum of the (M-H)
-
 anion of (7) (Figure 3.10), for example, shows the base peak at 

m/z 501 (loss of SO3) and series of  and β fragment ions originating from this peak. The 

characteristic loss of CH2O from Ser together with β’ fragmentations are also observed.  

 

Figure 3.10. CID MS/MS of (M-H)
-
 of GLS(SO3H)GVA(OH) (7). Multiplication ranges, 

m/z 100-465(x50). Q-TOF 2 mass spectrometer.  

As has been seen in section 3.3.6, the most energetically feasible mechanism for the loss of 

SO3 from a C-terminal Ser(SO3H) is the process involving proton transfer from the 

carboxylic acid group (Scheme 3.8). If the Ser sulfate is not located at the C-terminal 

position, the mechanism has been found to be more complex. SO3 dissociation is now 

mediated by two concomitant proton transfers from and to the adjacent backbone amide 

nitrogen (Scheme 3.10). The loss of SO3 by this mechanism therefore requires the backbone 

of the peptide to be flexible to allow approach of the adjacent amide nitrogen and the C-



  Chapter 3: Investigation of sulfated peptides by negative ion mass spectrometry 

 96  

terminal carboxyl group. The energy barrier for this process is + 114 kJ mol
-1

 and this value 

increases with increasing distance between the sulfate group and the C-terminal carboxylic 

group.  

O

N

H

S

O

O

H

O

O
O

O-

RNH

+114 kJ mol-1

 

Scheme 3.10. Transition state for SO3 cleavage from a RNHCH(CH2OSO3
-
)COOH (R is 

COCH3). Calculation at the CAM-B3LYP/6-311++g(d,p) level of theory by Dr. Tianfang 

Wang. 

3.3.8 Fragmentation of a sulfated Ser peptide also containing Asp 

Previous calculations indicated that sulfate transfer is unlikely to occur from Ser(SO3H) to a 

C-terminal carboxylate anion (see section 3.3.6). Similarly, sulfate transfer from a Ser 

sulfate to a side-chain carboxylate anion, for example to an Asp carboxylate, also seems 

unlikely. The possibility of sulfate transfer from a Ser sulfate to a side chain carboxylate has 

been investigated by examining the negative ion CID MS/MS of the (M-H)
-
 of the Asp-

containing peptide GLS(SO3H)GDA(OH) (8) (Figure 3.11). The spectrum shows the 

domination of the classical Asp cleavages which occur even more prevalently than the 

standard  and β backbone cleavages (not many of the  and β fragment ions are observed). 

The characteristic  (m/z 330),  (m/z 186) cleavage ions of Asp are formed principally from 

m/z 517. In addition, the CID MS/MS/MS data for m/z 517 and 499 (from Orbitrap mass 

spectrometer, see Experimental section for details) show that m/z 499 is formed by the 

characteristic loss of H2O from the Asp side chain. Sulfate transfer from Ser(SO3H) to the 

side-chain carboxylate of the Asp residue to facilitate the loss of H2SO4 from the (M-H)
-
 of 

(8) is therefore unlikely. 
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Figure 3.11. Negative ion electrospray CID MS/MS of (M-H)
-
 of GLS(SO3H)GDA(OH) 

(8). Q-TOF 2 mass spectrometer.  

3.3.9 Fragmentation of a disulfate containing peptide 

The aggregation of phosphate residues in (M-H)
-
 anions of di- and tri-phosphate peptides to 

produce H3P2O7
- 

(m/z 177) and H4P3O10
- 

(m/z 257) anions have been reported [239, 242, 

292]. In order to test whether an analogous reaction can occur for a disulfate containing 

peptide to form the disulfate anion at m/z 177 (Scheme 3.11), the CID MS/MS data of the 

disulfate peptide GLS(SO3H)GS(SO3H)A(OH) (9) was examined (Figure 3.12). The 

spectrum is dominated by peaks due to HOSO3
-
, [(M-H)

- 
- SO3] and [(M-H)

- 
- 2SO3]. No 

peak at m/z 177 (HO7S2
-
) is present, indicating that the aggregation of sulfate moieties in 

multiple sulfate containing peptides is unlikely.  

m/z 177

O S

OH

O

O

S

O-

O

O

 

Scheme 3.11.  
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Figure 3.12. Negative ion electrospray CID MS/MS of (M-H)
-
 of 

GLS(SO3H)GS(SO3H)A(OH) (9). Waters Q-TOF 2 mass spectrometer.  

3.4. Summary and conclusion 

The major fragmentations occurring from energised (M-H)
-
 ions of sTyr is [(M-H) -SO3]

-
, 

while those of Ser sulfate containing peptides are [(M-H)
 
- SO3]

-
 and (M-H)

-
  HOSO3

-
  

Rearrangements involving sulfate migrations to C-terminal carboxylate, side chain 

carboxylate sites and to Ser are minor for Tyr sulfate containing peptides, and are not 

observed in mass spectra of sulfated Ser peptides 

Sequencing information can normally be obtained using CID MS/MS data of source formed 

of [(M-H)
 
- SO3]

-
 ions of the peptides studied, with the exception of the peptide containing 

Asp, where the diagnostic fragmentations of Asp are more facile than those of the Ser sulfate 

group. This restricts the formation of most α and β fragment ions from the [(M-H)
 
- SO3]

-
 

anion. 

The negative ion spectra of di- and triphosphate serine containing peptides contain peaks 

corresponding to anions formed following cyclisation of the phosphate groups. In 

comparison, corresponding peaks are not detected in the spectra of energised (M-H)
- 
ions of 

Ser disulfate containing peptides.  

In contrast with the various rearrangements of phosphate groups within deprotonated anions 

of phosphopeptides (see Chapter 2), rearrangement reactions of sulfate groups are found to 

be insignificant as outlined above. In addition, the extent of sulfate loss in the negative ion 

mode is less than that in the positive MS mode. Sulfate detection and site determination 

using fragmentation of the deprotonated anions are therefore more feasible than that of the 

positive ion counterparts. However, care should be taken as sulfate migrations following 
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formation of the initial (M-H)
-
 anions still occur to a certain extent, which may result in 

false-negative identification of this modification.  

3.5 Experimental  

3.5.1 Peptides 

All Ser containing peptides used in this study were synthesised by Hongkong GenicBio 

Biotech Co., Ltd (Shanghai, China). Purities were generally better than 80% as evidenced by 

HPLC and MS (Shimadzu LCMS-2010) data provided by the manufacturer. These Ser 

containing peptides were converted into their Ser sulphates by treatment with chlorosulfonic 

acid using the standard method of Burlingame et al [301]. No attempt was made to purify the 

Ser sulfate containing peptides further because of the problem of possible hydrolysis of the 

sulfate containing residues. Experimental studies utilised (i) MS/MS data from (M-H)
-
 

anions, (ii) MS/MS/MS data from [(M-H) - SO3]
-
 fragment anions (or MS/MS data from 

CID activated source formed [(M-H) - SO3]
-
 fragment anions), and (iii), when appropriate, 

MS/MS data from CID activated source formed [(M-H) - H2SO4]
-
 fragment anions. 

3.5.2 Mass spectra  

Electrospray ionisation mass spectra were obtained using a Q-TOF2 hybrid orthogonal 

acceleration time-of-flight mass spectrometer (Waters/Micromass, Manchester, UK) with a 

mass range to m/z 10,000. Samples (25 µg) were dissolved in acetonitrile/water (1:1 v/v) and 

infused into the electrospray source at a flow rate of 8 µl min
-1

. Experimental conditions 

were as follows: capillary voltage 2.9 kV, source temperature 80 
o
C, desolvation temperature 

150 
o
C, and cone voltage 50V. MS/MS data were acquired using argon as the collision gas 

and the collision energy was set to 50 eV. All masses for anions shown either in Figures or a 

Table are nominal masses (i.e. the sum of the integral masses of the amino acid residues). 

High resolution MS/MS and MS/MS/MS data were measured with an LTQ Orbitrap XL 

ETD hybrid mass spectrometer (Thermo Fisher Scientific, MA, USA) equipped with an 

electrospray ion source.  Samples were infused at 5 µl min
-1

 delivered by a built-in-syringe 

pump and a spraying voltage of 2.3 kV. A mass resolution of 30,000 (at m/z 400) was used. 

Multistage mass spectrometry MS
n
 (n=2 or 3) experiments were performed using CID with 

normalised collision energy set between 8 and 11%. 
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High resolution MS/MS data for (M-H)
-
 ions and MS/MS/MS data for [(M-H) - SO3]

-
 (and 

[(M-H) - (H2O + SO3)]
- 

ions when appropriate) were obtained for peptides 

GAVS(SO3H)(OH), GLS(SO3H)GVA(OH) and GLS(SO3H)GDA(OH).  Atomic 

compositions are consistent with those of anions described in this thesis (all mass 

measurements were correct to the third decimal place). High resolution data are not 

presented here.   
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CHAPTER 4  

IDENTIFICATION OF DISULFIDE BONDS IN RICIN BY 

NEGATIVE ION MASS SPECTROMETRY 

4.1 Disulfide linkage in peptides and proteins 

A disulfide bond is a covalent bond between two Cys side chains of peptides/proteins 

occurring intra- or intermolecularly, and is the most common crosslink between amino acids 

in proteins aside from the peptide bond itself. It is formed mainly in the endoplasmic 

reticulum during peptide/protein folding owing to the action of some enzymes such as ero1 

[312-313], peroxiredoxin IV [314-315], vitamin K epoxide reductase [316], and glutathione 

peroxidise [317]. However, disulfide formation has also recently been found to occur in the 

extracellular environment (in the Golgi apparatus or in extracellular fluids) under catalysis of 

quiescin sulfhydryl oxidase [318]. Disulfide bonds are observed in secreted proteins, 

antibodies, key growth factors and a wide range of polypeptide toxins. This post-

translational modification limits the number of accessible conformational states of a protein, 

contributes to the thermodynamic stability of proteins, enhances resistance of proteins to 

proteases, and is involved in the regulation of protein activity [319-321]. Identification of the 

positions of disulfide bonds is therefore vital to gain a comprehensive understanding of the 

three-dimensional structures of disulfide containing proteins. 

4.2 Positive ion mass spectrometry of disulfide linkages 

Positive ion MS has historically been among the most important of the analytical techniques 

used for disulfide connectivity assignments in peptides/proteins. The general strategy 

involves the identification of disulfide peptides in the digests of proteins and the 

characterisation of these disulfide containing fragments directly or indirectly. The direct 

approach is based on the occasional fragmentations of the disulfide moieties at the C

-S 

bond or S-S bond.  

Various mechanisms have been proposed and investigated to provide insight into 

fragmentation processes of disulfide containing peptides/proteins under positive ion CID 

conditions. O’Hair’s research group has identified three low-energy pathways of C

-S and S-
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S bond cleavages using a joint experimental and theoretical study (calculations performed on 

protonated (CysNHMe)2) at the MP2/6-311 + G(2d,p)// B3LYP/ 3-21G(d) level of theory) 

[322]. According to this study, the most energetically preferable pathway for breaking an S-

S bond is a charge directed neighbouring group process, involving the C-terminal amide N to 

produce either a protonated cysteine N-methyl amide or protonated sulfenyl amide ion 

(Scheme 4.1a). C

-S bond cleavage process is dominated via a salt bridge mechanism, which 

involves abstraction of the α-hydrogen by the N-terminal amino group to form either a 

protonated dehydroalanine or protonated thiocysteine ion (Scheme 4.1b). A less 

energetically favourable pathway of C

-S cleavage is via a Grob-like process. This involves 

nucleophilic attack of the N-terminal amino N to form dithiazolidine product ion and 

eliminating methylacylamide and NH3 (Scheme 4.1c). Two mechanisms for fragmentation of 

disulfide linkages at the C

-S and S-S bonds have also been proposed by Balaram’s group, 

with protonated dehydroalanine, cysteinpersulfide, cystein and cysteinthioaldehydes being 

the four characteristic fragment ions produced (Scheme 4.1d) [323-328]. These mechanisms 

are simplified versions of the fragmentation pathways introduced by O’Hair’s group. 

In comparison to the energetics of simple amide bond cleavage, the S-S and C

-S bond 

cleavage reactions are higher in energy, and therefore bond cleavage processes involving the 

disulfide bond are rarely observed for low-energy CID of disulfide containing peptides with 

mobile proton(s). However, the absence of a mobile proton appears to promote disulfide 

bond cleavage reactions owing to the salt bridge mechanism [322], and thus, the application 

of non-mobile proton conditions has been suggested to improve the extent of disulfide 

fragmentations. Disulfide connectivity assignments using the characteristic fragmentations 

of disulfide moieties (shown in Scheme 4.1) have been found to be challenging due to the 

complexity of Cys fragmentations, internal loss and the low abundance of these cleavages as 

discussed above [323-328]. 
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On the other hand, the indirect approach of sulfated peptide/protein characterisation in the 

positive ion mode is applied more often, and is initiated by some derivatisation or reduction 

of the disulfide unit prior to mass spectroscopic sequencing [329]. One such method 

involves comparison of the non-reduced and reduced (using dithiothreitol in ammonium 

bicarbonate buffer) aliquots of a proteolytic digest of a peptide/protein. For example, the 

solvent containing 50% H2
18

O is used to incorporate 
18

O into terminal carboxylates to assist 

with the interpretation of MS
n
 positive ion mass spectra [330]. In another approach, the 

disulfide bond is reduced by reductive agents such as tris(2-carboxyethyl)phosphine (TCEP) 

in pH 3.0 citrate buffer, followed by cyanylation with 1-cyano-4-(dimethylamino)pyridinium 

tetrafluoroborate (CADP) [331], or by alkylation with iodoacetamide, acrylamide and 4-

vinylpyridine [332-333]. The reduced products are subsequently investigated by MS. In 

general, positive ion MS based methods of disulfide characterisation are not straightforward 

and require much care in sequestering and paring of half-cytinyl sequences to establish 

disulfide connectivity patterns [328-329, 334-335]. 

4.3. Negative ion mass spectrometry of disulfide linkages 

Disulfide containing peptides/proteins are prone to fragment at the disulfide residues leaving 

the backbone intact under negative ion CID conditions. Investigations into fragmentation 

pathways of underivatised disulfide-containing peptides/proteins in the negative mode show 

that fragmentation of disulfide moieties result in groups of signature cleavage ions (see 

sections 4.3.1 and 4.3.2) [326, 336-337]. This provides a reliable means to identify the 

presence and position of both intramolecular and intermolecular disulfide residues in 

peptides/proteins.  

In the negative ion mode, fragmentation patterns produced by tandem in space mass 

spectrometers are found to be more reliable for determination of disulfide linkages than that 

by tandem in time mass spectrometers [336]. In tandem in time mass spectrometers, such as 

in a Fourier transform mass spectrometer, dissociation of disulfide bonds and losses of side 

chains are commonly accompanied by backbone fragmentations. This complicates the 

fragmentation pattern of a disulfide containing peptide anion, reduces the abundance of 

disulfide fragments, and therefore prevents the unambiguous identification of disulfide 

bonds in the precursor ion by using this type of instrument.  
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4.3.1 Intramolecular disulfide linkages 

The key negative ion fragmentation of an intramolecular disulfide is the facile loss of the 

elements of H2S2 to form a fragment anion [(M-H) - H2S2]
-
 which then undergoes backbone 

cleavages to provide a partial or full sequence of the peptide. A mechanism for the loss of 

H2S2 is shown in Scheme 4.2. The process is favourable by 19 kJ mol
-1

 with the highest 

barrier of 38 kJ mol
-1

 at the HF/6-31 G(d)//AM1 level of theory [338]. 

S S
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-

HSS

R2
CO2

-R1

R2
CO2

-R1

(0 kJ mol-1) (- 87 kJ mol-1)
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R2
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+ H2S2

(- 19 kJ mol-1)
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TS

(+ 38 kJ mol-1)
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Scheme 4.2. Proposed mechanisms for the loss of H2S2 from an intramolecular disulfide 

moiety [338]. R1= HCONH, R2= CONHCH2CHNH. Calculations at the HF/6-31 G(d)//AM1 

level of theory.  
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4.3.2 Intermolecular disulfides 

The (M-H)
-
 parent anions of intermolecular disulfide containing peptides cleave through the 

disulfide moiety in some of the most favourable of negative-ion peptide fragmentations. For 

a symmetrical intermolecular disulfide system, four possible fragmentations are observed 

(Scheme 4.3 and 4.4) as the fragmentations can occur at the S-S bond, or at C-S bonds on 

either side of the disulfide linkage. If the intermolecular disulfide is unsymmetrical then 

there are eight possible disulfide cleavage products. Calculation at the HF/6-31 G(d)//AM1 

level of theory of a simple peptide containing a symmetrical intermolecular disulfide unit 

shows that the cleavages for intermolecular disulfides are highly exothermic with small 

energy barriers to transition states (+7 and +14 kJ mol
-1

 for the process in Schemes 4.3 and 

4.4, respectively) [339]. 
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Scheme 4.3. Proposed mechanism for the fragmentation occurring at a C-S bond of an 

intermolecular disulfide residue [339]. Calculations at the HF/6-31 G(d)//AM1 level of 

theory.
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Scheme 4.4. Proposed mechanism for the fragmentation occurring at an S-S bond of an 

intermolecular disulfide residue [339]. Calculations at the HF/6-31 G(d)//AM1 level of 

theory.  

Negative ion MS has been successfully applied to characterise some small disulfide 

containing proteins such as insulin and lysosome. This identifies the positions of all disulfide 
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units and much of the sequences of the proteins [336, 340]. The question now is whether this 

method can be used for disulfide detection and positioning in large proteins. This chapter 

reports the identification of disulfide bonds in ricin using proteolytic cleavage followed by 

negative ion nanospray MS of peptide fragments. Partial sequencing data of ricin are also 

determined and presented.  

4.4 Ricin: structure and bioactivity 

4.4.1 Biosysthesis of ricin 

Ricin is a toxic protein isolated from the seeds of the castor bean plant. It is synthesized in 

the endosperm of Ricinus seeds as preproricin, the polypeptide precursor of ricin, which 

consists of 576 amino acids.
 
The primary sequence of preproricin (Figure 4.1) was first 

determined by chemical degradation following proteolysis and genomic cloning, and was 

later confirmed by MS and NMR. The first 35 amino acids of preproricin constitutes the 

signal sequence [341], followed by chain A of 267 amino acids [342-343]. Chain B of 262 

amino acids [344-345] is connected to the A chain by a 12-amino-acid linking peptide [341, 

346]. 

 

Figure 4.1. Primary structure of preproricin (also known as preproricin D, see more details 

in section 4.4.4) according to the Swiss-Prot database. Amino acid 1-35: signal peptide, 

303- 314: linker peptide, 36-302: A chain protein, 316-576: B chain protein, C-C: disulfide 

links, N: potential glycosylation sites.  
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After its synthesis, the N-terminal signal sequence directs the nascent preproricin to the 

endoplasmic reticulum (ER) lumen, where the first 22 amino acids of the signal sequence is 

cleaved [347]. Within the ER lumen, the preproricin is glycosylated at the three N-

glycosylation sites Asn45, 409 and 449 (see Figure 4.2a for structure of an N-linked 

glycosylated Asn). Asn409 is commonly found to link to oligomannose type sugar chains 

(Man6-7GlcNAc2), Asn449 to (Man5-7GlcNAc2) or M4X, and, Asn45 to M3FX or M3X (see 

Figure 4.2b for structures of M3X, M3FX and M4X) [348]. Glycosylation of Asn271 by 

M3FX is sometimes found [349]. However, the sugar content of ricin may change during the 

biosynthetic pathway of ricin, and thus, ricin extract commonly exhibits a high level of 

structural heterogeneity mainly due to the presence of many glycoforms [350].  

At this stage, five disulfide bridges, one connecting the A-chain and the B-chain and four 

located in the B-chain, are formed under the catalytic action of protein disulfide isomerases. 

The resulting proricin is transported to and stored in the protein bodies via the Golgi 

complex. This transport is accompanied by (i) the enzymatic modification of the 

glycosylation side chains of proricin and (ii) the elimination of the 12-residue linker [351] 

and the small remaining N-terminal signal peptide [352] (from amino acid 23-35), 

generating the native/mature ricin also known as ricin D which is the major form of ricin 

(see more details in section 4.4.4). This is also the structure of ricin being dealt with 

throughout this chapter. 
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a. 
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b. 

Figure 4.2. a. Structure of N-linked glycosylation which only occurs on the nitrogen atom of 

an Asn residue (glycosylation site) in the sequence Asn-X-Ser or Asn-X-Thr with X being 

any amino acid except for Pro. b. Structures of M3X, M3FX and M4X ligands attached to 

Asn residues in ricin, with Man being D-mannose (MW: 162); Xyl being D-xylose (MW: 

132); Fuc being L-fructose (MW: 146); GlcNAc: N-Acetyl glucosamine (MW: 203.195). 

Subscripts stand for the carbon positions of sugar units being connected. 

4.4.2 Three dimensional structure of ricin 

The detailed structure of ricin has been solved by X-ray crystallography [353-360] and 

refined to 2.5 A
o
 resolution. The A-chain is globular shaped with a pronounced binding site 

cleft, consisting of eight alpha helices and eight strands of beta sheet [353, 357]. The B-chain 

is an elongated dumbbell with galactose binding sites at both ends [355-356] (Figure 4.3). 
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Figure 4.3. Crystallographic structure of ricin D. The structure has been obtained from the 

PDB protein data bank (code 2AAI). 

4.4.3 Ricin activity 

Ricin is known as one of the type two ribosome inactivation proteins (RIPs) due to its 

toxicity to mammalian cells. The entry of ricin into mammalian cells is facilitated by the 

binding of the B chain to beta-D-galactopyranoside sites on the cell surface glycoproteins 

and glycolipids. Once inside the cells, the A chain acts as a glycosidase that removes a 

specific adenine residue from an exposed loop of the 28S rRNA (A4324 in mammals). The 

toxin itself does not break the RNA but makes it susceptible to hydrolysis, leading to rRNA 

breakage [361]. The damaged ribosomes no longer function or take part in the protein 

synthesis process and thus the cell is terminated. Mutation studies showed that the residues 

Glu212 and Arg215 are essential for the activity of the ricin A-chain [359].  

