A RANDOMISED CONTROLLED TRIAL OF DHA-RICH FISH OIL SUPPLEMENTATION DURING PREGNANCY AND SUBSEQUENT DEVELOPMENT OF ATTENTION, WORKING MEMORY AND INHIBITORY CONTROL IN EARLY CHILDHOOD

JACQUELINE F GOULD

B HIth Sc, B Soc Sc, Hons Psych

This thesis is submitted for the degree of Doctor of Philosophy

Discipline of Paediatrics

School of Paediatrics and Reproductive Health

Faculty of Heath Sciences

University of Adelaide

2012

TABLE OF CONTENTS

TABLE OF CONTENTS	2
SUMMARY	7
DECLARATION	10
ACKNOWLEDGEMENTS	11
GLOSSARY	13
LIST OF TABLES	15
LIST OF FIGURES	16
CHAPTER 1: LITERATURE REVIEW	18
OVERVIEW OF THE REVIEW	18
REVIEW OF DHA IN THE DEVELOPMENT OF THE BRAIN	20
FATTY ACIDS	20
DOCOSAHEXAENOIC ACID (DHA)	23
Role of DHA	23
DHA AND THE DEVELOPING BRAIN	24
Frontal Lobes	27
Hippocampus	28
Executive Functions	29
SUPPLY OF DHA DURING GESTATIONAL DEVELOPMENT	30
Supply of Maternal DHA during Pregnancy	30
Dietary Sources of DHA	31
DHA Intake of Pregnant Women	31
REVIEW OF DHA INTAKE DURING PREGNANCY AND INFANT NEURODEVELOPM	ENT:
OBSERVATIONAL AND ANIMAL STUDIES	33
DHA DURING PREGNANCY AND OFFSPRING DEVELOPMENT IN ANIMAL STUDIES	33
DHA DURING PREGNANCY AND INFANT DEVELOPMENT IN OBSERVATIONAL STUDIES	34
Relevance and Need for Controlled Clinical Trials	35

Limitations of Animal and Observational Studies	35
Benefits of Randomised Controlled Trials	37
SYSTEMATIC REVIEW AND META ANALYSIS OF RANDOMISED CONTROLLED TR	IALS
OF DHA SUPPLEMENTATION DURING PREGNANCY AND EARLY CHILDHOOD	
NEURODEVELOPMENT OUTCOMES	40
Rationale for the Review	40
Methods	41
Criteria for Selecting Studies for the Review	42
Search Methods for Identification of Studies	42
Data Collection and Analysis	43
RESULTS	46
Summary of Included Studies	49
Methods of Included Trials	49
Participants	49
Intervention	50
Risk of Bias	54
Results of Included Studies: Cognitive Outcomes	56
Results of Included Studies: Neurodevelopmental Outcomes	65
DISCUSSION	66
CONCLUSION	70
RATIONALE FOR A NEW ASSESSMENT OF COGNITIVE DEVELOPMENT IN A	
RANDOMISED CONTROLLED TRIAL OF MATERNAL DHA DURING PREGNANCY	71
ASSESSMENT OF THE FRONTAL LOBES AND HIPPOCAMPUS	72
Attention	72
Working Memory and Inhibitory Control	75
TRIAL OF GOOD METHODOLOGICAL DESIGN AND QUALITY	81
RATIONALE SUMMARY	81

CHAPTER 2: MEASURES OF ATTENTION, WORKING MEMORY AND INHIBITORY CONTROL IN EARLY CHILDHOOD IN A RCT OF DHA IN PREGNANCY

ASSESSMENTS OF THE FRONTAL LOBES AND HIPPOCAMPUS	83
DEVELOPMENT OF THE TECHNIQUES FOR MEASURING ATTENTION, WORKING MEMO	DRY AND
INHIBITORY CONTROL IN EARLY CHILDHOOD	83
OBTAINING THE METHODS DEVELOPED BY COLOMBO ET AL	83
IMPLEMENTATION OF ASSESSMENTS FOR MY STUDY	84
SET-UP OF THE ATTENTION AND WMIC ASSESSMENTS	85
Equipment for the Attention and WMIC Assessments	87
PROCEDURE FOR THE ATTENTION AND WMIC ASSESSMENTS	95

