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INTERIOR POINT SOLUTION OF FRACTIONAL BETHE PERMANENT

Jason L. Williams

National Security and ISR Division, Defence Science and Technology Organisation, Australia
and School of Electrical and Electronic Engineering, University of Adelaide, Australia

ABSTRACT
Many combinatorial problems in fields such as object
tracking involve reasoning over correspondence, e.g.,
calculating the probability that a measurement belongs to a
particular track. Recent studies have shown that loopy belief
propagation (LBP) provides a highly desirable option in the
trade-off between accuracy and computational complexity in
this task. LBP can be understood as a particular method for
optimising the Bethe free energy (BFE). In this paper, we
directly optimise the BFE using an interior point Newton
method. Exploiting the structure of the constraints, we arrive
at an algorithm offers improvements in computation in cases
in which LBP converges very slowly. The method also
solves the recently-proposed fractional free energy (FFE);
we use this to demonstrate that FFE can offer marginal
estimates with improved accuracy.

1. INTRODUCTION

Problems involving inference over correspondence are
common in areas such as tracking, e.g., in data association,
where unknown measurement-object correspondence is
addressed, and in fusion of tracks from different sensors [1].
These are also referred to as weighted bipartite matching
problems, since they consider configurations in which
each item in one group (e.g., each track) is paired with
an item in the other group (e.g., a measurement). While
the most likely association can be calculated efficiently
using methods such as the auction algorithm, calculation of
marginal correspondence probabilities is closely related to
the #P-complete problem of calculating a matrix permanent.

An emerging method for estimation of the matrix
permanent and marginal correspondence probabilities
(required to implement standard tracking filters such as
JPDA and its many extensions [1]) using probabilistic
graphical models (PGM) is examined in [2–4]. The model
studied is one in which the probability of a matching of n
tracks to n measurements is:

p(a1, . . . , an) ∝

{∏n
i=1 ciai , matching feasible

0, otherwise
(1)

where ai ∈ {1, . . . , n} is the index of the measurement with
which the i-th track is matched, i.e., ai = j if track i is

matched with measurement j. A matching is feasible if each
measurement is matched with at most one track. In [2], it was
shown that the following optimisation problem (with γ = 1)
yields the optimal solution of the Bethe free energy (BFE) [5]
for a particular PGM formulation of the problem:

minimise
qij

∑
i,j

qij log
qij
cij
− γ

∑
i,j

(1− qij) log(1− qij)

(2)

subject to
∑
j

qij = 1 ∀ i,
∑
i

qij = 1 ∀ j, qij ≥ 0

where qij is the belief (i.e., approximate marginal probability)
that track i is matched with measurement j. Furthermore, it
was shown that the objective is convex on the affine subspace
in which at least one of the two sets of equality constraints
is satisfied; this is not obvious, since the second term in the
objective is concave. The resulting beliefs were shown empir-
ically in [4] to provide a remarkably accurate approximation
of the marginal probabilities.

It is well-known that if loopy belief propagation (LBP)
converges, the result is a stationary point of the BFE [5]. Con-
vergence of LBP in the formulation of interest was proven si-
multaneously in conference papers preceding [2,4]. In most
practical problems, convergence is sufficiently rapid; in [4] it
is shown that convergence is at least linear, with a rate de-
termined by the problem parameters. However, in a small
proportion of practical problems, convergence is slow, and an
alternative is needed.

The primary motivation of [2,3] was estimation of the ma-
trix permanent, which is effectively the normalisation con-
stant in (1). In [3], it is shown that for any problem, there is a
value γ ∈ [0, 1] for which the solution of (2) yields the exact
value of the matrix permanent, leading to FFE, which utilises
a value γ < 1.1 It not known whether this modification yields
improved beliefs, or if LBP converges in this case.

