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THE BEST FITTING MULTI-BERNOULLI FILTER

Jason L. Williams

National Security and ISR Division, Defence Science and Technology Organisation, Australia
and School of Electrical and Electronic Engineering, University of Adelaide, Australia

ABSTRACT
Recent derivations have shown that the full Bayes random
finite set filter incorporates a linear combination of multi-
Bernoulli distributions. The full filter is intractable as the
number of terms in the linear combination grows exponen-
tially with the number of targets; this is the problem of data
association. A highly desirable approximation would be to
find the multi-Bernoulli distribution that is closest to the full
distribution in some sense, such as the set Kullback-Leibler
divergence. This paper proposes an approximate method for
achieving this, which can be interpreted as an application of
the well-known expectation-maximisation (EM) algorithm.

1. INTRODUCTION

Recently, parallel derivations have found conjugate prior
forms for target tracking using unlabelled random finite sets
(RFSs) [1, 2] and labelled RFSs [3]. Both cases assume that
each measurement is the consequence of at most one target
and each target gives rise to at most one measurement, and
[2] assumes that false alarms follow a Poisson point process.
In each case, the form of the exact filter incorporates a linear
combination of multi-Bernoulli (MB) distributions,1 which
can be expressed as:

f(X) =
∑
a∈A

wa
∑

⊎N
i=1Xi=X

N∏
i=1

fi|a(Xi) (1)

where the notation
⊎N
i=1Xi = X denotes that the sum is

over all disjoint subsets X1, . . . , XN whose union is X . We
assume that wa ≥ 0 and

∑
a∈A wa = 1. The Bernoulli dis-

tribution fi|a(Xi) is given by:

fi|a(Xi) =


1− ri|a, Xi = ∅
ri|afi|a(xi), Xi = {xi}
0, |Xi| > 1

(2)

The complexity of exact methods is problematic as the num-
ber of terms in the sum over a ∈ A in (1) grows exponentially

1The form in [2] is the union of a Poisson distribution (due to the use of a
Poisson model of target birth) and a linear combination of MB distributions,
but the latter component is the source of computational difficulty.

in both the number of targets and in time. This is the prob-
lem of data association, and the terms a ∈ A represent dif-
ferent hypotheses for the correspondence between measure-
ments and Bernoulli components. This was addressed in [2]
by seeking a MB approximation, which in effect collapses
the sum in (1) back to |A| = 1 after each time step. The
two methods proposed directly approximate the probability
distribution of data association, p(a) = wa, arriving at two
approaches that are closely related to joint probability data
association (JPDA) and joint integrated PDA (JIPDA) [4, 5],
and the MeMBer filter [6, 7]. These approaches each have dis-
advantages: the former is near-optimal when targets are well-
spaced2 but fails when targets are closely spaced (referred to
as coalescence, e.g., [8]), while the latter is more robust, but
exhibits lower performance when targets are well-spaced.

A compelling alternative would be to find the MB distri-
bution which minimises the set Kullback-Leibler (KL) diver-
gence from the exact distribution: [6, p513]

D(f ||g) =

∫
f(X) log

f(X)

g(X)
δX (3)

This paper presents an approximate method of finding the MB
distribution that minimises the set KL divergence. The result-
ing algorithm is related to set JPDA (SJPDA) [9] (as explored
further in [10]), but utilises RFS to accommodate an arbitrary
and uncertain number of targets.

2. BEST-FITTING MULTI-BERNOULLI FILTER

The proposed filter can be viewed as consisting of three steps:
prediction, update, and approximation. The prediction and
update steps are described in detail in [2], and are omitted
here due to space limitations. The form of the MB compo-
nent of the distribution is preserved by prediction, but after
update the distribution incorporates a component of the form
(1), which we seek to approximate by a MB distribution. The
approach proposed for performing this final step is described
in problem 1. We refer to the resulting algorithm (incorporat-
ing prediction, update and approximation) as the best fitting
multi-Bernoulli (BFMB) filter.

2i.e., cases in which each measurement could only feasibly result from (at
most) one Bernoulli component.



Problem 1. Find the MB distribution g(X) that minimises
the KL divergence

argmin
[gj ]

∫
f(X) log

f(X)

g(X)
δX =

argmax
[gj ]

∫
f(X) log g(X)δX (4)

where f(X) is of the form (1), and g(X) is MB:

g(X) =
∑

⊎N
j=1Xj=X

N∏
j=1

gj(Xj) (5)

and the components gj(Xj) are similar in form to (2).

The RHS of (4) is obtained by separating the log of the
quotient into the difference of the logs, and observing that the
first term is constant WRT the variables of minimisation.

The first difficulty that we address is the form of the set
integral: [6, p361]

∫
f(X) log g(X)δX , f(∅) log g(∅) +

∞∑
n=1

1

n!

∫
· · ·
∫

f({x1, . . . , xn}) log g({x1, . . . , xn})dx1 · · · dxn (6)

Lemma 1 shows that the multi-target set integral can be de-
composed into a series of Bernoulli set integrals.

