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Zusammenfassung

Anfangszustände (sog. Analysen) für die numerische Wettervorhersage von Gewittern
und mesoskaligen konvektiven Systemen können mithilfe von Ensemble-Datenassimilation
(DA) generiert werden. Reflektivitäts- und Radialwindbeobachtungen von Wetterradaren
sind hierzu hilfreich, da sie die Gewitter zeitlich und räumlich hochaufgelöst beobachten.
Gewitter besitzen eine komplexe innere Struktur und sind gleichzeitig eingebettet in die
umgebende Atmosphäre, die durch das Vertikalprofil von Temperatur, Wind und Feuchte
beschrieben wird. Die vorliegende Dissertation setzt es sich zum Ziel, Zusammenhänge
zwischen beobachteter Dynamik und numerischer Modellvorhersage aufzudecken. Zudem
wird die Frage bearbeitet, inwiefern die begrenzte praktische und intrinsische Vorhersag-
barkeit den Anstrengungen der konvektiven DA entgegenwirkt.

Im chaotischen System der Atmosphäre wachsen Fehler der Anfangszustände während
der Vorhersage rasch an und begrenzen die Vorhersagbarkeit. Kleinskalige Fehler und
solche mit kleiner Amplitude intensivieren sich dabei relativ gesehen schneller als größere
Fehler. Dementsprechend können Gewittervorhersagen, die von Analysen mit größeren
Fehlern gestartet wurden, nach einiger Zeit dieselbe Qualität besitzen wie Vorhersagen
von Analysen mit kleineren Fehlern. Um dies zu testen, wurden simulierte Radardaten
mithilfe eines Ensemble Kalman Filters (EnKF) und unter der Annahme eines perfek-
ten Modells in das konvektionsauflösende COSMO-Modell assimiliert, bei einer Model-
lauflösung von 2 km. Die räumliche und zeitliche Auflösung der Beobachtungsdaten
wurde von 2 auf 8 km und von 5 auf 20 min variiert, zusammen mit einer Vergrößerung
des räumlichen Einflussradius von 8 auf 32 km. Die Vorhersagequalität auf Basis solcher
groben Analysen erwies sich nach drei Stunden als vergleichbar mit Vorhersagen auf Ba-
sis von Analysen, die mit hochaufgelösten Beobachtungen produziert wurden. Dieser
Zeitraum wurde als obere Grenze für die Vorhersagbarkeit in dieser Situation gewertet.
Im Falle der hochaufgelösten Beobachtungen waren die Analysen mit Störungen des ver-
tikalen Windfelds (sog. noise) behaftet, die in Form von Schwerewellen die Dynamik
der beobachteten Gewitter beeinflussten. Dies führte zum Auftreten von übermäßiger
Konvektion an falschen Orten (sog. spurious convection). Zur Beschreibung dieses noise
wurde eine Raum-Zeit-Korrelation von verschiedenen Modellfeldern berechnet. Hierbei
zeigte sich eine Entkopplung der neu auftretenden spurious convection von den Böenfron-
ten der beobachteten Gewitter, und das gleichzeitige Auftreten von übermäßiger Vari-
abilität des vertikalen Windfelds im nahen und fernen Umfeld der beobachteten Konvek-
tion.

Zur Verbesserung des atmosphärischen Vertikalprofils wurden reale Flugzeugbeobach-
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tungen in das vom Deutschen Wetterdienst (DWD) entwickelte, prä-operationelle System
KENDA (Kilometre-scale Ensemble Data Assimilation) assimiliert, welches das deutsche
COSMO-DE-Modell mit 2.8 km Auflösung mit einem EnKF verbindet. Diese Flugzeug-
beobachtungen stammen aus dem Mode-S-System der Flugsicherung und enthalten Beobach-
tungen von Wind und Temperatur, wobei die Mode-S-Daten eine zehnmal höhere Da-
tendichte aufweisen als die bisher verwendeten Daten des Systems AMDAR (Aircraft
Meteorological Data Relay). Nach Implementierung der Mode-S-Assimilation konnte
eine Fehlerverringerung in dreistündigen Vorhersagen des Vertikalprofils erreicht werden,
wodurch auch eine bessere Gewittervorhersage erwartbar ist. Um einer operationellen
Nutzung der Mode-S-Daten den Weg zu bereiten, wurden die Auswirkungen der stark
erhöhten Datenmenge auf Parameter des KENDA-Systems wie Lokalisierung und ensem-
ble spread untersucht.

Der Aufwindstrom von Gewitterzellen bewirkt eine divergente und konvergente Hor-
izontalzirkulation in den umgebenden Bereichen, die den Kern des Gewitters umgibt.
Um den Einfluss der Radarbeobachtungstypen der Reflektivität und des Radialwinds
auf Aufwindstrom und umgebende Zirkulation zu untersuchen, wurden diese in das
COSMO-MUC-KENDA-System assimiliert. Dieses wurde im Rahmen dieser Disserta-
tion als Untersystem zu COSMO-DE-KENDA implementiert. Ein konzeptuelles Mod-
ell wurde aufgestellt, welches die Einflussskalen der zwei Beobachtungstypen abschätzt.
Durch Anwendung der zuvor entwickelten Maße für Modell-noise konnte gezeigt wer-
den, dass eine Assimilation von Radialwinden die Störungen im Vertikalwindfeld dämpft.
Reflektivitätsbeobachtungen hingegen verbesserten die Analyse der Gewitterpositionen.
Zudem wurde gezeigt, dass die EnKF-Assimilation von Radardaten bessere Vorhersagen
liefert und weniger Störungen verursacht als das zuvor genutzte Nudging-Verfahren. Die
in dieser Dissertation entwickelte Kombination von Radar- und Flugzeugbeobachtun-
gen stellt einen wichtigen Beitrag zur Verbesserung der Gewittervorhersage mithilfe des
KENDA-Systems dar.



Abstract

The application of Ensemble Data Assimilation (DA) is a method to produce initial states
(so-called analyses) for numerical forecasts of thunderstorms. By the means of radar
observations of reflectivity and radial winds, the complex inner structure of a convective
cell or a mesoscale convective system can be analyzed. At the same time, thunderstorms
are embedded in their surrounding air mass and interact dynamically with this convective
environment. This thesis aims to answer some questions which link the observational
aspect of convective dynamics to the forecasting aspects of the numerical model, and to
the practical and intrinsic predictability when applying convective scale DA.

