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Deutschsprachige
Zusammenfassung

Das Thema dieser Dissertation ist Essentialismus: die These, dass zumind-
est einige Dinge zumindest einige essentielle Eigenschaften haben. Das Ziel
der Dissertation ist es, eine Explikation (im Sinne Carnaps) des Begriffes
essentieller Eigenschaften zu geben, wobei der Autor den Essentialismus als
gegeben voraussetzt.

Das erste Kapitel “Introduction” stellt die Einleitung der Dissertation dar.
In diesem Kapitel gibt der Autor den notwendigen philosophischen Hin-
tergrund und eine Motivation für das Projekt der Dissertation. Zu diesem
Zweck stellt der Autor zuerst die gängige Analyse von essentiellen Eigen-
schaften mithilfe des Begriffs von Notwendigkeit de re dar und erläutert die
notwendigen philosophischen Annahmen. Darauf aufbauend diskutiert der
Autor kurz, wie der Begriff von Notwendigkeit de re durch Kripkes mögliche-
Welten-Semantik gegen Quines Einwände behauptet wurde. Anschließend
diskutiert der Autor Fines Einwände gegen die Analyse von essentiellen
Eigenschaft durch Notwendigkeit de re und stellt Fines Gegenvorschlag vor,
essentielle Eigenschaften als Eigenschaften zu verstehen, die in der Identität
ihrer Träger begründet liegen. Der Autor argumentiert dafür, das Problem
der Analyse des Begriffs von essentiellen Eigenschaften als ein Explikation-
sproblem im Sinne Carnaps zu verstehen. Dies bedeutet insbesondere, dass
der Autor annimmt, dass es keine “richtige” oder “falsche” Analyse des Be-
griffes gibt, sondern die Standards, an denen ein Analysevorschlag gemessen
werden sollte, in der Nützlichkeit für die intendierten Anwendungen der
Analyse begründet liegen. Aufbauend darauf argumentiert der Autor dafür,
dass es mindestens zwei Begriffe von essentiellen Eigenschaften gibt: einen,
der durch die Analyse mithilfe von Notwendigkeit de re expliziert wird, und
einen, der durch Fines Analyse mithilfe von metaphysischer Begründung ex-
pliziert wird. Allerdings attestiert der Autor, dass Fines Analyse, zumindest
dem gegenwärtigen Stand der Forschung nach, nicht vergleichbar präzise wie
die Analyse mithilfe von Notwendigkeit de re formuliert ist. Insbesondere,
so der Autor, fehlen zwei wesentliche Aspekte:
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(1) eine vollständige (semantische) Analyse metaphysischer Begründung,
vergleichbar mit der mögliche-Welten-Semantik von Kripke, und

(2) eine metaphysisch robuste Hintergrundtheorie von Eigenschaften,
welche den Ansprüchen der Fineschen Analyse genügt.

Der Autor formuliert es als Ziel der Dissertation, diese zwei fehlenden As-
pekte zu liefern.

Im zweiten Kapitel “Axiomatic Theories of Ground” verfolgt der Autor
einen axiomatischen Ansatz zu Theorien von metaphysischer Begründung.
Der Autor argumentiert dafür, dass ein solcher Ansatz nicht nur natürlich,
sondern insbesondere auch technisch und philosophisch gut motiviert ist.
Ausgehend von den üblicherweise akzeptierten Prinzipien für metaphysische
Begrüngung, entwickelt der Autor eine axiomatische Theorie und zeigt, dass
diese nicht nur konsistent ist, sondern insbesondere auch beweistheoretisch
konservativ über der Theorie von positiver Wahrheit ist. Anschließend
diskutiert der Autor eine mögliche Erweiterung seiner Theorie um getypte
Wahrheitsprädikate und zeigt, dass auch diese Erweiterung konsistent bis
zum einem Typisierungslevel von ε0 ist. Der Autor argumentiert dafür, dass
diese Theorie eine mögliche Lösung für Fines Puzzle of Ground darstellt.
Abschließend weißt der Autor auf die technischen Grenzen seiner axioma-
tischen Herangehensweise hin und argumentiert dafür, dass zumindest zum
gegenwärtigen Stand der Forschung, axiomatische Theorien von metaphysis-
cher Begründung noch nicht weit genug entwickelt sind, um die Aufgabe (1)
aus der Einleitung hinreichend präzise zu beantworten.

Im dritten Kapitel “The Full Logic of Worldly Ground” wendet sich der
Autor operationellen Ansẗzen zu metaphysischer Begründung zu. Ziel des
Kapitels ist es, die bestehenden operationalen Ansätze metaphysischer
Begründung in der Hinsicht zu erweitern, dass iterierte Anwendungen von
Begründungsoperatoren beschrieben werden können. Der Autor motiviert
die Fragestellung aus philosophischen Positionen zur Begründung von meta-
physischer Begründung. Der Autor argumentiert dafür, dass unterschiedliche
Ansichten zur Begründung von Begründung zu unterschiedlichen Logiken
metaphyischer Begründung führen. In diesem Kapitel setzt sich der Autor
das Ziel, einen operationalen Ansatz, unter der These, dass metaphysische
Gründe Begründung begründen, zu entwickeln. Zu diesem Zweck erweitert
der Autor die Wahrmacher Semantik von Fine [42] um Wahrheitsbedingun-
gen für iterierte Anwendungen von metaphysischen Begründungsoperatoren
in infinitären Sprachen. Die Semantik soll dabei intuitiv der These, dass
Gründe Begründung begründen, entsprechen. Anschließend gibt der Au-
tor ein infinitäres Beweissystem für die Semantik und zeigt die Korrekheit
des Systems bezüglich der zuvor vorgestellten Semantik. Der Autor disku-
tiert abschließend Möglichkeiten, die Resultate des Kapitels zu erweit-
ern. Insbesondere weist der Autor auf Komplikationen für einen möglichen
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Vollständigkeitsbeweis hin.

Im vierten Kapitel der Arbeit mit dem Titel “How to Distinguish Necessarily
Equivalent But Distinct Properties” entwickelt der Autor eine neue Theo-
rie hyperintensionaler Eigenschaften. Der Autor beginnt mit einer Kritik an
den meist vertretenen hyperintensionalen Eigenschaftstheorien, insbeondere
der unmögliche-Welten Theorie und der Theorie von strukturierten Eigen-
schaften. Anschließend entwickelt der Autor seine eigene hyperintensionale
Theorie von Eigenschaften. Diese Theorie baut auf der Intuition auf, dass
wir Eigenschaften über ihre Exemplifikationskriterien individuieren sollten.
Dabei sind die Exemplifikationskriterien einer Eigenschaft für einen Gegen-
stand diejenigen Sachverhalte bezüglich des Gegenstands, welche der Fall
sein müssen, damit der Gegenstand die Eigenschaft exemplifiziert. Der Autor
argumentiert dafür, dass diese Idee zu einer natürlichen und philosophisch
adäquaten Eigenschaftstheorie führt und deutet auf verschiedene Anwen-
dungsmöglichkeiten hin.

Im Schlussteil “Conclusion” fasst der Autor die Ergebnisse der Arbeit kurz
zusammen und wendet sie nocheinmal auf die konkrete Fragestellung der
Dissertation an. Insbesondere stellt der Autor hier das zentrale Ergebnis
der Arbeit vor: er gibt eine Explikation der Auffassung von essentiellen
Eigenschaften, verstanden als Eigenschaften, die in der Identität ihrer Träger
begründet liegen. Diese Explikation besagt im Wesentlichen, dass eine Eigen-
schaft genau dann essentiell für einen Gegenstand ist, wenn die Behauptung,
dass der Gegenstand diese Eigenschaft exemplifiziert, von dem augezeich-
neten Identitätssachverhalt des Gegenstandes verifiziert wird. Der Autor ar-
gumentiert dafür, dass diese Analyse zusammen mit der Eigenschaftstheorie
aus dem vierten Kapitel eine plausible Explikation des Begriffes von essen-
tiellen Eigenschaften, verstanden als Eigenschaften, die in der Identität ihrer
Träger begründet liegen, gibt. Abschließend weist der Autor noch auf ver-
schiedene Möglichkeiten hin, die Ergebnisse der Arbeit weiterzuentwickeln.
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Chapter 1

Introduction

The essence of a thing is what it is
said to be in respect of itself.

Aristotle, Metaphysics, 1029b14

This dissertation is about essentialism: the view that at least some things
have at least some essential properties.1,2 To informally illustrate essential-
ism and the concept of essential properties, think of Socrates as an example.
Typically, essentialists would say that being a man is an essential property
of Socrates.3 In contrast, essentialists would typically say that being mar-
ried to Xanthippe is not an essential property of Socrates.4 The aim of this
dissertation is to give a Carnapian explication of the concept of essential
properties [17, p. 1–18], while assuming essentialism. In this introduction,
we’ll5 give some informal philosophical background and motivation.

1 In this dissertation, for reasons of perspicuity, we shall often confine ourselves to
properties, while leaving relations out of the picture. Properties are, of course, a special
case of relations: a property is simply a unary relation. Everything that we’ll say about
properties in the following can easily be generalized to arbitrary relations.

2In this dissertation, we shall exclusively focus on what Correia [23] calls objectual
essence: the essence or rather essential properties of objects. Correia contrasts objectual
essence with generic essence: the essence or perhaps essential properties of generic things,
including concepts, properties, and so on. Generic essence is an exciting concept of essence,
which we can approach with similar methods as the ones we’ll develop in this dissertation.
However, for reasons of perspicuity, we’ll focus exclusively on objectual essence here. We
hope to extend the results of this dissertation to generic essence at a later time.

3 For a disagreeing argument, see [134].
4Gerundives, like “being a man” and “being married to Xanthippe,” are canonical

property designators: expressions we normally use to denote to properties [125]. Later,
we shall discuss different metaphysical theories of properties, but for now we leave the
concept unanalyzed.

5In this dissertation we will follow the suggestion of the Chicago Manual of Style to
use contractions whenever they increase legibility.
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1.1 Essentialism and Modal Metaphysics

Let’s begin with the standard analysis of essential properties for most of the
twentieth century. For quite some time, essentialism and essential properties
had a difficult standing in analytic metaphysics. In the middle of the twen-
tieth century, Quine still spoke of “the metaphysical jungle of Aristotelian
essentialism” [116, p. 174]. Quine’s main worry with essentialism lied with
the concept of necessity that is involved in the concept of essential properties.
Traditionally, essentialists analyze essential properties in terms of necessity
[109, 90, 110, 76, 83, 137]. One way of spelling out this analysis is in terms
of Kripke’s notion of weak necessity, i.e. necessity contingent upon existence
[75, p. 138]:

Modal Analysis (MA). For all properties Φ and all objects x,

Φ is an essential property of x iff �(if x exists, then x exemplifies Φ).6

Here the modal operator � expresses what philosophers typically call meta-
physical necessity : necessity that obtains in virtue of the laws of metaphysics
[49].7 The principle MA captures the essentialist intuition that essential
properties are simply properties that are weakly necessary to their bearers.

Given some fairly standard assumptions in philosophical modal logic, MA
has some interesting consequences. First, we may standardly assume that
whatever is necessarily the case is also actually the case. In symbols, for all
statements ϕ, we may assume:

(T) if �ϕ, then ϕ.

Thus, we can infer from MA that if a property Φ is an essential property of
an object x, then if x exists, x exemplifies Φ. In other words, existing objects
exemplify all their essential properties. Second, we may standardly assume
that necessity and possibility are interdefinable: something is possibly the
case iff it is not necessarily not the case. In symbols, for all statements ϕ,

6The term “exemplification” is a term of art from metaphysics that describes the re-
lation that holds between an object and a property iff we would say in natural language
that the object has the property. Thus, in metaphysical contexts, we say that an object
exemplifies a property iff we would say in natural language that the object has the prop-
erty. There are different ways, both in natural language and in metaphysics, to say that
an object exemplifies a property. Take Socrates and the property of being a man as an
example. We can, for example, say that Socrates has the property of being a man, that
Socrates bears the property of being a man, or simply that Socrates is a man. We will
use different locutions on different occasions, without meaning anything deep by it. Other
than the previous natural language examples, we shall leave the relation of exemplification
unanalyzed for now, at least until we properly discuss metaphysical theories of properties.

7In this introduction, we’ll use formal symbols, like �, together with informal natural
language expressions, like “x exists,” in an attempt at informal rigor : the paradigm that
we should be as precise as possible, even in informal exposition.
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we may assume:

(♦/�) ♦ϕ iff ¬�¬ϕ,

where ♦ expresses (metaphysical) possibility. Thus, for an object x and a
property Φ, we can infer from MA that if ♦(x exists & ¬(x exemplifies Φ)),
then Φ is not an essential property of x.8 In other words, properties that are
contingent to an object—properties such that the object can exist without
exemplifying them—are never essential properties of the object.

To illustrate MA, let’s consider Socrates again. We’ve said that being a man
is a typical example of an essential property of Socrates. By MA this means
that �(if Socrates exists, then Socrates is a man). This is indeed plausible,
for Socrates could intuitively not exist without being a man.9 In contrast,
it is intuitively plausible that Socrates could have existed without being
married to Xanthippe, since, for example, the two could have never met.
Thus, ♦(Socrates exists & ¬(Socrates is married to Xanthippe)), and so,
by the previous observation, being married to Xanthippe is not an essential
property of Socrates—exactly as we wish to say as essentialists. To sum
up, in the cases of Socrates being a man and Socrates being married to
Xanthippe, MA agrees with our essentialist intuitions.

It is worth pointing out one crucial background assumption here. Note that
we have used Kripke’s notion of weak necessity to spell out the modal anal-
ysis of essential properties: we’ve said that a property Φ is an essential
property of an object x iff �(if x exists, then x exemplifies Φ). Now, weak
necessity is necessity contingent upon existence, but instead we could have
used a notion of unconditional or strict necessity to analyze the connection
between essential properties and necessity:

Strict Modal Analysis (SMA). For all properties Φ and all objects x,

Φ is an essential property of x iff �(x exemplifies Φ).

Here it is simply postulated that the essential properties of an object are
the properties that the object necessarily exemplifies regardless of whether
the object exists or not. This principle is typically endorsed by more “old-
school” essentialists, like Parsons [109] and Marcus [90]. The reason why we
chose weak necessity over strict necessity for the modal analysis is that we
wish to subscribe to the view that Williamson [136] calls contingentism: the
view that it’s possible for some things to possibly not exist. In symbols, we
can express the view as:

8For assume that ♦(x exists & ¬(x exemplifies Φ)). By ♦/�, this means that ¬�¬(x
exists & ¬(x exemplifies Φ)). But by classical logic, ¬(x exists & ¬(x exemplifies Φ)) is
(logically) equivalent to (if x exists, then x exemplifies Φ). So, we get ¬� (if x exists, then
x exemplifies Φ) from ♦(x exists & ¬(x exemplifies Φ)). Then using modus tollens and
MA we can infer that Φ is not an essential property of x. Q.E.D.

9But see Footnote 3.
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Contingentism. ♦(for some object x ♦¬(x exists)).

Williamson succinctly sums the view up in the slogan: “ontology is contin-
gent” [136, p. 2]. To illustrate, consider Socrates again. We wish to allow for
the possibility of Socrates never having been born, since, for example, his
parents could have never met. Moreover, we wish to hold that if Socrates
would never have been born, then he simply wouldn’t have existed. Thus,
we wish to say that ♦¬(Socrates exists). But Socrates actually exists, and
so there is some object x, namely Socrates, such that ♦¬(x exists). Now we
may standardly assume that whatever is actually the case is also possibly
the case. In symbols, for all statements ϕ,

if ϕ, then ♦ϕ.10

Putting all of this together, we get Contingentism: Since there actually
is some object x, namely Socrates, such that ♦¬(x exists), it follows that
♦(for some object x ♦¬(x exists)).

In contrast, Williamson [136] calls the view that necessarily everything nec-
essarily exists necessitism. In symbols, we can express the view as:

Necessitism. �(for all objects x �(x exists)).

On this view, for example, we would say that even if Socrates would never
have been born, he would still have existed. In fact, on the view, everything
that exists, or possibly could have existed, necessarily exists. As Williamson
sums up the view succinctly: “ontology is necessary” [136, p. 2]. Thus, Ne-
cessitism is simply the negation of Contingentism. In this dissertation,
we do not wish to go further into the contingentism-necessitism debate.11,12

We’ll simply assume contingentism. Thus, the view that we’re interested
in might be called contingentist essentialism: the view that, assuming con-
tingentism, at least some objects have at least some essential properties.
For this specific view, we wish to provide an explication of the concept of
essential properties.

Now, as contingentists, it’s reasonable to assume MA rather than SMA.
To see this, think of Socrates again. As we’ve said, we wish to assume that
it’s possible for Socrates not to have existed: ♦¬(Socrates exists). But it’s
plausible to say that if Socrates doesn’t exist, then he also doesn’t exemplify

10This principle, of course, follows from T by instantiating ϕ with ¬ϕ, contraposition,
double negation elimination, and ♦/�.

11[136] is a book length defense of Necessitism. Note that Williamson does not ar-
gue that Contingentism is incoherent. He simply argues that Necessitism should be
preferred over Contingentism on theoretical grounds.

12A more traditional way to phrase the issue is in terms of actualism and possibilism.
Roughly actualism is the view that only actually existing things exist, while possibilism is
the view that some merely possibly existing things exist [96]. For the relation between the
contingentism-necessitism debate and the actualism-possibilism debate, see [136, p. 22–25].

4



the property of being a man.13 Thus, it follows from ♦¬(Socrates exists)
that ♦¬(Socrates is a man). But by the interdefinability of possibility and
necessity this is equivalent to ¬�(Socrates is a man), and so we would get
by SMA and modus tollens that being a man is not an essential property of
Socrates—contrary to our previous assumption that being a man is indeed
a paradigmatic example of an essential property of Socrates. In other words,
SMA is inconsistent with our background assumptions, while MA, as we’ve
said before, agrees with our background assumptions. For this reason we will
use MA rather than SMA in the following.

But back to Quine. Quine was, of course, no essentialist. In particular, he
was skeptical of the idea of necessity pertaining directly to objects and their
properties. Note that we have used the modal operator � as an operator on
open formulas: for example, MA contains the open formula �(if x exists,
then x exemplifies Φ). Moreover, in MA, we quantify into this open for-
mula: MA says that for all properties Φ and all objects x, Φ is an essential
property of x iff �(if x exists, then x exemplifies Φ). Thus, the ranges of
the quantifiers “for all properties Φ” and “for all objects x” extend into the
open formula “�(if x exists, then x exemplifies Φ),” which is governed by
the modal operator �. In other words, in MA, we quantify into a context
of necessity. This gives us a precise sense in which the principle MA in-
volves necessity pertaining to objects and their properties. In philosophical
jargon, this notion of necessity, where it is possible to quantify into contexts
of necessity, is called necessity de re (‘of things’). Indeed, it seems that for
a workable modal analysis of essential properties, we really need to quantify
into the context of necessity: how else should we formalize the intuitive no-
tion that essential properties are simply properties that are weakly necessary
to their bearers?

In contrast, Quine [116] argued that the only way to make sense of neces-
sity is as a concept that pertains to sentences. On this conception, necessity
is simply the property of being true under all interpretations or necessary
truth. In philosophical jargon, this notion of necessity is known as necessity
de dicto (‘of words’).14 Correspondingly, Quine argues that instead of the
modal operator �, we should use the sentential predicate nec to formalize
necessity. For a formula ϕ, Quine writes nec(p“ϕ”q) with the intended in-

13Here we assume that an object can only exemplify a property if it exists. In more
formal terminology, we assume that our background logic is a negative free logic [79].

14In modern contexts, necessity de dicto is also sometimes defined as a property of the
contents of sentences or propositions [110, p. 9–13]. Quine himself was also skeptical of
propositions [cf. 117], and here we mainly take Quine as our opponent. Thus, we’ll only
talk of necessity de dicto as a property of sentences. However, everything we say can
easily be translated to apply to necessity de dicto as a property of propositions. For a
more comprehensive discussion of the distinction between necessity de dicto and necessity
de re, which also puts the distinction in a historical context, see [71].
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terpretation that ϕ is necessarily true.15 Note that for any formula ϕ, the
formula nec(p“ϕ”q) is a closed formula—a sentence—since the term p“ϕ”q
is a closed term: it is a name of the formula ϕ. Consequently, in a formula
nec(p“ϕ”q), we cannot quantify over any variables that might occur free in
ϕ—we cannot quantify into contexts of necessity [116, p. 170–71]. In partic-
ular, on Quine’s approach, we may be able to write:

for all properties Φ and all objects x, Φ is an essential property of x iff
nec(“if x exists, then x exemplifies Φ”),

but this does not say the same thing as MA. Since the variables x and Φ
in “nec(“if x exists, then x exemplifies Φ”)” are only mentioned and not
used, they are not “captured” by the quantifiers “for all properties Φ” and
“for all objects x.” As a consequence, “nec(“if x exists, then x exemplifies
Φ”)” simply says that the open formula “if x exists, then x exemplifies Φ”
is necessarily true. But on the standard reading of open formulas, “if x ex-
ists, then x exemplifies Φ” is true under an interpretation iff all objects that
satisfy “x exists” under the interpretation, together with all properties sat-
isfy the formula “x exemplifies Φ” under the interpretation. In other words,
“nec(“if x exists, then x exemplifies Φ”)” says that under all interpretations
all existing objects exemplify all properties. Thus, the “analysis” of essential
properties in terms of nec says that for all properties Φ and all objects x, Φ
is an essential property of x iff under all interpretations all existing objects
exemplify all properties—which is not only absurd, but certainly not what
MA says. Indeed, it seems that on Quine’s predicate approach to necessity
de dicto there is no way to properly formulate a modal analysis of essential
properties, since on the approach we can’t quantify into contexts of neces-
sity.16 And so, since Quine held that the only way to make sense of necessity
is as necessity de dicto which should be formalized using nec, Quine argued
that we can’t give a proper analysis of essential properties—he argued that
the concept is confused.

Let’s sum up Quine’s criticism. On the one hand, Quine held that we do
have a firm understanding of necessity de dicto: it amounts to the notion
of a sentence being true under all interpretations.17 And, so Quine, this
notion should be formalized using the sentential predicate nec. But on this

15For more on the Quine-corners p q, see [115, p. 36].
16But compare the recent developments in predicational treatments of modalities [59,

81, 57].
17A possible refinement may be to say that a sentence is necessary de dicto iff it is true

under all interpretations from a certain class of interpretations. By restricting ourselves
in this way to interpretations from a given class of interpretations, we can model different
concepts of necessity de dicto: for example, if we’re able to define the concept of a meta-
physically admissible interpretation, for example, we can define metaphysical necessity
de dicto as truth under all metaphysically admissible interpretations; or we could define
logical necessity de dicto as truth under all interpretations.
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predicate approach to necessity, it seems impossible to give a formulation
of MA that adequately captures the intuition that essential properties are
simply properties that are weakly necessary to their bearers, since on the
approach we can’t quantify into contexts of modality. On the other hand, so
Quine, we don’t have a clear notion of necessity de re. Moreover, to properly
formulate the principle MA, we need to quantify into contexts of necessity.
This is possible using the modal operator �, but, so Quine, the approach
would commit us to a concept of necessity de re. Since Quine argued that
we don’t have a clear understanding of necessity de re, he concluded that
also the concept of essential properties, and thus essentialism, is hopelessly
muddled and confused.18 And mainstream analytic metaphysics followed
him in this assessment. At least for a while.

Things changed in the second half of the twentieth century with the rise
of modal metaphysics. The rise of modal metaphysics “piggy-backed,” as
it were, on breakthrough results in the semantics of necessity. In ground-
breaking work, Kripke [74, 78] developed an intuitively plausible semantics
for necessity de re in terms of possible worlds.19 There are different ways of
developing a Kripke-style semantics, but here we shall informally sketch the
semantics of [78], since this semantics is particularly suited to our contin-
gentist essentialist needs.

Kripke [78] defines a class of structures that can interpret statements of
necessity de re. Here we shall only informally sketch this kind of structure,
leaving out many details that are not important to the present purpose.
The central concept of Kripke’s semantics is the concept of possible worlds.
Intuitively, we can think of possible worlds as entities that correspond to the
ways the world could have been.20 In metaphysics, we standardly assume
that for every way the world could have been, there is a possible world that
corresponds to this way.21 For example, since we’ve assumed that Socrates

18It is not entirely clear in [117] if Quine rejects essentialism because he rejects necessity
de re or if he rejects necessity de re because he rejects essentialism. But for the present
point this doesn’t matter much: in any case, Quine rejected both because he thought we
don’t have a clear enough understanding of the concepts involved. For a more comprehen-
sive discussion of Quine’s views about modality, see [89] or [52].

19There is a historical debate on Kripke’s priority with regard to the semantics. Con-
tenders for priority include Bayart [6, 7], Carnap [19, 18], Hintikka [60], Kanger [67],
Montague [100], and Prior [114] and others. As evidenced by the length of this list, the
idea of using possible worlds for the semantics of modality was very much “in the air”
at the time. Here we stick with the standard view, which gives Kripke priority. For an
overview of the history of modal logic and its semantics, see [55] or [5]. For more compre-
hensive discussions of the relationship between quantified modal logic and modality de re,
see, e.g., [91, 109, 93, 4].

20Here we wish to remain neutral with regard to the ontological nature and status of
these entities. For a comprehensive discussion of the concept of possible worlds and the
different views about their ontological status, see [97].

21This is known as the principle of plenitude [83, p. 86–92]. On an ontologically innocu-
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and Xanthippe could have never met and thus could have never married,
there is a possible world where Socrates is not married to Xanthippe. And
since we’ve assumed that Socrates could have failed to exist and thus not
have been a man, there is a world where Socrates doesn’t exist and thus
isn’t a man. In contrast, since we’ve assumed that Socrates could not have
existed without being a man, there is no possible world where Socrates exists
but is no man. The actual world, the world that we live in, is the world that
corresponds to the way the world is actually like. At the actual world, of
course, Socrates and Xanthippe both exist, they are indeed married, and
Socrates is a man.

Thus, intuitively, there are possible worlds where Socrates exists and worlds
where he doesn’t. More generally, for every world there will be a set of
things that exist at that possible world—the domain of the world—and
these domains can change from world to world. For this reason, the kind of
semantics that we’re talking about here is typically called a variable domain
semantics.22 Let’s denote the set of all possible worlds byW. Then, for every
world w ∈ W there will be a set Dw of things that exist at that possible
world: for all objects x and all worlds w ∈ W, x exists at w iff x ∈ Dw.

Some aspects of Kripke’s semantics will be important in the following: First,
we assume that the quantifiers “for all objects” and “for some objects” have
existential import: both expressions range only over the existing objects.
Thus, it’s sufficient for it to be the case at a possible world w ∈ W that all
objects are men that all the objects in Dw exemplify the property of being
a man and it’s sufficient for some objects at w ∈ W to be married to Xan-
thippe that some object in Dw is married to Xanthippe.23 Second, individual
constants, like “Socrates,” get assigned a fixed denotation within

⋃
w∈W Dw.

For example, we’ll assume that the denotation of “Socrates” is Socrates, the
man. In philosophical jargon, we treat individual constants as rigid designa-
tors [76]. Intuitively, this requirement makes sure that when we talk about
Socrates in a sentence like “Socrates is a man,” we are really talking about
Socrates and not some arbitrary object that is named “Socrates.” Third, in
contrast to individual constants, our interpretation of predicates, like “x is a
man” or “x exists,” can change from world to world. Intuitively, the things
that have a property at a world can change from world to world. Thus, the
set of things that have a property at a world—the extension of the property
at the world—can change. Formally, we assign to every predicate, like “x
is a man” or “x exists,” an extension at every possible world. For example,
the extension that we assign to “x is a man” at a world w ∈ W is the set

ous reading, the principle is relatively uncontroversial [cf. 97, § 2.1.4].
22For a more precise development and discussion of these issues, see [51, p. 101–5, 163–

185] and [62, p. 252–72].
23This ties in with our assumption that our background logic is a negative free logic,

see footnote 13.
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{x | x is a man at w}. And the extension that we assign to “x exists” at a
world w ∈ W is the set {x | x is exists at w} = Dw.24

Now, Kripke’s insight was that we can understand what is necessary de re
for an object as what is the case for the object in all possible worlds [74,
78].25 Based on this idea, Kripke developed a semantics for statements of
necessity de re.26 On this semantics, a statement of necessity de re is true
iff in all possible worlds it is the case what the statement says is necessary
de re:

Kripke-�. For all formulas ϕ, the statement �ϕ is true iff what ϕ says is
the case at every possible world.

So, for example, the statement “�(Socrates is married to Xanthippe)” is
true on Kripke’s semantics iff at every possible world Socrates is married
to Xanthippe. Indeed, given what we just said about possible worlds, the
statement is false. In contrast, the statement “�(if Socrates exists, then
Socrates is a man)” is true on Kripke’s semantics iff in every possible world
where Socrates exists, he is a man. Indeed, given what we just said about
possible worlds, the statement is true.

The semantics can, of course, also be extended to statements of possibility
de re—possibility that applies directly to things and their properties. We
simply say that a statement of possibility de re is true iff there is some
possible world where what the statement says is possible de re is the case.

Kripke-♦. For all formulas ϕ, the statement ♦ϕ is true iff what ϕ says is
the case at some possible world.

So, for example, the statement “♦(Socrates exists & ¬(Socrates is a man))”
is true under Kripke’s semantics iff there is some possible world where
Socrates exists but does not exemplify the property of being a man. In-
deed, given our assumptions about possible worlds, the statement is false.
In contrast, the statement “♦(Socrates exists & ¬(Socrates is married to
Xanthippe))” is true on Kripke’s semantics iff there is some possible world
where Socrates exists but is not married to Xanthippe. Indeed given our
previous assumptions about possible worlds, the statement is true.

Note that Kripke’s semantics validates our standard assumptions about

24Note that a consequence of this semantics is that an object can only be in the extension
of a predicate at a world if the object exists at that world, see footnote 13.

25In fact, it is also possible to define necessity de dicto in this framework: we simply
say that a sentence is necessary de dicto iff it is true at all possible worlds. Since possible
worlds intuitively correspond to ordinary interpretations, this is roughly the same idea as
what we sketched in footnote 17. Here, however, we’re mainly interested in necessity de
re and will not discuss necessity de dicto in more detail.

26As we’ve pointed out already, here we will only give an informal account of the se-
mantics. For a more detailed and formal development, see [51, 62].
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modal logic. Remember that we’ve assumed that everything that is necessar-
ily the case is actually the case. Indeed on Kripke’s semantics the following
holds for all statements ϕ:

If �ϕ is true, then ϕ is true.

To see this, note that, by �-Kripke, �ϕ is true iff what ϕ says is the case at
every possible world. But we’ve said that the actual world is also a possible
world and thus at the actual world it’s the case what ϕ says. In other words,
ϕ is true.27 Also, by the duality of the quantifiers “for some” and “for all”
and some standard assumptions about negation, the semantics validates the
interdefinability of possibility and necessity: for all statements ϕ,

♦ϕ is true iff ¬�¬ϕ is true.

To see this note that, by ♦-Kripke, ♦ϕ is true iff what ϕ says is the case
at some possible world. Now, at this possible world it certainly isn’t the
case what ¬ϕ says, since, intuitively, ¬ϕ says that what ϕ says is not the
case. Thus, it’s not the case that at every possible world what ¬ϕ says is
the case. Hence, by �-Kripke, ♦ϕ is true iff �¬ϕ is not true. But then,
since we may standardly assume for all statements ψ that ¬ψ is true iff ψ
is not true, we get, that ♦ϕ is true iff ¬�¬ϕ is true. Indeed, Kripke [78]
showed that, in a formally precise sense, the semantics we just sketched is
sound and complete for the standard modal logic S5, which includes, among
others, our principles T and ♦/�.28

Moreover, note that Kripke’s semantics satisfies Contingentism, in the
sense that on Kripke’s semantics, given our assumptions about possible
worlds, we get that:

“♦(for some x ♦¬(x exists))” is true.

To see this, first note that we’ve assumed that there is a possible world where
Socrates doesn’t exist. Thus, by ♦-Kripke, the statement “♦¬(Socrates
exists)” is true. But we’ve assumed that, at the actual world, Socrates exists.
Thus, at the actual world there is some object x, namely Socrates, such that
♦¬(x exists). But since the actual world is also a possible world, there is a
world, namely the actual world, where it’s the case what “for some object x
♦¬(x exists)” says. Hence, by ♦-Kripke again, “♦(for some x ♦¬(x exists))”

27Here we assume, of course, that a statement is true iff what it says is actually the case.
This assumption, however, is a fairly standard informal gloss of the fairly uncontroversial
T-scheme. Reasoning in the context of the semantic paradoxes might lead us to abandon
the view that this principle holds for all statements, but, in any case, the statements we’re
talking about here are fairly safe.

28For an argument that S5 is indeed the best way to treat metaphysical necessity, see
[136, p. 92–119, 130–39]. For a precise proof of the theorem that S5 is sound and complete
with respect to Kripke’s semantics, see [51, 62].
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is true.29

The success of Kripke’s semantics single-handedly dispersed Quine’s worries
with essentialism. Remember that Quine’s argument against essentialism
mainly rests on the assumption that we don’t have a clear concept of neces-
sity de re. But Kripke’s semantics does give us a precise and intuitively plau-
sible understanding of necessity de re in terms of possible worlds. Moreover,
Kripke’s semantics allows us to embed the concept of essential properties
into the framework of possible worlds: By translating MA via Kripke-�
we get an analysis of essential properties in terms of possible worlds:

Possible Worlds Analysis (PWA). For all properties Φ and objects x,

Φ is an essential property of x iff at every possible world where x
exists, x exemplifies Φ.

Thus, using Kripke’s semantics, the framework of possible worlds allows us
to give a precise analysis of essential properties. The framework of possible
worlds is indeed quite powerful in that it allows us to analyze a wide range of
philosophical concepts [110, 76, 83]. In short, possible worlds are the perfect
playground for metaphysicians. And indeed, Kripke’s work sparked the rise
of modal metaphysics: the paradigm of approaching metaphysical questions
mainly in terms of modality and possible worlds. For most of the second half
of the twentieth century, modal metaphysics was the predominant paradigm
in analytic metaphysics and MA under its reading in Kripke’s semantics—
PWA—was the predominant analysis of the concept of essential properties
[109, 90, 110, 76, 83].

Part of the reason why PWA became the standard analysis of essential
properties is that the possible worlds framework is, metaphysically speaking,
a great “package deal.” In particular, the possible worlds framework does
not only allow us to analyze the concept of essential properties, but we can
also use it to analyze the notion of a property simpliciter. Given what we
said above, we essentially interpret predicates by means of what Carnap [19]
calls intensions: functions that assign extensions to possible worlds. Since
we express properties by means of predicates—for example, we express the
property of being a man by means of the predicate “x is a man”—this
semantics suggests identifying properties with intensions [99, 83]:

Intensional Property Theory (IPT). For all Φ, Φ is a property iff Φ is a
function that assigns to every possible world w ∈ W the set Φ(w) ⊆ Dw
of things that exemplify the property at that world.

On this theory, then, we can then analyze the relation of an object exempli-
fying a property at a world as the object being an element of the extension

29For a discussion of whether the semantics is intuitively adequate for actualism, the
view that only actual things exist, see [96, §3.3]
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of the property at the world:

Exemplification in IPT. For all objects x, for all properties Φ, and for
all worlds w ∈ W, x exemplifies Φ at w iff x ∈ Φ(w).

To illustrate, on IPT, we would take the property of being a man, for
example, to be the function being a man : W → ℘(

⋃
w∈W Dw) such that

being a man(w) = {x ∈ Dw | x is a man at w}. Thus, by Exemplification
in IPT, we get that Socrates exemplifies the property of being a man at a
world w ∈ W iff Socrates ∈ being a man(w). And since being a man(w) =
{x ∈ Dw | x is a man at w}, we get that Socrates exemplifies being a man
at a world iff Socrates is a man at the world.

Let’s sum up the results of this section. We’ve discussed the most popular
analysis of the concept of essential properties throughout twentieth century
analytic philosophy: the modal analysis MA, which analyzes essential prop-
erties in terms of weak necessity de re. We’ve seen how this analysis was his-
torically vindicated against Quine’s attacks. Quine objected that the notion
of necessity de re is confused, but Kripke gave us a clear understanding of ne-
cessity de re in terms of possible worlds: MA was vindicated by translating
it via Kripke’s semantics into the possible worlds analysis PWA. Moreover,
in the possible worlds framework PWA was supplemented with the inten-
sional property theory IPT to give us a full-blown analysis of the concept
of essential properties in the possible worlds framework: Together, PWA
and IPT give us a metaphysically robust philosophical theory of essential
properties, where all concepts involved are clearly explicated. Moreover, all
of this can be carried out in such a way that we satisfy Contingentism:
the view that it’s possible for some things to possibly not exist or, in short,
that ontology is contingent. This was the state of the art—at least until the
90s.

1.2 Counterexamples to the Modal Analysis

Toward the end of the twentieth century, the modal analysis of essential
properties was beginning to be called into question. Fine [39] famously came
up with a range of counterexamples to the modal analysis. He discusses the
modal analysis quite generally in various forms, but here we shall focus on
Fine’s criticism as it applies to the possible worlds analysis PWA supplied
with the intensional property theory IPT.

Fine’s counterexamples can be grouped into four categories according to the
concepts that they involve: (1) set membership, (2) identity and distinctness,
(3) necessary truths, and (4) existence [22, p. 64]. All of the counterexamples
have in common that they purport to show that PWA does not always
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agree with our intuitions about essential properties. More specifically, in
each of the examples, the analysans—weak necessity de re—is present, while
intuitively the analysandum—the concept of essential properties—is not. In
other words, the counterexamples purport to show it’s not sufficient for a
property Φ to be an essential property of an object x that x exemplifies Φ
in every possible world where x exists.30 Let’s go through these examples in
turn:31

(1) Set Membership. Philosophers often assume that for every set it’s
necessary de re that the set exists iff all of its members do [40, 108]. In-
deed, given that sets are typically said to be individuated by their mem-
bers and that we may for all pluralities of objects form the set of these
objects, from the perspective of a modal metaphysician, this assump-
tion is quite plausible. It’s somewhat tedious to spell out this principle
in full generality, since sets may have arbitrarily infinitely many mem-
bers.32 So, instead, let’s illustrate the consequence of the principle in
the case of Fine’s example of Socrates and the set {Socrates}—Socrates’
singleton—whose sole member is Socrates. By the principle that for ev-
ery set it’s necessary that the set exists if and only if all of its members
do, we get for Socrates and his singleton that:

• for every possible world w ∈ W such that {Socrates} ∈ Dw, we
have that Socrates ∈ Dw and Socrates is a member of {Socrates}
at w.

Now, we may consider the property of being such that Socrates exists
and having him as a member. By IPT, this property exists, indeed we
may simply identify it with the function which maps a world w ∈ W to
an extension in Dw according to the rule:

w 7→ {x ∈ Dw | Socrates ∈ Dw & Socrates is a member of x at w}.

Then, by PWA, we immediately get that this property is an essential
property of {Socrates}—as it should be.

30Fine [39] argues, however that the converse direction holds: if a property Φ is essential
to an object x, then at every possible worlds where x exists, x exemplifies Φ. In other words,
weak necessity de re is necessary for essential properties.

31Dunn [34] already gave some of the examples that Fine gave in his [39]. However,
Dunn’s point is slightly different from Fine’s. Dunn aims to show that some relational
predicates only determine essential properties in some of their positions. However, the
conclusions he draws from these examples are very similar to Fine’s. Since the issue of
priority is only marginally important to the problem at hand—the (purported) failure
of the modal analysis—we shall discuss [34] and his point only in the footnotes of this
section.

32If we were to allow arbitrarily infinitary quantifiers, we could formulate the principle
by saying that for all objects x1, x2, . . . and all sets y, �(if x1, x2, . . . are all and only
the elements of y, then �(y exists iff all of x1, x2, . . . exist). However, arbitrarily infinitary
quantification in the sense that is required for this principle is technically speaking difficult
to handle, to say the least [10].
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However, given PWA and IPT, the principle about sets also has coun-
terintuitive consequences. Note that if we say that for any set it’s nec-
essary the set exists if and only if all of it’s members do, we get for
Socrates and his singleton that:

• for every possible world w ∈ W such that Socrates ∈ Dw, we have
that {Socrates} ∈ Dw and Socrates is a member of {Socrates} at
w.

Now consider the property of being such that {Socrates} exists and
being a member of {Socrates}. Again, on IPT, this property exists, as
we may simply identify it with the function which maps a world w ∈ W
to an extension in Dw according to the rule:

w 7→ {x ∈ Dw | {Socrates} ∈ Dw & x is a member of {Socrates} at w}.

And PWA, it immediately follows that this property is an essential
property of Socrates.

But, intuitively, this is not plausible. As Fine puts it: “There is nothing
in the nature of a person, if I may put it this way, which demands that
he belongs to this or that set or which demands, given that the person
exists, that there even be any sets” [39, p. 5]. Thus, Fine argues that
essential properties should intuitively capture the nature of their bearers
[39, p. 1], and since there is intuitively nothing in the nature of Socrates
that connects him to his singleton, or any other set for that matter: it’s
neither an essential property of Socrates that his singleton exists nor
that Socrates is a member of it.33

(2) Identity and Distinctness. Philosophers often assume that for any
two identical objects it’s necessary that the two objects are identical
whenever they both exist and that for any two distinct objects it’s
necessary that they are distinct whenever they both exist. These two
principles are known as the necessity of identity and the necessity of
distinctness respectively [75]:

Necessity of Identity. For all objects x and y, if x is identical to y,
then for all possible worlds w ∈ W, if x, y ∈ Dw, then x is identical
to y at w.

33Dunn [34, p. 90–91] gives a very similar example, just that he talks about the pair set
{Tom, Dick}. As Fine, Dunn argues that it’s an essential property of {Tom, Dick} that it
contains Tom and Dick as members, but that it’s not an essential property of either Tom or
Dick to be members of {Tom, Dick}. The phenomenon that Dunn wishes to illustrate with
this example is that some predicates, such as the membership predicate “∈,” only express
essential properties in some of their positions: the membership predicate, for example,
generally expresses an essential property in its second position, but not always in it’s first.
Dunn calls situations like this cases of asymmetric essence. Note that Fine [39, p. 5] uses
a very similar terminology. Given all of this, it seems that priority for this counterexample
belongs to Dunn.
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Necessity of Distinctness. For all objects x and y, if x is distinct
from y, then for all possible worlds w ∈ W, if x, y ∈ Dw, then x is
distinct from y at w.

Indeed, if we understand identity as numerical identity and distinctness
as numerical distinctness, these principles are nearly trivially true on
the version of the possible worlds framework we’ve sketched above.34

The principles Necessity of Identity and Necessity of Distinct-
ness capture the intuition that objects are essentially what they are
and that they are essentially not what they are not. To illustrate, let’s
consider Fine’s example of Socrates and the Eiffel Tower. Since it’s of
course actually the case that Socrates is identical to Socrates, we get by
Necessity of Identity that:

• for all possible worlds w ∈ Dw such that Socrates ∈ Dw, Socrates
is identical to Socrates at w.

Now, let’s consider the property of being self identical. According to
IPT, this property exists, as we may simply identify it with the function
which maps a world w ∈ W to an extension in Dw according to the rule:

w 7→ {x ∈ Dw | x is identical to x at w}.

Then, by PWA, this property is an essential property of Socrates. In
other words, it’s an essential property of Socrates to be who he is—as
it should be intuitively.

In contrast, since it’s of course actually the case that Socrates is distinct
from the Eiffel Tower, we get by Necessity of Distinctness that:

• for all possible worlds w ∈ Dw such that Socrates, the Eiffel Tower ∈ Dw,
Socrates is distinct from the Eiffel Tower at w.

Now consider the property of being such that the Eiffel Tower exists and
being distinct from the Eiffel Tower. According to IPT, this property
exists, as we may simply identify it with the function which maps a
world w ∈ W to an extension in Dw according to the rule:

w 7→ {x ∈ Dw | Eiffel Tower ∈ Dw & x is distinct from the Eiffel Tower at w}.

Then, by PWA, this is again an essential property of Socrates. But this,
so Fine, is not intuitively plausible: “But it is not essential to Socrates
that he be distinct from the Tower; for there is nothing in his nature

34Moreover, the syntactic formulations of Necessity of Identity and Necessity of
Distinctness in terms of � are logically equivalent in the modal logic that the framework
determines. However, we shall keep the two principles apart because we wish to focus on
their individual metaphysical consequences, which, it turns out, are quite different.
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which connects him in any special way to it” [39, p. 5]. Thus, as in
the case of Socrates and his singleton, the counterexample rests on the
intuition that Socrates’s nature is not connected to the Eiffel Tower,
and hence, intuitively, being distinct from the Tower if it exists is not
among Socrates essential properties. Indeed, the same argument can be
given for any object distinct from Socrates.

(3) Necessary Truths. Most philosophers assume that there are neces-
sary truths. For example, many philosophers assume that the truths of
mathematics are necessary [76, 107]:

Necessity of Mathematics. For all mathematical statements ϕ, if ϕ
is true, then �ϕ is true.

To illustrate, consider the statement “there are infinitely many prime
numbers”. By Euclid’s theorem, we know that this statement is true.
And since it’s undoubtedly a statement of mathematics, we get by Ne-
cessity of Mathematics that “�(there are infinitely many prime num-
bers)” is true. And on Kripke’s semantics, by the clause �-Kripke, this
is the case iff at every possible world there are infinitely many prime
numbers. More generally, given Necessity of Mathematics, it will be
the case at every possible world what any true statement of mathematics
says.

Moreover, many philosophers assume that for every statement ϕ there
is a property of being such that what ϕ is the case. Since what a state-
ment says—its content—is also called a proposition, such properties are
typically called propositional properties [130, §7.5]:

Propositional Properties. For every statement ϕ, there is a property
of being such that what ϕ says is the case. And for all objects x
and all statements ϕ, x exemplifies being such that what ϕ says is
the case iff x exists & what ϕ says is the case.

Indeed, on the intensional property theory IPT, we can show that there
are propositional properties: For a statement ϕ, simply take the property
of being such that what ϕ says is the case to be the function which maps
a world w ∈ W to an extension in Dw according to the rule:

w 7→

{
Dw if what ϕ says is the case at w

∅ otherwise

And by Exemplification in IPT, we get that an object exemplifies
the property of being such that what ϕ says is the case at a world iff
what ϕ says is the case at the world.

So, for example, by Propositional Properties, there is a property of
being such that what “there are infinitely many prime numbers” says
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is the case—the property of being such that there are infinitely many
prime numbers. And an object exemplifies this property iff what “there
are infinitely many prime numbers” says is indeed the case—iff there
are infinitely many prime numbers. But, as we’ve just discussed, by
Necessity of Mathematics, it’s necessarily the case that there are
infinitely many prime numbers. And that means that it’s necessary de
re for any object that exists to exemplify the property of being such
that there are infinitely many prime numbers. In particular, we get:

• for all possible worlds w ∈ W, if Socrates ∈ Dw, then Socrates
exemplifies being such that there are infinitely many prime numbers
at w.

And, by PWA, this means that the propositional property of being
such that there are infinitely many prime numbers is an essential prop-
erty of Socrates. Indeed, for any necessarily true proposition, according
to PWA, the corresponding propositional property is going to be an
essential property of any object whatsoever. This is certainly counter-
intuitive. As Fine puts it: “[I]t is no part of Socrates’ essence that there
be infinitely many prime number” [39, p. 5]. Since Fine uses “essence”
and “nature” interchangeably, the issue is again that Socrates’ nature is
not connected to the prime numbers and thus, intuitively, there being
infinitely many prime numbers is not among his essential properties.

(4) Existence. Finally, some authors assume that existence is itself a prop-
erty [13]. Indeed, on the intensional property theory IPT, we can simply
identify this property with the function which maps a world w ∈ W to
an extension in Dw according to the rule:

w 7→ Dw.

By Exemplification in IPT, it follows immediately that an object
exemplifies this property at a world iff the object is a member of the
domain at the world—in other words, an object exemplifies the property
at world iff the object exists there.35 Now notice that plugging existence
into PWA, we get that:

• for all objects x, existence is an essential property of x iff for all
possible worlds w ∈ W such that x ∈ Dw, we have x ∈ Dw.

But this is trivially the case! Thus, by PWA, existence is an essential
property of any object whatsoever. More specifically, we get that:

• for all possible worlds w ∈ W with Socrates ∈ Dw, we have that
Socrates ∈ Dw.

35For a critical discussion of the assumption that existence is a property, see [102].
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Thus, by PWA, we get that existence is an essential property of
Socrates. But this is, so Fine, intuitively implausible. As he simply puts
it: “we do not want to say that he essentially exists” [39, p. 6].

Note that all of Fine’s counterexamples involve the informal claim that in
order for a property Φ to be an essential property of an object x the prop-
erty Φ has to be part of the nature of the object x. Let’s grant Fine this
assumption for now. But why should we believe that facts about {Socrates}
(1), about the Eiffel Tower (2), about the prime numbers (3), and about
Socrates’ existence (4) are not part of the nature of Socrates? In the cases
(1–3), in order to support the claim that the facts are not part of Socrates’
nature, Fine gives an epistemological argument: For assume that facts about
{Socrates}, about the Eiffel Tower, or about the prime numbers were part of
the nature of Socrates. Then it would not be possible to discover Socrates’
nature without learning about all of these objects. But surely it is possible
to understand the nature of Socrates without learning about sets, the Eiffel
Tower, or prime numbers. Otherwise, as metaphysicians, we would be in the
quite uncomfortable (or comfortable, depending on the perspective) situa-
tion of having to say something about all of these things in order to fully
describe the nature of Socrates. As Fine quips: “O happy metaphysician!
For in discovering the nature of one thing, he thereby discovers the nature
of all things” [39, p. 6].36 Now, Fine might be stressing his point a little bit
too much when he says that we have to learn about the nature of all of these
things, but given what we’ve just said, it’s certainly the case that we have to
say something about them: namely, that {Socrates} contains Socrates, that
the Eiffel Tower is distinct from Socrates, and that there are infinitely many
prime numbers. To make things worse, as we’ve noted, by analogous argu-
ments to the ones given above, we can extend this to all sets that contain
Socrates, to all objects distinct from Socrates, and to all necessary truths.
Certainly, it’s not feasible to talk about all these things, if we simply wish
to describe Socrates’ nature. In short, Fine gives an epistemic reductio ar-
gument for his claims on the possibility of a feasible metaphysics assuming
that the essential properties of an object have to be part of its nature.

In the case of Socrates’ existence (4), the epistemological argument does not
work so well: Socrates’ existence does not involve any objects distinct from
Socrates, and thus, even if we took existence to be part of Socrates’ nature,
we could describe Socrates nature without having to talk about an unfeasible
number of objects distinct from Socrates. Admittedly, it might seem odd
to say that it’s part of the nature of all objects that they exist, but this
judgement appears to rely on a specific understanding of what constitutes

36Hannes Leitgeb remarks that this in fact sounds like something Leibniz would have
proposed. However, here we shall not pursue this (mostly historical) claim and rest with
the assumption that as non-Leibnizians this is indeed implausible.
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the nature of an object. But a proponent of PWA is not committed to such
an understanding. For example, a modal metaphysician in favor of PWA
could say that the nature of an object contains all and only those properties
that are directly relevant to the existence of the object. Then, existence
would merely be a limit case: obviously, for any object, existence is trivially
directly relevant to the existence of the object. Indeed, the modal fact in
virtue of which PWA classifies existence as an essential property of any
object whatsoever is a logical necessity: the fact that it’s necessary de re
for ever object to exist, if it exists. This really just seems to be a limit case
of being part of an object’s nature in the above sense. Thus, Fine’s claim
that “we do not want to say that [Socrates] essentially exists” [39, p. 6] is
not very convincing from a modal metaphysician’s perspective. If, however,
we think of the nature of an object as something that defines the object or
the like [39, p. 10–15], then it’s indeed plausible that existence is not part
of the nature of an object: clearly, existence is not part of the definition of
Socrates.

Note further that all of Fine’s counterexamples involve more or less con-
tentious assumptions. Fine is well-aware of this. He writes:

[It is not] critical to the example[s] that the reader actually en-
dorse the particular modal and essentialist claims to which I have
made appeal. All that is necessary is that he should recognize the
intelligibility of a position which makes such claims. For any
reasonable account of essence should not be biased towards one
metaphysical view rather than the other. It should not settle, as
a matter of definition, any issue which we are inclined to regard
as a matter of substance. [39, p. 5]

Thus, Fine’s point is that the analysis of a metaphysical concept, like the
concept of essential properties, should not commit us to a specific meta-
physical view. But if we wish to subscribe to the modal analysis PWA and
at the same time believe that it’s necessary that sets exist iff all of their
members do, that it’s necessary that distinct objects are distinct, or that
it’s necessary that mathematical truths hold, we seem to be committed to
counterintuitive consequences. Thus, we have to abandon either these views
or the modal analysis. And, by Fine’s criterion that an analysis should not
commit us to any specific metaphysical views, the thing to be abandoned is
the modal analysis.

But, especially in the present context, this point doesn’t seem to carry as
much force as it might initially appear to. Remember, for example, that the
reason why we chose MA over SMA as our working modal analysis of es-
sential properties is that we wanted to subscribe to Contingentism rather
than Necessitism: on the analysis SMA, given some other assumptions,
we we were not able to hold Contingentism and at the same time hold
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that being a man is an essential property of Socrates. Thus, it seems that
MA is biased towards a specific metaphysical view, namely Contingen-
tism. Moreover, we wanted it to be like this: our aim in this dissertation
is to give an explication of the concept of essential properties assuming the
thesis of Contingentism. To give another example, consider Carnap’s fa-
mous argument against Heidegger’s claim that the Nothing itself nothings
[20]. Carnap argues that on what he thinks is the proper analysis of existence
and non-existence by means of the existential quantifier, the claim is mean-
ingless in one form or another. Thus, Carnap’s analysis of existence and
non-existence is (in some sense) biased against Heidegger’s view: it renders
it meaningless. Heidegger, of course, thought that the view that the Nothing
nothings is deeply meaningful and indeed true. And a lot of (continental)
philosophers agree with him on this [129]. The point here is that adopting
an analysis of a concept, like PWA, in some conceptual framework, like the
framework of possible worlds, nearly always renders some position false or
even meaningless—most likely even a position that some opponent might
hold to be meaningful and important. This is part of the point of adopting
an analysis in some conceptual framework in the first place. Thus, the fact
that the modal analysis PWA in the framework of possible worlds may be
biased against certain metaphysical views is not in itself a problem.

It seems that if we grant Fine’s assumption that it’s a necessary condition
for a property to be an essential property of an object that the property
is part of the nature of the object, Fine’s counterexamples leave us with
two options: either we reject all the metaphysical assumptions that give rise
to the counterexamples (1–3) or we abandon PWA together with IPT as
our analysis of essential properties in the framework of possible worlds. But
as modal metaphysicians working in the possible worlds framework, all the
assumptions needed for the counterexamples are quite plausible: we can show
that all of the properties involved exist by the intensional property theory
IPT and our assumptions about possible worlds validate the problematic
cases of necessity de re. Thus, the most obvious candidate for adjustment is
the modal analysis PWA.

A natural way of trying to repair PWA in light of Fine’s counterexamples
is by imposing a condition of relevance on essential properties. Fine writes:

[O]ne might try to add a condition of relevance to the modal
criterion. One would demand, if a property is to be essential to
an object, that it somehow be relevant to the object. [39, p. 6]

Remember that above we said that a modal essentialist could plausibly say
that the nature of an object contains all and only the properties that are
(in some sense) modally relevant to the existence of the object. Thus, if we
assume that for a property to be an essential property of an object, the
property has to be part of the nature of the object, we get the following
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condition:

Relevance Condition. For all properties Φ and all objects x, if Φ is an
essential property of x, then Φ is wholly relevant to x.

Now, the notion of relevance in this condition will, of course, have to be made
more precise, and we’ll get back to that. But let’s for the moment simply
assume an informal notion of relevance to illustrate the point. It seems that
indeed in all the example (1–3) we have a violation of the relevance condition:
intuitively, the set fact that {Socrates} exists and Socrates is its member
is not wholly relevant to Socrates, the fact that the Eiffel Tower is distinct
from Socrates is not wholly relevant to Socrates, and there being infinitely
many prime numbers is also clearly not relevant to Socrates. The reason why
we might be inclined to say that these properties are not wholly relevant
to Socrates is that they involve objects different from Socrates. Indeed, the
failure of relevance in this sense seems to be exactly the reason why we’re not
intuitively inclined to classify the relevant properties as essential properties
of Socrates. Thus, it seems that we have a philosophically motivated non-ad
hoc answer to Fine’s counterexamples.

