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Abstract: 

This paper presents an approach to modelling fracture networks in hot dry rock geothermal reservoirs. A 
detailed understanding of the fracture network within a geothermal reservoir is critically important for 
assessments of reservoir potential and optimal production design. One important step in fracture network 
modelling is to estimate the fracture density and the fracture geometries, particularly the size and orientation 
of fractures. As fracture networks in these reservoirs can never be directly observed there is significant 
uncertainty about their true nature and the only feasible approach to modelling is a stochastic one. We propose 
a global optimization approach using simulated annealing which is an extension of our previous work. The 
fracture model consists of a number of individual fractures represented by ellipses passing through the micro-
seismic points detected during the fracture stimulation process, i.e. the fracture model is conditioned on the 
seismic points. The distances of the seismic points from fitted fracture planes (ellipses) are, therefore, 
important in assessing the goodness-of-fit of the model. Our aims in the proposed approach are to formulate 
an appropriate objective function for the optimal fitting of a set of fracture planes to the micro-seismic data 
and to derive an efficient modification scheme to update the model parameters. The proposed objective 
function consists of three components: orthogonal projection distances of the seismic points from the nearest 
fitted fractures, the amount of fracturing (fitted fracture areas) and the volumes of the convex hull of the 
associated points of fitted fractures. The functions used in the model update scheme allow the model to 
achieve an acceptable fit to the points and to converge to acceptable fitted fracture sizes. These functions 
include two groups of proposals: one for updating fracture parameters and the other for determining the size of 
the fracture network. To increase the efficiency of the optimization, a spatial clustering approach, the 
Distance-Directional Transform, was developed to generate parameters for newly proposed fractures. A 
simulated dataset was used as an example to evaluate our approach and we compared the results to those 
derived using our previously published algorithm on a real dataset from the Habanero geothermal field in the 
Cooper Basin, South Australia. In a real application, such as the Habanero dataset, it is difficult to determine 
definitively which algorithm performs better due to the many uncertainties but the number of association 
points, the number of final fractures and the error are three important factors that quantify the effectiveness of 
our algorithm. 

Keywords: Fracture Network Modelling, Global Optimization, Simulated Annealing, Conditional 
Modelling, Seismic Events 

 

1. Introduction 

Hot dry rock (HDR) geothermal energy has the potential to make a significant contribution to 
achieving a sustainable energy future. Potential HDR geothermal systems occur in deep underground 
crystalline rock, where the rock matrix (granite) is almost impermeable and the only viable pathway for 
geothermal flow is through an engineered fracture network. Understanding the fractures and the fracture 
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network within the geothermal reservoir is therefore critically important for the design and operation of the 
system (Brown et al. 1999; Nelson 1982; Tran et al. 2002; Xu et al. 2013). 

Earlier mathematical models for fracture networks and flow through them include continuum models 
that assume a fractured rock mass can be represented as an equivalent porous medium (Hsieh et al. 1985; 
Long and Witherspoon 1985; Odling 1992; Xing et al. 2009) and discrete fracture networks (DFN) that rely 
on a detailed description of discontinuity geometry (Dershowitz and LaPointe 1994; Einstein 2003; Mardia et 
al. 2007a; Mardia et al. 2007b; Tamagawa et al. 2002; Tran et al. 2002; Xu et al. 2007; Xu et al. 2010). In 
DFN, which provides an approximate representation of the reservoir fracture network, it is very difficult to 
obtain a reliable description of the fracture geometry as, in most cases, it is impossible to observe or measure 
fractures directly on any scale relevant to the problem. Studies are generally limited to sparse, small-scale 
observations (e.g., on drill cores) or indirect measures such as those provided by geophysical surveys or, in the 
case of engineered geothermal systems (EGS), micro-seismic events generated during the fracture stimulation 
process. The seismic point cloud can be used not only to determine the geographical extent of the HDR 
reservoir but also to detect fracture geometry in a fractured reservoir (Xu et al. 2013; Seifollahi et al. 2012). 
Establishing the discrete fracture network model (DFN) conditioned to this seismic point cloud is a way of 
creating a more realistic model of a HDR EGS.  

The significant uncertainties associated with DFN necessitate a stochastic approach. Stochastic 
modelling of fracture networks originated in percolation studies (Robinson 1983; Sahimi 1993) and was 
promoted in the 1980s for its wider application to rock engineering (e.g., Long et al. 1982; Baecher 1983; 
Andersson et al. 1984; Dershowitz and Einstein 1988). It is a general approach in which the fracture 
characteristics, such as size and orientation, are treated as random variables with inferred probability 
distributions. In the simplest case, once the parameters of the distributions are inferred, the rock fracture 
model is constructed by Monte Carlo simulation (Xu and Dowd 2010). More realistic models include the 
spatial variability of the variables in the simulation. 

Recently, DFN conditional on two- and three-dimensional data have been proposed; see for example: 
Fadakar et al. (2013), Mardia et al. (2007a and 2007b), Seifollahi et al. (2012), Seifollahi et al. (2013), Tran 
(2007), Xu et al. (2013). A Markov Chain Monte Carlo (MCMC) approach was applied to the conditioning of 
a fracture model to borehole data in a 2D application (Mardia et al. 2007a) and the model was later extended 
to 3D applications (Mardia et al 2007b). An extension of MCMC to the conditioning of a fracture model to the 
seismic events was used in Xu et al. (2013) for a data set from the Habanero geothermal field. In this model 
the number of fractures is fixed in advance and the unknown fracture variables (e.g., size and orientation), are 
optimized during the MCMC process. In the present work, the number of fractures is also a variable to be 
optimized during the optimization process. We also extend the work of Seifollahi et al. (2012 and 2013) by 
including more components in the objective function and introducing more update proposals to improve the 
conditioning process.   