83

Assessing Attention	95
Assessing WM and IC	98
EXTRACTING DATA FROM THE ATTENTION AND WMIC ASSESSMENTS	102
The Attention Assessment	103
The WMIC Assessment	107
OPTIMISATION OF ASSESSMENT TECHNIQUES	108
OPTIMISATION OF DATA EXTRACTION TECHNIQUES	109
Results of the Reliability Analyses	111
A RANDOMISED CONTROL TRIAL OF MATERNAL DHA SUPPLEMENTATION DU	RING
PREGNANCY: THE DOMINO TRIAL	117
INTRODUCTION	117
TRIAL DESIGN	117
Hypotheses and Outcomes	118
Participants	119
Randomisation	121
Intervention	122
Adherence to Intervention	122
Cord Plasma DHA Analysis	123
Ethics	123
FOLLOW-UP ASSESSMENT OF EXECUTIVE FUNCTIONING AT 21/4 YEARS	124
ELIGIBILITY, INCLUSION CRITERIA AND EXCLUSION CRITERIA	124
RECRUITMENT AND ENROLMENT	125
ETHICS	126
THE WHOLE APPOINTMENT	127
OTHER INFORMATION COLLECTED FOR THE STUDY	128
Background Information: Case Report Form	128
Home Environment: Home Screening Questionnaire	129
Anthropometrics	129
SAMPLE SIZE	130
STATISTICAL ANALYSES FOR COMPARING INTERVENTION GROUPS	131

CHAPTER 3: INFLUENCE OF DHA SUPPLEMENTATION DURING PREGNANCY ON ATTENTION AT 2 YEARS OF AGE: RESULTS OF A RANDOMISED CONTROLLED TRIAL

	100
ABSTRACT	133
INTRODUCTION	135
OUTCOMES AND HYPOTHESIS	136
Метнор	136
RESULTS	139

133

SAMPLE AND PARTICIPANT FLOW	139
Characteristics of Study Participants	142
ATTENTION OUTCOMES	145
Single Object Task	145
Multiple Object Task	146
Distractibility Task	147
Exploratory Outcomes: Associations with Cord Plasma DHA	149
Post-hoc Analyses	153
ANTHROPOMETRICS	156
DISCUSSION	157
SUMMARY OF THE RESULTS	157
EXPLANATION OF THE RESULTS	157
SITUATING MY STUDY IN THE CONTEXT OF OTHER STUDIES	159
STRENGTHS AND LIMITATIONS	163
FUTURE RESEARCH	164
CONCLUSION	164

CHAPTER 4: INFLUENCE OF DHA SUPPLEMENTATION DURINGPREGNANCY ON WORKING MEMORY AND INHIBITORY CONTROL AT 2YEARS OF AGE: RESULTS OF A RANDOMISED CONTROLLED TRIAL166

Abstract	166
INTRODUCTION	168
OUTCOMES AND HYPOTHESIS	168
Метнод	169
RESULTS	171
SAMPLE	171
ASSESSMENT OUTCOMES	172
WMIC Primary Outcome	172
Other Outcome	172
Exploratory Outcome: Association with Cord Plasma DHA	173
Post-Hoc Analysis	174
DISCUSSION	176
SUMMARY OF THE RESULTS	176
EXPLANATION OF THE RESULTS	176
SITUATING MY STUDY IN THE CONTEXT OF OTHER WMIC STUDIES	177
STRENGTHS AND LIMITATIONS	179
FUTURE RESEARCH	180
CONCLUSION	181