Of course, as we’ve said, we’d have to make the informal notion of relevance
in the Relevance Criterion philosophically precise for the answer to work.
A straightforward way of doing so that immediately suggests itself is in terms
of relevance logic (or relevant logic, as more Anglo-influenced philosophers
call it).37 The idea would be that in MA, we take the conditional in the
analysans �(if x exists, then x exemplifies Φ) to be a relevant conditional.
Thus, we’d get something like the following of the modal analysis:

Relevant Modal Analysis (RMA). For all properties Φ and all objects
x, Φ is an essential property of x iff �(if x exists, then, relevantly, x
exemplifies Φ).

This analysis would then, once made more precise, almost trivially satisfy
the Relevance Condition: if for some object x and property Φ, it’s the case
that �(if x exists, then, relevantly, x exemplifies Φ), then x exemplifying Φ
has to be modally relevant to x existing. Of course, for this approach to
work, we’ll have to make the relevant conditional ‘if . . . , then, relevantly,
. . . ” and the notion of a property being relevant to an object philosophically
precise—for example, by means of a semantic analysis. But in any case, this
seems like a promising way to go.38

Fine, however, argues that a relevance approach to the problem, as for exam-
ple by Relevance Condition and RMA, is in serious trouble. He writes:

37For an overview of relevance logic, see [63, 92].
38Indeed, this is along the lines of what Dunn [34] suggests: He defines the notion of

necessary relevant exemplification and suggests to analyze essential properties in just this
way.

21



[T]he case of Socrates and his singleton makes it hard to see
how the required notion of relevance could be understood without
already presupposing the concept of essence in question. For we
want to say that it is essential to the singleton to have Socrates
as a member, but that it is not essential to Socrates to be a
member of the singleton. But there is nothing in the “logic” of
the situation to justify an asymmetric judgement of relevance;
the difference lies entirely in the nature of the objects in question.
[39, p. 6–7]

The problem that Fine points out here is that in some cases we do wish to say
that a property is an essential property of an object even though it involves
an object distinct from it: Socrates is of course distinct from {Socrates}, but
it’s intuitively an essential property of the set to contain the man (if both
exist). Indeed, the modal analysis captures this intuition in virtue the fact
that it’s necessary de re for all sets to exist iff all of their members do. But
this very modal fact also falsely classifies the property of being contained in
his singleton as an essential property of Socrates. Thus, the intuitive notion
of a property being relevant to an object that we used above—the notion of
a property not involving (in some sense) objects different from the one in
question—does not work. Some properties are intuitively part of the nature
of an object, and thus wholly relevant to the object, that involve objects
distinct from the one in question: for example, the property of {Socrates}
to contain Socrates as a member. And it is left unclear how this notion of
a property being relevant to an object should be analyzed while avoiding
these problems.

Intuitively, the problem here appears to be that the necessity de re that
sets exist iff all of their members do somehow arises from the nature of the
sets and not from the nature of the objects they contain. More generally, it
seems a necessary condition for a property to be part of the nature of an
object—or to be wholly relevant to the object—that having the property
arises in this way from the nature of the object. But the notion of necessity
de re, so Fine, is ill-suited to analyze this notion:

The concept of metaphysical necessity [. . . ] is insensitive to
source: all objects are treated equally as possible grounds of nec-
essary truth; they are all grist to the necessitarian mill. What
makes it so easy to overlook this point is the confusion of sub-
ject with source. One naturally supposes, given that a subject-
predicate proposition is necessary, that the subject of the propo-
sition is the source of the necessity. One naturally supposes, for
example, that what makes it necessary that singleton 2 contains
(or has the property of containing) the number 2 is something
about the singleton. However, the concept of necessity is indif-
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ferent to which of the many objects in a proposition is taken to
be its subject. The proposition that singleton 2 contains 2 is nec-
essary whether or not the number or the set is taken to be the
subject of the proposition. [39, p. 9]

In short, according to Fine, the concept of necessity de re is simply incapable
of properly analyzing the notion of essential properties while satisfying the
condition that an essential property of an object be part of the nature of
the object.

We can push this point even further to get to the core of the problem.
Take the two properties of being self-identical and being contained in one’s
singleton. It’s easy to check that according to IPT both properties exist: the
property of being self-identical is simply the function which maps a world
w ∈ W to an extension in Dw according to the rule:

w 7→ {x ∈ Dw | x is identical to x},

and the property of being contained in one’s singleton is the function which
maps a world w ∈ W to an extension in Dw according to the rule:

w 7→ {x ∈ Dw | x is a member of {x}}.

By the principle that it’s necessary de re that sets exist iff all their members
do and Exemplification in IPT, it follows that any object exemplifies both
properties in all worlds where it exists. More technically, two properties are
said to be necessarily equivalent iff for all objects it’s necessary de re that
the object exemplifies the one property iff it exemplifies the other:

Necessary Equivalence (Definition). For all properties Φ and Ψ, the
property Φ is necessarily equivalent to the property Ψ iff �for all
objects x (x exemplifies Φ iff x exemplifies Ψ).

Thus, by what we’ve just said, we get that the two properties of being self-
identical and being contained in one’s singleton are necessarily equivalent.

Now, on the standard theory of properties in the possible worlds frame-
work IPT, necessarily equivalent properties are identified. Remember that
according to IPT, properties are functions and individuated as such. More
specifically, we get:

Property Identity in IPT. For all properties Φ and Ψ, we have that Φ =
Ψ iff for all worlds w ∈ W, Φ(w) = Ψ(w).

An immediate consequence of Property Identity in IPT is that any two
necessarily equivalent properties are identified. In particular, we get that the
property of being self-identical simply is the property of being contained in
one’s singleton.
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But, given what we said before, if we assume that an essential property of an
object has to be part of the object’s nature, then it is intuitively plausible to
say that being self-identical is an essential property of Socrates, while being
contained in {Socrates} is not. Certainly, both properties are classified by
PWA as essential properties of Socrates. But intuitively, being self identical
is part of the nature of Socrates, while being a member of {Socrates} is not :
as we’ve said, intuitively, there is nothing in Socrates’ nature that connects
him to any set, and so also not to his singleton. But the two properties
are actually identical according to IPT. Thus, assuming IPT, we simply
cannot say that the one property is essential to Socrates while the other is
not—they are one and the same property.

In philosophical jargon, we say that a context is hyperintensional iff in the
context the substitution of necessary equivalents need not preserve truth-
value [29, 103].39 In contrast, a context is called intensional iff in the context
the substitution of mere equivalents need not preserve truth-value, but the
substitution of necessary equivalents always preserves truth-value.40 In this
terminology, we may identify the problem at hand as being that if we assume
that the necessary properties of an object have to be part of the object’s
nature, then ascriptions of essential properties create hyperintensional con-
texts. This is nicely illustrated by the case of Socrates and his properties
of being self-identical and being contained in his singleton: the properties
of being self-identical and being contained in his singleton are necessarily
equivalent, but the statement “being self-identical is an essential property
of Socrates” is true, while the statement “being contained in his singleton
is an essential property of Socrates” is false. In contrast, by what we’ve
said above, the modal analysis PWA together with the intensional prop-
erty theory IPT can only account for a notion of essential properties where

39Cresswell [29] defines hyperintensionality as the failure of the substitutivity of logical
equivalents, but in recent times it has become common to adopt the above, weaker defi-
nition in terms of necessary equivalence [103]. Note that we speak somewhat imprecisely
of (necessary) equivalents, without saying what kinds of things are supposed to be (nec-
essarily) equivalent here. The reason for this intended imprecision is that we do not wish
to repeat everything that we say about properties for propositions, sentences, and so on
for all the things for which it makes sense to say that they are equivalent.

40Here, by mere equivalents we mean actual equivalents: two things that are actually
equivalent. Traditionally, contexts where the substitution of mere equivalents always pre-
serves truth-value are called extensional contexts. Thus, we may equivalently define an
intensional context as a non-extensional context, where the substitutivity of necessary
equivalents holds. Now, certainly, if the substitutivity of necessary equivalent fails, then
also the substitutivity of mere equivalents must fail. For assume that the former fails and
the latter does not. If we then take two necessary equivalents, they surely are also mere
equivalents, since whatever is necessarily the case is also actually the case. Thus, they are
substitutable—contradiction! As a consequence, we may alternatively define a hyperinten-
sional context as one where neither substitution of mere equivalents nor the substitution
of necessary equivalents need preserve truth-value: a hyperintensional context is a non-
extensional and non-intensional context.
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ascriptions of essential properties create intensional contexts—and according
to Fine that is not enough.

More generally, Fine’s point is that the framework of possible worlds is
inherently ill-equipped to deal with concepts that create hyperintensional
contexts. In the semantics that we’ve discussed in §1.1, the substitutivity of
necessarily identical terms, necessarily equivalent formulas, and necessarily
equivalent predicates all hold. For this reason, semantics in the possible
worlds framework is usually called intensional semantics [50]. Fine writes:

Given the insensitivity of the concept of necessity to variations
in source, it is hardly surprising that it is incapable of captur-
ing a concept which is sensitive to such variation. Each object,
or selection of objects, makes its own contribution to the total-
ity of necessary truths; and one can hardly expect to determine
from the totality itself what the different contributions were. One
might, in this respect, compare the concept of necessity to the
concept of communal belief, i.e. to the concept of what is believed
by some member of a given community. It would clearly be ab-
surd to attempt to recover what a given individual believes from
what his community believes. But if I am right, there is a similar
absurdity involved in attempting to recover the essential proper-
ties of things from the class of necessary truths. [39,
p. 9]

By what we just said, we can rephrase Fine’s point in the following way:
assuming that it’s necessary for a property to be essential to an object, the
property has to be part of the nature of the object, the concept of essen-
tial properties is hyperintensional—in the sense that ascriptions of essential
properties create hyperintensional contexts—and the framework of possible
worlds and necessity de re is, almost by definition, incapable of dealing with
hyperintensional concepts.

Let’s sum up the results of this section. We’ve seen that, given that we
assume that it’s necessary for a property to be essential to an object that
the property is part of the nature of the object, Fine has given us a wide
range of counterexamples to the modal analysis PWA supplemented with
the intensional property theory IPT. More specifically, given the assumption
that the essential properties of an object have to part of the object’s nature,
Fine has argued that weak necessity de re is not sufficient for essential
properties. In other words, the following principle is false according to Fine:

Weak Necessity Implies Essence. For all objects x and all properties
Φ, if at every possible worlds where x exists, x exemplifies Φ, then Φ
is an essential property of x.

Moreover, Fine not only argues that the principle is false, he argues that
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the whole approach of analyzing essential properties in terms of necessity
de re within the framework of possible worlds is fundamentally misguided.
Fine does believe that weak necessity de re is necessary for essential prop-
erties (see footnote 30, p. 13). In other words, he subscribes to the following
principle:

Essence Implies Weak Necessity. For all objects x and all properties Φ,
if at every possible worlds where x exists, x exemplifies Φ, then Φ is
an essential property of x.

But he argues that despite this connection between the concept of essential
properties and the concept of weak necessity de re, we should not “get our
hope up,” as it were, about a workable modal analysis of essential properties.
Since, given his assumption that it’s necessary for a property to be essential
to an object that the property is part of the nature of the object, ascriptions
of essential properties create hyperintensional contexts and the framework
of necessity de re is simply incapable of properly analyzing concepts that
create hyperintensional contexts.

1.3 Grounding and Essential Properties

We shall now turn to a new analysis of essential properties in terms of meta-
physical ground. We’ll say more about metaphysical ground in due course,
but for now, as a first approximation, we may think of the relation of (meta-
physical) ground as the relation of one thing being the case (wholly) in virtue
of a possible plurality of other things [42].41

We find the motivation for our new analysis in a certain analogy between
defining the meaning of a term and giving the essence of an object proposed
by Fine. Here we shall not go into the details of Fine’s analogy and go
straight to the heart of the matter. Fine writes:

We have seen that there exists a certain analogy between defining
a term and giving the essence of an object; for the one results in
a sentence which is true in virtue of the meaning of the term,
while the other results in a proposition which is true in virtue of
the identity of the object. However, I am inclined to think that
the two cases are not merely parallel but are, at bottom, the same.
[39, p. 13]

41As Fine [42, p. 37–38] points out, there are different ways of expressing the relation of
ground: we may say that one thing holds because of other things, where the “because” is
read as metaphysically because, we may say that the some things are metaphysically prior
to the thing, and so on. Here and in the following, however, we shall take “in virtue of”
as our standard phrase for expressing ground.
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By taking the phrase “in virtue of” to express metaphysical ground, we
obtain at the

Essence Grounded in Identity (EGI). For all properties Φ and all ob-
jects x, Φ is an essential property of x iff x exemplifies Φ (wholly) in
virtue of the identity of x.

It is unclear whether Fine would actually endorse this account, since in [42,
p. 74–80] he goes to great lengths to argue that the concepts of essence and
ground should be kept strictly apart. In [48], however, he revokes this earlier
assessment and sketches a unified foundations for the two concepts. Here, we
shall not go into the details of the relationship between ground and essence
from a general perspective and we shall not try to figure out what exactly
Fine’s current position might be. Instead, we shall focus on the concrete
view EGI, which we’ll simply motivate by Fine’s quote above.

As, we’ve said we’ll have to say more about the nature of ground and its
relata in due course, but for now, let’s look at a few intuitive examples to
illustrate the idea. Think of Socrates and Xanthippe again. Now, it seems
plausible to say that Socrates exemplifies being a man in virtue of his iden-
tity: intuitively, it is part of being Socrates that he is a man. In contrast, it’s
similarly plausible that Socrates does not exemplify being married to Xan-
thippe in virtue of his identity: intuitively, there is nothing about Socrates
identity in virtue of which he is married to Xanthippe. So, EGI fares well
in light of our paradigmatic cases of essential properties. But more impor-
tantly, Fine’s analysis can deal with the counterexamples to the modal anal-
ysis PWA. First, in the case of Socrates and his singleton it’s plausible
to say that Socrates is a member of {Socrates} in virtue of the identity of
{Socrates} and not in virtue of the identity of Socrates. Thus, according
to EGI, having Socrates as a member is an essential property of the sin-
gleton, but being a member of his singleton is not an essential property
of Socrates. Similarly, it’s plausible to say that Socrates is self-identical in
virtue of his identity, but, intuitively, Socrates is not distinct from the Eiffel
Tower wholly in virtue of his identity—also the Eiffel Tower’s identity plays
a role in this. And thus according to EGI being self-identical is an essential
property of Socrates, while being distinct from the Eiffel Tower is not. Third,
it’s not plausible to say that Socrates exemplifies being such that there are
infinitely many prime numbers in virtue of his identity—rather this is the
case in virtue of the nature of the natural numbers. And so, according to
EGI, being such that there are infinitely many prime numbers is not an
essential property of Socrates—just as we want to say. In short, EGI agrees
with our metaphysical assumptions not only in the paradigmatic cases, but
also in the problematic cases of Fine’s counterexamples.

Now, EGI is framed in terms of an informal use of the phrase “in virtue
of,” which we take as expressing the relation of metaphysical ground. But if
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we wish to take EGI as the basis for a reputable metaphysical analysis of
essential properties—and we do—then we arguably need a proper philosoph-
ical background theory of metaphysical ground. A first step in this direction
would be to properly regiment the use of the phrase “in virtue of” or, in
other words, to give a syntax of ground. In the literature on ground, already
the question how to formalize ground—what syntax of ground to choose—is
a contentious issue [42, p. 46–48, 24, p. 253–54]. Indeed, we shall address
this issue more prominently later in this dissertation. For the purpose of this
introduction, however, let’s simply focus on the expression “in virtue of” as
our standard expression for ground.

Syntactically speaking, the phrase “in virtue of” falls into a somewhat
strange category: in natural language, the expression takes sentences (or
formulas) to the left and terms (or perhaps sequences of terms) to the right.
Compare, for example, the expression “x exemplifies Φ in virtue of the nature
of x.” In this expression, the argument to the left of the phrase “in virtue of”
is the open formula “x exemplifies Φ” and the argument to the right of the
phrase is the term “the nature of x.” But from a metaphysical perspective,
this syntax suggests an undesirable view of ground: it suggests that ground is
a relation that holds between what is expressed by sentences—propositions,
facts, or the like—and what is denoted by terms—objects. But ground is
standardly viewed as a relation between what is expressed by sentences (or
perhaps formulas), i.e. facts, propositions, or the like [42].42 For this rea-
son, in the logic of ground, it is common to treat “in virtue of” simply as
an operator, which takes sentences (or formulas) to both sides [42, p. 46].
Following this convention, at least for the purpose of this introduction, we’ll
take the logical form of a statement of ground to be:

ϕ in virtue of ψ1, ψ2, . . . ,

where ϕ is a formula and ψ1, ψ2, . . . is a sequence of formulas. And the
intended reading of a formula of the form ϕ in virtue of ψ1, ψ2, . . . is that
what ϕ says is the case in virtue of what ψ1, ψ2, . . . say being the case.

Having regimented the use of the phrase “in virtue of,” we wish to rephrase
the analysis EGI in terms of this syntax. But now we face a problem: As
we’ve said in natural language “in virtue of” takes terms to its right; and
indeed in the analysis EGI we have the term “the identity of x” in this
position. But we’ve agreed that we wish to view “in virtue of” as an operator,
which takes formulas as arguments. So what formula should go into the place
of “the identity of x” in the analysis EGI? We propose to take the formula
“x being x” in its place. Metaphysically speaking, the idea is that instead
of talking of the identity of a thing as an object, we view the identity of

42But compare [123], who holds that ground is a relation that can obtain between things
from various different ontological categories.
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an object as a property. Traditionally, the kind of property that we have
in mind here is called a haecceity : the property of being a certain object.
So, for example, the haecceity of Socrates is simply the property of being
Socrates, the haecceity of Xanthippe is the property of being Xanthippe, and
so on. And we express the haecceity of an object x simply by the predicate
“x being x.” Thus, applying this idea to the principle EGI, we get the
following regimented version of the principle:

Essence Grounded in Haecceities (EGH). For all properties Φ and for
all objects x, Φ is an essential property of x iff x exemplifies Φ in virtue
of x being x.

In short, the essential properties of a thing are simply the properties that
are grounded in its haecceity. We take it that this analysis is what Fine had
in mind when he formulated EGI.

Given some standard assumptions in the logic of ground, EGH has some
interesting consequences. First, it is standardly assumed that ground is fac-
tive in the sense that the relation can only hold between things that are the
actually case [42, p. 48–50]. This assumption is more or less explicit in our
manner of speaking: we have said that ground is the relation of one thing be-
ing the case in virtue of others. From a logical perspective, this assumption
sanctions the following rules of inference for all formulas ϕ,ψ1, ψ2, . . . :

ϕ in virtue of ψ1, ψ2, . . .
ϕ FactL

ϕ in virtue of ψ1, ψ2, . . .

ψi
FactR

Using these rules, we can see that according to EGH, objects exemplify
all their essential properties. For assume that a property Φ is an essential
property of an object x. Then it follows by EGH that x exemplifies Φ in
virtue of x being x. But then, by a simple application of FactL, we can
infer that x exemplifies Φ. This fact directly corresponds to the fact that
according to the modal analysis MA, existing objects exemplify all their
essential properties (see p. 2).

Second, it is usually assumed that ground implies consequence, in the sense
that what ϕ says can only be the case in virtue of what ψ1, ψ2, . . . say being
the case, if it’s necessary that whenever what ψ1, ψ2, . . . say is the case, then
what ϕ says is the case [121, p. 118, 42, p. 38].43 Logically, this assumption
sanctions the following rule of inference for all formulas ϕ,ψ1, ψ2, . . .

ϕ in virtue of ψ1, ψ2, . . .

�(if
∧
{ψ1, ψ2, . . .}, then ϕ)

Cons

Here,
∧
{ψ1, ψ2, . . .} simply denotes the (possibly infinitary) conjunction of

ψ1, ψ2, . . . . Thus, it follows from EGH that it’s necessary de re for an object

43But see [128] for a disagreeing argument.
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that if it exemplifies its haecceity, then the object exemplifies its essential
properties. For assume that a property Φ is an essential property of an
object x. Then it follows by EGH that x exemplifies Φ in virtue of x being
x. And from this we can infer by a simple application of Cons that �(if x
exemplifies being x, then x exemplifies Φ).

Now, since we have assumed that an object can only exemplify a property
if the object exist (see p. 4), we get that an object can only exemplify the
property of being that object if the object exists. Conversely, if an object
exists, then it clearly intuitively exemplifies the property of being that ob-
ject. Moreover, both of these principles are plausibly regarded as laws of
metaphysics and thus they are metaphysically necessary. Putting both of
this together, we get the following modal connection between haecceities
and existence:

Haecceities and Existence. For all objects x, �(x exemplifies being x iff
x exists).

Together with the previous observation, namely that according to EGH, if
a property Φ is an essential property of an object x, then �(if x exemplifies
being x, then x exemplifies Φ), we get by Haecceities and Existence
that if Φ is an essential property of x, then �(if x exists, then x exemplifies
Φ). Semantically speaking, if Φ is an essential property of x, then in every
possible world where x exists, x exemplifies Φ. In other words, EGH entails
Essence Implies Weak Necessity. Thus, just like on the modal analysis
MA, if a property is contingent to an object—if it’s possible de re for the
object to exist without exemplifying the property—then the property is not
an essential property of the object (see p. 3).

Conversely, however, EGH does not entail the principle Weak Necessity
Implies Essence. Indeed, as illustrated by Fine’s counterexamples, as we’ve
discussed above, the principle Weak Necessity Implies Essence is false
according to EGH: there are weak necessities de re of an object that are
not essential properties of the object. More generally, it is usually assumed
that the relation of ground requires relevance between the grounds—the
things expressed to the right of a true “in virtue of”-statement—and the
groundee—the thing that is expressed to the left of a true “in virtue of”-
statement. Thus, for statements ϕ,ψ1, ψ2, . . . and θ, the rule of inference

ϕ in virtue of ψ1, ψ2, . . .

ϕ in virtue of θ, ψ1, ψ2, . . .
Weakening

is not sound : it can lead from a true premise to a false conclusion. Thus,
there is a natural sense in which EGH satisfies the Relevance Condition:
If we say that what ϕ says is (wholly) relevant to an object x iff what ϕ
says is grounded in x being x, it follows that if Φ is an essential property of
an object x, then that x exemplifies Φ is relevant to x—a reasonable way to
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say that the property Φ is relevant to x. Moreover, the idea that an object
having a property in virtue of the object being that object is a reasonable
gloss of the property being part of the object’s nature. Thus, in this sense,
EGH satisfies Fine’s condition that it’s necessary for a property Φ to be an
essential property of an object x, Φ has to be part of the nature of x.

Finally, metaphysical ground is, intuitively, hyperintensional, in the sense
that in the context of “in virtue of” the substitution of necessary equiv-
alents need not preserve truth-value. This is readily illustrated by the ex-
ample of Socrates being self-identical and Socrates being a member of his
singleton. As we’ve said above, the two properties of being self-identical and
being the member are necessarily equivalent. But the sentence “Socrates is
self-identical in virtue of being Socrates” is intuitively true, while the sen-
tence “Socrates is a member of his singleton in virtue of being Socrates”
is intuitively false. Thus, the concept of ground has an important property
that necessity de re lacks: it creates hyperintensional contexts. For the logic
of ground this means that in contexts of “in virtue of” the substitutivity
of equivalents fails. More specifically, for formulas ϕ,ψ1, ψ2, . . . , and θ, the
rules of inference

ϕ in virtue of ψ1, ψ2, . . . �(ϕ iff θ)

θ in virtue of ψ1, ψ2, . . .
SubsL

ϕ in virtue of ψ1, ψ2, , . . . , ψi, . . . �(ψi iff θ)

ϕ in virtue of ψ1, ψ2, . . . , θ, . . .
SubsR

are not sound : they can lead from true premises to false conclusions. Thus,
we have to be careful when reasoning with “in virtue of.” But this property
of ground also has its upsides: it is effectively this property—that ground
creates hyperintensional contexts—which allows EGH to deal with Fine’s
counterexamples. Above we have argued that under theassumption that the
essential properties of an object have to be part of its nature, ascriptions
of essential properties create hyperintensional contexts (see p. 24). Thus,
we need a hyperintensional concept, if we wish to analyze such a notion
of essential properties. And indeed, by what we have said above, ground
appears to fit the bill: with the help of “in virtue of” we can distinguish
between Socrates being self-identical and Socrates being a member of his
singleton. Thus, all in all, EGH fares quite well with respect to our essen-
tialist intuitions and the conditions that arose from the discussion of Fine’s
counterexamples.

But, for Fine’s analysis EGH to become a respectable analysis of essen-
tial properties, which is metaphysically on a par with the modal analysis,
two essential ingredients are missing: First, we need a proper background
theory of metaphysical ground, which can play the same role that the pos-
sible worlds framework plays for the analysis: by translating MA through
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Kripke’s semantics into the possible worlds analysis PWA, modal essential-
ists were able to disperse Quine’s skeptical worries. Now, a skeptic about
ground might raise a similar worry about EGH as Quine did about MA:
they might argue that the notion of metaphysical ground is conceptually
confused and thus the analysis EGH is confused as well. To (perhaps pre-
emptively) counter this objection, we had better come up with a suitable
semantics for the concept of ground, comparable in scope and fruitfulness
to the possible worlds semantics for necessity de re. Second, as we’ve said
above, part of the reason why PWA was so successful as an analysis of the
concept of essential properties was that it could be supplemented with a
working theory of properties in the same framework that the analysis was
formulated in: the theory intensional property theory IPT (see p. 11). We
know already that IPT will not work as a background theory of properties
for EGH: this is illustrated by the example of Socrates being self-identical
and Socrates being a member of his singleton; both properties are necessarily
equivalent, and so identical according to IPT, but, according to EGH, be-
ing self-identical is and essential property of Socrates, while being contained
in his singleton is not. So, in addition to a semantic framework for ground,
we need a property theory to get EGH “off the ground,” as it were. And
this property theory will need to be able to distinguish between necessarily
equivalent properties: it needs to be a hyperintensional property theory.

Now, at the present stage of research, these two components are still missing:
A lot of exciting research has recently been carried out in the logic and
semantics of ground [21, 133, 15]. But semantic theories of ground are a
relatively young field of research, and we are not at the level of refinement
of Kripke’s possible worlds semantics for necessity de re. One thing that is
notoriously missing is a semantic treatment of occurrences of “in virtue of” in
the context of other occurrences of “in virtue of” or, as it’s sometimes called,
occurrences of iterated ground. Litland [88, p. 131–78] and Litland [87] gives
a proof system that deals with iterated ground, but a semantic treatment is
still missing. Philosophically speaking, however, if we wish EGH to succeed
as an analysis of the concept of essential properties on a par with MA
or PWA, we should like to have a semantic treatment of “in virtue of”
that can accommodate iterated ground. To illustrate, consider an object x
and a property Φ such that Φ is an essential property of x. Now we may
ask ourselves if it is also an essential property of x that Φ is an essential
property of x. According to PWA, this question has a clear answer: If in
every worlds where x exists, x exemplifies Φ, then every world is such that in
every world where x exists, x exemplifies Φ—in other words, it is an essential
property of x that Φ is an essential property of x. According to EGH, in
contrast, the answer involves a case of iterated ground. According to EGH,
it is an essential property of x that Φ is an essential property of x iff that
Φ is an essential property of x is grounded in the haeccaeity of x. But if we
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understand Φ being an essential property of x as x exemplifying Φ being
grounded in the haecceity of x, then we get that it is an essential property
of x that Φ is an essential property of x iff the fact that x exemplifies Φ in
virtue of its haecceity is in turn again grounded in the haeccaeity of x.44 But
this is a question about iterated ground! Thus, if we wish to be able to tell
whether it is essential to objects that they have their essential properties—
and, of course, we do—we need to be able to account for iterated ground.
In other words, once we adopt EGH as our metaphysical analysis of the
concept of essential properties, we’re naturally lead to questions of iterated
ground. And consequently, if we wish EGH to succeed as a metaphysical
analysis of essential concepts, we need a semantic account of iterated ground.

With regard to suitable property theories, the situation is even worse. There
are hyperintensional theories of properties on the market [8, 9, 130], but
none of these theories is formulated in a framework that is suitable for the
semantic analysis of the concept of ground. But, as we’ve pointed out, if we
wish EGH to succeed as a metaphysical analysis, we need such a theory.
Thus, the two central aims of this dissertation will be to provide these two
missing pieces: (1) a semantic analysis of ground that can accommodate
cases of iterated ground and (2) a hyperintensional property theory in a
framework suitable to a semantic analysis of ground. The core chapters of
this dissertation will deal with exactly these two issues.

1.4 The Problem of Explicating Essential Proper-
ties

Let’s take stock. So far, we’ve discussed two analyses of essential properties:
the modal analysis in the form of PWA supplemented with the intensional

44There is a delicate (logical) issue here: In formulating EGH, we’ve followed the con-
vention of formulating an analysis as an equivalence. Since EGH could reasonably be
considered a principle metaphysics, it this equivalence is even metaphysically necessary.
But, as we’ve pointed out above, in contexts of “in virtue of” the substitutivity of equiv-
alents fails. In particular, EGH does not warrant us to freely replace “Φ is an essential
property of x” with “x exemplifies Φ in virtue of the haecceity of x” in contexts of ground.
However, the idea behind EGH certainly is that the two formulas mean the same: the
idea is that a property being essential to an object means that the object’s exemplifying
the property is grounded in its haecceity. And intuitively, synonymous formulas should be
substitutable even in ground-theoretic contexts. Note that, on this concept of meaning,
necessary equivalence is not sufficient for synonymy—the concept is hyperintensional. The
bottom line is that to justify the inference we would need a stronger principle than EGH.
In ground-theoretical contexts a definition should indeed be such that the definiens and
the definiendum are substitutable for one another. But developing a corresponding notion
of definitions is a non-trivial issue. We’ll address the issue later in this dissertation (see
chapter 2, §??, p. ??-??). For now, we use the informal reasoning in this footnote to justify
the inference in the main text above.
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property theory IPT and the ground-theoretic analysis EGH. We’ve seen
that the even though EGH still lacks a proper semantic formulation and a
background property theory, the analysis can deal with all of Fine’s coun-
terexamples to the modal analysis and it is intuitively well motivated. We
might ask at this point: But which analysis is the correct analysis of the
concept of essential properties? We wish to argue that none of them is—but
not for the reasons one might perhaps think. We wish to argue that there is
no one correct analysis of the concept of essential properties.

Remember that the crucial issue in the case of Fine’s counterexamples was
that we assume that in order for a property to be essential to an object, the
property has to be part of the object’s nature. But why should we share this
assumption? Fine does not offer an argument for his assumption, but rather
a plausibility claim. He writes:

I am aware, though, that there may be readers who are so in
the grip of the modal account of essence that they are incapable
of understanding the concept in any other way. One cannot, of
course, argue a conceptually blind person into recognizing a con-
ceptual distinction, any more than one can argue a colour blind
person into recognizing a colour distinction. But it may help such
a reader to reflect on the difference between saying that singleton
Socrates essentially contains Socrates and saying that Socrates
essentially belongs to singleton Socrates. For can we not recog-
nize a sense of nature, or of ‘what an object is’, according to
which it lies in the nature of the singleton to have Socrates as a
member even though it does not lie in the nature of Socrates to
belong to the singleton? [39, p. 5]

We’re inclined to agree: One cannot argue for one concept being the one
correct concept of essential properties. There is a concept of essential prop-
erties according to which it’s necessary for a property to be essential to an
object that the property is part of the object’s nature. But there is also a
concept according to which this is not necessary: there are (at least) two
concepts of essential properties. Both concepts are coherent and neither has
a claim to being the correct one.

We can think of the concept that modal metaphysicians are talking about as
defined MA, viewed as a definition of essential properties in terms of neces-
sity de re. This definition is illustrated by means of paradigmatic examples:
being a man, for example, is supposed to be an essential property of Socrates
according to MA, while being married to Xanthippe is not. The concept of
necessity de re involved in MA is furthermore regimented by means of the
standard modal logic, which allows us to ascertain the consequences and
applications of MA. Finally, the (more or less) informal definition MA is
made precise in the framework of possible worlds by means of the analysis
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PWA supplied with the intensional property theory IPT. Now, as we’ve
seen, the concept of the nature of an object in Fine’s sense is not part of the
framework of possible worlds. The concept that Fine has in mind is hyper-
intensional: the two properties of being self-identical and being a member of
one’s singleton are necessarily equivalent, yet the one is part of the nature of
Socrates in Fine’s sense, while the other is not. But according to IPT this
claim cannot even be coherently formulated, since according to the theory
the two properties are identical. Moreover, hyperintensional concepts can
in general not be analyzed in the intensional framework of possible worlds.
In other words, Fine’s concept of the nature of an object simply isn’t part
of the framework of possible worlds. And therefore, Fine’s counterexamples
don’t really arise in the framework and in particular they don’t show that
the analysis is incorrect or incoherent.45

But also the concept of essential properties as properties grounded in the
identity of things makes intuitive sense. We can think of this concept as
defined by EGH, viewed as a definition of essential properties in terms of
ground. Also this definition is illustrated by means of examples: the property
of being self-identical, for example, is supposed to be an essential property
of Socrates according to EGH, while being contained in {Socrates} is not.
The use of the phrase “in virtue of” in EGH is furthermore regimented
by the standard principles in the logic of ground, which also allow us to
ascertain the consequences of the definition. Thus, EGH is, at least pre-
theoretically, precise. Fine’s examples show that the modal analysis and the
ground-theoretic analysis don’t agree, not even pre-theoretically: according
to MA, being a member of his singleton is an essential property of Socrates,
while according to EGH it is not. The underlying reason for this discrepancy
is that in the ground-theoretic framework, the notion of the nature of an
object can be formulated and indeed it is required for a property to be
essential to an object that the property is part of the nature of the object—
in just the sense we discussed above. The only thing that’s missing is a
semantic precisification in the form of a semantic analysis of “in virtue of”
and a fitting property theory to go along. And this is exactly what we wish
to do in this dissertation.

The point here is that we don’t have two competing analyses for one single
concept of essential properties, but, at least once we’ve supplied the missing

45Some authors, like [139, 135], respond to Fine’s counterexamples from the perspective
of the modal analysis, aiming to vindicate the analysis. But both these authors abandon
the “pure” framework of possible worlds in favor of some extended framework that can
account for hyperintensional distinctions: Zalta [139] moves to the framework of his object
theory, and Wildman [135] uses the concept of sparse properties. Both these extensions
allow the authors to make hyperintensional distinctions. In this dissertation, however,
the modal account is not the prime focus, we’ll talk mainly about the ground-theoretic
approach given by EGH.
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components to the ground-theoretic concept, we really have two analyses of
two different concepts of essential properties. So which analysis should we
adopt? It appears that the most important criterion is given by what we want
to do with the concept of essential properties and its analysis. And there
appear to be interesting applications for both concepts and their analyses:
The modal analysis allows us to say what is metaphysically necessary for an
object to exist, or, if we may put this way, what is essential to the object’s
existence. The ground-theoretic analysis, in contrast, allows us to say what is
determined by an object being that very object, or, if we may put it this way,
what is essential to the object’s haecceity. These are two different questions
and so we should expect two different approaches and two different answers.
We take it that Fine’s central contribution to the issue is to raise awareness
for the second question. This question is, of course, not a new one, but,
at least until recently, it was largely ignored in essentialist metaphysics.
As Fine points out, both analyses—the modal and the ground-theoretic
one—ultimately trace back (at least) to Aristotle [39, p. 2–3]. But at least
among analytic metaphysicians the modal question took precedence for the
second half of the last century. Following Fine’s paper, however, the ground-
theoretic question took center stage. And there’s work to be done—here lies
the area of research that this dissertation aims to contribute to.

It might be helpful to phrase the point of the section in a slightly differ-
ent way: We can view the problem of analyzing the concept(s) of essential
properties as a Carnapian problem of explication [17, p. 1–18]. According to
Carnap: “the task of explication consists in transforming a given more or
less inexact concept into an exact one or, rather, in replacing the first by the
second” [17, p. 3, emphasis in the original]. In a given explication, Carnap
calls the explicated concept the explicandum, and the explicating concept
the explicatum. Before giving an explication of a concept, so Carnap, we
should try to make the explicandum as precise as possible: for example,
we should give an informal definition of the explicandum, we should give
examples of the correct application of the concept, or we should discuss its
logic [17, p. 4–5]. Only then, we should attempt to find a proper explicatum.
Once we’ve determined an explicatum, according to Carnap, the quality of
the explication can be judged by four criteria: (1) the similarity between the
explicatum and the explicandum; (2) the exactness of the explicatum; (3)
the fruitfulness of the explicatum; and (4) the simplicity of the explicatum
[17, p. 5–8].

Now, given what we’ve said in this section, we can naturally regard the
dialectic about the modal analysis of essential properties as an explication
of the first concept of essential properties: Here, the explicandum is the
concept of a property being an essential to an object, where we take this to
be the case iff it’s necessary de re for the object to exist that it exemplifies
the property. The analysis MA gives us a more or less informal definition of
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this explicandum. The intuitions that being a man is an essential property
of Socrates in the relevant sense and that being married to Xanthippe is not
give us paradigmatic examples for the correct application of the concept.
And with the use of philosophical modal logic, we can ascertain the basic
logic of the concept. Then, PWA gives us a proper the explication of the
concept: a property being essential to an object (in the relevant sense) is
explicated as the object exemplifying the property in every world where
it exists—our explicatum. This explication is then made more precise by
supplying it with the intensional property theory IPT.46

And viewed as an explication, PWA fares quite well with regard to Carnap’s
four criteria. As we’ve seen, given our assumptions about possible worlds,
PWA and MA agree on the paradigmatic examples. Indeed, by Kripke’s
soundness and completeness result, the modal logic that we’ve used to de-
termine the informal logic of the concept of essential properties defined by
MA is semantically mirrored by the concept given by PWA. So PWA fares
quite well with regards to the criterion of similarity (1). Moreover, Kripke’s
semantic framework of possible worlds, especially when supplemented with
IPT, is formally exact. In particular, all the relevant concepts involved in
PWA are well-defined in this framework. Indeed, the framework is precise
enough so that we can use standard logical methods to establish the sound-
ness and completeness result mentioned before. Thus, criterion (2) is also
satisfied to a high degree. As we’ve said the framework of possible worlds is in
itself fruitful: it allows us to analyze a wide range of philosophical concepts.
Thus, the explication PWA is fruitful as well, as it allows us to connect
the relevant concept of essential properties with these other concepts. This
makes it plausible that the criterion of fruitfulness (3) is well satisfied. And
finally, the explication PWA is arguably simple: all the concepts that are
involved are existence and exemplification at (all) possible worlds. Hence,
the criterion of simplicity (4) is arguably well satisfied.

Now, the concept of a property being essential to an object iff the object
exemplifying the property is grounded in the object’s haecceity poses a dif-
ferent problem of explication. In this introduction, we’ve taken care the
first step of this project: we’ve tried to make the explicandum as precise as
possible. The analysis EGH gives us an informal definition of the relevant
concept of essential properties. Fine’s examples give us a good indicator for
the correct application of the concept. And the logic of ground gives us a
good idea of the logic of the concept. Now it is time for the next step: to give
an explication of the concept of essential properties defined by EGH. In this
dissertation, we wish to tackle this project by providing two things: (1) a

46Already Kripke’s semantics can be regarded as an explication of the concept of ne-
cessity de re, but here we focus on the concept of essential properties, which is defined in
terms of necessity de re.
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semantic analysis of the concept of metaphysical ground which can account
for iterated ground, and (2) a hyperintensional property theory in the same
semantic framework. Our hope is that by providing these two things, we
can bring the concept given by EGH to a comparable level of precision as
the concept given by MA achieves through PWA and IPT in the semantic
framework of possible worlds. But, since we view the problem at hand as
a problem of explication, ultimately its success will have to be judged by
means of Carnap’s four criteria.

1.5 Overview of the Thesis

To conclude this introduction, let’s sum up the concrete goals that we’ve
come up with. In this dissertation we wish to supply the ground-theoretic
analysis of essential properties EGH with the following two components:

(1) a semantic analysis of metaphysical ground, which in particular can
account for cases of iterated ground and can play the same role that the
possible worlds framework plays for MA, effectively giving us an analog
to PWA, and

(2) a hyperintensional property theory in the same semantic framework as
our semantic analysis, which can play the same role that IPT plays for
the PWA in the framework of possible worlds.

By providing these two components, we aim to give an explication of the
concept defined by EGH in the Carnapian sense. Thus, as the standards for
success of our project we take the four criteria listed by Carnap: similarity,
(formal) precision, fruitfulness, and simplicity.

We will pursue those two goals over the course of the core chapters of this dis-
sertation. In chapters two and three, we approach the first of the two goals.
There is a fundamental distinction among theories of ground according to
what they take to be the relata of ground, or rather how these relata are
individuated.47 Conceptualist theories of ground take the relata of ground
to be conceptually individuated truths: fact-like entities that are individu-
ated by the sentences or propositions that express them. Worldly theories,

47Here we only talk about theories of ground that take ground to be a relation between
fact-like entities. This was already implicit in the way we informally introduced ground
as the relation of one thing holding in virtue of others—only fact-like entities can be
coherently said to hold. There are other kinds of theories of ground, which allow for ground
to relate things from different ontological categories, see, for example, [123]. We prefer
to keep the two concepts apart: ground holds between fact-like entities and a ground-
like relation that can hold among things from different ontological categories is better
conceived of as a form of ontological dependence. We’ll not argue that point here in more
detail, but in this dissertation, we’ll only talk about ground in the previous sense.
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in contrast, take the relata to be worldly individuated facts: facts that are
individuated by the objects, properties, and relations they concern.48 Now,
in chapter two, we’ll discuss a new approach to conceptualist theories of
ground, where we formalize ground by means of a relation predicate of sen-
tences. We’ll develop different axiomatic theories of ground in this frame-
work and show their consistency. However, we’ll show that for the present
purpose, this approach is not developed enough: in particular, if we try to
deal with cases of iterated ground in this framework, we run into serious
difficulties. Therefore, we’ll abandon these theories for the purpose of this
dissertation. Nevertheless, we argue that these theories present a new and
exciting approach to theories of ground, which hopefully prove to be fruitful
in future ground-theoretic research.

In chapter three, we will turn to worldly theories of ground. These theories
are more developed than conceptualist theories of ground at the present
stage of research. In particular, Correia [24] gives a treatment of worldly
ground, which consists of a semantics together with a sound and complete
proof system. Fine [42] gives an equivalent semantics in terms of truthmak-
ers. However, neither Correia nor Fine treat cases of iterated ground in their
semantics. In chapter three, we will extend Fine’s version of the semantics
to account for iterated cases of ground an we will give a proof theory the
resulting semantics. The framework that we’ll develop (or rather refine) in
this chapter will be the basis for our explication of the concept defined by
EGH. Thus, the view that we will be explicating in this thesis may be
called worldly ground-theoretic essentialism: the view that at least some ob-
jects have at least some essential properties, viewed as properties that are
grounded in their haecceities on a worldly conception of ground.49

Then, in chapter four, we will tackle the second aim of the thesis. In this
chapter, we will propose a new hyperintensional property theory in the se-
mantic framework of truthmaker semantics. We will argue that the other
approaches to hyperintensional property theories on the market do not sat-
isfy certain intuitive desiderata for hyperintensional property theories, and,
as a consequence, they are not suited to the purpose of this dissertation.
This chapter will be the last core chapter of the dissertation, and at its
end, we will have arrived at the framework we desire: a semantic framework,
complete with a theory of properties, which can deal with (iterated and
uniterated cases of) metaphysical ground.

Finally, in the conclusion, we’ll formulate an explication of the concept given
by EGH in the framework that we’ve developed in the previous chapters.

48For more on different conceptions of facts and the particular terminology that we use
here, see [41].

49Conceptualist ground-theoretic essentialism is also an enticing view, but it falls outside
the scope of this thesis.
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This will be the final result of this dissertation. We’ll subject the explication
to Carnap’s four criteria. But ultimately, the success of the explication will
have to be judged in the bigger scheme of things: how well the framework
works in the bigger context of ground-theoretic metaphysics—the paradigm
that metaphysics should be carried out with the help of ground-theoretic
concepts. And this assessment goes (well) beyond the scope of this disserta-
tion.
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Chapter 2

Axiomatic Theories of
Ground

2.1 Preface

This chapter contains a theory of ground that we’re ultimately going to
discard for the purposes of the dissertation. But the reasons for this are
quite substantial and they will emerge only in the course of the chapter.
The approach we take in this chapter is to formalize ground by means of a
relational predicate, rather than by means of a sentential operator, as we will
do in the rest of the dissertation. We’ll argue that the predicate approach
is both natural and philosophically well-motivated (see §2.3). Moreover, the
approach allows us to obtain nice results connecting theories of truth and
theories of ground (see §§2.5–2.6). But the approach also has problems. As we
will show, we get paradoxes of self-reference (see §??) and we can’t straight-
forwardly deal with the notion of full ground (see §2.10). Especially the
latter point is problematic for us, since we wish to model essential properties
as properties that are fully grounded in the identity of things. Ultimately,
this will lead us to discard the approach—at least for the purpose of the
dissertation.

But the chapter still has some merit. First, it is non-trivial to see that these
problems arise. In particular the paradoxes of self-reference in the context of
ground have not been discussed in the literature of ground so far.1 Second,
the results connecting theories of truth and theories of ground (§§2.5–2.6) are
philosophically interesting in their own right. In particular, as we shall argue
(§§?? and 2.10), they motivate the application of methods and results from

1The only exception is my paper [72], which is attached as an appendix to this disser-
tation. See Appendix A.
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theories of truth to the theory of ground. Thus, this chapter is ultimately
a plea for collaboration between logicians working on theories of truth and
metaphysicians working on theories of ground.

2.2 Introduction

Partial ground is the relation of one truth holding either wholly or partially
in virtue of another [42, 44].2 To illustrate the concept, consider a couple of
paradigmatic examples:

(1) The truth of the disjunction that 5 + 7 = 12 or 1 = 2 holds wholly in
virtue of the truth of its only true disjunct that 5 + 7 = 12.

(2) The truth of the conjunction that 5+7 = 12 and 2×2 = 4 holds partially
in virtue of the truth of its first conjunct that 5 + 7 = 12 and partially
in virtue of the truth of its other conjunct that 2× 2 = 4.

Partial ground in this sense is a strict partial order on the truths: it is
irreflexive—no truth partially grounds itself—and it is transitive—partial
grounds are inherited through partial grounding.3 Thus, partial ground gives
rise to a hierarchy of grounds, in which the partial grounds of a truth rank
“strictly below” the truth itself. The aim of this paper is to axiomatize this
hierarchy over the truths of arithmetic.4

The main novelty of the paper is that we will use a ground predicate rather
than an operator to formalize partial ground. This approach to formalizing
partial ground has several philosophical benefits, which we will outline in

2 For (opinionated) introductions to the concept(s) of ground, see [28, 42]. For an
overview of the recent literature, see [15, 21, 118, 133]. Most research focuses on the notion
of full ground: the relation of one thing holding wholly in virtue of a possibly plurality of
other truths [42, p. 37]. For reasons that we will discuss more comprehensively in §2.10,
we will focus on the notion of partial ground in this paper. For more on the distinction
between full and partial ground, see [42, p. 50].

3This is, in any case, the standard view of partial ground. Some authors have challenged
this view: Jenkins [66] challenges the claim that partial ground is irreflexive and Schaffer
[122] challenges the claim that partial ground is transitive. See Litland [86] and Raven
[119] for a defense of the standard view against these challenges.

4The main reason for taking arithmetic as the starting point here is that the standard
theory of arithmetic, Peano arithmetic PA, can double in well-known ways as a theory of
arithmetic and a theory of syntax (see §2.4). Thus, by taking PA as our starting point, we
can effectively kill two birds with one stone: PA can function as the theory that tells us
which sentences are true and function as a theory of syntax that allows us to talk about
these sentences. Regardless of this technical convenience, nothing philosophically “deep”
hinges on this particular theory choice. Note, however, that we’re explicitly not including
truths about partial ground in the hierarchy. There are specific technical and philosophical
issues that arise in the context of such truths, which shall be discussed in the second part
of the paper. See also our discussion of the issue on p. 52 of this article.
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more detail in the following section. So far, however, most authors have
eschewed the approach for reasons we’ll discuss in detail in the following
section as well. Ultimately, we argue, the benefits of the approach outweigh
it’s perceived drawbacks. Most importantly, the predicate approach will al-
low us to connect theories of partial ground with axiomatic theories of truth.
In particular, once we’ve formulated the usually accepted principles of par-
tial ground using a ground predicate, we can bring out the truth-theoretic
commitments of theories of partial ground, in the sense that we can show
that the resulting theory of partial ground is a conservative extension of the
well-known theory PT of positive truth [58, p. 116–22].

2.3 The Predicate Treatment of Partial Ground

In this paper, we will formalize partial ground using the relational predicate
� of sentences—our ground predicate. We’ll add this predicate to the lan-
guage of PA, where we may obtain a unique name pϕq for every sentence
ϕ using the technique of Gödel-numbering. Here and in the following, we
shall take the relata of partial ground to be (true) sentences, the idea be-
ing that partial ground is a relation on the truths (for further discussion of
this assumption, see p. 47 below). Thus, we can formalize example (1) from
above by:

p5 + 7 = 12q � p5 + 7 = 12 ∨ 1 = 2q,

where n is the numeral for the natural number n. In contrast, most authors
formalize partial ground using the operator ≺ of sentences—the (partial)
ground operator.5 In the case of our example, these authors would add the
ground operator to the language of PA, and then formalize example (1) by:

5 + 7 = 12 ≺ (5 + 7 = 12 ∨ 1 = 2).

The syntactic difference between the two approaches is that the ground
predicate takes terms denoting sentences as arguments, while the ground
operator takes sentences themselves as arguments.

The predicational theory of partial ground that we will develop in this paper
subsumes the standard operational theory of partial ground, in the sense
that for all sentences ϕ and ψ, if ϕ ≺ ψ is derivable in the latter theory,
then pϕq� pψq is derivable in our theory. The converse direction, however,
does not hold in general: there are sentences ϕ and ψ such that pϕq�pψq is
derivable in our theory, while ϕ ≺ ψ is not derivable in the standard theory
of partial ground.6 Thus, on the predicate approach we are able to obtain a
strictly stronger theory of partial ground.

5Cf. [24, 43, 42, 44, 73, 88, 85, 121, 124]. Different authors may use different symbols
for the ground operator.

6We will show this rigorously in §2.5.2.
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But there are other reasons to prefer the predicate approach over the oper-
ator approach:

2.1 Quantification over Truths: The predicate approach has greater ex-
pressive strength than the operator approach. In particular, using the
ground predicate, we can formalize ground-theoretic principles involv-
ing quantification over truths in a natural way. Take the two principles
stating that partial ground is an irreflexive and transitive relation on
the truths as an example. On the predicate approach, we can directly
formalize these principles as:

(Irreflexivity�): ∀x¬(x� x)

(Transitivity�): ∀x∀y∀z(x� y ∧ y � z → x� z)

where the intended range of the quantifiers is the set of all truths.7 On
the operator approach, in contrast, we can (prima facie) only formalize
these principles by affirming the instances of the following schemata for
all sentences ϕ,ψ, and θ:

(Irreflexivity≺): ¬(ϕ ≺ ϕ)

(Transitivity≺): (ϕ ≺ ψ) ∧ (ψ ≺ θ)→ (ϕ ≺ θ)

Thus, on the operator approach, we can achieve quantification over
truths only by moving to quantification over sentences in the meta-
language, while on the predicate approach, we can directly express quan-
tification over truths in the object language.8

Moreover, the strategy of moving to quantification in the meta-language
fails once we consider principles involving existential quantifiers. Think
for example of the intuitively plausible principle that a sentence is true
iff its truth is either fundamental or grounded in some other truth. On
the predicate approach, we can straightforwardly formalize this principle

7In the literature on ground, we distinguish between factive and non-factive conceptions
of ground [cf. 42, p. 48–50]. On a factive conception, ground can only obtain between factive
things, such as truths or facts. On a non-factive conception, the relation of ground can
also hold between non-factive things, such as falsehoods or non-obtaining states of affairs.
The notion of partial ground that we are working with in this paper is a factive notion
of ground. Later we shall enforce this by means of axioms stipulating that the relation of
partial ground can only hold between truths.

8A remark is in order: We could, of course, achieve similar results on the operator
approach using quantification into sentence position or propositional quantification. But
propositional quantification means a significant deviation from classical logic, while on
the present approach we can comfortably stay within the purview of classical (first-order)
logic. This highlights another benefit of the predicate approach: it allows us to study
partial ground using entirely standard methods, well-known from first-order logic and
model-theory.
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as:
∀x(Tr(x)↔ (Fund(x) ∨ ∃y(y � x))),

where Tr is a unary truth predicate that applies to all and only the true
sentences and Fund is a unary predicate that applies to all and only
the sentences whose truth is fundamental. Moreover, we could plausibly
define this predicate Fund by postulating that:

∀x(Fund(x)↔def Tr(x) ∧ ¬∃y(y � x)).

Then, in a predicational theory of ground with this definition, we’ll be
able to derive the claim that a sentence is true iff its truth is either fun-
damental or grounded in some other truth. On the operator approach,
in contrast, we could not even formalize the principle in the first place:
there simply is no way to express the nested universal and existential
quantification over truths on that approach.

Finally, using quantification over truths, we can define useful ground-
theoretic concepts directly in our object language. Take the concept of
weak partial ground as an example [42, p. 51–53]. This is the relation
of one truth being a “stand-in” for another in the context of partial
ground. Following [42, p. 52], we can define weak partial ground in terms
of our ordinary, strict notion of partial ground by saying that the truth
of ϕ weakly partially grounds the truth of ψ just in case the truth of
ϕ strictly partially grounds any truth that the truth of ψ grounds. It
then follows, for example, that any truth weakly partially grounds itself,
since clearly it strictly partially grounds any truth that it itself strictly
partially grounds. Or, for another example, if the truth of ϕ strictly
partially grounds the truth of ψ, then the truth of ϕ also weakly partially
grounds the truth of ψ. This follows immediately from the transitivity
of (ordinary strict) partial ground.9 But conversely, it may very well
happen that the truth of ϕ weakly partially grounds the truth of some ψ
without strictly grounding it. Just think of the case where ψ is identical
to ϕ: we’ve just seen that the truth of ϕ weakly grounds itself, but by
the irreflexivity of strict partial ground (see p. 2) ϕ does not strictly
partially ground itself.10

On the predicate approach, we can define a binary predicate � for this
relation by postulating:

∀x∀y(x� y ↔def ∀z(y � z → x� z)).

9To see this, suppose that the truth of ϕ strictly partially grounds the truth of ψ
and that the truth of ψ strictly partially grounds the truth of some arbitrary θ. It follows
immediately by the transitivity of strict partial ground that the truth of ϕ strictly partially
grounds the truth of θ, establishing that the truth of ϕ weakly partially grounds the truth
of ψ.

10For a (critical) discussion of the concept of weak ground, see [33].
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On the operator approach, in contrast, we can’t define weak partial
ground in this way—there we need to introduce a primitive operator �
for the relation together with the semantic postulate that for all sen-
tences ϕ and ψ:

ϕ � ψ is true iff for all θ, if ψ ≺ θ is true, then ϕ ≺ θ is true.

Thus, on the operator approach, we need to introduce additional syntax
and additional semantics to deal with weak partial ground, while on
the predicate approach we can use standard first-order definitions in the
object language.

2.2 Truth and Partial Ground: A major benefit of the predicate ap-
proach is that it allows us to study the connections between partial
ground and truth in a natural setting. It should be clear that partial
ground is conceptually related to truth—partial ground is a relation on
the truths after all. In axiomatic theories of truth, the concept is stan-
dardly formalized by means of a unary predicate of sentences [58]. By
formalizing partial ground analogously using a relational predicate, we
create a ground-theoretic framework in which we can fruitfully study
the connections between truth and partial ground. For example, we will
show in this paper that if we formulate the usually accepted principles
for partial ground using a ground predicate, the resulting theory turns
out to be a conservative extension of the well-known theory of positive
truth [58, p. 116–22]. In other words, the predicate approach allows us
to make the truth-theoretic commitments of theories of ground explicit.
In the second part of this paper, we shall investigate the connections
between partial ground and truth further. There we shall show, for ex-
ample, that we can formulate a typed solution to Fine’s puzzle of ground
[43] in our axiomatic framework.