Due to the toxicity of ricin to mammalian cells, it is categorised as a restricted substance in 

Schedule 1 of the Chemical Weapons Convention [362]. The median lethal dose (LD50) of 

ricin is around 20 micrograms per kilogram of body weight for humans (1.8 mg for an 

average adult) if exposure is from injection or inhalation [363-364].  
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4.4.4 Ricin detection and identification 

 The ease of production of toxins from castor bean seeds and the accessibility of this plant 

makes ricin a potential chemical used in terrorist activities. The first documented case was 

the assassination of the Ukranian journalist, Georgi Markov, in 1978 managed by injection 

of ricin via an umbrella tip. Recently, two threatening letters containing ricin-suspected 

chemicals were sent to the U.S. President B. Obama in 2013. This led to a high demand for 

methods of rapid and accurate identification of ricin (and other type II RIPs). So far, the 

most common methods used for ricin detection are immunoaffinity based assays. These 

assays involve interaction between ricin and an antigen that is specific for ricin. In many 

cases, fluorescence is used to detect the bound ricin [365-367]. Even though these methods 

are very sensitive, they are time consuming and false positives can occur due to cross 

reactivity of other molecules with the same binding motifs. Ricin can also be recognized 

using bioassays which take advantage of its ribonuclease activity [368-370]. However, these 

methods are not specific as other ribosome-inactivating proteins can produce the same 

results, or false negatives may occur by loss of enzymatic activities due to ricin denaturation. 

MS has been commonly used to confirm the presence of ricin. Attempts have been made to 

detect and characterise ricin using both MALDI and ESI positive ion MS. Detection of intact 

ricin by measuring the molecular mass of the target protein has been reported [371-372]. 

However, the detection sensitivity is very poor, and accurate molecular mass is difficult to 

determine due to the presence of many monoisotopic peaks which come from post-

translationally modified analogues of ricin. The detergent Tween 80 is recommended as an 

additive to improve the detection limit of ricin and reduce interference from the castor bean 

seed storage proteins, but the problem of low mass accuracy still has not been solved [373]. 

In order to improve the detection sensitivity, the target protein is normally purified, 

commonly by immuno affinity purification which makes use of the binding ability of the 

ricin B-chain to sugar chains such as -D-galactopyranoside and -D-N-acetylgalactosamine 

[374-375]. Another mass spectrometric approach involves structural analysis of peptides 

obtained from enzymatic digest of ricin. This method identifies much of the sequence of 

ricin, but the precise positions of disulfide bonds are not determined directly and 

unambiguously by positive ion MS/MS [373-377].  
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Two basic isoforms of ricin are ricin D and ricin E, with ricin D being the major and higher 

potency form of ricin. Ricin E comprises of an identical A-chain and a B-chain differing by 

15% to that of ricin D [378]. In addition, there are several type II RIPs and proteins that are 

co-synthesized with ricin D in the castor bean plant; these have high sequence similarity to 

that of ricin [379]. For instance, ricinus communis agglutinin (RCA) is a heterodimeric type 

II RIP consisting of two ricin-like heterodimers. The amino acid sequence homology 

between RCA and ricin D is 93% for the A-chain and 84% for the B chain [380-381]. 

However, while ricin D is a cellular toxin, RCA is only weakly toxic to intact cells. 

Furthermore, ricin activity depends critically on the disulfide connectivity between the A-

chain and B-chain. Therefore, sequence determination of the digested peptides from ricin 

and the identification of disulfide links within ricin are necessary in order to avoid false-

positive identification of ricin homologes. 

4.5 Results and discussion 

4.5.1 Sequencing data obtained from proteolytic digest of ricin 

Expected fragment peptides from tryptic digestion of ricin are shown in Table 4.1. The 

peptides containing potential sites for glycosylation are denoted by a hash sign (#).  
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Table 4.1. Expected fragment peptides from tryptic digest of ricin. Those detected by 

negative ion MS are indicated in red. 

Position Sequence Nominal m/z 
 (M-H)

-
  

Observed 
nomimal m/z 
(M-nH)

n-
 

36-39 IFPK   
40-61 (#) QYPIINFTTAGATVQSYTNFIR   
62-64 AVR   
65-66 GR   
67-74 LTTGADVR 830 830

- 

75-83 HEIPVLPNR 1072 1072
- 

84-91 VGLPINQR 894 894
- 

92-120 FILVELSNHAELSVTLALDVTNAYVVGYR   
121-149 AGNSAYFFHPDNQEDAEAITHLFTDVQNR 3304 1102

(3-) 

150-160 YTFAFGGNYDR 1308 1308
-
 

161-169 LEQLAGNLR 1011 1011
-
 

170-201 ENIELGNGPLEEAISALYYYSTGGTQLPTLAR 3437 1718
(2-)

 

202-215 SFIICIQMISEAAR 1579 1579
-
 

216-224 FQYIEGEMR 1170 1170
-
 

225-226 TR   
227-228 IR   
229-231 YNR   
232 R   
233-248 SAPDPSVITLENSWGR 1726 1726

-
/863

(2-)
 

249-269 LSTAIQESNQGAFASPIQLQR 2256 2256
-
/1128

(2-)
 

270 R   
271-274(#) NGSK

 
  

275-293 FSVYDVSILIPIIALMVYR 2209 2209
-
/1104

(2-) 

294-302 and 
315-326 

CAPPPSSQF      ADVCMDPEPIVR 2272 1136
(2-) 

327-330 IVGR   
331-338 and 
341-354 

NGLCVDVR     FHNGNAIQLWPCK 2397 1198
(2-)

 

339-341 DGR   
355-367 SNTDANQLWTLK 1388 1388

- 

367 R   
368-372 DNTIR   
373-376 SNGK   
377-403 CLTTYGYSPGVYVMIYDCNTAATDATR 2944 1471.5

(2-)
  

404-416(#) WQIWDNGTIINPR   
417-482(#) SSLVLAATSGNSGTTLTVQTNIYAVSQGWLPTNNTQPFVT

TIVGLYGLCLQANSGQVWIEDCSSEK 

 

2162 1081
(2-) 

483-501 AEQQWALYADGSIRPQQNR 2228 2228
-
/1114

(2-)
 

502-512 and 
518-529 

DNCLTSDSNIR     ILSCGPASSGQR 2407 1203
(2-)

 

513-517 ETVVK   
530-533 WMFK 609 609

-
 

534-550 NDGTILNLYSGLVLDVR 1859 1859
-
 

530-550 WMFK NDGTILNLYSGLVLDVR 2451 1225
(2-)

 
551-557 ASDPSLK   
558-576 QIILYPLHGDPNQIWLPLF 2274 2274

-
/1136.5

(2-) 
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In order to keep all disulfide links in ricin intact, ricin was subjected to tryptic digestion 

without a prior reduction step. Subsequent HPLC separation of the resulting products gave 

23 peptides detected by negative ion nanospray ionisation MS (coloured in red in Table 4.1). 

Five of them are disulfide containing peptides. Some of the larger of non-disulfide 

containing peptides gave complex negative ion spectra which did not provide satisfactory 

sequence information; these peptides were treated further with chymotrypsin to give smaller 

peptides. Most of these peptides appeared in singly charged form; some larger peptides were 

observed as doubly and triply charged anions as shown in Table 4.1 and discussed in section 

4.5.3.  

The amino acid sequence coverage of ricin A and B chains by negative ion MS are 72% and 

70%, respectively. A number of peptides from both the A- and B-chains were not observed. 

This may be because they were not retained (e.g. too small or too large peptides) by the C18 

stationary phase with the elution condition being used, or they could not compete for the 

negative charges (low ionisability) and/or were outside the m/z range monitored, or the 

tryptic cleavage sites were hindered in the compact structure of ricin such that trypsin could 

not reach these sites. None of glycosylated fragments was detected by negative ion MS. The 

primary structures of all peptides together with data obtained by backbone cleavages are 

summarised in Figure 4.4.  

 67L  T  T  G  A  D  V  R74

 

(M-H)- 830 1072

84V  G  L  P  I  N  Q  R91


8942

121AGNSAYFFHPDNQEDAEAITHLFTDVQNR147

4  3304

Chy
A  G  N  S   A  Y



580

+

F  F  H  P  D  N  Q  E  D  A  E  A  I  T H L  F          +         T  D  V  Q  N  R
 

2028 730

150Y  T* F  A  F  G  G  N  Y  D  R160

5  1264 (T*=  T- CH3CHO= NH(CH2)CO)


  



 

6 1011

75H  E  I  P  V  L  P  N  R83

1 3



        








161L  E  Q  L  A  G  N  L  R169









   
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170ENIELGNGPLEEAISALYYYSTGGTQLPTLAR201
Chy

   E  N  I  E  L  G  N  G  P  L  E  E  A  I  S  A  L  Y

7  3437


1929

+     S  T  G  G  T  Q  L  P  T  L  A  R


1199

216F  Q  Y  I  E  G  E  M  R224

9   1170



249L  S *T  A  I  Q  E  S  N  Q  G  A  F  A  S  P  I  Q  L  Q  R269

 

11  2212 12  2209

 

        294CAPPPSSQF302

315ADVCMDPEPIVR326

13  2272

331NGLCVDVR338

341FHNGNAIQLWPCK354

14  2397









  



 

    

202S  F  I  I  C  I  Q  M  I  S  E  A  A  R 215

  





8   1579

275F  S  V  Y  D  V  S  I  L  I  P  I  I  A  L  M  V  Y  R293



355S  N  T  D  A  N  Q  L  W  T  L  K  R366


15  1388

   

233S  A  P   D  P  S  V  I  T  L  E   N  S  W  G  R248



10  1726





(a)

(b)

 

 

377CLTTYGYSPGVYVMIYDCNTAATDATR403

16  2944

463GLCLQANSGQVWIEDCSSEK482

17**  2162

483A  E  Q  Q  W  A  L  Y  A  D  G  S  I  R  P  Q  Q  N  R501

530W  M  F  K  N  D  G  T  I  L  N  L  Y  S  G  L  V  L  D  V  R550







18  2228

22  2451

534N  D  G  T  I  L  N  L  Y  S  G  L  V  L  D  V  R 550

530W  M  F  K533

   20  609

502DNCLTSDSNIR512

518ILSCGPASSGQR529

19  2407


21  1859

558Q  I  I  L  Y  P  L  H  G  D  P  N  Q  I  W  L  P  L  F576

23  2274

  
















   

 

 



 

Figure 4.4. Ricin tryptic peptides detected by negative ion electrospray mass spectrometry. 

Backbone cleavage data indicated for those peptides not containing disulfide linkages (see 

Experimental Section for conditions required to form fragment anions of these peptides). 

Disulfide containing peptides from the tryptic digest are shown in rectangles. **Peptide 17 is 
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produced by tryptic/chymotrypsin (1:1) digest of ricin. For simplicity, all masses displayed 

are of singly-charged anions and are nominal masses, obtained by the summation of the 

integral masses of all the amino acid residues. 

4.5.2 Identification of disulfide containing peptides from proteolytic digestion of ricin 

Tryptic digestion of ricin produced four (out of five) disulfide containing peptides of ricin 

including three intermolecular disulfides 13, 14 and 19 and one intramolecular disulfide 16 

(Figure 4.4). The final intramolecular peptide 17 (see Figure 4.4) was prepared and 

identified using digestion with trypsin and chymotrypsin (1:1 molar ratio). For comparison 

purposes, both positive and negative ion mass spectrometric measurements of the disulfide 

containing fragments were implemented. The five disulfide containing peptides were 

synthesized and spectra of these synthetic peptides were shown to be identical to those of the 

fragment peptides obtained from proteolytic digestions.  

Positive and negative-ion electrospray ionisation MS/MS data for the MH
+
 and (M-2H)

2-
 

ions of disulfide 13 are displayed in Figures 4.5 and 4.6, respectively. Although Figure 4.5 is 

the most informative of all of the positive ion disulfide spectra measured, its fragmentation 

pattern only provides side chain sequencing information, not the location of the disulfide 

bond. The side chain sequences were identified using standard b and y backbone cleavages 

[140, 143, 382] as shown in Figure 4.5. 

The intermolecular disulfide peptides 13, 14 and 19 
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Figure 4.5. Collision-induced positive ion MS/MS spectrum of the MH
+
 parent cation of 13. 

Q-TOF 2 mass spectrometer.  

 

Figure 4.6. Collision-induced negative ion MS/MS spectrum of the (M-2H)
2-

 parent anion of 

13, converted to a ‘singly-charged’ spectrum using MassLynx software (see Experimental 

sections for details). Q-TOF 2 mass spectrometer. 
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In contrast with the positive ion MS/MS data, the negative ion data are in accord with the 

standard negative ion cleavages shown for the simplest disulfide model system in Schemes 

4.3 and 4.4. This enables the determination of disulfide connectivities in these peptides. The 

four basic negative ion cleavages of an intermolecular disulfide shown in Scheme 4.3 and 

4.4 are for a symmetrical model system. Peptide 13 is unsymmetrical, so, in principle, there 

could be eight fragment anions originating from cleavage of the disulfide linkage. However, 

the spectrum in Figure 4.6 only shows six characteristic cleavage ions, namely two type C 

cleavages [CAPPPSSQF(OH)-H]
-
 (m/z 931) and [ADVCMDPEPIVR(OH)

-
H]

-
 (m/z 1342), 

together with two type D cleavages [
*
CAPPPSSQF(OH)-H]

-
 (m/z 929) [

*
C is 

NHCH(CHS)CO] and [ADV
*
CMDPEPIVR(OH) - H]

-
 (m/z 1340). One type A anion 

[
***

CAPPPSSGF(OH) - H]
-
 (m/z 963) [

***
C is NHCH(CH2S2

-
)CO] and one type B anion 

[
**

CAPPPSSQF(OH) - H]
-
 (m/z 899) [

**
C is NHC(=CH2)CO] are also formed. Source-

formed collision induced negative ion nano-electrospray ionisation spectra of any of the six 

disulfide cleavage anions provide sequencing information (see e.g. for m/z 931, 1340 and 

1342 as shown in pictorial form in Scheme 4.5). Numerical details of cleavage anions m/z 

931, 1340 and 1342 are recorded in Table 4.2.  

C  A  P  P  P  S  S  Q  F          m/z 931

A  D  V  C  M  D  P  E  P  I  V  R








m/z 1342






  A  D  V  *C  M  D  P  E  P   I  V  R


m/z 1340





 

Scheme 4.5. Schematic representation of backbone cleavages of three selected disulfide 

fragments from peptide 13, [
*
C = NHCH(CHS)CO]. 

Table 4.2. Negative ion mass spectrometric data for the (M-2H)
2-

 anions of 13, 14 and 19. 

13 (M-2H)
2-

 m/z 1135. Disulfide cleavage gives a number of singly-charged fragment ions 

including m/z 931, 1340 and 1342. 

(i) m/z 931,  ions, m/z 757, 379, 292, 164 [(CA) (378)SQF(OH))].  ions, m/z 367, 464, 551 

[(368)PS(380)]. (931- 2CH2O – H2S), m/z 837,  ions, m/z 768, 697, 406, 349, 292, 164 

[
**

CAP(PP)
*
S

*
SQF(OH)].  ions, m/z 139, 236, 333, 430, 487, 544, 672 
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[(
*
CA)PPP

*
S

*
SQF(OH)]. (

**
C = C - H2S = NHC(CH2)CO, 

*
S = S - CH2O = NHCH2CO). 

Overall sequence [CAPPPSSQF(OH)].  

(ii) m/z 1340,  ions, m/z 1055, 954, 823, 708, 482, 385, 272, 173, 

[(285)
*
CMD(PE)PIVR(OH)].  ions, m/z 185, 284, 385, 631, 857, 954, 1166 [(AD)V

*
C 

(MD)(PE)P(IV)R(OH)].  ions, m/z 806 (D6). [
*
C = NHCH(CHS)CO]. Sequence 

[(AD)V
*
C MD(PE)PIVR(OH)] 

(iii) m/z 1342,  ions, m/z 1156, 1057, 954, 823, 708, 482, 173 

[(AD)VCMD(PE)(309)R(OH)].  ions, m/z 185, 633, 730, 859, 1168 

[(AD)(448)PE(309)R(OH)].  and  ions m/z 535 (D6), 747 (E8), 806 (D6). Sequence 

[(AD)VCMDPE(309)R(OH)]. Overall sequence obtained from the negative ion CID MS/MS 

of m/z 1340 and m/z 1342 [(AD)VCMDPEPIVR(OH)]. 

 Overall sequence of 13: (AD)VCMDPEPIVR(OH)

CAPPPSSQF(OH)

  

14 (M-2H)
2-

 m/z 1198. Disulfide cleavage gives a number of singly-charged fragment ions 

including m/z 873 and 1525.  

(i) m/z 873,  ions, m/z 759, 702, 589, 387, 272, 173 [NGL(CV)DVR(OH)].  ions, m/z 113, 

283, 600, 699 [N(GL)(317)VR(OH)].  and  ions, m/z 300 (C4), 370 (D6), 502 (D6), 

572 (C4). Sequence [NGL(CV)DVR(OH)]. 

(ii) m/z 1525.  ions, m/z 1241, 1127, 1070, 956, 885, 772, 345 [(FH)NGNAI(427)(346)].  

and  ions, m/z 231 (C12), 300 (N3), 471 (N5), 755 (Q8), 769 (Q8), 1053 (N5), 1224 

(N3). Sequence [(FH)NGNAIQ(LW)PCK(OH)].  

Overall sequence of 14: (FH)NGNAIQ(LW)PCK(OH)

(CV)DVR(OH)NGL

 

19 (M-2H)
2-

 m/z 1203. Disulfide cleavage gives a number of singly-charged fragment ions 

including m/z 1173 and 1235.  
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(i) m/z 1173,  ions, m/z 1060, 947, 860, 757, 700, 603, 532, 445, 358, 301, 173 

[ILSCGPASSGQR(OH)].  ions, m/z 225, 312, 415, 472, 640, 727 [(IL)SCG(PA)S(446)].  

ions, m/z 843 (C4), 515 (S8), 428 (S9), 284 (Q11). Sequence [ILSCGPASSGQR(OH)]. 

(ii) m/z 1235,  ions, m/z 1006, 689, 487, 286, 173 [(DN)(317)(SD)(SN)IR(OH)].  ions, 

m/z 114, 444, 632, 747, 834 [D(330)(TS)DS(401)].  ions, m/z, 383 (N9), 585 (D7), 989 

(C3), 1103 (N2). Sequence [DNCLTSDSNIR(OH)]. 

Overall sequence of 19: 

ILSCGPASSGQR(OH)

CLTSDSNIR(OH)DN 19 

 

The CID MS/MS data of the (M-2H)
2-

 parent ion of 14, modified by MassLynx software is 

reproduced in Figure 4.7. Five disulfide fragment ions originating from the cleavage of the 

disulfide moiety are observed and CID of these provides sequencing information. Cleavages 

of [FHNGNAIQLWPCK(OH)-H]
-
 (m/z 1525 from 14) are summarised in Scheme 4.6, while 

the negative ion CID source-formed MS/MS data for [NGLCVDVR(OH)-H]
- 

(m/z 873) is 

shown in Figure 4.8. The latter spectrum is shown to illustrate how the simple  and  

backbone cleavages compete with  and  cleavages (particularly of Asp and Cys). Details of 

the negative ion spectra of the two source formed anions m/z 1525 and m/z 873 from 14 are 

summarised in Table 4.2.  

F  H  N  G  N  A  I  Q  L  W  P  C  K          m/z 1525



 

Scheme 4.6. Schematic representation of backbone cleavages of a selected disulfide 

fragment from peptide 14. 
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Figure 4.7. Collision-induced negative ion MS/MS of the (M-2H)
2-

 parent anion of 14, 

converted to a ‘singly-charged’ spectrum using MassLynx software (see Experimental 

section for details). Q-TOF 2 mass spectrometer. 

 

Figure 4.8. Collision-induced negative ion MS/MS of the source formed fragment anion 

[NGLCVDVR(OH)-H]
-
 (m/z 873). Q-TOF 2 mass spectrometer. 

Fragmentation of the final intermolecular disulfide 19 (M-2H)
2-

 (m/z 1203) is similar to that 

of peptides 13 and 14, in defining the position of the disulfide bridge. The negative ion 

cleavages of the fragment anions shown in Scheme 4.7 (and detailed in Table 4.2) provide 

sequencing data for disulfide 19.  
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DNCLTSDNIR

ILSCGPASSGQR

19 D  N  C  L  T  S  D  S  N  I  R           m/z 1235



I  L  S  C  G  P  A  S  S  G  Q  R      m/z 1173











 

Scheme 4.7. Schematic representation of backbone cleavages of two selected disulfide 

fragments from peptide 19 (M-2H)
2-

 m/z 1203. 

The intramolecular disulfides 16 and 17 

In previous studies of the negative ion cleavages of peptides containing an intramolecular 

disulfide moiety, it was shown that such a disulfide unit could be identified by characteristic 

loss of H2S2 from the (M-H)
- 

anion [338, 340, 383]. The loss of H2S2 results in two 

NHC(=CH2)CO moieties within the peptide backbone, and thus, backbone fragmentations of 

the [(M-H) - H2S2]
-
 fragment ion facilitate the identification of both the position of the 

disulfide and the sequence of the peptide. Unfortunately, this is not as straightforward for the 

parent anions of 16 and 17. This is due to the presence of certain amino-acid residues in 

these peptide (M-2H)
2-

 anions whose side chain fragmentations compete with H2S2 loss. For 

example, 16 has five Thr (facile side chain loss of CH3CHO from each Thr [156]) and Asp ( 

cleavage [156]),
 
and these fragmentations mask the normal backbone cleavages. In the case 

of the (M-2H)
2-

 anion of 17 there are three Ser (facile loss of CH2O from each Ser [156, 

383]) together with Asp, Glu and Gln ( cleavages) [156, 383]. Therefore, a different 

strategy needs to be employed to deal with the intramolecular disulfide containing peptides 

from ricin.  

Since intermolecular disulfide cleavages (Schemes 4.3 and 4.4) are among the most 

energetically favoured of all negative ion peptide cleavages and the identification of three 

disulfides from ricin are experimentally straightforward, the intramolecular disulfide 

peptides were therefore converted to intermolecular disulfides by proteolysis. These peptides 

were cleaved at the backbone within the intramolecular disulfide ring but keeping the 

disulfide residue intact. Different digestion methods were used for 16 and 17. 
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Peptide 16 was subjected to chymotryptic digestion to cleave at Tyr 5,7, 12 and 16, yielding 

four peptides. Backbone cleavages of these four peptides are shown in Scheme 4.8. In 

particular, the intermolecular disulfide doubly charged anion m/z 866 fragments as shown to 

provide a partial sequence for this species. 