Since the atmosphere is a chaotic system, errors in the initial states grow during the
forecast and thus limit the predictability. Errors that are small in amplitude and spatial
scale intensify with a faster rate than large errors, so that an initial state with relatively
large errors may produce, after a few hours, an equivalently good thunderstorm forecast
compared to an initial state with smaller errors. To test this hypothesis, simulated
radar observations of wind and reflectivity were assimilated into the convection-permitting
COSMO model with a resolution of 2 km, by the means of an Ensemble Kalman Filter
(EnKF), and under the assumption of a perfect forecast model. The spatial and temporal
resolution of the observations was coarsened from 2 to 8 km and from 5 to 20 minutes,
and their spatial influence was increased from 8 to 32 km in order to produce analyses
that contained less detailed information about the observed storms. After three hours,
the resulting forecasts were comparable to such experiments in which the observations
had been assimilated with the highest resolution and a close fit in the analysis had
been reached. Thus, a recommendable setting for the assimilation of real radar data
was found that respects the limited predictability of convection. Due to the input of
high resolution data, noise was introduced into the model that disturbed the dynamics
and triggered spurious convection in wrong locations. The study showed that this noise
consisted of internal gravity waves which caused an over-abundance of variability in the
vertical velocity field, both in the storm vicinity and in the environment that was at
least 32 km distant to the storms. This noise disturbed the internal dynamics of the
convective systems in such a way that the emergence of new updrafts became decoupled
from the underlying pools of cold air. This was quantified by applying a spatio-temporal
correlation method.

In addition to the DA-aspects of mainly storm-interior dynamics, aircraft observations
in clear air regions were assimilated into the pre-operational Kilometre-scale Ensemble
Data Assimilation (KENDA) system of the German Weather Service (DWD) that couples
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an EnKF to the COSMO-DE model over Germany with a resolution of 2.8 km. These
observations are collected by Mode-S air traffic control radars and contain measurements
of wind and temperature along the flight tracks of commercial aircrafts. Their data
density is ten times larger than the previously assimilated Aircraft Meteorological Data
Relay (AMDAR) observations. Their assimilation was successfully implemented and
it was shown that forecasts of three hours lead time benefit from the additional data
by exhibiting a smaller error in the tropospheric wind and temperature profiles which,
together with humidity, define the convective environment. Conclusions were drawn on
how KENDA reacts to the large increase of observation data in terms of ensemble spread
and other EnKF parameters, and recommendations on the operational use of Mode-S
data were derived.

The point-like updraft of a convective storm is coupled to the environment by a diver-
gent circulation that has a wider scale than the core. By assimilating real radar observa-
tions in the newly implemented framework of the nested COSMO-MUC-KENDA system,
the influence of reflectivity and radial wind observations was investigated. A conceptual
model was introduced that relates the scales that are influenced by the assimilation of
these two observation types. By applying the noise measures that were developed earlier
in the thesis, it was shown that the assimilation of radial wind observations has a damping
effect on the noise that is caused by the DA. Reflectivity observations on the other hand
are helpful to improve the storm positions for the first tens of minutes into the forecast.
It was shown that the EnKF assimilation of radar data produces better forecasts and
less noise than the previously used nudging scheme. Combining the assimilation Mode-S
data and radar observations with the methods that were developed in this thesis is a
promising way to improve analyses and forecasts of severe and damaging convection with
the KENDA system.



Chapter 1

Introduction

The idea of Numerical Weather Prediction (NWP) was introduced by Vilhelm Bjerknes
(Bjerknes, 1904) as a twofold problem in which the initial conditions of the atmosphere
have to be determined first and then the governing equations of the system need to
be solved, so that a forecast of the future atmospheric state can be produced. The
determination of this initial state by the means of meteorological observations is known
today as Data Assimilation (DA) (see Daley, 1991; Kalnay, 2003), in which a previous
model forecast is used to fill the gaps of the necessarily imperfect observation system.
Bjerknes already stated that the amount and density of observation data would be too
small, since by that time, only observations from surface stations on land were available
but none on the oceans and in upper air. The first real NWP forecast was attempted
by Richardson (1922) who manually solved the primitive equations to produce a forecast
of surface pressure tendency on a certain point over Europe. Despite the correctness of
his forecasting method on principle, the initial state had been imbalanced, so that an
unwanted oscillation of gravity waves (see Gill, 1982) was excited in the solution. The
effect of this spurious gravity wave obscured the actual meteorological signal by more
than an order of magnitude, as shown in Lynch (2006).

Since the first successful numerical forecast (Charney et al., 1950), atmospheric models
have been steadily improved and the increase in complexity and resolution has signifi-
cantly driven the evolution of high-performance computing systems in general (Bauer
et al., 2015). An important factor in the computational effort has been the emergence of
ensemble forecasting systems in the last two decades. Herein, multiple parallel forecasts
are produced in a Monte-Carlo approach with slightly altered initial conditions that re-
flect the limited predictability of the chaotic system of the atmosphere (Lorenz, 1963,
1969).

Besides the ensemble technique, the most significant improvements in operational
weather forecasting have been driven by the refinement of DA algorithms and the as-
similation of previously unused observation data. The goal of DA is to make use of
meteorological observations in order to find the state of a forecast model that is closest
to the real state of the atmosphere by the means of observable errors and consistency
in the dynamics. This so-called analysis state can then be used as the initial state for a
numerical forecast. Together with the observations, a model forecast state (or background
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Figure 1.1: Meteorological observation systems that cover the volume inside deep con-
vection (left side, gray cloud with vertical velocity w) and the surrounding environment
(right side): Surface stations (A), radiosondes (B) and aircrafts (C) observe wind ~u, tem-
perature T and humidity q as a function of height z or at surface level z0, and Doppler
radars (D) that observe reflectivity and radial velocity ~vr in the rainy volume. A variable
localization radius rloc for radar observations is indicated by red ellipses. For examples
of real observation systems, see Figures in Sections 4.2 and 5.2.
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state), which is an estimate of the weather situation at the time of the observations, is
used as the basis for the DA computation. For the finite grid-point models that are used
in this study, a vector xb expresses the background state1. It has the length m = v ·g and
its entries are given by the values of the v prognostic model variables at all g grid points
of the model. The formulation of the finite model therefore defines the basis vectors of
the m-dimensional model space in which xb is defined. The observed measurement values
are collected in the vector yo with the length n that is given by the number of single
observations. For one observation time, the observation space that constitutes the basis
vectors of yo is defined by the locations, the instruments, and the observed variables (ex-
emplified in Figure 1.1), such as a temperature measurement of an aircraft over Iceland at
800 hPa or a visible reflectance measurement pixel over Germany from a satellite imager.
To make xb and yo comparable, xb is mapped into the observation space as

yb = H(xb) (1.1)

by a forward observation operator H. yb is usually named the model equivalent or first
guess value. In the example of an in-situ temperature observation in upper air, the
temperature value of the nearest model grid point of xb could be taken as the model
equivalent. H is then a mostly linear map. In the example of a remote sensing observation
of reflectance, H needs to simulate the radiative transfer through a slanted model column
and the surrounding air, thereby taking into account the solar irradiance, the surface
albedo, the three-dimensional cloud variables of xb, such as cloud water and cloud ice
mixing ratio, and the scattering, reflecting and shadowing phenomena that depend on
the cloud field. H, as exemplified by images of yo and yb in Figure 1.2, is then a highly
non-linear map. The number of available observations is typically much smaller than the
number of model variables (n � m), and the observations do not cover the full model
space. Therefore, the problem of finding an analysis state is under-determined, and
statistical methods have to be applied to allow an inverse solution from the observation
space into the model space.