2.3 Semantics of Partial Ground: Finally, the ground predicate allows
us to use classic model-theoretic methods to study the semantics of par-
tial ground. In the literature on ground, we usually distinguish between
conceptualist and factualist notions of ground [24, p. 256–59, 28, p. 14f].
On a conceptualist notion, ground is a relation on fine-grained, concep-
tually individuated truths. For example, on a conceptualist notion, we
would typically say that if ϕ is a true sentence, then the truth of ϕ ∨ ϕ
holds in virtue of the truth of ϕ, but not the other way around. On a
factualist conception, in contrast, ground is a relation on coarse-grained,
worldly individuated facts. On this conception, we would typically deny
that if ϕ is a true sentence, the fact that ϕ ∨ ϕ holds in virtue of the
fact that ϕ, since the two facts are the same—albeit expressed differ-
ently. The notion of partial ground that we are interested in here is a
conceptualist notion of ground.
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It is currently an open problem to provide a formal semantics for a con-
ceptualist notion of ground.11 On the operator approach, it is difficult
to define such a semantics, since we have to start “from scratch,” as it
were: we have to find the right kind of structure to interpret concep-
tualist ground and provide primitive semantic clauses for the ground
operator. On the predicate approach, in contrast, if we can develop a
consistent first-order axiomatization of conceptualist ground, we can in-
fer the existence of a (first-order) model by the completeness theorem
for first-order logic. Once we know that such a model exists, we can
study it using methods of classic model theory. This should then help
us determine the right kind of structure and the correct semantic clauses
to interpret conceptualist ground operators, as well.

In the rest of the paper, we will develop an axiomatization of partial ground
over the truths of arithmetic, which fulfills the promises from the previous
list of benefits. But before we begin, we shall briefly address an argument
that is sometimes brought forward against the predicate approach: Correia
[24, p. 254] and Fine [42, p. 46–47] argue that we should prefer the oper-
ator approach for reasons of ontological neutrality. They argue that since
on the predicate approach we have terms denoting the relata of ground, by
Quine’s criterion of ontological commitment, the approach commits us to
the existence of the relata of ground. Moreover, they argue that since on
the predicate approach we are committed to the existence of the relata of
ground, we need a background theory for them. On the operator approach,
in contrast, they argue we don’t have any of that: we only need to have
the (true) sentences that the ground operator acts upon. This argument is
particularly forceful on a factualist conception of partial ground, where we
take the relata of ground to be facts. As Correia then puts it: “it should be
possible to make claims of grounding and fail to believe in facts” [24, p. 254].

In this paper, however, we work on a conceptualist notion of partial ground,
where we take the relata of ground to be truths.12 Moreover, these truths
are truths of sentences. Correspondingly, we formalize partial ground us-
ing a relational predicate of (true) sentences. Thus, by Quine’s criterion of
ontological commitment, we are only committed to the existence of (true)

11There are semantics for factualist notions of ground in the literature. The most com-
monly discussed semantics for the ground operator is given by Fine [42, p. 71–74] and Fine
[44, p. 7–10] in terms of truthmakers. A related algebraic semantics is given by Correia
[24, p. 274–76]. But as Fine [42, Fn 22, p. 74] himself notes, these semantics are not sound
for a conceptualist notion of ground.

12For the distinction between truths and facts, see [41]. Note that according to Fine
truths are not (true) sentences, rather they are derived entities that get their identity
criteria from (true) sentences: truths according to Fine are a kind of linguistically indi-
viduated facts. In this paper, we don’t presuppose a specific metaphysical understanding
of truths: they can be anything from true sentences to metaphysically robust fact-like
entities in their own right.
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sentences. Our background theory is correspondingly simply a standard the-
ory of syntax. These ontological commitments are metaphysically innocuous:
ontologically speaking, sentences are relatively harmless entities. Moreover,
on the operator approach, we need to assume the existence of sentences to
formulate our theory in the first place. Thus, even though the operator ap-
proach is, strictly speaking, ontologically more parsimonious, the ontological
commitments of our version of the predicate approach are fairly harmless.

2.4 Technical Preliminaries

To develop our axiomatization of partial ground over the truths of arith-
metic, we need a background theory of arithmetic, which tells us what we
need to know about arithmetic, and a background theory of syntax, which
allows us to talk about the (true) sentences of arithmetic. It is well-known
that PA can double as a theory of arithmetic and as a theory of syntax. This
can be achieved using the technique of Gödel-numbering. In this section, we
will recount the basics of this technique and fix notation.13

Let L be the language of PA. We assume that L has the standard arithmetic
vocabulary: an individual constant 0 intended to denote the natural number
zero, a unary function symbol S intended to express the successor function
on the natural numbers, and binary function symbols + and × intended to
denote addition and multiplication on the natural numbers respectively. For
every natural number n, we standardly define the numeral n as the n-fold
application of S to the constant 0. The numeral n is, of course, intended to
denote the number n. Note that ‘n’ is merely a meta-linguistic abbreviation
of the official object-linguistic term ‘S . . . Sn’. The language of truth LTr is
the result of extending L with the unary truth predicate Tr, the language
of predicational ground L�

Tr is the result of extending LTr with the binary
ground predicate �, and the language of (simple) operational ground L≺ is
the result of extending L with the applications of the binary ground operator
≺ over L: L≺ := L ∪ {ϕ ≺ ψ | ϕ,ψ ∈ L}.14 In the following, we will mainly
work in within L�

Tr.

We use the technique of Gödel-numbering to obtain names for every ex-
pression. In particular, we use a coding function # to injectively map every
expression σ to a natural number #σ—the Gödel number of the expression.
If σ is an expression, then we also write pσq for the numeral intended to

13We assume that the reader is already familiar with the basics of first-order logic and
has at least a rough understanding of how Gödel-numbering works. For the details, we
refer the reader to [16].

14Note that we’re explicitly excluding iterations of the operator ≺ here. See also our
discussion on p. 52 below.
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denote #σ. This will be our name for σ. For the most part, we simply as-
sume that we have some coding function for the language L, but later we
will discuss theories that require coding functions for LTr and even L�

Tr.

The theory PA of PA consists of the standard axioms for zero, the successor
function, addition, and multiplication, plus all the instances of the induction
scheme

ϕ(0) ∧ ∀x(ϕ(x)→ ϕ(Sx))→ ∀xϕ(x)

over formulas ϕ(x) in the language L. We denote derivability in PA by `PA
(and analogously for other systems discussed in the paper). However, if what
we mean is clear from the context, we omit the subscript.

It is well-known that PA can represent any recursive function, in the sense
that if f is a recursive function then there is a formula ϕ(x, y) such that for
all natural numbers n,m:

f(n) = m iff `PA ∀x(ϕ(n, x)↔ x = m).

Many syntactic functions on the codes of expressions are recursive and thus
representable. For example, the function that maps the code #ϕ of a formula
ϕ to the code #¬ϕ of its negation is recursive. It is convenient to assume
that L has function symbols for a finite number of those functions. Notation-
wise, if f is a recursive function, then we use f. as our function symbol for it.
In particular, we assume that we have function symbols ¬. , ∨. , ∧. , ∃. , ∀. , and
=. for the corresponding syntactic operations on the codes of expressions.
If we work in the context of a coding for LTr, we additionally assume a
function symbol Tr. for the function that maps the code #t of a term t to
the code #Tr(t) of the atomic formula Tr(t) ∈ LTr. And if we work in the
context of a coding for L�

Tr, we assume a function symbol �. for the function
that maps the codes #s and #t of two terms to the code #(s � t) of the
atomic formula s � t. We can then conservatively extend our axioms with
the defining equations for those functions such that for all formulas ϕ and
ψ, for all variables v, and for all terms t:

`PA psq=. ptq = ps = tq `PA ¬. pϕq = p¬ϕq

`PA pϕq∧. pψq = pϕ ∧ ψq `PA pϕq∨. pψq = pϕ ∨ ψq

`PA ∃. (pvq, pϕq) = p∃vϕq `PA ∀. (pvq, pϕq) = p∀vϕq

When we work in the context of coding functions for LTr and L�
Tr, we

furthermore get of all terms s and t that:

`PA Tr. (ptq) = pTr(t)q `PA psq�. ptq = ps� tq

Note that, in particular, we get that `PA Tr. (ppϕqq) = pTr(pϕq)q, for every
sentence ϕ. The ternary substitution function sub such that for all formulas
ϕ, terms t, and variables v sub(#ϕ,#t,#v) = #ϕ(t/v) provided that t is
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free for v in ϕ, is recursive and thus representable. Officially, we represent
this function by the function symbol sub. and add its defining equations to
our axioms, but unofficially we often simply write pϕq(ptq, pvq) instead of
sub. (pϕq, ptq, pvq) and if there is only one free variable in ϕ, we often simply
write pϕq(ptq). The function that maps a natural number n to the code
#n of its numeral n is also recursive and we will use the function symbol ˙
for this in our language. Note that, in particular, we get for all sentences ϕ
that `PA ˙pϕq = ppϕqq. We write pϕ(ẋ)q as an abbreviation for sub. (pϕq, ẋ).
This allows us to quantify over free variables in the context of names. The
valuation function val that applied to (the code of) a closed term yields
its denotation is also recursive and thus representable. Officially, however,
we cannot have a function symbol representing the valuation function, since
otherwise we run the risk of inconsistency [58, p. 32]. We will nevertheless
write s◦ = t to say that the denotation of s is t, as if ◦ was a function symbol
representing the valuation function. Officially, this is merely an abbreviation
for the corresponding complex defining formula.

PA can also (strongly) represent every recursive set, in the sense that if S is
a recursive set then there is a formula ϕ(x) such that for all natural numbers
n:

n ∈ S iff `PA ϕ(n) and n 6∈ S iff `PA ¬ϕ(n)

In the following, we’ll write Sent to abbreviate the formula that allows
us to represent the recursive set of codes sentences in L, SentTr for the
formula that allows us to represent the codes of sentences in LTr, and Sent�Tr
for the formula that allows us to represent the codes of sentences in L�

Tr.
Similarly, V ar and ClTerm are abbreviations for the formulas that allow
us to represent the sets of (codes of) variables and closed terms. As an
abbreviation for ∀x(V ar(x)→ ϕ(x)) we write ∀vϕ(v) and as an abbreviation
for ∀x(ClTerm(x) → ϕ(x)) we write ∀tϕ(t). We also sometimes use the
notation ∀tT r(pϕ(t.)q) for ∀x(ClTerm(x) → Tr(sub. (pϕq, x))). This allows
us to quantify over terms in the context of names.

We assume that PA has the defining axioms for all of these function symbols
and predicates as axioms. Furthermore, the theory PAT extends PA with
the missing instances of the induction scheme over LTr and the theory PAG
extends PAT with all the missing instances of the induction scheme over
L�
Tr.

Finally, we will exclusively work in the context of the standard model of PA.
This model of L has the set N of the natural numbers as its domain and
in it 0 actually denotes the number zero, S actually denotes the successor
function, and + and × actually denote addition and multiplication. In other
words, we don’t allow for non-standard interpretations of the arithmetic
vocabulary. We denote this model by N. A model for LTr, then, has the
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form (N, S), where N is the standard model and S ⊆ N interprets the truth
predicate Tr. A model for L�

Tr has the form (N, S,R), where (N, S) is a
model of LTr and R ⊆ N2 interprets our ground predicate �. Thus, on our
notion of a model, the interpretation of the arithmetic vocabulary is fixed,
but we are allowed to freely interpret the truth predicate and the ground
predicate.15 Note that we don’t have a notion of a model of L≺, since finding
appropriate models for this language is an open problem.

2.5 Axiomatic Theories of Partial Ground

2.5.1 Axioms for Partial Ground

We begin from the standardly accepted principles for partial ground for-
mulated on the operator approach. The most comprehensive conceptualist
system for ground on the operator approach is the pure and impure logic of
ground developed by Fine [42, p. 54–71]. However, Fine’s system deals with
various notions of ground and takes the full notion of ground as fundamen-
tal [42, p. 50]—it contains a system for partial ground only as a subsystem.
Moreover, Fine’s system is formulated in a sequent-style, which makes it dif-
ficult to deal with for our present purpose. For these reasons, we will take
the system of Schnieder [124] as our starting point. Schnieder’s system is not
primarily intended as a system for partial ground: it is intended as a system
for the non-causal uses of the binary explanatory connective ‘because’ from
natural language [124, Fn 8, p. 446–47]. However, there are uses of ‘because’
that coincide with the present sense of partial ground: when we say that
one truth holds either wholly or partially because of another truth, we can
interpret this as saying that the one truth holds either wholly or partially in
virtue of the other truth. The interpretation of ‘because’ is often given in the
literature on ground and is sometimes even used as a paradigmatic natural
language example for ground [42, p. 37–38].16 Since Schnieder’s system is
supposed to account for all non-causal uses of ‘because’, it should also cover
this non-causal use of because—in other words: we can interpret Schnieder’s
system as a system for partial ground.17

Schnieder formulates his system over pure first-order logic as his base-theory,
but the system can easily be adapted to the present framework. If we take

15The notation and background theory we use in this paper is adapted from the standard
notation and background theory used in axiomatic theories of truth. For the reader not
familiar with these conventions, we recommend [58, p. 29–38].

16For a detailed discussion of the relation between ‘because’ and ‘in virtue of’, see [15,
§4].

17In fact, we can show that the fragment of Fine’s system that deals with partial ground
coincides with Schnieder’s system interpreted as a system for partial ground.
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Schnieder’s system and formulate it in the language L≺ over PA as its base-
theory, we arrive at the following system:
Definition 2.5.1. The operational theory of (partial) ground OG consists
of the axioms of PA, all the instances of the axiom scheme:

¬(ϕ ≺ ϕ),

for sentences ϕ ∈ L, plus the following rules of inference for partial ground
for all formulas ϕ,ψ, θ ∈ L:

ϕ ≺ ψ ψ ≺ θ
ϕ ≺ θ

ϕ ≺ ψ
ϕ

ϕ ≺ ψ
ψ

ϕ
ϕ ≺ ¬¬ϕ

ϕ

ϕ ≺ ϕ ∨ ψ
ψ

ψ ≺ ϕ ∨ ψ
ϕ ψ

ϕ ≺ ϕ ∧ ψ
ϕ ψ

ψ ≺ ϕ ∧ ψ

¬ϕ
¬ϕ ≺ ¬(ϕ ∧ ψ)

¬ψ
¬ψ ≺ ¬(ϕ ∧ ψ)

¬ϕ ¬ψ
¬ϕ ≺ ¬(ϕ ∨ ψ)

¬ϕ ¬ψ
¬ψ ≺ ¬(ϕ ∨ ψ)

∀xϕ(x)

ϕ(t) ≺ ∀xϕ(x)

ϕ(t)

ϕ(t) ≺ ∃xϕ(x)

¬ϕ(t)

¬ϕ(t) ≺ ¬∀xϕ(x)

∀x¬ϕ(x)

¬ϕ(t) ≺ ¬∃xϕ(x)

Note well that the theory OG is formulated in the language L≺, which
explicitly doesn’t allow for iterations of ≺. This is in line with the standard
restriction in the literature to un-iterated or simple instances of ground.
Iterated ground raises specific technical and philosophical issues, which fall
outside the scope of this article.18

Schnieder [124, p. 452–53] shows the proof-theoretic conservativity of the
propositional fragment of his system over pure propositional logic. This proof
is easily extended to show the conservativity of his quantified system, which
we used as our starting point, over pure first-order logic.19 However, since
we take PA as our background theory, we give a slightly different proof of
the analogous result for the present context:
Proposition 2.5.2 (Schnieder). The system OG is a proof-theoretically con-
servative extension of PA.

Proof. The complexity function c, which maps the code #ϕ of a formula ϕ
to the code #|ϕ| of its logical complexity |ϕ|, is recursive and thus repre-
sentable in PA. Let c. represent this function. Furthermore, let <. represent

18For a discussion of these issues, see, e.g., [11, 32, 85]. There are particular issues to
do with iterated ground that arise in the context of the predicate approach taken in this
article, which will be explicitly discussed in the second part of the article.

19Schnieder does not carry out the details himself. The proof is left to the interested
reader.
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the recursive strictly-less-than relation < on the natural numbers. We define
the translation function τ : L≺ → L recursively by saying that:

(i) τ(ϕ) = ϕ, for ϕ an atomic formula;

(ii) τ(¬ϕ) = ¬τ(ϕ);

(iii) τ(ϕ ◦ ψ) = τ(ϕ) ◦ τ(ψ), for ◦ = ∧,∨;

(iv) τ(Qxϕ) = Qx(τ(ϕ)), for Q = ∀, ∃; and

(v) τ(ϕ ≺ ψ) = (ϕ ∧ ψ ∧ c.(pϕq) <. c.(pψq)).

Note that in clause (v), we need not translate ϕ and ψ, since they are, by
assumption, already in L.

It is now easily seen by induction on the complexity of formulas that (a) for
all ϕ ∈ L, τ(ϕ) = ϕ. In words: τ is constant on the arithmetic formulas.
Next, we show that (b) τ preserves theoremhood over the two systems OG
and PA, in the sense that for all ϕ ∈ L≺, if `OG ϕ, then `PA τ(ϕ). We
show (b) by an induction on the length of derivations. Of course, we only
need to consider the rules of OG that are not rules of PA. If ϕ = ¬(ϕ′ ≺ ϕ′)
is an instance of the axiom scheme of OG, for ϕ′ ∈ L, then we get that
τ(ϕ) =(v),(a) ¬(ϕ′ ∧ ϕ′ ∧ c.(ϕ′)<. c.(ϕ′)). But `PA ¬(ϕ′ ∧ ϕ′ ∧ c.(ϕ′)<. c.(ϕ′)),
since `PA ∀x¬(x<. x) and thus in particular `PA ¬(c.(ϕ

′)<. c.(ϕ
′)). So assume

the induction hypothesis. For the induction step, we need to go through
all the inference rules of OG case by case. Here we only discuss one case
to illustrate the idea. Consider the case where the last step has been an
application of the rule:

ϕ
ϕ ≺ ¬¬ϕ

,

where ϕ ∈ L. First note that since ϕ ∈ L, we get that τ(ϕ) = ϕ by (a)
and furthermore that (∗) `PA ϕ by the induction hypothesis. Now con-
sider, τ(ϕ ≺ ¬¬ϕ) =(v),(a) ϕ ∧ ¬¬ϕ ∧ c.(pϕq) <. c.(¬.¬. pϕq). By (∗) we
know that `PA ϕ and thus `PA ¬¬ϕ by elementary logic. And we know
that `PA c.(pϕq) <. c.(¬.¬. pϕq), since `PA ∀x(Sent(x)→ c.(x)<. c.(¬.¬. x)). The
other cases are equally straightforward. Putting the two claims (a) and (b)
together, the proposition follows.

Note that the translation function used in the proof is not particularly faith-
ful: we can derive a lot of intuitively false claims under the translation. For
example, it is intuitively false that 0 = 0 ≺ ¬∃x(Sx = 0), since the (logical)
truth of 0 = 0 has nothing to do with the truth of (the axiom) ¬∃x(Sx = 0).
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Nevertheless, we will get that `PA τ(0 = 0 ≺ ¬∃x(Sx = 0)) with τ defined
as in the proof, since τ(0 = 0 ≺ ¬∃x(Sx = 0)) is equal to

0 = 0 ∧ ¬∃x(Sx = 0) ∧ c.(p0 = 0q) <. c.(p¬∃x(Sx = 0)q),

which is provable in PA. But this is not a counterexample to the claim in
the proof, since the operational theory of ground does not prove 0 = 0 ≺
¬∃x(Sx = 0) to begin with, and all that is required for our proof is that the
translation preserves theoremhood. The result, then, immediately gives us
the proof-theoretic consistency of the predicational theory of partial ground:
Corollary 2.5.3 (Schnieder). The system OG is proof-theoretically consis-
tent.

Note that the proof-theoretic consistency of the operational theory of ground
does not entail that there are models for the theory, since we have not even
defined the notion of a model for its language, much less have we shown that
proof-theoretic consistency in this language implies the existence of models.

We obtain our axiomatization of partial ground over the truths of arithmetic
by translating the axioms and rules of the operational theory into quantified
axioms, which we formulate using the ground predicate. For this purpose, we
assume that we have a Gödel-numbering for L. Let us begin with the axiom
scheme ¬(ϕ ≺ ϕ), for sentences ϕ ∈ L, which expresses the irreflexivity of
partial ground. We straight-forwardly translate this to the quantified axiom
∀x¬(x� x). To translate the first rule:

ϕ ≺ ψ ψ ≺ θ
ϕ ≺ θ

,

which captures the transitivity of partial ground, we first transform the rule
into the conditional (ϕ ≺ ψ) ∧ (ψ ≺ θ) → (ϕ ≺ θ), and then translate this
conditional into the quantified axiom ∀x∀y∀z(x � y ∧ y � z → x � z). To
translate the remaining rules, we need to use a “trick” in order to quantify
over formulas that are affirmed outside the context of the ground operator.
Take the rules:

ϕ ≺ ψ
ϕ and

ϕ ≺ ψ
ψ

,

which express that partial ground is a relation on the truths. Again, we first
translate the rules into the conditionals (ϕ ≺ ψ) → ϕ and (ϕ ≺ ψ) → ψ.
Then, in order to quantify over the formulas affirmed in the consequent, we
use the truth predicate Tr. With some simplification, we get the following
transformation:
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ϕ ≺ ψ
ϕ

ϕ ≺ ψ
ψ

 ; ∀x∀y(x� y → Tr(x) ∧ Tr(y))

Note that we use the truth predicate Tr here simply as a quantificational
device: it allows us to generalize over the truths involved in partial ground
outside the context of partial ground.

By applying the same strategy to the rule involving double negation, we get
the following transformation:

ϕ
ϕ ≺ ¬¬ϕ ; ∀x(Tr(x)→ x� ¬.¬. x)

But now we face a problem: The operational theory of ground can not only
prove that if ϕ is a true sentence, then the truth of ¬¬ϕ is grounded in
the truth of ϕ, but also that if ¬¬ϕ is a true sentence, then the truth of
¬¬ϕ is grounded in the truth of ϕ. Formally, we get both `OG ϕ → (ϕ ≺
¬¬ϕ) and `OG ¬¬ϕ→ (ϕ ≺ ¬¬ϕ). But the corresponding quantified claim
∀x(Tr(¬.¬. x)→ x�¬.¬. x) is not derivable from our axioms so far. In response
to this, we might be tempted to simply add the T-scheme:

Tr(pϕq)↔ ϕ,

for all sentences ϕ ∈ L, to our theory. This would allow us to derive
Tr(p¬¬ϕq) → pϕq � p¬¬ϕq for every formula ϕ. But this is not enough.
We wish to derive the full quantified claim ∀x(Tr(¬.¬. x)→ x� ¬.¬. x) in our
theory and merely using the T-scheme this is impossible. Therefore, we will
add the quantified claim as an axiom to our system.

Thus, corresponding to every rule of the operational theory of ground, we
have two axioms: an upward directed axiom, like ∀x(Tr(x)→ x�¬.¬. x), and
a downward directed axiom, like ∀x(Tr(¬.¬. x) → x � ¬.¬. x). In the cases of
the other rules, we can moreover make some simplifications. To illustrate,
consider the case of the rules involving conjunction. We get the following
transformations:

Upward:

ϕ ψ

ϕ ≺ ϕ ∧ ψ
ϕ ψ

ψ ≺ ϕ ∧ ψ

 ; ∀x∀y(Tr(x)∧Tr(y)→ x�x∧. y ∧ y�x∧. y)

Downward:
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ϕ∧ψ → (ϕ ≺ ϕ∧ψ)∧(ψ ≺ ϕ∧ψ) ; ∀x∀y(Tr(x∧. y)→ x�x∧. y ∧ y�x∧. y)

Intuitively, the upward directed axioms say what truths a given truth
grounds, while the downward directed axioms say what truths ground a
given truth. And intuitively, both kinds of principles are required: we want
to say both what grounds a truth and in what it is grounded.20

Finally, we need to add some axioms to get our hierarchy “off the ground,”
as it were. So far, we have no axiom that allows us to introduce the truth
predicate. Thus, we are not able to prove the antecedent of any of our
quantified axioms. To fix this, we propose to add some basic truth axioms
that apply the truth predicate to the atomic formulas of PA—they allow
us to introduce the truth predicate in the case of true equations. For this
purpose, we use the standard idea from axiomatic theories of truth:

∀s∀t(Tr(s=. t)↔ s◦ = t◦)
∀s∀t(Tr(s6=. t)↔ s◦ 6= t◦)21

In words, an equation is true iff the terms flanking the equality symbol have
the same denotation. These axioms get our axiomatization “off the ground,”
in the sense that we can prove the truth of true equations and then use the
other axioms to track partial ground through the complexity of the truths.
Finally, since we wish to talk about the truths of arithmetic, we want to
ensure that the truth predicate only applies to sentences of L. We achieve
this by postulating that:

∀x(Tr(x)→ Sent(x)).

Note that from this axiom together with the axiom ∀x∀y(x� y → Tr(x) ∧
Tr(y)) it follows that also the ground predicate only applies to sentences of
L:

∀x∀y(x� y → Sent(x) ∧ Sent(y)).

In other words, out theory is a simply typed theory of partial ground.

We arrive at the following axiomatization:
Definition 2.5.4. The predicational theory of (partial) ground PG consists
of the axioms of PAG plus the following axioms:

20A nice feature of our theory is that it proves all the instances of the T-scheme via the
upward and downward directed axioms. We will show this in §2.5.2. The point is that the
upward and downward directed axioms are intuitively motivated and on top of that they
give us back the T-scheme.

21 Here s 6= t, for terms s and t, is an abbreviation of ¬(s = t). Correspondingly, the
notation s6=. t is an abbreviation for the complex function term ¬. (s=. t), for terms s and t.
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Basic Ground Axioms:
G1 ∀x¬(x� x)
G2 ∀x∀y∀z(x� y∧ y� z → x� z)
G3 ∀x∀y(x� y → Tr(x) ∧ Tr(y))

Basic Truth Axioms:
T1 ∀s∀t(Tr(s=. t)↔ s◦ = t◦)
T2 ∀s∀t(Tr(s6=. t)↔ s◦ 6= t◦)
T3 ∀x(Tr(x)→ Sent(x))

Upward Directed Axioms:

U1 ∀x(Tr(x)→ x� ¬.¬. x)

U2 ∀x∀y((Tr(x)→ x� x∨. y) ∧ (Tr(y)→ y � x∨. y))

U3 ∀x∀y(Tr(x) ∧ Tr(y)→ (x� x∧. y) ∧ (y � x∧. y))

U4 ∀x∀y(Tr(¬. x)∧ Tr(¬. y)→ (¬. x�¬. (x∨. y))∧ (¬. y�¬. (x∨. y)))

U5 ∀x∀y((Tr(¬. x)→ ¬. x�¬. (x∧. y))∧(Tr(¬. y)→ ¬. y�¬. (x∧. y)))

U6 ∀x∀t∀v(Tr(x(t/v))→ x(t/v)� ∃.vx)

U7 ∀x∀v(∀tT r(¬. x(t/v))→ ∀t(¬. x(t/v)� ¬. ∃.vx))

U8 ∀x∀v(∀t(Tr(x(t/v))→ ∀t(x(t/v)� ∀.vx))

U9 ∀x∀t∀v(Tr(¬. x(t/v))→ ¬. x(t/v)� ¬. ∀.vx))

Downward Directed Axioms:

D1 ∀x(Tr(¬.¬. x)→ x� ¬.¬. x)

D2 ∀x∀y(Tr(x∨. y)→ (Tr(x)→ x�x∨. y)∧ (Tr(y)→ y�x∨. y))

D3 ∀x∀y(Tr(x∧. y)→ (x� x∧. y) ∧ (y � x∧. y))

D4 ∀x∀y(Tr(¬. (x∧. y))→ (Tr(¬. x)→ ¬. x�¬. (x∨. y))∧(Tr(¬. y)→
¬. y � ¬. (x∨. y)))

D5 ∀x∀y(Tr(¬. (x∨. y))→ (¬. x� ¬. (x∨. y)) ∧ (¬. y � ¬. (x∨. y)))

D6 ∀x(Tr(∃.vx(v))→ ∃t(x(t/v)� ∃.vx))

D7 ∀x∀v(Tr(¬. ∃.vx)→ ∀t(¬. x(t/v)� ¬. ∃.vx))

D8 ∀x∀v(Tr(∀.vx→ ∀t(x(t/v)� ∀.vx))

D9 ∀x∀v(Tr(¬. ∀.vx)→ ∃t(¬. x(t/v)� ¬. ∀.vx))

2.5.2 Conservativity and Truth-theoretic Commitments

We will now determine the truth-theoretic commitments and the proof-
theoretic strength of our predicational theory of ground.

As we have claimed in §2.3.2, the predicational theory of ground proves the
well-known theory of positive truth [58, p.116–22]:
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Definition 2.5.5 (‘Positive Truth’). The theory PT of positive truth is
formulated in LTr and consists of the axioms of PAT and the three base
truth axioms T1, T2, and T3, plus the following axioms:

P1 ∀x(Tr(x)↔ Tr(¬.¬. x))

P2 ∀x∀y(Tr(x∧. y)↔ Tr(x) ∧ Tr(y))

P3 ∀x∀y(Tr(¬. (x∧. y))↔ Tr(¬. x ∨ T¬. y))

P4 ∀x∀y(Tr(x∨. y)↔ Tr(x) ∨ Tr(y))

P5 ∀x∀y(Tr(¬. (x∨. y))↔ Tr(¬. x) ∧ Tr(¬. y))

P6 ∀x∀v(Tr(∀.vx)↔ ∀tT r(x(t/v)))

P7 ∀x∀v(Tr(¬. ∀.vx)↔ ∃tT r(¬. x(t/v)))

P8 ∀x∀v(Tr(∃.vx)↔ ∃tT r(x(t/v)))

P9 ∀x∀v(Tr(¬. ∃.vx)↔ ∀tT r(¬. x(t/v)))
Proposition 2.5.6. PG ` PT .

Proof. It suffices to derive P1−9. The derivation proceeds in every case by
putting the upward directed and the downward directed axioms of PG to-
gether while using the axiom G3. Here we only sketch the derivation of axiom
P1:

1. ∀x(Tr(x)→ x� ¬.¬. x) (U1)

2. ∀x∀y(x� y → Tr(x) ∧ Tr(y)) (G3)

3. ∀x(Tr(x)→ Tr(¬.¬. x)) (1., 2., →-Elim, and ∧-Elim)

4. ∀x(Tr(¬.¬. x)→ x� ¬.¬. x) (D1)

5. ∀x(Tr(¬.¬. x)→ Tr(x)) (2., 4., →-Elim, and ∧-Elim)

6. ∀x(Tr(x)↔ Tr(¬.¬. x)) (3., 5., ↔-Intro)

The other axioms can be derived analogously.

This result connects the debate about axiomatic theories of truth with the
debate about partial ground. In particular, the result shows that once we
move to a shared framework for theories of truth and theories of ground, we
only need to accept a theory of partial ground to get a proper theory of truth.
Admittedly, this theory has to be formulated using the truth predicate, but
this use is intuitively justified, since we have used the truth predicate simply
as a quantificational device in formalizing the principles for partial ground.22

22 It is well-known that the theory of positive truth has the same theorems as the theory
of compositional truth: Definition: The theory CT of compositional truth has the axioms
of PAT, the two basic truth axioms T1 and T3 plus the following axioms:
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Proposition 2.5.6 has several interesting consequences. First, it entails as
a simple corollary that our predicational theory of ground proves all the
instances of the T-scheme:
Corollary 2.5.7. PG proves the uniform T-scheme for all sentences ϕ ∈ L:

`PG ∀t1, . . . ,∀tn(Tr(ϕ(t1. , . . . , tn. ))↔ ϕ(t◦1, . . . , t
◦
n))

Proof. It is well-known that PT proves all the instances of the uniform T-
scheme over L. The proof of this proceeds by a simple induction on the
positive complexity of formulas. Our claim follows by Proposition 2.5.6.

Second, we can use Proposition 2.5.6 and its Corollary 2.5.7 to show in-
teresting facts about our predicational theory of ground, such as the fact
that ground is hyperintensional according to our theory. Remember that
a context is hyperintensional iff in the context the substitution of logical
equivalents need not preserve truth-value (Cresswell [29]). Now, the set of
(codes of) logical truths of L�

Tr is recursively enumerable, and thus weakly
representable in the PA, i.e. there is a formula ϕ(x) such that:

`PA ϕ(n) iff n is the code of a logical truth.

Let’s abbreviate this formula ϕ(x) by Val(x). In particular, we’ll get for all
formulas ϕ ∈ L�

Tr:

`PA Val(pϕq) iff ϕ is a logical truth of L�
Tr.

With this preliminaries in place, we can show the following result:
Lemma 2.5.8. PG proves that partial ground is hyperintensional in the
following sense:

(i) `PG ¬∀x∀y(Val(x↔. y)→ ∀z(z � x↔ z � y))

(ii) `PG ¬∀x∀y(Val(x↔. y)→ ∀z(x� z ↔ y � z))

C1 ∀x(Tr(¬. x)↔ ¬Tr(x))

C2 ∀x∀y(Tr(x∨. y)↔ Tr(x) ∨ Tr(y))

C3 ∀x∀y(Tr(x∧. y)↔ Tr(x) ∧ Tr(y))

C4 ∀v∀x(Tr(∃.vx)↔ ∃tT r(x(t/v)))

C5 ∀v∀x(Tr(∀.vx)↔ ∀tT r(x(t/v)))

For a proof of the equivalence of PT and CT , see [58, p. 120]. Note that the result
depends on the fact that we start from the theory PAT in defining both PT and CT .
The theories defined by the same axioms over PA as their base theory are not equivalent
[see 58, p. 120]. In the following, we will often use well-known results about CT and apply
them immediately to PT .
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Proof. Note, for example, that `PG Val(p0 = 0q↔. ¬.¬. p0 = 0q) and `PG
p0 = 0q � ¬.¬. p0 = 0q, but `PG ¬(p0 = 0q � p0 = 0q) establishing (i) and
`PG ¬(¬.¬. p0 = 0q� ¬.¬. p0 = 0q) establishing (ii).

Note that the proof of Lemma 2.5.8 makes use of facts that we get from
Proposition 2.5.6 and Corollary 2.5.7 in several places. Without using these
facts, the lemma would be difficult to prove.

Moreover, we can show a kind of adequacy result for our axiomatization
with respect to the operational theory of ground:
Proposition 2.5.9. For all sentences ϕ,ψ ∈ L, if `OG ϕ ≺ ψ, then `PG
pϕq� pψq.

Proof. By an induction on the length of derivations in OG. The only inter-
esting step is when the last inference in a derivation was an application of
an inference rule for the partial ground operator. Consider the step where
the last inference was of the form:

ϕ
ϕ ≺ ¬¬ϕ

This means that `OG ϕ. Since ϕ ∈ L, we get by Proposition 2.5.2 that `PA ϕ
and thus `PG ϕ. Then by applying the T-scheme we get `PG Tr(pϕq) and
from this, using the axiom U1, `PG pϕq � p¬¬ϕq. The cases for the other
rules are analogous. Note that we only need the induction hypothesis in the
case of the rule:

ϕ ≺ ψ ψ ≺ θ
ϕ ≺ θ

,

which is the only rule that has formulas with the ground operator in its
antecedent. We get the result immediately by applying the induction hy-
pothesis to the antecedents and using the axioms G2, which captures the
transitivity of partial ground.

The other direction of Proposition 2.5.9, however, does not hold. This follows
from the fact that the theory of positive truth and thus the predicational
theory of ground is not conservative over PA. For example, positive truth
proves the consistency of PA, in the sense that `PT ¬BewPA(p0 = 1q).23

Thus, by Proposition 2.5.6, `PG ¬BewPA(p0 = 1q). But by Gödel’s second
incompleteness theorem, we know that (Incomp) 6`PA ¬BewPA(p0 = 1q).

23The unary predicate BewPA strongly represents the set of codes of sentences provable
in PA. Here we simply take it to be an abbreviation of the (long) defining formula for
Bew.
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Now, since `PG ¬BewPA(p0 = 1q), we know using the T-scheme that `PG
Tr(p¬BewPA(p0 = 1q)q). Using the axiom U5, we can infer from this that:

`PG p¬BewPA(p0 = 1q)q� p¬(BewPA(p0 = 1q) ∧BewPA(p0 = 1q))q.

But we cannot have that:

`OG ¬BewPA(p0 = 1q) ≺ ¬(BewPA(p0 = 1q) ∧BewPA(p0 = 1q)),

since then we would get the following derivation in the operational theory
of ground:

....
¬BewPA(p0 = 1q) ≺ ¬(BewPA(p0 = 1q) ∧BewPA(p0 = 1q))

¬BewPA(p0 = 1q)
,

by means of the OG rule

ϕ ≺ ψ
ϕ

,

applied to the supposed derivation of ¬BewPA(p0 = 1q) ≺ ¬(BewPA(p0 =
1q)∧BewPA(p0 = 1q)). This would then mean that `OG ¬BewPA(p0 = 1q)
and thus by Proposition 2.5.2, since ¬BewPA(p0 = 1q) ∈ L, that `PA
¬BewPA(p0 = 1q)—which is in contradiction to (Incomp). Moreover, in-
tuitively speaking, the sentence ¬BewPA(p0 = 1q) is true—we know, for
example by Gentzen’s consistency proof, that PA is indeed consistent. But
then the formal application of U5 to ¬BewPA(p0 = 1q) is intuitively jus-
tified: the truth of ¬(BewPA(p0 = 1q) ∧ BewPA(p0 = 1q)) holds indeed
in virtue of the truth of ¬BewPA(p0 = 1q). So, our predicational theory
of ground proves an intuitively true claim about partial ground that the
operational theory does not.

Thus, we know that the predicational theory of ground is stronger than
the operational theory of ground. But how strong is it exactly? Here is the
answer:
Theorem 2.5.10. PG is a proof-theoretically conservative extension of PT .

Proof. The proof is similar to the proof of Proposition 2.5.2. Let c. represent
the complexity function and <. represent the strictly-less-than relation on the
natural numbers again. We define the translation function τ : L�

Tr → LTr
recursively by saying that:

(i) τ(ϕ) =

{
ϕ, if ϕ ∈ LTr atomic,

Tr(s) ∧ Tr(t) ∧ c.(s) <. c.(t), if ϕ = s� t;

(ii) τ(¬ϕ) = ¬τ(ϕ);

(iii) τ(ϕ ◦ ψ) = τ(ϕ) ◦ τ(ψ), for ◦ = ∧,∨; and
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(iv) τ(Qxϕ) = Qx(τ(ϕ)), for Q = ∀, ∃.24

It is again easy to see that (a) τ(ϕ) = ϕ, if ϕ ∈ LTr. Next we check that (b)
the translation preserves theoremhood from PG to PT , in the sense that for
all ϕ ∈ L�

Tr, if `PG ϕ, then `PT τ(ϕ). We prove this result by an induction
on the length of derivations. All the arithmetic axioms and rules of PG
and PT are the same and all the instances of the induction scheme over L�

Tr

become instances of the induction scheme over LTr under τ . Thus, it suffices
to show that the images of the ground-theoretic axioms are derivable in PT .
Here we just show the claim for two cases:

• In the case of the axiom G1, we get τ(∀x¬(x � x)) = ∀x¬(Tr(x) ∧
Tr(x) ∧ c.(x) <. c.(x)). We know that `PA ∀x(Sent(x) →
¬(c.(x) <. c.(x))). Since `PT ∀x(Tr(x) → Sent(x)), the claim follows
by simple logic.

• In the case of the axiom U1, we get that τ(∀x(Tr(x) → x� ¬.¬. x)) =
∀x(Tr(x)→ Tr(x)∧Tr(¬.¬. x)∧ c.(x) <. c.(¬.¬. x)). Now, let x be a fresh
variable and assume that Tr(x) for a →-Intro in PT followed by a
generalization. We need to derive Tr(x) ∧ Tr(¬.¬. x) ∧ c.(x) <. c.(¬.¬. x).
The first conjunct of the consequent is simply the assumption Tr(x).
By the axiom P1, ∀x(Tr(x) ↔ Tr(¬.¬. x)), we can derive Tr(¬.¬. x)
from the first conjunct and thus we get the second conjunct. Finally,
for the last conjunct of the consequent is derivable, note that `PT
∀x(Tr(x) → Sent(x)) and thus `PT Tr(x) → Sent(x), as well as
`PT ∀x(Sent(x)→ (c.(x) <. c.(¬.¬. x)). Thus, we get the third conjunct
c.(x) <. c.(¬.¬. x) by simple logic. The claim follows.

The other axioms can be derived in a similar way under τ . The theorem
follows by putting (a) and (b) together.

The theorem has two important immediate consequences:
Corollary 2.5.11. The theory PG is proof-theoretically consistent.
Corollary 2.5.12. The theory PG has the same arithmetic theorems as the
theory ACA of arithmetical comprehension.25

24Note that the translation of s� t is in the same spirit as the translation of ϕ ≺ ψ in
the proof of Proposition 2.5.2: while there we had τ(ϕ ≺ ψ) = ϕ ∧ ψ ∧ c.(pϕq) <. c.(pψq),
we now have τ(s� t) = Tr(s)∧Tr(t)∧ c.(s) <. c.(t). In the case of ϕ ≺ ψ we didn’t need to
translate ϕ and ψ, since they were already assumed to be in L. Similarly, here we know that
if `PG s� t, then by G3 and T3 we get that `PG T (s)∧ T (t) and `PG Sent(s)∧ Sent(t).
In words, if s � t is provable in PG, then it’s provable in PG that s and t are names of
true sentences of L. It is effectively this limitation of PG to partial ground between truths
of the language of arithmetic that enables us to prove the conservativity result.

25For a definition of ACA, see [58, p. 107–8].
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Proof. This follows from the facts that PG is a conservative extension of
PT and that PT has the same arithmetical theorems as ACA.26

Thus, Propositions 2.5.6 and Theorem 2.5.10 allow us to determine the
proof-theoretic strength of our predicational theory of ground. Moreover,
philosophically speaking, together the theorems shows that our predicational
theory of ground and the theory of positive truth say the same things about
truth. Since PG is a conservative extension of PT, the two theories prove
exactly the same theorems in the language LTr. Moreover, looking at the
axioms of both theories, we can see that they paint the same truth-theoretic
picture, as it were. Looking at the axioms of both theories, we see that
they only contain positive occurrences of the truth predicate, where Tr oc-
curs exclusively in the scope of an even number (in fact, zero) negations. In
other words, according to both theories, the truths are built up successively
from other, less complex truths—and never from falsehoods.27 What the
predicational theory of ground adds to this picture is that it stratifies the
truths into a hierarchy according to their complexity: the result is the hier-
archy of grounds. In this specific sense, the predicational framework allows
us to make the truth-theoretic commitments of the theory of partial ground
explicit.

2.5.3 Models for Partial Ground

In the last section, we have proved the consistency of the predicational theory
of ground from the fact that it is a conservative extension of the consistent
theory of positive truth. By the completeness theorem for first-order logic,
we can infer from this that there is a first-order model of the predicational
theory. But the way we proved this result does not give us any idea of what
such a model looks like. In this subsection, we will construct a model for our
theory “from scratch.”

Consider the set S that contains all and only the codes of formulas that are
true in the standard model of arithmetic:

S =def {#ϕ | ϕ ∈ L,N � ϕ}.
26We can prove this result via the equivalence of PT and CT (see Fn 22 and the usual

proof that CT has the same arithmetic theorems as ACA. For the details of this proof,
see [58, p. 101–16 respectively].

27For this point it matters that we are talking about PT and not the equivalent theory
CT . Since CT has the axiom ∀x(Tr(¬. x) ↔ ¬Tr(x)), where Tr occurs negatively in the
scope of a single negation, the theory paints a different truth-theoretic picture. According
to CT, the truths are build up from less complex truths and falsehoods. The point here
is that the truth-theoretic picture painted by a theory is highly sensitive to the concrete
axiomatization of the theory: even though CT and PT are equivalent, they paint a different
picture.
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Then (N,S) is a model of the theory of positive truth—the standard model of
PT .28 To construct our model, we will use grounding-trees over the standard
model of PT . Grounding-trees were first introduced by Correia [25].29 Here
we give a slightly different definition of grounding-trees, which is adapted to
the present purpose:
Definition 2.5.13. Let (N,S) be the standard model of PT . We define
the grounding-trees over (N,S) recursively by saying that for all formulas
ϕ,ψ ∈ L:

(i) if #ϕ ∈ S, then #ϕ is a grounding-tree over (N,S) with #ϕ as its
root;

(ii) if
#ϕ

T
is a grounding-tree T over (N,S) with #ϕ as its root, then

#¬¬ϕ

#ϕ

T
is a grounding-tree over (N,S) with #¬¬ϕ as its root;

(iii) if
#ϕ

T
is a grounding-tree T over (N,S) with #ϕ as its root, then

#(ϕ ∨ ψ)

#ϕ

T

is a grounding-tree over (N,S) with #(ϕ ∨ ψ) as its root;

(iv) if
#ψ

T
is a grounding-tree T over (N,S) with #ψ as its root, then

#(ϕ ∨ ψ)

#ψ

T

is a grounding-tree over (N,S) with #(ϕ ∨ ψ) as its root;

(v) if
#ϕ

T1

,
#ψ

T2

are grounding-trees T1, T2 over (N,S) with #ϕ,#ψ as their

28For a proof, see [58, p. 116–22].
29In forthcoming work, Litland [84] and deRosset [31] argue for the ground-theoretic

relevance of trees.
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roots respectively, then

#(ϕ ∧ ψ)

#ϕ

T1

#ψ

T2

is a grounding-tree over (N,S) with

#(ϕ ∧ ψ) as its root;

(vi) if
#ϕ(t)

T
is a grounding-tree T over (N,S) with #ϕ(t) as its root, then

#∃xϕ(x)

#ϕ(t)

T

is a grounding-tree over (N,S) with #∃xϕ(x) as its root;

(vii) if
#ϕ(t1)

T1

,
#ϕ(t2)

T2

, . . . are grounding-trees T1, T2, . . . over (N,S) with

#ϕ(t1),#ϕ(t2), . . . as their roots respectively, where t1, t2, . . . are all

and only the terms of LPA, then

#∀xϕ(x)

#ϕ(t1)

T1

#ϕ(t2)

T2

. . .
is a grounding-

tree over (N,S) with #∀xϕ(x) as its root;

(viii) if
#¬ϕ

T
is a grounding-tree T over (N,S) with #¬ϕ as its root, then

#¬(ϕ ∧ ψ)

#¬ϕ

T

is a grounding-tree over (N,S) with #¬(ϕ∧ψ) as its root;

(ix) if
#¬ψ

T
is a grounding-tree T over (N,S) with #¬ψ as its root, then

#¬(ϕ ∧ ψ)

#¬ψ

T

is a grounding-tree over (N,S) with #¬(ϕ∧ψ) as its root;

(x) if
#¬ϕ

T1

,
#¬ψ

T2

are grounding-trees T1, T2 over (N,S) with #¬ϕ,#¬ψ
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as their roots respectively, then

#¬(ϕ ∨ ψ)

#¬ϕ

T1

#¬ψ

T2

is a grounding-tree over

(N,S) with #¬(ϕ ∨ ψ) as its root;

(xi) if
#¬ϕ(t)

T
is a grounding-tree T over (N,S) with #¬ϕ(t) as its root,

then

#¬∀xϕ(x)

#¬ϕ(t)

T

is a grounding-tree over (N,S) with #¬∀xϕ(x) as its

root;

(xii) if
#¬ϕ(t1)

T1

,
#¬ϕ(t2)

T2

, . . . are grounding-trees T1, T2, . . . over (N,S)

with #¬ϕ(t1),#¬ϕ(t2), . . . as their roots respectively, where t1, t2, . . .

are all and only the terms of LPA, then

#¬∃xϕ(x)

#¬ϕ(t1)

T1

#¬ϕ(t2)

T2

. . .

is a

grounding-tree over (N,S) with #∀xϕ(x) as its root;

(xiii) nothing else is a grounding-tree over (N,S).

Mathematically speaking, the grounding-trees over (N,S) are rooted graphs,
where the vertices are codes of formulas, one vertex is distinguished as
the root, and the edges are constructed according to the above definition.
Note that by clauses (vii) and (xii), there are infinitely wide grounding-
trees over (N,S). Nevertheless, all grounding-trees over (N,S) have a finite
height, where this concept is defined recursively on the construction of the
grounding-trees over (N,S):
Definition 2.5.14. We define the height h(T ) of a grounding-tree T over
(N,S) by saying that:

(i) all grounding-trees over (N,S) of the form #ϕ ∈ S have height one;

(ii) if T is a grounding-tree over (N,S) that is constructed from grounding-
trees T1, T2, . . . over (N,S) according to clauses (ii–xii) of Definition
2.5.13, then the height of T is one plus the least upper bound of the
heights of T1, T2, . . .:

h(T ) = lub{h(T1), h(T2), . . .}+ 1,

where lub is the operation of taking least upper bounds.
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We call a grounding-tree over (N,S) degenerate iff it is of height one.

The argument that grounding-trees have finite height now is a simple in-
duction on the construction of the grounding-trees, where we note that in
clauses (vii) and (xii) the height of the grounding-trees T1, T2, . . . is bounded
by the (finite) logical complexity of ϕ. Thus, we can use induction on the
height of the grounding-trees as a proof-method for claims about grounding-
trees: if all degenerate grounding-trees have a property and we can show
for all grounding-trees T that if all grounding-trees of lower height have
the property, then T has the property, then all grounding-trees have the
property.

For example, we can use this method to establish that the grounding-trees
over (N,S) are really trees on the truths in (N,S):
Lemma 2.5.15. Let (N,S) be the standard model of PT and let T be a
grounding-tree over (N,S). Then for all formulas ϕ ∈ L, if #ϕ is a vertex
in T , then #ϕ ∈ S.

Proof. The claim trivially holds for all degenerate grounding-trees over
(N,S) by clause (i) of Definition 2.5.13. So assume the induction hypothesis.
For the induction step, we go through all the ways in which T could have
been constructed according to Definition 2.5.13 and check that the claim
holds. Here we only show this for clause (ii). Assume that T is of the form
#¬¬ϕ

#ϕ

T ′

, where
#ϕ

T ′
is a grounding-tree T ′ over (N,S) with #ϕ as its root.

Then, since T ′ is a grounding-tree over (N,S) with strictly lower height
than T , we know by the induction hypothesis that #ϕ ∈ S and thus N � ϕ.
But then, by classical logic, also N � ¬¬ϕ and thus #¬¬ϕ ∈ S. The claim
follows. The cases for the other clauses are analogous.

Next, we wish to show that the grounding-trees over (N,S) don’t contain
any cycles or “loops.” This follows from the following useful lemma. Let us
define the notion of an occurrence of the code #ϕ of a formula ϕ ∈ L to be
below an occurrence of the code #ψ of formula ψ ∈ L in a grounding-tree
T over (N,S) recursively by saying that: no occurrence of any formula in a
degenerate grounding-tree over (N,S) is below an occurrence of any formula
in the tree, and if T is a grounding-tree over (N,S) that was constructed
from grounding-trees T1, T2, . . . over (N,S) according to the rules (ii–xii)
of Definition 2.5.13, then all occurrences of all formulas in T1, T2, . . . occur
below the root of T in T . Then we can show:
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Lemma 2.5.16. Let (N,S) be the standard model of PT . If T is a
grounding-tree over (N,S) with #ϕ as its root, for some formula ϕ, then, all
formulas ψ whose code #ψ occurs below #ϕ in T have a lower complexity
than ϕ.

Proof. The claim trivially holds for degenerate grounding-trees, since no
code occurs below any code in degenerate grounding-trees. So assume the
induction hypothesis. For the induction step, we note that in all the ways
in which a grounding-tree can be constructed from other grounding-trees,
the formula whose code is at the root of the new grounding-tree is the
only new formula and always has higher complexity than the roots of the
grounding-trees that it is constructed from. The claim follows than by a
simple application of the induction hypothesis.

Using this lemma, we obtain:
Lemma 2.5.17. Let (N,S) be the standard model of PT and T is a
grounding-tree over (N,S). Then between any two nodes #ϕ and #ψ in
T , for formulas ϕ,ψ ∈ L, there is exactly one path, i.e. there are no cycles.

Proof. Degenerate grounding-trees clearly contain no cycles. So assume
the induction hypothesis. For the induction step, consider some arbitrary
grounding-tree T with root #ϕ, for some formula ϕ. By the induction hy-
pothesis, we know that all the trees that T is constructed from don’t con-
tain any loops. Now assume that in the last step of the construction of T
a loop is introduced. This would mean that #ϕ has to occur somewhere
in the grounding-trees that T was constructed from. This would mean that
#ϕ occurs below #ϕ in T . But then by Lemma 2.5.16, we would get that
|ϕ| < |ϕ|, which is impossible. The claim follows.

Remember that a rooted tree in the mathematical sense is a rooted graph
that does not contain any cycles. Thus, the grounding-trees over (N,S)
are simply rooted trees over S. In a rooted tree, all edges have a natural
direction, either towards or away from the root. Given Lemma 2.5.16, we
can say that all the edges in a grounding-tree T over (N,S) naturally point
toward its root. Finally, we wish to show that the set of grounding-trees over
(N,S) is transitive in the following sense:
Lemma 2.5.18. Let (N,S) be the standard model of PT . If there is a
grounding-tree T1 over (N,S) with #ψ as its root and #ϕ1,#ϕ2, . . . as its
leaves and there is a grounding-tree T2 over (N,S) with #ψ,#ψ1,#ψ2, . . .
as its leaves and #θ as its root, then there is a grounding-tree T3 over (N,S)
with #ϕ1,#ϕ2, . . . ,#ψ1,#ψ2, . . . as its leaves and #θ as its root.
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Proof. The proof proceeds by induction on the height of T2. If T2 is a de-
generate grounding-tree over (N,S), then T1 is already the grounding-tree
we are looking for. So, assume the induction hypothesis and let T1 and T2

be grounding-trees as described in the statement of the proposition. Now,
we go through the different ways that T2 could have been constructed from
other grounding-trees. Assume, for example, that T2 is constructed using

clause (ii) of Definition 2.5.13. Then T2 is of the form:

#¬¬θ′

#θ′

T ′2

and its root is

#θ = #¬¬θ′. Since
#θ′

T ′2
is then a grounding-tree with a strictly lower height

than T2, by the induction hypothesis we get a grounding-tree T ′3 with root
#θ′ and #ϕ1,#ϕ2, . . . , #ψ1,#ψ2, . . . as its leaves. Then by a simple applica-
tion of (ii) of Definition 2.5.13, we get the existence of the desired grounding-
tree T3 with root #θ = #¬¬θ′ and leaves #ϕ1,#ϕ2, . . . ,#ψ1,#ψ2, . . .. The
cases for the other clauses are analogous.

The proof essentially shows that matching grounding-trees can be “glued
together,” as it were.

Putting all of the above together, we can say that the non-degenerate
grounding-trees over (N,S) intuitively correspond to grounding-facts in
(N,S): the codes at the leaves correspond to the truths that ground and
the code at the root corresponds to the truth being grounded. More for-
mally, Lemmas 2.5.17 and 2.5.18 together allow us to define a strict partial
order on the elements of S (i.e. the truths according to (N,S)): we say
that a number n ∈ S is “strictly below” a number m ∈ S iff there is a
non-degenerate grounding-tree connecting the two:
Definition 2.5.19. Let (N,S) be the standard model of PT . We define
the relation R ⊆ N2 by saying that for all n,m ∈ N, R(m,n) iff there is
a non-degenerate grounding-tree over (N,S) with n as a leaf and m as its
root.

To be perfectly explicit, let’s look at how R interprets the predicate � in
the model (N,S,R). Consider an atomic formula of the form s � t and
a valuation σ in (N,S,R). Using standard first-order semantics, we get:
(N,S,R) �σ s � t iff R(JsKσ, JtKσ), where JtKσ is the value of the term t
under the assignment σ.30 In words, a formula s � t is true in (N,S,R)

30The value of a term under an assignment is defined in the usual recursive way. In the
following, we only need that the value JxKσ of a variable x under an assignment σ simply
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under an assignment σ just in case there is a non-degenerate grounding-tree
over (N,S) with the value of t under σ as its root and the value of s under
σ as one of its leaves.