This paper presents a general stochastic model for fracture networks in a fractured HDR reservoir. 
Two challenging factors in a global optimization problem are the construction of an appropriate objective 
function and the formulation of an efficient model modification scheme. In our approach, the objective 
function consists of three components to minimize, respectively, the distances of the points to the fitted 
fracture model, the amount of fracturing and the volumes of the convex hull of the points associated with 
fractures. The model modification functions include two categories of proposals. The first category is for 
updating fracture geometry variables and the second is for adjusting the size of the fracture network (number 
of fractures). Simulated annealing (SA) is the core of our model in which it is used to minimize the objective 
function by accepting or rejecting any update proposed by the model modification functions (Seifollahi et al. 
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2013). To enhance the optimization process, a spatial clustering approach, developed by Seifollahi et al. 
(2012), and termed the DD-Transform, is used to help determine the fracture geometry. It should be noted that 
the accuracy of the seismicity detection and the inversion process in deriving the locations of seismic points 
are not concerns of this paper; readers interested in these topics should consult Baisch et al. (2006). 

The paper is organized as follows: In Section 2, we give a description of the model and the problem 
formulation, with a focus on fracture bandwidth. The fracture bandwidth is an interval around fractures used 
to weight the objective function to reflect the importance of the locations of the points to the fracture model as 
well as controlling the number of fractures in the network. In Section 3, we describe the DD-Transform, 
which determines a solution for the parameters of newly proposed fractures during the optimization process. 
In Section 4 we present the proposals for updating fracture parameters and for permitting the network to grow 
or diminish (by pruning), which is followed by details of the proposed model. The performance of the 
proposed model is illustrated in Section 5 using two validation datasets, first using a simulated dataset and 
then a real dataset from the Habanero reservoir (Baisch et al. 2006; Xu et al. 2013).  

 

2. Problem formulation 

In discrete fracture network modelling, the most common approach is to use simple representations of 
fractures although it is possible to represent fractures by tortuous surfaces. Common approaches include 
circular discs, elliptical discs, planar polygons or planes with infinite extents (Mardia et al. 2007b; Seifollahi 
et al. 2012; Seifollahi et al. 2013; Xu et al. 2013). In the work reported here, we represent a fracture by an 
ellipse. We consider this to be a simple, but reasonable, approximation to actual fracture surfaces as fractures 
with curved features can be subdivided into planar regions connected to each other. With this simplification, 
each fracture can be described by eight parameters, (𝑥, 𝑦, 𝑧,𝛼,𝛽, 𝛾, 𝑎, 𝑏), where 𝑥, 𝑦 and 𝑧 are the coordinates 
of the fracture centre, 𝛼 and 𝛽 are the dip direction and dip angle of the plane, 𝛾  is the rotation angle of the 
major axis against the dip direction of the ellipse and 𝑎  and 𝑏 are the major and minor axes of the ellipse. Xu 
and Dowd (2010) provide more detailed descriptions of these parameters.  

The fracture model consists of a number of fractures each with its associated cluster of seismic points 
so that each point is associated with one, and only one, fracture in the model. Note that even the ‘best’ fitted 
model will not intersect all seismic points but the distances of the points to fracture planes (the orthogonal 
projection measure) can be used to assess the goodness-of-fit of the fracture model. The final objective 
function can be written as (Seifollahi et al. 2013):   

𝑓 𝑤 = 𝜆!𝑓!(𝑤)
!!

!!!

, (1) 

where 𝑤 is a set of unknown fracture variables to be optimized, 𝑛!  is the number of objectives and 
𝑓!   and  𝜆!   are, respectively, the 𝑖!! objective and its weight. Constructing a proper objective function (i.e., the 
number of components and their structures) is critical in ensuring the optimization process converges to a 
solution. The proposed objective function consists of three components as follows. 

1. Distances of the points to fracture planes: the summation of the shortest distances of the points to fracture 
planes is a major component of the objective function (Seifollahi et al. 2013; Xu et al. 2013):  

𝑓!   𝑤 ≡    𝑑!!∗
!

!

!!!

     , 𝑘∗ =   argmin
!

𝑑!"!  (2) 
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where 𝑚 is the number of points, 𝑗 and 𝑘 are the indices of the 𝑗!! point and 𝑘!! fracture and 𝑑!"!  is the 

squared projection distance of the 𝑗!! point to the  𝑘!! fracture. When the orthogonal projection of a point 
does not intersect any fracture ellipse, the point is not associated with any fracture and a penalty value is 
applied to the point in the calculation of the objective function. 

2. The amount of fracturing: the following objective is used (Seifollahi et al. 2013) to achieve a network 
with an appropriate amount (area) of fracturing:  

𝑓! 𝑤 =   
𝛿 + 𝑎!×𝑏!
1 +𝑚!

!

!!!

 (3) 

where 𝑛 is the number of fractures, 𝑎! and 𝑏! are the major and minor axes of the 𝑖!! fracture, 𝑚! is the 
number of points associated with the 𝑖!! fracture and  𝛿 is a positive number proportional to the penalty for 
an outlier (isolated point); 𝑚 = 𝑚!