CHAPTER 5: GENERAL DISCUSSION	182
CONCLUDING REMARKS AND RECOMMENDATIONS	189
BIBLIOGRAPHY	190
APPENDICES	210
Appendix 1: Cochrane Pregnancy and Childbirth Group Data Extraction	
Template	211
Appendix 2: Standard Operating Procedure for the Attention Assessment	216
Appendix 3: Standard Operating Procedure for the Working Memory and Inhibitory Control	
Assessment	224
Appendix 4: Standard Operating Procedure for Coding the Single Object Task	229
Appendix 5: Standard Operating Procedure for Coding the Multiple Object Task	242
Appendix 6: Standard Operating Procedure for Coding the Distractibility Task	256
Appendix 7: Standard Operating Procedure for the Working Memory and Inhibitory Control	
Assessment	269
Appendix 8: Case Report Form for the 2-Year Follow-Up of the DOMInO Trial	279
Appendix 9: Home Screening Questionnaire	
Appendix 10: Standard Operating Procedure for Measuring Height	
Appendix 11: Standard Operating Procedure for Measuring Weight	
Appendix 12: Standard Operating Procedure for Measuring Head Circumference	
Appendix 13: Unadjusted Analyses from Chapters 3 and 4; Cord Plasma DHA Associations with C	outcomes of
the Attention and WMIC Assessments	321
Appendix 14: Published Peer-Reviewed Abstracts and Papers from this Thesis	323

SUMMARY

The last trimester of pregnancy is the period during which the fetal brain is growing at its greatest velocity, particularly the frontal lobes and hippocampus. This is also the peak period for the accumulation of omega-3 long chain polyunsaturated fatty acid (LCPUFA) docosahexaenoic acid (DHA) in neural tissues. The amount of DHA required by the fetus is thought to exceed the DHA intake of women of child-bearing age who consume a Western-style diet. This has led to the belief that maternal DHA supplementation during pregnancy will enhance child cognitive development in these populations. Cohort studies have supported this belief by linking intake of foods rich in DHA (primarily seafood) during pregnancy to enhanced child cognitive development. However, only randomised controlled trials (RCTs) can establish causality.

In this thesis I report a comprehensive systematic review of the current RCTs of DHA supplementation during pregnancy (Chapter 1) using procedures described by the Cochrane collaboration and the PRISMA statement. Results of globalised standard assessments in the reviewed RCTs were compared in meta analyses. No effect of DHA supplementation was found in any age group, except in the 2-5 year-olds where the LCPUFA group was advantaged. A risk of bias assessment revealed that the majority of the trials were of poor quality, particularly those in which there was a finding of significance. Furthermore the majority of trials used standardised tests of global development or cognition. Fetal DHA availability is thought to primarily effect the frontal lobes and hippocampus, which are responsible for higher order cognitive skills known as Executive Functions (EFs). The global assessments used in the RCTs capture performance across multiple neural systems simultaneously and lack the sensitivity to detect development in specific areas of cognition. Thus, global tests may not be suitable for detecting subtle effects of DHA supplementation on neurodevelopment. There has been a call for nutrition researchers to use specialised measures of cognitive functions that are appropriate for assessing the specific neural systems thought to be effected by an intervention, rather than global measures.

I addressed the need for a specialised measure of frontal lobe and hippocampus development in a RCT of DHA supplementation during pregnancy. The systematic review identified the DOMInO Trial as being a high-quality trial with a lower risk of bias compared with the other published RCTs. No one task can represent overall executive functioning abilities so I applied a range of specialised, age-appropriate assessments of EFs in two-year-old children. Attention, working memory (WM) and inhibitory control (IC) were the EFs selected for assessment in a subgroup of healthy, term-born toddlers (aged 27-months) from the DOMInO Trial. Two tests, the Attention Assessment involving three measures of attention, and the Working Memory and Inhibitory Control (WMIC) Assessment were identified from the developmental psychology literature. The Attention Assessment involved providing the child with toys to play with and measuring their attention (looking) to the toy(s) in three different scenarios; 1. the child had one toy to play with and their attention to the toy was measured in the absence of any competition for attention or distractions, 2. The child had five toys to play with and the number of times their attention switched between the toys competing for attention was measured, 3. The child had one toy to play with while a television in the periphery offered a distraction, and the time the child took to be distracted, from the toy, by the television was measured. The WMIC Assessment involved training a child to search for a hidden figurine in a specific location in a large box of lentils, and then hiding the figurine in an alternate location and delaying them from retrieving the figurine. Accuracy of searching for the figurine hidden in the alternate location was measured.