CLTTYGYSPGVYVMIYDCNTAATDATR

chymotrypsin

CLTTY

DCNTAATDATR

m/z 866

+ G  Y +   V  M  I  Y
  

m/z 273 m/z 520 m/z 523

S  P  G  V  Y +

C  L  T  T  Y
D  C  N  T  A  A  T  D  A  T  R

+


m/z 598
m/z 1136








 

16

 

Scheme 4.8. Schematic representation of chymotryptic digest of peptide 16 and negative ion 

backbone cleavages of disulfide fragments derived from peptide 16. 

The fifth peptide containing the last of the disulfide links derived from tryptic digest of ricin 

D is not detected by either positive or negative ion MS. This could be due to the low 

ionisation efficiency and/or high mass of this tryptic peptide resulted from the glycosylation 

of Asn449. In order to reduce the size of the peptide and to trim off the Asn449 residue, ricin 

was digested with a 1:1 mixture of trypsin and chymotrypsin, to yield the disulfide 

containing peptide 17 (see Figure 4.4). The negative ion spectrum of the (M-2H)
2-

 parent ion 

of 17 shows a peak (m/z 2096) corresponding to the loss of H2S2 from the parent ion. The 

backbone cleavages occurring from this anion are displayed in Scheme 4.9. However, this 

provides only a partial sequence of peptide 17.  
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

G  L  **C  L  Q  A  N  S  G  Q  V  W  I  E  D  **C  S  S  E  K



 m/z 2096, [**C = NHC(CH2)CO]  

Scheme 4.9. Schematic representation of backbone cleavages from the anion of peptide 17 

after losing H2S2. 

Peptide 17 has no residue within the disulfide ring which will be hydrolysed by 

chymotrypsin. Thus, Asp-N was used instead of chymotrypsin to convert peptide 17 to an 

intermolecular disulfide containing peptide. The intermolecular disulfide formed from 17 

produces an (M-2H)
2-

 anion (m/z 1089.5) which fragments through the disulfide link to yield 

seven singly-charged cleavage anions (Figure 4.9), three of which (m/z 666, 1515 and 1513) 

fragment as shown in Scheme 4.10. The collision induced negative ion spectra of both m/z 

1515 and 1513 are needed in order to identify the position of the second Cys. All numerical 

details of the negative ion spectra of peptide 16 and 17 are provided in Table 4.3. 

GLCLQANSGQVWIEDCSSEK
Asp-N

GLCLQANSGQVWIE

DCSSEK

 m/z 1089.5

G  L  C  L  Q  A  N  S  G  Q  V  W  I  E +

D  C  S  S  E  K



m/z 1515



m/z 666







G  L *C  L  Q  A  N  S  G  Q  V  W  I  E





m/z 1513   [*C is NHCH(CHS)CO]

 



+





17

 

Scheme 4.10. Schematic representation of Asp-N digest of peptide 17 and negative ion CID 

cleavages of the disulfide fragments derived from peptide 17. 
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Figure 4.9. Collision induced MS/MS of the (M-2H)
2-

 anion (m/z 1089.5) derived from Asp-

N proteolytic cleavage of peptide 17, converted to a ‘singly-charged’ spectrum using 

MassLynx software (see Experimental section for details). [
*
C = NHCH(CHS)CO], [

**
C = 

NHC(=CH2)CO] and [
***

C = NHCH(CH2S2
-
)CO]. Q-TOF 2 mass spectrometer. 

Table 4.3. Negative ion mass spectral data for the singly-charged fragments from (M-2H)
2-

 

anions of 16 and 17. 

16 (M-2H)
2-

 m/z 1471.5. Chymotrypsin digestion of 16 gives four fragment peptides m/z 

237, 520, 523 and 866 (intermolecular peptide).  

(i) m/z 237.  ions, m/z 180. Sequence [GY(OH)].  

(ii) m/z 520.  ions, m/z 433, 336, 279, 180 [SPGVY(OH)].  ions, m/z 339 [(340)Y(OH)]. 

Sequence [SPGVY(OH)].  

(iii) m/z 523,  ions, m/z 424, 293, 180. Sequence [VMIY(OH)].  

(iv) Disulfide cleavage of the (M-2H)
2-

 parent anion m/z 866 gives two singly-charged 

fragment anions including (a) m/z 598 and (b) 1136.  

(a) m/z 598,  ions, m/z 382, 281, 180 [(CL)TTY(OH)].  ions, m/z 215 [(CL) (383)].  
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(b) m/z 1136.  ions, m/z 1021, 918, 804, 173 [DCN(631)R(OH)].  ions, m/z 861 

[(862)TR(OH))].  and  ions, m/z 131 (C2), 443 (D8), 901 (N3), 1004 (C2) Sequence 

[DCN(344)DATR(OH)]. 

Overall sequence of 16 is 
(CL)TTYGVYVMIYDCN(344)DATR(OH)

 

17 (M-2H)
2-

 m/z 1080.5. 17 is an intramolecular disulfide containing peptide which gives a 

singly-charged fragment corresponding to loss of H2S2 (m/z 2096).  ions, m/z 1926, 1545, 

1159, 145 [(GL)(381)(386)(1014)K(OH)].  ions, m/z 238, 351, 550, 1035, 1221, 1463, 

[(239)L(QA)(485)W(IE)(633)].  and ions, m/z 567 (N7), 616 (D15), 1480 (D15). 

Sequence [GL
**

CL (QA)N(272)VW(IE)D(372)K(OH)] [
**

C is NHC(=CH2)CO].  

17 treated with Asp-N gives an intermolecular disulfide (M-2H)
2-

 (m/z 1089.5) which 

undergoes disulfide cleavage to give seven singly-charged fragments, three of which are m/z 

666, 1513 and 1515.  

(i) m/z 666,  ions, m/z 551, 448, 274, 145 [DC(SS)EK(OH)].  ions, m/z 217, 304, 391 

[(DC)SS(EK(OH))].  ions, m/z 534 (C2). Overall sequence is [DCSSEK(OH)]. 

(ii) m/z 1513,  ions, m/z 1343, 1242, 1124, 1001, 930, 816, 729, 672, 544, 445, 259, 146 

[(GL)
*
CLQANSGQVWIE(OH)].  ions, m/z 169, 270, 383, 582, 696, 783, 840 

[(GL)
*
CL(QA)NSG(673)]  and  ions, m/z 599 (N7), 655 (Q10), 913 (N7), 1112 (Q5). 

Overall sequence [(GL)
*
CLQANSGQVWIE(OH)], [

*
C is NHCH(CHS)CO]. 

(iii) m/z 1515,  ions, m/z 1001, 816, 729, 672, 544, 445, 146 [(514)(AN)SGQVWIE(OH)]. 

 ions, m/z 169, 385, 698, 785, 842, 970 [(GL)(CL)(331)SGQ(544)].  and  ions, m/z 402 

(Q5), 601 (N7), 655 (Q10), 913 (N7), 1112 (Q5). Overall sequence [(GL)(CL)QAN 

SGQVWIE(OH)]. Overall sequence obtained from the negative ion CID MS/MS of m/z 

1515 and m/z 1513 is [(GL)CLQANSGQVWIE(OH)]. 

Overall sequence of 17 is 
(GL)CLQANSGQVWIEDCSSEK
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4.5.3 Fragment peptides not containing disulfides  

The full or partial sequences of eighteen peptides which do not contain disulfide residues 

(see Figure 4.4) were obtained using ,  and  negative ion backbone cleavages. Spectra 

are CID MS/MS of (M-H)
-
 anions with the exception of 22 which are CID MS/MS of (M-

2H)
2-

 anions converted to ‘singly-charged’ spectra using Mass Lynx software. In some of the 

negative ion CID MS/MS spectra of these peptides, side-chain and δ/γ fragmentations are 

dominant, and thus, backbone cleavages of the parent ions after losing side chains and/or of 

δ/γ anions are observed to be more prevalent than those of the precursor parent anions. In 

most of these spectra, the first cleavage from the N-terminus is missing. Negative ion spectra 

of some of the larger of these peptides are complex and did not afford satisfactory sequence 

information (see Figure 4.4). These peptides were treated further with chymotrypsin to give 

smaller peptides, CID MS/MS of which provide further sequencing information. 

Taking peptide 7 (ENIELGNGPLEEAISALYYYSTGGTQLPTLAR(OH), MW 3438) as an 

example (see Figure 4.4), this peptide contains a large number of residues whose side chains 

are labile or able to trigger δ/γ fragmentations (see section 1.9, Chapter 1). The sequence of 

this peptide could not be obtained directly from the negative ion CID MS/MS data due to the 

complexity of various side-chain induced cleavages. It was therefore subjected to 

chymotryptic digestion to give two chymotryptic fragments m/z 1929 and m/z 1199. The 

fragmentation pattern of m/z 1929 and m/z 1199 anions are quite different. The negative ion 

CID MS/MS spectrum of m/z 1929 shows all the backbone cleavages of the peptide, α and β 

backbone cleavages and side-chain triggered backbone (δ/γ) cleavages from Asn and Glu 

(Figure 4.10). Side-chain losses of these residues also occur competitively with the backbone 

fragmentations. In contrast, the losses of CH3CHO from Thr side chains produce the major 

peaks in the CID MS/MS spectrum of m/z 1199 (Figure 4.11). Backbone fragmentations of 

the [(M-H) - 3CH3CHO]
-
 anion dominate the spectrum, while only minor backbone 

cleavages of the parent anion are observed. As it is seen in these two examples, the 

competition between side-chain losses and backbone fragmentations of certain amino acid 

residues determines the fragmentation pattern of a peptide. In particular, side chain losses 

may occur competitively with backbone cleavages for residues such as Asn, Asp, Gln and 

Gln, Ser, Thr and Cys and thus suppress the negative ion backbone processes of the parent 

anion. 
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The primary structures of all peptides together with data obtained by backbone cleavages are 

summarised in Figure 4.4. Full numerical details of ,  and negative-ion cleavages 

given in Figure 4.4 are presented in Table 4.4.  

 

Figure 4.10. Collision-induced negative ion MS/MS of the chymotryptic fragment 

[ENIELGNGPLEEAISALY(OH) - H]
-
 (m/z 1929) derived from peptide 7. Multiplication 

ranges as follows:- m/z 1250-1850 (x4). Q-TOF 2 mass spectrometer. 

 

Figure 4.11. The collision-induced negative ion MS/MS of the chymotryptic fragment 

[STGGTQLPTLAR(OH)-H]
-
 (m/z 1199) derived from peptide 7. Multiplication ranges as 

follows:- m/z 51-1000 (x8). *T = T- CH3CHO= NHCH2CO. Q-TOF 2 mass spectrometer. 
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Table 4.4. Negative ion mass spectral data for the (M-H)
-
 anions of 18 non-disulfide 

containing peptides from tryptic digest of ricin. CID MS/MS data are from (M-H)
-
 anions 

except for 22 which are from (M-2H)
2-

 parent anions with the resulting data modified to 

‘singly charged’ spectra using Mass Lynx software. Peptides 10, 11, 12, 18 and 23 appear as 

both singly-charged and doubly charged anions; the originally singly-charged spectra and the 

converted doubly-to-singly charged spectra of these peptides are very similar in terms of 

fragmentation pattern, but the abundances of peaks in the two spectra may be different. 

MS does not differentiate between isomeric L and I. The structure of ricin is known so the 

correct residue (L or I) is indicated below. Masses used are nominal masses, i.e. the sum of 

the integral masses of the individual amino acid residues. 

1 (M-H)
- 
m/z 830.  ions, m/z 616, 515, 458, 387, 272, 173 [(LT)TGADVR(OH)].  ions, 

m/z 371, 442, 557, 656 [(372)ADVR(OH)].  ions, 700 (T2), 599 (T3), 370 (D6). Overall 

sequence [LTTGADVR(OH)]. 

2 (M-H)
- 
m/z 1072.  ions, m/z 806, 693, 384, 173 [(HE)I(309)(PN)R(OH)].  ions, m/z 475, 

574, 687, 898 [(476)VL(PN)R(OH)].  and  ions, m/z 153 (E2), 270 (N8), 801 (N8), 918 

(E2). Sequence [HEIPVLPNR(OH)].  

3 (M-H)
-
 m/z 894.  ions, m/z 738, 625, 415, 301, 173 [(VG) L(PI)NQR(OH)].  ions, m/z 

155, 268, 365, 592, 720 [(VG)LP(IN)QR(OH)].  and  ions, m/z 284 (Q7), 398 (N6), 495 

(N6), 609 (Q7). Sequence [(VG)LPINQR(OH)]. 

4 (M-3H)
3-

 1102. Chymotrypsin digest gives (i) AGNSAY(OH), m/z 580;  ions, m/z 452, 

338, 251, 180 [(AG) NSAY(OH)].  ions, 127, 241 [(AG)N(339)].  and  ions, m/z 144 

(N3), 435 (N3). Sequence [(AG)NSAY(OH)]. (ii) FFHPDNQEDAEAITHLF(OH), m/z 

2028,  ions, m/z 1385, 1143, 899, 628, 515, 414, 277 164 [(643)(NQ)(ED) 

(384)THLF(OH)].  ions, m/z 146, 293, 642 [FF(349)(1386)].  ions, m/z 1483 (D5), 1368 

(N6), 1254 (Q7), 1126 (E8), 997 (D9), 811 (E11). Sequence 

[FF(HP)DNQEDAE(AI)THLF(OH)]. (iii) TDVQNR(OH), m/z 730.  ions, m/z 629, 514, 

287, 173 [TD(VQ)NR(OH)].  ions, m/z 442, 556 . [(443) NR(OH)].  ions, m/z 612 (D2), 

398 (Q4), 270 (N5). Sequence [TDVQNR(OH)].  
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5 (M-H)
-
 m/z 1308, [(M-H)

-
 -CH3CHO] m/z 1264.  ions, m/z 1101, 1044, 826, 622, 451, 

288, 173 [Y
*
T(FA)(FG)(GN)YDR(OH)].  ions, m/z 437, 641, 698, 812, 975 

[(438)(FG)GNY(DR(OH))].  ions, m/z 550 (N8). Sequence [Y
*
T(FA)(FG)GNYDR(OH)]. 

6 (M-H)
-
 m/z 1011.  ions, m/z 769, 641, 528, 457, 400, 286, 173 [(LE)QLAGNLR(OH)].  

ions, m/z 369, 610, 724, 837 [(370)(241)NLR(OH)].  and  ions, m/z 258 (Q3), 383 (N7), 

627 (N7), 752 (Q3), 881 (E2). Sequence [LEQLAGNLR(OH)].  

7 (M-2H)
2-

 1718. Chymotryptic digest give (i) m/z 1929.  ions, 1800, 1686, 1573, 1444, 

1331, 1274, 1160, 1103, 1006, 893, 764, 635, 564, 451, 364, 180 

[ENIELGNGPLEEAIS(AL)Y(OH)].  ions, m/z 355, 654, 768, 825, 922, 1035, 1164, 1477, 

1748 [(356)(299)NGPLE(313)(217)Y(OH)], sequence [ENIELGNGPLEEAIS(AL)Y(OH)]. 

(ii) m/z 1199.  ions, m/z 1112, 668, 555, 458, 357, 244, 173 [S(444)LPTLAR(OH)].  ions, 

m/z 244, 301, 1025 [(245)G(724)R(OH)].  ions, m/z 779 (Q6), sequence 

[S(TG)GTQLPTLAR(OH)]. Overall sequence ENIELGNGPLEEAIS(AL)Y(YY) 

S(TG)GTQLPTLAR(OH)]. 

8 (M-H)
-
 1579.  ions, m/z 1119, 903, 775, 644, 531, 444, 315, 173 

[(460)(CI)QMI(AA)R(OH)].  ions, m/z 1405.  and  ions, m/z 476 (C5), 1102 (C5), 692 

(Q7), 886 (Q7), 1151 (E11). Sequence [(461)CIQMISE(AA)R(OH)]. 

 9 (M-H)
-
 m/z 1170.  ions, m/z 895, 732, 619, 490, 433, 304, 173 [(FQ)YIEGEMR(OH)].  

ions, m/z 274, 736, 996 [(FQ)(462)(EM)R(OH)].  and  ions, m/z 567 (E5), 602 (E5), 753 

(E7). Overall sequence [(FQ)YIEGEMR(OH)]. 

10 (M-2H)
2-

 m/z 863 and (M-H)
-
 m/z 1726. m/z 1276,  ions, m/z 1276, 1356, 859, 746, 

617, 503, 172 [(370)(497)LEN(330)R(OH)]. β ions, m/z 553, 979, 1108, 1222, 1309, 1495, 

1552 [(554)(426)ENSWGR(OH)].  and  ions m/z, 271(D4), 600 (N12), 729 (E11), 943 

(T9), 1081 (N12), 1410 (D4). Overall sequence [(SA)PD(PS)(VI)TLENSWGR(OH)]. 

11 (M-2H)
2-

 m/z 1128 and (M-H)
-
 m/z 2256, [(M-H)-CH3CHO]

-
 m/z 2212. m/z 2212 

ions, m/z 2099, 1955, 1057, 839, 752, 592, 414, 173 [L(S

T)(898)(FA)S(PI)Q(LQ)R(OH).  

ions, m/z 568, 1026, 1910 [(569)(458)(884)(QR(OH))].  and  ions, m/z 801 (N9), 1626 
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(E7), 1686 (Q18), 1754 (Q6), 1995 (

T3). Overall sequence 

[(LS)*TAIQESNQGA(FA)SPIQ(LQ)R(OH)] (*T is NHCHCO). 

12 (M-H)
-
 m/z 2209.  ions, m/z 2062, 1713, 1598, 1499, 1412, 1299, 1186, 1073, 435, 336, 

173 [F(349)DVSILI(638)VYR(OH)].  ions, m/z 332, 1022, 1642, 1773, 1872 

[(333)(690)(620)MV(YR(OH))].  and  ions, m/z 163(S2), 512 (D5), 1482 (S7), 1696 

(D5), 2045 (S2). Overall sequence [FSVYDVSILI(638)VYR(OH)]. 

15 (M-H)
-
 m/z 1388.  ions, m/z 1301, 1187, 971, 900, 786, 658, 545 [SN(TD)ANQL(546)]. 

 and  ions, m/z 1284 (D6)QOverall 

sequence [SNTDANQL(546)]. 

18 (M-2H)
2-

 m/z 1113.5 and (M-H)
-
 m/z 2228. m/z 2228,  ions, m/z 996, 796, 640, 543, 

415, 287, 173 [(1232)(SI)RPQQNR(OH)].  ions, m/z 199, 327, 455, 641, 1059, 1940, 2054 

[(AE)QQW(418)(881)NR(OH)].  and  ions, m/z 398 (Q17), 1076 (D10), 1883 (Q3), 

1957 (N18), 2011 (Q2). Overall sequence [(AE)QQWA(481)DG(SI)RPQQNR(OH)]. 

20 (M-H)
-
 m/z 609.  ions, m/z 423, 292, 145 [WMFK(OH)].  ions, m/z 463. and ions, 

m/z 275(F3), 333 ( F3). Overall sequence [WMFK(OH)]. 

21 (M-H)
-
 m/z 1859,  ions, m/z 1573, 1472, 1246, 1132, 1019, 856, 769, 712, 387, 272, 

173 [(286)T(IL)NLYSG(325)DVR(OH)]. ions, m/z 1002, 1358, 1471, 1586 

[(1003)(356)(VL)D(VR(OH)].  and  ions, m/z 130 (D2), 370 (D15), 1229 (N7). Overall 

sequence [NDGT(IL)NLYSGL(VL)DVR(OH)]. 

22 (M-2H)
2-

 m/z 1225. ions, m/z 1630, 1573, 1132, 1019, 856, 769, 387, 272, 173 

[(821)G(441)(LYS)(382)DVR(OH)].  ions, m/z 820, 1204, 1681, 1738, 2271 

[(822)(384)(477)G(539)R(OH)].  and  ions, m/z 333 (F3), 370 (D19), 608 (N5), 722 

(D6), 1229 (N11), 1728 (D6), 1842 (N5). Overall sequence 

[(WM)FKNDG(327)NLY(325)DVR(OH)]. Combine 20 and 21 sequences gives 

[WMFKNDGT(IL)NLYSGLVDVR(OH)].  

23 (M-2H)
2-

 m/z 1136.5 and (M-H)
-
 m/z 2274. m/z 2274,  ions, m/z 2033, 1920, 1807, 

1644, 1434, 1297, 1240, 914, 786, 673, 374, 164 [(QI)ILY(PL)HG(326)QI(WL)(PL)F(OH)]. 
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 ions, m/z 127, 240, 839, 1033, 1487, 2109 [QI(599)(HG)(454)(622)F(OH)].  and  ions, 

m/z 897 (Q13), 1011 (N12), 1050 (D10), 1223 (D10), 1262( N12). Overall sequence 

[QIILY(PL)HGDPNQI(WL)PLF(OH)] 

 

4.6. Summary and conclusions 

Proteolytic digest/negative ion nanospray MS was used to determine the five disulfide units 

and much of the amino acid sequence of ricin. To the best of our knowledge, it was the first 

time all five disulfide linkages in ricin are identified by MS.  

The (M-2H)
2-

 ions of intermolecular disulfides undergo facile cleavage of the disulfide bond 

to form singly-charged fragment anions. CID MS/MS data of these ions provide full or 

partial sequencing of the peptide side chains. The negative ion spectra of the two 

intramolecular disulfides in this study provide incomplete structural information. They are 

converted proteolytically into intermolecular disulfides which may be identified as outlined 

above. 

Tryptic digest of ricin produces a number of peptides not containing Cys: sequence 

information of these may be obtained using negative-ion backbone cleavage data. Some of 

these peptides are large giving very complex negative ion spectra; these have been further 

digested with chymotrypsin to yield smaller peptides which produce more satisfactory 

negative ion spectra. 

This study demonstrates that negative ion MS is more effective than positive ion MS in 

identification and sequencing disulfide bridged peptides. While positive ion MS only 

provides partial sequences of disulfide containing peptides and often does not specify the 

positions of disulfide resides, negative ion MS gives clear evidence for the presence and 

positions of disulfide linkages via characteristic fragmentations as outlined above.  