The relation R of Definition 6, then, indeed interprets the ground predicate
correctly (in the way just described):
Theorem 2.5.20. (N,S,R) � PG.

Proof. We need to show that all the axioms of PG are satisfied in (N,S,R).
Since the basic truth axioms T1, T2, and T3 are also axioms of PT, we know
already that (N,S,R) � T1,2,3 as (N,S) is the standard model of PT . For
the basic ground axioms G1, G2, and G3 we get the following arguments:

• (N,S,R) � ∀x¬(x� x)

This follows from Lemma 2.5.17: Assume that (N,S,R) � ∃x(x� x).
Thus for some variable assignment σ over (N,S,R) and some x-variant
σ′ of σ,31 we have (N,S,R) �σ′ x � x meaning R(σ′(x), σ′(x)). By
Definition 2.5.19 this means that there is a non-degenerate grounding
tree over (N,S) with σ′(x) as its root and σ′(x) as a leaf. But this tree
would contain a loop, i.e. a path from σ′(x) to σ′(x), in contradiction
to Lemma 2.5.17. Thus (N,S,R) 6� ∃x(x � x) and thus by classical
logic (N,S,R) � ∀x¬(x� x).

• (N,S,R) � ∀x∀y∀z(x� y ∧ y � z → x� z)

This follows from Lemma 2.5.18: Let σ be a variable assignment
over (N,S,R) and σ′ an x, y, z-variant σ such that (N,S,R) �σ′
x � y and (N,S,R) �σ′ y � z. This means that R(σ′(x), σ′(y))
and R(σ′(y), σ′(z)). By Definition 2.5.19 this means that are non-
degenerate grounding-trees T1 and T2 over (N,S) such that T1 has
σ′(x) as a leaf and σ′(y) as its root and T2 has σ′(y) as a leaf
and σ′(z) as its root. By Lemma 2.5.18, there is a grounding-tree
T3 over (N,S) with σ′(x) as a leaf and σ′(z) as its root. Thus,
R(σ′(x), σ′(z)) and thus �σ′ x� z. Since σ was arbitrary, we get that
(N,S,R) � ∀x∀y∀z(x� y ∧ y � z → x� z).

• (N,S,R) � ∀x∀y(x� y → Tr(x) ∧ Tr(y))

This follows from Lemma 2.5.15: Let σ be a variable assignment over
(N,S,R) and σ′ an x, y-variant of σ such that (N,S,R) �σ′ x�y. This
means that R(σ′(x), σ′(y)) and thus by Definition 2.5.19 that there is
a non-degenerate grounding-tree over (N,S) with σ′(x) as a leaf and
σ′(y) as its root. By Lemma 2.5.15 if follows that σ′(x), σ′(y) ∈ S.

is σ(x).
31Remember that a variable assignment σ′ is an ~x variant of another variable assignment

σ iff σ′(~x) = σ(~x).
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Since S interprets Tr, we get that (N,S,R) �σ′ Tr(x) ∧ Tr(y). Since
σ was arbitrary, we get (N,S,R) � ∀x∀y(x� y → Tr(x) ∧ Tr(y)).

For the upward and downward directed axioms, we only consider the cases
U1 and D1, as the other cases are analogous:

• (N,S,R) � ∀x(Tr(x)→ x� ¬.¬. x)

Let σ be a variable assignment over (N,S,R) and σ′ some x-variant of
σ. Assume that (N,S,R) �σ′ Tr(x). This means that σ′(x) ∈ S. Since
S = {#ϕ | ϕ ∈ L,N � ϕ}, we know that σ′(x) = #ϕ, for some formula
ϕ ∈ L. Now, by clause (i) of Definition 2.5.13, #ϕ is a degenerate
grounding-tree over (N,S). But then, by clause (ii) of Definition 2.5.13,
#¬¬ϕ

#ϕ
is a non-degenerate grounding-tree over (N,S). Moreover, the

root of this tree is #¬¬ϕ and its only leaf is #ϕ. Now consider σ′(¬.¬. x).
Since we know that σ′(x) = #ϕ and ¬. expresses the negation function
on the codes of formulas, we know that σ′(¬.¬. x) = #¬¬ϕ. Thus,
R(σ′(x), σ′(¬.¬. x)) meaning �σ′ x � ¬.¬. x. And since σ was arbitrary,
we get (N,S,R) � ∀x(Tr(x)→ x� ¬.¬. x).

• (N,S,R) � ∀x(Tr(¬.¬. x)→ x� ¬.¬. x)

Let σ be a variable assignment over (N,S,R) and σ′ some x-variant of
σ. Assume that (N,S,R) �σ′ Tr(¬.¬. x). This means that σ′(¬.¬. x) ∈ S.
Again, since S = {#ϕ | ϕ ∈ L,N � ϕ} and since ¬. represents the
negation function on the codes of formulas, we know that σ′(¬.¬. x) =
#¬¬ϕ, for some formula ϕ ∈ L such that N � ¬¬ϕ. From the latter it
follows by classical logic that N � ϕ. Moreover, we know that σ′(x) =
#ϕ and thus that #σ′(x) ∈ S. But then we get that (N,S,R) �σ′
Tr(x) and by the argument for the axiom U1 that �σ′ x�¬.¬. x. Hence,
we get (N,S,R) � ∀x(Tr(¬.¬. x)→ x�¬.¬. x), since σ was arbitrary.

2.5.4 Grounding-Trees and Conceptualist Ground

We have shown how to extend the standard model of the theory of positive
truth to a standard model of our predicational theory of ground. Note,
however, that our construction will not necessarily work if we start from
non-standard models of the theory of positive truth. At many points in our
construction, we have made use of the fact that we’re working in the standard
model of the theory of positive truth. Most importantly, in our construction
we have relied on the fact that the extension of the truth predicate coincides
with the codes of formulas that are true in the standard model of PA. But
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in a non-standard model of the theory of positive truth this need not be the
case. There we might have non-standard elements in the extension of the
truth predicate, such as objects that according to the model are sentences
with infinite complexity.32 As a result, in such non-standard models, our
construction will break down. Perhaps there is another construction that
will allow us to extend non-standard models of the theory of positive truth
to (non-standard) models of our predicational theory of ground. But here
we leave this question open, as the point of the construction was to show
what the standard model looks like.

By looking at the standard model of our predicational theory of truth, we can
draw some lessons for the conceptualist semantics of ground. The model we
have constructed is a model for a conceptualist notion of partial ground—
it provides a semantics for our conceptualist ground predicate. Moreover,
since we work in a standard first-order setting, we have a general notion
of a model for predicational theories of ground. Developing a general con-
ceptualist semantics for ground operators, in contrast, is still very much an
open problem. But we can use the model that we have constructed to ap-
proach this problem. To begin with, we can interpret the operational theory
of ground OG (Definition 2.5.1) over the model (N,S,R). We simply say
for all formulas ϕ,ψ ∈ L:

(N,S,R) � ϕ ≺ ψ iffdef (N,S,R) � pϕq� pψq.

It then follows from Proposition 2.5.9 that this interpretation is sound
with respect to OG, in the sense that for all ϕ,ψ ∈ L, if `OG ϕ ≺ ψ,
then (N,S,R) � ϕ ≺ ψ.33 For assume that `OG ϕ ≺ ψ. By Proposi-
tion 2.5.9, it follows that `PG pϕq � pψq. Then, by Theorem 2.5.20, we
get that (N,S,R) � pϕq � pψq and thus by the above definition that
(N,S,R) � ϕ ≺ ψ. But this interpretation does not yet tell us what models
for the language L≺, in which the theory OG is formulated, should look like
in general. But it gives us a hint about what kind of structure we can use to
interpret the language. Remember that a forest in the mathematical sense
is a disjoint union of trees. Now consider:

T =def

⊎
{T | T is a non-degenerate grounding-tree over (N,S)},

where ] denotes the operation of taking disjoint unions. Then, mathemat-
ically speaking, T is a forest. As we have said before, the (non-degenerate)
grounding-trees over (N,S) intuitively correspond to individual grounding
facts. The forest T, then, corresponds intuitively to the whole hierarchy of
grounds. Moreover, we can equivalently rephrase our definition of R that

32For more on non-standard models of theories of syntax and truth, see [58, p. 83–89].
33Of course, the interpretation is not complete, in the sense that there are sentences

ϕ,ψ ∈ L such that � ϕ ≺ ψ and 6`OG ϕ ≺ ψ. This follows from the argument given above
in §2.5.2 for the failure of the converse direction of Proposition 2.5.9.
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interprets our ground predicate � (Definition 2.5.19) by saying that for all
m,n ∈ N:

R(m,n) iff there is a T ∈ T with m as its leaf and n as its root.

With this definition in place, we can interpret OG over the structure (N,T).
We simply equivalently restate the definition of (N,T) � ϕ ≺ ψ by saying
that for all ϕ,ψ ∈ L :

(N,T) � ϕ ≺ ψ iff there is a T ∈ T with #ϕ as its leaf and #ψ as its root.

Now, take a look at the structure (N,T). On the above interpretation, the
component N interprets the arithmetic vocabulary and in particular the
names for sentences. The forest T, on the other hand, interprets the ground
operator ≺. By abstracting from this, we arrive at a notion of an arbitrary
model for L≺: The idea is that a model for L≺ is a pair (T, F (T )), where T
is a suitable set of fine-grained truths and F (T ) is a suitable forest over the
elements of T . Of course, developing this idea in detail still requires a lot of
work. But we wish to suggest that an intuitively plausible, graph-theoretic
semantics for the ground operator can be obtained in this way. Incidentally,
in forthcoming work, Litland [84] and deRosset [31] have already shown
promising results in this direction—the results of this section give further
support to this approach.

2.6 Partial Ground and Hierarchies of Typed
Truth

In this section, we extend the present framework with principles for the
grounds of truths that contain the truth predicate.

2.7 The Aristotelian Principle and Typed Truth

Aristotle has the following to say about the interaction of truth and expla-
nation:

It is not because we think truly that you are pale, that you are
pale; but because you are pale we who say this have the truth.

(Metaphysics 1051b6–9)

In the context of partial ground, this motivates the following principle: If
ϕ is true, then it is natural to say that ϕ is true in virtue of what it says
being the case, and if ϕ is false, then ϕ is false in virtue of what it says
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not being the case. We will thus call the corresponding informal ground-
theoretic principles the Aristotelian principles about truth and falsehood
respectively.

If we wish to formalize the Aristotelian principles in the context of our
predicational theory of ground, we have to make a couple of adjustments.
First, we have to assume that we have a Gödel-numbering for the language
LTr. In particular, we now assume that we have a name pϕq for every
sentence ϕ ∈ LTr. Second, we have to adjust our basic truth axioms. The
axioms T3 and G3 of PG together ensure that both the truth predicate
and the ground predicate only apply to sentences of L. To formalize the
Aristotelian principles, however, we need to relax this requirement: we need
for the truth predicate and the ground predicate to apply to sentences of
LTr that are not already in L. To allow for this, we adjust the axiom T3 to
the axiom:

∀x(Tr(x)→ SentTr(x)),

which we’ll label T∗3. Together with G3, this then entails:

∀x∀y(x� y → SentTr(x) ∧ SentTr(y)),

as well. We’ll refer to the theory that results from replacing T3 in PG with
T∗3 as PGT . Thus, in PGT , we are not only talking about the truths of
arithmetic, but also about the truth of the truths of arithmetic.

With these adjustments in place, we can schematically express the Aris-
totelian principle about truth by saying that for all sentences ϕ that:

ϕ→ pϕq� pTr(pϕq)q.

For the Aristotelian principle about falsehood, we get:

¬ϕ→ p¬ϕq� p¬Tr(pϕq)q,

for all sentences ϕ. Using the same strategy as in the previous chapter, we
can translate these schemata into the quantified axioms:

• (APT ) ∀x(Tr(x)→ x� Tr. (ẋ)), and

• (APF ) ∀x(Tr(¬. x)→ ¬. x� ¬. Tr. (ẋ)),

where Tr. represents the function that maps the code #t of a term t to
the code #Tr(t) of the application Tr(t) of the truth predicate to the term
t. Thus, we have arrived at a quantified axiomatization of the Aristotelian
principles.34

34To illustrate how the quantified axioms work, consider a formula ϕ such that Tr(pϕq).
Then the principle APT says that pϕq� Tr. ˙pϕq. But the latter is pϕq� pTr(pϕq)q, since

˙pϕq = ppϕqq and Tr. (ppϕqq) = pTr(pϕq)q. So APT allows us to prove Tr(pϕq)→ pϕq�
pTr(pϕq)q, for every sentence ϕ. The quantified principle APF works analogously.
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Unfortunately, as Fine [43] shows, the Aristotelian principles are ground-
theoretically inconsistent:35

Lemma 2.7.1 (Puzzle of Ground). APT and APF are inconsistent over
PGT .

Proof. To show that APT `PGT ⊥ consider the following derivation:

1. 0 = 0 (Arithmetic)

2. Tr(p0 = 0q) (T-scheme over L)

3. p0 = 0q� pTr(p0 = 0q)q (2., APT )

4. Tr(pTr(p0 = 0q)q) (3., G3)

5. pTr(p0 = 0q)q� ∃xTr(x) (4., U6)

6. Tr(p∃xTr(x)q) (5., G3)

7. p∃xTr(x)q� pTr(p∃xTr(x)q)q (6., APT )

8. Tr(pTr(p∃xTr(x)q)q) (7., G3)

9. pTr(p∃xTr(x)q)q� p∃xTr(x)q (8., U6)

10. p∃xTr(x)q� p∃xTr(x)q (7.,9., G2)

11. ¬(p∃xTr(x)q� p∃xTr(x)q) (G1)

12. ⊥ (10.,11., ⊥-Intro)

To show that APF `PGT ⊥, we can perform an analogous derivation, which
is left to the interested reader.

Note that the proof can easily be adapted to show that even the
weaker, schematic formulations of the Aristotelian principles are ground-
theoretically inconsistent.

We are left with a ground-theoretic puzzle about truth.36 All the princi-
ples involved in the proof of Lemma 2.7.1 are intuitively plausible: the basic
ground axioms G2 and G3 directly arise from the definition of partial ground,
the upward directed axiom U6 about the existential quantifier is plausible in
light of the usual semantics for first-order logic, and the Aristotelian prin-
ciple for truth is plausible from considerations about truth. (The principles

35Fine works in an operational framework, but his argument can easily be adapted to the
present framework. Fine’s argument is discussed and refined by Krämer [73] and Correia
[25].

36Fine, in his original chapter [43], discusses a range of ground-theoretic puzzles that
arise in a similar way from principles similar to the Aristotelian principle. Here we’ll focus
on the puzzle about truth and partial ground, because the problem arises most naturally
in the present context.
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required to show that APF is ground-theoretically inconsistent are equally
plausible.) So what are we to do? In this section, we will propose a solution
to the puzzle of ground that preserves the intuition behind all of these prin-
ciples. We will achieve this by typing our truth predicate—a move familiar
from typed theories of truth.

In typed theories of truth, no applications of the truth predicate to sen-
tences containing the same truth predicate are provable. Thus, typed theo-
ries of truth respect Tarski’s distinction between object-language and meta-
language [132]. Tarski motivates this distinction from the semantic para-
doxes, such as the infamous liar paradox. This paradox results when we
apply the T-scheme to the liar sentence which intuitively “says of itself”
that it is not true. More specifically, Tarski observed that, in a sufficiently
strong background theory, such as PA, if we allow applications of the truth
predicate to sentences with the same truth predicate in them, we get a sen-
tence λ that is provably equivalent to its own falsehood:

`PA λ↔ ¬Tr(pλq).

This follows from the so-called diagonal lemma, which is provable in PA in
the context of an appropriate Gödel-numbering for LTr:37

Lemma 2.7.2. For every sentence ϕ(x) ∈ LTr with exactly one free variable
x, there is a sentence δ ∈ LTr such that

`PA δ ↔ ϕ(pδq).

The existence of the liar sentence λ, then, follows by a simple application
of the diagonal lemma to the formula ¬Tr(x) ∈ LTr. It is well-known that
the existence of a liar sentence is inconsistent with the T-scheme over the
language LTr.

A common intuitive response to the liar paradox is that it somehow arises
from the self-reference involved. On this informal view, the problem is that
the liar sentence “says something of itself,” namely that it is not true.38

Thus, so the intuitive response, we should put restrictions on our language
that prevent self-reference. Tarski makes this response precise by introducing
the distinction between object-language and meta-language. To illustrate
the distinction, consider the truths of arithmetic. According to Tarski, if
we wish to talk about numbers and their properties, we can do so in the
language L of PA—our object language for arithmetic. But if we wish talk

37For a proof, see for example [16, p. 220–224].
38However, as Yablo [138] shows there are paradoxes without self-reference. Moreover,

there are self-referential sentences that are not paradoxical. But still, the intuitive view is
that in the case of the liar and similar paradoxes, self-reference plays an essential role.
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about the truth of sentences in L, we have to do so in the language LTr—
our meta-language for the truths of arithmetic.39 Moreover, if we wish to
talk about the truth of the truths of arithmetic, i.e. the truths of sentences
in LTr containing the truth predicate, we need to do so in yet another
meta-meta-language, which has a distinct truth-predicate for the sentences
of LTr. And so on. In contrast, Tarski calls a language that can talk about
the truths of its own sentences, i.e. a language that has both names for all of
its sentences and a truth predicate that applies to these names, semantically
closed. Thus, a semantically closed language is its own meta-language, as
it were, and thus we get self-referential paradoxes. Tarski shows that if we
obey the distinction between object-language and meta-language, we can
formulate a consistent theory of truth: In an appropriate meta-language,
which is not semantically closed, we can consistently affirm the T-scheme
for the sentences of the object-language and we never can prove problematic
sentences, such as the liar. The liar paradox, on the other hand, shows that
if we work in a semantically closed language, disaster ensues: If we have a
Gödel-numbering for the terms of LTr within LTr and at the same time
affirm the T-scheme over the sentences of LTr, i.e. if we use LTr as its own
meta-language, we get semantic paradoxes, like the liar paradox. Thus, so
Tarski argues, when we wish to talk about truth, we should not never do
so in a semantically closed language, but always in an appropriate meta-
language. Intuitively, the picture is that semantic truths, such as truths
about the truths of arithmetic, are on a “higher level” than non-semantic
truths, such as the ordinary truths of arithmetic. Moreover, this can be
iterated: the truths about truths about the truths of arithmetic are on yet
a “higher level” than the truths about the truths of arithmetic and so on.
What emerges is Tarski’s hierarchy of truths. If we work in a semantically
closed language, so Tarski, we mix the levels of the hierarchy of truths—and
ultimately this is the source of the semantic paradoxes.40

Our original, unmodified predicational theory of ground PG respects
Tarski’s distinction between object- and meta-language: We have formu-
lated PG in the language L�

Tr in the context of a coding for the language L
of PA. In particular, we have assumed that we have a name pϕq for every
sentence ϕ ∈ L, but not that we have names pTr(t)q for sentences of the
form Tr(t) ∈ LTr and so on. Moreover, as we have said before, by the axioms
T3 and G3, we have ensured that both the truth predicate and the ground
predicate only apply to the sentences of L. Thus, we have used the lan-
guage L�

Tr as an appropriate meta-language for our object-language L—in

39This language is then, of course, an extension of the language of PA: it extends the
purely arithmetic vocabulary with names for the sentences of L and a truth predicate for
those sentences.

40This also applies also to paradoxes without self-reference, such as Yablo’s paradox:
Yablo similarly formulates his paradox in a semantically closed language.
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compliance with Tarski’s distinction. When we move to the modified theory
PGT, however, we no longer conform with Tarski’s distinction. Since PGT
is formulated in L�

Tr in the context of a Gödel numbering for LTr, PGT is
formulated in a semantically closed language. Now, the truth predicate may
apply to sentences with the same truth predicate in them: Since in PGT we
work in the context of a coding for LTr, we have names for all the sentences
of L�

Tr within L�
Tr itself. Moreover, by the axiom T∗3 we have allowed for

these terms to occur truly in the context of the truth predicate and the
ground predicate. In other words, when we formulated PGT, we have used
L�
Tr as its own meta-language—we talked about the truths of L�

Tr within
L�
Tr itself.

Based on this observation, we argue that the semantic closure of L�
Tr is (at

least part of) the reason for the puzzle of ground. Note that the semantic
closure of L�

Tr is required for the proof of Lemma 2.7.1. In the third step
of the derivation, we applied the ground predicate to the truth predicate
in p0 = 0q � pTr(p0 = 0q)q. Moreover, in the fourth step, we inferred
Tr(pTr(p0 = 0q)q) from this and thus applied the truth predicate to a sen-
tence containing the same truth predicate. The main difference between the
liar paradox and the puzzle of ground is that, in the case of the liar, we get
a truth-theoretic inconsistency, i.e. an inconsistency with plausible principles
for truth, while in the case of the puzzle, we get a ground-theoretic inconsis-
tency, i.e. an inconsistency with plausible principles for partial ground. Still,
the problematic sentences in both cases are quite similar. In both cases
some intuitive form of self-reference is involved: while the liar sentence λ
intuitively says something of itself, the principles of partial ground entail
that truth of ∃xTr(x) partially grounds itself. Thus, we can say that the
self-reference in the case of the liar is semantic, while the self-reference in
the case of the puzzle of ground is ground-theoretic.41

In analogy to typed theories of truth, we propose a typed solution to the
puzzle of ground. To formulate this solution, we will move to a slightly dif-
ferent framework, where instead of a single truth predicate Tr, we have a
family Tr1, T r2, . . . of typed truth predicates. These truth predicates intu-
itively express truth on the first, second, . . . level of Tarski’s hierarchy. In
the remainder of this section, we will develop a consistent theory of partial
ground and typed truth using these typed truth predicates. This theory will
contain typed versions of the axioms of PG plus typed versions of the Aris-
totelian principles. Much like in the case of typed theories of truth, this will
mean that no sentence is provable in which the truth predicate is applied
to a sentence containing the same truth predicate. We will show that this

41There is also a kind of semantic self-reference involved in the case of puzzle. The
existential quantifier in ∃xTr(x) semantically ranges over all sentences of LTr, including
∃xTr(x) itself. Thus the truth of ∃xTr(x) is partially witnessed by the truth of ∃xTr(x).
But here we do not wish to push this point any further.
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restriction is sufficient to obtain a consistent theory of partial ground and
typed truth.

2.8 Axiomatic Theories of Partial Ground and
Typed Truth

Typed theories of truth aim to axiomatize Tarski’s hierarchy of truths.42 For
this purpose, in typed theories of truth, we have different truth predicates
for the different levels of the hierarchy. Correspondingly, we get a hierarchy
of languages with a different language for every level of the hierarchy. To il-
lustrate, we start with L0 =def L—the language of PA. The truth predicate
for sentences of arithmetic is, then, Tr1 and the language L1 extends L0 with
Tr1. The truth predicate for sentences of L1, in turn, is Tr2 and the lan-
guage L2 extends L1 with Tr2. And so on. Thus, typed theories of truth are
formulated using a hierarchical family of truth predicates Tr1, T r2, . . . that
intuitively correspond to truth on the different levels of Tarski’s hierarchy.

2.8.1 Language and Background Theory

We will now formally define a hierarchy of languages, such that on every level
we can talk about the truth of sentences on the lower levels. For reasons of
generality, we will define this hierarchy in such a way that it includes even
infinitary levels. Specifically, we assume that for every ordinal 0 < α < ε0,
we have a different truth predicate Tα that intuitively expresses truth at the
level α: we have Tr1, . . . , T rω, . . . , T rωω , . . . , T rωωω , . . . , where for α 6= β <
ε0, we have Trα 6= Trβ.43 For all ordinals 1 ≤ α ≤ ε0, we define the language
L<α as the language L of PA extended with all the truth predicates Tβ for
0 < β < α:

L<α =def L ∪ {Trβ | 0 < β < α}.

Then we set:
Lα =def L<α+1,

42For more on axiomatizations of Tarski’s hierarchy, see [58, p. 125–29].
43We assume that the reader is familiar with the basic theory of ordinals. For the relevant

definitions, see [65, p. 17–26], for example. The ordinal ε0 is the limit of the sequence
1, ω, ωω, ωω

ω

, . . .; in other words, ε0 is the first ordinal that satisfies the equation ωx = x.
This ordinal ε0 is still countable, i.e. it has the same cardinality as the set of the natural
numbers. But it provides a natural stopping point for our infinitary hierarchy, since (i) we
can code the ordinals below ε0 and (ii) PA proves the well-ordering of the ordinals below
ε0. We will not go into the details here, as the infinitary nature of our hierarchy is not
particularly important to our philosophical point. Nevertheless, for reasons of generality,
we will extend our hierarchy to this level, since ε0 is the limit up to where we can apply
the methods of this chapter.
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for all ordinals 0 ≤ α < ε0. Thus, the language L0 is L, the language L1 is
L ∪ {Tr1}, and so on. Intuitively, for an ordinal 1 ≤ α ≤ ε0, the language
L<α talks about the truths at the levels strictly below α and Lα talks about
the truths at all levels up to and including α. When we are operating on
the ordinal level α, the language L<α is our intended object language, i.e.
we wish to talk about grounding between the truths of sentences in L<α.
For most informal purposes, however, we already stop at the level of L<2 =
L ∪ {Tr1}. The reason for this is that L<2 is the first language in which
grounding between arithmetic truths and truths involving a truth predicate
occurs. For all ordinals 1 ≤ α ≤ ε0, the language L�

<α is L<α extended with
our binary ground predicate �:

L�
<α =def L<α ∪ {�}.

And we set:
L�
α =def Lα ∪ {�},

for all ordinals 0 ≤ α < ε0. When we are operating on the ordinal level α,
we’ll use L�

α as our meta-language for the object-language language L<α.
Again, for expository purposes, we’ll usually already stop at L�

2 = L2∪{�},
which is the first language in which we can talk about grounding in L<2.

For an ordinal 0 < α < ε0, the theory PAT<α is the result of extending PA
with all the instances of the induction scheme over the language L<α and
the theory PAG<α is the result of extending PAT<α with all the missing
instances of the induction scheme over L�

α . For 0 ≤ α < ε0, the theory
PATα, then, is PAT<α+1 and similarly PAGα is PAG<α+1. Thus, PAT0 is
PAT and PAG0 is PAG. In PATα, we can develop a syntax theory for the
languages L<α analogously to the way developed the syntax theory in the
first part of this chapter. When we work on an ordinal level α, we assume
that in L�

α , via some appropriate Gödel coding, we have names pϕq for all
formulas ϕ ∈ L<α.44 Moreover, we assume that for every 0 < β < α, we
have a function symbol Trβ.

that represents the function which maps the

code #t of a term t to the code #Trβ(t) of the formula Trβ(t) ∈ L<α. And
we abbreviate the formula that allows us to (strongly) represent the (set of
codes of) sentences in L<α by Sent<α.

2.8.2 Axioms for Partial Ground and Typed Truth

With the syntax in place, we extend our theory PG to account for partial
ground between truths on the same level of Tarski’s hierarchy. We’ll define
this extension from the perspective of some ordinal level 0 < α < ε0. Thus,

44Here it is important that we’re restricting ourselves to countable ordinals, because
otherwise we would “run out of codes” at some point.
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we wish to talk about ground between truths on all the ordinal levels 0 <
β < α. To achieve this, we have to modify the basic ground axiom G3 and the
basic truth axioms T1, T2, and T3. The axiom G3 splits up in the following
pair, for all ordinals 0 < β < α:

• (Gβ
3a) ∀x∀y(x� y → (Sent<β(x)→ Trβ(x)))

• (Gβ
3b) ∀x∀y(x� y → (Sent<β(y)→ Trβ(y)))

These axioms formalize the factivity of ground in a typed context. In par-
ticular, the axiom Gβ

3a says that if the truth of some sentence grounds the
truth of another, and if the sentence is below the level β in the hierarchy,
then it is true at level β of the hierarchy. The axiom Gβ

3b, on the other hand,
says the same thing the other way around: if the truth of some sentence is
grounded in the truth of another, and if the former sentence is below level β,
then it is true at level β. To illustrate, if we let α = 2, we get the following
axiom pair:

• (G1
3a) ∀x∀y(x� y → (Sent<1(x)→ Tr1(x)))

• (G1
3b) ∀x∀y(x� y → (Sent<1(y)→ Tr1(y)))

Thus, for sentences ϕ,ψ ∈ L<1, the axioms G1
3a and G1

3b together say that
the truth of ϕ can only ground the truth of ψ, if ϕ and ψ are both true at
level one—i.e. if they are truths of arithmetic.

Next, in the typed versions of T1 and T2, we wish to make sure that true
equations are true at every level below α. Thus, for all ordinals 0 < β < α,
we postulate:

• (Tβ
1 ) ∀s∀t(Trβ(s=. t)↔ s◦ = t◦)

• (Tβ
2 ) ∀s∀t(Trβ(s6=. t)↔ s◦ 6= t◦)

Thus, we get for example Tr1(p0 = 0q), T r2(p0 = 0q), . . . and so on, for all
ordinal levels below α.

In the case of T3, we wish to make sure that a truth predicate Trβ, for
an ordinal 0 < β < α, only applies to sentences on levels below β—in
compliance with Tarski’s distinction. Thus, we postulate for all 0 < β < α:

• (Tβ
3 ) ∀x(Trβ(x)→ Sent<β(x))

Thus, for example, we get ∀x(Tr1(x) → Sent<1(x)), which intuitively say
that the predicate Tr1 only applies to sentences of arithmetic.

Another adjustment is needed: Note that now Gβ
3a/b and Tβ

3 do not entail
anymore that the ground predicate applies only to sentences. To ensure this,
we postulate the following final basic ground axiom:

• (Gα
4 ) ∀x∀y(x� y → Sent<α(x) ∧ Sent<α(y))
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Thus, on the level α = 2, we get that ∀x∀y(x�y → Sent<2(x)∧Sent<2(y)).
In words: if x � y, then both x and y are sentences of L<2, which is just
the sentence of arithmetic L extended with the truth predicate Tr1. Taken
together, all of these modified axioms entail that our new theory respects
Tarski’s distinction between object- and meta-language.

Finally, we have to modify our upwards and downwards directed grounding
axioms to apply on all levels below α. We achieve this by postulating that the
axioms apply on all of these levels. Take the axioms U1 and D1 for example.
They become the new typed set of axioms for all ordinals 0 < β < α:

• (Uβ
1 ) ∀x(Trβ(x)→ x� ¬.¬. x)

• (Dβ
1 ) ∀x(Trβ(¬.¬. x)→ x� ¬.¬. x)

Thus, on every level 0 < β < α, if a sentence is true on that level, then the
sentence grounds its double-negation and if a double negation is true on the
level, it is grounded by the sentence it is a double negation of.

Putting all of this together, we get:
Definition 2.8.1. For all ordinals 0 ≤ α ≤ ε0, the predicational theory
PG<α of ground up to α, consists of the axioms of PAG<α plus the following
axioms for all 0 < β < α:

Typed Ground Axioms:
G1 ∀x¬(x� x)
G2 ∀x∀y∀z(x� y ∧ y � z → x� z)

Gβ
3a ∀x∀y(x�y → (Sent<β(x)→ Trβ(x)))

Gβ
3b ∀x∀y(x�y → (Sent<β(y)→ Trβ(y)))

Gα
4 ∀x∀y(x�y → Sent<α(x)∧Sent<α(y))

Typed Truth Axioms:
Tβ

1 ∀s∀t(Trβ(s=. t)↔ s◦ = t◦)

Tβ
2 ∀s∀t(Trβ(s 6=. t)↔ s◦ 6= t◦)

Tβ
3 ∀x(Trβ(x)→ Sent<β(x))

Typed Upward Directed Axioms:

Uβ
1 ∀x(Trβ(x)→ x� ¬.¬. x)

Uβ
2 ∀x∀y(Trβ(x)→ x� x∨. y ∧ Trβ(y)→ y � x∨. y)

Uβ
3 ∀x∀y(Trβ(x) ∧ Trβ(y)→ (x� x∧. y) ∧ (y � x∧. y))

Uβ
4 ∀x∀y(Trβ(¬. x)∧Trβ(¬. y)→ (¬. x�¬. (x∨. y))∧(¬. y�¬. (x∨. y)))

Uβ
5 ∀x∀y(Trβ(¬. x)→ ¬. x�¬. (x∧. y)∧ Trβ(¬. y)→ ¬. y�¬. (x∧. y))

Uβ
6 ∀x∀t∀v(Trβ(x(t/v))→ x(t/v)� ∃.vx)

Uβ
7 ∀x∀v(∀tT rβ(¬. x(t/v))→ ∀t(¬. x(t/v)� ¬. ∃.vx))

Uβ
8 ∀x∀v(∀t(Trβ(x(t/v))→ ∀t(x(t/v)� ∀.vx))
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Uβ
9 ∀x∀t∀v(Trβ(¬. x(t/v))→ ¬. x(t/v)� ¬. ∀.vx))

Typed Downward Directed Axioms:

D1 ∀x(Trβ(¬.¬. x)→ x� ¬.¬. x)

D2 ∀x∀y(Trβ(x∨. y) → (Trβ(x) → x � x∨. y) ∧ (Trβ(y) → y �
x∨. y))

D3 ∀x∀y(Trβ(x∧. y)→ (x� x∧. y) ∧ (y � x∧. y))

D4 ∀x∀y(Trβ(¬. (x∧. y)) → (Trβ(¬. x) → ¬. x � ¬. (x∨. y)) ∧
(Trβ(¬. y)→ ¬. y � ¬. (x∨. y)))

D5 ∀x∀y(Trβ(¬. (x∨. y))→ (¬. x� ¬. (x∨. y)) ∧ (¬. y � ¬. (x∨. y)))

D6 ∀x(Trβ(∃.vx(v))→ ∃t(x(t/v)� ∃.vx))

D7 ∀x∀v(Trβ(¬. ∃.vx)→ ∀t(¬. x(t/v)� ¬. ∃.vx))

D8 ∀x∀v(Trβ(∀.vx→ ∀t(x(t/v)� ∀.vx))

D9 ∀x∀v(Trβ(¬. ∀.vx)→ ∃t(¬. x(t/v)� ¬. ∀.vx))

For 0 ≤ α < ε0, we define PGα as PG<α+1.

To illustrate what PGα looks like, for different α’s, let’s consider at a few ex-
amples. First, note that PG0 is PAG. Next, note PG1 is a functional analog
of our original theory PG, where the truth-predicate has been “renamed”
Tr1. In particular, we get that PG1 proves the theory PT of positive truth.

Since for all 1 < α < ε0, PGα contains PG1, we can say that PGα essentially
is (in the precise sense sketched above) an extension of PG. For α bigger
than one, PGα essentially consists of α-many copies of PG, one for every Lβ
and truth predicate Trβ, where 1 < β < α. What is new in those theories is
that now (names of) sentences involving the truth predicate may occur in
the context of the ground predicate and other truth predicates—as long as
we respect the typing restriction that for all 0 < β ≤ α, if Trβ(pϕq), then
Sent<β(pϕq). For example, in PG2, we get the following instance of U2

1:

Tr2(pTr1(p0 = 0q)q)→ pTr1(p0 = 0q)q� p¬¬Tr1(p0 = 0q)q.

Indeed, using G2
3b we can infer from this that:

pTr1(p0 = 0q)q� p¬¬Tr1(p0 = 0q)q→ Tr2(p¬¬Tr1(p0 = 0q)q),

which together with the previous formula gives us:

Tr2(pTr1(p0 = 0q)q)→ Tr2(p¬¬Tr1(p0 = 0q)q).

The other direction:

Tr2(p¬¬Tr1(p0 = 0q)q)→ Tr2(pTr1(p0 = 0q)q)

83



can be shown analogously using D2
1 and G2

3a. Generalizing this idea, we get
more substantial truth-theoretic theorems in PG2, such as:

∀x(Tr2(pTr1(ẋ)q)↔ Tr2(p¬¬Tr1(ẋ)q)),

for example. But so far, PG2 does not allow us to prove any theorems of
the form Tr2(pTr1(pϕq)q), where ϕ ∈ L. In other words, we can’t prove
the truth of any sentence involving a truth predicate—even if they respect
the typing restrictions. Thus, PG2 is not really a theory of truth at level 2
yet—it can’t even show that Tr2(pTr1(p0 = 0q)q). Moreover, in PG2, we
can’t prove any theorems of the form pϕq�pTr1(pϕq)q or the like, where the
ground predicate applies to sentence involving a truth predicate. To make
things worse, all of this doesn’t change on any level α > 2. To get a more
substantial theory of ground and partial truth, we need to say something
about the grounds of truths involving the truth predicate: we need typed
versions of the Aristotelian principles.

Typing the Aristotelian principles for use on an ordinal level α is pretty
straight-forward. We get the following axioms for every γ < α:

• (APUγ
T ) ∀x(Trγ(x)→ x� Trγ.

(ẋ))

• (APUγ
F ) ∀x(Trγ(¬. x)→ ¬. x� ¬. Trγ.

(ẋ))

The axiom APU1
T , for example, allows us to derive that p0 = 0q�pTr1(p0 =

0q)q using the fact that by axiom T1
1 we have Tr1(p0 = 0q). The axioms

APUβ
T/F are upwards directed axioms. For analogous reasons as in the case

of the other ground axioms, we also need downward directed axioms for the
Aristotelian principles. Again, straight-forwardly, we get for all γ < β ≤ α:

• (APDβ,γ
T ) ∀x(Trβ(Trγ.

(ẋ))→ x� Trγ.
(ẋ))

• (APDβ,γ
F ) ∀x(Trβ(¬. Trγ.

(ẋ))→ ¬. x� ¬. Trγ.
(ẋ))

If we add the upward and downward directed versions of the Aristotelian
principles to the previous theory, we arrive at our theory of ground and
typed truth:
Definition 2.8.2. For every ordinal 0 ≤ α < ε0, the theory PGAα of partial
ground with the Aristotelian principles up (and including) to α consists of
the axioms of PGα plus the following axioms for all γ < β ≤ α:

Upward Directed Aristotelian Principles:

• (APUγ
T ) ∀x(Trγ(x)→ x� Trγ.

(ẋ))

• (APUγ
F ) ∀x(Trγ(¬. x)→ ¬. x� ¬. Trγ.

(ẋ))

Downward Directed Aristotelian Principles:

• (APDβ,γ
T ) ∀x(Trβ(Trγ.

(ẋ))→ x� Trγ.
(ẋ))
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• (APDβ,γ
F ) ∀x(Trβ(¬. Trγ.

(ẋ))→ ¬. x� ¬. Trγ.
(ẋ))

The theory PGA<α is defined as
⋃
β<α PGAα, for all 0 < α ≤ ε0.

To see how PGAα works for different 0 ≤ α < ε0, let’s consider again a
few examples. First note that PGA0 is PG0 which is just PAG. Similarly,
PGA1 is PG1. Things get interesting at the level PGA2. Here we get:

Tr1(p0 = 0q)→ p0 = 0q� pTr1(p0 = 0q)q,

by instantiating the axiom APU1
T with the term p0 = 0q. Moreover, by

instantiating the axiom T1
1 with the same term, we have:

Tr1(p0 = 0q).

So putting the two together, we get:

p0 = 0q� pTr1(p0 = 0q)q.

Now, using the instance:

p0 = 0q�pTr1(p0 = 0q)q→ (Sent<2(pTr1(p0 = 0q)q)→ Tr2(pTr1(p0 = 0q)q))

of the axiom G2
3b, and since:

Sent<2(pTr1(p0 = 0q)q)

is derivable in PA, we can infer:

Tr2(pTr1(p0 = 0q)q).

So, in PGA2, we can indeed derive applications of the truth predicate to
sentences with a truth predicate in them. Moreover, by putting APU1

T :

∀x(Tr1(x)→ x� Tr1. (ẋ))

and APD2,1
T :

∀x(Tr2(Tr1. (ẋ))→ x� Tr1. (ẋ))

together, we can actually prove:

∀x(Tr2(Tr1. (ẋ))↔ Tr1(x))

using the axioms G1
3a/b and T1

1/2.45 Thus, PGA2 proves intuitive truths at

level two, such as Tr2(pTr1(p0 = 0q)q), as well as quite substantial truth-
theoretic principles, such as ∀x(Tr2(Tr1. (ẋ)) ↔ Tr1(x)). In other words,
PG2 proves something that looks like a substantial theory of truth at level
two of Tarski’s hierarchy. In the next section, we will show that for 0 < α <
ε0, PGAα proves the theory PRTα of positive ramified truth up to α. Indeed,
we can show that PGAα is a proof-theoretically conservative extension of
PRTα.

45For the proof note that if we assume that Tr1(t) for a term t, it follows by axiom T1
1

that Sent<1(t) and thus we can prove in PA that Sent<2(Tr1. (t)). Similarly, if we assume
Tr2(Tr1. ṫ), we can prove that Sent<1(t) by T2

3 and PA.
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2.8.3 Conservativity and Models

The theory PT<α of positive ramified truth up to an ordinal level 1 ≤ α ≤ ε0
is formulated in the language L<α and it is the result of modifying the theory
of typed truth with the typed versions of its axioms in a similar way as we
developed PG<α:
Definition 2.8.3 (‘Positive Ramified Truth’). For all ordinals 1 ≤ α ≤ ε0,
the theory PRT<α of positive ramified truth up to α consists of the axioms
of PAT<α plus the following axioms for all γ < β < α:

Typed Truth Axioms:

Tβ
1 ∀s∀t(Trβ(s=. t)↔ s◦ = t◦)

Tβ
2 ∀s∀t(Trβ(s 6=. t)↔ s◦ 6= t◦)

Tβ
3 ∀x(Trβ(x)→ Sent<β(x))

Positive Ramified Truth Axioms:

RPβ1 ∀x(Trβ(x)↔ Trβ(¬.¬. x))

RPβ2 ∀x∀y(Trβ(x∧. y)↔ Trβ(x) ∧ Trβ(y))

RPβ3 ∀x∀y(Trβ(¬. (x∧. y))↔ Trβ(¬. x ∨ Tβ¬. y))

RPβ4 ∀x∀y(Trβ(x)∨. Trβ(y)↔ Trβ(x) ∨ Trβ(y))

RPβ5 ∀x∀y(Trβ(¬. (x∨. y))↔ Trβ(¬. x) ∧ Trβ(¬. y))

RPβ6 ∀x∀v(Trβ(∀.vx)↔ ∀tT rβ(x(t/v)))

RPβ7 ∀x∀v(Trβ(¬. ∀.vx)↔ ∃tT rβ(¬. x(t/v)))

RPβ8 ∀x∀v(Trβ(∃.vx)↔ ∃tT rβ(x(t/v)))

RPβ9 ∀x∀v(Trβ(¬. ∃.vx)↔ ∀tT rβ(¬. x(t/v)))

RPβ10 ∀x(Trβ(Trγ.
ẋ)↔ Trγ(x))

RPβ11 ∀x(Trβ(¬. Trγ.
ẋ)↔ Trγ(¬. x))

RPγ,β12 ∀x(Sent<γ(x)→ (Trβ(Trγ.
ẋ)↔ Trβ(x)))

RPγ,β13 ∀x(Sent<γ(x)→ (Trβ(¬. Trγ.
ẋ)↔ Trβ(¬. x)))

The theory PRTα, for 0 ≤ α < ε0, is defined as RPT<α+1.

Note that the theory PRT1 is a functional analog of PT in the same way
that PG1 is a functional analog of PG. The theory PRT<α, for 1 < α ≤ ε0,
however, is a much stronger theory of truth than PT—it formalizes the
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Tarskian hierarchy up to the level α.46 For example, PGT2 contains the
axioms:

Tr2(pTr1(p0 = 0q)q),

and
∀x(Tr2(Tr1. (ẋ))↔ Tr1(x)),

just like PGA2. Indeed, we get:
Proposition 2.8.4. For all ordinals 1 ≤ α ≤ ε0, the theory PGA<α proves
the theory PRT<α: PGA<α ` PRT<α.

Proof. In large parts, the proof is analogous to the proof of Proposition 4.6
of the first part of this chapter: we carry out the same argument for all
β < α. The interesting cases are the new axioms RP β10−13, for β < α, which

can be shown from the typed Aristotelian principles APUγT/F and APDβ,γ
T/F ,

for γ < β ≤ α, the typed truth axiom T β3 , and the typed ground axioms

Gβ3a/b, for β < α, and Gα4 . Here we only show how to derive RP β10 and RP β11,
as the other axioms are analogous:

• `PGA<α ∀x(Trβ(Trγ.
ẋ)↔ Trγ(x)) for γ < β < α

Let x be a fresh variable for ∀-Intro. We now prove both directions of
the biconditional Trβ(Trγ.

ẋ)↔ Trγ(x).

“→:” Assume (∗) Trβ(Trγ.
(x)) for a →-Intro. By T β3 , we can derive

Sent<β(Trγ.
(x)). Using PA and T γ3 , we can derive (∗∗) Sent<γ(x) from

this. Moreover, using (∗) and APDβ,γ
T :

∀x(Trβ(Trγ.
(ẋ))→ x� Trγ.

(ẋ)),

we can derive x� Trγ.
(ẋ). Using (∗∗) and Gγ4 :

∀x∀y(x� y → (Sent<γ(x)→ Trγ(x))),

we can in turn derive: Trγ(x). Thus, we get Trβ(Trγ.
(x)) → Trγ(x)

by →-Intro.

46 We can formulate a slightly stronger version of PRT<α by replacing the schematic ax-
ioms RP β12 and RP β13 with the quantified axioms: ∀x∀γ<. pβq(Sent<γ(x)→ (Trβ(Trγ. ẋ)↔
Trβ(x))) and ∀x∀γ<. pβq(Sent<γ(x) → (Trβ(¬. Trγ. ẋ) ↔ Trβ(¬. x))), where ∀γ quantifies
over codes of ordinals, pβq is a term for a code of the ordinal β, and <. represents the
well-ordering on ordinals. To properly formulate these axioms, we require a coding of
the ordinals up to ε0, a representation of the natural well-ordering of these ordinals, and
a justification for quantifying into ordinal indexes in Sent<γ and Trγ. . We will discuss
such a coding below, but for reasons of perspicuity, we will stick with the slightly weaker
schematic version of PRT<α. Also, the (schematic) theory PRT<α is equivalent to the
(schematic) theory RT<α of ramified truth up to α, which is the typed version of CT .
As in the case of PT and CT, we will take the meta-theorems of RT<α and apply them
immediately to PRT<α.
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“←:” Assume (∗′) Trγ(x) for another →-Intro. Using PA and Gγ4 , we
get Sent<γ(x). From this and PA, we can derive for all γ < β < α
that (∗∗’) Sent<β(Trγ.

(ẋ)). Moreover, using (∗′) and APUγT :

∀x(Trγ(x)→ x� Trγ.
(ẋ)),

we get x�Trγ.
(ẋ)). From this, using (∗∗′) and Gβ3b, we get Trβ(Trγ.

(x))

and thus Trγ(x)→ Trβ(Trγ.
(x)) by →-Intro.

Putting both “→” and “←” together, we get Trβ(Trγ.
ẋ)↔ Trγ(x) by

↔-Intro. And, since x was a fresh variable, we can derive:

∀x(Trβ(Trγ.
ẋ)↔ Trγ(x))

by ∀-Intro as desired.

• `PGA<α ∀x(Sent<γ(x)→ (Trβ(Trγ.
ẋ)↔ Trβ(x))) for γ < β < α.

Let x be a fresh variable for ∀-Intro. Assume Sent<γ(x) for a →-
Intro. We now prove both directions of the biconditional Trβ(Trγ.

ẋ)↔
Trβ(x).

“→:” Assume (∗′′) Trβ(Trγ.
(ẋ)) for →-Intro. From this, Tβ

3 , and PA,

we can derive Sent<β(Trγ.
ẋ) and thus also (∗∗′′) Sent<β(x). As before,

we get x � Trγ.
ẋ using APDβ,γ

T . Using (∗∗”) and Gβ3a, we can derive

Trβ(x). Thus, we have Trβ(Trγ.
ẋ)→ Trβ(x) by →-Intro.

“←:” Assume Trβ(x) for yet another →-Intro. From this and APUβT ,
we get x� Trβ(x). Since we have assumed Sent<γ(x), we get Trγ(x)
from this and Gγ3a. From this and APUγT , we get (∗′′′) x�Trγ.

(ẋ). But

now since γ < β, we can show in PA that Sent<β(Trγ.
(ẋ). But from

this and (∗′′′), we get Trβ(Trγ.
(ẋ)). So, we have Trβ(x)→ Trβ(Trγ.

(ẋ))
by →-Intro.

Now putting both “→” and “←” together, we get Trβ(Trγ.
(ẋ)) ↔

Trβ(x)) by ↔-Intro and so Sent<γ(x)→ (Trβ(Trγ.
(ẋ))↔ Trβ(x)) by

→-Intro. Finally, since x was a fresh variable, we have:

∀x(Sent<γ(x)→ (Trβ(Trγ.
(ẋ))↔ Trβ(x))),

as desired.

This has the immediate consequence that for all ordinals β < α < ε0, the
theory PGA<α proves the following typed version of the T-scheme for all
languages L<β:
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Lemma 2.8.5. For all ordinals 0 < γ ≤ β < α < ε0 and for all sentences
ϕ ∈ L<γ :

`PGA<α ∀t1, . . . ,∀tn(Trβ(pϕ(ṫ1, . . . , (̇tn))q)↔ ϕ(t1, . . . , tn)).

Next, we will now show that for all ordinals 1 ≤ α < ε0, the theory PGAα is
a proof-theoretically conservative extension of the theory PRTα. But first,
we need to introduce some more technical preliminaries: It is well-known
that we can extend the technique of Gödel numbering to get terms for all
ordinals below ε0 [111, p. 17–42]. Let’s denote the set of all ordinals below
ε0 by On<ε0 . We can adjust our coding function # : L → N such that
we injectively assign every ordinal α ∈ On<ε0 a unique code #α ∈ N that
is different form all the codes #σ of the other expressions σ of L. For all
α ∈ On<ε0 , we define the term pαq to be #α, i.e. our term for α is the
numeral of the code #α of α. Moreover, we extend the axioms of ordinary
arithmetic to cover ordinal arithmetic up to ε0. For simplicity, we’ll use the
same terminology for ordinal arithmetic and ordinary arithmetic. Thus, for
example, we can now write pαq×pβq in L to denote the product of ordinals
α, β ∈ On<ε0 . Moreover, we get:

`PA pαq× pβq = pγq iff α× β = γ,

for all ordinals α, β, γ ∈ On<ε0 . PA can represent the set of codes of ordinals
below ε0 and we’ll use On<ε0. as a predicate for this. In particular, we get
for all natural numbers n ∈ N:

`PA On<ε0. (n) iff n ∈ #On<ε0 = {#α | α ∈ On<ε0}.

Finally, PA can prove the standard well-ordering < of the ordinals below
ε0 and we’ll use <. to represent this ordering. We get for all ordinals α, β ∈
On<ε0 :

`PA pαq<. pβq iff α < β.

With these preliminaries in place,47 we’ll define a slightly non-standard no-
tion of complexity for the formulas in L<ε0 :
Definition 2.8.6 (‘ω-complexity’). For all ordinals 1 ≤ α ≤ ε0, we define
the function | |ω : L<α → On<ε0 that assigns to every formula ϕ ∈ Lα its
ω-complexity |ϕ|ω recursively by saying that:

(i) |ϕ|ω =

{
ω × α if ϕ = Trα(t)

0 if ϕ atomic otherwise

(ii) |¬ϕ|ω = |ϕ|ω + 1;

47Now we could define quantification over ordinals by saying that ∀γϕ means
∀x(On<ε0. (x) → ϕ) and work with the more general versions of the axioms mentioned
before. But for reasons of perspicuity, we refrain from doing so.
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(iii) |ϕ ◦ ψ|ω = lub(|ϕ|ω, |ψ|ω) + 1, for ◦ = ∧,∨; and

(iv) |Qxϕ|ω = |ϕ|ω + 1, for Q = ∀, ∃.

Note that ω-complexity agrees with ordinary complexity on the formulas of
L<1. Note furthermore that the function x 7→ ω×x is strictly monotonically
increasing on the ordinals below ε0:
Lemma 2.8.7. For all α, β ∈ On<ε0, if α < β, then ω × α < ω × β.

Note that as a consequence, we get that for all ordinals 0 < α < ε0, if ϕ ∈
L<α, then |ϕ|ω < |Trα(pϕq)|ω. In other words, ω-complexity has a sort of
“tracking property:” it can “track” the levels of Tarski’s hierarchy. Moreover,
we can represent ω-complexity in PA. More specifically, the function cω :
#L → N that maps the code #ϕ of a formula ϕ ∈ L to its ω-complexity
|ϕ|ω is recursive and thus representable in PA. We represent cω by the unary
function symbol cω. . Thus, we get for all ϕ ∈ L<ε0 and all α ∈ On<ε0 :

`PA cω. (pϕq) = pαq iff |ϕ|ω = α.

With this representation, we can prove the following provable version of the
“tracking property” of ω-complexity:
Lemma 2.8.8. For all ordinals 0 < β ≤ α < ε0:

`PAGα ∀x(Sent<β(x)→ cω. (x)<. cω. (Trβ.
(ẋ))).48

Using ω-complexity, we’ll obtain the main result of this section:
Theorem 2.8.9. For all 0 ≤ α < ε0, the theory PGAα is a proof-
theoretically conservative extension of the theory PRTα.

Proof. First, we define the translation function τ : L�
α → Lα by saying that:

• τ(ϕ) =

{
Trα(s) ∧ Trα(t) ∧ cω. (s)<. cω. (t) if ϕ = s� t

ϕ if ϕ atomic otherwise

• τ(¬ϕ) = ¬τ(ϕ);

• τ(ϕ ◦ ψ) = τ(ϕ) ◦ τ(ψ), for ◦ = ∧,∨; and

• τ(Qxϕ) = Qx(τ(ϕ)), for Q = ∀, ∃.

Then, we note that (a) for all ϕ ∈ Lα, τ(ϕ) = ϕ. Next, we check that (b)
for all ϕ ∈ L�

α , if `PGAα ϕ, then `PRTα τ(ϕ). The typed truth axioms of
PGAα are also axioms of PRTα, so we only need to check the typed ground
axioms and the typed upward and downward directed axioms. Here we only
go through a few cases to illustrate the idea:

48We don’t give the detailed proof here, but it essentially proceeds by using induction
on ordinals below ε0 in PA.
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• In the case of the axiom Gα4 , we get:

τ(Gα4 ) = ∀x∀y((Trα(x)∧Trα(y)∧cω. (x)<. cω. (y))→ Sent<α(x)∧Sent<α(y))

This is provable (almost) immediately from the typed truth axiom Tα
3

of PRTα:
∀x(Trα(x)→ Sent<α(x)).

• Finally, consider the axioms (APUβ
T ):

∀x(Trβ(x)→ x� Trβ. (ẋ)),

where β < α. We get:

τ(APUβT ) = ∀x(Trβ(x)→ Trα(x)∧Trα(Trβ.
(ẋ))∧cω. (x)<. cω. (Trβ.

(ẋ))).

Now let x be a fresh variable for ∀-Intro and assume Trβ(x) for a

→-Intro. Using the axiom T β3 of PRTα, we can infer that Sent<β(x).
Moreover, since β < α by assumption, we can infer that Trα(Trβ.

(ẋ))

and Trβ(x) using the axiom RPα12 of PRTα. Finally, by Lemma 2.8.8,
we get Sent<β(x) → cω. (x)<. Trβ.

(ẋ). Since we know already that

Sent<β(x), we get the final piece cω. (x)<. cω. Trβ.
(ẋ). Putting all of this

together, by →-Intro, we have

Trβ(x)→ Trα(x) ∧ Trα(Trβ.
(ẋ)) ∧ cω. (x)<. cω. (Trβ.

(ẋ)),

and since x was a fresh variable, by ∀-Intro, we get the desired theorem.

Putting (a) and (b) together, the claim follows.

The theorem has the following immediate consequence:49

Corollary 2.8.10. For all 0 ≤ α < ε0, the theory PGAα is consistent.