There was no effect of supplementation on the primary outcomes; latency to be distracted during Focused attention (Attention Assessment), and accuracy of searching for a hidden figurine during Test Trials (WMIC Assessment). The majority of the secondary outcomes supported the findings of null effect in the primary outcomes. There was one outcome in which there was a possible benefit of supplementation, but the effect was small and is likely to be due to chance. I conducted a large number of comparisons (n=18 pre-specified) on a relatively small sample (n=~152 per task) which increases the risk of a Type I error (finding a difference that is the result of chance). Furthermore, no other benefit was shown in any other outcomes, primary, secondary or exploratory. Associations between cord plasma DHA and outcomes of the Attention and WMIC assessments were inconsistent, indicating no true association.

Overall, the results of the two assessments I used suggest no effect of DHA supplementation during pregnancy on the cognitive development of healthy, otherwise well-nourished term-born children.

The findings of the specialised attention and WMIC assessments used in my study support the findings of global tests used in other RCTs of DHA supplementation during pregnancy. Increasing fetal exposure to DHA may not enhance cognitive development because growth of the brain is protected during in-utero development. Maternal stores of DHA, up-regulation of DHA synthesis and preferential transfer of DHA across the placenta during pregnancy may protect neurological structures from suboptimal development so that greater fetal exposure to DHA does not enhance child cognitive development.

Future research will be needed to determine whether specific at-risk sub-groups, such as children from pregnancies with placental insufficiency or who are growth restricted in utero, benefit from DHA supplementation during pregnancy.

DECLARATION

I certify that this work contains no material which has been accepted for the award of any other degree or diploma in any tertiary institution. This work, to the best of my knowledge, contains no material previously published or written by another person, except where due reference has been made within the text of this book. In addition, I certify that no part of this work will, in the future, be used in a submission for any other degree of diploma in any university or other tertiary institution without the prior approval of the University of Adelaide.

One chapter of this thesis is set to be published in a peer-reviewed journal. The systematic review and meta analysis in Chapter 1 (Literature Review) has been accepted for publication in the American Journal of Clinical Nutrition (in press) with myself as first author and main contributor to the paper, written with and under the guidance of my supervisors Dr Lisa Smithers and Prof Maria Makrides.

I consent to this copy of my thesis being deposited in the University of Adelaide Library to be available for loans and photocopying (subject to the provisions of the Copyright Act 1968). I acknowledge that copyright of published works contained within this thesis resides with the copyright holder(s) of those works. I also give permission for the digital version of this work to be made available on the web, via the Australasian Digital Theses Program (ADTP) and also through web search engines.

Jacqueline Gould

B SocSc, B Hlth Sc, Hon Psych

ACKNOWLEDGEMENTS

The idea for this study was conceived by Dr Lisa Smithers (in conjunction with Professor Maria Makrides and John Colombo). I thank them all for the opportunity to undertake my thesis in this area and for their support in making this project a reality.

Firstly I would like to thank the children and their parents from who volunteered their time and effort to make this study possible. I am enormously grateful for their good will and support for this research.

Many thanks go to my three supervisors; Dr Lisa Smithers, whose kind, cheerful direction set the pace; Professor Maria Makrides whose patience and thoughtfulness kept things on track, and Professor Bob Gibson whose encouragement and wit made things interesting. Without the enduring help and guidance of these three the work that constitutes this thesis would not have been possible.