The error statistics of xb (with respect to the true model state xt that has no forecast
errors) and the errors statistics of yo (with respect to the true observations yt that have
no observation errors) are usually assumed to have multivariate Gaussian distributions
based on the form

fx(x1, . . . , xk) =
1√

(2π)k|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(1.2)

with k-dimensional vectors x and mean µ, and k×k error covariance matrix Σ. Since this
is assumed for both model and observation space, their respective probability functions
of the form (1.2) can be multiplied to obtain the joint distribution in which the two
exponents are added and the true state terms are eliminated. The resulting exponent
(see Lorenc, 1986) is called the cost function

J = [x− xb]T (Pb)−1[x− xb] + [yo −H(x)]TR−1[yo −H(x)] (1.3)

1In the DA-formalism, superscript expressions like xb are often used equivalently to subscripts in
other physicals formalisms (see Ide et al., 1997).
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with the background error covariance matrix Pb and the observation error covariance
matrix R. The most likely model state x = xa is sought (the so-called analysis state)
by minimizing J such that the distance of x to the background forecast xb is minimal in
model space, weighted by the background error covariance matrix Pb, and such that the
distance of H(x) to the observations yo is minimal in observation space, weighted by the
observation error covariance matrix R. The observation error covariance R of size n× n
contains the covariances of the observation error which is mostly the measurement error,
but also errors of the operator and of the representativeness of a single measurement (e.g.
Janjić and Cohn, 2006) for the phenomena that the model can simulate or resolve. An
entry on the diagonal of R could be e.g. the square of an observation error standard
deviation σobs = 1 K, for one temperature observation. The off-diagonal entries may be
filled by correlated observation errors like error covariances between different channels
of a multispectral satellite sounder. The background error covariance matrix Pb of size
m × m contains information about the pointwise forecast uncertainty on the diagonal.
The off-diagonal entries contain covariances and thus correlations between basis vectors
of the model space. These correlations can be point-wise between variables such as wind,
temperature, and pressure, and/or spatial across horizontal and vertical distances. For
example, a forecast error of wind speed is correlated to the wind speed in distances of a few
or thousands of kilometers, depending on the meteorological situation, and at the same
time it is correlated to the pressure and the temperature fields through the relationships
of hydrostatic, geostrophic, and thermal wind balance (see e.g. Holton, 2004). In the most
general form, the cost function J (1.3) is minimized to find the vector xa for all grid-points
of the model simultaneously, which is called a global solution. As an intended consequence,
the influence of the observation information is spread spatially, and across variables,
according to the correlations in Pb. The effect of information distribution, in case of an
analytically prescribed P-matrix, therefore acts also as a balancing operation on xa such
that the observation information is assimilated in accordance with the model dynamics.
A naive assimilation of observation information on the other hand, e.g. by simply setting
one grid point to the value of the nearest observation, usually results in imbalances of the
initial state which may cause destructive artifacts such as spurious gravity waves – the
same phenomenon which Richardson (1922) had encountered unknowingly.

Once a DA-analysis is produced, a short-term forecast is performed using the numer-
ical forecast model M , which produces a background state for the next assimilation step
as

xbt+∆t = Mt→t+∆t(x
a
t ) . (1.4)

Using xbt+∆t, a new analysis xat+∆t is produced by the DA. This procedure is called cycled
data assimilation, or cycling. The forecast interval or assimilation interval ∆t that lies
between two subsequent analyses can have the length of a few hours or a few minutes,
depending on the dynamics of the observed phenomenon that is to be assimilated.

In terms of DA, a predominant operational method has been 3D-Var (see Kalnay,
2003), which still forms the conceptual basis of 4D-Var that is operational e.g. at the
European Centre for Medium-Range Weather Forecasts (ECMWF). 3D-Var uses a static
background error covariance matrix (Pb) that is analytically constructed to spread the
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Figure 1.2: Spinning Enhanced Visible and Infrared Imager (SEVIRI) observation of
the COSMO-DE region for 25 June 2012, 6 UTC (yo, left). Model equivalent (yb, right)
generated from the 3h operational COSMO-DE model forecast using the forward operator
developed by Scheck et al. (2016). To generate these RGB images, the 0.6 µm reflectance
was used for the red channel, the 0.8 µm reflectance for the green channel and the mean
value of the 0.6 µm and 0.8 µm reflectances for the blue channel.

correcting influence of observations into the forecast model in a manner that conserves
important state properties such as hydrostatic balance, geostrophic balance and thermal
wind balance. Evensen (1994) proposed the Ensemble Kalman Filter (EnKF) which uses
an ensemble of k forecasts

{xb(i)} , i ∈ {1, . . . , k} (1.5)

with mean

x̄b = k−1

k∑
i=1

xb(i) (1.6)

to sample

Pb = (k − 1)−1

k∑
i=1

[xb(i) − x̄b][xb(i) − x̄b]T . (1.7)

The Pb of an EnKF contains the correlations that are covered by the ensemble of fore-
casts, which are by nature non-static and depend on the current atmospheric flow. The
flow-dependency is the one unique feature which makes the EnKF suitable for weather
phenomena such as convective storms where analytic relationships and spatial correlations
within the moist and buoyancy driven dynamics can hardly be constructed analytically,
as opposed to synoptic scale dynamics on which global models focus. The DA procedure
of the EnKF solves (1.3) for the most likely state xa. Due to the Gaussian assumption,
this xa is regarded as the analysis ensemble mean x̄a. In a resampling step, the EnKF
produces an analysis ensemble

{xa(i)} , i ∈ {1, . . . , k} (1.8)

whose members then serve as initial states for the (ensemble) forecast described by (1.4)
that produce the next background ensemble to sample (1.7).
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Figure 1.3: Covariances of wind-to-wind along a horizontal line through a thunderstorm
simulation of Chapter 2, sampled by an ensemble of 50 members. Shown are the raw
covariances (solid), the Gaussian-like correlation function (dotted, function from Gaspari
and Cohn, 1999), and their product, the localized covariances (dashed). The correlation
function in this example goes to zero at a distance of 21.9 km.

In an EnKF, the k ensemble members form the k basis vectors that span the ensemble
space of possible analysis states. This means that any EnKF analysis is a linear com-
bination of the background ensemble members. Due to the limitation of computational
power, k is chosen in the order of tens or hundreds of members while m is in the range
of millions, so that k � m. In the ensemble space are therefore much fewer degrees of
freedom than in model space, and the sampled Pb is necessarily rank deficient. In order
to compute sensible analyses, a spatial localization of the ensemble covariances has to
be performed, so that a number of local analyses can be computed using k local basis
vectors. As Ott et al. (2002) stated, the atmospheric dynamics often have a locally lower
dimensionality than the number of degrees of freedom in the model would suggest, and
therefore local analyses are possible if the local subdomains are small enough. The local-
ization is done by multiplying Pb (or R, as done in this thesis) by a distance-dependent
correlation function that eliminates covariances which are assumed to be spurious due to
their spatial distance, as exemplified by Figure 1.3. After their computation, the overlap-
ping local analyses are merged to form the new global analysis, as sketched in Figure 1.4.
If applied too rigorously, the localization may disrupt balance properties that would have
been contained in the non-localized covariances. As a result, imbalances in the initial
state may arise (Greybush et al., 2011), whose quantification are a central aspect of this
thesis.

