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Sampson Distance Based Joint Estimation of Multiple Homographies with Uncalibrated
Cameras

Zygmunt L. Szpak∗, Wojciech Chojnacki, Anders Eriksson, Anton van den Hengel

School of Computer Science, The University of Adelaide, SA 5005, Australia

Abstract

Two images of a scene consisting of multiple flat surfaces are related by a collection of homography matrices. Practitioners typically
estimate these homographies separately thereby violating inherent inter-homography constraints that arise naturally out of the rigid
geometry of the scene. We demonstrate that through a suitable choice of parametrisation multiple homographies can be jointly
estimated in a manner so as to satisfy all inter-homography constraints. Unlike the cost functions used previously for solving this
problem, our cost function does not correspond to fitting one set of homography matrices to another set of homography matrices.
Instead, we utilise the Sampson distance for homography matrix estimation and operate directly on image data points. By using
the Sampson distance and working directly on data points, we expedite the application of a vast amount of knowledge that already
exists for Sampson-distance-based single homography or fundamental matrix estimation. The estimation framework reported in
this paper establishes a new baseline for joint multiple homography estimation and at the same time raises intriguing new research
questions. The work may be of interest to a broad range of researchers who require the estimation of homography matrices with
uncalibrated cameras as part of their solution.
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1. Introduction

Whether one is planning to autonomously land a spacecraft
on a distant planet, generate three-dimensional maps of the
earth, or augment the environment with virtual characters, one
will need to understand how different images of the same scene
are related. A fundamental result in multiple view geometry
states that if a scene consists of a flat surface, then the coor-
dinates of any pair of corresponding points in two images are
related by a homography matrix [11]. If a scene consists of
multiple flat surfaces, such as buildings in an urban environ-
ment, then multiple homography matrices (one for each plane)
are needed to adequately relate corresponding points in two im-
ages (see Figure 1).

When multiple homography matrices are required, practi-
tioners typically estimate them separately [12]. This paper
argues that multiple homography matrices should not be esti-
mated separately, but rather should be estimated jointly. Esti-
mating homography matrices separately fails to ensure that the
matrices satisfy inter-homography constraints that arise natu-
rally due to the rigidity of the planar scene. Through exten-
sive experiments we show that estimating homography matri-
ces jointly so that they satisfy all inter-homography constraints
leads to considerably more accurate results.
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Figure 1: Relationship between homography matrices and planes in three-
dimensional space. Homography matrices encapsulate the relationship between
the coordinates of images taken from two different views, provided that the
scene consists of flat surfaces. For example, the two sides of the building can
be represented by two planes, π1 and π2. The two planes give rise to two
homography matrices, H1 and H2. The image coordinates of the side of the
building associated with πi in one view can be mapped with the aid of Hi to the
image coordinates of the same side in the other view. In particular, given the
coordinates of a window located on πi in the first view, one can determine—by
exploiting Hi—the coordinates of the same window in the second view.

2. Background

Almost two decades ago Sashua and Avidan [16] reported
that a collection of homography matrices induced by multi-
ple planes between two views are inter-related. In particular,



these authors revealed that, for a pair of images, a collection of
five or more homography matrices resides in an at most four-
dimensional subspace of the parameter space. The correspond-
ing subspace constraint became known as the rank-four con-
straint. Zelnik-Manor and Irani [17] took Sashua and Avidan’s
line of inquiry further and showed that homography rank con-
straints also exist that apply to a whole sequence of images.
Both Sashua and Avidan as well as Zelnik-Manor and Irani
advocated a straightforward procedure for enforcing rank con-
straints on a collection of homographies. The essence of their
method is to form a composite matrix from vectorised versions
of the homography matrices and to enforce the rank constraint
using a singular value decomposition. The rank enforcement
procedure can be understood as fitting a new set of homogra-
phy matrices (that reside in a four-dimensional subspace) to an
existing set of homography matrices using the Frobenius norm
as a measure of distance.

Despite its simplicity the rank enforcement method has not
been widely adopted, one reason for this being that it is difficult
to detect interest points on more than five planar surfaces in a
typical image. Subsequent studies also reported that in many
instances the rank constraints were not producing any notable
improvements in the accuracy of the underlying homographies.
It was believed that the lack of consistent denoising may be
due to the fact that singular value decomposition does not take
homography covariance information into account.

Chen and Suter [2] extended the work of Sashua and Avi-
dan by proposing an iterative weighted alternating least squares
scheme for upgrading separately estimated homography matri-
ces to consistent matrices. By incorporating homography co-
variance information into the cost function, Chen and Suter
intended to surpass the limitations of rank constraint enforce-
ment. Their iterative scheme needed a suitable initialisation and
they were able to devise one that required three or more homo-
graphies. Regrettably, their cost function was deficient from a
theoretical point of view in that it was not scale invariant. Ho-
mography matrices are defined only up to an unknown scale
factor, yet multiplying the homographies by different scales
could affect the solution and convergence of Chen and Suter’s
iterative scheme. Nevertheless, Chen and Suter’s contribution
was a valuable one, providing a benchmark against which new
methods could be compared.

Another alternative to direct rank-four enforcement was re-
ported by Eriksson and van den Hengel [8]. Like Chen and
Suter, these authors also utilised homography covariance infor-
mation. Unfortunately, they never devised a method to initialise
their iterative scheme. Instead, they resorted to random initiali-
sations which occasionally converged to poor solutions.

To overcome the limitations of the aforementioned methods,
Chojnacki et al. [7] proposed a homography-covariance-based
scale invariant cost function. They showed that by a suit-
able choice of latent variables all inter-homography constraints
can be satisfied. They used the popular Levenberg–Marquardt
scheme to optimise their cost function and also presented an al-
gorithm that can be used to initialise the latent variables when
there are two or more homography matrices. This meant that
for the first time dependable improvements to homography ma-

trix estimates could be observed in the minimal case of two
homographies.

3. Contribution

All of the methods that we have reviewed fit one set of ho-
mography matrices to another set of homography matrices. In
this paper, we propose a departure from what has been at-
tempted before and offer a method for jointly estimating multi-
ple homographies that operates directly on the image points us-
ing the Sampson distance. We do not assume that the cameras
are calibrated. To enforce all inter-homography constraints, we
utilise the same parametrisation as proposed by Chojnacki et
al. [7].

Our experiments will demonstrate the utility and superiority
of our method, and, in the process, will open up new avenues for
compelling future research. Our hope is that practitioners will
see the benefit of estimating multiple homographies jointly, and
will move away from rather inappropriate separate homography
estimation.