Lemma 1. Suppose f(X) is as defined in (1), and g(X) is
an arbitrary set-valued function. Then∫

f(X)g(X)δX =

∑
a∈A

wa

∫
· · ·
∫ N∏

i=1

fi|a(Xi)g
(⋃N

i=1Xi

)
δX1 · · · δXN

(7)

The proof of the lemma is omitted due to space con-
straints, and can be found in [10].

Corollary 1. Let [Xi] , (X1, . . . , XN ). Suppose that an
alternative definition of a set-valued function g̃ satisfies
g̃([Xi]) = g(X) for any [Xi] such that

⊎N
i=1Xi = X .

Then (7) can be equivalently evaluated as:

∫
f(X)g(X)δX =

∑
a∈A

wa

∫
· · ·
∫ N∏

i=1

fi|a(Xi)g̃
(
[Xi]

)
δX1 · · · δXN (8)

Lemma 2. Suppose h̃(X) , c|X|h(X). Then∫
f(X) log h̃(X)δX =∑

n

f(n) log cn +

∫
f(X) log h(X)δX (9)

where f(n) is the cardinality distribution corresponding to
f(X).

The proof of lemma 2 simply separates the log of the
product into the sum of logs and simplifies. With these pre-
liminary results, we are now ready to state the first theorem,
that the RFS KL divergence for the MB distributions (4) can
be optimised by summing over assignments of Bernoulli com-
ponents in the original distribution to Bernoulli components
in the simplified distribution.

Definition 1. Denote by ΠN the set of complete permutation
functions on IN , {1, . . . , N}:

ΠN =
{
π : IN → IN |i 6= j ⇒ π(i) 6= π(j)

}
Theorem 1. The solution of the optimisation

argmax
[gj ]

∑
a∈A

wa

∫
· · ·
∫ N∏

i=1

fi|a(Xi)·

· log g̃
(
[Xi]

)
δX1 · · · δXN (10)

where

g̃
(
[Xi]

)
=
∑
π∈ΠN

N∏
i=1

gπ(i)(Xi) (11)

is the same as the solution of problem 1.

The proof of the theorem is omitted due to space con-
straints, and can be found in [10].

2.1. Approximate solution of BFMB

We propose an approximate solution of (10) based on the
view of expectation-maximisation (EM) presented in [11], ef-
fectively treating the correspondence between the underlying
Bernoulli distribution fi|a(X) and the best-fitting Bernoulli
distribution gj(X) as missing data. There is a separate miss-
ing data distribution (i.e., a distribution over correspondence)
for each component a in the MB mixture; the distribution
under the a-th component is qa(π). We constrain qa(π) ≥
0;∀ a, π, and

∑
π∈ΠN

qa(π) = 1 ∀ a. Accordingly, solution
of (10) is equivalent to minimisation of J

(
[gj ]
)
, where

J
(
[gj ]
)

= −
∑
a∈A

wa

∫
· · ·
∫ N∏

i=1

fi|a(Xi)·

· log
∑
π∈ΠN

N∏
i=1

gπ(i)(Xi)δX1 · · · δXN (12)



=
∑
a∈A

wa

( ∑
π∈ΠN

qa(π)

)∫
· · ·
∫ N∏

i=1

fi|a(Xi)·

· log

∑
π∈ΠN

qa(π)∑
π∈ΠN

∏N
i=1 gπ(i)(Xi)

δX1 · · · δXN (13)

≤
∑

a∈A,π∈ΠN

waqa(π)

∫
· · ·
∫ N∏

i=1

fi|a(Xi)·

· log
qa(π)∏N

i=1 gπ(i)(Xi)
δX1 · · · δXN (14)

=
∑

a∈A,π∈ΠN

waqa(π) log qa(π)

−
∑

a∈A,π∈ΠN

waqa(π)

N∑
i=1

∫
fi|a(Xi) log gπ(i)(Xi)δXi

(15)

≤ T ·
∑

a∈A,π∈ΠN

waqa(π) log qa(π)

−
∑

a∈A,π∈ΠN

waqa(π)

N∑
i=1

∫
fi|a(Xi) log gπ(i)(Xi)δXi

(16)

,J̃T
(
[gj ], [qa(π)]

)
where (13) simply multiplies by

∑
π∈ΠN

qa(π) = 1 and sim-
ilarly adds log(1) = 0, (14) invokes the log-sum inequality,
and (15) replaces the log of a product with the sum of logs and
simplifies. This process is commonly used to understand the
behaviour of EM, e.g., [12, p363], [11]. In (16), we observe
that the first term is negative (since 0 ≤ qa(π) ≤ 1), hence
incorporating a multiplier 0 ≤ T ≤ 1 loosens the bound.
In statistical physics this corresponds to the temperature; the
need for the change is discussed in the experimental results.
Setting T = 0 yields the “winner-takes-all” variant of EM
[11] which is widely used in pattern recognition, e.g., as the
k-means algorithm.