For global weather models, the synoptic scales of interest are on the order of 1000 km
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Figure 1.4: Schematic representation of how an EnKF analysis x̄a is assembled by over-
lapping analyses based on background ensembles members which partly resemble the
observations (e.g. cloud observations from a satellite or a radar). In this sketch, the
observation operator H can be regarded as a self-mapping from model to observation
space. Note that also cloud-free observations are taken into account when constructing
the analysis.
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for low-pressure systems and on the order of a few 100 km for their associated fronts.
For meteorological phenomena whose lateral extent is larger than the vertical extent –
the latter usually being the height of the tropopause of roughly 10 km – the absence of
explicit vertical motion is not a strong limitation (see Holton, 2004). Therefore, some
global models even use the hydrostatic form of the atmospheric equations of motion,
which means that they do not explicitly simulate motion of air along the vertical axis.

Today, all national weather centers run non-hydrostatic local area models (LAM)
with horizontal grid-spacings around 1 km and domains with extents in the order of
1000 km (for a historical overview see Dudhia, 2014). The lateral boundary conditions are
usually provided by hydrostatic global forecast models. Non-hydrostatic models explicitly
forecast vertical motion which is meteorologicaly associated to buoyancy-driven cumulus
convection, wherein single thermals or features of rising air have scales between 100 m
and 10 km. These models permit deep convection, such as thunderstorms, that are
driven by the release of the latent heat of water vapor from the boundary layer, and
also dry inertia-gravity waves that are either excited by clouds or by air flowing over
orographic obstacles such as mountains. Examples of non-hydrostatic models are the
Weather Research and Forecasting (WRF) model (Done et al., 2004) and the Consortium
for Small-scale Modelling (COSMO) model (Baldauf et al., 2011) that is operational at
DWD and has been used for the simulations of this thesis.

Single convective storms with horizontal extents of order 10 km can, under the right
circumstances, organize into a Mesoscale Convective System (MCS) that extends to scales
of order 100 km. MCS, such as multi-cell thunderstorms or clusters of rotating supercells,
are characterized by buoyancy-driven updrafts that are coupled to an underlying region
of cold air which is caused by the precipitation of dying subcells (see Houze, 1993) –
the so called cold pool. While the life cycle of a single updraft cell is on the order of 30
minutes, MCSs can have lifetimes of a few hours and may move across distances of several
hundred kilometers. They can cause damaging winds and perilous amounts of rainfall
in short time, as seen in Germany by the floodings of Braunsbach and Simbach in May
and June 2016. Also, thunderstorms and MCS present a threat to civil aviation and may
cause unnecessary delays at airports (Sauer and Gerz, 2014; Forster et al., 2014).

Figure 1.1 provides a sketch of the most relevant observation systems for the present
study. In Europe and Northern America, surface stations with a spacing of roughly 50 km
and radiosonde ascents with a spacing of 100 to 500 km provide an observational net-
work that may resolve synoptic features in the atmospheric flow. Another important data
source is civil aviation which provides soundings of wind and temperature close to airports
and along the flight tracks. Over the oceans and in the southern hemisphere, satellite ob-
servations of temperature and humidity profiles and wind fields derived by cloud tracking
are the most important source of large-scale observation data, but satellite observations
will be disregarded in this study on convection, apart from their determination of the
global boundary conditions for local models. An analysis that is computed by the means
of these synoptic scale observations can be used as an initial state to start a forecast of
synoptic features. Forecasts with lead times of multiple days are possible which are either
skillful or at least correlated to the real synoptic scale flow.

In order to assimilate and forecast convective scale phenomena such as thunderstorms,
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observations on the scale of the storms (of order 1 km) are necessary, which are provided
by radar stations (see Figure 1.1). By measuring the reflectivity and frequency-shift of
emitted microwaves, Doppler-radars gather information about the position, size, density
and radial velocity of reflecting hydrometeors such as rain, snow or hail stones. First
presented by Snyder and Zhang (2003) and further developed in various studies (for a
more detailed list see Section 2.1), it has been shown that the assimilation of radar data
in an EnKF framework is feasible and can lead to strongly improved forecast results
of deep convection (e.g. Snook et al., 2015; Wheatley et al., 2015; Bick et al., 2016;
Yussouf et al., 2016). The EnKF in its form of the Local Ensemble Transform Kalman
Filter (LETKF, Hunt et al., 2007) is planned to be operational at the German Weather
Service (Deutscher Wetterdienst, DWD) by 2017 in the Kilometre-scale Ensemble Data
Assimilation (KENDA) system (Schraff et al., 2016), which provides the technical and
algorithmical framework of this dissertation.

As Stensrud et al. (2009) states, it is an important task to further the development of
convective scale DA in order to be able to create initial states for non-hydrostatic models
that help to forecast threats posed by the occurrence of deep convection. The aim of
the present dissertation is to tackle some of the possible shortcomings and limitations in
this field. These different, yet connected aspects are shortly introduced in the following
sections of the introduction, and are further elaborated in their dedicated chapters.

Convective DA in the face of limited predictability

In contrast to e.g. a mid-latitude cyclone that grows from a baroclinic instability within
days, the growth of a thunderstorm is much more nonlinear and is within the order of
minutes to hours. A small disturbance can trigger a cloud that, once initiated, may grow
via latent heat release into a long-lived storm whose evolution can then be predicted
(Lilly, 1990), or may die off randomly before it reaches a stable state, leaving the non-
existence of a storm as the alternative. Sobash and Stensrud (2015) showed that a wrong
initial state of mesoscale boundary layer features can lead to convective initiation in
wrong locations. The predictability of organized convective systems with respect to their
occurrence and their spatio-temporal position is therefore quite limited. Once a cloud
is observed, e.g. by a radar system, a well-set DA framework should be able to lock
onto that cloud (Craig and Würsch, 2013) and be able to forecast it (Craig et al., 2012)
within the limits of the growth of the errors in the initial condition (Lorenz, 1969). By
using twin experiments that only differ by very small and meteorologicaly insignificant
perturbations in the fields of the initial model state, Selz and Craig (2015) found the
error growth in convective scales to saturate within a few hours. In twin-experiments
that perturbed mesoscale convective systems, Done et al. (2012) and Zhang et al. (2016)
showed that the predictability of sub-cells of a mesoscale convective system is usually
small, while the predictability of the mesoscale complex itself is much higher.