4. Estimation problem

We consider the following task:

Problem. Estimate a collection of 3 × 3 matrices, represent-
ing planar homographies engendered by various planes in a 3D
scene under common projections on two images, based on a
collection of sets of image correspondences, each set being re-
lated to a separate homography.

A fundamental aspect of the above problem is that the ho-
mography matrices involved are interdependent. To get in-
sight into the nature of the dependencies involved, consider two
fixed uncalibrated cameras giving rise to two camera matrices
P1 = K1R1[I3,−t1] and P2 = K2R2[I3,−t2]. Here the length-3
translation vector tk and the 3 × 3 rotation matrix Rk represent
the Euclidean transformation between the k-th (k = 1, 2) camera
and the world coordinate system, Kk is a 3 × 3 upper triangu-
lar calibration matrix encoding the internal parameters of the
k-th camera, and I3 denotes the 3 × 3 identity matrix. Suppose,
moreover, that a set of I planes in a 3D scene have been se-
lected. Given i = 1, . . . , I, let the i-th plane from the collection
have a unit outward normal ni and be situated at a distance di

from the origin of the world coordinate system. Then, for each
i = 1, . . . , I, the i-th plane gives rise to a planar homography
from view P2 to P1 described by the 3 × 3 matrix

Hi = wiA + bv>i , (1)

where
A = K2R2R−1

1 K−1
1 , wi = n>i t1 − di,

b = K2R2(t1 − t2), vi = K−>1 R−>1 ni.
(2)

We note that in the case of calibrated cameras when one may
assume that K1 = K2 = I3, t1 = 0, R1 = I3, R2 = R, system (2)
reduces to

A = R, wi = −di,

b = t, vi = ni,
(3)
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with t = −Rt2, and equality (1) becomes the familiar direct nRt
representation

Hi = −diR + tn>i
(cf. [1, 14]). We stress that all of our subsequent analysis con-
cerns the general uncalibrated case, with A, b, wi’s and vi’s to
be interpreted according to (2) rather than (3).

Let H = [H1, . . . ,HI] be the composite of all the homography
matrices in question and let H be the 9 × I matrix given by

H = [h1, . . .hI], hi = vec(Hi),

where vec denotes column-wise vectorisation [13]. With a =

vec(A) and ⊗ denoting Kronecker product [13], we have

hi = wi vec(A) + vec(bv>i ) = wia + (I3 ⊗ b)vi (4)

for each i = 1, . . . , I. This can be concisely written as the matrix
equality

H = ST, (5)

where S = [I3 ⊗ b, a] is a 9 × 4 matrix and

T =

[
v1 . . . vI

w1 . . . wI

]
is a 4 × I matrix. An immediate consequence of the represen-
tation (5) is that H has rank at most four. Whenever I ≥ 5 the
requirement that H should have rank no greater than four places
a genuine constraint on H, and hence also on H. This constraint
is the rank-four constraint of Shashua and Avidan mentioned
in the Introduction. The rank-four constraint stipulates that the
dimension of the set of all H’s is no greater than 4I + 20 for
I ≥ 5. The ensuing inequality 4I + 20 < 9I for I ≥ 5 makes
it clear that H resides in a proper subset of all a priori length-I
composites of 3 × 3 matrices for I ≥ 5.

The dimensionality count for the H’s can be refined
and the subsequent conclusions sharpened. Letting η =

[a>,b>, v>1 , . . . , v
>
I ,w1, . . . ,wI]> and

Π(η) = [Π1(η), . . . ,ΠI(η)], Πi(η) = wiA + bv>i , (6)

H can be represented as

H = Π(η). (7)

In this formulation, η appears as the vector of latent variables
that link all the constituent matrices together and provide a nat-
ural parametrisation of the set of all H’s. Since η has a total
of 4I + 12 entries, the set of all matrices of the form Π(η) has
dimension no greater than 4I + 12. A more refined argument
shows that the set of all Π(η)’s has in fact dimension equal to
4I + 7 [5, 6]. Since 4I + 7 < 9I whenever I ≥ 2, it follows
that H resides in a proper subset of all length-I composites of
3 × 3 matrices for I ≥ 2. This is an improvement over the pre-
vious similar statement which was valid only for I ≥ 5. It is
now clear that the requirement that H take the form as per (7)
whenever I ≥ 2 can be seen as an implicit constraint on H, with
the consequence that the Hi’s are all interdependent.

In what follows we shall exploit the parametrisation (7) as a
handle on the inter-dependencies in the matrices Hi. It is worth
stressing that this parametrisation is not minimal in that if H =

Π(η) holds for a particular vector η, then we also have H =

Π(η′) for any vector η′ of the form

η′ = [vec(βA + bc>), αb, α−1v1 − α
−1β−1c, . . . ,

α−1vI − α
−1β−1c, β−1w1, . . . , β

−1wI]>,

where α and β are non-zero numbers, and c is a length-3 vector.
The arbitrariness in the choice of α, β, and c reflects five degrees
of parametrisation gauge freedom. In particular, if H = Π(η)
holds for a particular vector η, then it is not true that the en-
tries η have to be necessarily interpreted as ones satisfying (2)
for the underlying values of Kk, Rk, tk, di, and ni (k = 1, 2,
i = 1, . . . , I). It is also worth stressing that the fact that the
parametrisation (7) is not minimal is not a limitation—on the
contrary, the parametrisation is perfectly suited to our purpose,
as it enforces all underlying constraints on the Hi’s.

5. Background on the homography model

If a planar homography is represented by an invertible 3 × 3
matrix H and if m′ = [u′, v′, 1]> is the image of m = [u, v, 1]>

by that homography, then m′ ' Hm, where ' denotes equality
up to scale. This relation can equivalently be written as

[m′]×Hm = 0, (8)

where, for a length-3 vector a = [a1, a2, a3]>, [a]× denotes the
3 × 3 anti-symmetric matrix given by

[a]× =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 .
With θ = vec(H), z = [u, v, u′, v′]>, and U(z) = −m ⊗ [m′]×,
we have [m′]×Hm = U(z)>θ, and so (8) can be restated as

U(z)>θ = 0. (9)

Since the 9 × 3 matrix U(z) has rank 2, the three equations in
(9) are linearly dependent and can be reduced—by deleting one
of them—to a system of two equations. By leaving specifically
the first two equations, the resulting system becomes

V(z)>θ = 0,

where V(z) = U(z)I3×2, I3×2 = [e1, e2], e1 = [1, 0, 0]>, and
e2 = [0, 1, 0]>. This system of equations forms the foundation
of an approximate maximum likelihood cost function which we
describe in the next section.