Subsequently, J̃T
(
[gj ], [qa(π)]

)
is minimised by block

coordinate descent, alternating between minimisation with
respect to [gj ] (M-step), and [qa(π)] (E-step). These two
steps can be solved as:

gj(X) =
∑

a∈A,π∈ΠN

waqa(π)fπ−1(j)|a(X) (17)

qa(π) ∝
N∏
i=1

exp

{
1

T

∫
fi|a(X) log gπ(i)(X)δX

}
(18)

If the distributions [gj ] are to be constrained to be Bernoulli-
Gaussian, (17) is replaced by expressions matching the prob-
ability of existence, mean and covariance to the expression
in (17); details of this can be found in [10]. The Bernoulli-
Gaussian form is convenient since it permits closed-form
evaluation of (18).

This procedure is guaranteed to converge to a local mini-
mum of J̃ since it is strictly convex with respect to both [gj ]
and [qa(·)] (but not jointly convex). In most applications of
EM, the missing data is estimated for each of a finite number
of training samples. In turn, this guarantees that log-sum in-
equality is tight at the optimum, and hence that the procedure
will converge to a local minimum of the original likelihood
function (in this case J([gj ])) [11]. In the present applica-
tion, each point in the multi-target distribution f(X) is effec-
tively a training sample, so to maintain a similar guarantee,
the missing data would need to be permitted to be a function
of the joint target state X =

⋃N
i=1Xi. The above deriva-

tion could be easily modified to address this case, and the
resulting method could be implemented by sampling the joint
state space and estimating missing data for every joint sample.
However, the computational complexity of this procedure is
likely to be prohibitive, as observed in KLSJPDA [9]. The
proposed method may be viewed as constraining the missing
data to vary only with the association hypothesis a. Alterna-
tively, we simply minimise an upper bound that is not tight at
the optimum. SJPDA simplifies the complexity of KLSJPDA
similarly, constraining the assignment to depend only on the
association hypothesis.

3. EXPERIMENTAL RESULTS

We demonstrate the approach on a simple one-dimensional
case involving two Bernoulli-Gaussian tracks. The prior
distributions have a probability of existence of 0.8 and 0.9,
means of 10 and 11, and a variance of 9. Two measurements
are received, at coordinates 8 and 13. The probability of de-
tection is 0.6, the false alarm intensity is 0.1, and the variance
of the additive Gaussian measurement noise is 1.

The marginal posterior of each track is shown in figure
1(a) (i.e., that obtained using TOM-MeMBer/P described in
[2], conceptually similar to JPDA); the initialisation used for
BFMB is a series of Bernoulli-Gaussian distributions match-
ing the probability of existence, mean and covariance of these
posterior marginals. The solution obtained using BFMB with
small T is shown in figure 1(b). While the Gaussian distribu-
tion fit to the marginals would attempt to cover both modes
(leading to two very similar tracks with much higher vari-
ance), BFMB successfully separates the two peaks, eliminat-
ing coalescence. The RFS KL divergence (3) of the MSBJ
solution is shown in figure 1(c). The dotted line is the KL
divergence of the Bernoulli-Gaussian distribution fit to the
marginal posterior (i.e., the initialisation used in the optimi-
sation). With T > 0.7, the algorithm converges (very slowly)
to two identical Gaussian distributions covering both modes.
This occurs because the reduction in the bound J̃T obtained
by setting qa(π) to uniform (thereby maximising its entropy)
outweighs the improvement that can be achieved in the mean
log-likelihood of the true data under the simplified distribu-
tion. When the upper bound is loosened by reducing the tem-
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Fig. 1. Results of experiments: (a) shows the marginal pos-
terior distribution, (b) shows the result of BFMB with T =
0.01, and (c) shows the RFS KL divergence (3) of the solu-
tion of BFMB as a function of the temperature T (evaluated
numerically).

perature (reducing the influence of the entropy term), the al-
gorithm concentrates more on improving the log-likelihood of
the simplified distribution, and convergence occurs rapidly.
The result in figure 1(c) demonstrates that the solutions ob-
tained in this case have a lower RFS KL divergence (i.e., the
desired but intractable objective).

With T = 0, the E-step reverts to finding the most likely
assignment πa for each association hypothesis a ∈ A (where
the cost is the negative log of (18), omitting the 1

T factor); this
can be solved efficiently using methods such as the auction
algorithm. The difference between the cases with T = 1 and
T = 0 is analogous to the difference between using EM and
k-means to estimate parameters of a Gaussian mixture.

4. CONCLUSION AND EXTENSIONS

This paper has presented a principled, approximate method
for finding the MB distribution that minimises the RFS KL
divergence from the full RFS distribution. The disadvantage
of the method is that it requires enumeration of all global as-
sociation hypotheses a ∈ A, and solution of an assignment
problem for each hypothesis. The extension in the preprint
[10] demonstrates that, using the preferred value T = 0, the
optimisation can be expressed in a form that avoids explicit
enumeration of global association hypotheses. Subsequently,
with an approximation of the feasible set of the optimisation,

a polynomial time algorithm is obtained. Computational re-
sults show excellent performance in very challenging dense
target scenarios.
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