Special thanks goes to Dr John Colombo for sharing of his techniques for measuring attention, working memory and inhibitory control in young children and his continued thoughtful help and assistance throughout the study. Thankyou to Dr Susan Carlson for instructing Dr Smithers in the assessment techniques and providing invaluable training materials.

Thank you to the Flinders Medical Centre Media department for creating the distractor DVD and to Steven Flavel from the Flinders Medical Centre Information Technology department for assisting with the set-up of the video recording equipment.

Many thanks to David Apps whose patience and computer programming skills saved countless hours of work and to Professor Phil Ryan and Mr Tom Sullivan whose infinite knowledge of STATA saved many stressful hours of frustrated uncertainty.

Thanks go to Jen O'Hare who formed and formatted the appendices of this thesis.

Thank you to all the staff at CNRC who did all the ground work with the DOMInO Trial. Thanks for the administrative support from Meghan Crabb, Jen O'Hare and Renae Johnson.

I would not have been able to undertake and complete this work without the personal financial support of full-time scholarships I received from The University of Adelaide and the Women's and Children's Health Research Institute as well as a research grant to support the study from the Channel 7 Children's Research Foundation.

I would also like to thank those who have kindly offered personal support during this study. Thank you to CNRC staff at FMC; Jo Collins, Liz Stachan, Mandy O'Grady, Meghan Crabb, Lora Vanis, Zoe Gulpers, Alicia Piteo and Anna Seamark as well as my fellow students Lenka Malek and Nicola Gawlik for the daily cheerful supportive chats, coffees, cakes and laughs (or vents). My gratitude also goes to Dr Carmel Collins and Dr Jo Zhou for all the professional and personal encouragement and advice.

Last but certainly not least, I would also like to give a tremendous thanks to my partner, Sam Murphy, and family for their unrelenting support, faith and patient kindness, I cannot express my gratitude to you enough!

GLOSSARY

AA	Arachidonic Acid
ALA	alpha-linolenic acid
ALSPAC	Avon Longitudinal Study of Pregnancy and Childhood
BSID	Bayley Scales of Infant Development
CENTRAL	Cochrane Central Register of Controlled Trials
CNS	Central nervous system
CNRC	Child Nutrition Research Centre
CRF	Case Report Form
CS	Centiseconds
DINO	DHA for the Improvement of Neurodevelopmental Outcome in preterm infants
DOMInO	DHA to Optimise Mother Infant Outcome
DHA	Docosahexaenoic acid
DPA	Docosapentaenoic acid
DSS	Developmental Standard Score
EFs	Executive functions
FA	Fatty acid
GMDS	Griffith Mental Development Scales
HSQ	Home Screening Questionnaire
IC	Inhibitory Control
IQ	Intelligence quotient
ITT	Intention-to-treat
K-ABC	Kaufman Assessment Battery for Children
LCPUFA	Long-chain polyunsaturated fatty acid
n-3/6 LCPUFA	Omega-3/6 long-chain polyunsaturated fatty acid

NHMRC	National Health and Medical Research Council
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
PUFA	Polyunsaturated fatty acid
RCT	Randomised controlled trial
RDI	Recommended Daily Intake
S	Seconds
SD	Standard deviation
SOP	Standard operating procedure
WHO	World Health Organisation
WM	Working Memory
WMIC	Working Memory and Inhibitory Control
WPPSI	Weschler Preschool and Primary Scale of Intelligence