Taking this principle of very fast error growth, it is questionable whether forecasts
that cover a range of a few hours are better if they start from an initial state in which
every single observed cloud has the correct position and shape in every member (denoted
as a phase-locked property in Neef et al., 2006, 2009), or whether such forecasts are better
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Figure 1.5: Solutions of analysis ensembles that are fitted to the observations a) in a
small-scale phase lock with the observations and b) with a coarse-grained constraint.

that start from an initial state where the clouds are only correct on a coarser scale. Both
possibilities are illustrated in Figure 1.5. Lange (2013) criticized that most convective
EnKF studies tried to assimilate every detail of the observed storms into their analyses,
while disregarding the limitations imposed by a finite predictability. By simultaneously
increasing the localization length, the assimilation interval, the observation resolution and
the grid-resolution of the analysis computation, Lange (2013) concluded that forecasts
from initial states that were subject to a coarse-grained constraint (Figure 1.5) can have
the same quality as forecasts that are started from initial states which were constrained
with a small-scale phase lock. As an explanation, it was hypothesized that errors in
coarse analyses are closer to a saturation of the displacement errors than fine analyses
are, so that after a certain time the fast growing displacement errors in forecasts from
fine analyses reach the same level as forecasts that are started from coarse analyses.
Chapter 2, which has been published as Lange and Craig (2014), reassesses the same
question, but with a refined methodology. The sensitivity on spatio-temporal parameters
of the assimilation system is examined separately, so that those spatial and temporal
assimilation parameters are identified which can lead to good forecasts for the first half
hour, and those which are sufficient to produce equivalently good three-hour forecasts.

Spurious oscillations and noise caused by convective DA

If an air parcel is vertically lifted in an otherwise resting atmosphere, the related change
of pressure and volume causes an adiabatic cooling of the air in the parcel. Since the
parcel is now cooler than its surrounding, it is negatively buoyant and will return back
to its original height, driven by the restoring force of the gravitational acceleration. The
inertia of the returning motion will cause the parcel to descend below its original height.
The adiabatic process is thereby reversed and an oscillation is initiated that spreads
both vertically and horizontally. This atmospheric phenomenon is called Inertia-Gravity
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Wave (IGW) (or also internal gravity wave, see Gill, 1982) and is abundant wherever
vertical motion – such as convection and thunderstorms – is present in the atmosphere.

While the energy density of dry IGWs is usually much lower than for the latent heat-
driven motion of deep convection, both are necessarily related to each other. Clark et al.
(1986); Balaji and Clark (1988) presented idealized experiments in which deep convection
was initiated by the coupling of different modes of IGW. Hauf and Clark (1989); Yang
and Houze (1995); Tulich and Mapes (2008) gave further insight on the generation of
IGW by deep convection, how an MCS can be described as a packet of vertically trapped
IGW, and how convectively forced IGW spread and propagate horizontally. Lac et al.
(2002); Stephan et al. (2016) analyzed observation data on the initiation of convection by
IGW which had been emitted from previous and spatially separated convective systems,
and were able to reproduce the observed interaction in simulations with non-hydrostatic
models.

In Chapter 2, some convective cells are observed to arise in wrong locations that
are distant to the observed MCS, and therefore uncoupled to the true cold pools. This
spurious convection arises most severely in such experiments that appear to contain an
excessive amount of vertical fluctuations and IGW. Chapter 3 of this dissertation inves-
tigates the decoupled property of this spurious convection and quantifies the noise that
is caused by such assimilation schemes that do or do not force the analysis strongly onto
the observations. The quantification of noise is done in a two-way approach by dynami-
cal arguments about the disturbed coupling of new convection to the cold pools and the
spatial statistics about IGW-related noise inside and outside of the storms. The chapter
concludes with a recommended setting for DA of real radar observations which could
prevent noise issues that are otherwise caused by the DA.

The role of the convective environment

An important property of deep convection is its coupling to the surrounding environmen-
tal air. The vertical sounding of temperature and humidity (as indicated in Figure 1.1)
decides whether a thunderstorm may arise and how intense an updraft can become (see
Houze, 1993). The maximum intensity is controlled by the Convectively Available Poten-
tial Energy (CAPE) of the temperature and humidity profile, and the negatively buoyant
stratification that has to be overcome by rising air is called Convective Inhibition (CIN).
Another important factor is the vertical shear of the horizontal wind which determines
the form and longevity (the mode) of a convective storm (Weisman and Klemp, 1982).
Without shear, an updraft destroys itself by its own precipitating downdraft and is there-
fore shortlived. With small amounts of shear, the precipitation is transported away from
the updraft region and therefore more long-lived multicell storms may arise. With strong
and helically turning environmental shear, rotating supercell storms may arise wherein
a rotating updraft arises that is very long-lived and may even spawn a tornado at the
surface.

By assimilationg observations that do not observe the convection itself, such as surface
stations, aircraft data and radiosondes, the convective environment is determined. The
data assimilation of the convective cells themselves therefore may fail if the environmental
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sounding – a synoptic or mesoscale property – is wrong, as has been shown by Stensrud
and Gao (2010). Aksoy et al. (2009, 2010) assimilated convective storms using radar data,
and observed their forecasts to die off or misbehave with respect to the convective mode.
They attributed this to errors in the environmental sounding which did not support the
observed convective mode, e.g. a wrong shear or CAPE. Also, Dawson et al. (2012) and
Cintineo and Stensrud (2013) saw a decline in forecast quality of supercell storms when
they varied the low-level or the whole tropospheric sounding in their EnKF assimilation
of radar data. These studies, with the addition of Aksoy et al. (2010) and Yussouf et al.
(2013), mentioned that a certain degree of variability in the environmental sounding of
their ensemble proved beneficial for the assimilation of the radar data itself. Still, they
stress that the smallest possible error in the environment is always the main goal for an
ensemble mean solution. Weisman et al. (2015) describes the Mesoscale Predictability
Experiment (MPEX) in which a dense net of dropsonde measurements was deployed prior
to a severe convective outbreak in the mid-west of the United States. Hitchcock et al.
(2016) assimilated these additional observations in a convective EnKF framework and
found the forecast of the convective initiation to improve strongly, since the initial states
contained better information about the mesoscale environment.

These studies strongly suggest the use of a higher density of mesoscale observations
in order to prepare a better convective environment. In Chapter 4, which has been pub-
lished as Lange and Janjić (2016), experiments are performed which assimilate additional
aircraft observations in the KENDA system that is spanned by an ensemble of COSMO-
DE over Germany. These observations are of the type Mode-S which are collected by
air traffic control and have a data density which is ten times larger than the previously
dominant Aircraft Meteorological Data Relay (AMDAR) observations. As a part of this
thesis, the preliminary KENDA-cycling system was modified to correctly ingest and as-
similate this previously unused observation set. In Chapter 4, forecasts are performed to
show that this increased data density leads to a sustainable improvement of the vertical
sounding of temperature and wind, and thus of the convective environment.

Dynamical consistency and influence of observation types

Doppler radars observe both the three-dimensional wind and precipitation fields, but
radial velocity and reflectivity are not model variables – the latter are defined by the
three-dimensional wind vector and the mixing ratios of hydrometeors such as rain, snow,
graupel and hail. The wind vector needs to be in accordance with a pressure perturbation
field (Houze, 1993) which is not observed. In a series of studies that can be regarded as
precursors to contemporary convective DA, Gal-Chen (1978), followed by Hane et al.
(1981), Gal-Chen and Hane (1981) and Roux (1985), developed a method to retrieve
the pressure perturbation field that is in accordance with the observed three-dimensional
wind field, the latter given by a triangulation of radial wind observations from multiple
radar sites. To perform this retrieval, two subsequent volume observations of wind are
needed by which the local acceleration is computed. Using this field a source term, the
anelastic form of the equations of motion can be solved like a Poisson equation, yielding
the three-dimensional pressure perturbation field that is in balance with the wind field.
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Both fields can then be used to initialize a cloud resolving numerical model to produce a
forecast based on the observations.