6. The Sampson distance based AML cost function

Let {{mi j,m′i j}
Ji
j=1}

I
i=1 be a collection of I sets of image cor-

respondences. For each i = 1, . . . , I and each j = 1, . . . , Ji,
write mi j = [ui j, vi j, 1]> and m′i j = [u′i j, v

′
i j, 1]>, and let
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zi j = [ui j, vi j, u′i j, v
′
i j]
>. Suppose that each pair mi j, m′i j comes

equipped with a pair of 2 × 2 respective covariance matrices
Λui j,vi j

, Λu′i j,v
′
i j
. Let

Λzi j
=

Λui j,vi j
0

0 Λu′i j,v
′
i j

 .
Suppose that, for each i = 1 . . . I, a homography estimate
Θi is to be evolved based on {mi j,m′i j}

Ji
j=1 in such a way that

Θ = [Θ1, . . . ,ΘI] satisfies the implicit constraintΘ = Π(η) for
some η. For each i = 1, . . . , I, let θi = vec(Θi). As it turns out,
the approximate maximum likelihood cost function with which
to fulfil the estimation task in a statistically meaningful way is
given by

JAML(Θ) =

I∑
i=1

Ji∑
j=1

θT
i Vi jΣ

−1
i j V>i jθi,

where

Vi j = V(zi j),
Σi j = (I2 ⊗ θ

>
i )Bi j(I2 ⊗ θi),

Bi j = ∂zvec(V(z))|z=zi jΛzi j

[
∂zvec(V(z))|z=zi j

]>
,

and, explicitly,

∂zvec(V(z)) = − [vec((e1 ⊗ [m′]×)I3×2), vec((e2 ⊗ [m′]×)I3×2),
vec((m ⊗ [e1]×)I3×2), vec((m ⊗ [e2]×)I3×2)].

Here each summand θT
i Vi jΣ

−1
i j V>i jθi represents the Sampson

distance between Θi and {mi j,m′i j} [11]. Upon introducing the
function

J′AML(η) = JAML(Π(η)),

the constrained optimisation problem in question reduces to that
of optimising J′AML, which is an unconstrained optimisation
problem.

7. Cost function optimisation

One way of optimising J′AML is to use the Levenberg-
Marquardt (LM) method. The starting point is to re-express
J′AML as

J′AML(η) =

I∑
i=1

Ji∑
j=1

r′2i j (η) = ‖r′(η)‖2, (10)

where, for each i = 1, . . . , I and each j = 1, . . . , Ji,

r′i j(η) = ri j(πi(η)),

ri j(θi) =
(
θT

i Vi jΣ
−1
i j V>i jθi

)1/2
,

πi(η) = vec(Πi(η)),
r′(η) = [r′11(η), . . . , r′1J1

(η), . . . , r′I1(η), . . . , r′IJI
(η)]>.

The LM algorithm iteratively improves on an initial approxima-
tion η0 to the minimiser of J′AML by constructing new approxi-

mations with the aid of the update rule

ηn+1 = ηn − [H(ηn) + λnI4I+12)]−1[∂ηr′(ηn)]>r′(ηn),

where H = (∂ηr′)>∂ηr′ and λn is a non-negative scalar that
dynamically changes from step to step [15]. Here ∂ηr′ is the
Jacobian matrix

∂ηr′ = [(∂ηr′11)>, . . . , (∂ηr′1J1
)>, . . . , (∂ηr′I1)>, . . . , (∂ηr′IJI

)>]>.

To determine ∂ηr′ explicitly, note that, for each i = 1, . . . , I and
each j = 1, . . . , Ji,

∂ηr′i j(η) = ∂θi ri j(πi(η))∂ηπi(η)

with

∂θi ri j(θi) = (ri j(θi))−1θ>i X(i j)
θi
,

X(i j)
θi

= M(i j)
θi
− N(i j)

θi
,

M(i j)
θi

= Vi jΣ
−1
i j V>i j,

N(i j)
θi

= (ξ>i j ⊗ I9)Bi j(ξi j ⊗ I9),

ξi j = Σ−1
i j V>i jθi.

In the setup described by (6) and (7), we have, in accordance
with (4),

πi(η) = vec(wiA + bv>i ) = wia + vi ⊗ b

for each i = 1, . . . , I. Taking into account that vi ⊗ b = (I3 ⊗

b)vi = (vi ⊗ I3)b, one readily verifies that

∂aπi = wiI9, ∂bπi = vi ⊗ I3,

∂viπi = I3 ⊗ b, ∂v jπ j = 0 (i , j),
∂wiπi = a, ∂w jπ j = 0 (i , j).

Representing, for each i = 1, . . . , I, ∂ηr′i j as

∂ηr′i j = [∂ar′i j, ∂br′i j, ∂v1 r′i j, . . . ∂vI r
′
i j, ∂w1 r′i j, . . . , ∂wI r

′
i j],

one finds furthermore that

∂ar′i j = wi(ri j(πi))−1π>i X(i j)
πi
,

∂br′i j = (ri j(πi))−1π>i X(i j)
πi

(vi ⊗ I3),

∂vi r
′
i j = (ri j(πi))−1π>i X(i j)

πi
(I3 ⊗ b),

∂vk r
′
i j = 0 (k , i),

∂wi r
′
i j = (ri j(πi))−1π>i X(i j)

πi
a,

∂wk r
′
i j = 0 (k , i).

With ∂ηr′ thus determined, all that is now needed is a means
for determining a suitable initial value of η.