The proof of Theorem 2.8.9 essentially works because of the “tracking prop-
erty” of ω-complexity. The idea of the proof is the same as in the proof of the
corresponding result in the first part of this chapter, but the translation we
used there would not have worked. Sentences of the form Trβ(pϕq) involving
the truth predicate all have a classical complexity of zero, while the sentence

49We could also use the theorem to determine the proof theoretic strength of PGAα,
but there is a small “hickup:” the version of PRTα that we discussed here is not exactly
the one that is usually discussed in the literature. As mentioned in Footnote 46, PRTα is
usually formulated using quantification over ordinals, which we avoided here for reasons of
perspicuity. The version of PRTα with axioms quantifying over ordinals proves the same
arithmetical theorems as the theory RAα of ramified analysis up to (and including) α. For
a proof of this result, see [35]. We suspect that the proof theoretic strength of our version
of PRTα is very close to this, although we’re not going to prove anything to this effect.
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ϕ may have arbitrary complexity. Thus, we would not be able to derive the
translations of the (typed versions of the) Aristotelian principles under the
translation from the previous chapter. The trick was to use ω-complexity in
the translation—this is what allowed us to prove the result. The technique of
the proof works for all ordinals α < ε0, since PA can prove the well-ordering
of these ordinals, which is required for the proof. The theory PGA<ε0 is the
first theory where our proof doesn’t work anymore, because in this theory
we don’t have a “highest” truth predicate as required for the definition of
τ . But we can extend our result to this theory using a simple compactness
argument:
Corollary 2.8.11. The theory PGA<ε0 is a proof-theoretically conservative
extension of the theory PRT<ε0.

Proof. Assume that there is a sentence ϕ ∈ L<ε0 such that `PGA<ε0 ϕ, but
6`PRT<ε0 ϕ. Since proofs are finite objects, there can only be finitely many
occurrences of different truth predicates Trβ1 , . . . , T rβn , for 0 < β1 < . . . <
βn < ε0, in the proof. But then the proof of ϕ, is also a proof in PGAβn and
ϕ ∈ Lβn . Now by Theorem 2.8.9, PGAβn is conservative over PRTβn . This
means that `PRTβn ϕ and thus also `PRT<ε0 ϕ. Contradiction! Thus, there
is no such ϕ and the claim holds.

We get immediately:
Corollary 2.8.12. The theory PGA<ε0 is consistent.

The theory PGA<ε0 is a natural stopping point for the methods we’ve de-
veloped in this chapter.50

We have shown the consistency of our theories PGA<α, where 1 ≤ α ≤ ε0,
by proof theoretic means. But for reasons of perspicuity, it would also be
good to have an idea what models for these theories look like. In the rest of
this section, we will show how to extend the construction from the previous
chapter to obtain models for PGA<α, where 1 ≤ α ≤ ε0.

As in the case of PT, there is a standard model of PRT<α, for 1 ≤ α ≤ ε0. A
model for the language L<α is a structure of the form (N, (Sβ)β<α), where for
β < α, the set Sβ interprets the truth predicate Trβ ∈ L<α. For 1 ≤ α ≤ ε0,
we define the sets (Sβ)β<α by the following (transfinite) recursion:

• S1 = {#ϕ | ϕ ∈ L<1,N � ϕ};

• Sα+1 = Sα ∪ {#ϕ | ϕ ∈ L<α, (N, (Sβ)β<α) � ϕ}

• Sα =
⋃
β<α Sβ, if α is a limit ordinal.

50The situation is quite similar to the corresponding theories of truth. For a discussion
of the natural stopping point see [58, p. 322-29].
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Then we get, for all 1 ≤ α ≤ ε0, that (N, (Sβ)β<α) � PRT<α. For 1 ≤ α ≤ ε0,
the model (N, (Sβ)β<α) is the standard model of PRT<α—it models Tarski’s
hierarchy of truths.

We now extend our definition of grounding-trees from the previous chapter
to grounding-trees over the standard model of PRT<α:
Definition 2.8.13. Let 1 ≤ α ≤ ε0 and let (N, (Sβ)β<α) be the standard
model of PRT<α. We define the grounding-trees over (N, (Sβ)β<α) by the
following clauses for all formulas ϕ ∈ L<α:

(i) #ϕ ∈
⋃
β<α Sβ, then #ϕ is a grounding-tree over (N, (Sβ)β<α) with

#ϕ as its root;

(ii) if
#ϕ

T
is a grounding-tree T over (N, (Sβ)β<α) with #ϕ as its root, then

#¬¬ϕ

#ϕ

T

is a grounding-tree over (N, (Sβ)β<α) with #¬¬ϕ as its root;

(iii) if
#ϕ

T
is a grounding-tree T over (N, (Sβ)β<α) with #ϕ as its root, then

#(ϕ ∨ ψ)

#ϕ

T

is a grounding-tree over (N, (Sβ)β<α) with #(ϕ ∨ ψ) as its

root;

(iv) if
#ψ

T
is a grounding-tree T over (N, (Sβ)β<α) with #ψ as its root,

then

#(ϕ ∨ ψ)

#ψ

T

is a grounding-tree over (N, (Sβ)β<α) with #(ϕ∨ψ) as

its root;

(v) if
#ϕ

T1

,
#ψ

T2

are grounding-trees T1, T2 over (N, (Sβ)β<α) with #ϕ,#ψ
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as their roots respectively, then

#(ϕ ∧ ψ)

#ϕ

T1

#ψ

T2

is a grounding-tree over

(N, (Sβ)β<α) with #(ϕ ∧ ψ) as its root;

(vi) if
#ϕ(t)

T
is a grounding-tree T over (N, (Sβ)β<α) with #ϕ(t) as its root,

then

#∃xϕ(x)

#ϕ(t)

T

is a grounding-tree over (N, (Sβ)β<α) with #∃xϕ(x) as

its root;

(vii) if
#ϕ(t1)

T1

,
#ϕ(t2)

T2

, . . . are grounding-trees T1, T2, . . . over (N, (Sβ)β<α)

with #ϕ(t1),#ϕ(t2), . . . as their roots respectively, where t1, t2, . . . are

all and only the terms of LPA, then

#∀xϕ(x)

#ϕ(t1)

T1

#ϕ(t2)

T2

. . .
is a grounding-

tree over (N, (Sβ)β<α) with #∀xϕ(x) as its root;

(viii) if
#¬ϕ

T
is a grounding-tree T over (N, (Sβ)β<α) with #¬ϕ as its root,

then

#¬(ϕ ∧ ψ)

#¬ϕ

T

is a grounding-tree over (N, (Sβ)β<α) with #¬(ϕ∧ψ)

as its root;

(ix) if
#¬ψ

T
is a grounding-tree T over (N, (Sβ)β<α) with #¬ψ as its root,

then

#¬(ϕ ∧ ψ)

#¬ψ

T

is a grounding-tree over (N, (Sβ)β<α) with #¬(ϕ∧ψ)

as its root;
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(x) if
#¬ϕ

T1

,
#¬ψ

T2

are grounding-trees T1, T2 over (N, (Sβ)β<α) with

#¬ϕ,#¬ψ as their roots respectively, then

#¬(ϕ ∨ ψ)

#¬ϕ

T1

#¬ψ

T2

is a grounding-

tree over (N, (Sβ)β<α) with #¬(ϕ ∨ ψ) as its root;

(xi) if
#¬ϕ(t)

T
is a grounding-tree T over (N, (Sβ)β<α) with #¬ϕ(t) as

its root, then

#¬∀xϕ(x)

#¬ϕ(t)

T

is a grounding-tree over (N, (Sβ)β<α) with

#¬∀xϕ(x) as its root;

(xii) if
#¬ϕ(t1)

T1

,
#¬ϕ(t2)

T2

, . . . are grounding-trees T1, T2, . . . over

(N, (Sβ)β<α) with #¬ϕ(t1),#¬ϕ(t2), . . . as their roots respec-
tively, where t1, t2, . . . are all and only the terms of LPA, then

#¬∃xϕ(x)

#¬ϕ(t1)

T1

#¬ϕ(t2)

T2

. . .

is a grounding-tree over (N, (Sβ)β<α) with

#∀xϕ(x) as its root;

(xiii) if
#ϕ

T
is a grounding-tree T over (N, (Sβ)β<α) with #ϕ as its root

and #ϕ ∈ Sβ, for β < α, then

#Trβ(pϕq)

#ϕ

T

is a grounding-tree over

(N, (Sβ)β<α) with #Trβ(pϕq) as its root;

(xiv) if
#¬ϕ

T
is a grounding-tree T over (N, (Sβ)β<α) with #¬ϕ as its root
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and #ϕ ∈ Sβ, for β < α, then

#¬Trβ(pϕq)

#ϕ

T

is a grounding-tree over

(N, (Sβ)β<α) with #¬Trβ(pϕq) as its root;

(xv) nothing else is a grounding-tree over (N, (Sβ)β<α).

Now, in contrast to grounding-trees over (N,S), grounding-trees over
(N, (Sβ)β<α) can have an infinite height:
Definition 2.8.14. We define the height h(T ) of a grounding tree over
(N, (Sβ)β<α) by saying that:

(i) all grounding-trees over (N, (Sβ)β<α) of the form #ϕ ∈ S have height
one;

(ii) if T is a grounding-tree over (N, (Sβ)β<α) that is constructed from
grounding-trees T1, T2, . . . over (N, (Sβ)β<α), then the height of T is
one plus the least upper bound of the heights of T1, T2, . . .:

h(T ) = lub{h(T1), h(T2), . . .}+ 1,

where lub is the operation of taking the least upper bound.

We call a grounding-tree over (N, (Sβ)β<α) degenerate iff it is of height one.

To see that there are grounding-trees of infinite height, leet DN0=0(x) repre-
sent the property of being an instance of 0 = 0 preceded by an even number
of negations. Then it is easily checked that for all ϕ such that DN0=0(#ϕ),
there is a grounding-tree of the form

DN0=0(p¬ . . .¬(0 = 0)q)→ #Tr1(p¬ . . .¬(0 = 0)q)

#Tr1(p¬ . . .¬(0 = 0)q)

...

#0 = 0

which has height n
2 + 3, where n is the number of negations in ϕ. A conse-

quence of this is that the least upper bound of the heights of T1, T2, . . . in
the grounding-tree
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#∀x(DN0=0(x)→ #Tr1(x))

#DN0=0(t1)→ #Tr1(t1)

T1

#DN0=0(t2)→ #Tr1(t2)

T2

. . .

is at least ω and thus the height of this tree is at least ω + 1.51

Now, an important consequence of this observation is that we can’t use
ordinary induction on the height of trees to prove claims about all grounding-
trees. We need to use transfinite induction on the height of the grounding-
trees. This doesn’t add any further complications, but to be explicit let’s
state the form of the principle that we’re going to use. Consider a property
of grounding-trees. Then, if we can show that any degenerate grounding-tree
has the property and we can show that if we can show that assuming that all
trees of a height smaller than a given tree have the property, then the tree
itself has the property, it follows that all grounding-trees have the property.
Note that in this form of the principle, the induction step also includes limit
cases, where we consider a tree of the height of a limit ordinal and need to
show that the tree has the property in question, given that all trees of a
lower height have the property.

Analogously to the case of grounding-trees over (N,S), we can now show
that grounding-trees over (N, (Sβ)β<α) are: (i) rooted graphs over

⋃
β<α Sβ;

(ii) indeed rooted trees over
⋃
β<α Sβ, i.e. they don’t contain any cycles; and

finally, (iii) transitive.
Lemma 2.8.15. Let 1 ≤ α ≤ ε0, (N, (Sβ)β<α) be the standard model of
PRT<α, and let T be a grounding-tree over (N, (Sβ)β<α). Then for all for-
mulas ϕ ∈ L<α, if #ϕ is a vertex in T , then #ϕ ∈

⋃
β<α Sβ.

Proof. The new cases for clauses (xiii) and (xiv) follow by the fact that
(N, (Sβ)β<α) is a model of PRT<α.

Remember the notion of a code of a formula occurring below another code
in a grounding-tree over (N,S). We now adapt this notion to grounding-
trees over (N, (Sβ)β<α) by recursively saying that, for all 1 ≤ α ≤ ε0,
no code of any formula occurs below the code of any other formula in a
degenerate grounding-tree over (N, (Sβ)β<α), and if T is a grounding-tree
over (N, (Sβ)β<α) that was constructed from grounding-trees T1, T2, . . . over

51In fact, by a slightly more complicated argument we can show that the height of this
tree is exactly ω + 1.
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(N, (Sβ)β<α) according to the rules (ii–xvi) of Definition 2.8.13, then all
occurrences of all formulas in T1, T2, . . . occur below the root of T in T .

Then we can show:
Lemma 2.8.16. Let 1 ≤ α ≤ ε0 and let (N, (Sβ)β<α) be the standard model
of PRT<α. If T is a grounding-tree over (N, (Sβ)β<α) with #ϕ as its root,
for some formula ϕ ∈ L<α. Then, all formulas ψ ∈ L<α whose code #ψ
occurs below #ϕ in T have a lower ω-complexity than ϕ.
Lemma 2.8.17. Let 1 ≤ α ≤ ε0, (N, (Sβ)β<α) be the standard model of
PRT<α, and let T be a grounding-tree over (N, (Sβ)β<α). Then between
any two nodes #ϕ and #ψ in T , for formulas ϕ,ψ ∈ L<α, there is exactly
one path.
Lemma 2.8.18. Let 1 ≤ α ≤ ε0 and let (N, (Sβ)β<α) be the standard
model of PRT<α. If there is a grounding-tree T1 over (N, (Sβ)β<α) with
#ψ as its root and #ϕ1,#ϕ2, . . . as its leaves and there is grounding-
tree T2 over (N, (Sβ)β<α) with #ψ,#ψ1,#ψ2, . . . as its leaves and #θ
as its root, then there is a grounding-tree T3 over (N, (Sβ)β<α) with
#ϕ1,#ϕ2, . . . ,#ψ1,#ψ2, . . . as its leaves and #θ as its root.

Finally, we define the standard model of PGA<α by saying that:
Definition 2.8.19. Let 1 ≤ α ≤ ε0 and let (N, (Sβ)β<α) be the standard
model of PRT<α. We define the relation R ⊆ N2 by saying that for all n,m ∈
N, R(m,n) iff there is a non-degenerate grounding-tree over (N, (Sβ)β<α)
with n as a leaf and m as its root.

Putting Lemmas 2.8.15, 2.8.17, and 2.8.18 together, we obtain:
Theorem 2.8.20. (N, (Sβ)β<α,R) is a model of PGA<α, for 1 ≤ α ≤ ε0,
i.e. (N, (Sβ)β<α,R) � PGA<α.

Proof. By Lemmas 2.8.15, 2.8.17, and 2.8.18, grounding-trees over
(N, (Sβ)β<α) behave appropriately and satisfy the basic ground axioms.
Since (N, (Sβ)β<α) is a model of PRT<α, the typed truth axioms are satis-
fied. The only new cases are the axioms for the typed Aristotelian principles.
Here we only show that APUγT , for γ < α holds:

• (N, (Sβ)β<α,R) � ∀x(Trγ(x)→ x� Trγ.
ẋ) for all γ < α.

Let σ be a variable assignment over (N, (Sβ)β<α,R) and σ′ some x-
variant of σ. Assume that (N, (Sβ)β<α,R) �σ′ Trγ(x). This means
that σ′(x) ∈ Sγ . Since Sγ = {#ϕ | ϕ ∈ L<γ , (N, (Sδ)δ<γ) � ϕ},
we know that σ′(x) = #ϕ, for some formula ϕ ∈ L<γ . Now, #ϕ is a
degenerate grounding-tree over (N, (Sβ)β<α). But then, by clause (xiii)

of Definition 2.8.13,
#Trγ(pϕq)

#ϕ
is a non-degenerate grounding-tree

over (N, (Sβ)β<α). Moreover, the root of this tree is #Trγ(pϕq) and
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its only leaf is #ϕ. Now consider σ′(Trγ.
ẋ). Since we know that σ′(x) =

#ϕ and Trγ.
expresses the function that maps codes of formulas to

the code of Trγ applied to the formula, we know that σ′(Trγ.
˙pϕq) =

#Trγ(pϕq). Thus, R(σ′(x), σ′(Trγ.
ẋ)) meaning �σ′ x�Trγ.

ẋ. And since

σ was arbitrary, we get (N, (Sβ)β<α,R) � ∀x(Trγ(x)→ x�Trγ.
ẋ), as

desired.

We can show analogously that the other axioms hold.

2.9 Paradoxes of Self-Referential Ground

In the setting of PG (as well as PGA<α for 0 < α < ε0), we can accommo-
date new n-ary predicates R by stipulating:

∀t1, . . . ,∀tn(Tr(R. (t1, . . . , tn))↔ R(t◦1, . . . , t
◦
n)) and

∀t1, . . . ,∀tn(Tr(¬.R. (t1, . . . , tn))↔ ¬R(t◦1, . . . , t
◦
n)).

If we furthermore add a theory for the new predicate R to our background
theory, the resulting theory will be a theory of partial ground over the hier-
archy of truths of that extended background theory. For example, we could
formulate theories of partial ground over the truths of analysis, of mereol-
ogy, or even of set-theory.52 The resulting theory will then, of course, also
prove all the instances of the T-scheme Tr(pϕq) ↔ ϕ over sentences of the
new language L∪{R}. But this approach has limits. Of course, we can’t let
R be our unary truth predicate Tr itself. It is well-known that if we affirm:

∀t(Tr(Tr. (t))↔ Tr(t◦)) and

∀t(Tr(¬. Tr. (t))↔ ¬Tr(t◦)),
our theory will fall prey to the liar paradox and its ilk. It might be somewhat
surprising to learn, however, that we also can’t affirm:

∀s∀t(Tr(s�. t)↔ s◦ � t◦) and

∀s∀t(Tr(s6. t)↔ s◦ 6 t◦)

in the context of predicational theories of ground. This will be the main
result of this section.53 We’ll call the resulting problem the new puzzle of
ground.

52The truths of new atomic sentences will, of course, not have any provable grounds in
the theory.

53Here s 6 t, for terms s and t, is an abbreviation of ¬(s� t), analogous to the case of
s 6= t. Similarly, the notation s6. t is an abbreviation for the complex function term ¬. (s�. t)
for terms s and t.
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Let’s move to a setting where we can affirm applications of the ground
predicate to sentences involving the ground predicate. For this purpose, we
have to make a couple of adjustments to our theory setup. In the following,
let L� be the language L∪{�}. Now first, we have to assume that we work
in the context of a proper coding for L�. In particular, we now assume that
we have a name pϕq for every sentence ϕ ∈ L�. We assume that we have a
function symbol �. such that:

`PA s�. t = ps� tq,

for all terms s and t. And we let Sent� abbreviate the formula that allows us
to represent the set (of codes of) sentences of L�. In particular, we assume
that for all n ∈ N:

`PA Sent�(n) iff n ∈ #L� and
`PA ¬Sent�(n) iff n 6∈ #L�.

Second, we need to adjust the axiom T3 to:

(T�
3 ) ∀x(Tr(x)→ Sent�(x)),

which allows sentences involving the ground predicate to occur in the context
of the truth predicate (and thus in the context of the ground predicate). We
arrive at a modified predicational ground:
Definition 2.9.1. The predicational theory PUG of untyped ground consists
of the axioms of PG without the axiom T3, plus the axiom T�

3 and the
axioms:

(T 1
�) ∀s∀t(Tr(s�. t)↔ s◦ � t◦) and

(T 2
�) ∀s∀t(Tr(s6. t)↔ s◦ 6 t◦).

We will now show that PUG is inconsistent. To see this, first note that we
can then show in the same way as in the case of PG that PUG proves the
uniform T-scheme for sentences involving the ground predicate:
Lemma 2.9.2. For all sentences ϕ ∈ L�,

`PUG ∀t1, . . . ,∀tn(Tr(ϕ(t1. , . . . , tn. ))↔ ϕ(t◦1, . . . , t
◦
n)).

Proof. By induction on the positive complexity of formulas. The new axioms

T
1/2
� take care of the new base-case.

Note that this lemma doesn’t entail yet that PUG is inconsistent: the truth
predicate Tr is not in the language L� and thus Lemma 2.9.2 doesn’t entail
that we’re applying the truth predicate to sentences involving the same truth
predicate. To see that PUG is inconsistent, we need to do some more work.
Since we work in the context of a coding for L�, we can get the diagonal
lemma for the language:
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Lemma 2.9.3. For all formulas ϕ ∈ L� with exactly one free variable, there
is a formula δ ∈ L� such that

`PA δ ↔ ϕ(pδq).

With these two lemmas in place, we can show our main result:
Theorem 2.9.4. PUG is inconsistent.

Proof. Let ϕ(x) be the formula ¬(x�¬.¬. x). By the diagonal lemma for L�,
we know that there is a formula δ ∈ L� such that:

`PA δ ↔ ¬(pδq� p¬¬δq).

It is easily checked that we can now both prove δ and ¬δ.

We are left with yet another puzzle of ground: by letting the truth predicate
(and thus the ground predicate) apply to truths involving the ground pred-
icate, we made our intuitively plausible theory of ground inconsistent. But
intuitively, we want to be able to talk about the truth of sentences involving
the ground predicate. So what went wrong?

First, note that the new puzzle is different from Fine’s puzzle of ground.
Fine’s puzzle consists in the fact that different intuitively plausible principles
for partial ground and truth entails that the truth of some sentences partially
ground themselves—in contradiction to the irreflexivity of partial ground.
Our puzzle, in contrast, consists in the fact that letting the truth predicate
apply to the ground predicate makes our previously consistent principles of
ground inconsistent.

Moreover, note that the use of double negation (and of the corresponding
upward directed ground axiom) in the proof of Theorem 2.9.4 is dispens-
able. We could equally well have applied the diagonal lemma to the formula
¬(x�x∨. x) or ¬(x�x∧. x) or . . . and we would still have gotten the same in-
consistency result (using the corresponding upward directed ground axioms
for these connectives). The point is that our paradox is not a paradox of
double negation, or disjunction, or conjunction, or the like—it has another
source.

We argue that the paradox is a paradox of self-reference in the context of
partial ground. In support of this claim, first note that all the different sen-
tences that we could use for the proof of Theorem 2.9.4 have in common that
they (provably) “say of themselves” that they violate certain principles of
partial ground, and as a consequence they are inconsistent over our theory of
untyped ground. Thus, the new puzzle of ground bears a strong resemblance
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to the classic semantic paradoxes. Indeed, we can make this analogy even
more explicit in the following proposition. Let’s define the predicate Tr=

0 by
the following explicit definition:

∀x(Tr=
0 (x)↔def ∃s, t(x = (s=. t) ∧ s◦ = t◦) ∨ ∃s, t(x = (s6=. t) ∧ s

◦ 6= t◦))

And let’s define the predicate Tr�
0 by the following explicit definition:

∀x(Tr�
0 (x)↔def ∃s, t(x = (s�. t) ∧ s◦ � t◦) ∨ ∃s, t(x = (s6. t) ∧ s

◦ 6 t◦))

So, intuitively Tr=
0 and Tr�

0 are truth predicates for the literals of L�. We
can then show the following proposition:
Proposition 2.9.5. PUG proves that the formula Tr=

0 (x)∨Tr�
0 (x)∨∃y(y�

x) satisfies the T-scheme for the formulas of L�, i.e. for all ϕ ∈ L�:

`PUG Tr=
0 (pϕq) ∨ Tr�

0 (pϕq) ∨ ∃y(y � pϕq)↔ ϕ.

Proof. By induction on the positive complexity of ϕ for both directions of
the biconditional. The base cases for ϕ being s = t or s 6= t, for terms s and
t, are covered by the basic truth axioms T1 and T2 and the definition of Tr=

0 .
Similarly, the base cases for ϕ being s � t or s 6 t, for terms s and t, are
covered by the axioms T 1

� and T 2
� and the definition of Tr�

0 . The remaining
cases are can be dealt with using Lemma 2.9.2.

In other words, in PUG we can define a truth predicate for L� that satisfies
the T-scheme for L�. It follows by Tarski’s theorem of the undefinability of
truth that PUG is inconsistent [132]. Our Theorem 2.9.4 is only a special
case of this more general fact, as it were. This is the precise sense in which
the ground predicate “behaves too much like a truth predicate”—in other
words: the new puzzle of ground is at heart a paradox of self-reference.

2.9.1 Conclusions

How should we respond to the paradox of self-referential ground? Three nat-
ural ways in which we could try to block the inconsistency theorem suggest
themselves: First, we could try to rule out self-referential sentences of ground
like the one used in the proof of the inconsistency theorem. Second, we could
try to restrict the principles of partial ground used in the proof of the in-
consistency theorem. And third, we could try to formulate a non-standard
logic of ground that does not sanction the logical principles used in the
proof of the inconsistency theorem. The analogy between our inconsistency
theorem (Theorem 2.9.4) and the Tarski’s theorem of the undefinability of
truth (Proposition 2.9.5) suggests a neat terminology for these approaches.
Analogously to theories of truth [58], we get: typed theories of partial ground,
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which avoid paradox by putting type-restrictions on the relation of partial
ground, effectively ruling out self-referential sentences like the one in the
proof; untyped theories of partial ground, which avoid paradox by restricting
the principles of partial ground; and finally non-classical theories of partial
ground, which avoid paradox (or: triviality) by abandoning classical logic in
favor of alternative logics.

The results of §2.6 point in the direction of a typed theory of partial ground.
Indeed our theories PGA<α, for 1 ≤ α ≤ ε0, are typed theories of partial
ground: the axiom Gα4 is effectively a typing axiom. Moreover, we have shown
that the theories PGA<α, for 1 ≤ α ≤ ε0, are consistent (Corollary 2.8.10).
Thus, there is good evidence that a typed solution to the new puzzle of
ground works. A natural direction to take from here would be to extend
Tarski’s truth-theoretic hierarchy (cf. §2.6) to a truth- and ground-theoretic
hierarchy. We would simply type the ground predicate to get a family of
predicates: �1,�2, . . .. We would end up with a doubly-typed theory: one
typing with regard to truth and one typing with regard to ground. The
results from §2.6 suggest that this theory will turn out consistent and this
provides further support for the claim that we should use typing in the
context of theories of ground. But carrying out the details of this proposal
is beyond the scope of this chapter.54

Before we close this section, we would like to point out one important
philosophical consequence of Theorem 2.9.4. Intuitively, applications of the
ground predicate to sentences containing the ground predicate are state-
ments about “the grounds of ground”: we need such statements to say in
virtue of what the truth of a statement of the form s� t, for terms s and t,
holds. Philosophically, this is an important issue, as we will discuss in the
next chapter. But Theorem 2.9.4 shows that we cannot easily address “the
grounds of ground” in our predicational framework. Moreover, as we’ve just
said, if we wish to allow the ground predicate to apply to sentences involv-
ing the ground predicate, we presumably have to involve heavy technical
machinery, as in §2.6. This is a major drawback of the present approach
and one of the reasons why we will ultimately abandon it for the purpose
of this paper. Statements about the “grounds of ground” naturally come up
on our approach to essence. Remember that we wish to say that an essential
property of a thing is a property that is grounded in the identity of the
thing. But then, if we ask ourselves in virtue of what a property is essential
to a thing, the natural answer would be to say that a property is essential
to a thing in virtue of being grounded in the identity of the thing. In other
words, that a property is grounded in the identity of a thing is grounded
in the identity of the thing. But this is a statement about the grounds of

54There is also some great intuitive appeal to an untyped theory of partial ground. A
suggestion for how this might be achieved can be found in Appendix A.
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ground, and as we’ve just seen, we can’t easily formalize such statements in
our predicational theory of ground.

2.10 Conclusion

In this chapter we’ve developed a new and (so we believe) exciting approach
to theories of ground. We’ve shown that simply by formulating the gen-
erally accepted principles of partial ground in a predicational framework,
we get a natural, both mathematically and philosophically interesting, and
most importantly consistent theory of partial ground. Moreover, the meth-
ods we’ve used to develop our theory and to address philosophical questions
arising from it, especially in §2.6, stem from axiomatic theories of truth.
This supports our plea for collaboration between truth-theorists and ground-
theorists. We conjecture that a lot of new and hopefully exciting work can
be done in this direction. In this chapter, we’ve only begun to scratch the
surface, but we never know what the future holds.

As we’ve pointed out in §2.3 there are good philosophical reasons for work-
ing in a predicational framework. In addition to this we might say that,
given the philosophical role that metaphysical ground is supposed to play,
the approach is particularly natural. In effect, metaphysical ground is sup-
posed to one of the fundamental building blocks of reality. As Fine [42,
p.80] puts it: the relation of ground is supposed to play an important role in
“holding up the edifice of metaphysics”. But if metaphysical ground is a fun-
damental concept, then our only recourse for developing a proper theory of
ground seems to be axiomatic: we simply postulate as axioms the principles
of ground that we hold to be true by reflections on the concept of ground.
But, at least for the present purpose, the approach suffers from two major
drawbacks: First, at least in its present state, the approach only works for
the relation of partial ground (see Footnote 2 of this chapter). But when we
wish to view the essential properties of a thing as the properties grounded
in its identity, we’re presumably talking about full ground. But when we
approach full ground using our ground predicate, we face problems.

Full ground, remember, is the relation of one truth holding wholly in virtue
of a possible plurality of others (see Footnote 2 again). Philosophically speak-
ing, it is natural to suppose that the relation of full ground is more funda-
mental than the relation of partial ground. As Fine [42, p. 50] argues, we can
define partial ground in terms of full ground: We simply say that one truth
partially grounds another iff the former truth possibly together with some
others fully grounds the latter truth. But conversely, Fine argues, it is not
possible to define full ground in terms of partial ground. His argument runs
as follows: Let ϕ and ψ be two true sentences. Then, intuitively, the truth
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of ϕ∨ψ holds both fully in virtue of the truth of ϕ and fully in virtue of the
truth of ψ. Thus, both the truth of ϕ and the truth of ψ are full grounds of
the truth of ϕ ∨ ψ. Consequently, the two truths are also partial grounds of
the truth of ϕ∨ψ. Now consider the truth of ϕ∧ψ. Intuitively, the truth of
ϕ ∧ ψ holds partially in virtue of the truths of ϕ and ψ, but not wholly in
virtue of either truth. Thus, the truths of ϕ and ψ are partial grounds, but
not full grounds of the truth of ϕ ∧ ψ. We have the following scenario: the
truths of ϕ∨ψ and ϕ∧ψ have the exact same partial grounds, but different
full grounds. Thus, it is unclear how we should define the full grounds of a
truth solely based on its partial grounds.

If we take full ground to be more fundamental than partial ground, it is nat-
ural to think that we should develop an axiomatic theory of full ground that
proves our theory of partial ground as a sub-theory. Full ground is what
Correia [24, p. 255] calls a many-to-one relation: it is the relation of one
truth holding in virtue of a possible plurality of others. Now, how should we
reflect this fact syntactically? A first approach would be to stick to a binary
ground predicate and represent the possible pluralities of truths as sets of
sentences. But this approach only carries so far. Using the technique of Gödel
numbering, we can only represent finite sets of sentence, but not arbitrary
sets of sentences.55 But in many cases, the plurality of full grounds is intu-
itively infinite. Think for example of the truth of ∀x(S(x) 6= 0). Intuitively,
the truth holds wholly in virtue of all the truths of S(0) 6= 0, S(1) 6= 0, . . .
taken together. Moreover, in the context of our notion of essential properties
as properties grounded in identity, we’d want to say that it is, for example,
essential to a thing that it is different from everything else. In other words,
we’d want to say for all x and for all y 6= x, that y 6= x is grounded in the
identity of x. But there might be infinitely other things and so the grounds
of the essentialist claim for an object a would involve a 6= b, a 6= c, a 6= d, . . ..
For this reason, it seems that we need to adopt multigrade predicates in the
style of [105], which take arbitrary sequents of terms as arguments. If we let
� be such a multigrade predicate for the relation of strict full ground, we
can formalize the first example as:

S(0) 6= 0, S(1) 6= 0, . . .� ∀x(S(x) 6= 0),

while we can at the same time write:

ϕ� ϕ ∨ ψ
55This follows immediately from Cantor’s theorem, which entails that the set ℘(L) of

all sets of sentences of L has a strictly bigger cardinality than L itself. Note that the
language L of Peano arithmetic is countable, i.e. it has the same cardinality of as the
natural numbers. Now assume that there is a coding function that injectively maps every
set of sentence Γ ⊆ L to a unique code #Γ ∈ N. This would mean that the cardinality of
℘(L) is less than or equal to the cardinality of N. But this would mean that the cardinality
of ℘(L) is less than or equal to the cardinality of L, which is impossible. Thus there is no
such coding function.

105



to say that the truth of ϕ fully grounds the truth of ϕ ∨ ψ. Multigrade
predicates, however, mean a significant deviation from standard logic to
infinitary logic. It would be a non-trivial fact that the results of this chapter
still apply in this context and working out the details is (far) beyond the
scope of the present chapter.56

Second, as we’ve pointed out in §2.9.1, the present approach cannot easily be
adapted to account for the “grounds of ground” and this is a serious obstacle
for developing a theory of essence in the present framework. Together, the
two problems—failure to account for full ground and failure to account for
the “grounds of ground”—lead us to abandon the predicational approach for
the purposes of this dissertation. Thus, in the context of this dissertation,
the result of the chapter is negative: predicational theories of ground are
not developed well enough to provide a natural framework for theories of
essence. But in the bigger scheme of things, we hope to have shown that a
predicational approach to ground is a new and exciting field of research that
will hopefully find a natural home in the logic and metaphysics of ground
in the future.

56Another infinitary issue that pops up in the context of full ground is that Fine [42]
argues that we need an infinitary totality (multigrade-)predicate T that applies to a se-
quence of terms t1, t2, . . . iff the denotations of t1, t2, . . . make up the domain of discourse.
This predicate, so Fine, is needed to properly account for the full grounds of the truths of
quantified statements. Once we’ve moved to a multigrade setting, accommodating such a
predicate will be relatively straight-forward, but the step to multigrade predicates is, as
we’ve just pointed out, non-trivial.
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Chapter 3

The Full Logic of Worldly
Ground

3.1 Preface

In this section, we’ll develop our preferred semantic framework for the
purpose of this dissertation: to explicate essential properties as properties
grounded in identity. The framework traces back to the work of Fraassen
[53], who developed an intuitively plausible semantics for the logic of first-
degree entailment in terms of facts verifying and falsifying sentences [1]. This
semantics was recently revived by Fine [42, 44, 38, 45] and brought to bear
on a range of philosophically interesting issues, ranging from counterfactuals
to intuitionistic logic. What’s most important for the present purpose is that
the framework can provide a semantics for a worldly conception of ground.
This has been shown by Fine [42], who gave semantic clauses for a ground
operator that cannot be iterated. In this chapter, we’ll extend this semantics
so that it gives truth-conditions for iterated applications of the ground oper-
ator. This semantic framework, or rather a modified version thereof, will be
the one we’ll use to explicate the notion of essential properties as properties
grounded in the identity of things.

3.2 Introduction

This chapter is about the logic of ground. The aim is to develop a system
for the logic of ground, which treats ground as an iterable operator in the
sense that it can also be iterated. Developing a logic of ground requires us
to do three things:
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(i) we need to give a grammar of ground, which defines the logical form
of sentences of ground;

(ii) we need to give a semantics of ground, which defines truth and logical
consequence for sentences of ground; and

(iii) we need to give a proof-theory of ground, which defines the logically
valid inferences between sentences of ground.

This already sets the plan for the chapter. But first, we’ll give some back-
ground and motivation.

3.3 Background and Motivation

3.3.1 The Logic of Ground

Fine [42] defines ground as “the intuitive notion of one thing holding in
virtue of another” (p. 37).1 He also gives a paradigmatic example of ground.
Assume there’s a ball that is both red and round. Then, according to Fine
[42, p. 37], the following is true:

(1) The fact that the ball is red and round obtains in virtue of the fact that
the ball is red and the fact that the ball is round.

Thus, ground is not a binary relation on the facts, as Fine’s definition might
suggest, but rather it is a multiary relation on the facts: a relation that
holds between one fact “on the one side” and many facts “on the other
side” [105].2 In the terminology of Correia [24], ground is many to one. If
the relation of ground holds between some facts, if one fact holds in virtue
of others, we say in ground-theoretic parlance that the latter facts ground
the former. Thus ground-theoretically speaking, (1) says that the facts that
the ball is red and that the ball is round ground the fact that the ball is
red and round. We call a sentence like this, which says that the relation of
ground holds between some facts, a “sentence of ground.”

The logic of ground is concerned with which sentences of ground follow
from which other sentences of ground—it is concerned with the consequence
relation between sentences of ground. In recent years, a great deal progress
has been made in the logic of ground. Correia [24, 25] and Fine [42, 44] give
very developed systems for the logic of ground, which include both a syntax

1For an (opinionated) introduction to ground, see [28]. For an overview of the recent
literature on ground, see [21, 133, 118].

2 Ground in this sense is what Fine [42, p. 50] calls full ground : the relation of one
fact wholly obtaining in virtue of others. There is also a binary relation of ground that
Fine [42, p. 50] calls partial ground : the relation of one fact obtaining partially in virtue
of another. In this chapter, we’ll focus on full ground.
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and a semantics of ground.3 But their systems have an important restriction:
they don’t allow for iterated sentences of ground, where one “in virtue of”
occurs within the context of another. They only consider simple sentences
of ground, where there are no occurrences of “in virtue of” in the context
of others. Thus we may call their systems logics of simple ground. Litland
[88, p. 131–78] and Litland [87] gives a system that accommodates iterated
sentences of ground: he gives what we may call a logic of iterated ground. But
also Litland’s system has two important limitations: First, Litland’s system
is purely syntactic: it is a proof-theory for the logic of (iterated) ground.
Moreover, this proof-theory is a higher-order natural deduction system in
the sense of Schröder-Heister [126], which, although natural and elegant in
the context of the logic of (iterated) ground, is technically quite sophisticated
and intuitively hard to grasp. The second limitation is that Litland’s system
only treats ground in the context of languages without logical operators—it
is what Fine [42, p. 54–57] and Fine [44, p. 1] calls a “pure logic of ground.”
Moreover, it is a non-trivial technical problem to extend Litland’s proof-
theory to what Fine [42, p. 58–71] calls an impure logic of ground, which
considers ground in the context of languages with logical operators.

The aim of this chapter is to develop a logic of ground that overcomes the
limitations of the previous approaches—the aim is to give what we’ll call
a full logic of ground : an impure logic of both simple and iterated ground.
For reasons of simplicity, we shall confine ourselves, for the most part, to
the full logic of ground in the context of languages with only the truth-
functional connectives, but we shall discuss how the results of the chapter
can be extended to the full logic of ground in the context of languages with
the quantifiers.

3.3.2 Logics of Iterated Ground

Why should we care about iterated sentences of ground? Here is a philo-
sophical reason: If the relation of ground holds between some facts—if one
fact holds in virtue of others—then this is itself a fact: a grounding fact.
But then we may ask the philosophical question whether there is something
that this grounding fact holds in virtue of. And every possible answer to
this question takes the form of an iterated sentence of ground. This gives
an intuitive meaning to iterated sentences of ground: they are possible an-
swers to questions about what we may call the grounds of ground. Under

3Schnieder [124] gives a system for the logic of “because,” which we can also understand
as a logic of ground. But Schnieder only gives a syntax of “because” and not a semantics.
Moreover, Schnieder gives a system for a binary use of “because,” which corresponds to
partial ground. In this chapter, however, we are only interested in the logic of full ground.
See footnote 2.
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this interpretation, iterated sentences can be used to express the claims of
philosophical positions about the grounds of ground.

Let us explore this interpretation of iterated sentences of ground. Metaphysi-
cians have proposed a range of different positions on the grounds of ground:
According to a view proposed by Rosen [121, p. 130–33] and Fine [42, p. 74-
80] facts about ground are grounded in certain essentialist facts about the
concepts involved. Call this the view that essence grounds ground. On this
view, for example, the fact that a particular conjunctive fact is grounded in
its conjuncts is itself grounded in a fact about the nature of conjunction:
the fact that it lies in the nature of conjunction that conjunctive facts are
grounded in their conjuncts. Think about the red and round ball. On the
view that essence grounds ground, if (1) is true, then the following is true:

(2) That the fact that the ball is red and round obtains in virtue of the fact
that it is red and the fact that it is round obtains itself in virtue of the
fact that it lies in the nature of conjunction that conjunctive facts are
grounded in their conjuncts.

On a different view proposed by Bennett [11] and deRosset [32], grounding
facts are simply grounded in the grounds that occur in the grounding fact.
Call this the view that grounds ground ground. Think about the red and
round ball again. On the view that grounds ground ground, if (1) is true,
then the following is true:

(3) That the fact that the ball is red and round obtains in virtue of the fact
that it is red and the fact that it is round obtains itself in virtue of the
two facts that the ball is red and that the ball is round.

And on yet a different view proposed by Litland [88, p. 131–78] and Lit-
land [87], it’s the grounds together with a certain fundamental fact that
ground grounding facts. According to Litland, grounding facts split up into
two components: a factive component consisting of the grounds and a non-
factive component consisting of a non-factive relation of ground. The notion
of ground that we have considered so far is factive: it is a relation on the facts.
Fine [42, p. 48–50] distinguishes from this a non-factive relation of ground,
which he characterizes informally as “obtained from the factive notion by
‘rounding out,’ in which the possible cases of factive grounding are extended
to cases of grounding from impossible antecedents in such a way that the
basic principles governing the behavior of ground are preserved” [42, p. 50,
quotes in the original]. Litland argues that the non-factive component of a
grounding fact is, in a sense, fundamental, since it is not grounded in any
other fact. Fine [42, p. 47–48] distinguishes two forms of a fact not being
grounded in other facts: First, a fact may be ungrounded in the sense that
it is not grounded in anything, especially not in any other fact. Second, a
fact may be zero-grounded in the sense that it is grounded, but in zero facts.
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Zero-grounding is thus a form of fundamentality: a fact is zero-grounded if
and only if it obtains, but not in virtue of any particular facts. Fine [42]
argues that zero-grounding “may be more than an exotic possibility” [42,
p. 48]. For example, some necessary truths, such as Socrates being identical
to himself, may be best thought of as zero-grounded. For theoretical pur-
poses, it is useful to postulate a zero-fact in this context. The zero-fact is a
fact that necessarily obtains, but is itself without any content. It allows us
to distinguish semantically between ungrounded and zero-grounded facts: a
fact is ungrounded if and only if there are no facts that ground it and a fact
is zero-grounded if and only if it is grounded by the zero-fact. Putting the
factive and the non-factive component of grounding facts together, Litland
claims that a grounding fact is grounded in the grounds and the zero-fact.
Call this the view that grounds-plus-zero ground ground. Thus, on the view
that grounds-plus-zero ground ground, if (1) is true, then the following is
true:

(4) That the fact that the ball is red and round obtains in virtue of the
fact that it is red and the fact that it is round obtains in virtue of the
zero-fact together with the two facts that the ball is red and that the
ball is round.

These are the main views on the grounds of ground in the literature.4 Since
they are metaphysical views, these views and their consequences for iterated
sentences of ground are arguably metaphysically necessary. This has an im-
portant consequence: on the view that essence grounds ground, necessarily,
if (1) is true, then (2) is true; on the view that grounds ground ground, nec-
essarily, if (1) is true, then (3) is true; and on the view that grounds-plus-zero
ground ground, necessarily, if (1) is true, then (4) is true. And, on the view

4There is another view on the grounds of ground, which we wont consider in the follow-
ing. Dasgupta [30] discusses the grounds of ground from the perspective of ground-theoretic
physicalism: the view that all facts are ultimately grounded in physical facts. Prima fa-
cie, grounding facts are a problem for this view because it seems counter-intuitive to say
that grounding facts are grounded in physical facts. In light of this problem, Dasgupta
defends yet another position on the grounds of ground, according to which grounding facts
are autonomous: “[grounding facts] are special because they are [. . . ] “not apt for being
grounded.” It is not that the question of what grounds them is well taken and the answer
is “Nothing”; it is, rather, that the question of what grounds them does not legitimately
arise in the first place” [30, p. 563]. This suggests that Dasgupta’s view is that iterated
sentences of ground are meaningless, contrary to what we have claimed above. He ar-
gues for his view by attempting to show that it overcomes all the problems of alternative
proposals—especially in the light of physicalism. Dasgupta raises many interesting philo-
sophical points, but in this chapter we are not primarily interested in the philosophical
merit of the individual positions on the grounds of ground—regardless of the assumption
of physicalism. Rather, we are interested in the logic of ground that results from these
positions. For this purpose, we take it as a working assumption that iterated sentences
of ground are meaningful in the sense sketched above. This working assumption will re-
ceive partial vindication from the semantics of ground we’ll give later in the chapter: the
semantics will give a precise philosophical meaning to iterated sentences of ground.
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that essence grounds ground, it’s arguably the case that it’s possible that (1)
is true and (3) is false, that (1) is true and (4) is false, and similarly for the
other views. This brings us to the logic of iterated ground. On the standard
view of consequence, a sentence ϕ is a consequence of a set of sentences Γ
if and only if it is impossible for all the members of Γ to be true, without ϕ
being true. This means that: on the view that essence grounds ground, (2)
is a consequence of (1); on the view that grounds ground ground, (3) is a
consequence of (1); and on the view grounds-plus-zero ground ground, (4) is
a consequence of (1). And it means that: on the view that essence grounds
ground, (3) is not a consequence of (1) and (4) is not a consequence of
(1)—and analogously for the other views. The point here is that on different
views about the grounds of ground, we get different consequence relations
between sentences of ground, and thus different logics of iterated ground.

The aim of this chapter is to explore the logic of iterated ground according to
the view that grounds ground ground and to formalize it in a system for the
full logic of ground. The results of this paper can be extended with relative
ease to the view that grounds-plus-zero ground ground, but not the view that
essence grounds ground. The reason is that the view that essence grounds
ground requires an account of what Correia [23] calls generic essence: a
concept of essence or rather essential properties, where we not only have
essential properties of objects, but also concepts, properties and so on. To
see this, note in our example (2) above, we said that according to the view
that essence grounds ground, the grounding fact that the conjunctive fact
that the ball is red and round holds in virtue of its two conjunct facts that
the ball is red and that the ball is round holds itself in virtue of the nature of
conjunction. However, as we’ve said in the introduction, in this dissertation
we focus on objectual essence: the concept of essence or rather essential prop-
erties, where essential properties are properties of objects (compare footnote
2, p. 2). And we argue that the view that grounds ground ground gives a
natural full logic of ground for this purpose.

3.3.3 Overview

Here is the plan for the rest of the chapter: In §3.4, we’ll discuss the syntax of
ground and define the (infinitary) languages of ground that we’ll be working
with. Then, in §3.5, we’ll discuss the semantics of these languages. In par-
ticular, we’ll give semantic clauses that correspond to the view that grounds
ground ground. In §3.6, we’ll give an (infinitary) proof system for logic of
the previous semantics. In the conclusion, we’ll sketch how we may obtain
a completeness result, but we’ll omit the details, since this result would re-
quire us to use relatively cumbersome methods from infinitary logic. That’s
the plan. So, let’s get to work.
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3.4 The Full Grammar of Ground

3.4.1 The Operator Approach

As we’ve discussed before in this dissertation, there are two approaches to
the semantics of ground in the literature: on the first approach, ground is
formalized by means of a relational predicate, while on the second approach
ground is formalized by means of an operator [24, p. 253–54, 42, p. 46–48].
Correspondingly, the first approach is called the predicational approach to
the syntax of ground and the second approach is called the operator approach
to the syntax of ground. In this chapter, we’ll take the operator approach
to ground. Thus, we’ll take the logical form of a sentence of ground to be:

ϕ in virtue of ψ1, ψ2, . . . ,

where ϕ,ψ1, ψ2, . . . are sentences. The idea is that the sentences flanking
the phrase “in virtue of” express the relata of ground. Correspondingly, the
intended reading of a sentence of the form ϕ in virtue of ψ1, ψ2, . . . is that
what ϕ expresses holds in virtue of what ψ1, ψ2, . . . express.

3.4.2 Worldly versus Conceptual Ground

As we’ve discussed in the introduction to this dissertation, there are two
competing views of the relata of ground: on the conceptualist view, the relata
of ground are conceptually individuated truths, which we individuate by
means of the sentences that express them; and on the worldly view, the relata
of ground are worldly individuated facts, which we individuate by means of
the objects, properties, and relations they involve. Here both truths and
facts are fact-like entities: entities for which it makes sense to say that they
hold or obtain.5 In this chapter, we will work on the worldly view of the
relata of ground. But for reasons of clarity, it is useful to say a bit more
about the different logics of ground that result from the two different views.

On the operational approach, we use true sentences to express the relata
of ground. But on the two views of the relata of ground, they are different
kinds of entities. On the conceptualist view of the relata of ground, we say
that a true sentence ϕ expresses the truth of ϕ. On the worldly view of the
relata of ground, in contrast, we say that a true sentence ϕ expresses the
fact that ϕ. The difference between the two views is how we individuate the
truths of true sentences and the facts expressed by true sentences.

To illustrate the difference, let’s consider disjunctions. On the conceptualist
view, we would say that for a true sentence ϕ,

5For more on the distinction between truths and facts, see [41].
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• the truth of ϕ ∨ ϕ is distinct from the truth of ϕ.

The reason for making this distinction is that, on the conceptualist view, we
would like to say that for all sentences ϕ and ψ,

• if ϕ is true, then the truth of (ϕ∨ψ) holds in virtue of the truth of ϕ;
and

• if ψ is true, then the truth of (ϕ∨ψ) holds in virtue of the truth of ψ.

In other words, on the conceptualist view, we would like to say that the
truth of a true disjunction holds in virtue of the truth of its true disjuncts.
If a motivation for this view is wanted, then think of the standard way of
determining the truth-value of formulas according to the truth-tables: we
determine the truth-value of a disjunction based on the truth values of its
disjuncts. Now, by a simple application of the previous principle(s), we get
that for all sentences ϕ,

• if ϕ is true, then the truth of (ϕ∨ϕ) holds in virtue of the truth of ϕ.

But conversely, on the conceptualist view, we don’t want to say that for any
sentence ϕ,

• if ϕ is true, then the truth of ϕ holds in virtue of the truth of ϕ ∨ ϕ.

There is both an intuitive and a ground-theoretic justification for this claim
on the conceptualist view. For the intuitive justification, think of the truth-
tables again: we don’t determine the truth-value of a sentence by determining
the truth-value of the disjunction of the sentence with itself. For the ground-
theoretic justification, first note that most philosophers would accept the
following two principle in the logic of ground, regardless of their view of the
nature of the relata of ground:

• For no sentence ϕ and no set of sentences Γ does the truth of ϕ hold
in virtue of the truths of ϕ and Γ.

• For all sentences ϕ and ψ and all sets of sentences Γ and ∆, if the
truth of ϕ holds in virtue of the truths of ψ and Γ and the truth of ψ
holds in virtue of the truths of ∆, then the truth of ϕ holds in virtue
of the truths of Γ and ∆.

In other words, ground is usually assumed to be irreflexive and transitive.6

But given these two principles, we can’t affirm at the same time that if ϕ
is a true sentence, then the truth of ϕ ∨ ϕ holds in virtue of the truth of ϕ
and that the truth of ϕ holds in virtue of the truth of ϕ ∨ ϕ. For together

6This is, in any case, the standard view of ground. Some authors have challenged
this view: Jenkins [66] challenges the claim that ground is irreflexive and Schaffer [122]
challenges the claim that ground is transitive. See Litland [86] and Raven [119] for a
defense of the standard view against these challenges.
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with the two plausible principles, this would lead to a contradiction: first,
by the transitivity of ground, we would get that the truth of ϕ holds in
virtue of the truth of ϕ, and then, by the irreflexivity of ground, we would
get a contradiction. Something has got to give. And on the conceptualist
view of ground, the plausible candidate is the claim that the truth of ϕ
holds in virtue of the truth of ϕ ∨ ϕ. But from this observation it follows
by the indiscernibility of identicals that the truths of ϕ and of ϕ ∨ ϕ have
to be different: since the one truth grounds the other and not vice versa,
the two truths have different properties, and thus they are different. The
general point here is that, on the conceptualist view, the truths of sentences
are very finely individuated, almost as finely as the sentences that express
them. Truths of sentences are something like truth-tropes.

On the worldly view, in contrast, we would say that for all sentences ϕ,

• the fact that ϕ is the same as the fact that ϕ ∨ ϕ.

In other words, we don’t distinguish the fact that is expressed by a sentence
and the fact that is expressed by its own disjunction. Intuitively, the idea
on the worldly view is that no matter what a sentence ϕ says about objects,
properties, or relations, the sentence ϕ ∨ ϕ talks about exactly the same
objects, properties, or relations. Indeed, intuitively, the two sentences say
exactly the same about whatever they talk about. And thus, on the worldly
view, the facts that the two sentences express are the same.

Note, however, that according to the worldly view it’s not in general the case
that necessarily equivalent sentences express the same facts. To illustrate
consider the facts that two times two equals four and that four is an even
number. Intuitively,

• the fact that four is an even number holds in virtue of the fact that
two times two equals four.

If an argument is wanted, then think of the definition of being even: a natural
number n is even iff there is another natural number m such that 2×m = n.
And it’s plausible to say that an instance of the definiendum holds in virtue
of the instance of the definiens—which gives us the claim in question. Now,
many philosophers assume that mathematical facts are necessary (compare
our Introduction, p. 16). Hence, it’s necessary that two times two equals four.
But similarly, by Euler’s identity, it’s necessary that eiπ − 1 = 0. And since,
by standard modal logic, any two necessary facts are necessarily equivalent,
we have that the fact that two times two equals four is necessarily equivalent
to the fact that eiπ − 1 = 0:

• �(two times two equals four iff eiπ − 1 = 0).

But, intuitively,
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• the fact that four is an even number does not hold in virtue of the fact
that eiπ − 1 = 0.

Intuitively, the fact that eiπ − 1 = 0 has absolutely nothing to do with the
fact that four is an even number—and certainly the one fact doesn’t ground
the other. Thus, even though on the worldly view the relata of ground are
more coarsely individuated than on the conceptualist view, the relata of
ground are still relatively fine-grainedly individuated on the worldly view.

Note that so far we haven’t given an identity criterion for the facts expressed
by sentences on the worldly view. But, following Quine’s dictum “no entity
without identity” [106, p. 23], it would be desirable to have a necessary and
sufficient condition for the facts expressed by two sentences to be the same
according to the worldly view. In other words, we would like to fill in the
dots in:

• For all true sentences ϕ and φ, the fact expressed by ϕ is identical to
the fact expressed by ψ iff . . . .

All we know so far, is that two true sentences ϕ and ψ being necessarily
equivalent is not sufficient for the facts that they express to be the same.
So how should we will the gap in the identity criterion. For this purpose,
Correia [24, p. 256–59] introduces the notion of sentences being factually
equivalent. For sentences ϕ and ψ, let us write ϕ � ψ to say that ϕ and ψ
are factually equivalent. Then, the idea is that:

• For all true sentences ϕ and φ, the fact expressed by ϕ is identical to
the fact expressed by ψ iff ϕ� ψ.

But this idea only has merit, of course, if we have an understanding of
the notion of factual equivalence: all that we have gained so far is a pre-
cise terminology for the question at hand. To get a better understanding of
the notion of factual equivalence, Correia [24, 26] suggests that the logic of
factual equivalence is Angell’s logic of analytic equivalence [2]. Correia [27]
develops a semantics for this logic, which we can thus take as the semantics
of factual equivalence as well. Correia’s semantics, however, is algebraic, in
the sense that it’s based on a class of algebraic structures, which are given
by a set of defining equations. This semantics gives us an understanding of
the structure of the facts and factual equivalence according to the worldly
view. But the semantics does not give us an intuitive understanding of facts
and factual equivalence. The problem here really is that the structures used
in the algebraic semantics are given by a set of defining equations, and thus
every collection of objects that satisfy these equations can play the role of
the facts in this semantics. Put differently, all the properties and relations of
the “facts” in a structure of this semantics are only defined in relation to one
another, and thus we don’t get an independent, intuitive understanding of
facts and factual equivalence from this semantics. It is a plausible condition
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on a semantics, however, that if it is to give us a philosophical understanding
of the concepts it applies to, then it should be phrased in terms of indepen-
dently motivated and ideally previously understood concepts. And it seems
that Correia’s semantics does not satisfy this condition.