The negative ion MS based methodology described here addresses both ricin detection and 

structural confirmation and enables ricin to be distinguished from other type II RIPs. This is 

highly relevant in the context of the Chemical Weapons Convention, since this MS 

procedure determines all disulfide linkages in ricin. One of these disulfides connects the two 

chains of ricin indicating the presence of the intact toxin.  
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4.7 Experimental 

4.7.1 Materials 

Ricin, trypsin, chymotrypsin and Asp-N were commercial samples and were used 

unpurified. Synthetic peptides were synthesised by Mimotopes (Victoria, Australia) and 

were of greater than 90% purity.  

4.7.2 Digests 

Ricin (1mg) was digested in 0.2% Rapigest in 50 mM NH4HCO3 buffer at 37
o
C for 5-10 

hours. The molar ratio between ricin and trypsin was 1:1. The reaction was stopped by 

acidifying the mixture with formic acid and incubating at 37
o
C for 45 mins. The tryptic 

digestion was conducted by Dr. Craig Brinkworth, Defence Science and Technology 

Organisation, Victoria 3207, Australia. In order to produce peptide 17, a similar procedure 

was applied with the only difference being the use of a mixture of trypsin and chymotrypsin 

(1:1 molar ratio) instead of trypsin. All experiments with ricin were carried out with 

appropriate safety measures. All containers containing more than a lethal dose were handled 

in a level 2 biosafety cabinet equipped with HEPA filters, while working solutions 

containing less than the lethal dose were handled in a fumecupboard.  

Chymotryptic [384] and Asp-N digests [385-386] of the peptide fragments (obtained from 

the tryptic digest of ricin) were carried out using standard procedures. Chymotryptic and 

Asp-N digests were carried out in 50 mM NH4HCO3 buffer at 37 
o
C for 2-4 hours, with the 

ratio between peptide and chymotrypsin or Asp-N 25:1 by weight. The reaction was stopped 

by freezing the mixture. 

4.7.3 Synthesis of disulfide containing peptides from cysteine precursors 

2,2’-dithiodipyridine (Aldrithiol) was dissolved in isopropanol (solution A) and the first Cys 

containing peptide was dissolved in 20% acetonitrile/water (solution B). The molar ratio 

between 2,2’-dithiodipyridine and the Cys containing peptide used was 1:1. Solutions A and 

B were mixed and stirred for 30 mins. The activated product of the first Cys containing 

peptide (pep1-SPyr) was detected by ESI/MS and purified by HPLC. Fractions containing 

the pure product were pooled and lyophilised. Equimolar amounts (3 µM) of the second Cys 

containing peptide and the activated pep1-SPyr were dissolved in 2 ml of 0.1 mM NH4HCO3 
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and sonicated for 30 mins. Formation of the disulfide containing peptide from the two Cys 

precursors was confirmed by ESI/MS. 

4.7.4 High performance liquid chromatography 

Peptides were separated using a 2-60 % acetonitrile linear gradient on a C18 column (Vydac, 

Cat No: 218TP54) at a flow rate of 1.0 mL/min. 30 sec fractions were collected over the 

elution window. UV detection at 214 nm. 

4.7.5 Nanospray ionisation mass spectrometry 

Nanospray MS/MS data were collected using a Micromass Q-TOF 2 orthogonal acceleration 

time-of-flight mass spectrometer with a mass range to 10,000 Da. Conditions were as 

follows: capillary voltage 1.5 kV, source temperature 80 
o
C, and cone voltage 50 V. Argon 

collision gas energies at 30-80 eV were used for collision induced MS or MS/MS 

experiments. Mass spectra of fragment anions were collision induced mass spectra of anions 

formed in the ionisation source.  

Fragmentations of (M-H)
-
 not containing disulfide linkages shown in Figure 4.4 were 

determined from (M-H)
-
 parent anions with the exception of 22 which are doubly-charged 

mass spectra of (M-2H)
2-

 ions converted into ‘singly-charged’ spectra using the Mass Lynx 

software of the Q-TOF2 mass spectrometer [CID MS/MS spectra of (M-H)
-
 and Mass Lynx 

modified (M-2H)
2-

 peptide spectra give the same fragment peaks, but the abundances of 

peaks in the two spectra may be different (checked for peptides 10, 11, 12, 18 and 23 in 

Table 4.4)].  

CID MS/MS spectra of singly-charged (M-H)
-
 anions have been used for disulfide-

containing peptides in previous studies . In this study intermolecular disulfides 13, 14, 19 

(Figure 4.4), and intermolecular disulfides formed from 16 (Scheme 4.8) and 17 (Scheme 

4.10) give more abundant (M-2H)
2-

 than (M-H)
-
 peaks, and so doubly charged (M-2H)

2-
 

precursor parent peaks were used for all of these disulfides. Mass Lynx software was used to 

convert all of the doubly-charged spectra into ‘singly charged’ spectra (e.g. Figures 4.6, 4.7 

and 4.9). However (M-2H)
2-

 parent anions fragment to produce both singly-charged and 
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doubly charged fragment anions. CID MS/MS data of the source-formed singly-charged 

fragment anions (from the (M-2H)
2-

 parent anions) were used to determine sequence data for 

these fragments (see Figure 4.8, Schemes 4.5, 4.6, 4.7, 4.8, 4.9 and 4.10). Procedure used:- 

select (M-2H)
2-

 ion, effect CID MS/MS using cone voltage 50 V and argon pressure 50 eV, 

select singly-charged source formed fragment anion to be studied, increasing cone voltage to 

70 V to cause maximum fragmentation to produce CID source formed MS/MS data. 
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CHAPTER 5 

PEPTIDES FROM THE SKIN GLANDS OF Litoria rubella 

5.1 Peptides from amphibian skin secretions 

5.1.1 Overview 

Of all the vertebrates, the amphibians underwent the most profound evolution as they moved 

from an aquatic to a terrestrial environment at the close of the Paleozoic era [387-388]. They 

have been found in all continents except for Antarctica and survive in different climatic 

conditions from arid desert to deep freshwater lakes, and from underground to tropical forest 

canopy [389]. Their ability to adapt to a wide range of climate and geology has been 

attributed to many different physiological, biochemical and behavioural adaptations, with the 

flexibility in skin structure and function being a key factor for their survival [390-392].  

The many functions of amphibian skin, including respiration, water regulation, anti-predator, 

anti-microbial and anti-fungal defence, in turn depend on the secretory mechanism of 

cutaneous glands located on the skin surface. The dermal layer of anuran skin basically 

contains two types of glands, namely the mucus glands and granular glands; a third type, the 

tubulosacular or alveolar glands is only found in a small group of frogs. The mucus glands 

are small and release a watery mixture of mucins, mucopolysaccharides and salt that help to 

control the skin pH, moisture balance, thermoregulation, and prevent mechanical damage to 

the skin [388, 393-394]. On the other hand, the granular glands are the storage sites of the 

toxic or noxious substances secreted by the animal in response to various environmental 

threats [388, 394]. 

The exploitation of amphibian skin in various ways as folk medicine, witchcraft and poisons 

has been empirically known and orally transmitted for centuries in many societies such as in 

Europe, Africa, America and ancient China [395-397]. However, attempts to isolate and 

characterise biologically active components from amphibian skin only began in the early 

1960s with pioneering work by Erspamer and colleagues. It has been revealed that the 

anuran skin is a store of a vast array of active compounds including biogenic amines [398], 

steroids [399], alkaloids [400-401], peptides and proteins [402-403]. In addition, several 

enzymes involved in the activation of pro-peptides have also been isolated [387-388]. These 
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compounds are stored in highest concentration in the skin glands but some are also found in 

the internal organs, blood and tadpoles of some amphibian species [404].  

Studies of some 500 distinct species of frogs and toads have established that the amphibian 

skin secretions contain a diversity of peptides, polypeptides and proteins in significant 

quantities, and that different species secrete a different spectrum of bioactive peptides. 

Peptides with similar or equivalent pharmacological activity may be found in many different 

amphibian species and their structures, though not necessarily identical, are highly 

conserved. Identified peptides have shown a vast array of antibacterial activity with the 

leading discovery of magainin peptides from the skin of the African clawed toad, Xenopus 

laevis [405-406]. Antifungal, antiviral, anticancer and neurotransmitter action are other 

additional biological functions of skin secreted peptides. In addition, the unique peptide 

profile of each species assists the classification, taxonomy and evolutionary studies of 

amphibians. The difference in size, sequences, 3-dimensional structures and bioactivity 

spectra of glandular peptides facilitate the assignment of anurans into species, even sub-

species [407-409]. For example, analysis of peptide profiles of L. caerulea from different 

locations around Australia has revealed that this species has evolved into two subspecies, an 

eastern and a northern central subspecies [410-411].  

Erspamer and colleagues categorized amphibian neuro- and hormonal peptides into five 

groups namely tachykinins, bradykinins, caeruleins, bombesins and opioid peptides [412]. 

Each of these peptide groups possesses similar chemical structures, receptor binding 

affinities and spectra of biological activities. Erspamer also predicted that every 

neuropeptide present in the frog skin should have a mammalian counterpart [402]. This 

prediction is supported by the identification of crinia-angiotensin II from Crinia georgina 

[413] and the mammalian analogue angiotensin II [413-414], and xenopsin from Xenopus 

laevis [415-416] and the mammalian analogue  neurotensin [417-418]. However, this 

hypothesis does not hold when considering membrane-active amphibian peptides from 

Australian amphibians [419].  
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5.1.2 Peptides from Australian anurans 

From several thousand anuran species worldwide, about 230 species have been found in 

Australia with 93% of them endemic [420]. Investigation of skin secretions in Australian 

amphibians was initiated in 1964 by Erspamer’s research group. Hundreds of Australian 

amphibian species from various locations were studied in the first decade after the 

commencement of Erspamer’s work using the extracts of dried skins [421]. The 

identification methods were limited to chemical/enzymatic degradation and biological 

screening on smooth muscle and blood pressure preparations. In addition, these studies were 

limited to the identification of peptides belonging to the caerulein, bombesin and tachykinin 

families in Australian amphibian skin secretions. Peptides with other characteristics 

remained to be discovered and they thus did not provide much information about 

evolutionary trends in these species.  

Later investigations were carried out on skin secretions of anurans from the Australian 

Crinia, Cyclorana, Litoria, Limnodynastes and Uperoleia genera. Secretions were obtained 

using mild electrical stimulation of the frog skin and washing the resulting peptide mixture 

with water, followed by HPLC and ESI MS/Edman sequencing to identify individual 

peptides [403, 409, 422]. With this strategy, it is not unusual to be able to identify all of the 

major bioactive peptides using a small amount of secretion from a small number of animals. 

The studies on more than 35 species of Australian frogs have showed a significantly more 

diversity of peptide structures than shown by previous studies of the Espamer group. 

Selected peptides isolated from Australian amphibian skin secretions are displayed in Table 

5.1. Most of the frogs studied from these genera have a range of peptides in their skin 

secretions, including at least one neuropeptide (normally a smooth muscle active peptide that 

sometimes also possesses analgesic activity), and a broad spectrum antibiotic (antimicrobial 

peptides). Peptides with antiviral, anticancer, antifungal, hormone and pheromone activity, 

and peptides complexing with the regulatory protein calmodulin (CaM) to inhibit formation 

of nitric oxide (NO) have also been identified. Many of these peptides show multifaceted 

activity, while the activity of some others remains to be discovered [403, 409, 422]. 
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Table 5.1. Selected peptides isolated from Australian amphibian skin secretions. 

Name Sequence MW Species Activity∗ 

Aurein 1.1 GLFDIIKKIAESI-NH2 1444 a 1, 2 

Caeridin 1.1 GLLαDGLLGTGL-NH2 1140 b, c, d, e, f   

Caerin 1.1 GLLSVLGSVAKHVLPHVVPVIAEHL-NH2 2582 b, c, d 
1, 2, 3, 

4 

Caerulein 1.1 pEQDY(SO3)TGWMDF-NH2 1351 h 5 

Citropin 1.1 GLFDVIKKVASVIGGL-NH2 1613 i 
1, 2, 3, 

4 

Dahlein 1.1 GLFDIIKNIVSTL-NH2 1430 j 1 

Dynastin 1 GLVSNLGI-OH 729 k   

Electrin 2.1 NEEEKVKWEPDVP-NH2 1743 o   

Fletcherin AGPVSKLVSGIGL-OH 1197 p   

Frenatin 1 GLLDALSGILGL-NH2 1140 q   

Lesueurin GLLDILKKVGKVA-NH2 1352 r 4 

Mactulatin 1.1 GLFGVLAKVAAHVVPAIAEHF-NH2 2145 s 
1, 2, 3, 

4 

Rubellidin 4.1 GLGDILGLLGL-NH2 1039 t   

Rubellidin 4.2 AGLLDILGL-NH2 883 t   

Rothein 2.1 AGGLDDLLEPVLNSADNLVHGL-NH2 2230 u   

Rothein 3.1 
ASAAGAVRAGGLDDLLEPVLNSADNLVHGL-

NH2 
2964 u   

Signiferin 1 RLC∗IPYIIPC∗-OH (∗disulfide bridge) 1187 v 5 

Splendipherin GLVSSIGKALGGLLADVVKSKGQPA-OH 2364 b, c 4, 6 

Tryptophyllin L 1.1 PWL-NH2 414 t   

Tryptophyllin L 2.1 IPWL-NH2 527 t   

Tryptophyllin L 3.1 FPWP-NH2 545 o, t   

Tryptophyllin L 4.1 LPWY-NH2 577 t   

Tryptophyllin L 5.1 pEIPWFHR-NH2 965 t   

Uperin 1.1 pEADPNAFYGLM-NH2 1208 w 5 

Uperolein pEPDPNAFYGLM-NH2 1232 x 5 

Activity nomenclature: (1) antibiotic activity; (2) anticancer activity; (3) fungicide activity; (4) nNOS inhibitor; (5) 

neuropeptide, smooth muscle active; (6) aquatic sex pheromone. Species: (a) Litoria aurea, Litoria raniformis [423]; 

(b) Litoria splendida [424]; (c) Litoria caerulea [425]; (d) Litoria gilleni [426]; (e) Litoria xanthomera [427] ; (f) Litoria 

chloris [428]; (g) Litoria eucnemis [429]; (h) various species of the genus Litoria [412]; (i) Litoria citropa [430]; 

(j) Litoria dahlia [431]; (k) Limnodynastes interioris [432]; (l) Limnodynastes dumerilii [432]; (m) Limnodynastes 

terraereginae [432]; (n) Limnodynastes salmini [433]; (o) Litoria electrica [434]; (p) Limnodynastes fletcheri [433]; 

(q) Litoria infrafrenata [435]; (r) Litoria lesueur [436]; (s) Litoria genimaculata [437]; (t) Litoria rubella [422, 438] and ; 

(u) Litoria rothii [431]; (v) Crinia signifera (w) Uperoleia inundata[439] ; (x) many species of the genus Uperoleia [412]. 
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5.1.3 Production of glandular peptides 

The main component of a granular gland is a syncytium which consists of a large number of 

densely packed secretory granules located at the central cytoplasmic area, and, nuclei, 

endoplasmic reticulum and Golgi complexes occupying the periphery. The secretory 

compartment is surrounded by myoepithelial cells which regulate the contraction of the 

gland [440]. Secretion of the glandular contents is generally under control of the sympathetic 

nervous system and occurs in response to a behavioural defence position [440-441]. The 

stimulation results in the release of 80-90% of the glandular contents and several days to 

several weeks are required to replenish the contents of the gland [440, 442-443].  

 

Figure 5.1. Structure of an amphibian granular gland [440]. 

The biologically active peptides secreted by the amphibian granular glands are only a small 

portion of a much larger inactive peptide, known as a prepropeptide which consists of three 

regions, the signal, spacer and active peptide. Once synthesized in the endocrine system, the 

signal peptide facilitates transportation of the prepropeptide across the cellular membrane 

and directs it though the endoplasmic reticulum. The signal sequence is then cleaved by 

enzymatic action to give the propeptide. This propeptide is destined to Golgi complexes 

where it is modified, packaged and sent to granules (formed by the fusion of vacuolar 

structures derived from Golgi complexes). The secretion (granules) is released from the 

gland by a holocrine mechanism, which requires disruption of the plasma membrane at the 

base of the gland duct to excrete the content [440].  
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The spacer region (pro-piece) of the peptide counteracts the activity of the mature peptide, 

assists peptide folding and inhibits any enzymatic degradation. The propeptide is stored as 

the inactive precursor and only processed to the active peptide upon release of the secretion. 

Upon activation of the granular gland, the spacer segment will be removed by endoproteases 

to yield the active peptide [442, 444]. There are many examples of the active peptide being 

cytotoxic to the host, especially at the concentration. There is growing evidence that the co-

secreted precursors and spacer peptides also possess certain bioactivities. For instance, the 

primary peptides from spacer segments of the precursors of xenopsin and caerulein showed 

predominant lytic activity and antibacterial activity [442, 445]. 

5.1.4 Collecting skin secretions 

In the past, the components of the skin secretions were normally obtained from the dried 

skin extracts of amphibians and often a large number of animals were sacrificed for a single 

study [421, 446]. This method required the skins to be removed, dried and extracted with 

organic solvent to obtain the glandular contents. This method is inappropriate chemically 

and environmentally, since it mostly results in inactive peptides from the glands of the 

animals rather than the active compounds produced in response to the environmental 

stimulation [403]. In addition, such a method is now unacceptable due to the significant 

decline of numerous frog populations noted in recent years. A non-harmful procedure to 

extract skin peptides is thus essential. One such alternative is injecting adrenaline or 

noradrenaline directly into the gland [440, 442]. Although it is non-fatal, the method has 

declined in use due to its invasive nature. A more common method to collect the secretions 

makes use of an electrical stimulation technique [447]. It involves gentle massage of a 

platinum electrode over the dorsal surface of the animal, causing an immediate discharge of 

the granular contents onto the skin surface, which can be washed from the surface and 

collected. The procedure is harmless to the animals and can be repeated on a monthly basis 

(Figure 5.2).  
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Figure 5.2. Surface electrical stimulation method for collection of amphibian skin secretion. 

5.1.5 Peptide sequencing by mass spectrometry and Edman degradation  

Currently, MS and automated Edman degradation are two techniques complementarily 

employed to sequence unknown peptides from Australian amphibians. The details of peptide 

sequencing using positive and negative ion MS were described in Chapter 1. MS is very 

useful to sequence underivatised and post-translational modified peptides. However, it is 

unable to distinguish between isomeric residues Leu and Ile (113 Da) and, to a lesser extent 

the isobaric residues Lys and Gln (128 Da). In some cases, incomplete fragmentation of 

peptide backbones of the investigated peptide also limits the application of this method to 

sequence identification. For these reasons, it is often coupled with complementary 

techniques such as Edman degradation to provide supporting sequence information. 

Edman sequencing involves a cycle of chemical reactions to sequentially remove and 

identify amino acids from the N-terminal end of a peptide [448-450]. In this process, the C-

terminal end of the peptide is attached to a solid membrane support, and in each cycle of the 

sequencing process, the free N-terminal amine is reacted with phenylisothiocyanate to yield 

a phenylthiocarobamoyl derivative. It is followed by acid hydrolysis of the amide bond to 

produce a phenylthiohydantoin which is subjected to HPLC analysis (Scheme 5.1). The 

presence of a particular amino acid in the peptide sequence is identified based on the known 

retention time for that amino acid. The shortened peptide with its newly exposed N-terminal 

group is then subjected to another Edman cycle.  

Edman degradation is a very sensitive technique (picomolar range) and can be automated to 

allow efficient sequencing of peptides of up to 30 amino acids [451]. However, there are 
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several drawbacks inherent in the application of this technique to peptide sequencing [382, 

452]. Firstly, it is susceptible to contamination due to incomplete additions of 

phenylisothiocyanate and degradation reactions. Low yield of phenylthiohydratoin 

derivatives with a number of amino acid such as Ser, Thr, Arg and His may sometimes 

prevent unambiguous sequencing. Furthermore, amino acid identification is reliant on 

known HPLC retention times, and thus uncommon or modified amino acids cannot be 

detected by this technique. Peptides with blocked N-terminal ends such as pGlu residues are 

not suited for Edman sequencing, as the initial phenylthiocarbamoyl derivative cannot form. 

Finally, as the peptide decreases in size, there is an increased risk that it can be washed from 

the solid support, therefore missing sequencing information. Despite these limitations, 

Edman sequencing is a valuable technique used in combination with MS to effectively 

determine the primary sequences of peptides. 
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Scheme 5.1. Edman sequencing reaction scheme. 

5.2 Litoria rubella, the Red-tree frog  

Litoria rubella (L. rubella) also known as the Red-tree frog or Desert-tree frog is a small 

frog measuring up to 4.5 cm in length (Figure 5.3). It occupies a large area of central and 

northern Australia [420]. The broad geographic distribution of L. rubella suggests that this 

frog may have evolved into different sub-species in order to adapt to a wide range of 

climates from the arid conditions in the centre of Australia to the humid conditions of the 

north-east coast. Studies of peptide profiles from the dorsal secretions of L. rubella from 15 
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locations throughout Australia support this proposal [422, 438, 453]. Peptide glandular 

profiles showed that there are at least five different populations of this genus (Table 5.3), 

and, the tryptophyllins L and the rubellidins are two major peptide families which are 

present in the skin secretions of the frogs (Table 5.4) [422]. 

 

Figure 5.3. Appearance of Litoria rubella [420]. 

The tryptophyllin L peptides have four to seven residues and possess a characteristic Pro-Trp 

sequence, while the rubellidins are five amino acid containing peptides with a Phe-Phe 

sequence near the C-terminal end of the peptide. In addition, two rubellidins have the longest 

sequences (nine and eleven amino acids) with eight amino acids identical in their sequences 

(see Table 5.4) [419, 422].  

Bioactivity tests of the tryptophyllins L and rubellidins showed that the activities of 

tryptophyllins L are limited and the rubellidins display no known activity. The tryptophyllins 

have no antimicrobial activity but may exhibit minor smooth muscle activity and modest 

opioid activity (L1.2 and L3.1 at 10
-7 

M) [419, 454].  
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Table 5.3. Peptide profiles of the skin secretion of Litoria rubella as a function of geographic location, identified by the mass to charge ratios of 

the protonated ions of the peptides. The presence of a specific peptide is indicated by * and major peptides are indicated by X. 