!
!!!  and is used later. The function ensures that in any updating of the 

DFN smaller fractures are favoured (hence 𝑎! and 𝑏! are smaller) and have more associated points (as mi 
is greater).   

3. The volumes of the convex hulls of the points associated with fractures: An objective function component 
calculated as the sum of the volumes of the convex hulls constructed from the associated points of 
fractures:  

𝑓! 𝑤 =   
𝛿 + 𝑉!!"

1 +𝑚!

!

!!!

 (4) 

where 𝑛 is the number of fractures, 𝑉!!" is the volume of a convex hull constructed from the points 
associated with the 𝑖!! fracture and 𝑚! and 𝛿 are given in Eq. (3). This function deals with the point-to-
point association. Minimizing 𝑓!  not only tends to produce fractures with more associated points but also 
minimizes the distances of points to the fracture model.  

The amount of the contribution of each component to the final objective function in (1) can be 
controlled by different weighting factors  𝜆!. In our work, weights 𝜆! , 𝑖 = 1, 2, 3,  are set as follows: 𝜆! = 1 and 
𝜆! and 𝜆! are fixed in advance based on the value of 𝑓! in the prior model. In other words, they are set so that 
the values of 𝜆!𝑓! and 𝜆!𝑓! are small portions of 𝜆!𝑓!; here 1% of the value of  𝜆!𝑓!. The reason for this 
weighting procedure is that the most important objective is to minimize the associated distances whilst the 
other two objectives are to ensure that the fitted model satisfies some pre-specified conditions, e.g. generating 
a model with appropriate fracture sizes. It is noted that other weighting procedures can be used depending on 
the objective and application; for example, the weighting procedure used in Deutsch and Cockerham (1994) 
for the average change in absolute value of the components of the objective function and a convex 
combination of the components of the objective function used in Goovaerts (1998). 

Each seismic point is an indication of fracture growth or stimulation and these points are the only data 
available for modelling the fracture network. Thus, an essential, but not sufficient, criterion for the fracture 
model is that it should provide the best possible fit to all the seismic points. However, the model may fail to 
provide a good local fit in some areas or it may generate an unnecessarily high density of fractures. We 
address this problem (inappropriate fitting) by using weights in the objective function. The weighting 
procedure is based on the density of fractures; if the density of fractures around a point is large, a small weight 
is assigned to the corresponding term in the objective function 𝑓! and a larger weight is assigned for a smaller 
density. The function 𝑓!, in this case, is written as  
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𝑓!   𝑤 ≡    𝜉!𝑑!!∗
!

!

!!!

     , 𝑘∗ =   argmin
!

𝑑!"!  (5) 

where 𝑚, 𝑗, 𝑘, 𝑑!" are defined in (2) and 𝜉! is the weight for the 𝑗!!point in the objective function defined as: 

𝜉! =
1/𝑛!                 𝑛! > 0  
1                            𝑛! = 0  

and 𝑛! is the number of fractures for which the distances of the 𝑗th point to the fractures are less than a 
specified threshold, i.e. for which the 𝑗th point lie inside the bandwidth of the fractures.  

    

3. The Distance-Directional Transform  

The Distance-Directional Transform (DD-Transform), proposed by Seifollahi et al. (2012), is used to 
optimize fracture parameter values. It determines five fracture parameters (out of eight): the centre 
coordinates,  (𝑥, 𝑦, 𝑧),  the dip direction and the dip angle of the fracture plane. The three remaining parameters 
are generated from their respective distributions. The steps of the DD-Transform are as follows, where D 
denotes the set of points.  

1. Set  𝐴 = 0, where 𝐴  is an  𝑚×4 matrix, 𝑚  is the number of points in 𝐷 and the four columns contain the 
number of counts, an index for the point (fracture centre) and two indices, one for dip direction and the 
other for dip angle.   

2. Select a point 𝑝! ∈ 𝐷, 𝑖 = 1,… ,𝑚.  
3. Initialize  𝐴! = 0, where  𝐴! is a  𝑛!×𝑛! matrix; 𝑛!   and  𝑛!   correspond to the number of divisions of the dip 

direction and dip angle to be considered; here  𝑛! = 360 and  𝑛! = 90. For 𝑠 = 1,2,…, do the following: 
3.1. Select two distinct points  𝑝! , 𝑝!! ∈ 𝐷, (𝑗, 𝑗! ≠ 𝑖).  
3.2. Fit a plane through the points 𝑝! , 𝑝! and  𝑝!! and calculate its dip direction and dip angle. 

3.3. Update 𝑘, 𝑙 !! element of the matrix 

𝐴!"! = 𝐴!"! + 𝑎𝑟𝑐𝑡𝑎𝑛   𝑑!"!! + 𝑑!!!
!! , (6) 

          where  𝑘 and 𝑙 are the indices of the dip direction and dip angle, respectively; 𝑑!"!! ,𝑑!!!
!! are the 

distances of 𝑝!   to 𝑝! and  𝑝!!; and 𝑟 is a positive number.  

4. Sort 𝐴! and store the highest value and the corresponding indices (i.e. 𝑖, 𝑘 and 𝑙) in the 𝑖!! row of matrix  𝐴 
(𝑖 is the index of  𝑝! and 𝑘 and 𝑙 are the indices for dip direction and dip angle). If 𝑖 ≥ 𝑚, go to the next 
step; otherwise, repeat from step 2.  