In recent work, Fine [37] proposes a semantic for Angell’s logic of analytic
equivalence that satisfies our condition. Fine’s semantics is phrased in the
framework of exact truthmaker semantics, which ultimately traces back to
Fraassen [53]. The idea of this semantics is that we interpret sentences by
means of finely individuated states (of affairs), which can exactly verify and
exactly falsify sentences. For example, on this semantics, there will be the
state of the ball being red, the state of the ball being round, and the state
of the ball being red and round. And on this semantics, we say that the
state of the ball being red exactly verifies the sentence “the ball is red,”
the state of the ball being round exactly verifies the sentence “the ball is
round,” and the state of the ball being red and round exactly verifies the
sentence “the ball is red and the ball is round.” What sets this semantics
off from other truthmaker approaches is that the relation of verification is
supposed to be exact : for example, the state of the ball being red and round
is not an exact verifier of the sentence “being red,” even though it contains
(in a mereological sense) an exact verifier of the sentence. Intuitively, the
exact verifiers of a sentence are all the states such that if they obtain, they
are directly responsible for the truth of the sentence. So far, we’ve only
considered actually obtaining states, but on the semantics, there are also
possibly obtaining states of affairs. For example, there will also be the state
of the ball being blue, the state of the ball being green, and so on. According
to the semantics, these states are considered to be exact falsifiers of the
sentence “the ball is red.” Again, intuitively, the exact falsifiers of a sentence
are all the states such that if they obtain, they are directly responsible for the
falsehood of the sentence. Analogously to the case of exact verification, also
exact falsification is supposed to be exact: even though the state of the ball
being green and round contains (in a mereological sense) an exact falsifier of
the sentence “the ball is red,” it is not itself an exact falsifier of the sentence.
Finally, once we know the exact verifiers and falsifiers of sentences, we can
give the truth-conditions for a sentence ϕ by saying that:

• ϕ is true iff some exact verifier of ϕ obtains, and

• ϕ is false iff some exact falsifier of ϕ obtains.

We can then put conditions on the assignment of exact verifiers and falsifiers
to sentences, such that the resulting logic will be classical: for example, we
could demand that for no sentence ϕ there is an exact verifier of the sentence
and an exact falsifier of the sentence, such that it is possible for both states
to obtain; or we could demand that for every sentence ϕ, necessarily, either
an exact verifier or an exact falsifier of the sentence obtains. These two

117



conditions together would ensure classicality of the semantics.

In this semantic framework, Fine’s analysis of factual equivalence is that
two (true) sentences ϕ and ψ are factually equivalent iff they have the same
exact verifiers and falsifiers:

• For all (true) sentences ϕ and ψ, ϕ � ψ iff for all states s, (s is an
exact verifier of ϕ iff s is an exact verifier of ψ) & (s is an exact falsifier
of ϕ iff s is an exact falsifier of ψ).

Fine [37] proceeds to show that this gives us a sound and complete semantics
for Angell’s logic of analytic equivalence. Thus, on this semantics, we get an
identity criterion for facts according to the worldly view:

• For all true sentences ϕ and φ, the fact expressed by ϕ is identical to
the fact expressed by ψ iff for all states s, (s is an exact verifier of ϕ
iff s is an exact verifier of ψ) & (s is an exact falsifier of ϕ iff s is an
exact falsifier of ψ).

Using this criterion, we can say more specifically what the relata of ground
according to the worldly view are: according to Fine’s semantics, they are
effectively pairs of sets of states, which intuitively consist of a set of exact
verifiers and a set of exact falsifiers. Together with the intuitive interpreta-
tion of this semantics that we’ve just discussed, this framework gives us an
understanding of facts and factual equivalence on the worldly view, which
moreover satisfies the intuitive constraint that it should be phrased in terms
of independently motivated and ideally previously understood concepts.

In this chapter, we will employ Fine’s framework for our semantics of ground.
Fine [42, p. 71–74] has shown how we can give truth-conditions for sentences
of ground in this semantic framework, and in this paper, we will extend
Fine’s semantics to cases of iterated ground on the worldly view. The upshot
of the discussion for now is that in our language of ground, we will have an
operator � for factual equivalence, in terms of which we can explain the
identity of the relata of ground and which gets the intended interpretation
given by Fine’s semantics for analytic equivalence.

3.4.3 Weak Ground versus Strict Ground

Fine [42, p. 48–54] distinguishes various of readings of the phrase “in virtue
of,” or, in other words, various concepts of ground. Of the different concepts
that Fine distinguishes, two are especially important for the present purpose:
the notions of strict and weak ground.

The crucial issue on which the distinction between strict and weak ground
rests, is the question whether ground is irreflexive. As we’ve said above,
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ground is usually regarded as an irreflexive and transitive relation. On the
worldly view, this means that the following two principles are usually ac-
cepted:

Irreflexivity. For no sentence ϕ and no set of sentences Γ does the fact
expressed by ϕ hold in virtue of the facts expressed by ϕ and the
members of Γ.

Transitivity. For all (true) sentences ϕ and ψ and all sets of sentences Γ
and ∆, if the fact expressed by ϕ holds in virtue of the facts expressed
by ψ and the members of Γ and the fact expressed by ψ holds in virtue
of the facts expressed by the members of ∆, then the fact expressed
by ϕ holds in virtue of the facts expressed by the members of Γ and
∆.

The reading of “in virtue of” according to which these two principles are
true is is what Fine calls strict ground : the notion is strict because it is
irreflexive.

In contrast, Fine argues that there is also a coherent notion of ground that
is not only not irreflexive, but indeed reflexive in the sense that the notion
satisfies the following principle:

Reflexivity. For every (true) sentence ϕ, the fact expressed ϕ holds in
virtue of the fact expressed by ϕ.

The reading of “in virtue of” according to which Reflexivity and Transi-
tivity are true is what Fine calls weak ground : the notion is weak because
it is reflexive.

According to Fine [42, p. 51–52] the weak notion of ground is often not
expressed by means of “in virtue of,” but rather by means of phrases of the
form

for the fact that ϕ to hold is for the facts that ψ1, ψ2, . . . to hold,

where ϕ,ψ1, ψ2, . . . are sentences. The idea is that a sentence of this form
says that the facts expressed by ψ1, ψ2, . . . are weak grounds for the fact
expressed by ϕ. On this way of expressing ground, it is intuitively plausible
that we get the following two principles:

• For every (true) sentence ϕ, for the fact expressed ϕ to hold is for the
fact expressed by ϕ to hold.

• For all sentences ϕ and ψ and all sets of sentences Γ and ∆, if for the
fact expressed by ϕ to hold is for the facts expressed by ψ and the
members of Γ to hold and for the fact expressed by ψ to hold is for
the facts expressed by the members of ∆ to hold, then for the fact
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expressed by ϕ to hold is for the facts expressed by the members of Γ
and ∆ to hold.

Both principles are intuitively motivated from the intuitive reading of the
phrase “for . . . to hold is for to hold.” Thus, if we take the phrase “for
. . . to hold is for to hold” to express a concept of ground, then it is the
weak concept of ground.

Now Fine claims that we can indeed read the phrase “for . . . to hold is for
to hold” as expressing a concept of ground. To motivate this, let’s con-

sider Hesperus, Phosphorous, and Venus. Since Hesperus, Phosphorous, and
Venus are pairwise identical, the following claims are intuitively plausible:

• For the fact that Hesperus is Venus to hold is for the fact that Phos-
phorous is Venus to hold.

• For the fact that Phosphorous is Venus to hold is for the fact that
Hesperus is Venus to hold.

Now, if we ask ourselves what this means in terms of “in virtue of,” we might
be tempted to accept the following two claims:

• The fact that Hesperus is Venus holds in virtue of the facts that Hes-
perus is Phosphorous and that Phosphorous is Venus.

• The fact that Phosphorous is Venus holds in virtue of the facts that
Hesperus is Phosphorous and that Phosphorous is Venus.

But given Transitivity, these two principles spell trouble, for they entail
that:

• The fact that Hesperus is Venus holds in virtue of the facts that Hes-
perus is Phosphorous and that Phosphorous is Venus.

And this is in direct contradiction to Irreflexivity. Now, Fine’s proposal
is to say that in such a case, we should not read “. . . in virtue of ” as
expressing strict ground, but rather as meaning the same as “for . . . to hold
is for to hold”—as expressing a concept of weak ground. For note that
the following claim is not only innocuous, but indeed intuitively plausible:

• For the fact that Hesperus is Venus to hold is for the facts that Hes-
perus is Phosphorous and that Phosphorous is Venus to hold.

Thus, if we follow Fine, and read “. . . in virtue of ” as meaning the same
as “for . . . to hold is for to hold,” then we don’t face a problem. In
other words, there is a coherent reading of “in virtue of” as expressing weak
ground.

Now, we’re in the somewhat uncomfortable situation of having different
expressions for ground: one and the same expression (“in virtue of”) can
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express a different concept of ground in different contexts, and we can have
different expressions (“in virtue of” and “for . . . to hold is for to hold”)
which can express the same concept. It is time to regiment the syntax of
ground to avoid confusion. In the following, we’ll use Fine’s operators < and
≤ to express strict and weak ground respectively. Thus, a sentence of the
form

ϕ < ψ1, ψ2, . . . ,

where ϕ,ψ1, ψ2, . . . are sentences, says that the fact expressed by ϕ holds in
virtue of the facts expressed by ψ1, ψ2, . . . in the strict sense of ground. And
a sentence of the form

ϕ ≤ ψ1, ψ2, . . . ,

where ϕ,ψ1, ψ2, . . . are sentences, says that the fact expressed by ϕ holds
in virtue of the facts expressed by ψ1, ψ2, . . . in the weak sense of ground.
Correspondingly, we’ll call < the strict ground operator and ≤ the weak
ground operator.7

The notion of weak ground is contested in the literature. In particular, Deros-
set [33] argues that the concept of weak ground is intuitively obscure and
only the concept of strict ground is coherent.8 But for developing a logic
and semantics of (iterated) ground, it is useful to have the notion of weak
ground at hand, so we should say something in defense of the notion.

Fine [42] points out that the notion of weak ground that he has in mind can
be defined in terms of the weak notion of ground. In particular, he says that
for all sentences ϕ,ψ1, ψ2, . . . we can say that:

• ψ1, ψ2, . . . ≤ ϕ iff for all sentences θ and all sets of sentences Γ, if
ψ1, ψ2, . . . ,Γ < θ, then ϕ,Γ < θ.

In other words, ψ1, ψ2, . . . weakly ground ϕ iff ψ1, ψ2, . . . subsume the
ground-theoretic role of ϕ. Under this definition, it is easy to show that
weak ground is reflexive and, assuming that strict ground is transitive, so
is weak ground. Moreover, the definition single-handedly gives us a better
intuitive grasp of the concept of weak ground and discards DeRossett’s wor-
ries: if we say that strict ground is coherent, then certainly also every notion
that can be defined in terms of strict ground is coherent; and since weak
ground can be defined in terms of strict ground, we seem to be committed
to saying that also the concept weak ground is coherent.

For the purpose of developing a semantics and logic of ground it is useful to
take the concept of weak ground as primitive. However, as Fine [42, p. 52]

7Technically speaking, we’ll take the arguments to the left of the operators < and ≤
to be sets of sentences. By standard convention, we’ll omit outermost set-brackets. So
instead of {ψ1, ψ2, . . .} < ϕ, we write ψ1, ψ2, . . . < ϕ, and analogously for ≤. And if Γ is
a set of sentences, we write Γ, ϕ < ψ instead of Γ ∪ {ϕ} < ψ, and analogously for ≤.

8But see [66] for an argument that ground is reflexive in at least some cases.
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points out, it is also possible to define strict ground in terms of weak ground,
by saying for all sentences ϕ,ψ1, ψ2, . . . that:

• ψ1, ψ2, . . . < ϕ iff ψ1, ψ2, . . . ≤ ϕ & for no ψi there is a set of sentences
Γ such that ϕ,Γ ≤ ψi.

In other words, strict ground can be defined as weak ground that cannot
be reversed. We can easily show that according to this definition, strict
ground is indeed irreflexive and, given the assumption that weak ground is
transitive, we can show that strict ground is also transitive. Thus, even if
we take weak ground as primitive, rather then strict ground, we don’t lose
the concept of strict ground: it can be recovered via the above definition.

Taking the concept of weak ground as primitive has the benefit that we
don’t need an extra symbol � for factual equivalence in our language: we
can define this relation in terms of weak ground. The idea is that we can take
factual equivalence to be weak ground in both directions. More formally, we
can say:

• For all sentences ϕ and ψ, ϕ� ψ iff ϕ ≤ ψ & ψ ≤ ϕ.

In due course, we will show semantically that this definition captures indeed
the concept of factual equivalence that we defined above. The upshot of
our discussion here is if we take weak ground as our primitive concept of
ground, and correspondingly the weak ground operator ≤ as our primary
means for expressing ground, then we can recover both strict ground and
factual equivalence—given that we can recover the above definitions in our
framework.

3.4.4 Languages of Ground

The last thing to do in this section is to properly define the languages that
we’ll be working with. For reasons of simplicity, we’ll work with relatively
weak languages that have individual constants, predicates, and the truth-
functional connectives, but no function symbols, variables, or quantifiers. It
is relatively easy, though tedious, to extend our semantics to accommodate
function symbols; we mainly omit them for reasons of technical convenience.
Variables and quantifiers, however, present more serious technical difficul-
ties. The problem is that in order to accommodate the quantifiers we effec-
tively need to use to a relatively strong infinitary methods—something that
we’d like to avoid as much as possible for reasons of perspicuity.9 Using such

9To be more precise, one of the problems is that the logic of a language with finite
quantification and countably infinite conjunctions and disjunctions, usually indicated by
writing Lω1,ω, is the only logic which is, as Bell [10] puts it, “reasonably well behaved” (§5).
But at this level we already lose standard meta-logical results, such as the compactness
theorem. In this logic, we only get a “surrogate” for compactness, known as the Barwise

122



strong infinitary logic is not in itself a problem, and as we’ll see, there are
good reasons for using infinitary logics in the context of ground. However,
to illustrate the semantics we have in mind here, “going strongly infinitary”
is more trouble than its worth, if we may put it in such a lax way.

We specify a language of ground by specifying its vocabulary :
Definition 3.4.1. Let L be a language of ground. The logical vocabulary
of L consists of:

(i) the identity symbol =;

(ii) the truth-functional connectives: ¬,
∨
, and

∧
;

(iii) the weak ground operator: ≤;

(iv) the auxiliary symbols: (, ), and ,.

The non-logical vocabulary of L consists of:

(iv) a set C of individual constants; and

(v) a set P of predicate symbols together with a function ar : P → N that
assigns to every predicate symbol P ∈ P a natural number ar(P ).

For a predicate symbol P ∈ P, we call ar(P ) its arity. Consequently, if
ar(P ) = n, for P ∈ P and n ∈ N, we say that P is an n-ary predicate
symbol.

We can then define the sentences of a language of ground in the usual
recursive way:
Definition 3.4.2. Let L be a language of ground, then the class of sentences
of L is defined by saying that:

(i) if c1, c2 ∈ C, then c1 = c2 ∈ X;

(ii) if P ∈ P with ar(P ) = n and c1, . . . , cn ∈ C, then P (c1, . . . , cn) ∈ L;

(iii) if ϕ ∈ L, then ¬ϕ ∈ L;

(iv) if Γ ⊆ L, then
∧

Γ,
∨

Γ ∈ L;

(v) if Γ ⊆ L and ϕ ∈ L, then (Γ ≤ ϕ) ∈ L, and

Compactness Theorem. Roughly, this theorem states that compactness holds in the logic
for all admissible sets of formulas. The definition of this concept of admissibility, however,
is relatively complicated. Moreover, in even stronger infinitary logics, giving reasonably
well behaved deductive systems becomes increasingly difficult. And as soon as we allow
infinitary quantification, completeness has to be abandoned as well. Because of these
complications, we will not go into more complex infinitary logics than we’ll have to in this
chapter. Our logic will, in any case, be formulated in languages with arbitrarily infinitary
conjunctions and disjunctions, but since we’re not interested into strong meta-results, this
does not create many complications. For an overview of the issues that arise in infinitary
logics, see [69, 68, 56, 10].
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(vi) nothing else is a member of L.10

In the following, we’ll denote the set of sentences of L simply by L: for all
expressions ϕ, ϕ ∈ L means ϕ is a sentence of L.

Note that in Definition 3.4.2, we use
∧

(‘conjunction’) and
∨

(‘disjunction’)
as operators on sets of formulas, rather than formulas themselves. Since
these sets may be infinite, clause (iv) of Definition 3.4.2 allows us to form
infinite conjunctions and disjunctions. We introduce the following notational
conventions: For finite sets of formulas, instead of

∨
{ϕ1, . . . , ϕn}, we’ll also

write ϕ1∨. . .∨ϕn, and analogously for
∧

. And for indexed (possibly infinite)
sets of formulas, we’ll also write

∧
i∈I ϕi instead of

∧
{ϕi | i ∈ I}, and

analogously for
∨

. Note that since for all sets Γ ⊆ L there is a conjunction∧
Γ and a disjunction

∨
Γ, in particular, there is also an empty conjunction∧

∅ and an empty disjunction
∨
∅. Traditionally, these two can play the role

of the verum >, in the case of
∧
∅, and the falsum ⊥. To motivate this note

that a conjunction of the form
∧

Γ is intuitively true iff all the members
of Γ are true. But this means that

∧
∅ is trivially true: it has no members

and thus all of its members are always true. In contrast, a disjunction of the
form

∨
Γ is intuitively true iff some members of Γ are true. But this means

that
∨
∅ is trivially false: it has no members, so it’s impossible for some of

its members to be true.

Treating infinite conjunctions and disjunctions in this way is familiar from
infinitary (propositional) logic. The reason why we do so in the context of
languages of ground is that they allow us to recover the definitions of factual
equivalence and strict ground in terms of weak ground in our language:
Definition 3.4.3. Let L be a language of ground. Then for all formulas
ϕ,ψ and all sets of formulas Γ:

(i) ϕ� ψ =def (ϕ ≤ ψ) ∧ (ψ ≤ ϕ); and

(ii) Γ < ϕ =def (Γ ≤ ϕ) ∧
∧
{¬(ϕ,∆ ≤ ψ) | ∆ ⊆ L, ψ ∈ Γ}.

Thus, ϕ � ψ and Γ < ϕ are mere syntactic abbreviations for the corre-
sponding definientia in Definition 3.4.3. These syntactic definitions simply
reflect, in a syntactic way, the informal definitions of factual equivalence and
strict ground in terms of weak ground that we’ve discussed in §3.4.3. We’ll
show in due course that they are indeed semantically adequate, but for now
note one perk of treating factual equivalence and strict ground in this way:
we only need to discuss the semantics and logic of weak partial ground (and
the logical vocabulary, of course) and, assuming that their definitions are
correct, the logic of factual equivalence and strict ground will be already be
taken care of this and the infinitary background logic. This gives us a good

10Note that the collection of formulas of L class sized. But this doesn’t create any serious
problems for what we do in the following.
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motivation for using infinitary logic in the context of the logic of ground.11

Finally, if L is a language of ground, then we define the language L\≤ to
the sub-language of L that is defined just like L, except that we omit clause
(v). Thus, effectively L\≤ is just L without sentences that have the ground
operator in them. It is easily checked that L\≤ ⊆ L. We define this restricted
language merely for technical convenience in the exposition of various results.

3.5 The Full Semantics of Ground

In §3.4.2, we have already sketched the idea of the semantic framework that
we’ll use for the semantics of ground. The idea is that instead of the notion
of a sentence being true at a possible world, which underlies the Kripke’s
possible-worlds semantics, we now have the notion of a possible state exactly
verifying a sentence as the fundamental notion of our semantics. In short,
possible worlds are replaced with possible states. As Fine eloquently puts it:

[T]he pluriverse of possible worlds is replaced with a space of pos-
sible states—the monolithic blobs shatter into myriad fragments.

[38, p. 233]

Just as possible worlds intuitively correspond to the ways the world could
have been like, possible states intuitively correspond to the ways things
could have been like. And just like there intuitively is a possible world for
every way the world could have been like, there are possible states for every
way some objects could have been like. Thus, since the ball could have been
green, blue, red, and so on, there will be possible states of the ball being
green, blue, red, and so on. And just like a sentence about the world is true
at a possible world iff what world is like what the sentence says about the
wold, a sentence about some objects is exactly verified by a state iff the state
corresponds exactly to what the sentence says about the objects. Thus, for
example, the sentence “the ball is red” is intuitively exactly verified by the
possible state of the ball being red, but not by the states of the ball being
green or the ball being blue. And just like a sentence is actually true on the
possible worlds approach iff what the sentence says about the world is the
case at the actual world, on the exact verification approach a sentence is
true iff some state that exactly verifies the sentence actually obtains. Thus,
assuming that the ball is actually red, the sentence “the ball is red” is true.

11The fact that we need some infinitary devices to properly formulate a logic of ground is
implicitly acknowledged by Fine [42]: when he formulates his logic of conceptualist ground,
he uses infinitary devices that amount to infinite conjunction and disjunction. However,
Fine’s infinite devices are built into the structure of the logic, as it were, and here we
bring the infinitary issues to light more explicitly by simply using infinite conjunctions
and disjunctions.
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However, this analogy only carries so far: the state based semantics diverges
from the possible in some quite substantial ways. First, the notion of exact
verification is quite sensitive to the concept of source. For example, the
possible state of the ball being red and round does not exactly verify the
sentence “the ball is red,” since it does not exactly correspond to what the
sentence says about the ball. Intuitively, the exact verifiers of a sentence
are the possible states that are directly responsible for the sentence being
true, whenever they obtain. And only the possible state of the ball being
red seems to fit the bill. In contrast, on the possible worlds approach, the
sentence “the ball is red” is true at any possible world where the ball is both
red and round and it is true at any world where the ball is just red. In other
words, the notion of a sentence being true at a world is less discriminating
than the notion of a state exactly verifying a sentence.

Second, on the state based semantics we don’t only care what makes a
sentence true, but also what makes it false: for this reason, next to the notion
of exact verification, we also have the notion of exact falsification. Just like
the exact verifiers of a sentence are the possible states that are directly
responsible for the sentence being true, whenever they obtain, the exact
falsifiers of a sentence are the possible states that are directly responsible for
the sentence being false, whenever they obtain. So, for example, the possible
states of the ball being green, the ball being blue, and so on are all exact
falsifiers of the sentence “the ball is red.” And just like the notion of exact
verification, the notion of exact falsification is sensitive to source. The state
of the ball being green and round, for example, is not an exact falsifier of the
sentence “the ball is red”—only the simple states the ball being green, the
ball being blue, and so on are. On the possible worlds approach, in contrast,
a sentence about the world is false at a possible world iff what the sentence
says about the world is not the case at the possible world. So, for example,
the sentence “the ball is red” is false at any world where the ball is green,
but also at every world where the ball is green and round.

And third, possible states are relatively local and they can be incomplete:
a possible state is a state of some objects being a certain way—and only of
those objects being that way. States may nevertheless be (mereologically)
fused : since there is a state of the ball being red and the state the cup being
empty, there is a possible state of the ball being red and the cup being empty.
This state is simply the fusion of those states. If we keep on fusing states,
we will eventually end up with a complete state, which roughly corresponds
to a possible world, but there are also incomplete states. Possible worlds,
in contrast, are intuitively complete: for everything that can either be the
case or not, at every world it is either the one way or another. Moreover, it
is plausible to say that two possible worlds are identical iff everything that
is the case at the one is also the case at the other and vice versa. In other
words, possible worlds are individuated by what’s the case at them. Thus,
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at any two distinct possible world, something will be the case at the one
that is not the case at the other. For this reason, it does not make sense
to fuse possible worlds: since everything is either one way or the other at
every possible world, if we combine two possible worlds, we’ll end up with
an inconsistency. And at least as long as we want to assume that possible
worlds are consistent, this is impossible. The point here is that states are
more like parts of what is the case at possible worlds, they are the local facts
that obtain at worlds, while worlds are determined by all that is the case at
the world. This is the sense in which Fine says that “the monolithic blobs
shatter into myriad fragments” [38, p. 233].

3.5.1 State Spaces and Interpretations

It is time to make the intuitive idea of exact truthmaker semantics formally
precise. For this purpose, Fine [42, 44, 38] introduces what he calls state
spaces. Here we will slightly modify Fine’s state spaces, to accommodate
talk of objects in this framework. For this purpose, we introduce domains
of objects into the framework. And since we wish to allow for some objects
to not actually exist, we’ll have two domains actually: an inner domain of
actual objects and an outer domain of possible objects.12 We get:
Definition 3.5.1. A state space S is an ordered 5-tuple (D♦, D@, S♦, S@,

∏
)

which consists of:

(i) a non-empty set D♦ of possible objects;

(ii) a non-empty set D@ ⊆ D♦ of actual objects;

(iii) a non-empty set S♦ of possible states;

(iv) a non-empty set S@ ⊆ S♦ of actual states;

(v)
∏

: ℘(S♦)→ S♦ is an operation of state fusion, such that:

(a) for all X ⊆ S@,
∏
X ∈ S@;

(b) for all X ⊆ S♦, if
∏
X ∈ S@, then X ⊆ S@;

(c) for all states s ∈ S♦,
∏
{s} = s (‘idempotence’); and

(d) for all indexed families (Xi ⊆ S♦)i∈i of states,∏
{
∏

Xi | i ∈ I} =
∏⋃

{Xi | i ∈ I} (‘commutativity’).

This definition gives us a precise meaning to the informal framework that
we’ve laid out above.

12This ties in with our assumptions from the introduction that we wish to subscribe to
Contingentism and that the background logic for our form of essentialism is a (negative)
free logic.
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In the context of a state space, we can define a few useful notions for exact
verifier semantics:
Definition 3.5.2. Let S = (D♦, D@, S♦, S@,

∏
) be a state space, then we

define:

(i) the world state @ by saying that @ =def
∏
S@; and

(ii) the zero-state λ by saying that λ =def
∏
∅.

It follows immediately from clause (v.a) of Definition 3.5.1 that for a state
space S = (D♦, D@, S♦, S@,

∏
) that both @ ∈ S@ and λ ∈ S@. The zero-

state λ can play the role of the zero fact that we mentioned in §3.5.1. The
world state @, on the other hand, corresponds to the fusion of all the states
that are intuitively the case at the actual world.
Definition 3.5.3. Let S = (D♦, D@, S♦, S@,

∏
) be a state space, then we

say that a set X ⊆ S♦ is closed iff for all non-empty Y ⊆ X, we have∏
Y ∈ X.

It follows immediately from clause (v.a) of Definition 3.5.1 that S@ is closed.

Next we define the notion of an interpretation for a language of ground:
Definition 3.5.4. Let L be a language of ground and S =
(D♦, D@, S♦, S@,

∏
) a state space. An interpretation for L in S is an ordered

triple I = (δ, v+, v−), which consists of:

(i) a denotation function δ that assigns to every individual constant c ∈ C
a denotation δ(c) ∈ D♦;

(ii) a verifier assignment v+ which assigns to every n-ary predicate sym-
bol P ∈ P a n-ary function v+(P ) : Dn

♦ → ℘(S♦) which in turn
assigns to every n-tuple (d1, . . . , dn) ∈ Dn

♦ a closed set of states
v+(P )(d1, . . . , dn) ⊆ S♦;

(iii) a falsifier assignment v− which assigns to every n-ary predicate sym-
bol P ∈ P a n-ary function v+(P ) : Dn

♦ → ℘(S♦) which in turn
assigns to every n-tuple (d1, . . . , dn) ∈ Dn

♦ a closed set of states
v+(P )(d1, . . . , dn) ⊆ S♦.

We say that an interpretation I = (δ, v+, v−) for a language of ground L in
a state space S = (D♦, D@, S♦, S@,

∏
) is negatively adequate iff

(a) for no n-ary predicate symbol P ∈ P there are d1, . . . , dn ∈ D@ such
that:

both v+(P )(d1, . . . , dn) ∩ S@ 6= ∅ and v−(P )(d1, . . . , dn) ∩ S@ 6= ∅

(b) for all n-ary predicate symbols P ∈ P and for all d1, . . . , dn ∈ D@ we
have that:

either v+(P )(d1, . . . , dn) ∩ S@ 6= ∅ or v−(P )(d1, . . . , dn) ∩ S@ 6= ∅
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(c) for all n-ary predicate symbols P ∈ P and for all d1, . . . , dn ∈ D♦ we
have that v+(P )(d1, . . . , dn) ∩ S@, only if d1, . . . , dn ∈ D@.

In the following, we’ll assume that all interpretations are negatively ade-
quate.

It might be helpful to give an intuitive interpretation to the notions we have
just defined. So, let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. Now, the
interpretation of the denotation function δ should be clear: it assigns deno-
tations to individual constants. Note that we have not postulated that the
denotation δ(c) of a term c ∈ C has to be an actual object—constants may
denote non-existing objects.

For the intuitive interpretation of v+ and v− let’s first note that intuitively n-
ary predicate symbols express n-ary relations. What the verifier assignment
v+ does is that it assigns to an n-ary predicate symbol P ∈ P another
function which tells us for every n-tuple (d1, . . . , dn) ∈ Dn

♦ of possible objects
the exact conditions for these object to stand in the relation expressed by P .
The idea is that objects d1, . . . , dn ∈ Dn

♦ stand in the relation expressed by
P iff some member of v+(P )(d1, . . . , dn) is an actual state—iff the state is
a member of S@. Thus, we may think of v+(P )(d1, . . . , dn) as a disjunctive
list of exact criteria for the objects d1, . . . , dn to exemplify the relation
expressed by P . The condition that v+(P )(d1, . . . , dn) be closed amounts
to the intuitive claim that these criteria may be overdetermined: if we have
a set X ⊆ v+(P )(d1, . . . , dn) of criteria for exemplification, then also their
fusion

∏
X is a criterion of exemplification. So, for example, if we take the

predicate symbol “x is colored” then we would want to assign this predicate
the function which maps every object d ∈ D♦ to all the possible set of states
of the object is colored: the state of d being blue, the state of d being red,
and so on.

Similarly, v− gives us what we may call the anti-exemplification criteria for
properties: what v− does is that it assigns to an n-ary predicate symbol
P ∈ P another function which tells us for every n-tuple (d1, . . . , dn) ∈ Dn

♦
of possible objects the exact conditions for these object not to stand in the
relation expressed by P . The idea is again that objects d1, . . . , dn ∈ Dn

♦ fail
to stand in the relation expressed by P iff some member of v−(P )(d1, . . . , dn)
is a member of S@. Thus, intuitively, we would want to assign the predicate
“x is blue” the function that maps every object d ∈ D♦ to all the possible
set of states of the object is being colored other than red: the state of d
being blue, the state of d being green, and so on.

The conditions (a), (b), and (c) together ensure that the interpretation that
we’ve just described behaves according to the laws of negative free logic: for
every n-ary predicate symbol P ∈ P, according to condition (c) there can
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only be an actual state in v+(P )(d1, . . . , dn) if d1, . . . , dn are all actual ob-
jects, and according to conditions (a) and (b) for all actual objects d1, . . . , dn
either there is an actual state in v+(P )(d1, . . . , dn) or in v−(P )(d1, . . . , dn)—
but never in both. Thus, once we’ve extend the interpretation to sentences,
these conditions ensure that the logic will be a negative free logic: only
statements about existing objects can be true, and there will be neither
truth-value gaps nor truth-value gluts.

3.5.2 Verifiers and Falsifiers of Sentences

We’ll now first define the exact verifiers and exact falsifiers for sentences
without the ground operator under an interpretation in a state space. The
clauses we’ll use for this are simply a generalization of the clauses given by
Fine [42, p. 71–74] to our languages of ground:
Definition 3.5.5. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. We define
the sets JϕK+ of exact verifiers and JϕK− of exact falsifiers for a sentence
ϕ ∈ L\≤ under I in S by simultaneous recursion on the construction of ϕ:

(i) (a) Jc1 = c2K+ =

{
{λ} if δ(c1) and δ(c2) ∈ D@ and δ(c1) = δ(c2)

∅ otherwise

(b) Jc1 = c2K− =

{
{λ} if (δ(c1) /∈ D@ and δ(c2) /∈ D@) or δ(c1) 6= δ(c2)

∅ otherwise

(ii) (a) JP (c1, . . . , cn)K+ =

{
v+(P )(δ(c1), . . . , δ(cn)) if δ(c1), . . . , δ(cn) ∈ D@

∅ otherwise

(b) JP (c1, . . . , cn)K− =

{
v−(P )(δ(c1), . . . , δ(cn)) if δ(c1), . . . , δ(cn) ∈ D@

{λ} otherwise

(iii) (a) J¬ϕK+ = JϕK−

(b) J¬ϕK− = JϕK+

(iv) (a) J
∧
{ϕi | i ∈ I}K+ = {

∏
{xi | i ∈ I} | xi ∈ JϕiK+ for all i ∈ I}

(b) J
∧

ΓK− =
⋃
{JϕK− | ϕ ∈ Γ} ∪ {

∏
J
∨

∆K− | ∆ ⊆ Γ}

(v) (a) J
∨

ΓK+ =
⋃
{JϕK+ | ϕ ∈ Γ} ∪ {J

∏∧
∆K+ | ∆ ⊆ Γ}

(b) J
∨
{ϕi | i ∈ I}K− = {

∏
{xi | i ∈ I} | xi ∈ JϕiK− for all i ∈ I}

These clauses tell us the verifiers and falsifiers for all formulas of a language
of ground which don’t contain the ground operator ≤. Providing clauses for
formulas with this operator is the main contribution of this chapter. But
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before we shall do so, it might be helpful to say a few things about the
clauses that we’ve given here.

As we’ve said, the clauses of Definition 3.5.5 are essentially the ones of
Fine [42, p. 71–74]. But we’ve generalized the clauses in three ways. First,
consider the clauses (i.a–b). Fine doesn’t give clauses for identities, simply
because he doesn’t work with languages that contain the identity symbol.
The clauses that we’ve implemented here satisfy two intuitive constraints.
First, the clauses correspond to the idea of negative free logic. To see this,
note that the set of exact verifiers of an equation of the form c1 = c2 is
non-empty iff both the denotation δ(c1) of c1 and the denotation δ(c2) of c2

are actual objects and the two denotations are in fact numerically identical.
This is exactly the case iff c1 = c2 would be true under the clauses of
negative free logic [104, §3.1]. And conversely, the set of exact falsifiers of
an equation of the form c1 = c2 is non-empty iff the set of its exact verifiers
is empty.13 Thus, for every equation either the set of exact verifiers or the
set of exact falsifiers is non-empty. Together with the second constraint, this
will effectively give us bivalence for equations.

The second intuitive constraint is that we want the truth and falsity of equa-
tions to be fundamental in a sense. Note that if the set of exact verifiers
verifiers is non-empty, then its only member is the null fact λ and analo-
gously for the set of its exact falsifiers. Remember that we’ve said above that
Fine [42, p. 48] proposed that we say that a fact is zero-grounded iff it is
grounded in the zero fact, and that we can take the zero fact to be λ. Indeed,
Fine [42, p. 48] suggests that identities are zero-grounded and in this sense
fundamental. Here we reflect this idea by saying that the only exact verifier
of a true equation (according to negative free logic) is the zero fact λ and
that conversely also the only exact falsifier of a false equation (according to
negative free logic) is the zero fact λ. Remember that above we noted that
λ is always a member of S@. Thus, if we say that an equation is true iff at
least one of its exact verifiers is an actual state, we get that an equation
is true under our semantics iff it is true under the clauses of negative free
logic. And similarly, if we say that an equation is false iff at least one of its
exact falsifiers is an actual state, then an equation is false iff is false under
the clauses of negative free logic. Moreover, by our previous observation, it
follows that equations under this semantics are bivalent.

Now, for the second way in which we’ve generalized Fine’s framework, con-
sider clauses (ii.a–b). Fine only gives clauses for propositional languages and
thus we needed to introduce new clauses for atomic sentences of the form
P (c1, . . . , cn). As we’ve explained above, the idea of v+ and v− is that they
give us the exact conditions for objects to stand in the relation expressed

13This follows easily by a single application of the De Morgan laws to the conditions for
the sets being non-empty.

131



by predicates. And here we’ve simply applied this idea for existing objects:
According to clause (ii.a), the set of exact verifiers of a sentence of the form
P (c1, . . . , cn) is just the set of exact conditions for the objects denoted by
c1, . . . , cn according to δ to stand in the relation expressed by P according
to v+, given that the denotations of c1, . . . , cn are all actual objects. And
analogously, clause (ii.b) says that the set of exact falsifiers of a sentence
of the form P (c1, . . . , cn) is just the set of exact conditions for the objects
denoted by c1, . . . , cn according to δ not to stand in the relation expressed
by P according to v−, if all the denotations of c1, . . . , cn are actual objects.
If the denotations of c1, . . . , cn are not actual objects, then there are no
exact verifiers of P (c1, . . . , cn), indeed the zero fact λ is an exact falsifier of
the sentence—the falsehood of sentences with constants that don’t denote
existing objects is fundamental, just like in the case of equations.

The third way in which we’ve generalized Fine’s framework is with regards
to clauses (iii.a–b) and (iv.a–b). Fine [42, p. 71–74] only gives the clauses
for binary conjunctions and disjunctions. In our clauses, we’ve generalized
Fine’s clauses to the corresponding infinitary operations. But the idea stayed
the same: the exact verifiers of a conjunction are all the fusion of the exact
verifiers of its conjuncts, and the exact falsifiers of a conjunction are all the
exact falsifiers of all its conjuncts or arbitrary fusions of some of the exact
falsifiers of its conjuncts; and the exact verifiers and falsifiers of a disjunction
are simply the dualized exact verifiers and falsifiers of the conjunction of its
disjuncts: the exact verifiers of a disjunction are all the exact verifiers of its
disjuncts and arbitrary fusions of the exact verifiers of some of its disjuncts,
and the exact falsifiers of a disjunction are all the fusions of exact falsifiers
of all of its disjuncts. Fine realizes this idea for binary conjunction and
disjunction, and we simply generalize the idea to infinitary conjunctions
and disjunctions.

Note that according to clause (iv.a) of Definition 3.5.5, J
∧
∅K+ = {λ}. In

other words, the only exact verifier of the empty conjunction is the zero-
fact—what it says is fundamental. This is intuitively plausible since a con-
junction of the form

∧
Γ is intuitively true iff all of its members are. But ∅

has no members under all circumstances and thus
∧
∅ is intuitively necessar-

ily true. Indeed the necessary truth of
∧
∅ appears to be something that is

fundamental about our intuitions about conjunctions and thus it’s plausible
to say that

∧
∅ is exactly verified by the zero-fact. On the other hand, ac-

cording to clause (iv.b) Definition 3.5.5, J
∧
∅K− = ∅. In other words, no state

exactly falsifies
∧
∅. By what we just said, also this makes intuitive sense.

The empty disjunction
∨
∅ behaves dually: by clause (v.a-b) of Definition

3.5.5, we get that both J
∧
∅K+ = ∅ and J

∧
∅K− = {λ}. By dual considerations

to the case of the empty conjunctions, these facts are similarly intuitively
plausible.
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Before we define truth and falsity under an interpretation, let’s make a brief
remark about the quantifiers. Remember that we’ve omitted the quantifiers
from our languages of ground. The reason for this omission is that the quan-
tifiers put us even deeper in the realm of infinitary logic. Let’s assume for a
moment that we the have quantifiers at our disposal. Consider the universal
quantifier ∀. How could we change our semantics to accommodate ∀? We’d
have to say what are the exact verifiers and falsifiers of a sentence of the
form ∀xϕ(x) under an interpretation. An intuitively appealing proposal, in
fact due to Fine [42, p. 59–63], would be to say that the verifiers of ∀xϕ(x)
are all the fusions of verifiers of ϕ(c1), ϕ(c2), . . . together with the fact that
the denotations of of c1, c2, . . . make up all the actual objects, i.e. the fact
that {δ(c1), δ(c2), . . .} = D@. Now the question is how should we express the
fact that the denotations of a sequence of terms exhaust the actual objects
in the object language? A first approach might be to (syntactically) define
a totality predicate T by saying that:

T (ci)i∈I =def. ∀x
∨
{x = ci | for some i ∈ I}.

Then we might think we could say that an exact verifier is the fusion of all
the verifiers of T (ci)i∈I and all the verifiers of all ϕ(ci) for i ∈ I. But this
doesn’t really wouldn’t get us any further as the definition of T involved
the universal quantifier itself: thus in order for this proposal to work, we’d
already need to know what the exact verifiers of a universally quantified
statement are. For exactly this reason, Fine [42, p. 59–63] proposes to add
a primitive totality predicate T to our language. But this predicate would
have to be a multigrade predicate in the sense of Oliver and Smiley [105].
Such predicates are not in themselves problematic, but introducing them
would complicate our framework to the point that it would become barely
intelligible. For this reason, we postpone treating the full logic of ground
with the quantifiers to another time.

Now let us define the notion of truth under an interpretation for sentences
without the ground operator. To obtain this definition, we simply formalize
the intuitive idea which we’ve been using all along that a sentence is true iff
at least one of its exact verifiers is an actually obtaining state:
Definition 3.5.6. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. We say for
all ϕ ∈ L\≤ that:

(S, I) � ϕ iff there is an x ∈ JϕK+ such that x ∈ S@.

Given this definition and what we’ve said to motivate our semantics, it is
now easy to see that this notion of truth under an interpretation for sen-
tences without the ground operator behaves like truth under the semantics
of (infinitary quantifier free) negative free logic:
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Lemma 3.5.7. Let L be a language of ground, S = (D♦, D@, S♦, S@,
∏

) a
state space, and I = (δ, v+, v−) and interpretation for L in S. Then,

(i) (S, I) � P (c1, . . . , cn), only if δ(c1), . . . , δ(cn) ∈ D@;

(ii) (S, I) � c1 = c2 iff δ(c1) = δ(c2) ∈ D@;

(iii) (S, I) � ¬ϕ iff it’s not the case that (S, I) � ϕ;

(iv) (S, I) �
∧

Γ iff (S, I) � ϕ for all ϕ ∈ Γ; and

(v) (S, I) �
∨

Γ iff (S, I) � ϕ for some ϕ ∈ Γ.

Proof. By inspection of our semantics and our running observations: (i)
follows by the conditions (a–c) of Definition 3.5.4 and Definition 3.5.6. The
other cases, follow from the properties stipulated for

∏
in Definition 3.5.1

together with Definition 3.5.4.

Indeed, we can even show more. For a given interpretation in a state space,
we can define a canonical associated interpretation of (infinitary quantifier
free) negative free logic in the traditional sense, under which exactly the
same sentences (without the ground operator) are true as in under interpre-
tation in the state space.
Definition 3.5.8. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. We define
the associated traditional interpretation I = (D,D0, d, v), where D is the
outer domain, D0 is the inner domain, and d assigns denotations from the
outer domain to the constants, and v assigns extensions to the predicates,
by setting:

(i) D = D♦,

(ii) D0 = D@,

(iii) d = δ,

(iv) v(P ) = {(d1, . . . , dn) ∈ Dn
0 | for some x ∈ S@, x ∈ v+(P )(d1, . . . , dn)}.

Then we can show the following lemma:
Lemma 3.5.9. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. Further-
more, let I = (D,D0, d, v) be the associated traditional interpretation from
Definition 3.5.8. Then for all ϕ ∈ L\≤:

(S, I) � ϕ iff I � ϕ,
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where I � ϕ is defined in a straightforward way by extending the basic satis-
faction clauses of negative free logic with the satisfaction clauses of infinitary
propositional logic.

Proof. The only interesting case is for a sentence of the form P (c1, . . . , cn),
since the other cases follow by Lemma 3.5.7. Remember that on the basic sat-
isfaction clauses of negative free logic, I � P (c1, . . . , cn) iff d(c1), . . . , d(cn) ∈
D0 and (d(c1), . . . , d(cn)) ∈ v(P ). We show both directions of the claim that
(S, I) � P (c1, . . . , cn) iff I � P (c1, . . . , cn) in turn:

• Assume that (S, I) � P (c1, . . . , cn). By Lemma 3.5.7, we already know
that (S, I) � P (c1, . . . , cn), only if δ(c1) = d(c1), . . . , δ(cn) = d(cn) ∈
D@ = D0. By Definition 3.5.6, we know that (S, I) � P (c1, . . . , cn)
iff there is some state x ∈ S@ such that x ∈ v+(P )(δ(c1), . . . , δ(cn)).
But by Definition 3.5.8 this is the case iff δ(c1) = d(c1), . . . , δ(cn) =
d(cn) ∈ v(P ).

• For the converse direction, assume that (S, I) � P (c1, . . . , cn). By the
basic satisfaction clauses of negative free logic, we know that this is
the case iff d(c1), . . . , d(cn) ∈ D0 and (d(c1), . . . , d(cn)) ∈ v(P ). By
Definition 3.5.8, this is the case iff there is some x ∈ S@ such that
x ∈ v+(P )(d(c1), . . . , d(cn)). Since δ(c1) = d(c1), . . . , δ(cn) = d(cn),
the claim follows.

This lemma gives us a precise sense in which our semantics from this section
is just a more fine-grained version of the traditional semantics for (infinitary
quantifier free) negative free logic. Intuitively, by means of the exact verifiers
and falsifiers of sentences, the semantics does not only tell us whether a
sentence is true or false, but also why the sentence is true. So far, however,
we haven’t made use of this additional information. In the next section, we’ll
use this additional information to give semantic clauses for sentences with
the ground operator in them.

3.5.3 Clauses for the Ground Operator

Fine [42, 44] gives semantic clauses for the truth of a statement of ground
of the form Γ ≤ ϕ, where both Γ ⊆ L\≤ and ϕ ∈ L\≤ are sentences without
the ground operator. Fine’s idea is that we can understand weak ground as
transmission of exact verifiers: we can say that the fact expressed by a (true)
sentence ϕ ∈ L\≤ holds in virtue of the facts expressed by the sentences in
a set Γ ⊆ L\≤ iff all the sentences in Γ are true and all the fusions of any
sequence of exact verifiers for all the members of Γ are also exact verifiers
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of ϕ. Thus, for the fact that ϕ to hold in virtue of the facts expressed by
the members of Γ is for all the members of Γ to be true and, intuitively, for
the reasons why the members of Γ are true together to be a reason for ϕ to
be true. This gives us a very intuitive notion of one fact holding in virtue of
others on the weak concept of ground.

By the interdefinability of strict and weak ground, Fine’s clause also gives
us truth conditions for strict statements of ground of the form Γ < ϕ, where
both Γ ⊆ L\≤ and ϕ ∈ L\≤ are sentences without the ground operator. By
simply applying the definition of strict ground in terms of weak ground, we
get that Γ < ϕ is true iff Γ ≤ ϕ is true, but for no ψ ∈ Γ is there a set of
sentences ∆ such that ϕ,∆ ≤ ψ is true. In other words, Γ < ϕ is true iff
all the sentences in Γ are true and all the fusions of any sequence of exact
verifiers for all the members of Γ are also exact verifiers of ϕ and no exact
verifier of ϕ can be fused with some other states such that we get an exact
verifier of some member of Γ. This gives us a very intuitive notion of one
fact holding in virtue of others on the strict concept of ground.

Let us turn these informal considerations into a precise definition:
Definition 3.5.10. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. Then we
say for all {xi | i ∈ I} ⊆ L<λ and ψ ∈ L\≤:

• (S, I) � {ϕi | i ∈ I} ≤ ψ iff

(i) for some family (xi ∈ S♦)i∈I of states such that xi ∈ JϕiK+ for
all i ∈ I, we have

∏
{xi | i ∈ i} ∈ S@,

(ii) for all families (xi ∈ S♦)i∈I such that xi ∈ JϕiK+ for all i ∈ I,
then

∏
{xi | i ∈ I} ∈ JψK+.

This definition is quite a mouthful. But using clause (iv.a) of Definition
3.5.5 the definition can be significantly simplified. Using this clause we can
equivalently restate by saying for all languages of ground L, all state spaces
S, and all interpretations I and interpretation for L in S,

• (S, I) � Γ ≤ ψ, where Γ ⊆ L\≤ and ψ ∈ L\≤, iff

(i) (S, I) �
∧

Γ, and

(ii) J
∧

ΓK+ ⊆ JϕK+.

Note that, according to this definition, we get for a sentence of the form
∅ ≤ ϕ, for ϕ ∈ L, that (S, I) � ∅ ≤ ϕ iff λ ∈ JϕK+. Since the zero-state λ
is always part of the actual states, we can use sentences of the form ∅ ≤ ϕ
to express that the fact expressed by ϕ is fundamental (in Fine’s sense of
zero-grounded): the zero-state is already directly responsible for the truth
of ϕ.
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It is easy to see now, that this definition validates the intuitive principles for
weak ground, such as Reflexivity, Transitivity, and the factivity laws:
Lemma 3.5.11. Let L be a language of ground, S a state space, and I and
interpretation for L in S. Then for all Γ ⊆ L\≤ and ψ ∈ L\≤,

(i) if (S, I) � ϕ, then (S, I) � ϕ ≤ ϕ,

(ii) if (S, I) � Γ ≤ ϕ and (S, I) � ϕ,∆ ≤ ψ, then (S, I) � Γ,∆ ≤ ψ,14

(iii) if (S, I) � Γ ≤ ϕ, then (S, I) �
∧

Γ, and

(iv) if (S, I) � Γ ≤ ϕ, then (S, I) � ϕ.

Proof. For the first claim (i) assume that (S, I) � ϕ. Since (S, I) � ϕ and
JϕK+ ⊆ JϕK+ is trivially true, the claim follows immediately. For second claim
(ii), assume that both (S, I) � Γ ≤ ϕ and (S, I) � ϕ,∆ ≤ ψ. It follows that
(S, I) �

∧
Γ and (S, I) �

∧
{ϕ} ∪ ∆, and hence using Lemma 3.5.7 that

(S, I) �
∧

Γ∪∆. Next we need to check that J
∧

Γ∪∆K+ ⊆ JϕK+. We know
by assumption that J

∧
ΓK+ ⊆ JψK+ and J

∧
{ϕ} ∪ ∆K+ ⊆ JϕK+. But from

this, using clause (d) of Definition 3.5.1 and clause (iv.a) of Definition 3.5.5,
it follows that J

∧
Γ∪∆K+ ⊆ JϕK+. The third claim (iii) follows immediately

by clause (i) of Definition 3.5.3. And the fourth claim follows immediately
by putting together (iii), clause (ii) of Definition 3.5.3, and Definition 3.5.6.

Moreover, using this lemma and Definition 3.4.3, we can establish that also
the defined notion of strict ground satisfies the desired properties, such as
Irreflexivity, Transitivity, and the factivity laws:
Lemma 3.5.12. Let L be a language of ground, S a state space, and I and
interpretation for L in S. Then for all Γ ⊆ L\≤ and ψ ∈ L\≤,

(i) for no Γ ⊆ L\≤ and ϕ ∈ L\≤ we have (S, I) � ϕ,Γ < ϕ,

(ii) if (S, I) � Γ < ϕ and (S, I) � ϕ,∆ < ψ, then (S, I) � Γ,∆ < ψ,

(iii) if (S, I) � Γ < ϕ, then (S, I) �
∧

Γ, and

(iv) if (S, I) � Γ < ϕ, then (S, I) � ϕ.

Proof. Remember that by Definition 3.4.3, we have that

Γ < ϕ =def (Γ ≤ ϕ) ∧
∧
{¬(ϕ,∆ ≤ ψ) | ∆ ⊆ L, ψ ∈ Γ}.

14There is also an infinitary version of this principle, which allows us to “cut” in-
finitely many formulas at a time [44]. A rule corresponding to this principle is required
for completeness proofs in the logic of ground, but since we’re not primarily interested in
completeness here, for reasons of perspicuity, we’ll stick with the more simple principle,
which allows us to “cut” only one formula at a time.
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Now, for the first claim (i), we can assume without constraint of generality
that both (S, I) � ϕ and (S, I) �

∧
Γ, because otherwise the claim would

hold immediately by clause (i) of Definition 3.5.3. But then the first claim
(i) follows from the fact (i) of Lemma 3.5.11 gives us that (S, I) � ϕ ≤ ϕ.
And from this using the laws of Lemma 3.5.7, we can infer that (S, I) �
¬
∧
{¬(ϕ,∆ ≤ ϕ) | ∆ ⊆ L}, since we may simply take ∆ = ∅. Hence

again by the same laws, (S, I) � ¬((Γ ≤ ϕ) ∧
∧
{¬(ϕ,∆ ≤ ϕ) | ∆ ⊆ L}).

The claim follows by Definition 3.4.3. For the proof of the second claim
we use (ii) of Lemma 3.5.11 and the laws of Lemma 3.5.7 to show that if
(S, I) �

∧
{¬(ϕ,∆ ≤ ψ) | ∆ ⊆ L, ψ ∈ Γ} and (S, I) �

∧
{¬(ψ,Σ ≤ θ) | Σ ⊆

L, ψ ∈ ∆ ∪ {ϕ}}, then (S, I) �
∧
{¬(ϕ,Σ ≤ θ) | Σ ⊆ L, ψ ∈ ∆ ∪ Γ}. Then,

the claim follows by putting this and (ii) of Lemma 3.5.11 together. The
claims (iii) and (iv) follow immediately from Lemma 3.5.11 and Definition
3.4.3.

Finally, using the definition of � in Definition 3.4.3, we can show that �
really captures a concept of factual equivalence:
Lemma 3.5.13. Let L be a language of ground, S a state space, and I and
interpretation for L in S. Then for all Γ ⊆ L\≤

(i) if (S, I) � ϕ and (S, I) � ψ, then (S, I) � ϕ � ψ iff JϕK+ = JψK+;
and

(ii) if (S, I) � ¬ϕ and (S, I) � ¬ψ, then (S, I) � ¬ϕ � ¬ψ iff JϕK− =
JϕK−.

Proof. Remember that according to Definition 3.4.3, we have that

ϕ� ψ =def (ϕ ≤ ψ) ∧ (ψ ≤ ϕ).

But then the first claim (i) simply follows by observing that JϕK+ = JϕK+

iff both JϕK+ ⊆ JψK+ and JψK+ ⊆ JϕK+ and the condition (ii) of Definition
3.5.3. And the second claim (ii) follows from (i) by applying clause (iii.a) of
Definition 3.5.5 to ¬ϕ and ¬ψ.

This lemma gives us a precise sense in which the defined operator� captures
the informal notion of factual equivalence that we’ve sketched on p. 118.15

We have seen that Fine’s semantic clauses for the truth of a statement
of ground of the form Γ ≤ ϕ, where both Γ ⊆ L\≤ and ϕ ∈ L\≤ are
sentences without the ground operator, behave like we want them to: they

15Indeed, it can be shown that this concept satisifes (a factive version) of Angell’s system
of analytic equivalence. The proof is not very complicated, but we omit it here so as not
to detract to much from the main issue. For the details, we refer the reader to [37].
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semantically validate the intuitively valid principles of ground. Effectively,
they achieve this by using the more fine-grained structure of state spaces
under an interpretation to explain, in an intuitive way, what has to be the
case for a statement of ground to be true. But the clauses don’t embed
statements of ground themselves into the fine-grained structure of the state
spaces: the clauses only tell us whether a statement of ground is true and
not why. More specifically, they don’t give us the exact verifiers and falsifiers
of statements of ground.

For this reason, we can’t apply Fine’s clauses to iterated statements of
ground, which may be of the form

Γ, (∆ ≤ ϕ) ≤ ψ or

Γ ≤ (∆ ≤ ϕ),

where Γ,∆ ⊆ L and ϕ,ψ ∈ L. For if we wanted to apply the clause from
Definition 3.5.3 to these sentences, we’d have to know what the exact verifiers
of statements of the form ∆ ≤ ϕ or ∆ ≤ ϕ are: otherwise we can show
neither that J

∧
Γ ∪ {∆ ≤ ϕ}K+ ⊆ JψK+ nor that J

∧
ΓK+ ⊆ J∆ ≤ ϕK+. So,

if we wish to define the truth conditions of iterated statements of ground
using something like Fine’s clauses, then we need to say what are the exact
verifiers (and falsifiers) of statements of ground.

Now, note that if we assign all the fusions of the exact verifiers of some
sentences Γ to be the exact verifiers of a statement of the form ∆ ≤ ϕ,
then, following Fine’s clauses, we will get that Γ ≤ (∆ ≤ ϕ) is true. This
observation provides us with a heuristic for giving the exact verifiers of
statements of ground: we simply take the exact verifiers of a true statement
to be the fusions of the exact verifiers of the sentences that we wish to say
the fact expressed by the statement of ground holds in virtue of. In §3.3.2
we have discussedsome views about this and we’ve said that in this paper
we’d like to determine the logic of iterated ground according to the view
that grounds ground ground. Thus, we get that we should take the exact
verifiers of a true statement of the form Γ ≤ ϕ to be all the fusions of all the
verifiers of the members of Γ—in other words, we should take them to be
the verifiers of

∧
Γ. In contrast, a false statement of the form Γ ≤ ϕ should

not have any exact verifiers, only exact falsifiers.

