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Abstract—A new metamaterial-inspired microwave microflu- measurment accuracy for a small change in the dielectric
idic sensor is proposed in this paper. The main part of the properties.
device is a microstrip coupled complementary split-ring resonator ; ; ; ; _
(CSRR). At resonance, a strong electric field will be estatshed Recently,_ a nhew microwave sensing pllatform is being de
along the sides of CSRR producing a very sensitive area to avelopgd using th? _c_oncept OT metamater'a|§ [12], [13]. Meta
change in the nearby dielectric material. A micro-channel $ po- materials are artIfICIally englneered materials made of- sub
sitioned over this area for microfluidic sensing. The liquidsample wavelength resonators that can manipulate the electroatiagn
flowing inside the channel modifies the resonance frequencynd wavesin a way Causing some exotic e|ectr0magnetic prmerti
peak attenuation of the CSRR resonance. The dielectric prop 14]  \Metamaterial inspired devices are suited to sensing

erties of the liquid sample can be estimated by establishingn licati - th ffer i d t i hi
empirical relation between the resonance characteristicand the applications since they offer improved compactness andfa hi

sample complex permittivity. The designed microfluidic sesor ~Q-factor that is very sensitive to environmental changeg.[15
requires a very small amount of sample for testing since the Various types of new or improved microwave and terahetz
cross-sectional area of the sensing channel is over five orde sensors have been introduced so far using this new Concept
of magnitude smaller than the square of the wavelength. The fq gitferent sensing applications such as displacemesi{1
proppsed mICI’OﬂUIdI.C sensing concept is compatible with la-on- [18], rotation [17], [19] thin-film sensing [20]-[22], andrain
a-chip platforms owing to its compactness. ' ’ ' X
sensing [23], [24]. Further to that, there are a few studies o
metamaterial-based microfluidic characterization. Ir,[pZ5]
microfluidic channels were designed to deliver the fluid si@mp
to an array of resonators causing a significant modification
. INTRODUCTION of the resonance frequency. Nevertheless, this configurati
requires a large amount of liquid sample for identification.

M ICROWAVE sensors are very attractive choices fof, aqition, a left handed planar medium formed, by using a

many of electronic, biomedical and industrial appll'spiral-resonator coupled microstrip line was designeeéttogy

catio_n_s_[l], [2]. They offer many ad_van_tages including higlﬂ/ith a microfluidic channel for liquid sensing [27]. This de¥
sensitivity, robustness and low fabrication and measumamghows a bandpass response that is not accurate for dielectri
costs [3]. These advantages make them preferable ChOICRS» terization. Recently, we proposed a metamatesisdd

for m'_c.rOﬂu'd'C and b'os,ens'n,g, apphcaﬂons [4_]’ [5]. H'g,hmicroﬂuidic sensor with a single split-ring resonator (SRR
sensitivity and accurate identification of chemical and-biq., \yieq microstrip line [28]. The microfiuidic channel was
Iog|cal liquid samples using microwave dielectric and myli considered in the gap area of the SRR where there is a very
drical resonators _hav_e been studied and demonstrated [éﬂr_ong and localized electric field on resonance. Applyh t
[9]. In these appll_canons, the resonance frequency Chﬁn%uid sample to this capacitive gap modifies the resonance
and the transmission characteristics at resonance arefase requency and quality factor from which the complex permit-
determination of the complex permittivity. Notably, a téfaly tivity of mixtures can be determined. However, the senigjtiv

large device size makes these type of sensors unswtabledfplihe device was not enough to discriminate small changes

integrated systems. In [10], a compact microwave SENSONiiSine permittivity of the sample as the maximum resonance

designed for broadband microfluidic permittivity measueam frequency shift was reported to be around 100 MHz for a
with complicated mathematical post-processing. In [11], ﬁermittivity change of 80 [28]

new K-band lmicrﬁfluidic devi;:e _wasdproposeld base;(jj&on An this paper, a complementary split-ring resonator (CSRR)
quarter-wavelengtn resonator designed on coplanar WalegU;s ,seq instead of a SRR, to provide a larger area of fringing