5. Sort the rows of 𝐴 in descending order with respect to the values obtained in step 4. 
6. The rows of 𝐴, in sequence, correspond to the parameters of the best fractures (the last three elements of 

each row), which are the dip direction, dip angle and the centre (the stored indices) of the fracture.   

Using random portions of points in Step 2 and Step 3.1 will reduce the computational time; in our 
experiments the number of samples used in steps 2 and 3.1 is the minimum of the total number of points (𝑚) 
and a random integer number between 10 and 20. The 𝑟 in (6) is a positive real number and we set 𝑟 = 0.5. 
The arctan  (. ) in (6) can take values between 0 and π/2. When the distance between a pair of points is very 
small, its impact on the summation (Eq. (6)) will approach its highest value 𝜋/2 and vice versa.   
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4. The proposed optimization model 

Fracture network modelling, conditioned to a seismic point cloud, requires a stochastic approach 
(Seifollahi et al. 2012; Seifollahi et al. 2013; Xu et al. 2013). The modelling method proposed in this work 
provides an efficient modification scheme using simulated annealing. The details of the proposals are 
discussed below, followed by the introduction of the concept of a fracture bandwidth and the presentation of 
the proposed fracture network model. 

 

4.1 The DFN updating proposals  

Two categories of proposals are incorporated in our model. The first category is related to the 
determination of fracture parameters, including the coordinates of fracture centres, dip direction, dip angle, 
rotation angle and major and minor axes of the fractures. The second category is related to the determination 
of a reasonable fracture network size by growing or pruning techniques such as proposing new fractures or 
removing redundant fractures.    

We use simulated annealing to find the solution in the model (Kirkpatrick 1983; Geman and Geman 
1984; Seifollahi et al. 2012). Simulated annealing comprises two main iterations: outer and inner iterations. In 
the outer iteration the temperature,  𝑇, which corresponds to absolute temperature in the physical process of 
annealing, is updated. In order to do so, we take any initial value 𝑇! for temperature and a number 𝑟  𝜖  (0,1) 
and use the following schedule for temperature: 𝑇!!! =   𝑟  𝑇! ,      𝑘 = 0,1,2,…. In inner iterations the current 
state is modified, in a random way, to generate a new solution (according to the following proposals). If the 
move reduces the value of the objective function, the transformation to the new state is accepted. If it 
increases the value of the objective function, the transformation is accepted with an acceptance probability, 

𝐴!   =   𝑚𝑖𝑛 1, 𝑒𝑥𝑝
−∆𝑓
𝑇

, (7) 

where ∆𝑓 = 𝑓!"# − 𝑓!"# , 𝑓!"#   is the function value obtained by simulated annealing in the previous iteration 
and 𝑓!"# is the function value based on the perturbed configuration. More precisely, a random number 𝑢 
from the uniform distribution 𝑈[0,1] is generated. If  𝑢 ≤ 𝐴!, the perturbed configuration is accepted as a new 
solution; otherwise the inner iterations are repeated. Note that the point-fracture association is assessed using 
only distances of the points to the nearest fracture planes. For more details on simulated annealing see 
Kirkpatrick (1983), Seifollahi et al. (2012) and Seifollahi et al. (2013).  

   

Coordinates of fracture centres    

This proposal moves the centre of a candidate fracture towards one of the associated points of the 
candidate fracture. The candidate fracture, the point and the amount of translation are all chosen at random,  

𝑥, 𝑦, 𝑧 =    𝑥, 𝑦, 𝑧 +   𝑟đ (8) 

where đ is the direction of the move from the current state, �đ ∈ 𝑅!, and 𝑟 is a random step size to determine 
the amount of translation, 𝑟 ∈ 𝑈[0  1] . 

   

Fracture orientation (dip direction, dip angle and rotation angle) 
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 The proposal is processed independently for each variable. For a given variable, a pair of fractures is 
selected at random and their corresponding variable values are swapped. As no new values of the variable are 
involved, the distribution of the orientation remains unchanged after this process.  

 

Fracture size (major and minor axes) 

This proposal is repeated independently for each feature. For a given feature, a pair of fractures is 
chosen at random and their corresponding fracture sizes are swapped. The size distribution will remain 
unchanged after this process.   

 

Joint 

The idea of this proposal is the same as that in Seifollahi et al. (2012) in which two existing fractures 
are replaced by a new one. Here, we introduce a new similarity measure for selecting two candidate 
replacement fractures; it uses the volumes of convex hulls defined by the associated points. The similarity of 
two fractures is defined as  

𝑆 𝐻! ,𝐻! =
𝑉!!" (1 +𝑚!) + 𝑉!!" 1 +𝑚!

𝑉!,!!" 1 +𝑚!,!
 (9) 

where 𝑉!!" , 𝑉!!" and 𝑉!,!!" are the volumes of convex hulls defined by the associated points of the 𝑖!! , 𝑗!! and 

both fractures respectively, and 𝑚! ,𝑚! and 𝑚!,! are the numbers of associated points of the 𝑖!!, 𝑗!! and both 
fractures. The two candidate fractures are the pair of fractures with the highest similarity measure. The DD-
Transform is then applied to generate the parameters of the new fracture. The steps of the Joint proposal are: 

1. Select the two similar fractures using (9).  
2. Apply the DD-Transform to the associated points of both the candidate fractures to find the centre, dip 

direction and dip angle of a new fracture.  
3. Generate the rotation angle and major and minor axes of the new fracture from their distributions.  
4. Re-evaluate the point-fracture association given the new fracture. 
5. Accept or reject the proposal based on Eq. (7). 