One possible procedure for determining suitable initial val-
ues of η is presented in Algorithm 1. In essence, the procedure
first establishes relative scale factors between a collection of ho-
mography matrices using the fact that any homography of the
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Algorithm 1: InitialiseLatentVariables

/* Find initial values for A, b, vi and wi in equation (6) */

Input: {H1,H2, . . . ,HI}

Output: η = [vec(A)>,b>, v>1 , . . . , v
>
I ,w1, . . . ,wI]>

1 Set A = H1 /* definition of A */

2 foreach i ∈ {2, . . . , I} do
3 Compute eigenvalues: {λ1, λ2, λ3} = eig(H−1

i H1)
4 Find closest pair: {k′, l′} = arg min{k,l} k,l(λk − λl)2

5 Compute average: µi1 = (λk′ + λl′ )/2
6 end foreach
7 Set M = [µ21H2 −H1, µ31H3 −H1, . . . , µI1HI −H1]
8 Take for b the left singular vector of M corresponding to the largest singular value /* definition of b */

9 Set vi =

[0, 0, 0]> for i = 1,
‖b‖−2(µi1Hi −H1)>b for i ∈ {2, . . . , I}

/* definition of vi */

10 Set wi = 1 for i ∈ {1, . . . , I} /* definition of wi */

11 return η = [vec(A)>,b>, v>1 , . . . , v
>
I ,w1, . . . ,wI]>

form H−1
i1

Hi2 has a double eigenvalue. Once the relative scales
of the individual homography matrices are determined, singular
value decomposition is next used to determine the latent vari-
able b. Finally, straightforward algebraic manipulations are ap-
plied to recover all remaining latent variables.

8. A robust AML cost function

Employing the Huber loss function

C(r) =

r2 if |r| < b,
2b|r| − b2 otherwise,

where b is a tunable positive constant, in place of the quadratic
loss function r2, one can define a robust version of J′AML, de-
noted J′R−AML, as

J′R−AML(η) =

I∑
i=1

Ji∑
j=1

C(r′i j(η)).

This function can be optimised with a suitable modification of
the LM scheme presented in the foregoing section. To describe
necessary changes, we first note that C(r) can be represented as
C(r) = D2(r), where

D(r) =


r if |r| ≤ b,
(2br − b2)1/2 if r > b,
−(−2br − b2)1/2 if r < −b.

The function D is continuously differentiable, with the deriva-
tive given by

dD
dr

(r) =


1 if |r| ≤ b,
b(2br − b2)−1/2 if r > b,
b(−2br − b2)−1/2 if r < −b.

Introducing the vector

d(r′(η)) = [D(r′11(η)), . . . ,D(r′1J1
(η)), . . . ,

D(r′I1(η)), . . . ,D(r′IJI
(η))]>,

we can rewrite J′R−AML in a least-square form as

J′R−AML(η) = ‖d(r′(η))‖2.

With d(r′(η)) taking the role of r′(η) in (10), all what is needed
to set up an LM scheme for optimising J′R−AML is an explicit
expression for the Jacobian of d(r′(η)). But this is given by

∂ηd(r′) = [(∂ηD(r′11))>, . . . , (∂ηD(r′1J1
))>, . . . ,

(∂ηD(r′I1))>, . . . , (∂ηD(r′IJI
))>]>,

∂ηD(r′i j) =
dD
dr

(r′i j) ∂ηr′i j(η),

9. Experimental design

We compared our new homography estimation algorithm
with established methods on synthetic and real data. Our in-
vestigation focused on the direct linear transform (DLT) [11],
rank constraint enforcement (RANK) [16], weighted alternat-
ing least squares (WALS) [2], approximate maximum like-
lihood with homography covariances (AML-COV) [7], ap-
proximate maximum likelihood with Sampson distance (AML-
SMPS), separate bundle adjustment for multiple homographies
(BA-SEP), and joint bundle adjustment for multiple homogra-
phies (BA-JOINT). With the exception of DLT, data points
for all homographies were jointly normalised before they were
passed to the estimation methods [3, 4, 10]. DLT operated on
separately normalised data points.

Because DLT is the prevailing method used to separately es-
timate homographies, we took it as the baseline in our exper-
iments. Usually separate bundle adjustment (BA-SEP) is con-
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Table 1: Summary of homography estimation methods and their properties

Method Required homographies Initialisation Cost function Optimisation

DLT 1 N/A algebraic distance singular value decomposition
RANK 5 or more DLT Frobenius norm singular value decomposition
WALS 3 or more DLT + procedure in [2] Mahalanobis norm alternating least squares
AML-COV 2 or more DLT + Algorithm 1 Mahalanobis norm Levenberg–Marquardt
AML-SMPS 2 or more DLT + Algorithm 1 Sampson distance Levenberg–Marquardt
BA-SEP 2 or more DLT reprojection error Levenberg–Marquardt
BA-JOINT 2 or more DLT + Algorithm 1 reprojection error Levenberg–Marquardt

sidered a gold standard benchmark for homography estimation.
Separate bundle adjustment minimises the reprojection error

I∑
i=1

Ji∑
j=1

(
d(mi j,mi j)

2 + d(m′i j,Himi j)
2
)
,

where Hi denotes the i-th homography matrix and {{mi j}
Ji
j=1}

I
i=1

represents 2D points in the first image. However, as separate
bundle adjustment does not enforce homography constraints, it
should not really be granted gold standard status. In line with
this, as a gold standard benchmark, we utilised joint bundle ad-
justment which is bundle adjustment employing the parametri-
sation given in (6) and (7) so that all inter-homography con-
straints are satisfied. Joint bundle adjustment minimises the
gold standard reprojection error

I∑
i=1

Ji∑
j=1

(
d(mi j,mi j)

2 + d(m′i j,Πi(η)mi j)
2
)

over all choices of parameter vectors η and 2D points
{{mi j}

Ji
j=1}

I
i=1. In all experiments we initialised separate bundle

adjustment with DLT, and joint bundle adjustment with the
procedure from Algorithm 1. In both cases we also seeded
{{mi j}

Ji
j=1}

I
i=1 with the data points extracted from the first im-

age. A summary of the attributes of all the estimators that we
examined is presented in Table 1.

9.1. Synthetic data

We distinguished between two types of synthetic scenes.
In the first type of synthetic scene data points corresponding
to different homographies overlapped minimally and formed
clusters (see Figure 2a), whilst in the second type of syn-
thetic scene data points corresponding to different homogra-
phies overlapped substantially (see Figure 2b). The first type
of synthetic scene was more realistic; however, the second type
of synthetic scene was also of interest because it resulted in ho-
mography estimates that had spherical covariance matrices. By
a spherical covariance matrix we mean a covariance matrices
all of whose non-zero eigenvalues are almost equal.

Type 1 synthetic scenes with a specified number of homogra-
phies and ground truth correspondences were generated using
the following steps:

1. Select a realistic stereo camera configuration and set in-

trinsic camera parameters thus forming two projection ma-
trices.

2. Generate a plane situated at a random distance in front of
the first camera plane.

3. Apply a random rotation and translation to the plane. This
rotated and translated plane together with the projection
matrices gives rise to a homography.

4. Generate a random sized rectangular region in the first im-
age and sample a random number of points within this re-
gion.