Ithemploy§ a .change m thi resonance frequegcr)]/. f?]r,q'edl?c'[glectric field that increases the effective interactioraangth
Ch aractti:‘_nz?tlon. Disﬂ'tet ecompa_ctnesséan lgﬁw_yslt the sample. The proposed sensor determines the complex
the quality factor of the resonance is moderate, affectieg tye mitivity of liquids based on changes in the resonance
frequency and peak attenuation of the transmission respons
This work was performed (in part) at the South Australian enad the Sq y P he devi is desi d 8p
Australian National Fabrication Facility (ANFF) under tNational Collabo- (| 21|max) on resonancg. The e_\/'ce 'S_ esigned to QPerate
rative Research Infrastructure Strategy to provide nambraizrofabrication at around 2 GHz and is compatible with lab-on-a-chip. So,

facilities for Australian researchers. _ _ it satisfies the need for low-cost and compact high sertsitivi
The authors are with the School of Electrical & ElectronicgiEeer-

ing, The University of Adelaide, Adelaide, SA 5005, Aus@ale-mail: devices in microwave m|Cr(_)ﬂU|d|C apphcapons.
amir.ebrahimi@adelaide.edu.au). The next section describes the sensing concept and the

Index Terms—complementary split-ring resonator (CSRR),
dielectric characterization, metamaterial, microfluidic sensor.
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Fig. 1. (a) A microstrip coupled CSRR with the gray area shovthe ground
plane and yellow showing the top microstrip metalizatidn). Ifs equivalent
circuit model with L and C for the unit length inductance and capacitance

of the microstrip respectively anflRLC'} ~ for the CSRR. The CSRR and -35 : : : :

. . . . ) 1.8 2 22 24 2.6 2.8
microstrip dimensions arey = 1.3 mm, ! = 11 mm, ¢ = 0.5 mm and Frequency (GHz)
g = 0.2 mm.

Fig. 2. Simulated resonance of the microstrip coupled CSRRig 1 in
CST microwave studio. The resonance appears as a transmizsio inSs;

operation princip|e of the sensor. The fabrication prom around 2.4 GHz. A strong electric field is established betwibe capacitive
measurement setup are explained in Section IIl. A sensifig® @1d the ground plane at resonance.

model is developed for the designed device in Section IV.

The proposed microfluidic sensing method is validated tgmudefined as [30]

measurements in Section V and finally, Section VI forms the )

conclusion. _ 1
fO o /7_[,0(0—}—00)7 ( )
Il. OPERATIONPRINCIPLE and the quality factor of the resonance is
The main part of the proposed sensor structure is a mi- O=R /C+Cc_ @)
crostrip coupled CSRR as shown in Fig. 1(a). The CSRR Le

is composed of a metallic capacitive plate that is connectgdis worth noting that the capacitaf- is affected by the

through an inductive metallic path to the surrounding gmburijielectric materials near the gap between the CSRR and
plane at a distancefrom its edge. Since the CSRR is etche@round. So, it can be approximated by

in ground plane and is mainly excited by the electric field
of the microstrip line, the whole coupled structure can be Cc = Co+ €samCe, )

modelled by the lumped element circuit in Fig. 1(b) [29)yhere, ;) models the capacitive effects of the dielectric
In the equivalent circuit model, the parallel combination o psirate, channel walls and surrounding space exclutimg t

Le, Cc and Rc models the CSRR, whex€c stands for the cpannel cavity and the term,.,C,. denotes the capacitive ef-
capacitor between the square-shaped metallic plate and & f the Jiquid sample loaded into the microfluidic chainne

ground plane,L¢ stands for the inductance of the metalligygre ¢, is the capacitance of the empty channel. Now, if
inductive path of widthg connecting the capacitive plate e complex permittivity of the liquid sample is consideted
ground, andR~ models the equivalent loss associated WItBee'a — ¢ 4+’ from (1)=(3), both of the resonance

the CSRR [30]. Here[ and C" model the inductance andfrequency and the quality factor will be functions of theuiid
capacitance of the microstrip line, respectively. sample permittivity or