In the context of the EnKF, forward operators are applied (see Chapter 2) to map the
simulated model state into the vector space of the observations. The analysis update in
model space is then performed only by the means of the background ensemble covariances
and usually without the application of an analytic retrieval of model variables such as
pressure. Since the analysis is used as an initial state, the analysis increments need to
be consistent with the model dynamics. This means that the wind- and pressure fields
have to be dynamically balanced in order to introduce or damp the vertical motion of the
convective cells according to the observations, and to prevent the introduction of noise
and excessive IGW (see Chapter 3). Potvin and Wicker (2013) observed waves of very
fast modes like sound waves in forecasts that were started from EnKF analyses of radar
assimilation. Using the method of Gal-Chen (1978) on subsequent wind analysis fields,
they were able to modify the pressure perturbation field in such a way that spurious noise
was suppressed. Ge et al. (2012) assimilated radar data in a variational framework and
were able to reduce noise in the initial states by constraining the analysis state solution
with the diagnostic pressure equation and the mass continuity equation which relate the
wind and mass fields of the model to the pressure field.

In a convective storm, the precipitation is closely coupled to vertical motion inside the
cells and divergent/convergent motion around them. The former is observed by reflec-
tivity, the latter by radial wind. Tong and Xue (2005) tested the combined and isolated
influence of reflectivity and radial velocity in idealized convective EnKF experiments.
They found the background ensemble covariances to produce worse analyses when only
reflectivity was assimilated, compared to the isolated assimilation of radial wind. This
motivates a closer look at the effects of these two observation types in a real world setup.

In Chapter 5, real radar observations of reflectivity and radial wind of convective
storms are assimilated in a setup similar to that of Chapter 4. The model variety of
COSMO-MUC is used that is nested into COSMO-DE with a smaller domain that is
centered around the Munich airport (MUC). As a part of this thesis, the ensemble version
of COSMO-MUC and a coupled COSMO-MUC-KENDA sub-cycling was implemented
in order to produce analyses of multiple parallel COSMO-MUC experiments which are
nested into and synchronized with one cycled COSMO-DE-KENDA experiment. For the
radar observations, the recommended parameters of Chapter 2 and Chapter 3 are applied.
A conceptual relation is derived for the effects of introducing an observed thunderstorm
into the model and how the associated circulation of the convective cell is coupled to the
latent heat release. Thereby, it is estimated which influence the observations of rain and
divergent winds have, depending on the scales that they observe. Using the methods of
Chapter 3, it is shown that a combination of both observation types produces a more
balanced solution than using only reflectivity, and that the assimilation of radial winds
alone already leads to a damping of fluctuations that are induced by the assimilation of
conventional observations. Additionally, the noise properties of the KENDA system are
compared to the scheme of Latent Heat Nudging (LHN) of radar-derived precipitation
observations, which is currently (2016) used in the operational deterministic analysis
computation of the COSMO-DE model.
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It is advisable to read Chapters 2, 3, 4, and 5 in a consecutive manner since the later
Chapters rely on definitions and findings of the earlier Chapters. The final Chapter 6
summarizes the efforts of this dissertation and discusses how the assimilation of convective
storms that are coupled to the surrounding environment was addressed. The possible
limitations of convective DA that were exposed in the foregoing chapters are summarized,
and it is discussed how they could be overcome. Finally, suggestions for further studies
are provided that could address some of the new questions that arose in the course of
this dissertation.



Chapter 2

The Impact of Data Assimilation
Length Scales on Analysis and
Prediction of Convective Storms

2.1 Introduction

Over the last decade, Data Assimilation (DA) with an Ensemble Kalman Filter (EnKF)
(Evensen, 1994; Houtekamer and Mitchell, 1998) for Doppler radar observations has been
demonstrated to be a feasible method to obtain suitable initial states of convective storms
for very short-range ensemble forecasts in studies with both simulated (Snyder and Zhang,
2003; Tong and Xue, 2005) and real observations (Dowell et al., 2004; Dowell and Wicker,
2009; Aksoy et al., 2009, 2010). As Stensrud et al. (2009) note, a goal of convective DA
is to be competitive to nowcast-warning systems that have generally been superior to
model forecasts without data assimilation for at least the first three hours of leadtime
(Kober et al., 2012; Scheufele et al., 2014).

Previous studies that used radar data in an EnKF have focused on storm-scale anal-
yses, applied relatively small covariance localization lengths in the range of ∼ 10 km
(Sobash and Stensrud, 2013) and converged the analysis ensemble closely towards the
observations, pursuing the goal of obtaining initial states with small errors as the basis
of their ensemble forecasts.

This study tries to assess the benefits of such close convergence, because even a very
precise analysis with small errors may be of limited value when used as an initial state
for a forecast. The reason for this is the short predictability of convection in the chaotic
atmospheric system where small scale errors grow rapidly (Lorenz, 1969) because the
small-scale error spectrum saturates faster than the larger-scale error spectrum. By
adding random perturbations to convection in twin-experiments, Zhang et al. (2003, 2007)
observed a saturation of small scale error growth within a few hours – a limitation that
directly affects approaches of highly-resolved ensemble data assimilation on the convective
scale.

Taking the limited predictability of convection into account, the benefits of a high-
resolution approach in convective EnKF system may not justify the cost: an analysis
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ensemble not constrained to accurately reproduce the smallest scales in the observations
might provide comparably good Quantitative Precipitation Forecasts (QPFs) for lead-
times where the small scale error growth has had enough time to saturate.

2.1.1 Limited predictability in convective scale data assimila-
tion

Lilly (1990) and Skamarock (2004) estimated the predictability of mesoscale convective
systems to be in the range of tens of minutes to 1 hour before the upscale error growth
taints the forecast completely. Zhang et al. (2003), Hohenegger and Schär (2007) and
Done et al. (2012) compared randomly perturbed forecasts of organized convection to
unperturbed reference runs. They found small-scale perturbations to grow very quickly
and nonlinearly, saturating within 3-6 hours. The specific predictability limit in these
studies depended on the presence of a large scale forcing that determined the type of
convection and the spatial position of the cells. Craig et al. (2012) used perturbations from
a Latent Heat Nudging assimilation scheme for convective storm forecasts and concluded
a lower predictability for convection in regimes with weak synoptic forcing in which the
storm properties are not strongly constrained by the large scale forcing.

To assess the error growth processes in the framework of data assimilation (Kuhl et al.,
2007), this study performs experiments with the Local Ensemble Transform Kalman Filter
(LETKF) (Hunt et al., 2007) coupled to an idealized setup of the nonhydrostatic COSMO
model (Consortium for Small-scale Modelling) (Baldauf et al., 2011) containing severe and
long lived convection. Observation System Simulation Experiments (OSSEs) of cycled DA
are performed where synthetic observations radar observations are drawn from a nature
run. A perfect model approach and a horizontally homogeneous environment without
large-scale forcing are applied to focus on the intrinsic predictability of convective storms.
While model error is usually the largest contributor to forecast errors of convection, this
study uses a perfect model to investigate the properties and results of the data assimilation
cycling alone.