Location 
Tryptophillins L Rubellidins 

414 527 545 546 561 577 672 706 724 805 965 598 626 655 883 1039 

1. Derby (WA)     X    *   * * *   

2. Lalumuburu (WA)     X  * *      *  * 

3. Lake Argyle     X  *          

4. Jabiru (NT)       X    *  *    

5. Adelaide river (NT)       X    *      

6. Davenport Ranges (NT)     X   *       * * 

7. Simpson’s Gap (NT) * * *  X *       * * * * 

8. Dulkaninna (SA)     X            

9. Farina (SA)     X            

10. Arkaroola (SA)     X            

11. Maryborough (Qld)   *  X            

12. Gracemere (Qld)   *  X            

13. Townsville (Qld)   X  *     *       

14. Ollera Creek (Qld)   X  *     *       

15. Mt. Carbine (Qld)   X * *     *       
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Table 5.4. Sequences of glandular peptides from Litoria rubella.  

Peptide Sequence MH
+ 

The tryptophyllins L 

1.1                      Pro-Trp-Leu (NH2) 414 

1.2               Phe-Pro-Trp-Leu (NH2) 561 

1.3     pGlu-Phe-Pro-Trp-Leu (NH2) 672 

1.4 Phe-Pro-Phe-Pro-Trp-Leu (NH2) 805 

2.1                 Ile-Pro-Trp-Leu (NH2) 527 

3.1                Phe-Pro-Trp-Pro (NH2) 545 

3.2                Phe-Pro-Trp-Pro (OH) 546 

3.3      pGlu-Phe-Pro-Trp-Phe (NH2) 706 

4.1               Leu-Pro-Trp-Tyr(NH2) 577 

4.2        Phe-Leu-Pro-Trp-Tyr(NH2) 724 

5.1         pGlu-Ile-Pro-Trp-Phe-His-Arg (NH2) 965 

The rubellidins 

1.1 Val-Asp-Phe-Phe-Ala (OH) 598 

2.1   Ile-Glu-Phe-Phe-Ala (OH) 626 

3.1   Ile-Glu-Phe-Phe-Thr (NH2) 655 

The rubellidins (caeridin type) 

4.1        Gly-Leu-Gly-Asp-Ile-Leu-Gly-Leu-Leu-Gly-Leu (NH2) 1039 

4.2 Ala-Gly-Leu-Gly-Asp-Ile-Leu-Gly-Leu- (NH2) 883 

 

From previous studies, the change in the peptide secretions of L. rubella has showed an 

evolutionary divergence of this genus over the locations investigated. Further investigation 

of the peptide profiles of L. rubella from other areas of Australia thus would provide more 

examples of evolutionary and/or chemically distinct populations of this frog. In order to 

achieve this, this chapter presents the study of glandular secretions of L. rubella collected 

from three further locations of Australia including the Flinders Ranges (700 km north of 

Adelaide), a region of south-western Queensland (98 km north east of Innamincka in South 

Australia), and Noonbah Station which is approximately 100 km south west of Longreach, 

Queensland (Figure 5.4). The research details the isolation, sequencing and testing of opioid 
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activity of selected peptides from these locations. The peptide profiles are then compared 

with each other and with those previously identified to examine the evolutionary trend of 

these populations. 

 

Figure 5.4. A schematic representation of the chemically distinct populations of L. rubella 

over 15 locations (see Table 5.3) and three locations of Australia currently studied, including 

16 the Flinders Ranges (700 km north of Adelaide), 17 a region of south-western 

Queensland (98 km north east of Innamincka in South Australia), and 18 Noonbah Station 

which is approximately 100 km south west of Longreach, Queensland. 

5.3 Results and discussion 

5.3.1 HPLC separation of the skin secretions 

Skin secretions were collected using the surface electrical stimulation technique for three 

groups of live L. rubella frogs (from Longreach, the south-west corner of Queensland and 

Flinders Ranges). The HPLC profiles of the secretions are presented in Figures 5.5-5.7 

respectively and did not change during the four-month period of the experiment. The peptide 

containing fractions are numbered. For Longreach specimens, fraction (2) (Figure 5.5) was 

found to contain two peptides, and was thus submitted to further purification by HPLC. A 

gradient elution was used with the acetonitrile content increasing from 30- 40% solution A 

(1% trifluoroacetic acid/acetonitrile) in 60 minutes. However, it failed to separate these two 

peptides due to their consistent co-elution. 
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Figure 5.5. Representative HPLC trace from L. rubella specimen collected from Longreach.  

 

 

Figure 5.6. Representative HPLC trace from L. rubella specimen collected from the south-

west corner of Queensland.  
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Figure 5.7. Representative HPLC trace from L. rubella specimen collected from Flinders 

Ranges.  

5.3.2 Peptide sequence determination 

The peptides isolated by HPLC were studied using a Q-TOF 2 mass spectrometer and 

electrospray MS/MS data were acquired in both positive and negative mode. The 

characteristic b and y fragmentations were utilised to assign most of the sequences of the 

peptides. Additional sequencing information was obtained using negative ion CID MS/MS 

and high resolution MS/MS or MS/MS/MS data measured with an LTQ Orbitrap XL ETD 

hybrid mass spectrometer. Automated Edman degradation was used to differentiate Ileu and 

Leu and to confirm the primary sequences.  

The sequences of nine peptides exuded from skin secretions of three L. rubella frog groups 

are listed in Table 5.5. All masses given are nominal masses, i.e. obtained by summation of 

the integral masses of all the amino acid residues. Three of these peptides including the 

tryptophyllin L1.2 (MW 560) and two caeridin rubellidins (MW 882 and 1038) were 

reported previously (see Table 5.4). 
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Table 5.5. Peptides characterised from the skin secretions of L. rubella at the three locations 

studied. 

Name Fraction MW Seqence 

Tryptophyllin L 1.1.1 2 415        Pro-Trp-Leu(OH) 

Tryptophyllin L 1.2 5 560 Phe-Pro-Trp-Leu (NH2) 

Tryptophyllin L 1.2.1 6 561 Phe-Pro-Trp-Leu (OH) 

Tryptophyllin L 1.5 1 501 Ser-Pro-Trp-Leu(OH) 

Tryptophyllin L 1.6 2 564 Phe-Pro-Kyn-Leu(NH2) 

Tryptophyllin L 1.7 4 576 Phe-Pro-5HTP-Leu(OH) 

Tryptophyllin L 1.8 3 592 Phe-Pro-Nfk-Leu(OH) 

Caeridin type Rubellidin 

4.2 
7 882 

Ala-Gly-Leu-Gly-Asp-Ile-Leu-Gly-Leu- 

(NH2) 

Caeridin type Rubellidin 

4.1 
8 1038 

Gly-Leu-Gly-Asp-Ile-Leu-Gly-Leu-Leu-

Gly-Leu (NH2) 

Kyn is kynurenine 

CO

O NH

NH2   (MW 190);  

5Htp is 5-hydroxytryptophan (MW 202) 

 Nfk is N-formylkynurenine  

CO

O NH

NHCHO  (MW 218) 
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The HPLC profiles of L. rubella from three locations showed the domination of fraction 5 

which contained the tryptophyllin L1.2. The Flinders Ranges frogs secrete only this peptide, 

whereas the L. rubella frogs from the south-west corner of Queensland and the Noonbah 

Station produce a number of peptides from their dorsal surfaces. The peptide profiles from 

these two clusters are quite similar. The only difference is the absence of fraction 2 in the 

secretion of the L. rubella frogs from south-western Queensland. 

a. Tryptophyllin metabolite containing peptides: tryptophyllin L1.6, 1.7, 1.8, 1.9 

Among the isolated peptides, the tryptophyllin L1.6 (MW 564 in fraction 2) was of 

particular interest because it was one of the peptides isolated before from a L. rubella frog 

cluster within a 20 km radius of Alice Springs in central Australia in January 1993, but its 

structure was not then identified. (The spectra of the unidentified peptide obtained in 1993 

and of the tryptophyllin L1.6 showed identical fragmentations). 

 

Figure 5.8. CID positive ion ESI MS/MS of the MH
+
 ion of FP-Kyn-L(NH2). Q-TOF 2 

mass spectrometer. b and y backbone cleavages are shown schematically above and below 

the spectrum respectively.  

The positive ion MS/MS spectrum of the MH
+ 

565 is displayed in Figure 5.8. A combination 

of b and y cleavages provide a partial sequence of the peptide, with y cleavage ions at m/z 

418 and 321 inferring the presence of Phe and Pro (Phe-Pro) from the C-terminal end, and a 

b cleavage ion at m/z 435 indicating the location of Leu or Ileu at the N-terminal end. The 

major b fragmentation ion at m/z 435 also loses Phe then Pro to form m/z 288 and 191. 

Automated Edman sequencing (carried out in 1993) [455] confirms this partial sequence and 

pointed out the presence of Leu at the N terminal. Consequently, the remaining mass is 190. 
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This mass does not correspond to any or a combination of any natural  amino acids, but it 

corresponds to one of the metabolites of tryptophan, kynurenine (Kyn).  

Kyn is one of the oxidative products of tryptophan and is synthesised enzymatically by 

tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO) [456]. It can also 

be formed by direct oxidation of tryptophan using various oxidative agents such as hydrogen 

peroxide, ozone, oxidising lipids, heat/oxygen, light/oxygen, etc. [457-458]. Kyn has been 

found in a number of proteins including lens crystalline [459-463], human Cu, Zn 

superoxide dismutase [464], bleached wool protein [465-466], milk proteins [467], 

oligopeptides with C-terminal Trp [468], Cu ion oxidised low density lipoproteins [469], and 

Cu bound protein MopE from Methylococcus capsulatus [470].  L-Kyn is also reported to be 

the sex pheromone (in the urine) of a female masu salmon [471]. 

The presence of Kyn in the peptide sequence of the MH
+
 565 is firstly evident by the 

appearance of several characteristic Kyn cleavage ions (in Figure 5.7) including m/z 174 (a), 

163 (b), 146 (c) and 120 (d), which have been reported by a number of studies of the 

application of positive ion MS/MS to identify Kyn in peptides and proteins [472-476]. The 

typical fragmentation pathways of protonated Kyn to form these ions are illustrated in 

Scheme 5.2 [477].  
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COOH

O NH3
+

NH2

C8H10NO
m/z 136.0762

- C2H3NO2

C10H10NO3

m/z 192.0661

C9H11NO3

m/z 163.0871

C8H8N
m/z 118.0657

C10H8NO2

m/z 174.0555

C9H8NO
m/z 146.0606

C7H6NO
m/z 120.0449

- NH3

- H2O, CO

- H2O - H2O,
 CO

- H2O

- NH3 - C2H5N

- CO

C10H13N2O3
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Scheme 5.2. Fragmentation pathways of protonated Kyn [477]. 

The high resolution MS/MS/MS spectrum of MH
+
 163 (Figure 5.9) showed the accurate 

masses of the ions (b), (c) and (d) are 163.0866 (C9H11N2O requires 163.0871), 146.0599 

(C9H8NO requires 146.0606) and 120.0444 (C7H6NO requires 120.0449) respectively, 

proving the atomic compositions of these ions to be the same as those of the fragment ions 

originated from Kyn (see Scheme 5.2). 

Furthermore, the positive CID MS/MS spectrum of a synthetic peptide with the sequence 

Phe-Pro-Kyn-Leu(OH) shows identical fragmentations to those observed in Figure 5.7. The 

sequence Phe-Pro-Kyn-Leu(OH) of the MH
+
 565 is confirmed. 
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Figure 5.9. Accurate mass measurement and high resolution MS/MS/MS spectrum of MH
+
 

163. LTQ Orbitrap XL ETD hybrid mass spectrometer. 

The negative ion CID MS/MS spectrum of tryptophillin L1.6 reproduced in Figure 5.10 is 

most unusual with the cleavage from the Kyn side-chain enolate anion dominating the 

spectrum. The negative ion backbone fragmentations which normally provide sequencing 

information are not observed [156]. 

Figure 5.10. CID negative ion ESI MS/MS spectrum of the (M-H)
-
 ion of FP-Kyn-L(NH2). 

Q-TOF 2 mass spectrometer. The mechanism of the Kyn3 cleavage is shown on the left of 

the spectrum. 
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The next tryptophyllin-metabolite containing peptides to be considered are tryptophyllin 

L1.7 and 1.8. The positive and negative CID MS/MS spectra of tryptophyllin L1.7 are 

displayed in Figure 5.11 and 5.12 respectively, and the mass spectral data for tryptophyllin 

L1.8 is summarised in Table 5.6. 

 

Figure 5.11. CID positive ion ESI MS/MS spectrum of the MH
+
 ion of FP-5Htp-L(NH2). Q-

TOF 2 mass spectrometer. The sequence derived from the b cleavages is given above the 

spectrum while that from the y cleavages is displayed below.  

 

Figure 5.12. CID negative ion ESI MS/MS of the (M-H)
-
 ion of FP-5HTP-L(NH2). Q-

TOF 2 mass spectrometer.  and β fragment ions are shown schematically above and below 
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the spectrum respectively. The loss of the indole ring is illustrated in the formula above the 

spectrum. 

Table 5.6. Mass spectral data for tryptophyllin L 1.8. Format of fragment ion [m/z (fragment 

lost)] 

(MH)
+
 m/z 593 

b ions: m/z 576 (NH3), 463 (L-NH2) , 245 (FP) 

y ions: m/z 446 (F), 349 (P), 131 (NFK) 

immonium ions: m/z 191 (of NFK), 120 (of F), 70 (of P) 

The sequence of tryptophyllin L 1.8 is FP-NFK-L(NH2) 

 

The b and y cleavages, and the  and β fragmentations of tryptophyllin L1.7 are shown 

schematically above and below Figure 5.11 and 5.12 respectively. This peptide contains a 

third residue with a molecular mass of 202 in the peptide sequence. This molecular mass 

corresponds to two isomers of tryptophan metabolites, namely 5-hydroxytryptophan (5-

HTP) and oxindolylalanine (Figure 5.13) [478-479]. The most abundant peak at m/z 175 was 

observed in the positive spectrum of tryptophan L1.7. The CID activated source-formed 

fragmentation of this ion (illustrated in Figure 5.14) showed a number of ions including m/z 

158, 148, 146 and 130. These ions are the characteristic cleavage ions of the immonium ion 

of 5-HTP which were reported in detail in studies of 5-HTP using positive MS [480-481]. 

This suggests the inclusion of 5-HTP in the peptide sequence and eliminates the possibility 

of the isomeric oxindolylalanine (which is also formed from oxidative processes of Trp), 

since this isomer was reported to produce only two diagnostic fragments from its immonium 

ion (same m/z 175) including m/z 130 and 132 [481-482].  

Furthermore, the positive and negative-ion electrospray ionisation MS/MS data for the MH
+
 

and (M-H)
-
 ions of a synthetic peptide with the sequence Phe-Pro-5Htp-L(NH2) are identical 

to those in Figure 5.11 and 5.12. This confirms the sequence Phe-Pro-5Htp-L(NH2) of L1.7. 
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Figure 5.13. Structure of oxindolylalanine. 

 

Figure 5.14. CID ESI MS/MS data for the source formed immonium ion of 5-HTP. Q-TOF 

2 mass spectrometer.  

Similar to tryptophyllin L1.6 and 1.7, tryptophyllin L1.8 is a derivative of tryptophyllin 1.2 

with the Trp residue at the third position being oxidised to N-formylkynurenine. N-

formylkynurenine, an oxidative product of Trp, has been found in a number of proteins such 

as cardiac mitochondrial proteins [483], bovine crystalline [484] or the CP43 subunit of 

photosystem II [485]. Its molecular weight is 32 mass units higher than that of Trp. The b 

and y cleavage ions of the protonated ion of tryptophyllin L1.8 provide the peptide sequence 

of tryptophyllin L1.8 as indicated in Table 5.6. 

b. Tryptophyllin L1.1.1, 1.2.1 and 1.5 

The mass spectral sequencing data for tryptophyllin L1.1.1, 1.2.1 and 1.5 are given in Table 

5.7. Tryptophyllin L1.1.1 and L1.2.1 are carboxylic-acid terminal counterparts of 

tryptophyllins L1.1 and 1.2 (the major peptide). The protonated ion of tryptophyllin L1.1.1 
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and L1.2.1 produces the same b cleavage ions as those of tryptophyllin L1.1 and 1.2, 

respectively. However, the y cleavage ions of these peptides are one mass unit higher than 

those of their amide-terminal counterparts.  

The CID MS/MS spectrum of the protonated ion of tryptophyllin L 1.5 is simple with the b 

and y fragment ions unambiguously assigning the peptide sequence. In addition, immonium 

ions of Trp, Pro and some z ions were also observed, contributing to the elucidation of the 

sequence of tryptophyllin L1.5. 

Table 5.7. Mass spectral sequencing data for tryptophyllins L1.1.1, 1.2.1 and 1.5. Format of 

fragment ion [m/z (fragment lost)] 

 

Tryptophyllin L1.5 

 (MH)
+
 m/z 502 

b ions: m/z 484 (H2O), 371 (L-OH), 185 (W) 

y ions: m/z 415 (S), 318 (P), 132 (W) 

Immonium ions: m/z 159 ( of W), 120 (of F) 70 (of P) 

The sequence of tryptophyllin L1.5 is SPWL(OH) 

Tryptophyllin L1.1.1 

b ions: m/z 397 (H2O) , 284 (L(OH)) 

y ions: m/z 318 (P), 132 (W) 

a ions: m/z 256 [PW– CO] 

Immonium ions: m/z 159 ( of W), 70 (of P) 

The sequence of tryptophyllin L1.1.1 is PWL(OH) 

Tryptophyllin L1.2.1 
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(MH)
+
 m/z 562 

b ions: m/z 544 (H2O) , 431 (L-OH), 245 (W) 

y ions: m/z 415 (F), 318 (P), 132 (W) 

immonium ions: m/z 159 ( of W), 120 (of F) 70 (of P) 

The sequence of tryptophyllin L1.2.1 is FPWL(OH) 

 

5.3.3 Evolutionary significance of peptides from L. rubella 

The application of amphibian peptide secretions to identify chemical distinct populations of 

frogs within a species was introduced in sections 5.1. Differences in the peptide profiles of 

L. rubella suggested that different populations were located around Darwin (NT), in the 

Kimberley region of Western Australia, along the eastern seaboard of Queensland and in the 

central area of Australia (see Figure 5.4). The current investigation of the peptides secretions 

of L. rubella collected from the three locations adds more information about the evolutionary 

divergence of this genus. 

Of three peptide profile identified, the peptide secretion from location 16 (see Figure 5.4) 

Flinders Ranges only shows one major peptide tryptophyllin L 1.2, which is the same as 

those identified from locations 8, 9 and 10, indicating that the frogs collected from these four 

areas belong to the same population. 

There is an obvious change in peptide content as moving north east from southern-central 

Australia. The peptides profiles of locations 17 and 18 are quite complex, which contain 

tryptophyllin L 1.2 as the major constituent, two rubellidins (caeridin type) and a number of 

small tryptophan metabolite containing peptides. The tryptophan metabolite containing 

peptides mark the difference in peptide profiles of these two populations from those obtained 

from the eastern seaboard of Queensland (see Table 5.3). This suggests that the frogs from 

these two areas may belong to a distinct sub-species.  
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5.3.4 Opioid activity 

Of the L. rubella frog peptides discovered, only two major peptides tryptophyllin L1.2 and 

L3.1 showed low opioid activity and no other activities were detected for other tryptophyllin 

peptides. Therefore, tryptophyllin L1.6 (Kyn containing peptide) was synthesised to test for 

its opioid activity, as well as to examine the hypothesis that it may be produced from 

tryptophyllin 1.2 in an attempt to reduce the opioid activity of the major peptide. 

Tryptophyllin L 1.6 was tested for activity against electrically stimulated myenteric plexus-

longitudinal muscle preparation of guinea pig ileum (GPI). The specific action of opioid 

agonist in GPI is to depress the firing of myenteric neurons, inhibiting the release of 

acetylcholine and thereby reducing the nerve-medicated cholinergic contractions of the 

smooth muscle contractions [486-487]. The opioid activity is thus expressed as a percentage 

of stimulated ileum basal contraction of the control (100%) with inhibition of contraction 

indicated by a decrease in % control. 

This peptide exhibited a modest opioid activity commencing at a concentration of 10
-7

M 

(Figure 5.13). The activity is significantly shifted in the presence of naloxone. Since 

naloxone shows a ten time preference for  over  opioid receptors [487-488], tryptophyllin 

1.6 is thus likely to act via the  opioid-receptor ( opioid receptors are not involved in 

ileum [486, 489]).  

 

Figure 5.13. Inhibition of stimulated ileum contraction response curves for (A) FPWL(NH2) 

(major peptide) and (B) FP-Kyn-L(NH2). The activity is expressed as a percentage of 

stimulated ileum basal contraction of the control (100%) with inhibition of contraction 

indicated by a decrease in % control. 
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The opioid activity-test result unambiguously showed that tryptophyllin 1.6 is not converted 

from the major peptide tryptophyllin 1.2 in order to reduce the opioid activity of this peptide. 

On the other hand, it has been suggested by a number of studies that Trp metabolites may be 

formed in modulation of emotional behaviours or after physical efforts in mammalians [490-

493]. However, finding the origin of the genesis of the tryptophyllin metabolites is beyond 

the scope of the present study and was thus not pursued further. 

5.4 Summary and conclusion 

Nine peptides were isolated from live specimens of L. rubella from three locations; namely 

Flinders Ranges, a region of south-western Queensland, and Longreach Queensland. The 

secretion from the frogs from the Flinder Ranges (16) consisting of only the major peptide, 

tryptophyllin L1.2 indicates that this group belongs to the southern central population of L. 

rubella. The frogs from south-western Queensland (17) and Longreach Queensland (18) 

produce a number of tryptophyllin peptides and two rubellidins (caeridin type). The 

noticeable findings were the discovery of three tryptophyllin metabolite containing peptides 

including tryptophyllin L1.6, 1.7 and 1.8 in the two locations 17 and 18, suggesting that the 

L. rubella frogs in the central area of Queensland may constitute a distinct sub-species of 

this genus. 

Tryptophyllin L1.6, chosen as the representative of the three tryptophyllin metabolite 

containing peptides, showed a minor opioid activity from a concentration of 10
-7 

M.  