When the microstrip is fed with a microwave signal,
it develops a quasi-TEM electromagnetic wave propagation fo = Fy(e € ), Q = Fy(cly, €l). (4)
mode described by a magnetic field circulating around the
microstrip and an electric field pointing towards the grounfine above discussion indicates that the resonant chasdicter
plane. This electric field excites the CSRR inducing a vaita@f the microstrip coupled CSRR device are dominated by
difference between the capacitive plate and the groundeplafhe complex permittivity of a liquid sample. Therefore, by
The resonance occurs when the electric energy stored ifi thé@nalyzing this dependency, we can determine the complex
and C capcitors equals to magnetic energy of the inductiRermittivity of an unknown liquid sample simply by measugin
strip of L. As shown in Fig. 2, at resonance, a strong electrife transmission resonance characteristics.
field will be established across the gap between the capaciti
plate and ground. The electric field is stronger across the IIl. FABRICATION PROCESS
lower edge of the square-shaped CSRR making this regiorThe designed device has been fabricated on Rogers RO6002
very sensitive to dielectric changes. Therefore, a miariafic microwave substrate with a relative permittivity of 2.94 fo
channel is laid across the lower edge of the CSRR. Thdowing significant fringing field in the sensing area and
resonance can be observed as a notch in the transmisdience increasing the sensitivity. The substrate thickness
coefficient of the structure as illustrated in Fig. 2. Frore th0.508 mm. The copper metalization for the ground plane and
circuit model of Fig. 1(b), the resonance frequency can & Q microstrip line is 18um.
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Fig. 5. Measured transmission response of the sensor areliff conditions.

Substrate Microstrip
of the liquid sample across the sensing area. It should be
(b) mentioned that the device response might be influenced by the
Fig. 3. Schematic of the microstrip coupled CSRR with the FDiMicroflu- position of the Ch_annd but it should not _be an issue since the
idic channel (a) Top view of the structure (b) Side view wiimensions. channel position is kept unchanged during all measurements
In a similar manner to [28], the measurements are carried out
based on a stop-flow technique. A binary solution of digtille
water and ethanol is used as a liquid sample for testing since
provides a broad range of the complex permittivity at the low
microwave frequency range [31]. Teflon tubes, together with
a syringe, connected to the inlet and outlet of the channel
are used for filling and draining the channel. During the
measurements, a very low pressure is applied to the syringe t
avoid channel deformation. In each step, the channel i$yfirst
filled with the liquid sample and then the flow is stopped for
measurement. The resonance frequency and peak attenuation
parameters are then recorded to characterize the liqutd tes
samples. As seen in Fig. 5, the resonance frequency and peak
attenuation are maximum when the channel is not attached
Fig. 4. The sensor module. () Top view of bare CSRR. (b) Bowiew of 10 the sensor. By adding the PDMS channel, the resonance
bare CSRR. (c) The complete sensor module when the PDMS ehand  frequency is shifted down with a small decrease of peak

in/outlet tubes are attached and the device is packagedh@ytomplete test : : : :
setup when the device is connected to the network analyzenéasurments. gtl'[jel\r;gatlon since a part of the CSRR is covered with the

As mentioned before, the microfluidic channel is positioned V. DEVICE CHARACTERISTICS