With γ = 0, (2) reduces to the problem of matrix normal-
isation, i.e., multiplying each row of a non-negative matrix by
a constant and each column by a constant in order to obtain a
doubly stochastic matrix. The most common method for this
is Sinkhorn algorithm [6], which is somewhat similar to LBP.
Like LBP, Sinkhorn iteration converges rapidly in most cases,

1Note that γ is negated in comparison to [3].



but is problematic in a small but important subset. This has
yielded further study such as [7], which proposed an interior
point method for optimising (2) with γ = 0. It was reported
that the complexity of the approach is O(n6); consequently,
the method has not been applied widely.

1.1. Contributions

In this paper, we develop an interior point method for opti-
mising (2) for any γ ∈ (−∞, 1]. As in [4], the setting is
generalised to examine non-square (n×m) matrices in order
to admit missed detection and false alarm events (although the
probability of these can be set to zero to recover the original
square case). The contributions in the development include:

• Whereas the standard formulation of interior point
methods assumes that the objective is convex
on Rn, the objective (2) is only convex on the
subspace in which the equality constraints are
satisfied. Consequently, naı̈ve application of equality
constrained Newton optimisers would fail. We show
that this can be addressed by modifying the problem
solved in each Newton step, applying a projection
in order to obtain a problem involving a positive
semi-definite Hessian. While this may be viewed as
sequential quadratic programming, the insight is that
the convexity that is present in the particular problem
of interest can be recovered, yielding quadratic
sub-problems that can be solved analytically.

• Although the problem involves nm variables and
(nm + n + m) constraints and direct solution of the
Newton step would have complexity O(n3m3) (as
reported in [7]), we show that the structure of the
constraints can be exploited to obtain a solution with
complexity O(min{n2m,m2n}).

Empirically, we show that convergence is rapid, never extend-
ing beyond 70 iterations even in problems for which LBP re-
quires 15,000 iterations. Finally, using the newly developed
method, we examine the accuracy of the marginal estimates
obtained by setting γ < 1, thus demonstrating the improve-
ment in marginal probability estimates that can be achieved
using the FFE proposed in [3].

1.2. Notation

• Vectors are denoted by lower case letters with bold text,
e.g., q, and matrices by upper case bold letters, e.g., A

• The notation x = [xi] indicates that x is a column vec-
tor for which the i-th entry is the scalar xi

• The notation ‘;’ refers to vertical concatenation, e.g.,
[x1; x2] = [xT1 xT2 ]

T

• The Kronecker product is denoted by ⊗
• The notation 1N×M refers to the N × M matrix for

which every element has the value one (similarly for
0N×M )

• The N ×N identity matrix is denoted by IN

2. FORMULATION

This paper considers the following optimisation problem, of
finding qij given input data cij , where i ∈ {0, . . . , n} and
j ∈ {0, . . . ,m}:

minimise
qij

n∑
i=1

m∑
j=0

qij log
qij
cij

+ γ

m∑
j=1

q0j log
q0j
c0j

− γ
n∑
i=1

m∑
j=1

(1− qij) log(1− qij) (3)

subject to
∑m
j=0qij = 1 ∀ i ∈ {1, . . . , n} (4)∑n
i=0qij = 1 ∀ j ∈ {1, . . . ,m} (5)

qij ≥ 0 ∀ i, j, q00 = c00 (6)

With γ = 1, this can be shown to be the extension of the for-
mulation of [2] to non-square problems incorporating missed
detections and false alarms (i.e., the formulation studied in
[4]). The weighting of the second term in the objective by γ
ensures that the correct solution is obtained in problems in-
volving well-spaced tracks when γ < 1.

In vector form (q = [q0; q1; . . . ; qm], where qj =
[qij ]

n
i=0), the equality constraints (4) and (5) can be respec-

tively written as:

A1q = 1n×1, A2q = 1m×1 (7)

A1 = 11×(m+1) ⊗
[
0n×1 In

]
(8)

=
[
0n×1 In . . . 0n×1 In

]
A2 =

[
0m×1 Im

]
⊗ 11×(n+1) (9)

=

 01×(n+1) 11×(n+1) . . . 01×(n+1)

...
...

. . .
...