5.5 Experimental 

5.5.1 Peptide secretion collection 

All the L. rubella secretions were provided through the courtesy of Associate Professor 

Michael Tyler from the Department of Zoology, the University of Adelaide. The specimens 

of interest were collected live from the three locations and kept in captivity. The secretory 

glands situated on the back of the frogs were electrically stimulated by gently rubbing a 

platinum electrode over the dorsal surface of the animal using 10 V and a pulse duration of 3 

ms. The secretion was washed from the frog with deionised water (50 ml), and diluted with 

an equal volume of methanol, centrifuged, and filtered through a Milex HV filter unit (0.45 
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m). The solution was lyophilised to a volume of about 1 ml using a Savant SC 100A Speed 

vac Concentrator.  

5.5.2 HPLC separation of the skin secretions 

Analytical HPLC profiles were obtained using a VYDAC218TP54 C18 protein and peptide 

reverse phase column (5 , 300 A
0
 particle size, 4.6 mm i.d. x250 mm; Separations Group, 

Hesperia, CA, USA). The column was equilibrated with 10% acetonitrile/water (ACN/H2O) 

and 0.1% TFA (spectroscopic grade, Aldrich) as an ion-pairing agent. The flow rate was set 

at 1 ml min
-1

. 100 l of the crude solution was injected each time into a Rheodyne injector 

fitted with a 1 ml injection loop.  

The separation employed a linear gradient produced by an ICI DP 800 Data Station (ICI 

Australia, Melbourne, Australia), typically increasing from 10-75% ACN over a period of 30 

min. The eluant was monitored by ultraviolet absorbance at 214 nm using an ICI LC-1200 

variable wavelength detector.  

5.5.3 Mass spectra 

Electrospray mass spectra were obtained using a Micromass Q-TOF 2 hybrid orthogonal 

acceleration time-of-flight mass spectrometer (Waters/Micromass, Manchester, UK) with a 

mass range to m/z 10,000. Samples (25 g) were dissolved in acetonitrile/water (1:1 v/v) and 

infused into the ES source at a flow rate of 8 l min
-1

. Experimental conditions were as 

follows: capillary voltage 3.1 kV, source temperature 80  
o
C, desolvation temperature 

150 
o
C, and cone voltage 40 V. Tandem mass spectrometry (MS/MS) data were acquired 

using argon as the collision gas and the collision energy was typically set at 40 eV to give 

maximum fragmentation. 

All high resolution mass data were measured with an LTQ Orbitrap XL ETD hybrid mass 

spectrometer (Thermo Fisher Scientific, MA, USA) equipped with an ES ion source. 

Samples were infused at 5 ml min
-1

 delivered by a built-in-syringe pump and a spraying 

voltage of 3.2 kV. A mass resolution of 30,000 (at m/z 400) was used. MS/MS tandem 

experiments were performed using collision energy dissociation set to 25%. 
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 5.5.4 Solid state synthesis of FP-Kyn-L(NH2) 

Tryptophyllin 1.6 was prepared in house by Dr. Denis Scanlon using Fmoc-solid phase 

peptide systhesis. The synthesis was performed manually in a syringe fitted with a 

polypropylene sinter and stopcock on Rink resin (Merck –Novabiochem, Beeston, UK, NG9 

2JR) on a scale of 0.25 mmole (0.5 g). Kynurenine was supplied as the 

fluorenylmethyloxycarbonyl (Fmoc) derivative with no protection on the aromatic amine 

side-chain (Advanced Chemtech, Louisville, KY, USA, 40228). Due to this fact Fmoc amino 

acids were activated with one equivalent of diisopropylcarbodiimide/hydroxybenzotriazole 

to form the active ester (with the exclusion of base catalyst). The coupling time was 1 hour. 

A four-fold excess was used in all cases except for Fmoc-Kynurenin which was coupled 

with a 2 fold excess. The peptide was cleaved from the resin at the end of the synthesis by 

treatment with 95% trifluoroacetic acid/2.5% triisopropylsilane/2.5% water (5 ml) for one 

hour. The peptide was precipitated from the cleavage reaction by addition of 40 ml of cold 

diethyl ether. The peptide was isolated by centrifugation, dissolved in 30% acetonitrile/water 

and lyophilised. Yields were 105 mg and 94 mg respectively for the Leu and Pro derivatives. 

The peptides were > 95% pure and exhibited the expected MW by ESI MS. 

Other peptides were synthesized by Hongkong GenicBio Biotech Co., Ltd (Shanghai, 

China). Purities were > 80% as evidenced by HPLC and MS (Shimadzu LCMS-2010) data.  

5.5.5 Biological testing 

Opioid testing was carried out (by Dr. Ian F. Musgrave of the Pharmacology Department, the 

University of Adelaide) following a standard procedure [486] using myenteric plexus-

longitudinal muscle preparation of guinea pig ileum stimulated at 60V, 0.1Hz, with a pulse 

of 2 ms duration. Agonist activity of the peptide was determined by the naloxone antagonist 

method [487, 489]. Activity is described as a percentage of the stimulated control 

contractions (basal contraction: 100% control). Dynorphin A was used as a peptide standard: 

stimulated contraction at 10
-11 

M (IC50= 7.2 x 10
-11 

M), consistent with dynorphin A binding 

to opioid receptors [494]. 
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CHAPTER 6 

DO NEUROPEPTIDES “PARK” ON THE LIPID BILAYER OF A 

MEMBRANE BEFORE MOVING TO AN ADJACENT ACTIVE 

RECEPTOR SITE? A QCM INVESTIGATION 

6.1 Introduction 

6.1.1 Membrane-bound pathway of receptor binding of neuropeptides 

Cell-surface receptors play a pivotal role in cellular communication by transmitting signals 

from outside the cell into the cell. Extracellular signalling molecules such as hormones, 

neurotransmitters, cytokines, growth factors or cell-recognition molecules associate with 

cell-surface receptors causing changes in the conformations of the receptors. This is known 

as receptor activation, which triggers cellular responses via secondary messengers. Even 

though interaction between peptide ligands and cell-surface receptors has been studied 

intensively for many decades, the mechanistic pathways by which peptides bind to 

membrane (or transmembrane) receptors to initiate biological responses still present many 

enigmas [495-497]. Binding of a peptide to its receptor directly from its random 

conformations in extracellular fluid sometimes requires high energy in order to effect 

reorientation and conformation changes of both the peptide and receptor during the 

interaction. However, regardless of the significant energy barriers associated with 

conformation changes, some peptides/proteins still show high potencies which implies that 

there are other interactions rather than only peptide-receptor interaction involved [498-500].  

It was pointed out by Kaiser and Kezdy 30 years ago that many hormones and toxins shift 

from their extended (random) conformations in aqueous solution to amphiphilic helices in 

membrane-mimicking environment [501-502]. Subsequently, it was proposed that the 

adopted amphiphilic structures enable these peptides to anchor themselves onto the 

membrane surface where they were subsequently recognised by their receptors [501-502]. 

This proposal of Kaiser and Kezdy was developed further by Schwyzer to Membrane 

Compartment Theory [503-504]. This concept describes the correlation between the 

receptor-subtype selectivity of a number of peptides for neurokinin and opioid receptors and 

their membrane interaction specified by three parameters; namely hydrophobic association, 
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amphiphilic moment and Boltzman distribution [505-507]. According to this theory, 

interaction between the cell membrane and peptide ligands helps to distribute them into 

particular compartments such as the aqueous phase, the water-membrane interface or the 

hydrophobic core of the lipid bilayer. As a result, the searching probability of peptides for 

their receptors is improved not only by the accumulation of the peptide active sites in certain 

surface layers but also by the reduction of the three-dimensional diffusion of the peptides to 

two-dimensional movement on the membrane surface.  

A thermodynamic and kinetic study of the interaction of two hormone peptides 

adrenocorticotropin-(1-24)-tetracosapeptide (ACTH1-24) and dynorphin-(1-13)-tridecapeptide 

(dynorphin1-13) with neutral model membranes or liposomes, together with examination of 

their pharmacological and binding data with corresponding receptors, led Schwyzer and co-

workers to suggest a multi-stage mechanism for binding of a neuropeptide to a 

transmembrane receptor [496, 508-513]. Peptides with random conformations in 

extracellular fluid initially bind to the membrane. The cell membrane then imposes 

constraints on the peptide’s translation, orientation and conformation which guide the 

peptide to the receptor site. The ligand-receptor reaction is thus divided into several steps 

with favourable dissociation times and lower energy barriers for each step. A detailed 

mechanism for receptor binding of hormone peptides from membrane-bound states based on 

the studies of dynorphin1-13 and ACTH1-24 is depicted in Figure 6.1. 

 

Figure 6.1. A stepwise model for binding of a peptide to a receptor with the membrane lipid 

phase as a catalyst. Adapted from [2]. (1) and (2): Transfer of an amphiphilic peptide from 

the aqueous phase to the water-membrane interface and then membrane surface due to 

electrostatic and hydrophobic interaction, (3) the peptide partially inserts and undergoes 
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conformational change to approach the receptor site, (4) the peptide binds to the receptor to 

exert the biological effect. 

This membrane-bound pathway of receptor binding has been heavily debated and evaluated 

by several research groups [497]. In particular, Zerbe and colleagues have shown a 

correlation between pharmacological trends and the state (in-solution or lipid-bound) from 

which peptides are recognised by the receptors. This assumes that peptides with similar 

pharmacology for different receptor subtypes should display similar conformations in the 

state from which they are recognised [497, 514-520]. These studies involved a series of 

peptides of the neuropeptide Y family mainly using NMR techniques, and showed a 

relationship between the pharmacology and the micelle-bound conformations of the 

peptides. Accordingly, a mechanistic pathway of receptor binding quite similar to that of 

Schwyzer was proposed [515]. However, while the Schwyzer model assumed that peptides 

diffuse into binding pockets of the receptors directly from the membrane-associated state, 

Zerbe and his co-workers predicted that after moving laterally along the membrane surface 

toward the receptors, the peptides with membrane-adjusted conformations come off the 

membrane to interact with the binding pocket. Zerbe reasoned that it was unlikely for the 

rigid receptors [e.g. G-protein coupling receptors] to reorganise to engage with lipid-bound 

peptides (Figure 6.2) [497, 515]. 

 

Figure 6.2. Zerbe’s version of membrane-mediated receptor binding of a neuropeptide 

includes: (1) ligand-membrane association, (2) lateral movement of the ligand on the 

membrane surface, (3) the ligand comes off the membrane surface to (4) temporarily link to 

a receptor’s segment and (5) attack the active site of the receptor. 
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Although the details of the two receptor-binding mechanisms show some differences, the 

peptide-membrane interaction was agreed to be the first event of the mechanism pathway. If 

this is true, differences in membrane interaction of peptides might alter their receptor effects. 

Different approaches have been used to study membrane-peptide interaction such as circular 

dichroism (CD) [521-522], Nuclear Magnetic Resonance (NMR) Spectroscopy [497, 514-

516, 523], Fluorescence Spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR) 

[524], and recently Atomic Force Microscopy (AFM) [525] and Surface Plasmon Resonance 

Spectroscopy (SPR) [526]. In the present study, the quartz crystal microbalance (QCM) 

technique was employed to investigate the interactions of a number of neuropeptides 

(extracted from frogs and toads) with model lipid bilayer membranes.  

6.1.2 Peptides to be studied 

The skin peptide profiles of Australia amphibian species have been found to contain a range 

of antimicrobial, anticancer active peptides and neuropeptides. In particular, neuropeptides 

have been recognised as an integral part of the host-defence system of amphibians and also 

play an important role in regulating dermal physiology [403, 409, 527]. These peptides often 

act through G-protein coupled receptors which are widely distributed in the central nervous 

system (CNS) or periphery systems. Neuropeptide activities are varied, depending on the 

tissue type affected. The sequences and bioactivity data of a large number of neuropeptides 

from Australian frog and toad genera have been reported. Many possess multi-faceted 

activities [403, 409, 527].  

In this study, peptides from frogs and toads consisting of the genera Litoria, Crinia and 

Uperoleia were investigated. A summary of the biological activities of these peptides is 

provided in Table 6.1. Selected neuropeptides were riparin 1 from C. riparia [528], 

signiferin 1 from C. signifera [529]; rothein 1 from L. rothii and two synthetic variations 

[530]; uperolein from U. rugosa or marmorata [531] and the iso-Asp3 analogue of uperin 

1.1 from U. inundata [532]; tryptophyllin 3.1 and kyurenine from L. rubella [422, 533]. 

Signiferin 1, riparin 1 and the rothein peptides effect either smooth muscle contraction, 

lymphocyte proliferation (or both) via interacting with the mammalian type II 

cholecystokinin receptor (CCK2R) [534-535]. Uperolein and iso-Asp3-uperin1.1 are potent 

smooth-muscle contractors, however they act on the neurokinin receptor 1 (NK1) [536-537]. 
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Tryptophillin 3.1 and kynurenine show modest opiate activity exerting their biological 

effects via the -opioid receptor.  

There is a significant variation in the biological activities of the peptides chosen for this 

study. Riparin 1 does not show smooth-muscle contraction activity whereas signiferin 1 

initiates this action at the low concentration of 10
-9 

M. Ala substitution of Ser 1 and 3 

improve the lymphocyte and smooth muscle activities with respect to rothein 1. Finally, the 

smooth-muscle contracting action of iso-Asp3-uperin1.1 exceeds that of uperolein. The aim 

of this study is to determine whether these peptides actually interact with biomimetic lipid 

bilayers (to follow the membrane-associated receptor binding pathway) and how the 

difference in these peptide-membrane interactions may contribute to the difference in their 

biological activities. 
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Table 6.1. 

Frog species Peptide Sequence Bioactivity Initial  

conc. (M) 

C. riparia Riparin 1 RLCIPVIFPC(OH) 

a 

b 

10
-7

 

inactive 

C. signifera Signiferin 1 RLCIPYIIPC(OH) 

a 

b 

10
-6 

10
-9

 

L. rothii Rothein 1: SVSNIPESIGF(OH) 

a 

b 

10
-5

 

inactive 

Synthetic 

variation 
Rothein 1.1: AVSNIPESIGF(OH) b 

10
-7 

 

Synthetic 

variation 
Rothein 1.2: SVANIPESIGF(OH) 

a 

b 

10
-6

 

inactive 

U. inundata iso-Asp3 uperin 1:1 pEA(isoD)PNAFYGLM(NH2) b 10
-14

 

U. rugosa or 

marmorata 
Uperolein pEPDPNAFYGLM(NH2) b 10

-13
 

L. rubella Tryptophyllin 3.1 FPWP(NH2) c 10
-7

 

L. rubella Kyn-tetrapeptide FPKynL(NH2) c 10
-7

 

a. Lymphocyte proliferation 

b. Smooth muscle active 

c. Opioid active 

pE (pyroglutamic acid)  
N

O CO

,   Kyn (kynurenine)  

O HN

CO

NH2  

 

 



Chapter 6: Do neuropeptides “park” on the lipid bilayer of a membrane before moving to an adjacent active 

receptor site? A QCM investigation 

 170  

6.1.3 Biomimetic membranes  

The phospholipids comprising the membrane of eukaryotic (mammalian) cells are 

asymmetrically distributed. The outer leaflet exclusively consists of neutral (zwitterionic) 

phosphatidylcholine (PC) and sphingomyelin (SM) whereas the inner leaflet is composed of 

negatively charged phophatidylserine (PS). In contrast, prokaryotic (bacterial) membranes 

only contain negatively-charged phospholipids such as phophatidylglycerol (PG), 

phosphatidylserine (PS) and cardiolipin (CL). In addition, sterols such as cholesterol and 

ergosterol are commonly found in eukaryotic membranes but not in prokaryotic membranes 

[538-539]. Thus, in studies related to cell membranes, zwitterionic lipids such as 

dioleoylphosphatidylcholine (DOPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine 

(DMPC) are commonly used to represent the extracellular surface of mammalian cells while 

a mixture of DMPC and anionic 1,2-dimyristoyl-sn-glycero-3-phospho-rac-(1-glycerol) 

(DMPG) has been commonly used to model bacterial membranes (Figure 6.3). 

O O

O H

P

O

O

O-
N+

O

O    DMPC 

H3C(H2C)11H2C O

O

O P

O

ONa

OH

OH

OO

CH2(CH2)11CH3   DMPG 

Figure 6.3. Structure of zwitterionic lipid DMPC and anionic lipid DMPG. 

Solid supported membranes, lipid bilayers supported on solid substrates, have received 

increasing attention due to their importance as models for biological membranes which are 

used to study the properties and functions of membrane-bound peptides/proteins or 

membrane mediated processes [540-545]. Spreading of lipid vesicles (ideally unilamellar 

vesicles) on hydrophilic supports, followed by rupture and fusion of these vesicles to form a 

biomimetic lipid bilayer, was pioneered by McConnell et al. in the early 1980s [546]. Since 

then, the mechanism of supported lipid bilayer (SLB) formation and factors that control SLB 

formation have been studied using a multitude of surface-sensitive and optical techniques 
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such as quartz crystal microbalance and dissipation (QCM-D), reflection interference 

contrast microscopy (RICM), atomic force microscopy (AFM) and SPR [525, 547-549].  

Different pathways of vesicles absorption and bilayer formation can occur depending on the 

interplay of vesicle-substrate, vesicle-vesicle and intra-vesicle interactions. Lipid vesicles 

(liposomes) may (i) not absorb on the supporting solid, (ii) absorb and remain intact, (iii) 

absorb and rupture immediately, (iv) absorb and rupture as a certain surface density of 

vesicles is reached or (v) absorb and fuse to reach a certain liposome size before rupture 

[549-553]. The formation of SLBs following scenarios (iii), (iv) and (v) are desirable for 

membrane related studies. Subsequently, the disruption of an absorbed liposome results in a 

bilayer patch with an exposed (hydrophobic) edge which is thermodynamically unfavourable 

[554-555], and thus it tends to interact with other liposomes (or other bilayer patches) in a 

cascade of rupture events to extend the bilayer area and to finally form a planar bilayer [549, 

556-558]. 

Electrostatic interactions between the charged support and the lipid vesicles together with 

ionic strength of the buffer are the major factors that influence lipid bilayer formation [559-

561]. Alternating one of the experimental parameters such as (i) the substrate’s charge, (ii) 

the vesicle charge or (iii) the ionic composition of the buffer, may result in different bilayer 

formation pathways. Practically, the pH or the ionic strength of the buffer is normally 

adjusted as a simple way to regulate SLB formation for a given set of surface and lipid 

compositions [552, 560]. The hydrophilicity of supports is found to be essential for SLB 

preparation, thus surfaces such as gold, TiO2 or platinum are found to be less efficient 

supports than mica or silicon-base materials. For liposomes formed from a mixture of lipid 

species, distribution of individual lipids between two SLB leaflets can affect the timescale of 

the rupture and fusion of the liposome. In addition, increasing temperature was reported to 

lower critical vesicular coverage (density) for SLB formation [551]. 

Among methods used to study membrane related processes, QCM-D is a well-established 

technique to monitor SLB preparation and SLB’s interaction with biomolecules such as 

peptides, proteins or drugs. The advantage of QCM-D is that it examines the real time 

kinetics of these processes by characterizing simultaneously the mass and viscoelastic 

properties of adsorbed materials (for details see section 6.2) (Figure 6.4). In a QCM-D 

experiment, SLBs can be prepared by a spontaneous process or a controlled process. 
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Regulation of SLB formation is carried out by altering the chip-adhered substrates, the 

buffer composition or the lipid preparation (size and composition). Gold-coated quartz chips 

are commonly covered with silica, mica or charged self-assembled monolayers (SAMs) to 

improve the interaction of the surface of the chip with the hydrophilic parts of liposomes 

[559, 562]. Small unilamellar vesicles (SUVs) with diameters in the 15-100 nm range are 

recommended for SLB preparation. These are produced from large multilamellar vesicles 

(LMVs) by either sonication or extrusion. Each of these methods generates SUV populations 

with different mean sizes [563]. However, the size distribution of vesicles may evolve 

further by (i) spontaneous fusion of SUVs or (ii) individual phospholipid molecule exchange 

between liposomes. This results in a mixture of unilamellar vesicles with larger mean sizes 

[562, 564]. This process of changing size distribution is determined by entropic and other 

thermodynamic factors established at the equilibrium of a particular liposome preparation. 

Furthermore, it is common to adjust the concentration of a particular cation (especially a 

divalent cation) in the buffer mixture at a particular point of time in experimental process to 

control the rupture and fusion of the liposomes to form SLBs [549, 556, 561, 565-568] . 

Change in frequency (f) and dissipation (D) corresponding to the formation of a complete 

SLB vary depending on the nature of the supports. For instance, a change of 25 Hz and no 

change in dissipation indicated the formation of a lipid bilayer on silica or mica [547, 552, 

557] while 13 Hz and a small change in dissipation were suggested to correspond to a single 

bilayer formation on a 3-mercaptopropionic acid-coated surface [562]. Achieving 

homogeneity in SLB formation is critical to membrane related studies. However, the SLB is 

commonly formed with a small percentage of defects such as the composite membrane of 

bilayer stacks, embedded vesicles or gap-containing bilayer. While a perfect SLB is required 

for some applications, low-defect SLBs are generally accepted for peptide/protein adsorption 

studies [552]. Experimentally, the quality of SLBs may vary slightly from time to time even 

though the same experimental protocol is used [562].  
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Figure 6.4. Changes in frequency and dissipation along the formation of a lipid bilayer. 

Adapted from [565]. 

6.1.4 Peptides/protein-membrane interactions 

Binding of peptides/proteins to lipid membranes is a complex function involving both 

electrostatic and hydrophobic interactions [569-573]. Electrostatic attraction is found to 

contribute significantly to the membrane binding of many peripheral proteins. This is due to 

the interaction between the cluster of basic residues (or positively charged portions) of the 

peptides/proteins and the negatively charged phospholipids. The charge distribution over the 

peptide/protein also affects its membrane orientation and association. However, the total net 

charges of peptides/proteins do not precisely reflect their membrane-binding propensity 

since binding between neutral or negatively charged protein domains and acidic 

phospholipids are still observed [574-575]. This indicates that electrostatic effects are 

accompanied and sometimes dominated by other interactions. Indeed, although the 

electrostatic interaction initially acts as the long-range driving force to guide the 

peptide/protein toward (or away from) the membrane, at shorter distance, the peptide/protein 

and the membrane experience two additional interactions: namely (i) the repulsive 

desolvation caused by the unfavourable loss of solvent molecules around the 

peptides/proteins and on the lipid surface, and (ii) the hydrophobic interaction between the 

hydrophobic portion of the peptide/protein and the fatty acid hydrocarbon chain of the 
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membrane [576]. In certain cases, the hydrophobic binding is energetically significant 

enough to overcome the repulsion by electrostatic and desolvation interaction to bring the 

peptide/protein to the membrane surface. The relative significance of electrostatic, 

desolvation and hydrophobic interactions in the binding of peptides is dependent on the 

structure and composition of the peptide/protein-membrane system. 