along the lower edge of the CSRR. The material used for chah- Initial Measurements
nel is polydimethylsiloxane (PDMS) since it is inexpensive For investigating the effect of the complex permittivity
widely available, biocompatible, durable, and easy to essc (e, + jel..) on the resonance frequency and peak at-
[10], [11]. For channel fabrication, a mold has been pregharéenuation, a set of experiments has been performed using
on a silicon substrate by using a thick photoresist mask abuhary mixtures of distilled water and ethanol. The didliect
chemical etching. Then, a PDMS layer is deposited on tipeoperties of water-ethanol mixture was accurately stlidie
prepared mold and cured at®8D. Finally, the PDMS channel in [31]. The accurate complex permittivity of the test fluid
is peeled off and attached to the microstrip coupled CSRBamples from [28], [31] are listed in Table I. For the first
The channel is manually positioned to the lower side of CSRfet of measurements, the volume fraction of water is changed
where the fringing electric field is strongest and thereftie from 10% to 90% with a step size o20% and at each step,
sensitivity to the dielectric property changes is maximiiime the resonance frequency and peak attenuation of the sensor
height, width and length of the channel are 0.06 mm, 0.7 mane recorded giving a data set of 5 samples. The measurement
and 14 mm, respectively. Fig. 3 shows the bottom view amdsults of the resonance frequency and maximum attenuation
cross-section of the structure when the channel is attatthedor the 5 test samples are shown in Fig. 6. As seen, the
the substrate. resonance frequency is shifted from 1.875 GHz down to
The PDMS channel ensures a constant volume and shdpg7 GHz as the water volume fraction increases frdi¥x
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TABLE | 0
COMPLEX PERMITTIVITY OF WATER-ETAHNOL MIXTURE AT 1.9 GHz
[28], [31]. THE VOLUME FRACTION OF WATER IS CHANGED FROM 10% & —3F——10% water
TO 90%FORDEVICE TESTING. 2 ——30% water
V‘;T‘ -6 | ——50% water |
Py 7 m ; 7 ——70% water
Water Fraction% € € Ae Ae —90% water (a)
10 16.5 12.3 -30.5 2.7 _91.3 1425 155 1.675 1.8 1.925 205 2175 2.3
30 315 1555 -155 0.55 e Frequency (GHz) .
50 47 15 0 0 N g
70 61 128 14 22 g £
=3 53
90 72 106 25  -44 g7 °8
E 1.6 ;
= L5 v . . 6 si)
“10 30 50 ) 70 90
to 90%. The peak attenuation is minimum when the watei Water Fraction (%)

VOIume fr_aCt_lon is30%. It is Worth noh_ng that the ObserVedFig. 6. (a) The measured transmission response of the wtienol test
nonlinearity in the peak attenuation with respect to theewatsamples for calibration of the sensor. The water volumetitrads changed

content follows the nonlinear loss function of water migturfrom 10% to 90% with the step size of 20%. (b) Correspondirgpmance
[28] [31] frequency and peak attenuation at different steps with ethsine for visual

guidence.

TABLE 1l
COMPLEX PERMITTIVITY OF WATER-ETAHNOL MIXTURE AT 1.9 GHz
Based on the measurement results of the five test samples[2&], [31]. THE VOLUME FRACTION OF WATER IS CHANGED FROM 0%

B. Mathematical Model Derived from Measurments

. . . . 0,
simple model is derived for resonance frequency shift armdk pe T 100%.
attenuation variations as a function of the complex peivitj
S - . P P Wt Water Fraction% € e’ Ae A€’
This simplified model can be defined as
0 9 10 -3 -5
Afo ] _ [ma ma Aé, ) 20 24 136 23 -14
A|So]| ma1 mas| |Ae” |7 40 39 156 -8 06
) ) ) B B B 60 53 146 6 0.4
Where’ AEsam = Csam _.Eref' AEsalm = €sam — Cref and 80 67 13.4 20 -1.6
Afo = fosam — foret With subscript (sam) for the sample 100 795 9 325 -6

under test and (ref) for the reference mixture. Here, thetumex
with a 50% water fraction is considered as the reference. The
unknown pargmeters of the matrix can be determmed_fro&gd the maximum error ir\|Ss;| can be obtained as
the data available from the measurement results of Fig. 6,

together with the reported complex permittivity in Table 1. ma1 A€
The benefit of this model is that all the fabrication toleresc Mmoo A€’

of the deV|c_e are fully taken into ac_count. The coefficierfts o From (8) and (9) it can be inferred that the contributions of
the model in (5) are over determined by test datasets. Sp

the least-squares method explained in [28] can be used’ on the resonance frequency shift aricon the peak atten-

approximate the coefficients. This method yields the foitayv u(? Iggncggns?gzazgdnzglIglble' So, the characteristicixnatr
matrix that relates the resonance frequency and maximtgr%

attenuation changes to the complex permittivity
[ Afo ] _ [—0.00528 0 } [Aegam} (10)