5. Transfer the points within the rectangular region in the first
image to the second image using the homography from
step 3.

6. If insufficient points fall within the boundary of the sec-
ond image, then discard the homography and repeat the
procedure from step 2; otherwise proceed to step 7.

7. Add zero-mean Gaussian noise at a specified standard de-
viation to the corresponding points.

8. Output the ground truth homography, ground truth corre-
sponding points, and noise perturbed points.

Steps 2 to 8 were repeated for each homography. The fourth
step is important because if homographies span varying spatial
regions, then they will also be estimated with varying levels
of uncertainty. Type 2 synthetic scenes were generated using
the same protocol, with the exception that the fourth step was
modified so that the rectangular region always spanned the en-
tire image. This modification ensured that homographies were
estimated with similar levels of uncertainty.

9.2. Synthetic data with outliers
To analyse the robust variant of our algorithm, we generated

numerous type 1 synthetic scenes with two homographies per
scene, and ensured that 10% of corresponding points were out-
liers (false correspondences). Two planar structures were then
automatically detected with the use of sequential RANSAC,
resulting in two sets of noisy “inliers” per scene. Sequential
RANSAC consists of (1) applying standard RANSAC on all
data points to find an initial set of inliers, (2) removing these in-
liers from the dataset, and (3) applying RANSAC again on the
remaining data points to find a second set of inliers. Although
sequential RANSAC attempts to find inlier sets that are free
of any false correspondences, it does not always succeed. The
success of RANSAC depends on a suitable choice of thresh-
old parameter to distinguish between inliers and outliers. If the
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(a) Points corresponding to four homographies do not overlap, but
form clusters.
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(b) Points corresponding to four homographies overlap substan-
tially.

Figure 2: Two different paradigms for generating synthetic data. In panel (a) corresponding points belonging to four different homographies do not overlap, but
instead form small clusters in the image. Hence, the homography matrix estimates will have varying covariance matrices. In panel (b) corresponding points
belonging to four different homographies overlap substantially and are spread out over the entire image. Consequently, the homography matrix estimates will have
nearly spherical covariance matrices.

Table 2: Measuring the sphericity of homography covariance matrices associated with the results in Figures 3a and 3b. The sphericity of a homography covariance
matrix is determined by computing the ratio of the largest to the smallest (non-zero) eigenvalue of the covariance matrix.

(a) The average sphericity of homography matrices related to the results
in Figure 3a.

Generating
planes

Noise level (in pixels)

σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 σ = 1

1st plane 809.04 374.62 534.65 421.42 568.84
2nd plane 663.01 412.09 597.27 736.75 250.88
3rd plane 1266.56 833.52 776.65 588.27 697.41
4th plane 445.95 973.53 800.85 1524.96 636.97
5th plane 491.80 526.67 890.49 470.95 484.29
6th plane 550.29 395.86 612.66 698.48 718.71

(b) The average sphericity of homography matrices related to the
results in Figure 3b.

Generating
planes

Noise level (in pixels)

σ = 0.2 σ = 0.4 σ = 0.6 σ = 0.8 σ = 1

1st plane 13.16 13.38 12.84 12.79 13.14
2nd plane 13.36 13.19 13.29 13.25 13.34
3rd plane 13.53 13.08 13.53 13.33 12.76
4th plane 13.25 13.12 13.06 12.98 13.13
5th plane 13.10 13.19 13.39 13.01 12.69
6th plane 12.82 12.74 13.14 12.96 12.71

threshold is too strict, very few points will be considered in-
liers. If the threshold is too liberal, false correspondences may
be included. The Huber norm offers a partial remedy to the
threshold dilemma. One can use a liberal RANSAC threshold
so that many true inliers are correctly identified, followed by a
strict Huber norm threshold so that any accidental false corre-
spondences are down-weighted.

9.3. Real data with manually demarcated planar regions

To complement our extensive synthetic experiments with ex-
periments on real data, we collected several images of planar
surfaces. Corresponding points between a pair of views were
matched by correlation using a Harris corner detector [9]. Pla-
nar regions within the images were demarcated using polygons,
and data points inside the polygons were grouped together. The
number of polygons determined the number of homographies.

9.4. Real data where planar regions are discovered using se-
quential RANSAC

To further demonstrate the practical utility of our algorithm
we utilised two views of Merton College from the Oxford

dataset.1 We used a Harris corner detector to detect 147 in-
terest points and matched corresponding points by correlation.
We added a further 132 (47%) false correspondences (pure out-
liers). Two planar structures were then automatically detected
with the aid of sequential RANSAC, resulting in two sets of
inliers for two homographies.

9.5. Quantification
On synthetic data the common distance used to quantify data-

model discrepancies was the mean root-mean-square (RMS) re-
projection error from truth

1
I

I∑
i=1

√√√
1

4JiK

K∑
k=1

min
m(k)

i j

Ji∑
j=1

(
d(m(k)

i j ,m
(k)
i j )2

+ d(m′(k)
i j , Θ̂im(k)

i j )2
)
,

where K is the number of experiments, and, for each
k = 1, . . . ,K, {{m(k)

i j ,m
′(k)
i j }

Ji
j=1}

I
i=1 are noiseless data and

{{m(k)
i j }

Ji
j=1}

I
i=1 are arbitrary 2D points over which the minimum

is taken in the k-th experiment.

1http://www.robots.ox.ac.uk/∼vgg/data.html
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(a) Points corresponding to six homographies overlapped
minimally and formed clusters.
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(b) Points corresponding to six homographies overlapped
substantially and covered entire image.

Figure 3: Comparison of rank constraint enforcement vs DLT on six homographies with fixed data points and increasing noise level. Results are based on 1500
trials. In experiments reported in panel (a) homography covariance matrices were far from spherical, while in experiments reported in panel (b) the covariance
matrices were close to spherical. The sphericity of a homography covariance matrix is determined by computing the ratio of the largest to the smallest (non-zero)
eigenvalue of the covariance matrix. The results show that rank constraint enforcement yields improvements only when all homography estimates have spherical
covariance matrices, which in turn only happens when the image data points associated with homographies are well spaced out in the image and overlap (see for
example Figure 2b).

Table 3: Comparison of estimation methods on data with outliers and multiple
structures. Random Sampling and Consensus with DLT (DLT-RANSAC) was
used sequentially to determine inliers for two homographies. The homography
estimates were further refined using BA-SEP and R-AML-SMPS. Results are
based on 1500 trials, with 2 homographies per trial and the noise level of σ = 1
pixels. Data points associated with homographies overlapped minimally and
formed clusters.