LIST OF TABLES

TABLE 1. DOMAINS FOR ASSESSING RISK OF BIAS AS PER THE COCHRANE HANDBOOK
TABLE 2. SUMMARY OF METHODS AND OUTCOMES OF TRIALS INCLUDED IN THE REVIEW
TABLE 3. MEAN DIFFERENCES AND 95% CONFIDENCE INTERVALS BETWEEN TREATMENT GROUPS IN RANDOMISED CONTROLLED
TRIALS OF DHA SUPPLEMENTATION DURING PREGNANCY FOR SUBSCALES OF PSYCHOMETRIC TESTS
TABLE 4.1. RELIABILITY OF DATA EXTRACTION BETWEEN THE TWO EXTRACTORS FOR THE SINGLE OBJECT TASK OF THE ATTENTION
ASSESSMENT
TABLE 4.2. RELIABILITY OF DATA EXTRACTION BETWEEN THE TWO EXTRACTORS FOR THE MULTIPLE OBJECT TASK OF THE
Attention Assessment
TABLE 4.3. RELIABILITY OF DATA EXTRACTION BETWEEN THE TWO EXTRACTORS FOR THE DISTRACTIBILITY TASK OF THE ATTENTION
ASSESSMENT
TABLE 5.1 RELIABILITY OF DATA EXTRACTION BETWEEN THE TWO EXTRACTORS (PRIOR TO REVIEWING DISCREPANCIES) FOR THE
Working Memory and Inhibitory Control Assessment
TABLE 5.2 RELIABILITY OF DATA EXTRACTION BETWEEN THE TWO EXTRACTORS (WHEN VIEWING THE ASSESSMENT ON THE SAME
26" SCREEN) FOR THE WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT
TABLE 6. INCLUSION AND EXCLUSION CRITERIA OF THE DOMINO TRIAL AND THE 27-MONTH EXECUTIVE FUNCTIONING FOLLOW-
UP ASSESSMENT
TABLE 7. SUMMARY OF ASSESSMENTS IN ORDER OF COMPLETION FOR THE TWO-YEAR FOLLOW-UP APPOINTMENT
TABLE 8. SUMMARY OF METHODS AND MAIN OUTCOMES FOR EACH TASK OF THE ATTENTION ASSESSMENT
TABLE 9. CHARACTERISTICS OF THE PARTICIPANTS IN THE DOMINO TRIAL COHORT, THE 4-MONTH VISUAL DEVELOPMENT STUDY
AND THE TWO-YEAR FOLLOW-UP STUDY
TABLE 10.1 CHARACTERISTICS OF THE PARTICIPANTS AND FAMILIES IN THE TWO-YEAR FOLLOW-UP
TABLE 10.2 CHILD CHARACTERISTICS AT TWO-YEAR FOLLOW-UP ASSESSMENT 144
TABLE 10.3 CHILD DIETARY INTAKE OF DHA SINCE BIRTH
TABLE 11. OUTCOMES FOR THE SINGLE OBJECT TASK OF THE ATTENTION ASSESSMENT
TABLE 12. OUTCOMES FOR THE MULTIPLE OBJECT TASK OF THE ATTENTION ASSESSMENT
TABLE 13. OUTCOMES FOR THE DISTRACTIBILITY TASK OF THE ATTENTION ASSESSMENT
TABLE 14. OUTCOMES FOR THE POST-HOC COMPARISONS FROM THE MULTIPLE OBJECT TASK OF THE ATTENTION ASSESSMENT
TABLE 15. ASSOCIATION BETWEEN CORD PLASMA DHA IN THE TREATMENT AND CONTROL GROUPS AND THE POST-HOC
OUTCOMES FROM THE MULTIPLE OBJECT TASK OF THE ATTENTION ASSESSMENT
TABLE 16. LATENCY TO BE DISTRACTED WHEN IN FOCUSED ATTENTION IN EACH OF THE DISTRACTIBILITY TASK TRIALS FOR EACH
INTERVENTION GROUP
TABLE 17. CHILD'S GROWTH AT 27-MONTH FOLLOW-UP ASSESSMENT
TABLE 18. SUMMARY OF METHODS AND MAIN OUTCOMES FOR THE WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT
TABLE 19. PRIMARY OUTCOME FOR THE WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT; ACCURACY OF LOCATING A
HIDDEN FIGURINE ON TEST TRIALS
TABLE 20. ACCURACY OF LOCATING A HIDDEN FIGURINE ON TRAINING TRIALS OF THE WORKING MEMORY AND INHIBITORY
Control Assessment
TABLE 21. ASSOCIATION BETWEEN CORD BLOOD PLASMA DHA (PERCENTAGE OF PHOSPHOLIPID FATTY ACIDS) IN THE TREATMENT
AND CONTROL GROUPS AND ACCURACY OF LOCATING A HIDDEN FIGURINE IN TRAINING TRIALS