The measurement of each contribution of membrane binding energies of peptides/proteins 

has to date been only carried out based on computational simulations. In such methods, the 

electrostatic component can be determined by solving the Poisson-Boltzmann equation (I) 

[577-579], whereas the non-polar contribution is obtained from the equation calculating free 

energy-surface area relationships (II) [573, 576]. The addition of these components can be 

used as an approximation to the total binding energy of the peptide/protein-membrane 

system. However, it has experimentally been shown that the effective charge of a cationic 

peptide may be altered depending on the hydrophobicity of that peptide, with an increase of 

12.5 kJ mol
-1

 in hydrophobic energy causing a decrease of approximate 20% of the effective 

charge of the peptide. This brings about a reduction in electrostatic interaction of the peptide 

with the membrane [573].  

The PB equation: [(r) (r)]- r(r)
2
 sinh[(r)] + e

2
/(0kBT) 

f
(r) = 0 (I) 

where (r) is the dielectric constant, (r) is the electrostatic potential, (r) is the Debye-

Huckel parameter and 
f
(r) is the fixed charge density of the protein and lipids; these 

parameters are functions of space r = (x,y,z). kB is the Boltzmann constant, T is 

the temperature (Kelvin degree). The resultant electrostatic potentials are used to calculate 

the electrostatic free energy of the system. 

The free energy-surface area relationship equation: G = A (II) 

where  is the surface tension coefficient and A is the change in solvent accessible surface 

area upon association. 

In an attempt to thermodynamically quantify the interaction of small hydrophobic peptides 

with lipid membranes, White and Wimley have measured the free energy required to transfer 

each of 20 natural amino acids from the aqueous phase to the water-membrane interface or 

into the hydrophobic interior of membranes (Table 6.2) [580-581]. These data indicate that 
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Trp, Tyr, Phe and Leu contribute most to membrane association. This result was generally in 

agreement with the observation by Killian and co-workers from studies of the arrangements 

of transmembrane proteins within lipid membranes [582-583], which demonstrate the 

prevalence of Trp and Tyr (but not Phe) in regions close to the membrane-water surface. The 

“snorkelling behaviour” of Lys and Arg were also suggested to explain the preference of Lys 

and Arg for the interfacial environment, in which the hydrophobic portions of Lys and Arg 

contact with the hydrophobic core of the membrane while the charged ends reach the more 

polar part of the membrane [584]. Lys and Arg were found mainly on the cis-side 

(membrane interior side) of the interface while aromatic containing amino acids prefer to 

locate on the other side of the interface (aqueous side) [582] . 

Table 6.2. The Wimley-White experiment-based interfacial hydrophobicity scale: free 

energies for transferring amino acids from water to 1-palmitoyl-2-oleoylphosphatidylcholine 

(POPC) interface (wif) and to hydrophobic environment n-octanol (woct). Adapted from 

[580]. 

Amino acid Gwif
 

(kJ/mol) 

Gwoct 

(kJ/mol) 

Amino acid Gwif 

(kJ/mol) 

Gwoct 

(kJ/mol) 

 

Ala 

Arg+ 

Asn 

Asp- 

Asp 

Cys 

Gln 

Glu- 

Glu 

Gly 

His+ 

His 

  

+2.09 

+7.58 

+3.56 

+15.24 

+1.08 

-0.08 

+3.22 

+15.19 

+0.46 

+4.81 

+9.75 

+0.46 

 

Ile 

Leu 

Lys+ 

Met 

Phe 

Pro 

Ser 

Thr 

Trp 

Tyr 

Val 

 

-1.30 

-2.34 

+4.14 

-0.96 

-4.72 

+1.88 

+0.54 

+0.59 

-7.74 

-3.93 

+0.29 

 

 

-4.69 

-5.23 

+11.72 

-2.80 

-7.16 

+0.56 

+1.93 

+1.05 

-8.75 

-2.97 

-1.93 

 

 

6.2 Theory of quartz crystal microbalance-dissipation  
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6.2.1 Quartz crystal microbalance: basic components and operation 

The main component of a QCM instrument is a thickness shear mode (TSM) resonator 

which consists of a very thin disk of AT-cut quartz (a quartz plate cut at an angle of 35
o
10’ 

with respect to the optical z-axis of the quartz crystal). Two metal electrodes are deposited 

on each side of the disk. Due to the piezoelectric property and crystalline orientation of the 

quartz, application of an alternating potential difference perpendicular to the surfaces of the 

electrodes induces the quartz chip to vibrate in shear mode, and resonance occurs when the 

acoustic wavelength is an odd multiple of twice the crystal thickness (Figure 6.5a) [585]. 

The resonant frequency is given by equation (1). 

qqqqtro ttvf 2/)/(2/
2/12/1


 (1) 

where trv is the propagation velocity of acoustic waves in quartz, 
q is the shear modulus, 

q is the density of quartz and 
qt is the quartz thickness.  

The quartz chip can be pulsed with different voltages to resonate at higher frequencies called 

overtones or harmonics. The frequency of the n
th

 harmonic is n times the fundamental (fn = 

nf0). The chip can only be excited electrically by odd harmonics indexed by the number of 

nodal planes of the acoustic wave (within the quartz thickness) parallel to the crystal 

surfaces. This is because only odd harmonics can induce charges of opposite sign at the two 

crystal surfaces in order to make the quartz chip oscillate (Figure 6.5b) [586-587]. 
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(a) 

 

(b) 

Figure 6.5. (a) The quartz chip from top view and side view. Adapted from [588]. (b) Shear 

displacement profiles across the QCM thickness for the fundamental and the third harmonic. 

Adapted from [3]. 

If (i) there is a uniform rigid foreign material deposited on the surface of the quartz crystal 

and (ii) it is assumed to have identical acoustic properties to those of quartz (known as a no-

slip condition), the whole system is treated as a “composite resonator” with a new thickness. 

A fractional change in frequency due to the change in quartz thickness can be determined by 

the Sauerbrey equation (2) [589]. 

2/1

2

0

)(

2

qqA

mf
f






(2) 

Where f is the measured frequency shift, f0 the frequency of the quartz crystal prior to mass 

change, m is the mass change, A the piezoelectrically active area, 
q  the shear modulus 

and 
q  the density of quartz. 

 

6.2.2 Quartz crystal microbalance-dissipation in liquid phase 

A frequency shift obeys the Sauerbrey equation mentioned above only when the 

measurement is carried out in vacuum or gas environments and there is no phase shift 

between the quartz and the added material. However, most QCM measurements involve 

quartz crystal surfaces that are either immersed in liquid and/or coated with films which 

have different phase properties. In 1982, Nomura and Okuhara demonstrated that quartz 
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resonators can oscillate in fluid media and that their resonant frequencies were affected by 

the density and viscosity of the media [590]. Since then, the impact of contacting liquid on a 

resonator’s frequency has been the subject of a multitude of studies using electromechanical 

models [590-593]. Most of those models are based on the assumption that the first molecular 

layer of the liquid is rigidly attached to an ideally smooth quartz surface allowing the shear 

displacement to be transferred into adjacent fluid layers. As the shear wave propagates, the 

kinetic energy of the oscillation is radiated gradually into the solution and the wave is then 

attenuated (Figure 6.6). An equation (3) describing the effect of Newtonian liquids on the 

frequency of TSM sensors was introduced by Kanazawa and Gordon [593]. 

where 
q is the shear modulus and 

q is the density of quartz, ηl is the viscosity and ρl is the 

density of the contacting liquid. 

The penetrating distance of the shear wave into a bulk liquid of viscosity ηl and density ρl is 

estimated from the decay length of the acoustic wave for a Newtonian liquid and is given in 

equation (4). A 5 MHz quartz crystal was calculated to produce a wave with a penetrating 

distance (δ) of 250 nm in water which means only a small volume of the QCM cell is 

actually sensed [593]. According to equation (4), the penetration depth of an acoustic wave 

is inversely proportional to the frequency of the wave. Thus, higher frequencies probe closer 

to the surface of the quartz chip than lower frequencies. 

fl

l




 

 (4) 

where f is the frequency of the resonator. 
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Figure 6.6. The attenuated acoustic wave in a dissipating liquid medium. 

The situation becomes more complex if both mass and liquid are loading. The general 

configuration for a simultaneous mass and liquid loading is illustrated in Figure 6.7a. A 

quartz crystal with a film attached resonating in a homogeneous bulk liquid generates a shear 

wave which propagates through various media. The wave penetrates through the film and is 

reflected partly at the upper surface of the film while the damped wave continues to cross the 

film-liquid interface and dissipates in the liquid phase [591]. The relationship between mass 

change and frequency shift becomes complex because it depends on a number of factors 

including (i) the viscoelastic properties of the added mass and the contacting solvent [592, 

594], (ii) the surface roughness [595] and (iii) the interfacial slippage (the first film layer is 

not tightly bound to the electrode surface) [596]. Consequently, the equation expressing the 

relationship between the mass change and frequency change involves a large number of 

parameters such as the elasticity and density of the film together with viscocity, elasticity of 

the solvent (etc.) [587].  

Rohdal et al. [597] used a continuum mechanic approach to solve the wave equation for a 

model of two viscoelastic layers absorbing on the surface of a piezoelectric plate, which is 

oscillating in pure shear mode in a bulk liquid (Figure 6.7b). The wave solution was obtained 

under the no-slip condition (no phase shift between the quartz crystal and the absorbed 

films) and the films were in contact with a semi-infinite Newtonian liquid. The change in 

frequency f and dissipation change D  are given as follows: 
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 where hj and h0 are the thicknesses of the viscoelastic film and the quartz slab, 
j and 0 are 

the densities of the film and the quartz, 
j and 3  are the viscosities of the film and the 

liquid, 
j is the shear modulus of the film, δ is the viscous penetration depth, and ω is the 
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angular frequency (ω = 2πfn). The mass of the attached film (mj) is not determined directly 

but can be calculated from ρj·hj. 

The results of this model enable the use of QCM as a mass and structural detector for 

viscoelastic materials such as lipids or peptides/proteins in the liquid phase. The structural 

change of a lipid bilayer upon the addition of a peptide was first demonstrated using 

Df  plots [598]. 

 

(a) 

 

 

                                               

(b) 

Figure 6.7. (a) General configuration for a simultaneous mass and liquid loading. (b) A 

model of quartz chip with two film layers loaded in contact with bulk liquid. 

 

6.2.3 Measurement of resonant frequency in QCM 

Due to electromechanical coupling of piezoelectric material, the mechanical properties of a 

quartz crystal are reflected in its electrical properties. Thus, as a quartz resonator comes into 

contact with a medium, the mechanical interaction between the resonator and the contacting 

medium affects the electrical response of the device, and makes possible the use of the 

resonator as a sensor [585, 588, 599-600].  The sensor can then be treated as a component of 

an electronic circuit as it is represented by an electrical model which responds to an applied 

Quartz crystal h0 

 Film h1 

 Film h2 

 Liquid  
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voltage or current in the same way as the crystal itself. Among several models of such 

representations, the extended Butterworth Van Dyke (BVD) equivalent circuit is widely used 

to describe the electrical characteristics of loaded quartz (Figure 6.8). In this model, L1 is the 

inductance representing the oscillating mass of the quartz, C1 is the capacitance (a measure 

of the elasticity of the oscillating body representing the energy stored during oscillation) and 

R1 is the resistance related to energy dissipation (due to internal friction, mechanical losses 

in the mounting system and acoustical losses to the surrounding environment). The electrical 

representation also includes a parallel C0 capacitance resulting from the dielectric 

characteristic of the electrodes and the parasitic contributions of the wiring and crystal 

holder. The contribution of any surface load is represented by impedance Zm. Zm can be split 

to many components depending on properties of contacting media [588, 599, 601-602]. 

 

Figure 6.8. Extended Butterworth Van Dyke (BVD) equivalent circuit. 

The resonator can be characterised electrically either under steady-state conditions (e.g. 

applying a steady radio frequency potential) or under transient conditions (e.g. a decay 

following an initial voltage-triggered resonance) [603]. The major representative of the 

steady-state method is impedance analysis or network analysis. In this setup, an rf voltage is 

applied across the crystal, which is then scanned over a range of frequencies around 

resonance [585, 603-605]. The impedance Z is obtained from the ratio of the voltage to the 

current. However, most applications of this technique use admittance Y (the reciprocal of 

impedance) instead of impedance. By monitoring both the magnitude and phase of the 

admittance at each frequency, the real part (conductance G) and imaginary part (susceptance 

B) of the admittance are measured. The BVD model is then fitted to these experimental data 

to determine the resonant frequencies and other related parameters such as resistance and 

parallel capacitance (Figure 6.9). 
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Figure 6.9. Admittance locus for the equivalent circuit of a quartz resonator. Note that AT-

cut quartz as a piezoelectric material exhibits dual resonance at two frequencies, series 

frequency fs and parallel frequency fp. The resonance occurs as the phase angle   = 0 where 

the admittance locus crosses the real axis G. The series frequency fs is monitored normally.  

The series frequency of an unloaded resonator is given by equation:  

112

1

CL
fs




 (7) 

On the other hand, the decay method uses a signal generator to excite the resonator device. 

The frequency of the applied voltage is varied until the frequency of largest current is 

reached. The driving power of the resonator is then switched off (at t = 0) leaving the current 

or voltage to decay as an exponentially damped sinusoid, mathematically expressed by 

equation (8).  

CfteAtA t   )2sin()( /

0 

 (8) 

Where A0 is the amplitude of the magnitude at t = 0, τ is the decay time constant, φ is the 

phase and C is the dc offset and f is the oscillating frequency 

In a QCM-D instrument, the driving AC voltage is removed once every second. The 

amplitude of current or voltage as a function of time is recorded and the recorded curve is 

fitted to equation (8) to determine τ and f . The sensor is designed such that the decay 

currents for the various harmonics can be sequentially recorded [606-607]. 

6.2.4 Measurement of the dissipation factor  
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In terms of wave propagation, the acoustic wave generated by a resonator has a finite decay-

distance due to energy loss in dissipating media. The driving voltage keeps the inherent 

decaying wave unchanged. However, if the voltage is shorted, not only the portion distant 

from the surface but also the entire wave will experience a time-dependent dissipation 

towards zero amplitude (Figure 6.10). 

 

Figure 6.10. (A) The entire wave, (B) (A1–A2) is the change in the amplitude of the wave 

over one period. 

The dissipation factor (D) of a resonator is a measure of how quickly the chip loses energy 

after removing the driving voltage: 

stored

dissipated

E

E
D

2


(9) 

where Edissipated is the energy lost during a single oscillation after removing voltage (Figure 

6.10B) and Estored is the initial energy of the chip.  

In the decay technique, the dissipation value can be determined using equation (10). 



2
D

 (10) 

In most cases, not only the fluid medium but the film attached on the chip’s surface is also 

energy-dissipating. Thus, the structural properties (e.g. viscosity, elasticity) of the adhered 

mass and the interaction between the film and the quartz’s surface influence the way the chip 

loses energy. Since dissipation D describes the energy damping profile of the coated quartz, 

any change in structural properties of the film is reflected in the change of dissipation value 

B A 
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and hence, structural changes can be monitored throughout the experiment. In general, if the 

dissipation increases, the chip loses energy faster indicating that the added layer is softer or 

less rigid. Conversely, a decrease in dissipation indicates an increase in rigidity of the added 

mass (Figure 6.11). 

                 

(a)                                                   (b) 

Figure 6.11. (a) A typical analysed Df  plot. (b) The general assumptions associated 

with the shift in frequency and dissipation factor. 

 

 

 

 

 

6.3 Results and discussion 

 Interaction between tested neuropeptides and biomimetic membranes were monitored in situ 

by QCM-D. The data were analysed to give insight into the mechanism of the interaction of 

each peptide with the corresponding membranes.  

6.3.1 Riparin 1 and signiferin 1 

All experiments with riparin 1 and signiferin 1 were carried out using eukaryotic mimicking 

membranes (DMPC or DMPC-C (C: cholesterol)). A concentration study of the two peptides 

at 1, 10, 20, 50 and 75 μM on DMPC lipid membranes revealed that the binding of the two 
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peptides is concentration-dependent and saturated at 75 μM. The peptides began interaction 

with the lipid at the minimum concentration of 10 M. Binding appears proportional to 

concentration as increasing peptide concentration causes an increase in the change of 

frequency corresponding to a growth in binding mass (Figure 6.12).  
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  (a)                                                                             (b) 

Figure 6.12. D vs. f plot of (a) riparin 1 and (b) signiferin 1at concentrations of 10, 20, 50 

and 75M with DMPC lipid recorded on the 7
th

 harmonic.   

In general, riparin 1 and signiferin 1 interacted with the DMPC lipid bilayer in a three-state 

process (Figure 6.13). Firstly, they quickly bound to the membranes superficially and did not 

cause any change in dissipation. This was followed by a decrease in dissipation for both 

peptides which indicates that the insertion of each peptide or the peptide’s arrangement in 

the DMPC phospholipid layers makes the lipid more rigid. This coincided with a very small 

mass removal on the lipid surface as the frequency shift showed an increase only on the third 

harmonic in this stage. This may be a result of the removal of hydrating water molecules on 

the lipid surface due to the interaction of the peptides with the phosphate head groups of 

DMPC [608]. The final state revealed a deeper insertion of each peptide, characterised by 

the largest decrease in frequency for the ninth harmonic (larger harmonic probes closer to 

the surface of the chip).  
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                                     (a)                                                      (b)                                    

Figure 6.13. (a). D vs. f plot of (a) riparin 1 and (b) signiferin 1 at a concentration 75 M 

with DMPC lipid recorded on 3
rd, 

5
th

, 7
th

 and 9
th

 harmonics.  

Although the disulfide containing peptides riparin 1 and signiferin 1 behaved quite similarly 

on the DMPC lipid bilayer, a detailed analysis of the data indicates some differences in their 

behaviour toward this lipid membrane. Since different overtones sense the change in 

frequency (and dissipation) at different distances from the surface of the quartz, frequency 

shifts at different harmonics provide a means to characterise mass change as a function of 

distance from the chip surface [609-611]. Both riparin 1 and signiferin 1 started interaction 

with a vertical transmembrane insertion in the first stage as the frequency shift measured by 

all harmonics was the same (no difference in binding mass for all overtones Figure 6.14 (i)). 

However, the second stage (indicated by two-end arrows Figure 6.14 (ii)) showed a mass 

removal with diverging harmonics for both peptides indicating that the mass disruption at 

different distances from the chip surface was not the same. While riparin 1 caused a mass 

loss only for the 3
rd

 and 5
th

 harmonic, signiferin 1 was observed to cause a mass loss for all 

harmonics. This suggests that riparin 1 only expelled solvent molecules coupled to the 

lipid’s surface, whereas signiferin 1 experienced an asymmetrical mass disruption 

throughout its insertion thickness. The frequency shift of signiferin 1 descends from the 3
rd

 

to 9
th

 overtone indicating that the mass disruption of signiferin 1 was a maximum on the 

membrane surface and declines as the distance from the quartz surface decreases. Even 

though the second stage was followed by a further mass deposition for both peptides (Figure 

6.14 (iii)), after that, the frequency discrepancy between overtone 3
rd

 and 9
th

 of signiferin 1 

was much larger than that of riparin 1. This means that signiferin 1 interacted strongly with 
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not only solvent molecules but also phosphate head groups of the lipid bilayer in the second 

step. Thus, the interaction between signiferin 1 and the surface of the DMPC bilayer is more 

pronounced than that of riparian 1.  

In addition, signiferin 1 binds to DMPC lipid faster than riparin 1 in both stage 1 and stage 3 

since the maximum frequency change for signiferin 1 is nearly 2 Hz/min, while that for 

riparin 1 is nearly 1 Hz/min (Figure 6.15). At the same concentration, signiferin 1 causes 

slightly more change in dissipation than riparian 1. This implies that signiferin 1 makes the 

DMPC bilayer more rigid upon its binding than riparin 1 does.  
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Figure 6.14. Change in f versus time on introduction of 75 M of (a) riparin 1 and (b) 

signiferin 1 to DMPC membrane. 
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(a) 

 

      (b)            

Figure 6.15. Binding rate of (a) riparin 1 and (b) signiferin 1 at a concentration of 75 M. 

The maximum binding rates in the first stage of the binding are shown by two-end arrows. 
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On the other hand, the two peptides interacted with a DMPC-C bilayer in very simple mode. 

The frequencies increased by the same amount for all four harmonics, suggesting a trans-

membrane binding of the two peptides to the DMPC-C bilayer (Figure 6.16). The dissipation 

was almost unchanged throughout the whole binding process. The incorporation of 

cholesterol into DMPC lipid bilayers made the bilayer more condensed as phospholipid 

molecules are more oriented and ordered in the presence of cholesterol [612-614], and thus 

the peptide binding could not change the membrane viscoelesticity significantly. Again, 

signiferin 1 produced a slightly more pronounced effect on dissipation than did riparin 1.  

                  

 (a)       (b) 

Figure 6.16. Interaction of riparin 1 (a) and signiferin 1 (b) with DMPC-C on different 

overtones. 

In summary, both riparin 1 and signiferin 1 bound to DMPC in a 3-step process: (i) 

superficial binding, (ii) dispersion of energy in the environment (more rigid) occuring with 

mass removal and (iii) more mass absorption onto the bilayer. The surface mass removal in 

the second stage of signiferin 1 binding is more pronounced than that of riparin 1, suggesting 

that signiferin 1 has more interaction with the surface of the lipid bilayer than does riparin 1. 

On the other hand, both peptides bind to DMPC-C without changing the properties of the 

lipid bilayer.  