Methods
Homography

1 2

DLT-RANSAC 0.2512 0.2518
DLT-RANSAC + BA-SEP 0.2395 0.2395
DLT-RANSAC + R-AML-SMPS 0.2043 0.2048

On real data we compared the quality of estimators by using
the estimated homographies to transfer textures inside desig-
nated polygon regions from the first view to the second view.
Imprecisely aligned textures demonstrate unreliable homogra-
phies.

10. Results and discussion

The results of our first experiments demonstrate that SVD-
based rank constraint enforcement has limited practical value.
Apart from the fact that rank constraints can only be applied
when there are five or more underlying planar surfaces (a rare
occurrence), the procedure only improves the quality of the ho-
mography estimates if the covariance matrices associated with
the homographies are spherical. If the homographies are esti-
mated with different degrees of uncertainty, then rank constraint
enforcement leads to less accurate homography estimates. This
assertion is supported by the results presented in Figure 3. Fig-
ure 3a together with Table 2a illustrate that when homography
covariance matrices were far from spherical, rank constraint en-

forcement was consistently worse than DLT. On the other hand,
Figure 3b and Table 2b demonstrate that when the homography
covariance matrices were all close to spherical, rank constraint
enforcement led to improved homography estimates.

An assessment of all our simulations affirms that enforcing
homography constraints using our latent variable parametrisa-
tion can considerably improve the quality of homography es-
timates. The results presented in Figure 5 demonstrate close
to 10% improvement in the estimation of two homographies
for a range of noise levels for both type 1 and type 2 synthetic
scenes. However, the experiments also revealed that for the
more challenging type 1 synthetic scenes, BA-JOINT, AML-
SMPS, and AML-COV occasionally failed to improve upon the
BA-SEP estimate because they converged to poor local min-
ima. For example, Table 4 shows that for a noise level of σ = 1
pixels, BA-JOINT, and AML-SMPS improved the estimate in
97% of trials, whilst AML-COV improved the estimate in 96%
of trials. At larger noise levels (σ = 3 pixels), BA-JOINT,
and AML-SMPS improved the estimate in 94% of trials, whilst
AML-COV in 80% of trials.

By introducing homography covariance information into
their iterative WALS scheme, Chen and Suter hoped to over-
come the limitations of SVD-based rank constraint enforce-
ment. They succeeded partially in that WALS with their ini-
tialisation can be applied when there are three or more planar
surfaces in the scene. However, whilst their scheme sometimes
improves upon DLT and BA-SEP, it is prone to converging to
poor minima. For example, Figure 6 shows that even though
WALS is better than DLT and BA-SEP, it is not as accurate as
AML-COV or AML-SMPS. Moreover, the numerical instabil-
ity of WALS is apparent in Table 5, which shows that for four
homographies and the noise level of σ = 5 pixels, WALS only
improved upon BA-SEP in 28% of trials, whereas AML-SMPS
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(a) Points corresponding to four homographies over-
lapped substantially and covered entire image.
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lapped minimally and formed clusters.

Figure 4: Comparison of initial and final cost function values for BA-SEP and BA-JOINT. In panel (b) the initial BA-JOINT cost is very high, indicating that
whilst Algorithm 1 upgrades a set of separately estimated homographies into a new set of homographies that satisfy all inter-homography constraint, the consistent
homographies from the new set may have a high initial reprojection error.

achieved a 82% success rate.
An astute reader may wonder why BA-JOINT occasionally

fails to improve upon BA-SEP. The reason for the occasional
failure of BA-JOINT has to do with Algorithm 1 which is used
to initialise the latent variables in BA-JOINT. For type 2 syn-
thetic scenes Algorithm 1 provides latent variables parametris-
ing fully consistent homographies that also have low reprojec-
tion error (see Figure 4a). For type 1 synthetic scenes the al-
gorithm still provides latent variables parametrising fully con-
sistent homographies, but these homographies no longer fit the
corresponding points well and have a large reprojection error
(see Figure 4b). In the process of minimising a large repro-
jection error BA-JOINT occasionally converges to a poor local
minimum.

Our examinations have also established that the mean root-
mean-square reprojection error decreases as the number of ho-
mographies that are jointly estimated increases. This effect is
evident in Figure 7 and also in Table 8, where the percentage
reduction in reprojection error is quantified. Table 8 shows
that the accuracy of AML-SMPS was very close to that of BA-
JOINT, ranging from a 23% average error reduction with four
homographies, to a 30% average error reduction with eight ho-
mographies. We also noticed that as the number of homogra-
phies increases the chance of converging to a poor local mini-
mum gradually increases (see Table 6).

Further analysis shows that the percentage reduction in
reprojection error that can be achieved by enforcing inter-
homography constraints is fairly independent of the number of
data points. Figure 8 and Table 9 show that the percentage re-
duction in reprojection error fluctuated minimally as the num-
ber of data points was varied from 10 to 50. However, some
of the algorithms are more prone to converging to poor min-
ima when given only few data points. For example, Table 7
shows that with only 10 data points WALS managed to improve
upon the BA-SEP solution in only 30.2% of trials, whereas BA-
JOINT and AML-SMPS succeed in 98.2% and 78.66% of trials,
respectively.

Results on synthetic data with outliers, given in Table 3,
demonstrate that the robust variant of the AML cost function
leads to superior results when compared to the commonly em-
ployed DLT-RANSAC + BA-SEP combination. This means
that the theory developed in this paper can be incorporated
into various real-world applications which typically rely on the
DLT-RANSAC followed by BA-SEP workflow.

Examples of texture transfer on real-world data, depicted in
Figures 10, 11, 12, and 13, all demonstrate by the quality of the
texture alignments that our method yields more accurate ho-
mography estimates. The definite improvement is also evident
on the Merton College images in Figure 14.