LIST OF FIGURES

FIGURE 1. SIMPLIFIED REPRESENTATION OF THE MOLECULAR STRUCTURE OF A FATTY ACID	20
FIGURE 2. SIMPLIFIED SCHEMATIC REPRESENTATION OF THE BIOSYNTHESIS PATHWAY FOR THE PRODUCTION OF THE OMEGA-	3 and
OMEGA-6 LONG CHAIN POLYUNSATURATED FATTY ACIDS IN THE HUMAN BODY	22
FIGURE 3. SIMPLIFIED REPRESENTATION OF THE MOLECULAR STRUCTURE OF OMEGA 3 LONG CHAIN POLYUNSATURATED FATT	Y
ACID DOCOSAHEXAENOIC ACID	23
FIGURE 4. SIMPLIFIED ANATOMY OF A NEURON	25
FIGURE 5. DEVELOPMENT OF THE FETAL BRAIN	26
FIGURE 6. POSITIONING OF THE FRONTAL LOBES WITHIN THE BRAIN	28
FIGURE 7. LOCATION OF THE HIPPOCAMPUS WITHIN THE BRAIN	29
FIGURE 8. PROGRESS OF RANDOMISED CONTROLLED TRIALS IDENTIFIED AND INCLUDED IN THE SYSTEMATIC REVIEW AND MET	A
ANALYSIS	48
FIGURE 9. RISK OF BIAS OF TRIALS INCLUDED IN THE REVIEW ASSESSED ACCORDING TO THE COCHRANE HANDBOOK	55
FIGURE 10. PROPORTION OF TRIALS INCLUDED IN THE REVIEW JUDGED TO HAVE LOW, UNCLEAR AND HIGH RISK OF BIAS FOR	EACH
DOMAIN OF TRIAL QUALITY ACCORDING TO THE COCHRANE HANDBOOK	56
FIGURE 11. META ANALYSIS FOREST PLOTS OF WEIGHTED MEAN DIFFERENCES FOR COGNITIVE DSS/IQ SCORE MEASURED W	TH A
standardised scale (mean x=100, SD=15) after supplementation with omega-3 LCPUFA during (A)	
PREGNANCY AND LACTATION AND (B) PREGNANCY ONLY.	59
FIGURE 12. META ANALYSIS FOREST PLOTS OF WEIGHTED MEAN DIFFERENCES FOR MOTOR DEVELOPMENT QUOTIENT MEASU	RED
with a standardised scale (mean x=100, SD=15) after supplementation with omega-3 LCPUFA during (4)
PREGNANCY AND LACTATION AND (B) PREGNANCY ONLY.	62
FIGURE 13. META ANALYSIS FOREST PLOTS OF WEIGHTED MEAN DIFFERENCES FOR LANGUAGE DEVELOPMENT QUOTIENT	
measured with a standardised scale (mean x=100, SD=15) after supplementation with omega-3 LCPUF.	4
DURING PREGNANCY ONLY	63
FIGURE 14. SEQUENCE OF IMAGES ILLUSTRATING THE A NOT B PARADIGM	78
FIGURE 15. DIAGRAM OF BIRD'S EYE VIEW OF THE ROOM AND ALL EQUIPMENT FOR ASSESSMENTS OF ATTENTION, WORKING	3
Memory and Inhibitory Control	86
FIGURE 16. SET UP OF THE ROOM AND EQUIPMENT FOR ASSESSMENTS OF ATTENTION, WORKING MEMORY AND INHIBITOR	Y
Control	87
FIGURE 17. DESK AND TELEVISION REFLECTED IN A MIRROR FOR THE ATTENTION ASSESSMENT	88
FIGURE 18. SINGLE OBJECT TASK STIMULUS; THE LEAPFROG MULTIFUNCTION PLAY CENTRE	89
FIGURE 19. MULTIPLE OBJECT TASK STIMULI; (LEFT TO RIGHT) DORA THE EXPLORER FIGURINE, BOB THE BUILDER QUAD BII	٢E
(known as Scrambler), bowl with handles and lid, rubber duck and Mickey Mouse mobile flip phone	89
FIGURE 20. DISTRACTIBILITY TASK STIMULI IN ORDER OF PRESENTATION; (A) MAGNADOODLE, (B) LITTLE MERMAID BLOCKS,	, (C)
Shape Sorter and (d) wooden train set	90
FIGURE 21. VIDEO RECORDING EQUIPMENT FOR THE ATTENTION ASSESSMENT	92
FIGURE 22. SET UP OF WORKING MEMORY INHIBITORY CONTROL ASSESSMENT: CHILD SITS ON PARENTS LAP ON RIGHT CHA	IR,
STUDENT SITS ON LEFT STOOL	93
FIGURE 23. FIGURINES BOB THE BUILDER AND WENDY USED FOR THE LEARNING, TRAINING AND TEST PHASES OF THE WORK	ING
Memory and Inhibitory Control Assessment	94