The QCM results show some agreement with the conclusion drawn by a solid state NMR 

study [615] which reported that signiferin 1 interacted more with the phosphate head groups 

of a phospholiphid bilayer than riparin 1. In contrast, riparin 1 inserted further into one 

leaflet of the bilayer than did signiferin 1. The QCM results cannot unambiguously define 

how deep each peptide inserts into the DMPC/DMPC-C lipid bilayer. In addition, 
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experimental conditions and lipid materials used are not identical for the QCM and NMR 

techniques. In solid state NMR, the peptides were mixed with the DMPC lipid (in 1:10 molar 

ratio) and then the solvent was evaporated to leave the mixture of the peptides and lipid in 

solid state, while in this study, the peptides were continuously passing through the DMPC 

lipid which were deposited on the surface of the chips. In addition, 19.1
o
C was the 

temperature used for QCM experiments instead of 25
o
C as mentioned in the NMR study. 

The transition temperature of DMPC is 23
o
C, so if the QCM experiments were carried out at 

25
o
C, DMPC lipid would be in liquid crystalline form making the lipid deposition difficult 

and ineffective [616]. Finally, the DMPC lipid has been used in the form of multi-lamellar 

vesicles in the NMR study, whereas for QCM lipid bilayers are deposited on the surface of 

the chips. 

6.3.2 Tryptophyllin 3.1 [FPWP(NH2)] and kynurenine-tetrapeptide [FPKynL(NH2)] 

No binding was found when tryptophyllin 3.1 and kynurenine tetrapeptide were tested on the 

two mammalian membrane mimicking materials DMPC and DMPC-C for a range of 

concentrations up to 75 M. Experiments have therefore been carried out on the model 

bacterial membrane containing DMPC and DMPG (4:1 v/v). Both peptides showed modest 

binding with DMPC:DMPG with the maximum frequency shift for tryptophyllin 3.1 and 

kynurenine tetrapeptide around 5 and 10 Hz, respectively (Figure 6.17). The change in 

frequency varied slightly for different harmonics with the largest frequency shift 

corresponding to the third overtone (detecting furthest from the chip’s surface). The mass 

distribution of the peptides across the thickness of the lipid bilayer was not very different 

and largest at the membrane surface. This suggests that the peptides bind to the membrane 

surface and insert partially into the lipid bilayer. The PBS buffer wash, denoted by the star to 

the end of the process in Figure 6.19, removed some 20% of the peptide from the membrane 

indicating that the binding is partly reversible [617-618]. Replacing the peptide solution with 

PBS solution caused 30% of the membrane-bound peptides to diffuse to solution to 

compensate for the concentration lost. 
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  (a)      (b) 

Figure 6.17. Change in frequency with time on introduction of 50 M solution of (a) 

tryptophyllin 3.1 and (b) kynurenine tetrapeptide into the DMPC:DMPG lipid.  

Binding of the peptides to the lipid bilayers was accompanied by an increase in dissipation 

indicating that the addition of peptides makes the membrane less dense (Figure 6.18). In 

terms of interaction mechanism, tryptophyllin 3.1 and kynurenine tetrapeptide acted 

similarly towards DMPC:DMPG lipid bilayers but the binding capacities were different as 

the kynurenine tetrapeptide showed twice the change in frequency compared to tryptophyllin 

3.1 at the same concentration (Figure 6.19).  
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Figure 6.18. D vs. f plot of (a) tryptophyllin 3.1 and (b) kynurenin tetrapeptide (50 M) 

bound to bacterial membrane recorded on 3
rd, 

5
th

, 7
th

 and 9
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 harmonics. 
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Figure 6.19. Interactions of tryptophillin 3.1 and kyneurenine tetrapeptide (50 M) with 

DMPC:DMPG lipid recorded on 7
th

 harmonic.    

6.3.3 Tachykinin peptides: iso-Asp uperin 1.1 [pEAiso-DPNAFYGLM(NH2)] and 

uperolein [pEPDPNAFYGLM(NH2)] 

The iso-Asp3 modification of uperin 1:1 (iso-Asp3 uperin 1.1) and uperolein are respectively 

the most smooth-muscle-contracting active synthetic and natural of all known tachykinin 

peptides [536]. They showed negligible interaction with DMPC membranes but better 

interaction with DMPC-C. iso-Asp3 uperin 1.1 interacted with DMPC-C in a simple 

mechanism with the binding of the peptide accompanied by a decrease in rigidity of the lipid 

membrane (increase in dissipation factor) (Figure 6.20c). The mass distribution of iso-Asp3 

uperin 1.1 was very different across the membrane. The spreading of the overtones with 

frequency change decreased from the third harmonic to the ninth harmonic indicates a 

surface binding mode (Figure 6.20a (i)). This binding was reversible since 90% of the 

membrane-bound peptide was removed if a PBS wash was performed after peptide loading 

(Figure 6.20a (ii)). This reversible process was observed for all concentrations of iso-Asp3 

uperin 1.1 tested (Figure 6.20d).  

             

(i) 
(ii) 

(i) (ii) 
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  (a)      (b) 

          

  (c)      (d) 

Figure 6.20. Interactions of iso-Asp3 uperin 1.1 with a DMPC-C membrane. f vs. time (a), 

D vs. time (b), D vs. f (c) of a 80 M solution; and D vs. f (d) of iso-Asp3 uperin 1.1 

at 4 different concentrations (20, 40, 60 and 80 M). 

On the other hand, uperolein displayed a quite complicated mode of action on the 

mammalian DMPC-C membrane model. At low concentration, it showed a transmembrane 

insertion since the frequency changes for all overtones were slightly different. The third 

overtone recorded the least change, suggesting mass removal of solvent on the surface of the 

lipid (Figure 6.21a). However, at higher concentrations (above 50 M), uperolein interacted 

with the DMPC-C membrane in a surface mode similar to that of iso-Asp3 uperin 1.1 

(Figure 6.21b). The change in dissipation was different from low to high peptide 

concentrations (Figure 6.21c). Low concentrations caused a light decrease in dissipation 

indicating the insertion of uperolein made the lipid membrane more rigid, while high 

concentration showed a growth in dissipation suggesting a loss in rigidity of the lipid 

membrane. 

Uperolein seemed not to behave with a concentration dependence on the DMPC-C 

membrane if the PBS wash was not included. However, the f-D plots for a range of 

concentrations with PBS wash included revealed that the binding at all concentrations was 

highly reversible and the overall mass addition of peptide was proportional to the peptide 

concentration (Figure 6.21d).   
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  (a)                   (b)  

               

   (c)       (d) 

Figure 6.21. Interactions of uperolein with a DMPC-C membrane. f vs. time at 

concentration of 20 M (a) and 80 M(b). D vs. f at 4 different concentrations (20, 40, 60 

and 80 M) without PBS wash (c) and with PBS wash (d). 

 

6.3.4 Rothein 1 and its synthetic modifications 

The experiments involving rothein 1 and its synthetic modifications were only implemented 

with DMPC lipid. The maximum concentration of these peptides tested was 50 M and even 

at this concentration the binding of these peptides to DMPC was negligible as the change of 

frequency was less than 3 Hz and there was a diminutive change of dissipation. This is in 

agreement with solid state NMR results which also indicated no binding to the model 

eukaryotic membrane.     



Chapter 6: Do neuropeptides “park” on the lipid bilayer of a membrane before moving to an adjacent active 

receptor site? A QCM investigation 

 195  

0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60
 3rd harmonic

 5th harmonic

 7th harmonic

 9th harmonic


D
 (

1
0

-6
)

F(Hz)
0.0 -0.5 -1.0 -1.5 -2.0

-0.1

0.0

0.1

0.2

0.3

0.4

0.5  3rd harmonic

 5th harmonic

 7th harmonic

 9th harmonic


D

 (
1

0
-6
)

F(Hz)

0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5
 3rd harmonic

 5th harmonic

 7th harmonic

 9th harmonic


D

 (
1

0
-6
)

F(Hz)

 

(a)                        (b)                                          (c) 

Figure 6.22. D vs. f plot of rothein 1 (a), rothein 1.1 (b) and rothein 1.2 (c) at a 

concentration of 50 M. 

6.4 Discussion and conclusion 

The Wimley-White experiment-based interfacial hydrophobicity scale [580-581] (see Table 

6.2), which was extrapolated from studying membrane-binding of small monomeric peptides 

(< 30 amino acids) with unfolded structures in the aqueous phase, has provided a basis for 

explaining the difference in membrane-binding behaviour of the peptides observed by QCM-

D. Considering Table 6.3, it is clear that, in general, riparin 1 and signiferin 1 possess the 

most favourable features to bind with lipid membranes. Both have a total net charge of +1 

(while other peptides have total net charge of -1), which favours the interaction with 

negatively charged and zwitterionic phospholipids due to electrostastic attraction to the 

phosphate head groups.  

The process of transferring riparin 1 and signiferin 1 from water to the water-membrane 

interface is exothermic by 4.22 and 5.02 kJ mol
-1

 respectively (Table 6.3), which are more 

favourable interface migrations than those of the other peptides. The free energies for 

transferring riparin 1 and signiferin 1 to the membrane hydrophobic core are -15.44 and -

13.69 kJ mol
-1

 respectively (lowest G values in Table 6.3). Thus, the hydrophobic 

interaction for these peptides is the most energetically favourable processes of all peptides 

investigated. Although the interface-association of signiferin 1 is slightly better than riparin 

1, riparin 1 is transferred to the hydrophobic environment more readily (by 1.67 kJ mol
-1

) 

than signiferin 1. This explains the higher tendency of signiferin 1 to interact with the 

membrane surface than riparin 1. In contrast, the penetration of riparin 1 into the 
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hydrophobic core of the mammalian model phosphate bilayers is more stable than that of 

signiferin 1. 

Table 6.3. Free energies for transferring the studied peptides from water to 1-palmitoyl-2-

oleoylphosphatidylcholine (POPC) interface (wif) and to hydrophobic environment n-

octanol (woct) based on the Wimley-White hydrophobicity scale [580]. 

Peptide Sequence Charge 
Gwif 

(kJ mol
-1

) 

Gwoct 

(kJ mol
-1

) 

Riparin 1 RLCIPVIFPC(OH) +1 -4.22 -15.11 

Signiferin 1 RLCIPYIIPC(OH) +1 -5.02 -13.69 

Rothein 1: SVSNIPESIGF(OH) -1 +7.46 +11.47 

Rothein 1.1: AVSNIPESIGF(OH) -1 +7.66 +11.64 

Rothein 1.2: SVANIPESIGF(OH) -1 +7.66 +11.64 

Iso-Asp3 uperin 1:1 pEA(isoD)PNAFYGLM(NH2) -1 -1.76 +10.67 

Uperolein pEPDPNAFYGLM(NH2) -1 -0.59 +9.14 

Tryptophyllin 3.1 FPWP(NH2) -1 +3.85 +6.19 

Kynurenine-tetrapeptide FPKynL(NH2) -1 -0.37 +0.37 

Structural studies of riparin 1 and signiferin 1 in TFE/H2O 1:1 by 2D NMR showed that both 

belong to the β-turn class with the only difference being the direction of the N-termini 

(Figure 6.23) [534]. While the N-terminus in signiferin 1 is oriented toward the turn region, 

the situation is opposite for riparin 1. This renders signiferin 1 of higher charge density than 

riparin 1 as the former’s structure is more compact, which adds to the rationale of the better 

membrane-surface association of signiferin 1. 
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Figure 6.23. Signiferin 1 (a) and riparin 1 (b) in TFA/H2O by 2D NMR. Adapted from 

[534]. 

The membrane binding of rothein and its modifications are least favourable since the total 

free energy costs for phase transfer of these peptides Gwif and Gwoct are most positive 

(Table 6.3). The free energy to transfer any rothein from aqueous solution to the water-

membrane interface and lipid hydrophobic phase are about +7 kJ mol
-1

 and +11 kJ mol
-1

, 

respectively. These data support the observation of no membrane binding of these peptides 

by solid state NMR and QCM-D. 

The binding of the two tachykinin peptides to DMPC-C are insignificant because their 

interactions are weak to either the surface or to the hydrophobic core of the model 

membrane. This may be because each possesses a net charge of -1, a small negative free 

energy for water-membrane interface and a positive value for hydrophobic phase interaction. 

Therefore, they are easily washed off when a PBS wash is included. In addition, the 

difference in secondary structures of uperolein and isoAsp3 uperin 1.1 in a lipid environment 

may contribute to the difference in their binding mechanisms to DMPC-C membranes. In 

dodecylphosphocholine (DPC) lipid micelles, isoAsp3 uperin 1:1 is more random coiled and 

open [536] while uperolein was calculated to be 80%  helical [619]. The helical structure of 

uperolein enables a higher ability to associate with the water-membrane interface and 

membrane hydrophobic phase than isoAsp3 uperin 1:1. Thus, at low concentrations this 

peptide partially penetrates into the model lipid bilayer while isoAsp3 uperin 1:1 binds to the 

bilayer surface. However, uperolein aggregates readily at high concentration in PBS buffer 

(as mentioned in Experimental section 5.1). Thus, at the concentration of more than 60 M, 
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this effect may cause uperolein to accumulate more on the membrane surface, affecting the 

shift of membrane binding mechanism from insertion to surface association. 

Finally, the tryptophyllins are the odd ones out since they show no interaction with the 

model mammalian membranes but associate with bacterial mimicking phospholipids to a 

small extent. The increase in total negative charge on the membrane surface, as DMPC is 

replaced by DMPC:DMPG, cannot be the reason for the preference of these peptides to bind 

to this model membrane since they both contain the total charge of -1. However, the 

introduction of DMPG into the lipid bilayers has been reported to cause changes in the 

mechanical properties of the model membranes, namely area compression/expansion 

modulus Ka, bending modulus Kb and the spontaneous radius of curvature Ro, which affect 

the binding abilities of these small peptides [620-621]. 

Even though all the studied peptides are known to exert their activities via G-coupled 

receptors located in the mammalian membrane, the binding of these peptides to eukaryotic 

mimicking membranes was not observed consistently. The peptide-membrane interaction 

thus may not be a prerequisite step for all the peptides to act on membrane receptors. For 

riparin 1, signiferin 1 and two tachykinin peptides, the difference in the overall charges, the 

charge densities, the secondary structures and the free energies of phase transferring (to the 

water-membrane interface and membrane interior) of these peptides can rationalise the 

difference in their lipid-bilayer binding behaviours observed by QCM. However, the 

contribution of the difference in membrane binding to the varied biological activities of the 

peptides is not certain.  

Tryptophyllin and rothein peptides show bioactivity at eukaryotic receptors without 

interacting with the neutral model membranes. This suggests that these peptides may not 

follow the membrane-associated receptor binding pathway, or the models of mammalian 

lipid bilayers used in this study may not reflect fully the sophisticated properties of real 

eukaryotic membranes, which thus cannot facilitate the membrane binding of these peptides. 

Models of membranes are typically created by mixing main lipid components and neglect a 

level of micro-inhomogeneity of the corresponding real membranes, such as lipid raft, a 

small percentage of other lipids or cholesterol [622]. These contributions may change the 

features of the lipid membranes such as the membrane potential and the mechanical 

properties, thus affecting the interaction of peptides with the membrane.  
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Finally, other techniques such as AFM or SPR would be recommended to be used in concert 

with the QCM method in order to provide a more precise conclusion about membrane 

interaction of the selected neuropeptides. 

6.5 Experimental 

6.5.1 Peptides 

All peptides were synthesised by GenScript, Piscataway, NJ, USA using L-amino acids. 

Synthetic peptides were all of more than 90% purity, and shown to be identical to their 

natural counterparts by high performance liquid chromatography and electrospray ionization 

mass spectrometry. 

All peptides were firstly dissolved in miliQ water to make up 1 mM stock solutions, which 

were diluted further to obtain desired concentrations by using high salt phosphate buffer 

saline (PBS) before introduction to QCM cells.  

Due to the insolubility of tachykinins in milliQ water at high concentration, 100 M 

tachykinins stock solutions were prepared instead of 1 mM. Tachykinin solutions were 

sonicated for 3 minutes before use to ensure the complete dissolution.  

6.5.2 Buffers and solvents 

Sodium chloride, potassium phosphate monobasic and potassium phosphate dibasic were 

purchased from Sigma-Aldrich. Ultrapure water with a resistivity of 18.2 M cm was used 

(Sartorius, Gottingen, Germany). Chloroform (ACS Reagent  99.8%) and methanol (HPLC 

grade   99.9%) were purchased from Sigma-Aldrich (Sydney, Australia). 

Absolute ethanol, acetone, propan-2-ol, and hydrogen peroxide (30%) were purchased from 

Merck (Melbourne, Australia). Ammonia solution (28%) was purchased from Ajax 

Finechem (Sydney, Australia). 3-mercapto-propionic acid (MPA; HPLC grade  99%) was 

purchased from Fluka, BioChimica (Buchs, Switzerland). 

Phosphate saline buffer (PBS) high salt contains KH2PO4 0.013 M and K2HPO4 0.0065 M 

and NaCl 0.1 M. 
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Phosphate saline buffer (PBS) low salt contains KH2PO4 0.013 M and K2HPO4 0.0065 M 

and NaCl 0.03 M. 

6.5.3 Liposome preparation 

DMPC and cholesterol were dissolved in chloroform and DMPG in chloroform/methanol 

(75:25 v/v) to produce individual stock solutions of 5 mM concentration. These stock 

solutions were then mixed with the following ratios for the three model membrane types: 

mammalian model membrane (1) DMPC (100), (2) DMPC-C (80:20 w/w) and bacterial 

model membrane (3) DMPC-DMPG (80:20 v/v). 100 l of each solution was then aliquoted 

into test tubes and evaporated under a gentle stream of nitrogen gas to yield a thin lipid film, 

which was dried in a vacuum desiccator for 40 minutes. The lipids were resuspended in1 ml 

of high salt saline buffer (20 mM PBS + 100 mM NaCl at pH 6.9), vortexted and sonicated. 

PBS high salt buffer (4 ml) was added to each tube to make a total volume of 5 ml lipid 

solution before introduction to the QCM chip. 

Although all the experiments have been done with great care, it was difficult to reproduce 

exactly the same conditions of sonication. Thus, variation of liposome size between batches 

produced at different times was not unusual. In addition, small vesicles of lipids are 

inherently unstable and will spontaneously fuse to form larger vesicles when stored below 

their phase transition temperature.  

6.5.4 Chip cleaning and modification 

Chips were cleaned by placing into a 1:1:3 mixture of ammonia, hydrogen peroxide and 

water at 75
o
C for 20 mins, rinsed with ultra-pure water and ethanol, then dried under a gentle 

stream of nitrogen gas and immediately assembled into the QCM chamber.  

Surfaces of the gold-coated quartz chips were modified by 3-mercaptopropionic acid 

(MPA) (1 mM) in isopropanol for 20 mins to form a self-assembled monolayer of a uniform 

negatively charged surface. This enhances the interaction between the surface of the chip 

and hydrophilic parts of liposomes. The chips were then washed with isopropanol and dried 

with a stream of nitrogen gas before being assembled into QCM-D cells. 

6.5.5 QCM experiments 
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A typical experiment taking place in the QCM-D instrument involves two basic steps: (i) 

lipid deposition on the modified chips and (ii) introduction of peptides and subsequent 

monitoring of the peptide-membrane interaction. Four different measurements on 4 quartz 

chips can take place simultaneously at the same temperature (19.1
o
C) with the lipid and 

peptide compositions for each chip varied.  

Lipid deposition was achieved by purging 5 ml of lipid solutions (prepared as mentioned 

previously) through the system with a flow rate of 50 l/min. The loaded lipids in liposome 

form were then ruptured to form lipid bilayers by applying PBS low salt buffer. The chips in 

QCM cells were flushed with PBS until the system reached equilibrium (no change in 

frequency and dissipation observed). The peptide solution (1 ml) was allowed to flow 

through the cells with a flow rate of 50 μl/min, and left to incubate with the lipid bilayer for 

30 mins. Finally, the cells were washed with PBS to remove any peptide residue that did not 

bind to the lipid bilayer.  

QCM experiments were repeated 3-4 times for each peptide and at each concentration. For 

the same lipid mass, the peptide response was reproducible within 1 Hz. 

This study was carried out on the Q-SENSE E4 system. The sensor crystals used were 5 

MHz, AT-cut, polished chips with evaporated gold sensor surface. The frequency and 

dissipation measurements were performed at the third (15 MHz), fifth (25 MHz), seventh (35 

MHz) and the ninth (45 MHz) harmonics. The first harmonic was excluded because it is very 

sensitive to the flow changes within the cell and thus generates unreliable data.  

Experimental data were analysed by graphing software Origin 7.5 (OriginLab, Northampton, 

MA). Three graphing methods were used to display and interpret QCM results. f-t and D-t 

were used to track the change in frequency and dissipation with time for all harmonics at a 

certain concentration. The y-axis is f (or D) instead of f (or D) value as they are 

normalised by the values at the start of the experiment (fat time=t= fat time=t - fat time=0). The f- 

D plot presents the change in mass and structure of the base (lipid coated quartz chip) upon 

the addition of peptide. Each point on the plots represents the values of f  and D at a 

particular point in time. f values are plotted in reverse on the x-axis (+-) to reflect mass 

increase and D values are plotted on the y-axis corresponding to the change in 

viscoelasticity of the base. A typical Df   plot is depicted in Figure 6.11 [617]. In this 
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study, some plots present the time window which starts when the peptide was introduced 

into the cell and ends before the PBS wash, while others include the PBS wash if the wash 

causes desorption of binding material. 
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APPENDIX 

20 common amino acids 

Amino acid 

Abbreviation 
Structure 

Integral 

Mass 

Alanine 

Ala/A  

71 

Arginine 

Arg/R  

156 

Asparagine 

Asn/N  

114 

Aspartic acid 

Asp/D 
 

115 

Cysteine 

Cys/C 
 

103 

Glutamic acid 

Glu/E 
 

129 

Glutamine 

Gln/Q 
 

128 

Glycine 

Gly/G  

57 

Histidine 

His/H 
 

137 

 

 

 

 

Amino acid Structure Integral Mass 
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Abbreviation 

Isoleucine 

Ileu/I  

113 

Leucine 

Leu/L  

113 

Lysine 

Lys/K  

128 

Methionine 

Met/M  

131 

Phenylalanine 

Phe/F  

147 

Proline 

Pro/P  

97 

Serine 

Ser/S  

87 

Threonine 

Thr/T  

101 

Tryptophan 

Trp/W  

186 

Tyrosine 

Tyr/Y  

163 

Valine 

Val/V  

99 
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