Currently the main drawback of AML-SMPS is its running
time. According to the running times listed in Table 10, AML-
COV is by far the fastest, while AML-SMPS is the slowest.
In principle, AML-SMPS should be faster than BA-JOINT be-
cause it solves a smaller optimisation problem (it does not opti-
mise over corresponding points). However, for the AML-SMPS
cost function the Levenberg–Marquardt algorithm takes very
many iterations to converge when a current estimate is close
to an optimal solution. Figure 9 traces the reduction in cost
function value for consecutive iterations of the LM scheme on
a sample of 500 simulation trials. The plot shows that typically
after approximately 20 iterations the cost function has essen-
tially reached its minimum. For the remaining hundreds of iter-
ations, the cost function plateaus and only decreases marginally
between iterations. We believe this uncharacteristically poor
performance of the LM algorithm near the minimum may have
to do with a combination of factors including (1) the intrin-
sic rank deficiency of the Jacobian matrix at a local minimum,
(2) inherent gauge freedom in the choice of parametrisation,
and (3) the Sampson distance itself. We also believe that with
an appropriate modification to the LM algorithm the stagnation
problem can be overcome, but we leave the pursuit of the best
optimisation strategy to future work.
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(a) Points corresponding to two homographies overlapped
substantially and covered entire image.
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(b) Points corresponding to two homographies overlapped
minimally and formed clusters.

Figure 5: Comparison of estimation methods on two homographies with
50 data points and increasing noise levels. Results are based on 1500
trials. All joint homography estimation methods were seeded with the aid
of Algorithm 1. In experiments reported in panel (b) BA-JOINT, AML-
SMPS, and AML-COV occasionally converged to poor minima resulting
in estimates that were considerably worse than BA-SEP or DLT. These
trials were treated as outliers and removed from the plot. A summary
of the percentage of trials for which these methods converged to a better
solution than BA-SEP is presented in Table 4.

Table 4: Measuring the percentage of trials as per Figure 5b for which
various joint homography estimation methods, when seeded with the aid
of Algorithm 1, converged to a solution with lower reprojection error than
the solution generated by the separate bundle adjustment homography es-
timation method.

Methods
Noise level (in pixels)

σ = 1 σ = 3 σ = 5 σ = 7 σ = 9

BA-JOINT 97.93% 94.80% 89.20% 85.00% 80.13%
AML-SMPS 97.80% 94.00% 87.26% 77.93% 66.80%
AML-COV 96.20% 80.80% 60.46% 44.53% 31.73%
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(a) Points corresponding to four homographies overlapped
substantially and covered entire image.
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(b) Points corresponding to four homographies overlapped
minimally and formed clusters.

Figure 6: Comparison of estimation methods on four homographies with
increasing noise levels. Results are based on 1500 trials. All joint homog-
raphy estimation methods were seeded with the aid of Algorithm 1. In
experiments reported in panel (b) BA-JOINT, AML-SMPS, AML-COV,
and WALS occasionally converged to poor minima resulting in estimates
that were considerably worse than DLT or BA-SEP. These trials were
treated as outliers and removed from the plot. A summary of the percent-
age of trials for which these methods converged to a better solution than
BA-SEP is presented in Table 5.

Table 5: Measuring the percentage of trials as per Figure 6b for which
various joint homography estimation methods, when seeded with the aid
of Algorithm 1, converged to a solution with lower reprojection error than
the solution generated by the separate bundle adjustment homography es-
timation method.

Methods
Noise level (in pixels)

σ = 1 σ = 2 σ = 3 σ = 4 σ = 5

BA-JOINT 100.00% 100.00% 99.99% 99.99% 99.99%
AML-SMPS 99.60% 97.60% 94.40% 89.06% 82.86%
AML-COV 99.06% 92.46% 79.20% 64.86% 52.60%
WALS 97.40% 81.26% 60.00% 41.20% 28.13%
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(a) Points corresponding to homographies overlapped substan-
tially and covered entire image.
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(b) Points corresponding to homographies overlapped minimally
and formed clusters.

Figure 7: Comparison of estimation methods with variable number of ho-
mographies. Results are based on 1500 trials. All joint homography es-
timation methods were seeded with the aid Algorithm 1. In experiments
reported in panel (b) BA-JOINT, AML-SMPS, AML-COV, and WALS
occasionally converged to poor minima resulting in estimates that were
considerably worse than BA-SEP or DLT. These trials were treated as
outliers and removed from the plot. A summary of the percentage of trials
for which these methods converged to a better solution than BA-SEP is
presented in Table 6.

Table 6: Measuring the percentage of trials as per Figure 7b for which
various joint homography estimation methods, when seeded with the aid
of Algorithm 1, converged to a solution with lower reprojection error than
the solution generated by the separate bundle adjustment homography es-
timation method. Results are based on 1500 trials with 50 data points and
the noise level of σ = 2 pixels. Data points associated with homographies
overlapped minimally and formed clusters.

Methods
Number of homographies

4 5 6 7 8

BA-JOINT 100.00% 100.00% 100.00% 100.00% 100.00%
AML-SMPS 97.60% 97.60% 96.46% 96.26% 95.13%
AML-COV 92.46% 88.73% 87.93% 84.40% 83.26%
WALS 81.26% 82.73% 82.60% 79.86% 79.00%
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(a) Points corresponding to four homographies overlapped
substantially and covered entire image.
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(b) Points corresponding to four homographies overlapped
minimally and formed clusters.

Figure 8: Comparison of estimation methods on four homographies with
fixed noise level and increasing data points. Results are based on 1500
trials. All joint homography estimation methods were seeded with Algo-
rithm 1. In experiments reported in panel (b) BA-JOINT, AML-SMPS,
AML-COV, and WALS occasionally converged to poor minima resulting
in estimates that were considerably worse than BA-SEP or DLT. These
trials were treated as outliers and removed from the plot. A summary
of the percentage of trials for which these methods converged to a poor
solution is presented in Table 7.

Table 7: Measuring the percentage of trials as per Figure 8b for which
various joint homography estimation methods, when seeded with the aid
of Algorithm 1, converged to a solution with lower reprojection error than
the solution generated by the separate bundle adjustment homography es-
timation method. Results are based on 1500 trials with four homographies
and noise level of σ = 2 pixels. Data points associated with homographies
overlapped minimally and formed clusters.

Methods
Number of data points

10 20 30 40 50

BA-JOINT 98.20% 99.33% 99.53% 99.93% 99.86%
AML-SMPS 78.66% 80.40% 82.73% 83.53% 82.86%
AML-COV 46.46% 51.66% 51.20% 51.93% 52.60%
WALS 30.20% 31.86% 26.40% 27.40% 28.13%
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Table 8: Improvement over BA-SEP for estimation methods enforcing consistency constraints, expressed in terms of percentage reduction in reprojection error.
Results are based on 1500 trials, with 50 data points per trial and the noise level of σ = 2 pixels.

(a) Data points associated with different homographies overlapped substan-
tially and covered entire image.