FIGURE 24. VELCRO DOT MARKING A HIDING LOCATION AND THE TAPE MEASURE ALONG THE TOP OF THE STUDENT-SIDE OF THE
LENTIL BOX FOR THE WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT
FIGURE 25. A SCREENSHOT FROM A VIDEO RECORDING OF A WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT 95
FIGURE 26. SET UP OF THE LENTIL BOX WITH LOCATIONS A AND B FOR THE WORKING MEMORY AND INHIBITORY CONTROL
Assessment
FIGURE 27. SET UP OF THE LENTIL BOX WITH LOCATIONS A AND B REVERSED FOR THE SECOND SET OF TRAINING AND TEST TRIALS
IN THE WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT
FIGURE 28. A CHILD IN FOCUSED ATTENTION (LEFT), CASUAL ATTENTION (CENTRE) AND OTHER ATTENTION (RIGHT) IN THE
Attention Assessment
FIGURE 29. PARTICIPANT FLOW DIAGRAM FOR ATTENTION ASSESSMENT AND ANTHROPOMETRICS AT 27-MONTHS OF AGE 141
FIGURE 30. CORD BLOOD PLASMA DHA (PERCENTAGE OF TOTAL PHOSPHOLIPID FATTY ACIDS) PLOTTED AGAINST THE TOTAL
AMOUNT OF TIME SPENT LOOKING AT THE TOY DURING THE SINGLE OBJECT TASK OF THE ATTENTION ASSESSMENT 150
FIGURE 31. CORD BLOOD PLASMA DHA (PERCENTAGE OF TOTAL PHOSPHOLIPID FATTY ACIDS) PLOTTED AGAINST THE NUMBER OF
times the child looked between the toys during the Multiple Object Task of the Attention Assessment 151
FIGURE 32. CORD BLOOD PLASMA DHA (PERCENTAGE OF TOTAL PHOSPHOLIPID FATTY ACIDS) PLOTTED AGAINST THE LATENCY TO
turn to the distractor when attention was Focused on the toy during the Distractibility Task of the
ATTENTION ASSESSMENT
FIGURE 33. PARTICIPANT FLOW DIAGRAM FOR THE WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT AT 27-MONTHS
OF AGE
FIGURE 34. CORD BLOOD PLASMA DHA (PERCENTAGE OF TOTAL PHOSPHOLIPID FATTY ACIDS) PLOTTED AGAINST ACCURACY OF
LOCATING A HIDDEN FIGURINE IN TEST TRIALS FOR THE WORKING MEMORY AND INHIBITORY CONTROL ASSESSMENT 174