01×(n+1) 01×(n+1) . . . 11×(n+1)


These constraints can be combined into a single matrix con-
straint:

Aq = 1(n+m)×1, A =
[
A1; A2

]
(10)

For numerical convenience, we reformulate the optimisation
via a linear transformation, q = Cf where C is the diagonal
matrix such that qij = cijfij . In vector form, the equality
constraints can be expressed as:

Ãf =

[
Ã1

Ã2

]
f =

[
A1C
A2C

]
f = 1(n+m)×1 (11)

3. NEWTON OPTIMISATION

Solving (3) using a Newton-based method is complicated by
the fact that the objective is only convex on the linear sub-
space in which at least one of the two sets of equality con-
straints (4), (5) are satisfied. Accordingly, both sets of con-
straints cannot be relaxed (i.e., in order to address them via



Lagrangian methods). Incorporating a log barrier to enforce
the non-negativity constraints (6), we arrive at a barrier func-
tion:

Bθ(f) =

n∑
i=1

m∑
j=0

cijfij log fij + γ

m∑
j=1

c0jf0j log f0j

− γ
n∑
i=1

m∑
j=1

(1− cijfij) log(1− cijfij)− θ
n∑
i=0

m∑
j=0

log fij

(12)

to which the equality constraints (4) and (5) must still be ap-
plied. Applying Newton’s method, we minimise a second-
order Taylor series approximation to this function about a
nominal f :

minimise
δf

Bθ(f) + gT δf +
1

2
δfTHδf (13)

subject to Ãδf = −r (14)

where g = ∇Bθ(f) is the vector gradient of Bθ at f , and
H = ∇2Bθ(f) is the Hessian; these can be evaluated as H =
diagh, where g (and h) is comprised of elements gij similar
to q, and for i > 0, j > 0,

gij =cij{log fij + γ log[1− cijfij ] + (1 + γ)} − θ

fij

hij =
cij
fij
−

γc2ij
1− cijfij

+
θ

f2ij

and gi0 = ci0(log fi0 + 1) − θ/fi0, hi0 = ci0/fi0 + θ/f2i0,
g0j = γc0j(log f0j + 1) − θ/f0j , h0j = γc0j/f0j + θ/f20j .
The residual is given by r = Ãf − 1(n+m)×1 = [r1; r2]. We
assume that the initial point is feasible with respect to at least
one of the two sets of constraints (4), (5) (i.e., either r1 = 0
or r2 = 0) in order to ensure that the convexity result of [2]
applies.

The difficulty of solving (13) is that the matrix H is not
PSD, thus the regular solution handling the constraint (14)
via Lagrangian methods is problematic. However, we will
show that this difficulty can be overcome by projecting onto
the feasible subspace. To proceed, let P be the matrix that
projects onto the null space of Ã:

P = I− ÃT (ÃÃT )−1Ã (15)

Subsequently, the constraint Ãδf = −r will be satisfied if
and only if δf = Pδf − ÃT (ÃÃT )−1r. Substituting this
identity into the objective, dropping constant terms and sim-
plifying, we find the equivalent problem:

minimise
δf

[g −HÃT (ÃÃT )−1r]TPδf +
1

2
δfTPHPδf

(16)

subject to Ãδf = −r (17)

This clearly does not change the location of the solution, since
the objective is unchanged within the feasible set (other than
an additive constant). The key difference is that whereas the
matrix H is not PSD, the projection PHP is, as the following
theorem shows.

Theorem 1. Suppose J(f) : F → R is convex on an affine
subset A = {f ∈ F|Af = b} of the convex set F , and J
is twice differentiable at a point f ∈ A in the interior of F .
Then PHP � 0, where H is the Hessian of J at f , and P is
the matrix that projects onto the null space of A.

Proof. Given some fixed f ∈ A, any vector y ∈ A can be
written as f+Pδf . Let J̃(δf) = J(f+Pδf). Since f is in the
interior of F , f + Pδf ∈ A for sufficiently small |δf |. Since
J̃ is convex on the neighbourhood around zero,∇2J̃ � 0. By
the vector chain rule,∇2J̃ = P(∇2J)P = PHP.