2.1.2 Assimilation experiments with different length scales

First, a reference experiment is devised in order to reproduce the results of the previous
studies on convective EnKF DA. For this, fine-scale observations of radar data are drawn
from the nature run at the full model resolution and are assimilated with a suitably small
covariance localization length in order to converge the analysis ensemble closely towards
the nature run.

Analysis schemes with different spatial and temporal resolution of the observations in
combination with different covariance localization radii are then constructed to provide
EnKF-generated perturbations with errors at different scales. Successively, (i) the hor-
izontal localization radius of the covariances is increased (Sobash and Stensrud, 2013),
(ii) the scale of the observations are coarsened by averaging them into superobservations
(Alpert and Kumar, 2007), (iii) the computation of the LETKF analysis is done on a
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reduced horizontal grid (Yang et al., 2009), (iv) the temporal assimilation interval is
extended to provide the analysis with observations less frequently.

The cycled assimilation covers a time-span of three hours, followed by three hours
of ensemble forecast. Different combinations of the experiments given by (i)-(iv) are
evaluated using the Root Mean Square Error (RMSE) of the states together with object-
and field-based forecast skill scores to see how quickly the advantage of a fine analysis
state is lost due to changes in the precision and scale of the analysis errors. It is also
discussed how a tight fit to the observations might cause problems for the dynamics of
the forecast model.

The LETKF-experiments of this study try to focus on basic properties of such an
assimilation system and do not make use of some recent innovations that can help to
improve EnKF analyses, such as adaptive covariance inflation (Anderson, 2008), additive
inflation (Dowell and Wicker, 2009), “Running-In-Place” (Kalnay and Yang, 2010; Wang
et al., 2013) or Gaussian anamorphosis of precipitation observations (Lien et al., 2013).

For all experiments, the EnKF will be initiated with a convective ensemble that is
spun up from random initial white noise and therefore lacks any prior knowledge about
the position of the observed storms in the nature run. This “bad background” leads
to a longer period for the initial convergence of the ensemble, but avoids the possibly
beneficial influence e.g. of arbitrary convective triggers that are “manually” introduced
at predetermined locations (Tong and Xue, 2005; Aksoy et al., 2009, 2010) to help the
background ensemble resemble the observations even in the first assimilation step.

2.2 Model configuration and experimental design

This section first describes the data assimilation setup, consisting of nature run, synthetic
observations, convective ensemble and LETKF-algorithm, followed by the implementa-
tion of the scale-varying experiments. The Kilometer-scale ENsemble Data Assimilation
(KENDA) system (Reich et al., 2011) is being developed at the Deutscher Wetterdi-
enst (DWD). It couples an LETKF-implementation with an ensemble of the Consor-
tium for Small-scale Modeling (COSMO) model simulations in the domain over Germany
(COSMO-DE) (Baldauf et al., 2011).

COSMO solves the full non-hydrostatic and compressible Navier-Stokes equations
using a time-splitting Runge Kutta approach for fast and slow tendencies in the prognostic
wind variables U , V and W and the deviations of temperature T and pressure PP
from a stationary hydrostatic base state. The moist physics uses a single-moment bulk
microphysics scheme with six state variables: water vapor QV , cloud water QC, cloud
ice QI, rain QR, snow QS and graupel QG. A radiation scheme for long- and shortwave
radiation is applied. Surface fluxes of latent and sensible heat are parametrized and
constrained throughout the simulation by a constant surface temperature and a constant
surface specific humidity in both the nature run and the ensembles.
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2.2.1 Nature run

This study uses the testbed setup of COSMO with idealized initial state, periodic bound-
ary conditions and a homogeneous flat landscape at an elevation of 500 m as the lower
boundary. A convection-permitting horizontal resolution of 2 km and 50 vertical levels
is set up in a domain of 396 × 396 × 22 km extent. The vertical resolution ranges from
800 m at the model top to 100 m at the surface. The initial profile of all model runs is
horizontally homogeneous and based on the sounding of Payerne (CH, Radiosonde 06610)
at 12 UTC on July 30th 2007, a day with strong convective storms and mesoscale con-
vective systems, favored by a high CAPE value of 2200 J kg−1 together with a vertical
wind shear that allows organized convection with heavy precipitation and propagating
gust fronts (Bischof, 2011). The convection inhibition (CIN) of the sounding is 40 J kg−1,
with can be regarded as a fairly strong “cap” that has to be overcome before a thermal
can rise and trigger a deep convective cell.

Instead of initializing convection with predefined warm bubbles (Aksoy et al., 2009)
or targeted noise (Dowell et al., 2004; Tong and Xue, 2005) with amplitudes that directly
trigger thermals, uncorrelated grid point noise is added at the inital time t0 to the tem-
perature field T and the vertical wind speed W in the boundary layer with amplitudes
of 0.02 K and 0.02 m s−1, respectively. The model runs start at 06 UTC and quickly
develop a convective boundary layer. Instability increases prior to the outbreak of con-
vection due to radiative cooling of the upper troposphere while the surface temperature
is held constant.

Small showers initialize at random locations at 08 UTC, grow until 10 UTC and
mostly die off by 12 UTC (Fig. 2.1). The surviving systems grow into intense storms
and mesoscale convective systems by 14 UTC and propagate with the mean wind in a
north-eastern direction through the domain with lifetimes ≥ 6 h (Fig. 2.2). Horizontally
contiguous rain areas with a composite reflectivity > 30 dBZ extend over distances from
30 to 150 km. Surface fluxes of sensible and latent heat lead to gradual decay of the cold
pools in the wake of the storms. The periodic boundary conditions allow the storms to
spin up in a way that is “natural” for the model physics for the given sounding despite
the modest domain size. The time-window between 14 and 20 UTC is chosen for the
experiments because the storm properties such as size and organization change little
during this period (Fig. 2.1). For 3 hours, cycled assimilation is performed every 5 (or
20) minutes from 14 until 17 UTC, followed by ensemble forecasts with 3 hours leadtime
from 17 until 20 UTC.

All experiments in this study are repeated five times. Each repetion uses a different
seed for the random noise field to initialize its nature run (not shown). These five repeti-
tions represent a variety of different storm positions and shapes which are possible given
the initial sounding. When generating the nature runs, one random case was excluded
in which the preliminary showers (seen in all nature runs, e.g. in Fig. 2.1 at 12 UTC)
died out and no larger storm grew. An examination of the full set of ensemble members,
which were also randomly initialized, showed that this was a rare event, occurring for
≈ 1

50
of the members, and therefore no such case was included in the five nature runs.
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Nature Run: Reflectivity Coverage and Object Sizes
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Figure 2.1: Time-series for the Nature Run (averaged over five realizations): Domain-
average of the composite reflectivity in dBZ (solid with diamonds), average horizontal
(dotted) and maximum (dashed) size of the rain-objects in the composite reflectivity
thresholded to > 10 dBZ, percentage of rainy and therefore observed volume grid points
with a volume reflectivity > 5 dBZ. Assimilation window is between 14 and 17 UTC
(shaded dark gray), forecast window is between 17 and 20 UTC (shaded light gray).
Variation of the object-sizes can be due to merger of anvils of separate convective systems.
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Figure 2.2: Snapshots of composite reflectivity from Nature Run 03.
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2.2.2 Synthetic observations

Synthetic radar observations of reflectivity (Z) and the component of horizontal wind in
the x-direction (U) are generated from the nature runs. In order to mimic a region of good
radar coverage, the observations are taken at every model grid point in the horizontal
direction with the grid spacing of ∆xmodel = ∆xobs = 2 km. In the vertical, every third
grid point between 500 m and 13 km above the model surface is observed.