So what should we talk the exact falsifiers of a false statement of ground
to be? According to Fine’s clauses, we can distinguish two ways in which a
statement of the form Γ ≤ ϕ could be false under an interpretation I in a
state spaces S. First, it could be the case that we don’t have (S, I) �

∧
Γ,

regardless of whether J
∧

ΓK+ ⊆ JϕK+ or not; and second we could have
(S, I) �

∧
Γ, but not J

∧
ΓK+ ⊆ JϕK+. In the first case, on the view that

grounds ground ground, it seems to be clear why the statement is false:
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because at least one of the grounds fails, i.e.
∧

Γ is false. And thus a good
candidate for the exact falsifiers of Γ ≤ ϕ in this case would be the exact
falsifiers of

∧
Γ: i.e. simply J

∧
ΓK+. In the other case, we might be at a loss

at first: there is no possible state in our state space that corresponds to the
fact that J

∧
ΓK+ 6⊆ JϕK+—if this is the case, it appears to be a fundamental

fact about our state space. But this actually suggests a natural candidate
for what we could take the exact falsifier of a false statement of the form
Γ ≤ ϕ to be in this case: since the fact that is responsible for its falsehood
is a fundamental fact about the state space, we could take the zero-state λ
as the exact falsifier in this case.

Putting these observations together, we arrive at the following definition:
Definition 3.5.14. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. We define
the sets JϕK+ of exact verifiers and JϕK− of exact falsifiers for a sentence
ϕ ∈ L under I in S by a simultaneous recursion on the construction of ϕ,
which consists of the clauses (i–v) of Definition 3.5.5 plus:

(vi) (a) JΓ ≤ ϕK+ =

{
J
∧

ΓK+ if (S, I) �
∧

Γ and J
∧

ΓK+ ⊆ JϕK+

∅ otherwise

(b) JΓ ≤ ϕK− =


J
∧

ΓK− if not (S, I) �
∧

Γ

{λ} if (S, I) �
∧

Γ, but not J
∧

ΓK+ ⊆ JϕK+

∅ otherwise

This definition gives us the natural exact verifiers and falsifiers of statements
of ground under the view that grounds ground ground.

To determine logic given by the above definition, let’s first generalize Defi-
nition 3.5.6 to all formulas of our languages of ground:
Definition 3.5.15. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. We say for
all ϕ ∈ L that:

(S, I) � ϕ iff JϕK+ ∩ S@ 6= ∅.

Then we say for all Γ ⊆ L and ϕ ∈ L that Γ � ϕ iff for all state spaces
S and all interpretations I for L in S, if (S, I) � ψ, for all ψ ∈ Γ, then
(S, I) � ϕ.

The first thing to note is that Fine’s clause for (S, I) � Γ ≤ ϕ from Definition
3.5.3 in fact agrees with our clause in Definition 3.5.15:
Lemma 3.5.16. Let L be a language of ground, S = (D♦, D@, S♦, S@,

∏
)

a state space, and I = (δ, v+, v−) and interpretation for L in S. If we write
(S, I) �1 Γ ≤ ϕ for the satisfaction relation defined in Definition 3.5.3 and
(S, I) �2 Γ ≤ ϕ for the satisfaction relation defined in Definition 3.5.15,
then we get:
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(S, I) �1 Γ ≤ ϕ iff (S, I) �2 Γ ≤ ϕ.

Proof. Left to right: If (S, I) �1 Γ ≤ ϕ, then both (S, I) �
∧

Γ and J
∧

ΓK+ ⊆
JϕK+ by definition. But then by clause (vi.a) JΓ ≤ ϕK+ = J

∧
K+. And since

(S, I) �1
∧

Γ, which by Definition 3.5.6 means that there is some x ∈ J
∧

ΓK+

such that x ∈ S@, we get that there is some x ∈ JΓ ≤ ϕK+ = J
∧

K+ such that
x ∈ S@, as desired.

Right to left: If (S, I) �2 Γ ≤ ϕ, then x ∈ JΓ ≤ ϕK+ such that x ∈ S@.
But by Definition 3.5.14 JΓ ≤ ϕK+ is non-empty iff both (S, I) �

∧
Γ and

J
∧

ΓK+ ⊆ JϕK+. Hence we get by Definition 3.5.3 that (S, I) �1 Γ ≤ ϕ, as
desired.

Thus, we can drop the subscripts in the following. Moreover, as a conse-
quence of this lemma, the Lemmas 3.5.7, 3.5.11, 3.5.12, and 3.5.13 all hold
in full generality, meaning for all sentences of L. In other words, the seman-
tics given by Definitions 3.5.14 and 3.5.15 gives us an intuitively adequate
semantics for the concept of weak ground, and, via the definition of strict
ground in terms of weak ground, also for the concept of strict ground.

The following lemma shows that Definitions 3.5.14 and 3.5.15 really give us
a semantics of iterated ground that corresponds to the view that grounds
ground ground:
Lemma 3.5.17. Let L be a language of ground, S a state space, and I and
interpretation for L in S. Then, for all Γ ⊆ L and ϕ ∈ L,

(i) (a) if (S, I) � Γ ≤ ϕ, then (S, I) � Γ ≤ (Γ ≤ ϕ);

(b) if (S, I) � Γ ≤ (∆ ≤ ϕ), then (S, I) � Γ ≤
∧

∆;

(ii) if (S, I) � ¬
∧

Γ, then (S, I) � (¬
∧

Γ) ≤ ¬(Γ ≤ ϕ),

(iii) if (S, I) �
∧

Γ and (S, I) � ¬(Γ ≤ ϕ), then (S, I) � ∅ ≤ ¬(Γ ≤ ϕ).

Proof. Immediate by inspection of the truth-conditions for Γ ≤ ϕ. The
claims (i.a-b) follow immediately from the fact that if (S, I) � Γ ≤ ϕ,
then JΓ ≤ ϕK+ = J

∧
ΓK+. The claims (ii) and (iii) follow by an inspection

of the conditions of clause (vi.b) of Definition 3.5.14.

This lemma gives us a precise sense in which our semantics captures the
view grounds ground ground: in particular, (i.a) corresponds directly to the
characteristic inference from (1) to (3) on p. 110, §3.3.2; the clauses (ii-iii),
on the other hand, we can take as “rounding things out” in the negative
that we didn’t talk about in §3.3.2.
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Finally, we’d like to know how weak ground and the logical vocabulary
interact on the semantics that we have given in this section. The answer is
given by the following lemma:
Lemma 3.5.18. Let L be a language of ground, S a state space, and I and
interpretation for L in S. Then,

(i) if (S, I) � c = c, then (S, I) � ∅ ≤ c = c;

(ii) if (S, I) � ¬(c = c), then (S, I) � ∅ ≤ ¬(c = c)

(iii) if (S, I) � ϕi, for some i ∈ I, then (S, I) � ϕi ≤
∨
i∈I ϕi;

(iv) if (S, I) � ϕi, for all i ∈ I, then (S, I) � {ϕi | i ∈ I} ≤
∧
i∈I ϕi;

(v) if (S, I) � Γ,∆ ≤ ϕ, then (S, I) � Γ,
∧

∆ ≤ ϕ, given that ∆ 6= ∅;

(vi) if (S, I) � Γ,∆ ≤ ϕ, then (S, I) � Γ,
∨

Σ ≤ ϕ, given that Σ ⊆ ∆ and
Σ 6= ∅;

(vii) if (S, I) � ϕ, then (S, I) � ϕ� ¬¬ϕ;

(viii) if (S, I) � ¬
∨
i∈I ϕi, then (S, I) � ¬

∨
i∈I ϕi �

∧
i∈I ¬ϕi;

(ix) if (S, I) � ¬
∧
i∈I ϕi, then (S, I) � ¬

∧
i∈I ϕi �

∨
i∈I ¬ϕi; and

(x) if (S, I) �
∧
i∈I

∨
j∈Ji ϕi,j , for some double indexing of formulas ϕi,j

with i ∈ I and j ∈ Ji, then

(S, I) �
∧
i∈I

∨
j∈Ji

ϕi,j �
∨
f∈F

∧
i∈I

ϕi,f(i),

where F is a set of choice functions that chose for each i ∈ I an index
f(i) ∈ Ji.

Proof. The theorem is a generalization of the main results in [37] and the
proof idea is the same. However, we will not give the proof here as many
cases rely on relatively strong infinitary principles. For example, showing
the infinitary distributivity law (viii) requires (repeated) applications of the
axiom of choice. But for illustration, let us prove (i) and (vii). For (i) assume
that (S, I) � c = c, meaning there is an x ∈ Jc = cK+ such that x ∈ S@.
We’ve already observed that Jc = cK+ is non-empty iff Jc = cK+ = {λ}. But
we’ve already observed that for all ϕ, (S, I) � ∅ ≤ ϕ iff λ ∈ JϕK+. Hence the
claim follows. For (vii) first note that by clause (iii) of Definition 3.5.5, for all
ϕ, J¬ϕK+ = JϕK− and J¬ϕK− = JϕK+. Thus, by a double application of this,
J¬¬ϕK+ = JϕK+ and J¬¬ϕK− = JϕK−. Now the claim follows immediately
by Lemma 3.5.13.
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3.6 The Full Logic of Ground

In the last section, we’ve presented a semantics for the ground operator that
can accommodate iterated statements of ground. A natural question now is:
What is the logic of (iterated) ground determined by this semantics? Lem-
mas 3.5.7, 3.5.11, 3.5.12, 3.5.13, and 3.5.13 already give us a pretty good
idea of the logic. But how should we axiomatize it? In this section, we’ll pro-
pose an infinitary logic for this purpose. The previously mentioned lemmas
will give us a heuristic for the rules that we should use and indeed they will
immediately establish soundness. However, completeness is a different issue.
As we’ve mentioned in §3.4.4, showing a completeness result requires quite
substantial infinitary methods, and for this reason we’ll omit the result. In
the conclusion of this chapter, however, we’ll discuss how a completeness
result may be obtained.

3.6.1 Natural Deduction for the Full Logic of Ground

We propose to use a natural deduction system for the full logic of ground.
To obtain such a system, we first need a background logic. For this purpose,
we simply extend the standard natural deduction rules for infinitary logic
with identity rules that correspond to the rules of negative free logic. In
particular, we’ll assume the following rules inspired by Lemma 3.5.7:

ϕ(c)
c = c

c1 = c2 ϕ(c1)

ϕ(c2)

[ϕ]
....
⊥
¬ϕ

¬ϕ ϕ

⊥

(ϕi)i∈I∧
i∈I ϕi

∨
i∈I ϕi

[(ϕi)i∈I ]....
θ

θ

ϕi∨
i∈I ϕi

∨
i∈I ϕi

[ϕi].... for all i
θ

θ

[ϕ]
....
θ

[¬ϕ]
....
θ

θ
⊥
ϕ

A few remarks about these rules: The first identity rule corresponds to the
standard assumption of negative free logic that a formula can only be true if
all the constants in it denote existing objects. We’ve already observed that a
constant c denotes an actual object under an interpretation iff c = c is true
according to our semantics. Thus, the first rule captures the assumption of

143



negative free logic. The second identity rule is the standard rule of the sub-
stitutivity of identicals, which is obviously sound under our semantics. The
other rules are merely natural deduction rules for infinitary propositional
logic. Note, however, that the resulting proof system will, of course, be in-
finitary: rules like the introduction rule for

∧
may have arbitrarily many

premises. Derivations can, nevertheless, only be infinitely wide and never
infinitely long. These rules are all sound by Lemma 3.5.7: they always lead
from true premises to true conclusions.

To capture the interaction of the logical vocabulary and the ground operator,
we propose the following rules inspired by Lemmas 3.5.11, 3.5.17, and 3.5.18:

ϕ

ϕ ≤ ϕ
Γ ≤ ψ ψ,∆ ≤ ϕ

Γ,∆ ≤ ϕ
{ϕi | i ∈ I} ≤ ψ

ϕi

{ϕi | i ∈ I} ≤ ψ
ψ

Γ ≤ ϕ
Γ ≤ (Γ ≤ ϕ)

(Γ ≤ (∆ ≤ ϕ)

Γ ≤
∧

∆

¬
∧

Γ

(¬
∧

Γ) ≤ ¬(Γ ≤ ϕ)

∧
Γ ¬(Γ ≤ ϕ)

∅ ≤ ¬(Γ ≤ ϕ)

ϕi

ϕi ≤
∨
i∈I ϕi

(ϕi)i∈I

{ϕi | i ∈ I} ≤
∧
i∈I ϕi

Γ,∆ ≤ ϕ
Γ,

∧
∆ ≤ ϕ

∆ 6= ∅
Γ,∆ ≤ ϕ

Γ,
∨

Σ ≤ ϕ
∅ 6= ∆ ⊆ Σ

ϕ

ϕ� ¬¬ϕ
¬
∨
i∈I ϕi

¬
∨
i∈I ϕi �

∧
i∈I ¬ϕi

¬
∧
i∈I ϕi

¬
∧
i∈I ϕi �

∨
i∈I ¬ϕi

c1 = c2

∅ ≤ c1 = c2

¬(c1 = c2)

∅ ≤ ¬(c1 = c2)

∨
f∈F

∧
i∈I ϕi,f(i)∧

i∈I
∨
j∈Ji ϕi,j �

∨
f∈F

∧
i∈I ϕi,f(i)

†

†: For some double indexing of formulas ϕi,j with i ∈ I and
j ∈ Ji, and F a set of choice functions that chose for each i ∈ I
and index f(i) ∈ Ji.

By Lemmas 3.5.11, 3.5.17 and 3.5.18 it follows immediately that these rules
are also sound: they always lead from true premises to true conclusions.

Let’s call the logic that consists of all the above rules (over some language
of ground) the negative full logic of ground NFLG and let’s denote the
(standardly defined) derivability relation in NFLG by `NFLG. We do not
wish to venture far into the proof theory of NFLG, but let’s remark a
couple of facts. First, as we’ve already mentioned, NFLG is sound for our
semantics:
Proposition 3.6.1. Let L a language of ground. Then NFLG over L is
sound with regard to the semantics we defined in the last section. In partic-
ular, for all Γ ⊆ L and ϕ ∈ L :

if Γ ` ϕ, then Γ � ϕ.
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Proof. As we’ve already observed, this follows immediately by Lemmas 3.5.7,
3.5.11, 3.5.17, and 3.5.18.

And second, the logic that we’ve describe here proves (a version of) what
Fine calls the pure logic of full ground PLFG (not to be confused with what
we call the full logic of ground) which consists of the following rules (over
our background language L):

ϕ

ϕ ≤ ϕ
Γ < ϕ

Γ ≤ ϕ
Γ ≤ ψ ψ,∆ ≤ ϕ

Γ,∆ ≤ ϕ
Γ ≤ ψ ψ,∆ < ϕ

Γ,∆ < ϕ

ϕ,Γ < ϕ

⊥

ϕ1, ϕ2, . . . ≤ ψ ϕ1,Γ1 < θ1 θ1,∆1 ≤ ϕ ϕ2,Γ2 < θ2 θ2,∆2 ≤ ϕ . . .

ϕ1, ϕ2, . . . < ψ

Let’s denote the derivability relation of this logic by `PLFG. Then we can
show the following lemma:
Lemma 3.6.2. Let L be a logic of ground. Then for all Γ ⊆ L and ϕ ∈ L,
if Γ `PLFG ϕ, then Γ `NFLG ϕ.

Proof. The proof is pretty straightforward using the definition of strict
ground in terms of weak ground

Γ < ϕ =def (Γ ≤ ϕ) ∧
∧
{¬(ϕ,∆ ≤ ψ) | ∆ ⊆ L, ψ ∈ Γ}

from Definition 3.4.3. We simply derive the rules of PLFG in NFLG. For
example, the first rule is already part of NFLG and the second rule follows
by the definition of strict ground in terms of weak ground by conjunction
elimination. The other rules in the first row are equally straightforward.
The only more complex derivation is the one of the long rule in the last
row, called reverse subsumption by Fine. We don’t give the proof here, as it
spans two pages. But note that the side premises together allow us to derive
the second conjunct

∧
{¬(ϕ,∆ ≤ ψ) | ∆ ⊆ L, ψ ∈ Γ} of the definiens from

Definition 3.4.3.

3.7 Conclusion

Let’s take stock. In this chapter we’ve developed a semantics for (iterated)
ground based on the view that ground ground ground and we’ve given a
sound logic for this semantics. In this conclusion, we wish to point out a
few ways in which we might reasonably extend the semantics and logic that
we’ve developed in this chapter.

First, obviously it would be nice to have a completeness proof for the logic
and indeed this is feasible though tedious. Let’s sketch how this result can be
achieved. The idea would be to prove completeness by means of a canonical
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model construction. The idea would be that for a given set Γ ⊆ L of some
language of ground, we first construct a state space SΓ, where

• D♦ = ℘(C) is the set of all sets of individual constants of L,

• D@ = {{c1, c2 | Γ `NFLG c1 = c2} | c1, c2 ∈ C} is the set of all
equivalence classes terms that are provably identical according to Γ,

• S♦ = {∆ ⊆ L | for all ϕ ∈ ∆, ϕ is a literal of L} is the set of all sets
of literals of L, where a literal is an atomic formula or its negation,

• D@ = {∆ ⊆ L | ∆ ∈ D♦ Γ `NFLG ϕ for all ϕ ∈ ∆} is the set of all
sets of literals that are provably true according to Γ,

• and finally
∏

=
⋃

.

It is easily checked that this is indeed a state space according to Definition
3.5.1.

Next, we would define a canonical intepretation IΓ for Γ, where

• δ(c) = {c′ ∈ C | Γ ` c = c′};

• v+(P )(δ(c1), . . . , δ(cn)) = {∆ | Γ `NFLG ∆ ≤ P (c1, . . . , cn)}; and

• v−(P )(δ(c1), . . . , δ(cn)) = {∆ | Γ `NFLG ∆ ≤ ¬P (c1, . . . , cn)}.

It can then be, somewhat more tediously, be checked that this is indeed
a negatively adequate interpretation of L over SΓ according to Definition
3.5.4. Then we’d have to show that a formula is true in this state space
under this interpretation iff it is provable from Γ:

(SΓ, IΓ) � ϕ iff Γ ` ϕ

From this the claim would follow by standard arguments. But this is where
things get hairy. The basic proof idea would be that we first show that
every true sentence ϕ can be brought into a provably factually equivalent
disjunctive normal form, where a sentence is in disjunctive normal form iff
it is of the form∨

{(
∧

∆i | ∆i ⊆ L for i ∈ I such that for all ϕ ∈ ∆ are literals}.

More formally, we’d want to prove that for all ϕ ∈ L there is a θ ∈ L in
disjunctive normal form, such that Γ ` ϕ � ψ. This is indeed feasible. By
Lemma 3.5.18, all the steps that are usually used to prove the disjunctive
normal form theorem are factual equivalence preserving. Moreover, by the
properties (i.a-b,ii,) and (iii) of Lemma 3.5.17, we can successively eliminate
occurrences of the ground operator ≤ in favor the conjunctions of its grounds
or their negations, while preserving factual equivalence. In other words, we
simply use the provable factual equivalence (∆ ≤ ϕ) �

∧
∆ to get reduce
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sentences with the ground operator to sentences without, while preserving
factual equivalence.

Then we would have to show that provability from Γ coincides with truth
in SΓ under IΓ for all sentences in disjunctive normal form and infer the de-
sired claim by the (provable) fact that (provable) factual equivalence means
sameness of exact verifiers (in all models that satisfy Γ).16 But here the
problems start. Since our logic is infinitary, standard infinitary issues arise.
Essentially, the problem is that we have to keep a tight control on the size
of our languages of ground, in the sense that we need to limit the number of
individual constants and the size of sets that we form infinite conjunctions,
disjunctions, and statements of ground from.17

One kind of result that can indeed be established using the methods de-
scribed by Green [56] and the strategy described before (although we will
not do this here) is that if L is a language of ground with countably infinitely
many individual constants and where all infinite conjunctions and disjunc-
tions as well as all statements of ground are formed from countably infinite
sets, then NFLG is complete with respect to our semantics for countable
premise sets: For all countable Γ ⊆ L and all ϕ ∈ L, Γ `NFLG ϕ iff Γ � ϕ. We
do not know how far this result can be extended, but we believe that some
more fruitful work can be carried out in this direction, which will eventually
shed more light on the infinitary nature of ground.

It would also be nice to extend our framework to allow for quantification.
But here the infinitary issues intensify: As we’ve mentioned before, quantifi-
cation in the context of ground arguably requires us to introduce multiary
predicates in the sense of Oliver and Smiley [105]. Moreover, we’d have to
keep an even tighter control over the size of our expressions. For example,
we’d have to make sure that we only allow for quantifier blocks of finite
length, if we harbor any hope for completeness. In any case, quantifiers in
the context of ground are an exciting topic and we suspect that a lot of
interesting research can be carried out in this direction as well.

Finally, a natural thought would be to modalize the semantics in order to
allow for us to interpret statements about necessity de re in the framework.
In particular, it would be desirable to validate the commonly accepted in-
ference

Γ ≤ ϕ
�(

∧
Γ→ ϕ)

16To prove completeness by means of disjunctive normal form is the proof idea that Fine
uses to establish completeness for his pure logic of ground [44] and the logic of analytic
entailment [37] over comparable semantic.

17For an overview of the problems that arise for completeness proofs in infinitary propo-
sitional languages, see [69, p. 30–54].
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in our framework. An approach that immediately suggests itself would be to
distinguish in the definition of a state space not only between the possible
states S♦ and actual states S@, but to have a set of states Sw for every
possible world w ∈ W, where w is the set of possible worlds. Then we’d just
have to make sure that our interpretations respect classical (or negative free)
logic at every possible world and adjust our definitions of exact verifiers and
falsifiers accordingly, and we could then define truth of a non-modal sentence
at a world w ∈ W to be that there is an exact verifier of the sentence that
is also a member of Sw. Then could define truth of modal sentences of
the form �ϕ simply to be truth at every world. And on this approach we
could likely indeed validate the above inference. Remember that a necessary
condition for weak ground under our above semantics was to have that all
possible states that are (fusions of) the exact verifiers of the grounds are
exact verifiers of the groundee. And this property will not change across
worlds, and so if this is indeed the case, then as soon as the grounds will be
true at a world, so will be the groundee. But also this approach has limits.
Note that again we just said when a modal statement is true in the kind of
structure that we’ve just sketched, and not why it is true. In other words,
we would like to have the exact verifiers and falsifiers of modal statements
to properly account for modality in the present framework. But giving the
exact verifiers and falsifiers of modal statements is something that is, at least
at the present stage of research, out of reach. Again, we conjecture that a
lot of very interesting research will be carried out in this direction.

Finally, we’d like to sum up what we’ve achieved toward the goal of this
dissertation. In this chapter, we’ve presented an intuitive semantic frame-
work in which we can interpret (iterated) ground as transmission of exact
truthmakers in the weak sense of ground and irreversible transmission of
exact truthmakers in the strict sense of ground. Moreover, by implementing
negative free logic, we have achieved this in a way that is very much in the
spirit of Contingentism: our framework has no existential commitments,
since we allow for some objects in the semantics to not actually exist. Thus,
if we were to extend the framework to account for modal statements as
well as statements of ground, we are in the perfect position to implement
Contingentism full on: we can allow for it to be possible that some ob-
jects possibly don’t exist. But this is subject for future research. In the next
chapter, we will develop a property theory in this framework and in the
conclusion we will bring the framework to bear on the question of explicat-
ing EGH. But for now, let us point out that the semantic framework that
we’ve discussed in this chapter is both formally precise and philosophically
fruitful. In this conclusion, we’ve already pointed out a range of questions
that can likely be fruitfully addressed in the present framework. And in the
preface we already pointed out that Fine has brought this framework to
bear on questions ranging from counterfactuals to intuitionistic logic, not
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to mention the origin of the semantics in the context of relevance logic. For
more on the possible applications of this semantic framework, see [36]. The
point here is that the semantic framework that we’ve brought to bear in this
chapter is arguably (philosophical) fruitful in Carnap’s sense.
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Chapter 4

How To Distinguish
Necessarily Equivalent But
Distinct Properties

4.1 Preface

In this chapter, we will develop a hyperintensional theory of properties in
the semantic framework that we used in the previous chapter. More specifi-
cally, we’ll use the same idea that we’ve used to interpret predicates in this
framework to develop a theory of properties. Intuitively, an n-ary predicate
symbol expresses a relation. On the semantics of the last chapter, we’ve inter-
preted predicate symbols by means of functions that assign to every n-tuple
of objects a set of possible states of affairs. Intuitively, this set corresponds
to a disjunctive list of exact conditions for the objects to stand in the re-
lation expressed by the predicate symbol: a sequence of n-objects stands
in the relation expressed by the property symbol under an interpretation
iff at least one of these possible states actually obtains. In this chapter, we
will reify this semantics: we will simply understand properties as arbitrary
such functions. We argue that this gives us a natural and philosophically
adequate theory of fine-grained properties, which is perfectly suited to in-
terpret essential properties as properties grounded in the identity of things.

4.2 Introduction

This chapter is about necessarily equivalent, but intuitively distinct proper-
ties. We call two properties Φ and Ψ necessarily equivalent iff for all objects
x it is (metaphysically) necessary de re that x exemplifies Φ iff x exemplifies
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Ψ. The history of philosophy is full of examples of necessarily equivalent but
intuitively distinct properties. To name just a few examples, consider the
properties of:

• being (spatially) extended and being colored [12],

• being triangular and being trilateral [54],

• being a round square and being a married bachelor [95], and

• being self-identical and being a member of one’s singleton [39].1

In all of the above cases, one may plausibly hold that for every object it’s
necessary de re that it exemplifies the one property iff it exemplifies the
other. For example, we might hold that for every object it’s necessary de re
that the object is triangular iff it is trilateral, because it is a theorem of Eu-
clidean geometry that every polygon with three angles has three edges and
vice versa. Or for another example, we might hold that for every object it is
vacuously necessary de re that the object is a round square iff it is a married
bachelor, because for every object it’s necessary de re that it is not a round
square and it’s necessary de re that it is not a married bachelor. Similar
arguments may be given for the other property pairs. But intuitively, in all
of these cases the two properties are distinct. For example, being extended
means to occupy a specific region of space, while being colored means to
have some color. And certainly, these two things are different. For another
example, being triangular means to have three angles, while being trilat-
eral means to have three sides. And again, these two things are intuitively
different. Analogous arguments may be given for the other property pairs.
The aim of this chapter is to develop a property theory that can account for
these intuitions.

A theory of properties that can distinguish between necessarily equivalent
properties is called a hyperintensional theory of properties. Remember that
we call a context hyperintensional iff in the context the substitution of nec-
essary equivalents need not preserve truth-value [29, 103]. Thus, according
to hyperintensional theories of properties, talk of properties creates hyperin-
tensional contexts. To illustrate, on the relevant hyperintensional conception
of properties, we might plausibly hold, for example, that

• being self-identical is an essential property of Socrates

is true, while

• being a member of his singleton is an essential property of Socrates

1As in our introduction, we take gerundives, like “being extended” and “being colored,”
as canonical property designators: expressions we normally use to denote to properties
[125].
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is false [39]. Or, for another example, we might plausibly hold that

• being a round square is a geometric property

is true, while

• being a married bachelor is a geometric property

is false. Thus, especially when we speak of higher-level properties of prop-
erties, such as being an essential property or being a geometric property,
we have good intuitive reasons for developing a hyperintensional theory of
properties.

More generally, hyperintensional property theories have applications all over
metaphysics and the philosophy of language, since higher-order properties
of properties often play an important role in these disciplines. For example,
hyperintensional theories of properties can help us understand:

• the distinction between essential and accidental properties [39],

• the distinction between fundamental and non-fundamental properties
[123],

• the distinction between intrinsic and extrinsic properties [3], or

• properties of impossible and fictional entities [113].

Thus, developing a hyperintensional theory of properties is not an isolated
endeavor, but rather a well-connected project with useful applications in
different areas of philosophy.

Given these applications, we can formulate some natural desiderata for a
hyperintensional theory of properties. Intuitively, a hyperintensional theory
of properties should satisfy the following conditions:

Grainedness. The theory should give us an adequate identity criterion for
properties, which individuates properties:

(a) neither too coarsely,

(b) nor too finely.

Ontology. The theory should tell us what kind of objects properties are.

Applications. The theory should account for its applications, especially
the applications mentioned above.

Let’s discuss these conditions a bit further. The first condition Grainedness
contains two components. First, it demands that a hyperintensional theory
of properties give us an identity criterion for properties. An identity criterion
for properties is a law of the following form [136]:

• For all properties Φ and Ψ, Φ = Ψ iff C(Φ,Ψ).
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Here, C(Φ,Ψ) is a condition on the two properties Φ and Ψ.2 Thus, in other
words, a hyperintensional theory of properties should give us a necessary and
sufficient condition for two properties to be identical.3 This demand can be
motivated by Quine’s dictum “no entity without identity” [106, p. 23].

The second condition in Grainedness essentially says that a hyperinten-
sional theory of properties had better really be a proper hyperintensional
theory of properties. To illustrate how this condition might be failed to be
satisfied, let’s consider some counterexamples. According to an extensional
property theory, two properties are identical iff they are materially equiva-
lent. Thus, such a theory would give us the following criterion of identity
for properties:

• For all properties Φ and Ψ, Φ = Ψ iff for all objects x (x exemplifies
Φ iff x exemplifies Ψ).

But such a theory would already identify any pair of coincidentally coex-
tensive properties, such as being a chordate and being a renate, to take
Quine’s famous example [115]. This will certainly not do for a hyperinten-
sional theory of properties, as this would identify even more properties than
the problematic property pairs listed above. Extensional theories of prop-
erties are what we may call ultra-coarse. Next, according to an intensional
property theory, such as the theory IPT from our introduction, two proper-
ties are identical iff they are necessarily coextensive. Thus, on such a theory
we would get the following identity criterion for properties:

• For all properties Φ and Ψ, Φ = Ψ iff �for all objects x(x exemplifies
Φ iff x exemplifies Ψ).

Here the symbol ‘�’ standardly expresses metaphysical necessity. Thus, on
an intensional theory of properties we can distinguish between being a chor-
date and being a renate, since it is certainly metaphysically possible for
an object to be a chordate without being a renate or vice versa. But also
on such a theory, properties are individuated to coarsely. In particular, all
the property pairs listed above are identified on such a theory: we get, for
example, that being a married bachelor just is being a round square. And
following our motivating intuitions also this will not do. Intensional property
are not as coarse as extensional property theories, but still too coarse for the

2There is a discussion on what conditions we might want to put on identity criteria
and in particular the condition C [61, 80, 136]. Here we follow the standard intuitive view
that a criterion of identity should be metaphysically necessary and thus true, and that C
should at least express an equivalence relation, i.e. a reflexive, symmetric, and transitive
relation on the properties. But see the arguments in [80].

3In this chapter, we restrict ourselves to what Williamson [136, p. 144–48] calls one
level criteria of identity for properties. What Williamson [136, p. 144–48] calls two level
criteria of identity, or more traditionally abstraction principles, could also be applied to
properties in interesting ways, but we shall not do so in this chapter.
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applications we have in mind. They are what we might call medium-coarse.

On the other side of the spectrum, according to a syntactic property theory,
properties are just (interpreted) predicates. For example, we would identify
the property of being blue with the predicate “x is blue” under its intended
interpretation. Thus, on such a theory two properties are identical iff they
syntactically identical:

• For all properties Φ and Ψ, Φ = Ψ iff Φ and Ψ are identical as expres-
sions.

But such a theory of properties is too fine-grained. For example, we might
want to identify the property of being a bachelor and being an unmarried
man. But on a syntactic theory of properties the two would be distinct, since
“x is a bachelor” and “x is a man” are distinct syntactic entities. Thus, we
might call syntactic property theories ultra-fine.

We’re looking, however, for a theory of properties that lies somewhere be-
tween medium-coarse and ultra-fine. In other words, we’re looking for a
theory that is medium-fine. If we may illustrate this with a diagram, this is
the idea:

Extensional < Intensional︸ ︷︷ ︸
too coarse

< Hyperintensional︸ ︷︷ ︸
just right!

< Syntactic︸ ︷︷ ︸
too fine

We’re looking for a theory of properties that falls just in the right place
with regards to grain. This might seem like an almost trivial demand on
theories of properties, but as we shall argue, most hyperintensional theories
of properties on the market actually violate this condition in one direction
or the other, and sometimes even in both directions.

The second condition Ontology requires us to say what kind of object prop-
erties are. Syntactic theories of properties already give us an example for
what an answer might look like: according to syntactic theories, properties
are predicates. For another example, on the standard intensional theory of
properties IPT, properties are intensions, i.e. functions from possible worlds
to sets of objects. What motivates this condition is that we wish to imple-
ment our theory of properties in our overall metaphysics. Moreover, the
condition ties in with the first component of the first condition Grained-
ness: if we say what kinds of objects properties are then we presumably
can derive from this a natural identity criterion for properties. This is again
illustrated by syntactic theories of properties, where we can infer that since
properties are predicates they should be individuated as such, giving us the
above identity criterion for properties. Similarly, on the standard intensional
theory of properties IPT, properties are functions and thus individuated as
such. Remember that functions are identical iff they agree on all their argu-
ments, thus we naturally get the following identity criterion for properties
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according to IPT:

• For all properties Φ and Ψ, Φ = Ψ iff for all possible worlds w ∈ W
Φ(w) = Ψ(w).

Moreover, the condition Ontology ties in with Carnap’s idea of an expli-
cation [17, p. 1–18]: by saying what kind of object properties are, we’re
effectively replacing the intuitive concept of a property with a more precise
concept in a previously understood ontology.

The third condition Applications is almost self explanatory: as we’ve
pointed out above, the main motivation for developing a hyperintensional
theory of properties are its philosophical applications; and if a candidate
hyperintensional theory of properties fails to account for these applications,
then the whole motivation for developing the theory vanishes—the theory
becomes, if we may put it so harshly, pointless.

We can sum up the point of these conditions in terms of Carnap’s concept
of an explication of a concept. According to Carnap: “the task of explication
consists in transforming a given more or less inexact concept into an exact
one or, rather, in replacing the first by the second” [17, p. 3, emphasis in
the original]. In a given explication, Carnap calls the explicated concept the
explicandum, and the explicating concept the explicatum. Before giving an
explication of a concept, so Carnap, we should try to make the explicandum
as precise as possible: for example, we should give an informal definition
of the explicandum, we should give examples of the correct application of
the concept, or we should discuss its logic [17, p. 4–5]. Only then, we should
attempt to find a proper explicatum. Once we’ve determined an explicatum,
according to Carnap, the quality of the explication can be judged by four
criteria: (1) the similarity between the explicatum and the explicandum; (2)
the exactness of the explicatum; (3) the fruitfulness of the explicatum; and
(4) the simplicity of the explicatum [17, p. 5–8].

The idea is that we understand the project of giving a hyperintensional
theory of properties as a Carnapian problem of explication for a hyperinten-
sional concept of properties that agrees with our intuitions in the cases of
the property pairs mentioned at the outset. In this introduction, we’ve given
different intuitive examples that determine the correct use of this hyperinten-
sional concept of properties. And the three conditions Grainedness, On-
tology, and Applications correspond to Carnap’s conditions (1–3) when
applied to the concept of properties in question.
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4.2.1 Overview of the Chapter

This chapter has two parts, one negative and one positive. In §4.3, we will
discuss the main proposals for hyperintensional property theories on the
market: the impossible worlds theory and the structured properties theory.
We will argue that neither of the two theories fares well with regard to all
three of our desiderata for hyperintensional property theories. Then, in §4.4,
we will develop our own hyperintensional property theory and argue that
this theory does not fall prey to the problems of the impossible worlds theory
or the structured properties theory. Indeed, we shall argue that our theory
overcomes the problems of these theories in a natural and fruitful way.

4.3 Hyperintensional Property Theories

A wide range of property theories can be found in the literature, but not
always are properties taken to be the subject in their own right.4 Therefore,
we will, for the most part, extract theories of properties from approaches
that may not be primarily intended to provide a theory of properties. The
two main contenders for a hyperintensional theory of properties that we
come up with this way are the impossible worlds theory and the structured
properties theory. Let’s go through these theories in turn.

4.3.1 The Impossible Worlds Theory

The impossible worlds theory uses impossible worlds in addition to possible
worlds to distinguish between necessarily equivalent but intuitively distinct
properties. Thus the framework in which the theory is formulated is an
extension of the usual possible worlds framework. Intuitively, impossible
worlds correspond to the ways the world could not have been, just like
possible worlds correspond to the ways the world could have been.5 Given
the concept of possible worlds, it is plausible to postulate the following
principle of plenitude:

Plenitude for Possible Worlds. For every way the world could have
been there is a possible world that corresponds to this way.

Such a principle is, for example, endorsed by Lewis [83] and others. Analo-
gously, given the concept of impossible worlds, it is plausible to postulate a

4Notable exceptions are [8, 9, 98], [83, p. 50–69], and, of course, [140]. For a general
discussion of philosophical property theories, see [130].

5For a more comprehensive discussion of the concept of possible worlds, see Menzel
[97], and for a more comprehensive discussion of the concept of impossible worlds, see
[14].
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corresponding principle of plenitude for impossible worlds:

Plenitude for Impossible Worlds. For every way the world could not
have been there is an impossible world that corresponds to this way.

Such a principle is, for example, endorsed by Priest [112, 113] and others.

And just like possible worlds are inhabited by possible objects or possibilia,
impossible worlds are inhabited by impossible objects or impossibilia. The
properties of possible objects are constrained by what is possible: given
Plenitude for Possible Worlds and the concept of possible worlds, it
is plausible to say that possibilia can only have properties that they can
possibly exemplify. Thus, for example, there is no possible object in any
possible world that is a round square or a married bachelor. Impossibilia, in
contrast, are not constrained in this way: given Plenitude for Impossible
Worlds and the concept of impossible worlds, it is plausible to say that
impossibilia can have all the properties we like—even inconsistent ones. So
there is an impossible object in some impossible world that is a round square
and there is an an impossible object in some impossible world that is a
married bachelor. Of course, impossible worlds may also be inhabited by
some possible objects, but possible worlds are never inhabited by impossible
objects.

In the following, we denote the set of possible worlds by W and the set of
impossible worlds by I.6 We denote the set possible or impossible objects
that exist at a possible or impossible world w ∈ W ∪ I by Dw.

Remember that an intension is a function i that assigns to every world
w ∈ W an extension i(w) ⊆ Dw, i.e. a set of possible objects that inhabit
the world. On the intensional property theory, properties are identified with
intensions and the extension that is assigned by a property to a world in-
tuitively corresponds to the set of things that exemplify the property at
that world. The impossible worlds theory of properties generalizes this idea.
Let’s take an hyperintension h be a function that assigns to every world
w ∈ W ∪ I, possible or impossible, a set h(w) ⊆ Dw of possible or impos-
sible objects that inhabit the world. Correspondingly may call such a set
an impossible hyperextension. The idea of the impossible worlds theory of
properties is that, just like the intensional theory of properties IPT takes
properties to be intensions, we may alternatively understand properties as
pairs of hyperintensions:

6Priest [113] distinguishes more finely between open and closed worlds. The difference
is that open worlds need not decide every fact of the matter, while closed worlds do.
In other words, open worlds are incomplete, while closed worlds are always complete. For
Priest only closed worlds are impossible worlds and open worlds have their own ontological
category. But since the actual world could intuitively not have been incomplete, we also
count open worlds as impossible worlds.
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Impossible Worlds Theory (IWT). For all Φ, Φ is a property iff Φ is a
a pair of functions (Φ+,Φ−) such that for every possible or impossible
world w ∈ W ∪ I:

(i) Φ+ assigns an extension Φ+(w) ⊆ Dw to w, and

(ii) Φ− assigns an anti-extension Φ+(w) ⊆ Dw to w,

such that for all w ∈ W, both

(a) Φ+(w) ∪ Φ−(w) = Dw, and

(b) Φ+(w) ∩ Φ−(w) = ∅.

For example, on this theory we could identify the property of being red with
the function pair (red+,red−) such that red+ assigns to every world, possible
or impossible, the set of red things in the world and red− assigns to every
world the set of non-red things at the world. Such a theory is, more or less
explicitly, endorsed by Priest [113], Ripley [120], and Jago [64].

The intuition behind IWT is that, analogously to the intensional property
theory IPT, an object exemplifies a property at a world, possible or impos-
sible, iff it is in an element of the extension of the property at the world.
But, in contrast to the intensional property theory, on the impossible worlds
theory, a property also gives us for every world a set of objects that intu-
itively fail to exemplify the property. This set is called the anti-extension
of the property. On the intensional property theory IPT, in contrast, the
anti-extension of a property Φ at a world w ∈ W is usually simply defined as
Dw \Φ(w), i.e. as the relative complement of the extension of the extension
Φ(W ) of the property at he world with respect to the things that inhabit
the world. Consequently, it is impossible for a possible object x ∈ Dw that
inhabits some possible world w ∈ W both to exemplify and fail to exemplify
some property Φ at the world. Nor is it possible for some possible object
x ∈ Dw in some world w ∈ W neither to exemplify Φ nor fail to exemplify
Φ at w. By conditions (a) and (b) of IWT, the impossible worlds theory
agrees with this: at every possible world w ∈ W we get for every property
Φ = (Φ+,Φ−) that Φ−(W ) = Dw \Φ+(w). Thus, also according to IWT, it
is impossible for an object at some possible world both to exemplify and fail
to exemplify some property at that world. And similarly, it is impossible for
some object at some possible world neither to exemplify not fail to exemplify
some property at that world. But at an impossible world, anything goes. It
is possible for some property Φ = (Φ+,Φ−) that at some impossible world
w ∈ I some impossible object x ∈ Dw is such that both x ∈ Φ+(w) and
Φ−(w) or that x is such that neither x ∈ Φ+(w) nor x ∈ Φ−(w). For exam-
ple, at some impossible world w ∈ I there may be some ball b ∈ Dw that is
both red and non-red at that world, and thus b ∈ red+(w) and b ∈ red−(w).
Or there may be an impossible world w ∈ I with some ball b ∈ Dw that is
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neither red nor not-red at that world, and thus b 6∈ red+(w) and b 6∈ red−(w)

To avoid confusion between failing to exemplify a property at a world in the
sense of being a member of the anti-extension of the property at the world,
and failing to exemplify a property at a world in the sense of not being a
member of the extension of the property at the world, since the two notions
come apart in the framework of impossible worlds, we call the former relation
anti-exemplification and reserve the natural language expression failing to
exemplify a property at a world for the latter relation. To sum up, on the
impossible worlds theory IWT, exemplification and anti-exemplification are
analyzed as follows:

Exemplification and Anti-Exemplification on IWT. For all proper-
ties Φ, for all worlds w ∈ W ∪ I, and for all objects x ∈ Dw:

• x exemplifies Φ at w iff x ∈ Φ+(w), and

• x anti-exemplifies Φ at w iff x ∈ Φ−(w).

And even though it is not possible for some possible world w ∈ W that
some object x ∈ Dw both to exemplify and anti-exemplify a property, it is
very well possible that for some impossible world w ∈ I that some object
x ∈ Dw both exemplifies and anti-exemplifies some property. And similarly,
even though it is not possible for some possible world w ∈ W that some
object x ∈ Dw neither to exemplify not to anti-exemplify a property, it is
very well possible that for some impossible world w ∈ I that some object
x ∈ Dw neither exemplifies nor anti-exemplifies some property.

On the impossible worlds theory IWT, properties are pairs of functions
and thus they are individuated as such. In particular, we get the following
identity criterion for properties:

Property Identity on IWT. For all properties Φ = (Φ+,Φ−) and Ψ =
(Ψ+,Ψ−), Φ = Ψ iff for all worlds w ∈ W∪I we have Φ+(w) = Ψ+(w)
and Φ−(w) = Ψ−(w).

As a consequence, IWT is indeed able to distinguish between necessarily
equivalent properties. Take being colored and being extended as an example.
As we’ve said, we can plausibly hold that for every object x it’s necessary de
re that (x exemplifies being colored iff x exemplifies being extended). And by
the usual understanding of necessity de re as what’s the case in every possible
world, this means that in every possible world everything that is colored in
the world is extended and vice versa. But in the framework of impossible
worlds, there may very well be an impossible world where something is
extended but fails to be colored or colored but fails to be extended. Indeed,
by Plenitude for Impossible Worlds, there will be such a world, since
the actual world can’t be such that something is extended but not colored
or colored but not extended. Hence, if we take the property of being colored
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in the natural way to be the pair (colored+, colored−) such that colored+

assigns to every world, possible or impossible, the things that are colored
at the world and colored− assigns to every world the set of things that
are colorless at the world, and we take the property of being extended in
the natural way to be the pair (extended+, extended−) such that extended+

assigns to every world the things that are extended at the world and colored−

assigns to every world the set of things that are unextended at the world,
then we will get that the properties of being colored and being extended
are distinct. For even though the function pairs (colored+, colored−) and
(extended+, extended−) agree on all possible worlds, they go apart on some
impossible worlds. By Plenitude for Impossible Worlds there is a world
w ∈ I such that there is an x ∈ Dw such that x ∈ colored+ but x 6∈
extended+. Hence colored+ 6= extended+ and thus (colored+, colored−) is
distinct from (extended+, extended−). In other words, according to IWT,
the properties of being colored and being extended are distinct—as they
should be. We can distinguish between necessarily equivalent but intuitively
distinct properties.

But there is a problem with this story. It seems that according to IWT, we
can distinguish any two properties—and this is counterintuitive. Take, for
example, the properties of being a bachelor and being an unmarried man.
Intuitively, being a bachelor means being an unmarried man, as is supported
by the commonplace claim that “all bachelors are unmarried men” and “all
unmarried men are bachelors” are analytic truths: truths in virtue of the
meaning of “bachelor” and “unmarried man.” But according to the princi-
ple Plenitude for Impossible Worlds there will be an impossible world
where some bachelor fails to be an unmarried man. Thus if we understand
the property of being a bachelor in the natural way as the function pair
(bachelor+, bachelor−), where bachelor+ assigns to every world, possible or
impossible, the objects that are bachelors at the world and bachelor− assigns
to every world the set of objects that are no bachelor at the world, and if we
take the property of being an unmarried man in the natural way to be the
pair (unmarried man+, unmarried man−) such that unmarried man+ assigns
to every world the things that are unmarried men at the world and unmar-
ried man− assigns to every world the set of things that are not unmarried
man at the world, then we get that the properties of being a bachelor and
being an unmarried man are distinct. For by the principle Plenitude for
Impossible Worlds there will be an impossible world w ∈ I such that there
is an x ∈ Dx is such that x ∈ bachelor+ and x 6∈ unmarried man+. Hence the
two properties are distinct. Note that the argument is completely analogous
to how we showed that according to IWT being extended and being colored
are distinct. It seems that an analogous argument can be carried out for any
property pair. This is certainly counterintuitive. For example, the proper-
ties of being a bachelor and of being an unmarried man, or the properties of
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being a ball and of being a ball or a ball, are intuitively identical—yet they
are arguably distinguished by the impossible worlds theory ITW.

The obvious candidate for the culprit here is the principle Plenitude for
Impossible Worlds. In the arguments above, we’ve used the principle to
establish that for every property, understood as a pair of hyperintensions,
there are impossible worlds where these hyperintensions go apart and thus
the properties have to be different. But to fix this problem, we have abandon
the principle Plenitude for Impossible Worlds in its full generality: we
have to somehow restrict the principle. Given the intuitive concept of an
impossible world, however, this seems difficult. Why should something be
“too impossible” for there to be an impossible world that corresponds to
this impossibility. For example, why shouldn’t there be an impossible world
where some bachelor is married? It seems that there is no non-ad hoc answer
to this. We take it that this is a serious objection to the impossible worlds
theory and we don’t see how it can be overcome.7

To sum up, the impossible worlds theory ITW does give us an identity cri-
terion for properties but the identity criterion is too fine grained: the theory
violates our condition (b) of our desideratum Grainedness. The theory does
tell us what kind of objects properties are, they are pairs of hyperintensions,
and thus the theory fares quite well with regard to our third desideratum
Ontology. But also the status of the theory with regard to Applications
is dubious. It seems unclear, for example, how the hyperintensional concept
of essential properties that we’re interested in in this dissertation should be
analyzed in the framework of impossible worlds. Clearly, the modal analy-
sis PWA will not work. For even though IWT will allow us to distinguish
between the two properties of being self-identical and being a member of
one’s singleton, for example, it will still be the case for every object that the
object is self-identical at a possible world iff it is a member of its singleton
there. And hence, it will still be the case that both properties, though dis-
tinct, are essential properties of any object according to PWA. Moreover,
given the principle Plenitude for Impossible Worlds it is unclear how
PWA could be fixed in terms of impossible worlds. If we would say, for
example, that a property Φ is essential to an object x iff x exemplifies Φ
at every world, possible or impossible, where x exists, then we would get a
trivial concept of being an essential property: given Plenitude for Impos-
sible Worlds, we will be able to find a counterexample to any claim of a
property being essential to an object. Thus, IWT does not fare particularly
well with regard to Applications either. And for these combined reasons,

7We can of course construct models in a more formal sense that satisfy our intuitive
desiderata outlined above, but that is beside the point. We can similarly restrict the prin-
ciple Plenitude for Impossible Worlds in such a way that we validate our desiderata.
But the question here is for a justification of this restrictions, which is not ad hoc. And
we don’t see how such a restriction can be given.
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we will abandon the approach.

4.3.2 The Structured Properties Theory

The structured properties theory uses a concept of property structure to
distinguish between necessarily equivalent but intuitively distinct properties.
There are two versions of the structured properties theory in the literature:
one algebraic and one quasi-syntactic. Let’s discuss them in turn.

The algebraic variety of the structured properties theory is, for example, en-
dorsed by Bealer [8], McMichael and Zalta [94], Bealer and Mönnich [9], and
Menzel [98]. These authors propose to understand properties as the mem-
bers of property algebras, which consist of a set of properties P that is closed
under algebraic operations among properties, such as property conjunction
conj, property disjunction disj, property negation neg, and so on. Here we
shall not define these algebras explicitly, since our point is independent of
the concrete properties of these algebras. Let’s assume that the concept is
defined in some way. The only point that is important is that these algebras
are defined by means of characteristic equations for the members of P with
respect to the algebraic operations on P. For example, they might include a
law of the form:

• For all Φ,Ψ ∈ P, conj(Φ,Ψ) 6= Φ and conj(Φ,Ψ) 6= Ψ.

A property algebra is then defined as any system of objects with the cor-
responding operations that satisfies these characteristic equations. And a
property is then simply defined as a member of some property algebra:

Algebraic Structured Property Theory (ASPT). For all Φ, Φ is a
property iff Φ ∈ P, where P is the underlying set of some property
algebra.

Then, two properties are said to be identical iff they are identical as mem-
bers of their property algebra. In some cases, this can be shown by means
of the characteristic equations of the property algebra. For example, if we
assume the above law, then we can show that for all properties Φ, then
conj(Φ,Φ) 6= Φ. This would then indeed mean that ASPT is a hyper-
intensional theory of properties, since intuitively, the conjunctive property
conj(Φ,Ψ) is necessarily equivalent to its conjunct property Φ. We could,
of course, also postulate other characteristic equations to suit our intuitive
needs and make our theory exactly as fine-grained as we’d like. For example,
we could postulate the following equations instead of the above one:

• For all Φ ∈ P, conj(Φ,Φ) = Φ.

• For all Φ,Ψ ∈ P, if Φ 6= Ψ, then conj(Φ,Ψ) 6= Φ and conj(Φ,Ψ) 6= Ψ.
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Then, we’d get that for all properties Φ, conj(Φ,Φ) = Φ. But this will only
work for those properties that are described by the characteristic equations
of the property algebra. Ultimately, property identity will be primitive in
ASPT: two properties Φ and Ψ are identical iff they are identical objects.
This means that ASPT does not fare well with regard to the first com-
ponent of our desideratum Grainedness: the theory does not give us any
meaningful identity criterion for properties.

To make things worse, ASPT does not fare well with regard to the criterion
Ontology either. Note that a property algebra is defined as any system of
objects with the corresponding operations that satisfies these characteristic
equations, and a property is defined as an object in some property algebra.
But this is counterintuitive: It might turn that some collection of numbers,
or possible monkeys, or the like can be equipped with operations that satisfy
the characteristic equations of a property algebra. But intuitively, properties
are not numbers, possible monkeys, or the like. But more importantly, a
consequence of this definition is that anything can be a property according
to ASPT and thus the theory does certainly not tell us what kinds of
objects properties are. This makes it difficult, if not impossible, to ascertain
the metaphysical merit of ASPT. The point is that ASPT seems to rather
describe the structure of properties, in the sense of the relations they bear
to each other. But ASPT doesn’t tell us what properties are—it doesn’t
give us any meaningful identity criterion nor does it tell us what ontological
category properties belong to.8 For this reason, we will abandon the algebraic
structured properties theory ASPT.

The quasi-syntactic variety of the structured properties theory, in contrast,
is endorsed, more or less explicitly, by Cresswell [29] and King [70], and Lewis
[83, p. 50–69] for some applications. This theory is based on the observa-
tion that we typically express properties by means of property expressions.
Standardly, we may take property expressions to be (complex) unary pred-
icates of some (relatively) informal language, such as “x is a bachelor,” “x
is an unmarried man,” or “x is self-identical,” for example.9 These property
expressions come with an intended interpretation. For example, we assume
that ‘x is a bachelor” expresses the property of being a bachelor, “x is an
unmarried man” expresses the property of being an unmarried man, and
“x is self-identical” expresses the property of being self-identical. Thus, we
usually talk about properties by means of property expressions under an

8We don’t wish to exclude that properties might belong to a primitive ontological
category. But if there is a primitive ontological category of properties, then we’d arguably
need an identity criterion for the objects in that category and ASPT does not provide
this.

9But they could be any kind of expression that we use to refer to properties, such
as gerundives like “being a man” for example. Here we shall focus on unary predicates,
however, since this is the standard way of developing the view.
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intended interpretation.

To obtain a hyperintensional theory of properties from this observation, we
first subject the intuitive property expressions to a syntactic analysis. In the
standard way of doing this, we would simply let the syntactic analysis of our
language do this job for us. For example, we would analyze “x is a bachelor”
and “x is self-identical” as primitive property expressions, but we would
analyze “x is an unmarried man” as the complex conjunctive predicate “x
is a man & x is unmarried,” where “x is a man” and “x is unmarried” are in
turn primitive predicates. The result would be a definition of an expression
ϕ being a well-formed property expression (read unary predicate) formed
(in order) from the expressions σ1, . . . , σn, which that range over predicates
and logical operators. For example, we would get that “x is unmarried”
is a well-formed property expression formed only from itself, and “x is a
man & x is unmarried” would be a well-formed property expression that
is formed from “x is a man,” “&, ”“x is unmarried.” In other words, we
would subject our informal language to a syntactic analysis and in this way
transform it into a (more or less) formal language. In the following, we’ll
write ϕ(σ1, . . . , σn) to indicate that ϕ a well-formed property expression
that is formed (in order) from the expressions σ1, . . . , σn, which range over
predicates and logical operators.

Next, we define the notion of an interpretation for the expressions that we’ve
previously syntactically analyzed. Standardly, we would take the interpre-
tation of a predicate symbol to be an intension, i.e. a function from possible
worlds to the sets of objects at that possible world.10 The extension assigned
to a predicate symbol, then are the objects that at the world exemplify the
property expressed by the predicate under the interpretation. In the case of
the logical operators, we’d take the semantic value to be the corresponding
logical operations. This step is usually taken care of by carefully laying out
the standard semantics for the kind of (formal) language we’re considering.
Next, we’d somehow identify the intended interpretation ν that assigns the
intuitively correct intensions and operations to the predicates and operators
of our language. For example, ν would be such that ν(“x is the man”) is the
function that assigns to every possible world the set of all men at that world,
and ν(“&”) would be the logical operation of conjunction on intensions.11

Then, finally, putting the two steps together, proponents of the quasi-
syntactic structured property theory project the syntactic structure of
the property expressions on their semantic values. The result are quasi-

10Again there is room for maneuver here. If we can give some alternative notion of an
interpretation of property expressions, then also this notion would give rise to a (different)
quasi-syntactic structured property theory.