 

Removal 

During the optimization process, fractures with a small number of associated points or a low point 
density (defined as the number of associated points per unit area of the fracture ellipse) are possible redundant 
fractures and are therefore candidate fractures for possible removal from the fracture network. Two versions 
are considered: 

1. A fracture is chosen based on the lowest density.  
2. A fracture is chosen based on the minimum number of associated points.  

The candidate fracture is then proposed to be removed from the network. The only computation, in 
both versions, is assigning the associated points of the removed fracture to other existing fractures. The 
acceptance or rejection of the proposal is decided on the basis of Eq. (7).   
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Replacement 

This proposal is to replace an existing fracture with a new one (Seifollahi et al. 2012). The DD-
Transform plays a key role in determining the candidate fracture as well as proposing the parameters of the 
new fracture. The steps in this proposal are: 

1. Choose an initial subset of candidate fractures based on the maximum associated distances; i.e., for each 
fracture determine the maximum point-fracture association distance. Select a set of fractures with the 
maximum association distance greater than the bandwidth threshold.  

2. Apply the DD-Transform to the associated points of each initial candidate fracture. 
3. Sort the matrix obtained in Step 2 in descending order. The first row then records the coordinates of the 

centre, dip direction and dip angle of the new fracture. 
4. Generate the other three parameters of the new fracture from their distributions.  
5. Replace the fracture corresponding to the associated points with the new one. 
6. Accept or reject the proposal based on the probability (7). 

 

Birth 

This proposal follows similar steps to the Replacement proposal except for Step 5 in which the 
candidate fracture is not removed, effectively resulting in the addition of a new fracture. The new fracture is 
chosen so that the difference between the orientation parameters of the new fracture and the old one is 
significant (as defined by a threshold); the threshold is set to 5 degrees. In the Replacement proposal, there is 
no such limitation for generating a new fracture.   

 

Split	
  

This proposal is similar to the Birth proposal except that the candidate fracture is replaced by two new 
fractures generated by applying the DD-Transform to the points associated with the candidate fracture. This 
proposal is also similar to the split proposal in Seifollahi et al. (2012). The parameters of the two new 
fractures, except the rotation angle and the size, are determined by the DD-Transform. The rotation angle and 
the size of new fractures are generated from their distributions. Similar to the Birth proposal, the difference 
between the orientations of the two new fractures should be significant as defined by a threshold.  

 

4.2 The Learning Algorithm  

In this section, we present the steps used in our approach to generate a general stochastic fracture 
network model conditioned to a point cloud with a strong emphasis on fracturing (fracture sizes and the 

number of fractures). In the initialization step (Step 1), a prior model, 𝐻!
!!!
! , of the fractures is generated, 

where 𝐻! is an ellipse representing the 𝑖!!  fracture and 𝑛 is the number of fractures. The centres of the initial 
fractures are assigned randomly to the seismic points. The size and orientation are generated using random 
sampling from their specified distribution functions. The prior model is then optimized using the proposals 
described above. First, the fracture parameters are updated (steps 2 and 3) and then the number of fractures is 
adjusted using the growing/pruning proposals (steps 5-7). After each proposal, the associations of the points 
are determined using their (nearest) distances from fractures. The total function value is calculated from the 
point-fracture association and the acceptance or rejection of proposals is decided on the basis of the 
probability ratio (7). The algorithm terminates when the stopping criteria (SC) are met; here when a pre-
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specified large number of iterations has been completed or when the temperature parameter has been reduced 
to a specified threshold value.  

 

Algorithm. Stochastic optimization for DFN 

1. Initialize 𝑛 random fractures   𝐻!
!!!
! , where 𝑛  is an integer number, 𝑛 < 𝑚, and 𝑚  is the number of 

seismic events.  
2. Update the centres of fractures: select a subset of fractures 𝐻!

!!!
!!  at random from the network. For 

each fracture, update its centre by (8). If SC are met, terminate the algorithm. 
3. For each of the remaining parameters, i.e., 4 ≤ 𝑙 ≤ 8: select two distinct subsets of fractures 𝑯𝟏 and 

𝑯𝟐 at random from the network. Select   𝐻!,𝐻! ∈ 𝑯𝟏×𝑯𝟐 and swap their 𝑙!! parameter using 
simulated annealing. If SC are met, terminate the algorithm. 

4. Generate a random number 𝑗 ∈ 𝑍! where 𝑍! stands for positive integer numbers.  
5. If 𝑗 = 2𝑘  (even number) 

5.1 Apply joint proposal. If SC are met, terminate the algorithm. 
5.2 Apply removal proposals. If SC are met, terminate the algorithm. 

6. If 𝑗 = 2𝑘 + 1 (odd number) 
6.1 Apply birth proposal. If SC are met, terminate the algorithm. 
6.2 Apply split proposal. If SC are met, terminate the algorithm. 

7. Apply replacement proposal. If SC are met, terminate the algorithm. 
8. Repeat from Step 2. 

 

5. Experiments  

To evaluate the proposed method, we consider two three-dimensional examples. The first example is 
a simulated dataset and the second is a real dataset from the Habanero geothermal reservoir in South 
Australia.  