Methods
Number of homographies

4 5 6 7 8

BA-JOINT 23.360% 25.919% 27.888% 29.403% 30.544%
AML-SMPS 23.355% 25.916% 27.885% 29.400% 30.540%
AML-COV 22.670% 25.264% 27.243% 28.770% 29.858%
WALS 22.658% 25.250% 27.241% 28.768% 29.850%

(b) Data points associated with different homographies overlapped mini-
mally and formed clusters.

Methods
Number of homographies

4 5 6 7 8

BA-JOINT 23.541% 26.574% 28.488% 29.948% 30.877%
AML-SMPS 23.534% 26.567% 28.483% 29.942% 30.874%
AML-COV 22.607% 25.415% 27.377% 28.904% 29.784%
WALS 21.221% 23.868% 26.282% 27.856% 28.905%

Table 9: Improvement over BA-SEP for estimation methods enforcing consistency constraints, expressed in terms of percentage reduction of reprojection error.
Results are based on 1500 trials, with 4 homographies per trial and the noise level of σ = 5 pixels.

(a) Data points associated with different homographies overlapped substan-
tially and covered entire image.

Methods
Number of data points

10 20 30 40 50

BA-JOINT 22.865% 22.952% 23.307% 22.935% 23.330%
AML-SMPS 22.865% 22.939% 23.294% 22.946% 23.299%
AML-COV 22.409% 22.287% 22.585% 22.262% 22.542%
WALS 19.528% 19.972% 19.912% 19.063% 18.936%

(b) Data points associated with different homographies overlapped mini-
mally and formed clusters image.

Methods
Number of data points

10 20 30 40 50

BA-JOINT 23.414% 23.297% 23.216% 22.634% 23.339%
AML-SMPS 23.390% 23.281% 23.206% 22.611% 23.286%
AML-COV 21.389% 21.468% 20.507% 20.260% 19.977%
WALS 16.643% 17.374% 17.282% 16.929% 16.612%
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(a) Data points associated with different homogra-
phies overlapped minimally and formed clusters.
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(b) Data points associated with different homogra-
phies overlapped substantially and covered entire
image.

Figure 9: Panels (a) and (b) contain plots of the AML-SMPS cost function for subsequent iterations of the Levenberg–Marquardt optimisation method for 500 trials.
After approximately 20 iterations the cost function has almost reached its minimum, and for the remaining hundreds of iterations the decrease in the cost between
iterations is marginal.

Table 10: Median running time of various homography estimation methods for a noise level of σ = 2 pixels and 50 data points.

Methods
Number of homographies

4 5 6 7 8

BA-SEP 3.8209 s (6 iter.) 6.0324 s (6 iter.) 8.2606 s (6 iter.) 11.0717 s (6 iter.) 14.9065 s (6 iter.)
BA-JOINT 4.4657 s (6 iter.) 6.6883 s (6 iter.) 8.9932 s (6 iter.) 11.9537 s (6 iter.) 15.8113 s ( 6 iter.)
AML-SMPS 25.0437 s (47 iter.) 34.9915 s (51 iter.) 44.1130 s (53 iter.) 52.9921 s (56 iter.) 62.4978 s (58 iter.)
AML-COV 0.0176 s (4 iter.) 0.0277 s (4 iter.) 0.0289 s (4 iter.) 0.0324 s (4 iter.) 0.0358 s (4 iter.)
WALS 2.1205 s (1739 iter.) 3.0876 s (630 iter.) 3.9658 s (562 iter.) 6.0659 s (546 iter.) 13.2215 s (522 iter.)
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(a) Recycle bin view 1. (b) Recycle bin view 2.

(c) BA-SEP result. (d) AML-SMPS result.

Figure 10: Transferring textures inside two designated planar regions on recycle bins from the first viewpoint to the second viewpoint. Panel (c) shows that separate
bundle adjustment failed to properly align one of the planes. In contrast, panel (d) shows that jointly estimating both homographies resulted in superior texture
alignment.

(a) Waste container view 1. (b) Waste container view 2.

(c) BA-SEP result. (d) AML-SMPS result.

Figure 11: Transferring textures inside two designated planar regions on waste containers from the first viewpoint to the second viewpoint. In panel (c) the transferred
texture on the top plane of the waste container encroaches on the edge of the container, and is not aligned with the red border of the texture on the front-facing plane
of the container. In contrast, panel (d) depicts a precise alignment.
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(a) Statue view 1. (b) Statue view 2.

(c) BA-SEP result. (d) AML-SMPS result.

Figure 12: Transferring textures inside six designated planar regions on a statue from the first viewpoint to the second viewpoint. Panel (c) shows that the quality of
one of the separately estimated homographies was very poor. The results are much better in panel (d) where inter-homography constraints were enforced. Comparing
the results in panels (c) and (d) suggest that the poorly estimated homography in panel (c) was incompatible with the remaining five homographies, and that only
thanks to enforcing inter-homography constraints that superior results were achieved in panel (d).

(a) Tea boxes view 1. (b) Tea boxes view 2.

(c) BA-SEP result. (d) AML-SMPS result.

Figure 13: Transferring textures inside six designated planar regions on tea boxes from the first viewpoint to the second viewpoint. In panel (c) the border of the top
of the purple tea box does not align properly with the edge of the box. In panel (d) the alignment is substantially better.
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(a) First view of Merton College. (b) Second view of Merton College.

(c) Flow vectors associated with matched cor-
responding points (in blue), as well as with
outliers (in orange).

(d) Flow vectors associated with two groups
of matched inliers resulting from sequential
RANSAC.

(e) Result of transferring planar region be-
tween (a) and (b) using homography esti-
mated with BA-SEP.

(f) Result of transferring planar region be-
tween (a) and (b) using homography esti-
mated with AML-SMPS.

Figure 14: Qualitative results of robust homography estimation with and without consistency constraints. A small planar region containing a window in panel (a)
is mapped using an estimated homography to its corresponding region in panel (b). The brightness of the mapped region is increased to make the region more
distinguishable. Panel (e) shows that without enforcing consistency constraints the ledge below the window does not align properly. In contrast, panel (f) illustrates
that enforcing consistency constraints remedies the misalignment.

15



11. Conclusion

After giving a comprehensive account of the historical de-
velopments in multiple homography estimation, we introduced
a new multiple homography estimation method that utilises the
dependable Sampson distance and operates directly on corre-
sponding points. In contrast, all prior estimators fit a set of
homography matrices to another set of homography matrices.
Our experiments attest that jointly estimating multiple homo-
graphies yields considerable accuracy gains over separately es-
timated homographies.
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