11More specifically, this would be the function ∧ such that for all worlds w ∈ W and all
intensions i, j, (i ∧ j)(w) = i(w) ∩ j(w).
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syntactically structured sequences of semantic values that reflect the syn-
tactic structure of the property expressions intuitively expressing them. We
end up with the following theory of properties:

Quasi-Syntactic Structured Properties Theory (QSPT). For all Φ,
Φ is a property iff Φ is ordered-tuple (ν(σ1), . . . , ν(σn)) of the semantic
values ν(σ1), . . . , ν(σn) under the intended interpretation ν of the syn-
tactic components of a well-formed property expressions ϕ(σ1, . . . , σn).

Versions of this theory are, more or less explicitly, endorsed by Cresswell
[29] and King [70], and Lewis [83, p. 50–69] for some applications.

Since according to QSPT properties are n-tuples, they are individuated
as such. In particular, we get the following identity criterion for properties
according to the theory:

Property Identity in QSPT. For all properties Φ = (ν(σ1), . . . , ν(σn))
and Ψ = (ν(τ1), . . . , ν(τm)), for n,m ∈ N:

• Φ = Ψ iff n = m and ν(σi) = ν(τi), for all 1 ≤ i ≤ n.

Thus, the quasi-syntactic structured properties theory QSPT improves over
the algebraic structured properties theory ASPT in the sense that it gives
us an identity criterion for properties and tells us what kind of objects
properties are—they are tuples of semantic values of property expressions.
Hence, QSPT fares quite well with regard to our desideratum Ontology
and the first component of Grainedness.

But we wish to argue that there are also problems for the the quasi-syntactic
structured properties theory QSPT. In particular, it appears that QPST
violates both condition (a) and (b) of Grainedness: the theory individu-
ates some properties to coarsely and some properties to finely. For the first
point, consider the properties of being self-identical and being contained in
one’s singleton. We would typically express these properties by means of
the predicates “x is self-identical” and “x is contained in {x}”. But both
of these predicates are atomic and thus we would get that the property
of being self-identical according to QSPT is simply the one-tuple (ν(“x is
self-identical”)) and the property of being self contained in one’s singleton
would be (ν(“x is contained in {x}”)), where ν gives the intended interpre-
tation for these predicates. Moreover, the intended interpretation of “x is
self-identical” is standardly the intension which maps every world to the set
of objects that are self-identical in the world, and the intended interpretation
of “x is self-identical” is standardly the intension which maps every world
to the set of objects that are contained in their singleton in this world. But
since we’ve agreed that being self-identical and being contained in one’s sin-
gleton are necessarily equivalent, these intensions will be identical, i.e. ν(“x
is self-identical”)=ν(“x is contained in {x}”). But then it follows by Prop-
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erty Identity in QSPT that also the properties of being self-identical
and of being contained in one’s singleton are identical—contrary to what
we want to say intuitively. The point here is that QSPT apparently cannot
distinguish between necessarily equivalent properties which are expressed
by atomic property expressions. And the only way of fixing this problem in
the framework of QSPT would be to devise an intended interpretation that
assigns different semantic values to necessarily equivalent but intuitively
distinct atomic property expressions. But what would then be the point of
QSPT in the first place?

For the second point, consider the properties of being a bachelor and being
an unmarried man. Standardly, after syntactic analysis, we would express
these properties by the predicates “x is a bachelor” and “x is a man & x
is unmarried.” Thus, according to QSPT, the property of being a bachelor
would be the one-tuple (ν(“x is a bachelor”)) and the property of being
an unmarried man would be the triple (ν(“x is a man”), ν(“&”), ν(“x is
unmarried”)), where ν again assigns the intended interpretation to these
expressions. But these two tuples cannot be identical, since the one is a one-
tuple and the other is a triple. Yet, intuitively, we might want to identify
the properties of being a bachelor and being an unmarried man, as we’ve
pointed out before. More generally, according to QSPT a property that is
expressed by a conjunctive property expression can never be identical to
a property that is expressed by an atomic property expression. But this
seems counterintuitive: identity of properties should not be determined by
the complexity of the expressions expressing them.

To sum up, also QSPT does not fare very well with regard to our desider-
ata: in the case of properties expressed by atomic property expressions, the
theory falls back into the problems of the intensional property theory IPT
and in the case of properties expressed by syntactically complex property
expressions the theory behaves too much like a syntactic theory of proper-
ties. For this reason, we shall also abandon structured property theories for
the purpose of this chapter.

4.4 The Exemplification-Criteria Theory

In this section, we’ll develop our new hyperintensional theory of properties.
We’ll develop this theory in an informal version of Fine’s semantic framework
of exact truthmaker semantics, which we’ve discussed at length in the pre-
vious chapter. But let’s briefly recall the basics of the the framework. First,
we assume that we’re given a non-empty set D♦ of possible objects, which
intuitively correspond to all the objects that could possible have existed. We
furthermore assume that we’re given a non-empty set S♦ of possible states
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(of affairs). Intuitively these possible states are possible states of objects
being a certain way. Just like in the case of possible and impossible worlds,
it makes sense to postulate a principle of plenitude for possible states:

Plenitude for Possible States. If x1, x2, . . . are objects, then for every
non-disjunctive way that x1, x2, . . . could have been like, there is a
possible state of x1, x2, . . . being that way.

For example, if we have a ball that can be colored in different ways, then
there will be possible states corresponding to the different ways that the
ball could have been colored: there is a possible state of the ball being red, a
possible state of the ball being green, a possible state of the ball being blue,
and so on.

Any collection of states may intuitively be (mereologically) fused. Hence, we
assume that we have an operation

∏
: ℘(S♦)→ S♦ of fact fusion such that:

• for all states s ∈ S♦,
∏
{s} = s (‘idempotence’); and

• for all indexed families (Xi ⊆ S♦)i∈i of states,∏
{
∏

Xi | i ∈ I} =
∏⋃

{Xi | i ∈ I} (‘commutativity’).

In other words, fact fusion respects the laws of mereology. Thus, intuitively,
if there is a state of the ball being red and a state of the ball being round,
then there is also the fusion state

∏
{the ball being red, the ball being

round}=the ball being red and round. Instead of
∏
{the ball being red, the

ball being round}, we’ll usually just write:the ball being red◦the ball being
round.

Finally, we assume a non-empty set of individuals D@ ⊆ D♦ of actual ob-
jects, which intuitively corresponds to the objects that actually exist. And
we assume that we have a non-empty set S@ ⊆ S♦ of actual states, which in-
tuitively corresponds to the actually obtaining states. Thus, if there actually
exists some green ball b, then the possible state of the ball b being green is
a member of S@. For intuitive reasons, we assume that the actual states are
upwards and downwards closed with respect to state fusion: if an arbitrary
state fusion

∏
X, for X ⊆ S♦ actually obtains, then all the members of X

actually obtain, and if all the members of X ⊆ S♦ actually obtain, then∏
X actually obtains. More precisely:

• for all X ⊆ S@,
∏
X ∈ S@, and

• for all X ⊆ S♦, if
∏
X ∈ S@, then X ⊆ S@.

Thus, if there is some ball such that the states of the ball being red and
the ball being round actually obtain, then the fusion state of the ball being
red and round actually obtains. And similarly, if the fusion state of the ball
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being red and round actually obtains, then also its part states of the ball
being red and the ball being round actually obtain.

As we’ve shown in the last chapter, this framework can be used to give
truth conditions for (iterated) statements of ground and Fine has shown in
different papers that the semantics can be brought to bear on issues ranging
from counterfactuals to intuitionistic logic [42, 44, 44]. Now we will show
that in this framework, we can also define a reasonable notion of a property.
And as a consequence, this notion of a property can be used in all of the
previously mentioned applications.

The idea is that we take a property to be a pair of functions which assign to
every object a set of possible states that correspond to the precise conditions
for the object to exemplify the property and a set of states which correspond
the precise condition for the object to fail to exemplify the property. We’ll
call the first set the exemplification criteria and the second set the anti-
exemplification criteria of the property. More precisely, we get the following
definition of a property in our framework:

The Exemplification-Criteria Theory (ECT). A property Φ is a pair
(Φ+,Φ−) of functions such that for every x ∈ D♦:

• Φ+ assigns a set Φ+(x) ⊆ S♦ of exemplification criteria to x, and

• Φ− assigns a set Φ−(x) ⊆ S♦ of anti-exemplification criteria to
x,

such that for all X ⊆ S♦:

(i) if X ⊆ Φ+ non-empty, then
∏
X ∈ Φ+.

(ii) if X ⊆ Φ− non-empty, then
∏
X ∈ Φ−.

The conditions (i) and (ii) essential amount to saying that exemplification
and anti-exemplification criteria can be overdetermining whether or not the
object exemplifies the property: all the fusions of exact conditions are them-
selves exact conditions.

The idea of ECT is that the exact exemplification and anti-exemplification
criteria of a property for an object are disjunctive lists of all the possible ways
in which the object can exemplify the property or fail to exemplify the prop-
erty respectively. Thus, an object exemplifies a property iff some of the exact
exemplification criteria of the property for the object actually obtain and an
object fails to exemplifies a property iff some the exact anti-exemplification
criteria of the property for the object actually obtain. More precisely, we
get the following definition of exemplification and anti-exemplification on
our theory:
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Exemplification and Anti-Exemplification in to ECT. For all prop-
erties Φ and all objects x ∈ D♦ we say:

• x exemplifies Φ iff Φ+(x) ∩ S@; and

• x anti-exemplifies Φ iff there is an s ∈ Φ−(x) such that s ∈ S@.

Thus, intuitively the property of being red will assign to a ball the set of
only the state of the ball being red as its only exact instantiation criterion
and it will assign the ball the set of the ball being green, being blue, and so
on, as all of its anti-instantiation criteria. And the ball will exemplify the
property of being red iff the state of the ball being red actually obtains, i.e.
iff the ball is actually red. And the ball will fail to exemplify the property
of being red iff one of the states of the ball being green, the ball being blue,
and so on obtains, i.e. iff the ball is colored in some other way than red.

Note that so far we haven’t postulated that the exemplification criteria and
anti-exemplification criteria of a property for an object must not overlap.
Nor have we postulated that at least one of the exemplification criteria or
anti-exemplification criteria of a property for an object must actually obtain.
Thus, it is possible according to ECT that an object both exemplifies and
anti-exemplifies a given property and it’s possible according to ECT that
it fails to do either. This is not a bug, it is rather a feature. In this way, we
can recover the intuitions of the impossible worlds theory in our framework.
If we don’t share these intuitions, then we can simply make ECT classical
by additionally postulating the following two conditions for all properties
Φ = (Φ+,Φ−):

• for all objects x, not both Φ+(x) ∩ S@ 6= ∅ and Φ−(x) ∩ S@ 6= ∅, and

• for all objects x, Φ+(x) ∩ S@ 6= ∅ or Φ−(x) ∩ S@ 6= ∅.

We might call these conditions the classicality conditions. They give us a
classical conception of hyperintensional properties in the sense that we’ll
easily be able to show that every object either exemplifies or anti-exemplifies
every property. We could make similar adjustments to accommodate other
background logics, such negative and positive free-logic, intuitionistic logic,
relevant logic and so on.12 We could also restrict state fusion to only those
subsets of the possible sets that are intuitively compossible to accommo-
date the intuition that only possible conditions should play a role in the
semantics.13

Note also that according to ECT, properties are pairs of functions and thus
individuated as such. We get the following identity criterion for properties

12In the last chapter, we’ve indeed made such an adjustment for the case of negative
free logic. Here we don’t write down the conditions again, since we’re interested in the
more general notion of a (hyperintensional) property.

13This is indeed what Fine [38] does.
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according to ECT:

Property Identity in ECT. For all properties Φ = (Φ+,Φ−) and Ψ =
(Ψ+,Ψ−), Φ = Ψ iff for all x ∈ D♦ Φ+(x) = Ψ+(x) and Φ−(x) =
Ψ−(x).

This criterion allows us to distinguish between necessarily equivalent but
intuitively distinct properties, without being too discriminating.

To illustrate let’s consider a toy example. Imagine a ball factory that pro-
duces balls in one of two colors: blue and red. The factory can eventually
produce arbitrarily many balls b1, b2, . . . , but so far it has only produced
two: b1 and b1. In our factory, the color of a ball being produced is decided
in the very last production step when the balls are being sprayed either
blue or red. Before this production step there is a machine which randomly
determines for the balls on the conveyor belt whether they will be painted
blue or red. Thus, it is possible for every ball to be painted in either color.
In fact, b1 was painted blue and b2 was painted red. Finally, the factory is
metaphysically possible and thus all the balls that it produces are extended.

If we restrict ourselves to the states of the balls in our toy factory toy
example, then we get the following parameters:

• D♦ = {b1, b2, . . .}

• D@ = {b1, b2},

• S♦ = {bi being blue, bi being red, bi being extended,
bi being blue ◦ bj being red, . . . | i, j ∈ N},

• S@ = {b1 being blue, b2 being red, b1 being extended, b2 being extended,
b1 being blue ◦ b2 being red, . . .}.

In this setting, we can define the properties of being red and being blue as
the function pairs (being red+, being red−) and (being blue−, being blue−),
where these functions are defined by saying for all bi ∈ D♦ that:

• being red+(bi) = {bi being red},

• being red−(bi) = {bi being blue},

• being blue+(bi) = {bi being blue}, and

• being blue−(bi) = {bi being red}.

And we can understand the property of being colored as the function pair
(being colored+, being colored−), where these functions are defined by saying
for all bi ∈ D♦ that:

• being colored+(bi) = {bi being blue, bi being red, bi being blue ◦
bi being red}, and
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• being colored−(bi) = ∅,

Note that all balls our factory produces are colored and thus the property
of being colored has no exact anti-exemplification criteria for our balls. And
since we haven’t forbidden intuitively non-compossible states to be fused, we
have to count the intuitively impossible state of bi being blue ◦ bi being red
as an exact instantiation condition of bi being colored to satisfy our overde-
termining condition.

Moreover, we can understand the property of being extended as the function
pair (being extended+, being extended−), where these functions are defined
by saying for all bi ∈ D♦ that:

• being extended+(bi) = {bi being extended}, and

• being extended−(bi) = ∅.

Again, since the balls our factory produces are all extended, the property
has no exact anti-exemplification criteria for our balls.

Given this setup, we can easily determine using Property Identity in
ECT that the property of being colored is distinct from the property of being
extended: the functions they are defined by give different values for the same
arguments. We have found a way of distinguishing the necessarily equivalent
but intuitively distinct properties of being colored and being extended. And
we have achieved this by what we hold is an intuitively plausible story:
properties should be individuated based on what it means to exemplify them.
Being colored means to be in a state of having a certain color and being
extended means, well, being spatially extended. We could construct similar
intuitive toy models for the other property pairs that we mentioned at the
outset of this paper, but for reasons of space we shall refrain from doing so.

Note that we can also accomodate the intuition that the properties of being
a bachelor and of being an unmarried man are in fact identical. To see this,
let’s assume that for every object x ∈ D♦ there are possible states of x being
a man, of x being a woman, of x being married, and of x being unmarried
in S♦, but no distinguished state of x being a bachelor as of yet. In such a
setting we may simply define the state of being a bachelor as the state of
being an unmarried man by saying for all x ∈ S♦:

x being a bachelor =def. (x being a man ◦ x being unmarried).

This would give intuitive justice to the intuitively plausible idea that being a
bachelor means being an unmarried man in virtue of the meaning of “bache-
lor” being defined by the meaning of “unmarried man” by means of semantic
stipulation. In this setting, then, we can plausibly understand the property
of being an unmarried man as the pair (unmarried man+,unmarried man−),
where these functions are defined by saying for all x ∈ D♦ that:
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• unmarried man+(x) = {x being a man ◦ x being unmarried}, and

• unmarried man−(x) = {x being a women, x being married,
x being a woman ◦ x being married}.

And based on the intuition that being a bachelor means being an unmarried
man, we can plausibly understand the property of being a bachelor as the
pair (bachelor+,bachelor−), where these functions are defined by saying for
all x ∈ D♦ that:

• bachelor+(x) = {x being a bachelor = (x being a man ◦ x being unmarried)}, and

• bachelor−(x) = {x being a women, x being married, x being a women ◦ x being married}.

Now, under these assumptions, we get in fact that the properties of being a
bachelor and of being an unmarried man are identical. Admittedly, this was
built into the set-up, as it were, but we’ve built this into the set-up together
with an intuitively plausible background story. The point is merely that we
can accomodate for the two properties to be identical, we don’t have to.

Note further that we can also define the Boolean operations neg,disj, and
conj on the properties. Inspired by the semantic clauses of Fine [42, 38],
which we’ve discussed in the last chapter, we can define these functions on
all properties Φ and Ψ by saying for all s ∈ D♦ that:

• Negation:

– neg(Φ)+(x) = Φ−(x)

– neg(Φ)−(x) = Φ+(x)

• Disjunction:

– disj(Φ,Ψ)+(x) = Φ+(x) ∪Ψ+(x) ∪ conj(Φ,Ψ)+(x)

– disj(Φ,Ψ)−(x) = {s ◦ t | s ∈ Φ−(x), t ∈ Ψ−(x)}

• Conjunction:

– conj(Φ,Ψ)+(x) = {s ◦ t | s ∈ Φ+(x), t ∈ Ψ+(d)}

– conj(Φ,Ψ)−(x) = Φ−(x) ∪Ψ−(x) ∪ conj(Φ,Ψ)−(x)

It is easily checked that under these operations, the following laws hold:

• neg(neg(Φ)) = Φ

• disj(Φ,Φ) = Φ

• conj(Φ,Φ) = Φ

• neg(conj(Φ,Ψ) = disj(neg(Φ),neg(Φ))
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Moreover, if we postulate further conditions on the properties, such as the
classicality conditions, we can show that the properties satisfy further laws,
e.g. the laws of a Boolean algebra in the case of the classicality conditions.

But here we are not so interested in the formal properties, as much as in their
intuitive applications. Let’s go once more into the setting we’ve described
before to show that we can accommodate the intuition that being a bachelor
is the same as being an unmarried man. In the setting we’ve described we
can furthermore plausibly postulate that the property of being a man is the
pair (man+,man−), which is defined by saying for all x ∈ D♦ that:

• man+(x) = {x being a man}, and

• man−(x) = {x being a women}.

And similarly, we can plausibly postulate that that the property of being
married is the pair (married+,married−), which is defined by saying for all
x ∈ D♦ that:

• married+(x) = {x being married}, and

• married−(x) = {x being unmarried}.

But then we can show that conj(being unmarried, being a man)=being an
unmarried man=being a bachelor under our stipulations. In other words, we
can show being a bachelor is a conjunctive property formed from the two
properties of being unmarried and being a man. Thus, we’ve overcome the
limitation of the quasi-syntactic structured properties theory: we can have
a conjunctive property being identical to a primitive property.

Finally, we’d like to point to a nice feature of our theory of properties having
to do with the theory of hyperintensional propositions. In unpublished work,
Fine [46, 47] develops different concepts of hyperintensional propositions in
the framework of exact truthmaker semantics. One of the concepts of hy-
perintensional propositions that Fine discusses is as pairs of sets of possible
states, i.e. objects of the form (X,Y ) for X,Y ⊆ S♦. The idea is that for
such a proposition (X,Y ) the members of X are the exact verifiers of the
proposition and the members of Y are the exact falsifiers of the proposition
in the sense that we’ve discussed in the last chapter. Thus, Fine simply rei-
fies the semantics that we’ve discussed in the last chapter and turns it into
a theory of propositions. In a sense, what we’ve done in this chapter is the
same for the concept of a property. And indeed, there is a nice connection
between Fine’s notion of hyperintensional propositions and our properties
on the theory ECT. First note that Fine discusses various conditions con-
ditions that we might plausibly put on hyperintensional propositions in this
sense, among them the condition that for a hyperintensional proposition of
the form (X,Y ) we want that for all Z ⊆ X, we have

∏
Z ∈ X and simi-

larly that Z ⊆ Y, we have
∏
Z ∈ Y . But now it should be clear that we can
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canonically interpret properties in the sense of ECT as functions that map
objects to hyperintensional propositions that satisfy this condition. This is a
nice connection between Fine’s reification of exact truthmaker semantics to
a theory of hyperintensional propositions and our reification of the semantics
to a theory of hyperintensional properties. Indeed, we may even understand
hyperintesional properties in Fine’s sense as a special case of properties, by
canonically taking them to be zero-ary functions with constant output. This
way of treating propositions as a special case of functions, as well as the idea
that properties are functions that map objects to propositions is common
in Montague semantics for natural language [99] and the full semantics for
second order logic [127]. That this connection also holds for our treatment
of properties in ECT should give some backing to the claim that the exem-
plification criteria theory of properties is a natural theory of properties in
the context of exact truthmaker semantics.

4.5 Conclusion

Let’s take stock. In this chapter, we’ve argued that the go-to hyperinten-
sional theories of properties, the impossible worlds theory and the structured
properties theory are not up to the job of giving us a hyperintensional theory
of properties which satisfies our intuitive desiderata Grainedness, Ontol-
ogy, and Applications. In particular, we’ve argued that the impossible
worlds theory fails with regard to Grainedness and Applications, while
the structured properties theory ASPT fails with regard to Ontology and
the quasi-syntactic structure property theory QSPT (doubly) fails with re-
gard to Grainedness. Motivated by the failures of these theories, we’ve
developed what we hold to be a natural and intuitively motivated theory of
hyperintensional properties in the exemplification criteria theory ECT.

Our discussion of ECT in §4.4 makes it plausible that ECT fares quite well
with regard to our three desiderata: First, the theory gives us an identity
criterion for properties in the form of Property Identity in ECT and this
criterion allows us to model many intuitively correct claims. In particular,
it allows us to overcome the difficulties that IWT and QSPT have with
regard to the individuation of properties: for all of the problematic cases
that we’ve pointed out for these theories, ECT as a workable, and so we
believe, plausible answer. Second, the theory gives us a clear definition of
what a property is: according to ECT properties are pairs functions from in-
dividuals to exact exemplification and anti-exemplification criteria. Indeed
in the §4.4, we’ve shown that we can even understand properties accord-
ing to ECT more specifically as functions from objects to hyperintensional
propositions. Thus, ECT fares quite well with regard to the desideratum
Ontology. And finally, we’ve already pointed out many times to the vari-
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ous applications of the framework of exact truthmaker semantics and since
our theory ECT is formulated in this framework in can be put to work in
all of these applications. One particular application that is especially perti-
nent to the goals of this dissertation, namely the explication of the concept
of essential properties given by the view Essence Grounded in Haecceities
EGH, will be discussed in the conclusion of this dissertation. Thus, all in
all, the exemplification criteria theory ECT appears to pass the test of our
three criteria with flying colors. We can arguably regard ECT as a good
explication of the hyperintensional concept of properties introduced in the
introduction of this chapter.

Before we close, we’d like to point out two possible generalizations of the
theory we developed in this chapter. First, it would be desirable to extend
the theory to a hyperintensional theory of relations. This can be achieved
without much difficulty by simply defining an n-ary relation to be a pair
of n-ary functions from n-tuples of objects to sets of exact exemplification
and anti-exemplification criteria. In this chapter we’ve refrained from doing
so for clarity’s sake. We hold that the simple case of properties or unary
relations illustrates the idea best. Second, it would be desirable to further
investigate the algebraic properties of our properties according to ECT.
We’ve already pointed out that under natural definitions, some of the laws
that hold for properties according to ECT. Now it would surely be fruitful
to compare the algebraic properties of the properties according to ECT
with the concrete property algebras described by Bealer [8], Bealer and
Mönnich [9], and Menzel [98]. Once we’ve extended the framework to account
for relations and not only properties, it would be especially interesting to
consider operations like the hybrid operation plugn of Menzel [98] which
plugs an object x ∈ D♦ into the n-th place of an n-ary relation Σ and
turns it into an (n− 1)-ary relation plugn(x,Σ) or the operation Πn which
intuitively universally quantifies over the n-th place of a relation. But all of
this is just subject matter for future research.
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Conclusion

Summary

Let’s give a brief summary of what we’ve achieved in this dissertation. In
Chapter 1, our introduction, we’ve set the goals for the dissertation. In par-
ticular, by discussing the modal analysis of essential properties MA and
its explication in the possible worlds framework by means of the possible
worlds analysis PWA supplemented with the intensional property theory
IPT, we’ve come up with two concrete goals: (1) to give a comparable ex-
plication to PWA for the view that essential properties are grounded in the
haecceities of things EGH, and (2) to supplement this explication with a
comparable property theory to IPT which accommodates the hyperinten-
sionality of the concept defined by EGH. Then over the core chapters of
this dissertation, we’ve carried out the grunt work for this project. Thereby
we’ve laid the foundations for tackling questions (1) and (2).

In Chapter 2, we’ve followed an approach to ground that we have ultimately
discarded for the purpose of this dissertation: developing an axiomatic theory
of conceptualist ground on a predicational approach to the syntax of ground.
We’ve shown that the project of the chapter is well motivated and hopefully
it will prove to be fruitful in the future. We have shown many promising
results in the chapter, but ultimately the merit of the approach will have to
be ascertained by its applicability to other, non-internal philosophical ques-
tions. However, in the chapter we’ve attested that research into axiomatic
theories of ground is too young a field of research to find applications to
metaphysical problems outside the scope of concrete ground-theoretic is-
sues. Indeed, the chapter is the first proper treatment of axiomatic theories
of ground that we’re aware of. An especially pressing problem that presented
itself is that once we allow for iterated statements of ground in the frame-
work of the chapter, we run into serious difficulties: we face the threat of
paradox. For this reason we went looking for other options.

In Chapter 3, we’ve then turned to operational approaches to the syntax
worldly of ground. In this chapter we’ve extended Fine’s semantic frame-
work of exact truthmaker semantics to account for iterated ground in sim-
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ple predicate languages without quantification. And indeed we could find
intuitively plausible clauses for the exact verifiers and falsifiers of equations,
atomic sentences, and statements of ground. These are, as far as we’re aware,
the first clauses that have been given for such formulas in the semantics
of ground. We’ve formulated these clauses with two specific philosophical
views in mind: first, the view that grounds ground ground, i.e. the view that
grounding facts obtain in virtue of the grounds in the grounding fact; and
second, the intuition that atomic statements can only be true if all the terms
in them denote existing objects—the core intuition of negative free logic. Af-
ter giving these clauses, we’ve surveyed the resulting logic determined by this
semantics. We’ve presented a proposal for a natural deduction system for
this logic and proved soundness. Finally, we’ve sketched how a completeness
result may be obtained. However, since the issue of completeness brings us
deep into the realm of infinitary logic, we’ve omitted the details and stayed
content with a sound proof theory.

Finally, in Chapter 4, we’ve developed a hyperintensional property theory
that we hold is both natural and will prove fruitful for the aim of this
dissertation: we’ll argue that the theory can fill the role that IPT plays for
PWA for our analysis EGH. This is what we’ll argue in this conclusion. In
the rest of this conclusion, we will provide a semantic explication of EGH
in the framework developed in Chapter 3 and we’ll subject it to the test of
Carnap’s four criteria for the quality of an explication.

Explicating Essence Grounded in Haecceities

Now it is time to give our explication of the view that essential properties are
properties grounded in the identity of things. For this purpose let us move
to the semantic framework of Chapter 3. More specifically, let’s assume that
we’re given a state space S = (D♦, D@, S♦, S@,

∏
), where D♦ contains all

intuitively possible objects, D@ contains all intuitively existing objects, S♦
contains all the intuitively possible states, D@ contains all the intuitively
actually obtaining states, and

∏
is the intuitive operation of state fusion. It

is plausible to assume that S is indeed a state space, meaning in particular
that S@ is closed under (arbirtary) state fusion.

Next, let us regiment our informal meta-language as containing a language of
ground L, which contains among its non-logical vocabulary: individual con-
stants for all the objects that we’ve considered throughout this dissertation,
a predicate for every property that we’ve considered throughout this disser-
tation, and finally a distinguished haecceity predicate Hx for every possible
object x ∈ D♦. Thus, for example, L will contain the individual constants
“Socrates” and “Xanthippe;”L will contain the predicate symbols “being a
man,” “being married to Xanthippe,” “being a member of one’s singleton,”
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and “being such that infinitely many prime numbers exists;” and finally
L will contain the haecceity predicates HSocrates for the property of being
Socrates and HXanthippe for the property of being Xanthippe. The properties
of being self-identical and being distinct from something, we can express by
means of the identity predicate =, which is in any case in the logical vocab-
ulary of L. If x ∈ D♦ is an object, then we’ll write x for the corresponding
individual constant in our language, and if Φ is a property, then we’ll write Φ
for the corresponding predicate in our language. We may call this language
our essentialist language of ground for S.14

And finally, we assume that we’re given an interpretation I = (δ, v+, v−)
for L in S, which assigns the intended interpretations to all the un-
problematic expressions of L. So for example, we can assume that
δ(“Socrates”)=Socrates, and δ(“Xanthippe”)=Xanthippe. Or we can as-
sume that Socrates being a man ∈ v+(“being a man”)(Socrates) or Xan-
thippe being a woman ∈ v−(“being a man”)(Xanthippe). As we’ll see
shortly, the central question will be what v+ and v− should assign to the
haecceity predicates Hx. One thing appears to be clear, however. We should
get for all y 6= x ∈ D♦ that v+(Hx)(y) = ∅ and v−(Hx)(y) = v+(Hx)(x).
In words, there is no exact verifier of something other than a given object
being that object and an exact falsifier of something being a given object is
whatever is an exact verifier of that object being that object.

With this setup in place, the first thing we should do is to properly regiment
EGH in the framework. Here we have two options, we can understand the
“in virtue of” in EGH in terms of weak or strict ground. Correspondingly,
we get two precisifications of EGH:

Essence Weakly Grounded in Haecceities (EWGH). For all proper-
ties Φ and for all objects x,

Φ is an essential property of x iff Hx(x) ≤ Φ(x)

Essence Strictly Grounded in Haecceities (ESGH). For all proper-
ties Φ and for all objects x,

Φ is an essential property of x iff Hx(x) < Φ(x)

At this point we don’t see any reasons for preferring one of the two over
the other, the question appears to be a matter of preference. Note, however,
that these formulation of the principles are not really full generalized claims,
but rather schemata. The reason is that we cannot, using the methods of
this dissertation, quantify into statements of ground. Moreover, we cannot
ascertain the grounds of a claim that some property is essential property
of an object, since statements of the form “Φ is an essential property of

14In more technical terminology, we assume that L is full with respect to the properties
and objects in S: we have predicates and constants for all the properties and objects in S.
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x” are not part of our language L. And furthermore, ESGH and ESGH
are merely (metaphysically necessary) equivalences, and this alone doesn’t
guarantee sameness of grounds to begin with. For these reasons it is useful to
define predicates of the form “Φ is weakly essential to x” and “Φ is strictly
essential to x” in our language L for all properties Φ and all objects x by
saying that:

• Φ is weakly essential to x =def. Hx(x) ≤ Φ(x), and

• Φ is strictly essential to x =def. Hx(x) < Φ(x).

On thing that we can already note at this point is that we can now show
in our logic that if a property is essential to an object x, then it is an
essential property of the object that the property is essential, both according
to EWGH and ESGH. The proof is a simple application of the iteration
rules:

Γ ≤ ϕ
Γ ≤ (Γ ≤ ϕ)

Γ < ϕ

Γ < (Γ < ϕ)

Assume, for example, that “being a man is weakly essential to Socrates” is
true. This statement is by the above definition simply

“HSocrates(Socrates)≤being a man(Socrates),”

and thus we can infer by the first rule (rather its soundness) that

“HSocrates(Socrates)≤ (HSocrates(Socrates)≤being a man(Socrates))” is true.

But this is just the statement

“(HSocrates(Socrates)≤being a man(Socrates)) is weakly essential to
Socrates.”

Hence, we have shown that if it is weakly essential to Socrates that he is
a man, then it is weakly essential to Socrates that it is weakly essential to
Socrates that he is a man. The argument in the strict case is completely
analogous. In other words, we get a principle that we may paraphrase by
saying that essentiality is essential.

The central question is now: how should v+ and v− behave so that we
can validate our intuitive paradigmatic examples of essential properties? To
tackle this question, first observe that a statement of the form

Hx(x) ≤ Φ(x)

is true according to our semantics iff (i) some member of JHx(x)K+ is a
member of S@ and (ii) JHx(x)K+ ⊆ JΦ(x)K+. Similarly, a statement of the
form

Hx(x) < Φ(x)
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is true according to our semantics iff (i) some member of JHx(x)K+ is a
member of S@, (ii) JHx(x)K+ ⊆ JΦ(x)K+, and (iii) for no Γ ⊆ L is the
statement

Φ(x),Γ ≤ Hx(x)

true. In words, a property Φ is weakly essential to an object x iff some exact
verifier of Hx(x) is an actual state and every exact verifier of Hx(x) is an
exact verifier of Φ(x). And analogously Φ is a strictly essential property of
an object x iff some exact verifier of Hx(x) is an actual state, every exact
verifier of Hx(x) is an exact verifier of Φ(x), but no exact verifier of Φ(x)
fused with the exact verifier of any other truth is an exact verifier of Hx(x).
This gives us a pretty good idea for how v+ and v− have to behave so that
we can validate our intuitive paradigmatic examples of essential properties
in the weak sense: we should make sure that there is some exact verifier
of Hx(x) iff x ∈ D@ and that all of these exact verifiers are exact verifiers
of whatever we want to be essential to x. And if we wish to validate our
examples in the strict sense we should additionally make sure that no exact
verifier of whatever we wish to hold as essential to x can be fused in some
way to become a verifier of Hx(x).

Motivated by this observation, we make the following suggestion. Let’s as-
sume that for every x ∈ D♦ there is a unique distinguished state of x being
itself∈ S♦. We postulate that x being itself ∈ S@ iff x ∈ D@. And further-
more, we postulate that for no X 6= {x being itself} ⊆ S♦ is

∏
Γ = x being

itself. Thus, intuitively, we essentially postulate that for every existing ob-
ject there is an actual atomic state of that object being itself. This state is
intuitively the one and only exact verifier of Hx(x)—it is for all intents and
purposes the haecceity state of x. Correspondingly, we postulate for v+ and
v− that:

• v+(Hx)(y) =

{
{x being itself} if x = y

∅ otherwise

• v−(Hx)(y) =

{
{λ} if x 6= y

∅ otherwise

Thus, a sentence of the form Hx(c) only has an exact falsifier if δ(c) is x and
in that case its only exact falsifier is the haecceity state of x. And a sentence
of the form Hx(c) only has an exact verifier if δ(c) is different from x and
in that case its only exact verifier is the zero state λ. By the properties we
postulated for the haecceity state of x, we can infer that x ∈ D@ iff some
verifier of Hx(x) is in S@, i.e. iff Hx(x) is true. And in case a sentence of
the form Hx(c) is false, then this is because δ(c) 6= x and this falsehood is
fundamental.
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Now, we can say exactly what has to be the case for Φ to be an weakly
or strictly essential to an object x. The former is the case iff x exists and
the haecceity state of x is the sole exact verifier of Φ(x) and the latter
is the case iff in addition there is some other exact verifier of Φ(x). This
follows immediately from our postulates for v+(Hx) and the properties we
have postulated about the haecceity state of x. Thus, if we wish to say that
being a man is a weakly essential property of Socrates, then we would have
to demand that v+(“being a man”)(Socrates)={Socrates being himself}. In
other words, we have to demand that the only exact verifier of “Socrates is
a men” is the haecceity state of Socrates. Given our initial assumption that
Socrates being a man ∈ v+(“being a man”)(Socrates), this would mean that
Socrates being a man has to be identical to the haecceity state of Socrates.
And if we wish to say that being a man is a strictly essential property
of Socrates, then we would have to demand that Socrates being himself ∈
v+(“being a man”)(Socrates), but furthermore that there is some other state
in v+(“being a man”)(Socrates). Since we have assumed that Socrates being
a man ∈ v+(“being a man”)(Socrates), we could easily achieve this by saying
that Socrates is a distinct state from Socrates being a man, while still saying
that Socrates being himself ∈ v+(“being a man”)(Socrates).

If, in contrast, we wish to say that being a member of his singleton is not an
essential property of Socrates, then we would simply have to make sure that
the state of Socrates being himself is not an exact verifier of “Socrates is a
member of his singleton”. And indeed, this is plausible. It would appear that
the only exact verifier(s) of “Socrates is a member of his singleton” given
that Socrates and his singleton exist, is the haeccaeity state of Socrates’
singleton plus perhaps, depending on whether we want to use the strict or
the weak concept of essentiality, the state of Socrates being a member of
his singleton. In an analogous way, we can make sure that being such that
infinitely many prime numbers exist is not an essential property of Socrates:
we simply and plausibly assume that Socrates haecceity state is not an exact
verifier of this the sentence “Socrates is such that that infinitely many prime
numbers exist.”

One final complication arises. Remember that in Chapter 3, we postulated
that the truth of true equations is fundamental in the sense that their only
verifiers, given that the constants involved denote existing objects, is the
zero-state λ (compare Definition 3.5.5, p. 130). On the above suggestion,
however, this means that being self identical cannot be an essential property
of any object, unless the haecceity state of the object is the zero-state. But
this is implausible, since the zero state intuitively necessarily exists, and thus
if it were the haecceity state of some object, since we know that an object
exists iff its haecceity state exists, we would get that the object necessarily
exists. But this is only plausible for very few objects. Nevertheless, there is
an obvious fix: we simply change the exact verifier clauses for equations to
account for our intuition that self identity is an essential property of every

181



existing object. Here are two clauses that will do the job:

• Jc1 = c2K+ =

{
v+(Hδ(c1))(δ(c2)) if δ(c1) and δ(c2) ∈ D@ and δ(c1) = δ(c2)

∅ otherwise

• Jc1 = c2K+ =

{
v+(Hδ(c1))(δ(c2)) ∪ {λ} if δ(c1) and δ(c2) ∈ D@ and δ(c1) = δ(c2)

∅ otherwise

The first clause works for the weak concept of essential properties and the
second one for the strict one.

The exact falsifier clauses for equations, however, should remain unchanged.
Remember that the only exact falsifier of a false equation is again the zero
fact λ (compare Definition 3.5.5, p. 130). Hence the only verifier of a true
inequality statement is again λ. But this has the immediate consequence that
a true inequality statement can never be exactly verified by the haecceity
state of some object, unless the zero state is identical with the object’s
haecceity state. But the latter intuitively holds for almost no object, and
certainly not for Socrates. Thus, even if Socrates and the Eiffel Tower both
exist, being distinct from the Eiffel Tower will not turn out to be an essential
property of Socrates—exactly as we want to say.

Putting all of the above together, we arrive at the following, final explications
of the concept given by EGH:

Weak Exact Verifier Analysis (WEVA). For all properties Φ and all
objects x, Φ is an essential property of x iff the haecceity state of x
actually obtains and it is the sole verifier of Φ(x).

Strict Exact Verifier Analysis (SEVA). For all properties Φ and all
objects x, Φ is an essential property of x iff the haecceity state of
x actually obtains, the haecceity state of x is an exact verifier of Φ(x),
and there is at least one other exact verifier of Φ(x).

These two explications, together with the exemplification criteria theory of
properties ECT, are the central result of this dissertation. The question is
now, which of the two explications to favor. On merely intuitive grounds,
we would prefer SEVA, but the choice appears to be merely a question of
preference.

How do the explications WEVA and SEVA together with ECT fare with
regard to Carnap’s four criteria: (1) the similarity between the explicatum
and the explicandum; (2) the exactness of the explicatum; (3) the fruit-
fulness of the explicatum; and (4) the simplicity of the explicatum? With
regard to (1), we have shown in this chapter that we can validate all of our
intuitive paradigmatic examples on both explications. With regard to (2),
we hope to have shown in this dissertation that all the concepts that we’ve
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used in both WEVA and SEVA are precisely defined in previously under-
stood terminology. Thus also here both explications seem to do well. With
regard to (3) fruitfulness, we have pointed out many times over throughout
the dissertation that both the semantic framework of exact truthmaker se-
mantics and especially the exemplification criteria theory of properties have
applications all over metaphysics. By explicating essential properties in this
framework via both WEVA and SEVA, we can connect the concept to all
of these applications—which will hopefully prove to be fruitful. And with
regard to (4) simplicity, we belief that, given we understand all the concepts
involved and in particular the concept of exact verification and falsification,
both explications are deceptively—at least given all the work that we’ve put
into obtaining them. In any case, WEVA and SEVA are arguably at least
as simple as PWA. Thus, the explications appear to do quite well. But ul-
timately, the analyses will have to stand the test of time: we’ll have to see if
essentialists really use these explications or whether something better comes
along. We’ve done our part.

Closing Remark

Throughout the dissertation, we’ve already made many remark about how
our results can be extended. But before we close, let’s make one final re-
mark about the most pressing way in which the results of this dissertation
should be extended. This is by introducing necessity de re into our frame-
work. There are two reasons for this. First, we want to be able validate the
intuitively plausible inference from Γ ≤ ϕ or Γ < ϕ to �(

∧
Γ→ ϕ). Essen-

tially, given the results of the thesis, validating this inference will allow us to
confirm the principle Essence Implies Weak Necessity on the concep-
tion of essential properties as properties grounded in the identity of things.
And second, we want to be able to compare the modal analysis and the
ground-theoretic analysis on equal grounds. And since the modal analysis
is is framed in terms of necessity de re, this would require us to introduce
necessity de re into our semantic framework of exact truthmaker seman-
tics. But doing this would require us to say what are the exact verifiers and
falsifiers of statements of necessity de re and this is a hard question. We
conjecture that a lot of exciting research will be carried out in this direction
in the future, and we hope to be part of it. But this is work for another day.
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Appendix A

Yet Another Puzzle of
Ground

A.1 Introduction

This appendix contains my paper “Yet Another Puzzle of Ground,” which is
forthcoming in Kriterion. The published version of the paper can be accessed
online under:

http://www.kriterion-journal-of-

philosophy.org/kriterion/issues/Permanent/Kriterion-korbmacher-01.pdf

The paper won the SOPhiA Best Paper Award at the SOPhiA conference,
which took place September 2.–4. at the University of Salzburg.

The paper is a supplement to Chapter 2 and is referenced there. It is included
here, since it contains relevant results that go somewhat beyond what is
discussed in that chapter and which are of general interest to the subject
matter of this dissertation. It can be thought of as a supplement to the
chapter.

I should like to thank Albert J. J. Anglberger, Hannes Leitgeb, Thomas
Schindler, and Ole Thomassen Hjortland for helpful comments and sugges-
tions on this paper.
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A.2 Yet Another Puzzle of Ground

Fine defines ground as “the relation of one truth holding in virtue of others”
[44, p. 1].1 Given this definition, it is natural to think that we should for-
mulate axiomatic first-order theories of ground, which formalize ground by
means of a relational ground predicate of true sentences. Call such theories
predicational theories of ground. Predicational theories of ground contrast
with operational theories of ground, which formalize ground by means of a
sentential ground operator [24, p. 253–54, 42, p. 46–47]. So far, most theo-
ries of ground in the literature are operational theories of ground. But there
are at least three theoretical reasons for developing predicational theories of
ground:

1. Quantification: Predicational theories of ground have greater expres-
sive strength than operational theories of ground. In particular, using
a ground predicate, we can formalize ground-theoretic principles in-
volving quantification over truths in a natural way. Take, for example,
the intuitively plausible claim that every truth is either fundamental
or grounded in some other truths. We can straightforwardly formalize
this claim using a ground predicate and first-order quantification over
truths, but using a ground operator this is impossible. Without the
use of non-classical devices, such as propositional quantification, it is
impossible to formalize the nested universal and existential quantifica-
tion over truths in the principle. Using a ground predicate, in contrast,
we can formalize the principle comfortably in the purview of classical
first-order logic.

2. Truth and Modality : Predicational theories of ground allow us to study
ground in the same context as truth and modality. It is generally ac-
cepted that truth should be treated as a predicate of sentences, and
it has recently been suggested to extend this approach to modality
as well [59, 81, 57]. There is an obvious connection between ground
and truth, since ground is a relation among truths. But there is also a
close connection between ground and modality, since ground is usually
assumed to imply necessary consequence: if a truth holds in virtue of
some other truths, then the former truth should be a necessary con-
sequence of the latter truths [42, p. 38–39]. Both of these connections
are most naturally studied using predicational theories of ground: by
combining predicational theories of ground with predicational theories
of truth and modality.

3. Models: Predicational theories of ground allow us to discover and to

1For (opinionated) introductions to ground, see [28, 42]. For an overview of the recent
literature on ground, see [21, 133, 118].
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study models of ground using classic model-theoretic methods. It is
currently an open problem to provide a semantics for the impure logic
of ground developed by Fine [42, p. 58–71]. This logic is formulated us-
ing a ground operator, but once we translate it into a predicational the-
ory of ground and show its consistency, we can rely on model-theoretic
theorems to establish the existence of first-order models. Once we know
that such models exist, we can study them using methods of model
theory. This should provide us with new insights into the semantics of
the impure logic of ground.

But predicational theories of ground face a paradox of self-reference, simi-
lar to the well-known paradoxes of self-reference that arise in predicational
theories of truth and modality. In this paper, I shall prove this point for
predicational theories of partial ground in particular. This is the relation of
one truth holding partially in virtue of another truth—the relation of one
truth “helping” to ground another truth [42, p. 50]. I show that any predica-
tional theory of partial ground that extends a standard theory of syntax and
that proves some commonly accepted principles for partial ground is incon-
sistent. Fine [43] and Krämer [73] present puzzles about the irreflexivity of
partial ground: the principle that no truth partly grounds itself. They show
that certain intuitively plausible principles of logic and metaphysics lead to
counterexamples to the irreflexivity of ground. I add yet another puzzle of
ground to the mix. The new puzzle does not mention the irreflexivity of
ground or metaphysical principles unrelated to ground, thus it is genuinely
different from the previously known paradoxes.

To formulate a predicational theory of partial ground, we first need a theory
of syntax that allows us to talk about sentences.2 It is well-known that we
can develop such a theory in any sufficiently strong background theory, like
Robinson arithmetic for example. For the present purpose, however, our
concrete choice of background theory does not matter. All that matters is
that our background theory Θ satisfies the following three minimal syntax
conditions:3 The first condition is that Θ proves that we have a unique name
pϕq for every sentence ϕ in the sense that for all sentences ϕ and ψ, Θ `
pϕq = pψq only if ϕ = ψ. The second condition is that Θ proves that we have
a function symbol ∨ that represents the syntactic operation ∨ of disjunction
in the sense that for all sentences ϕ and ψ, Θ ` pϕq ∨ pψq = pϕ ∨ ψq. And
the third condition is that Θ proves the diagonal lemma. Informally, this
lemma states that for every condition on sentences there is a sentence that
is provably equivalent to the condition holding of itself. More precisely, if
ϕ(x) is a formula with exactly one free variable, then there exists a sentence

2A sentence is a formula without any free variables.
3A theory is a set of formulas that is closed under derivability: a set of formulas Θ is

a theory iff (if and only if) for all formulas ϕ, if Θ ` ϕ, then ϕ ∈ Θ.
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δ such that Θ ` δ ↔ ϕ(pδq). Note that any standard background theory
of syntax, such as Robinson arithmetic, satisfies all three of our minimal
syntax conditions.

Next, we need a way of representing partial ground. For this purpose, we use
the relational predicate x/ y. For sentences ϕ and ψ, we informally read the
atomic formula pϕq/pψq as saying that the truth of ϕ partially grounds the
truth of ψ. For a negated atomic formula of the form ¬(pϕq / pψq) we also
write pϕq 6 pψq, which we correspondingly read as saying that the truth of
ϕ does not even partially ground the truth of ψ.

Philosophers have laid down various principles for partial ground [cf. 121,
42, 44], but it is already sufficient for a predicational theory of partial ground
to be inconsistent that it proves two widely accepted principles. Let Θ now
be a predicational theory of partial ground that satisfies the minimal syntax
conditions. The first of our two principles follows directly from partial ground
being a relation of true sentences: If the truth of one sentence partially
grounds the truth of another, then both sentences should be true. This
principle is known as the “factivity of ground” and is generally accepted in
the literature on ground [43, p. 100, 15, § 3].4 We get the condition on Θ
that for all sentences ϕ and ψ:

(FactL): Θ ` pϕq / pψq→ ϕ
(FactR): Θ ` pϕq / pψq→ ψ

The second principle concerns the interaction of partial ground and disjunc-
tion: Given that partial ground is the relation of one truth holding partially
in virtue of another, if a disjunction is true, then its truth should be par-
tially grounded in each of its true disjuncts. Also this principle is generally
accepted in the literature on ground [43, p. 101, 121, p. 117]. From this, we
get the condition on Θ that for all sentences ϕ and ψ:

(∨1): Θ ` ϕ→ pϕq / pϕ ∨ ψq
(∨2): Θ ` ψ → pψq / pϕ ∨ ψq

The minimal syntax conditions and the conditions concerning partial ground
all may seem fairly uncontroversial when viewed individually. So it may be
somewhat surprising to learn that there can be no consistent predicational
theory of partial ground that satisfies all of them:
Theorem (Inconsistency Theorem). Any theory Θ that satisfies the mini-
mal syntax conditions, (FactL/R), and (∨1/2) is inconsistent.

4There are notions of ground in the literature that violate the factivity of ground [cf.
42, p. 48–50]. According to such non-factive notions, ground is a relation on sentences
regardless of their truth value. Although non-factive notions of ground make for an in-
teresting theoretical possibility, in this paper we shall deal only with the standard factive
notion of ground, which satisfies the factivity of ground.
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Proof. Let ϕ(x) be the formula x 6 x ∨ x. By the diagonal lemma, there is a
sentence δ such that Θ ` δ ↔ pδq 6 pδq ∨ pδq. Intuitively, this is a sentence
which “says of itself” that it does not partially ground its own disjunction.
By the second minimality condition, we have that Θ ` pδq ∨ pδq = pδ ∨ δq.
From this and Θ ` δ ↔ pδq 6 pδq ∨ pδq, we get that Θ ` δ ↔ pδq 6
pδ ∨ δq by the substitutivity of identicals. This splits up into the following
two conditions:

(a) Θ ` δ → pδq 6 pδ ∨ δq

(b) Θ ` pδq 6 pδ ∨ δq→ δ

We get finally the following argument:

1. Θ ` (pδq/pδ∨δq→ δ)→ ((δ → pδq 6 pδ∨δq)→ pδq 6 pδ∨δq) (Tautology†)

2. Θ ` pδq / pδ ∨ δq→ δ (FactL)

3. Θ ` (δ → pδq 6 pδ ∨ δq)→ pδq 6 pδ ∨ δq (1, 2: MP)

4. Θ ` δ → pδq 6 pδ ∨ δq (a)

5. Θ ` pδq 6 pδ ∨ δq (3, 4: MP)

6. Θ ` pδq 6 pδ ∨ δq→ δ (b)

7. Θ ` δ (5, 6: MP)

8. Θ ` δ → pδq / pδ ∨ δq (∨1)

9. Θ ` pδq / pδ ∨ δq (7,8: MP)

10. Θ ` ⊥ (5,9: ⊥)

(†) : Note that every sentence of the form (ϕ→ ψ)→ ((ψ → ¬ϕ)→ ¬ϕ) is
a classical tautology and that theories prove all classical tautologies.

The inconsistency theorem is very similar to Tarski’s theorem about predi-
cational theories of truth [131] and Montague’s theorem about predicational
theories of modality [101] in that it is, essentially, a paradox of self-reference.
From a technical perspective, it should in fact not be surprising that we get
such a theorem after all: Combining self-reference via the diagonal lemma
with principles like (FactL/R) that allow us to push a sentence outside the
scope of a predicate and principles like (∨1/2) that allow us to push a sentence
into the scope of a predicate is recipe for disaster.5 But from a philosophical
perspective, there is a lesson to be learned: We already know that we cannot

5It should be clear at this point that not much depends on the concrete condition
(∨1/2)—the paradox is not a paradox of disjunction. All that matters is that our predica-
tional theory of partial ground proves a principle to the effect that any true sentence par-
tially grounds some other sentence. We could give the following variant of the inconsistency
theorem: If Θ satisfies (FactL/R) and either Θ ` ϕ→ ∃x(pϕq/x) or Θ ` ϕ→ ∃x(x/pϕq),
then Θ is inconsistent. I leave the details of the proof to the interested reader.
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understand ground simply in terms of truth and modality [42], but ground
behaves syntactically too much like a combination of truth and modality to
escape inconsistency when paired with self-reference.

Three natural ways in which we could try to block the inconsistency theorem
suggest themselves: First, we could try to rule out self-referential sentences
of ground like the one used in the proof of the inconsistency theorem. Sec-
ond, we could try to restrict the principles of partial ground used in the
proof of the inconsistency theorem. And third, we could try to formulate a
non-standard logic of ground that does not sanction the logical principles
used in the proof of the inconsistency theorem. The analogy between the
inconsistency theorem and the theorems of Tarski and Montague suggests a
terminology for these approaches. Analogously to predicational theories of
truth [58] and predicational theories of modality [57], we get: typed theories
of partial ground, which avoid paradox by putting type-restrictions on the
relation of partial ground, effectively ruling out self-referential sentences like
the one in the proof; untyped theories of partial ground, which avoid paradox
by restricting the principles of partial ground; and finally non-classical the-
ories of partial ground, which avoid paradox (or: triviality) by abandoning
classical logic in favor of alternative logics.

Untyped theories of partial ground are particularly appealing, because con-
siderations of ground are already part of intuitively appealing approach to
untyped theories of truth. On an influential view about predicational theo-
ries of truth, self-referential sentences are ungrounded and this is the reason
some self-referential sentences lead to inconsistency [77, 82]. This leads to
the idea that we should restrict the principles of truth to their grounded
instances.6 Carrying this idea from theories of truth over to predicational
theories of ground, we arrive at the condition that the principles of partial
ground apply if and only if the truths involved are themselves grounded.
There is a straightforward way of formulating the desired restriction on the
principles of partial ground already in the language of partial ground. We
can express that a sentence ϕ is grounded by the formula ∃x(x/pϕq) and we
can express that a sentence ϕ is ungrounded by the formula ¬∃x(x / pϕq).
The desired restriction on (∨1/2) then amounts to saying that for all predi-
cational theories of ground Θ and for all sentences ϕ and ψ:

(∨∗1): Θ ` ∃x(x / pϕq)↔ pϕq / pϕ ∨ ψq
(∨∗2): Θ ` ∃x(x / pψq)↔ pψq / pϕ ∨ ψq

Every predicational theory of partial ground that satisfies the minimal syn-

6The concept of ground used in the context of theories of truth is not exactly the same
as the concept of ground discussed in this paper. For example, the notion of dependence
defined by Leitgeb [82] is reflexive, whereas (partial) ground is standardly taken to be
irreflexive. The point here is that there is a striking analogy between the two concepts
and that ideas that work for the one may very well work for the other.
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tax conditions, (FactL/R), and the new conditions (∨∗1/2), proves that the
paradoxical sentence in the proof of the theorem is ungrounded:
Observation. Let Θ be a predicational theory of ground that satisfies the
minimal syntax conditions, (FactL/R), and (∨∗1/2). By the diagonal lemma
and the same reasoning as in the proof of the theorem, we get a sentence δ
such that:

Θ ` δ ↔ pδq 6 pδ ∨ δq.

But we can show that:
Θ ` ¬∃x(x / pδq).

Proof. By applying (∨∗1) to δ, we get that:

Θ ` ∃x(x / pδq)↔ pδq / pδ ∨ δq

We only need the “left-to-right direction” of this biconditional for our proof,
which we can obtain via ↔-Elimination:

Θ ` ∃x(x / pδq)→ pδq / pδ ∨ δq

Starting from there, we get the following argument:

1. Θ ` ∃x(x / pδq)→ pδq / pδ ∨ δq

2. Θ ` pδq / pδ ∨ δq→ δ (FactL)

3. Θ ` ∃x(x / pδq)→ δ (1,2: MP)

4. Θ ` δ ↔ pδq 6 pδ ∨ δq (Diagonal Lemma)

5. Θ ` ∃x(x / pδq)→ pδq 6 pδ ∨ δq (3, 4: ↔-Elim)

6. Θ ` ∃x(x / pδq)→ ⊥ (1, 5: ⊥-Intro)

7. Θ ` ¬∃x(x / pδq) (6: ¬-Intro)

This result should make us optimistic about the prospects for an untyped
theory of partial ground. Moreover, we could add such an untyped theory
of partial ground “on top” of untyped predicational theories of truth and
modality. I conjecture that an interesting, consistent, untyped predicational
theory of ground can be developed in this way.
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