 
5.1. A simulated  dataset 

This dataset was generated in three steps. First we generate a set of fractures with centres in 
1,10 × 1,10 × 1,5 . The completely known fracture set has the following parameters. The dip direction, dip 

angle and rotation angle of fractures are drawn from uniform distributions on the following intervals: 

𝛼  ~  𝑈 0,2𝜋 ,        𝛽  ~  𝑈 −𝜋/2,𝜋/2 ,      𝛾  ~  𝑈 −𝜋,𝜋      

The orientation of the major axis follows a lognormal distribution: 

𝑎  ~  𝑙𝑜𝑔𝑛 𝜇! ,𝜎!  

where 𝜇!   and 𝜎! are the distribution parameters with corresponding Gaussian distribution mean and variance 
of 1 and 2, respectively. The minor axis is generated from 𝑏  ~  𝑎×(1 − 𝑢) where 𝑢 ∈ 𝑈[0,1].  

A number of points from each fracture are generated at random; the larger the fracture, the greater the 
number of points generated (i.e., the number of points is proportional to the size of fracture). Given the 
fracture representation as an ellipse, a set of initial points are regularly sampled from the ellipse. Each sample 
point is considered as a point between two randomly selected points of the set. Although there is a rich 
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literature of statistical sampling of point process (Cressie, 1993) for spatial data, our focus here is on 
stochastic optimisation.  

Finally, noise, from a uniform distribution, is added to each point coordinate value (through the 
normal vector of the fracture plane) to create a dataset resembling reality. Fig.1a and Fig.1b show a set of 
known fractures (68 fractures) and the simulated point cloud (2133 points). The aim now is to reconstruct the 
fractures from the simulated point cloud.  

Fig. 1c shows the prior model with 33 initial random fractures. This prior model was generated as 
follows. For each point of the point cloud, if the distance of the point to the fracture model is greater than a 
specified threshold (proportional to the penalty used for outliers), a new fracture is generated and centred on 
the point; here the threshold is set to 2. The other fracture parameters (orientation and size) are generated from 
their respective distributions as discussed above. Fig. 1d shows the final model, i.e. the output after 
completing the optimization process described in Algorithm 2. In Fig. 1d the total number of fractures in the 
final model is 64 which is a close match to the 68 in the actual set of fractures.    

 

 
Figure 1. Artificial dataset: a) simulated fractures; b) sampled points; c) prior map; d) final model after optimization  

 

Fig. 2a-2c show the point-fracture associations related to the actual, prior and final fracture models, 
respectively. In the prior map there are three fractures with more redundant associated points and in the final 
map these are split into smaller fractures. Fig. 2d represents the noise added to the dataset, i.e. distances of the 
points from the actual fracture map. Fig. 2e and Fig. 2f show the distribution of the distances of points to the 
fracture planes in the prior and final model respectively, which highlight the effectiveness of the proposed 
model.    
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Fig 3a shows the variation in the number of fractures during the optimization process. Fig. 3b-3c 
show the objective function values 𝑓! and 𝑓! without weights in (1). Fig 3b shows almost the same trend as 
Fig 3a since increasing the number of fractures increases the area of fracturing. The total objective function 
value is shown in Fig. 3d which shows a significant decline from earlier iterations and becoming more stable 
as the number of iterations increases. 

 

Figure 2. Results for the artificial dataset: a)-c) the point-fracture associations for the actual, initial and obtained fractures; d)-f) the 
distances of points to the actual, initial and obtained fracture planes. 
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 Figure 3. Results for the artificial dataset: a) the variation of #fractures; b) the amount of fracturing (i.e. 𝑓!); c) the volumes of the 

convex hulls of the associated points (i.e. 𝑓!);d) the total objective function values. 

Fig. 4a-4c show the distributions of major axes of fractures in actual, prior and final maps, 
respectively, and Fig. 4d-4f show the distributions of minor axes for the same maps. The sensitivity of the 
model to the number of fractures in the initial map is shown in Fig. 5 using 30 independent simulations. The 
number of fractures in the initial map is between 15 and 50 and the number of fitted fractures after 
optimization, except in three out of 30 simulations, is between 65 and 80. There is no relationship between the 
number of fractures in the initial and final maps implying that the model is not sensitive to the number of 
initial fractures.   
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Figure 4. Results for the artificial dataset: a)-c) the distributions of major-axis for the actual, prior and final maps; 

d)-f) the distributions of minor axis for the same maps.  

 

 
Figure 5. Number of fractures before and after optimization (10000 iterations) for 30 simulations  

5.2. Habanero dataset 

The Habanero wells are part of Geodynamics’ HDR geothermal project in the Cooper Basin, South 
Australia. These wells have been drilled to depths of about 4400m below the surface or about 700m into the 
bedrock where temperatures reach 250℃ (Baisch et al., 2006). The dataset used in this study contains a total 
of 23230 micro-seismic events covering an approximate area of 2.5 km!. The absolute hypocentre locations 
of these events are shown in Fig. 6a, in which the colour indicates the times at which the events are detected 
(coloured from blue to red with increasing time).   
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Figure 6. Habanero dataset: a) the seismic events; coloured from blue to red according with increasing time; b) the prior map; c) the 
final fractures obtained after optimization 

 