Consequently, we can solve (16) using a standard
Lagrangian method (via convex duality) as: [8, p532][

PHP ÃT

Ã 0

] [
δf
ν

]
=

[
−g̃
−r

]
(18)

where g̃ = Pg − PHÃT (ÃÃT )−1r. Algebraic manipula-
tions result in the solution ν = 0, and

δf = −H−1[I− ÃT (ÃH−1ÃT )−1ÃH−1]Pg

−H−1ÃT (ÃH−1ÃT )−1r (19)

The solution obtained using the standard method (ignoring
the fact that H is not PSD) simply replaces Pg with g; the
impact of correcting for the non-convexity is pre-projection
of the gradient onto the feasible subspace. This is necessary
for cases in which the objective is only convex on the affine
subspace defined by the constraints (i.e., when γ > 0).

When A is as given in (10), the expression
(ÃH−1ÃT )−1b (where b = ÃH−1Pg − r)) can be found
as the solution of[

Ã1H
−1ÃT

1 Ã1H
−1ÃT

2

Ã2H
−1ÃT

1 Ã2H
−1ÃT

2

] [
x1

x2

]
=

[
b1

b2

]
(20)

Algebraic manipulations reveal the solution as

x2 = G−1[b2 − Ã2H
−1ÃT

1 (Ã1H
−1ÃT

1 )
−1b1] (21)

G = Ã2H
−1ÃT

2 − Ã2H
−1ÃT

1 (Ã1H
−1ÃT

1 )
−1Ã1H

−1ÃT
2

(22)

x1 = (Ã1H
−1ÃT

1 )
−1[b1 − Ã1H

−1ÃT
2 x2] (23)

The complexity of calculating G is O(m2n), and the com-
plexity of inverting G is O(m3) (it can easily be shown that
Ã1H

−1ÃT
1 and Ã2H

−1ÃT
2 are diagonal). If m > n, the

rows of (20) can be reversed so that the overall complexity
is O(min{m2n, n2m}). A similar approach can be used to
calculate the projection Pg.



4. RESULTS

We evaluate the proposed method using the experiments
described in [4], examining a 2 × 3 grid of regularly spaced
objects, where the spacing is varied from 0 to 10 units to
observe the impact of target interaction. Track estimates
are initialised by simulating the observation process (with
known association) for 30 time steps. The probability of
detection is set to Pd = 0.98, and false alarm densities
of λfa ∈ {10−2, 10−4, 10−6} are considered; remaining
problem parameters follow the baseline case described
in [4] (as discussed in [4], the most challenging cases for
convergence and accuracy of LBP are those with high Pd
and/or low λfa). In each condition, 1000 Monte Carlo (MC)
trials are executed, yielding a total over all conditions of
153,000 MC trials for each algorithm. The exact marginal
association distribution for each target is calculated using a
junction tree method as described in [4].

Results are shown in Figure 1. As expected, LBP obtains
an identical result to the Newton-based method with γ = 1.
The computation time of the Newton-based method is essen-
tially unaffected by the problem conditions, whereas the com-
plexity of LBP increases by two orders of magnitude in the
lowest λfa case (which suffers from slow convergence), result-
ing in a computation time 10× that of the Newton method. In
the low λfa cases, choosing γ < 1 also improves the accuracy
of the marginal estimates. In the lowest λfa case, the marginal
estimates obtained with γ = 1 have KL divergences of over
0.1, whereas with γ = 0.7, they are less than 0.01.

5. CONCLUSION

This paper has demonstrated how an interior point method can
be used to estimate association probabilities using the BFE
formulation of [2–4]. The proposed method complements
LBP, providing an alternative that can be utilised in cases
in which convergence of LBP is problematic. We have also
demonstrated that the fractional free energy proposed by [3]
can considerably improve the accuracy of the resulting esti-
mates in high SNR cases. Future work includes devising an
approach to automatically select the value of γ.
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