_ "
Afo ] [-0.00528 0.000256] [A€,,, AlS2] 0 0.202] | A€,
A|Sa]| — |—0.00045 —0.292 | |Ael | The complex permittivity of unknown liquid samples can

By comparing the coefficients in (6), it will be found thalbe determined using matrix inversion. Inverting (10) letmls

the effect ofe’ on the resonance frequency is approximately
20 times larger than the effect ef. On the other hand, the Acgum| _ [—18939 0 Afo
impact ofe”” on the peak attenuation is 650 times higher than Aeg, 0 —3.424| |A[S2] ]’

the influence of’. which can be used for determining the complex permittivity
Considering the samples of Table | of unknown liquid samples simply just by measuring the

~ 4.3%. (9)

max

(11)

Aé Ae resonance characteristics.
‘ | mos ‘ | =~o0176. 7)
AE max AE max
) ) V. EXPERIMENTAL RESULTS AND VALIDATION
So, by neglectingn;» andmso; the maximum errors oA fj ) )
is In order to verify the presented sensor model in (11), the
water ethanol mixture is used again. This time, the volume
mizAe” ~ 0.9% (®) fraction of water is changed from 0% to 100% with the
mu A€ | = step size of 20% giving 6 data sets of measurement results.
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Fig. 7. (a) The measured transmission response of the wtitanol test e
samples for validating of the (11) model. The water volunaetion is changed < 14r o 1
from 20% to 100% with the step size of 20%. (b) Correspondiegpnance T 15l - o ]
frequency and peak attenuation at different steps with ethéihe for visual g -
guidence. > 12} ]
g
B 11f .
£
The measured transmission responses of the sensor for these = '® 04 1
sets of samples are shown in Fig. 7 together with the ex- O m Literat (b) ©
. 1terature
tracted resonance frequency and peak attenuation. As seen, 8 ‘ ‘ ‘ ‘
the corresponding frequency shift for 0%—100% of the water 0 X e Fraction sy 10

volume fraction is around 400 MHz, showing 4 times higher

sensitivity with respect to our previous design [28] with &ig. 8. Comparison between the predicted and litratureegalof complex
100 Mz frequency shift. The model presented in (11) is us@ ™y o 1" Molretions myure ot oo 1.9 S:7ne Jone
to determine theAe’ and Ae” for each couples of measureda) Real part of the complex permittivity. (b) Imaginary paf the complex
resonance frequency and peak attenuation, where 50% walermittivity.

ethanol mixture is considered as the reference. Then, the

complex permittivity of each sample can be calculated as _ _ o
accuracy when using the proposed microfluidic sensor and the

€sam = €ref T A€nog (12) parameter estimation model. The proposed concept promises
&= A (13) a high sensitivity and accurate microfluidic sensing at low

microwave frequencies. Owing to its compact structure, the
with a subscript ‘mod’ for the values obtained from (11). Fodevice has the potential to be integrated with system-on-a-
comparison, the obtained complex permittivity values @ thchip.
samples are plotted against the exact values in Fig. 8. This

figure shows an acceptable accuracy of the simplified model

of (11). The small disagreements between the measured and ) o
literature values of complex permittivity may potentiadisise 1 he authors would like to acknowledge Pevel Simcik and
from the measurement uncertainties or the simplified linel@" Linke of the University of Adelaide and Simon Doe
approximation of the sensing model. The accuracy can BBJ Dipankar Chugh of lan wark Research Institute for their
increased by using a higher order approximation. The devitgehnical assistance in fabricating and assembling thgosen

can also be tested with other sets of liquid samples coveriij@nks are also given to South Australian ANFF node at

wider ranges of complex permittivity values to produce aenof@" Wark Researchinstitute of the University of South Aus-
accurate sensing model. tralia for providing us with the nanofabrication facility.
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