Fig. 6b shows the prior map with 505 fractures which is constructed as follows. Starting from the 
farthest point from the borehole location (i.e. 𝑥 =   𝑦 = 0), a fracture is created if the distances of the point 
from the existing fractures are greater than a pre-specified threshold; here we set the threshold to 50 
(proportional to the penalty for an outlier). The centre of the fracture is set as the point location and the other 
parameters are generated from their distributions. The mean and variance corresponding to the parameters of a 
lognormal distribution are set to 100 and 2000. The resulting fractures after optimization in which the 
temperature reached 10!! (63876 iterations) are shown in Fig. 6c which is the optimal solution generated by 
the proposed algorithm. The number of fractures after optimization is 567 compared to 613 fractures in the 
work of Baisch et al. (2006) and Xu et al. (2013). The model here is an extension to the model proposed by 
Xu et al. (2013) in which the number of fractures is no longer fixed and varies during the optimization 
process. It is also an extension of our previous work (Seifollahi et al. 2012) in terms of new components for 
the objective function and new proposals formulated specifically for general 3D applications.  

Fig. 7a and Fig. 7c show the point-fracture associations before and after optimization. The two largest 
fractures in Fig. 6c have associations of 424 and 511 points, while the largest fracture in Xu et al. (2013) has 
an association of 393 points. Fig. 7b and Fig. 7d show the distances of the points from the prior and final 
fracture models respectively. From final map 95 per cent of the distances are within ±12 metres while they 
are ±22.89 and ±12.93 in our previous works, Seifollahi et al. (2012) and Seifollahi et al. (2013), 
respectively.    
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Fig. 8a shows the variation in the number of fractures against iterations. Fig. 8b, with a very similar 
trend to that in Fig. 8a, shows the amount of fracturing (the objective function 𝑓!) and Fig. 8c shows the 
volumes of convex hulls or the objective function 𝑓!. The total objective function values are shown in Fig. 8d 
in which there is a sharp decline in early iterations and stability towards the end of the process.    

Fig. 9a-9b show the distributions of major and minor axes of fractures in the prior map, while Fig 9c-
9d show the distributions of the same variables in the final fracture model. Fig. 9a-9f show the distributions of 
fracture orientations. The upper figures are for the prior map and the lower ones for the final fracture model. 
Fig. 10a-10c show the distribution of fracture orientations in the prior map, while the lower figures, Fig. 10d-
10f, are for the final fracture model.  

 

 

Figure 7.a)-b) Distributions of point-fracture associations (or number of points in fractures) and distances of the points from fractures 
in the prior map; c)-d) the same distributions in the final map  
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Figure 8: a) variation of number of fractures; b) amount of fracturing (𝑓!); c) volumes of convex hulls (𝑓!); d) total objective function 
value 

 

 
Figure 9. a)-b) Distribution of major and minor axes for the prior map; c)-d) the same distributions for final map 
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Figure 10: a)-c) Distributions of fracture orientations for the prior map; d)-f) the same distributions for the final map   

 

For comparison of the output with that of Seifollahi et al. (2012), we ran the algorithm using 371 
initial fractures by terminating the initial process when the number of initial fractures exceeded 371. The 
results (Figs 11a and 11b) show the variation in the number of fractures and the total objective function values 
against iterations. After optimization 95 per cent of the distances are within ±11.5 metres. There is no way of 
knowing the number of fractures in the Habanero dataset and thus it is difficult to determine definitively 
which algorithm performs better due to the many uncertainties but the number of association points, the 
number of final fractures and the error are three important factors that quantify the effectiveness of our 
algorithm.  

 

 
Figure 11: a) variation of number of fractures; b) total objective function value 
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5.3. Conclusions and future work                       
In the present work, we have developed a stochastic optimisation approach for fracture network 

modelling conditioned to the micro-seismic points derived from the fracture stimulation of a HDR geothermal 
reservoir. The number of association points, the number of final fractures and the error are three important 
factors that quantify the effectiveness of our algorithm. On the basis of these measures we conclude that the 
algorithm presented here is a significant extension of our previous published work in Seifollahi et al. (2012). 
The method has been applied to a simulated dataset and a real dataset from the Habanero reservoir. The results 
for both datasets are satisfactory in terms of the accuracy and the statistics of the simulated fractures.  

The time domain is an important feature of the seismic events (see Fig. 6a) which indicates the 
propagation sequence of the fractures in the reservoir during the fracture stimulation process. Work is now 
underway to include the time domain of the events to improve the fracture modelling.    

 

Acknowledgment 

The work reported in this paper was funded by Australian Research Council Discovery Project 
Research Grant Number: DP110104766. We thank Geodynamics Limited for providing access to the micro-
seismic data. 

 

References 

• Andersson J, Shapiro AM, Bear J (1984) A stochastic model of fractured rock conditioned by measured 
information. Water Resources Research 20:79–88 

• Baecher GB, (1983) Statistical analysis of rock mass fracturing. Mathematical Geology 15 (2):329–348 
• Baisch S, Weidler R., Vörös R, Wyborn D, Graaf  L-de (2006) Induced seismicity during the stimulation of a 

geothermal HFR reservoir in the Cooper Basin, Australia. Bulletin of the Seismological Society of America, 
96(6):2242–2256 

• Brown D, DuTeaux R, Kruger P, Swenson D, Yamaguchi T (1999) Fluid circulation and heat extraction from 
engineered geothermal reservoirs. Geothermics 28:553-572 

• Cressie, N (1993) Statistics for spatial data. Wiley, New York 
• Dershowitz WS, Einstein HH (1988) Characterizing rock joint geometry with joint system models. Rock 

Mechanics and Rock Engineering 21(1):21–51 
• Dershowitz W, LaPointe P (1994) Discrete fracture approaches for oil and gas applications. In: Nelson PP, 

Laubach SE (eds) Proceedings of the Northern American rock mechanics symposium, Austin, TX. Balkema, 
Rotterdam, pp 19–30 

• Deutsch CV, Cockerham PW (1994) Practical considerations in the application of simulated annealing to 
stochastic simulation. Mathematical Geology, Vol 26, No 1  

• Dowd PA, Xu C, Mardia KV, Fowell RJ (2007) A comparison of methods for the simulation of rock fractures. 
Mathematical Geology, 39:697-714 

• Einstein HH (2003) Uncertainty in rock mechanics and rock engineering—then and now, In: Proceedings of the 
10th international congress of the ISRM. The South African institute of mining and metallurgy symposium series 
S33, vol. 1, pp 281–293 

• Fadakar, AY, Dowd PA, Xu C (2013) The RANSAC method for generating fracture networks from micro-seismic 
event data. Journal of Mathematical Geosciences, DOI 10.1007/s11004-012-9439-9 

• Geman S, Geman D (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian Restoration of Images. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 6 (6): 721–741 



Page	
  19	
  of	
  19	
  

	
  

• Goovaerts P (1998) Accounting for estimation optimality criteria in simulated annealing. Mathematical Geology, 
Vol. 30, No. 5 

• Hsieh PA, Neuman SP, Stiles GK, Simpson ES (1985) Field determination of the 3-dimensional hydraulic 
conductivity tensor of anisotropic media 2. Methodology and application to fractured rocks. Water Resources 
Research 21(11):1667-1676. 

• Kirkpatrick S, Gelatt-J CD, Vecchi MP (1983) Optimization by simulated annealing. Science, 220:671-680 
• Long JCS, Remer JS, Wilson CR, Witherspoon PA, (1982) Porous media equivalents for networks of 

discontinuous fractures. Water Resources Research 18(3):645–658 
• Long JCS, Witherspoon PA (1985) The relationship of the degree of interconnection to permeability in fracture 

networks. J Geophys Res B 90(4):3087-3098 
• Mardia KV, Nyirongo VB, Walder AN, Xu C, Dowd PA, Fowell RJ, Kent JT (2007a) Markov Chain Monte Carlo 

implementation of rock fracture modelling. Mathematical Geology, 39:355-381 
• Mardia KV, Walder AN, Xu C, Dowd PA, Fowell RJ, Nyirongo VB, Kent JT (2007b) A line finding assignment 

problem and rock fracture modelling. Bayesian Statistics and its Applications, Eds. Upadhaya, S.K., Singh, U., 
Dey, D.K. (Eds), Anamaya Pubs, New Delhi pp 319-330 

• Nelson RA (1982) An approach to evaluating fractured reservoirs. SPE10331, SPE J. Petrol. Technol., September 
• Odling NE (1992) Permeability and simulation of natural fracture patterns, in Structural and Tectonic modelling 

and its application to petroleum geology. Nor Pet Soc Spec Publ 1:365–380 
• Robinson PC (1983) Connectivity of fracture systems-a percolation theory approach. Journal of Physics A: 

Mathematical and General 16:605–614 
• Sahimi M (1993) Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata 

and simulated annealing. Reviews of Modern Physics 65 (4):1393–1534 
• Seifollahi S, Dowd PA, Xu C (2012) A stochastic model for the fracture network in the Habanero enhanced 

geothermal system. Proceedings of the 2012 Australian Geothermal Energy Conference 2012, Sydney	
  
• Seifollahi S, Dowd PA, Xu C, Fadakar AY (2013) A Spatial Clustering Approach for Stochastic Fracture Network 

Modelling. Rock Mech Rock Eng DOI 10.1007/s00603-013-0456-x 
• Tamagawa T, Matsuura T, Anraku T, Tezuka K, Namikawa T (2002) Construction of Fracture Network Model 

Using Static and Dynamic Data. Society of Petroleum Engineers Annual Technical Conference and Exhibition. 
Texas, USA 

• Tran NH, Chen Z, Rahman SS (2007) Practical application of hybrid modelling to naturally fractured reservoirs. 
Petroleum Science and Technology, 25:1263-1277 

• Tran NH, Rahman MK, Rahman SS (2002) Developing a hot dry rock reservoir in Australia by hydraulic 
stimulation: a shear-dilation model for design and evaluation. Geothermal Resources Council Transactions 26 

• Xing, H, Zhang, J, Liu, Y, Mulhaus, H (2009) Enhanced geothermal reservoir simulation. Proceedings of the 
Australian Geothermal Energy Conference 2009, Brisbane 

• Xu, C and Dowd, PA (2010) A new computer code for discrete fracture network modelling. Computers and 
Geosciences, 36:292-301 

• Xu C, Dowd PA, Mardia KV, Fowell RJ (2006) A connectivity index for discrete fracture networks. Mathematical 
Geology, 38:611-634 

• Xu C, Dowd PA, Mardia KV, Fowell RJ, Taylor CC (2007) Simulating correlated marked point processes. 
Journal of Applied Statistics, 34:1125-1134 

• Xu C, Dowd PA, Wyborn D (2013) Optimization of a stochastic rock fracture model using Markov Chain Monte 
Carlo Simulation. Mining Technology, 122(3):153-158.   