Reflectivity Z is computed from mixing ratios of graupel (QG), rain (QR) and snow
(QS) using the simple formula of Done et al. (2004): Zfac,Q = AQ(ρQ)1.75 where AQR =
3.63 · 109 for Q = QR, AQS = 2.19 · 109 and AQG = 1.03 · 109 where ρ is the air density.
The reflectivity is given by Z = 10 log10(Zfac,QR + Zfac,QS + Zfac,QG) in dBZ. These
values were designed for the WRF model but also give reasonable values of dBZ with
COSMO, mimicking the behaviour of real logarithmic reflectivity observations.

As in other OSSE studies (Tong and Xue, 2005), Gaussian noise with a standard
deviation of σrefl = 5 dBZ is added to simulate measurement errors. The reflectivity
observations Z are masked to regions where Z > 5 dBZ. Below this threshold, they are
assimilated as observations of no-reflectivity (Tong and Xue, 2005; Aksoy et al., 2009;
Weygandt et al., 2008; Benjamin et al., 2012).

In reality, most elevation angles of a radar volume scan are shallow, so the radial wind
mainly contains information about the horizontal wind. Observations of the horizontal
wind component U , masked to Z > 5 dBZ and with an added error of σU = 1 m
s−1, are therefore used as a proxy for radial wind observations. As the storms move in a
north-eastern direction, U contains information of both storm propagation and horizontal
divergence patterns. The regular observation geometry and the usage of U ensures that
the observed information coverage is uniform and all storms are equally well observed.

2.2.3 Initial ensemble

The synthetic radar observations are assimilated using an ensemble of k = 50 members
which differ from the nature run and among themselves only in the random seed for the
initial noise. The spin-up time between 06 and 14 UTC enables the members to con-
tain storms with similar characteristics but completely uncorrelated horizontal positions.
Snapshots of the reflectivity field at different times throughout one of the nature runs are
shown in Fig. 2.2. Other runs appear similar, but with random displacement and shape
variations of the intense storm systems. This initialization method was chosen to deprive
the ensemble of any prior knowledge about the state of the nature run when the assim-
ilation starts, as would have been provided by a “manual” positioning of warm bubbles
in the members or a confinement of the initial noise to regions of observed reflectivity
(Tong and Xue, 2005; Dowell and Wicker, 2009).
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2.2.4 Implementation of the LETKF

To produce an analysis ensemble, the LETKF-algorithm (described fully by Hunt et al.
(2007)) determines the vector w = w̄a that minimizes the cost function

J∗(w) = (k − 1)wTw + [yo − ȳb −Ybw]TR−1[yo − ȳb −Ybw], (2.1)

where the k-dimensional vector w defines the optimal linear combination of ensemble
member states that minimizes J∗. yo is the vector of observations and R is the observa-
tion error covariance matrix which is treated as diagonal here. ȳb and Ybw are given by
approximating the observation operator H to be linear about the m-dimensional back-
ground ensemble mean state x̄b, viz.

H(x̄b + Xbw) ≈ ȳb + Ybw, (2.2)

where Xb is a m × k matrix whose columns are given by the deviations of the single
forecast members from their mean xb(i) − x̄b and

Yb = H(xb(i))− k−1

k∑
i=1

H(xb(i)). (2.3)

The minimum of the cost function (2.1) is computed locally for every analysis grid
point to determine the best local linear combination of forecast members in the weighting
vector wa(i). However, these single analyses do not necessarily need to be computed at
the full model resolution: the spatial field of the local wa(i) is usually quite smooth
in case of R-localization (Janjić et al., 2011), so a coarser analysis grid can be chosen
horizontally and vertically on which the local analysis weights wa(i) are computed before
being interpolated onto the model grid (Yang et al., 2009).

For the local analysis, only nearby observations are taken into account by localizing the
observation error covariance matrix R with a Gaussian-like correlation function (Gaspari
and Cohn, 1999) that is zero where the distance r of the single observations is larger than
the “cutoff-length” rLoc of the localization radius. Consistent with the doubly periodic
lateral boundary conditions of the model used in this study, the synthetic observations are
periodically replicated around the original domain and the filter algorithm of KENDA
is configured to take also observations into account that are nominally outside of the
domain while still within the horizontal localization radius of the outermost grid points.
This leads to a fully periodic LETKF analysis.

For all experiments, the analysis weights wa(i) are multiplied by a constant covariance
inflation factor of ρ = 1.05 (Aksoy et al., 2009) in order to enhance the span of the
analysis state space. All prognostic variables of the model are updated in the analysis
computations (zonal wind U , meridional wind V , vertical wind W , temperature T , pres-
sure perturbation PP , water vapor mixing ratio QV , cloud water mixing ratio QC, cloud
ice mixing ratio QI, rain water mixing ratio QR, snow mixing ratio QS, graupel mixing
ratio QG).
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2.2.5 Reference configuration

To reproduce the typical behaviour of an EnKF DA system with the assimilation of
simulated radar observations, a reference setup with the name L8 was used and is de-
scribed here. In L8, an assimilation interval of ∆tass = 5 minutes represents the typical
availability of volume observations from a scanning Doppler radar network (Lu and Xu,
2009).

L8 uses a horizontal localization cutoff length of rLoc,h = 8 km, so the ensemble
covariances contain storm-internal structures, while the overall structure of the observed
storms has to be recovered by assembling the overlapping local analyses from neighboring
analysis grid points. In L8, the horizontal resolution of this analysis grid coincides with
the full model grid (∆xana = ∆xmodel = 2 km). The analysis grid has 20 vertical levels
with a spacing that varies with the logarithm of the reference pressure. This is similar to
the vertical grid structure of the model’s 50 layers, but with a vertical spacing twice as
large, varying from 1600 m at the model top to 250 m at the surface.

The vertical localization radius rLoc,v varies with height, so that observations close
to the surface have a vertical influence of ∼ 1 km, while observations taken a height
of 12 km have a vertical influence of ∼ 6 km. The combination of the vertical analysis
grid structure, the vertical localization radius and the resolution of the synthetic observa-
tions at every third grid point vertically should provide a sufficient overlap for vertically
consistent analysis computations. Although the vertical covariance structures in deep
convection can extend up to lengths of 10 km when sampled by an EnKF background
ensemble (Tong and Xue, 2005), a shallow vertical localization appears to be sufficient
here due to the good data coverage, and has an advantage for computational efficiency
as less observations have to be taken into account for each local analysis computation.

In the L8 configuration, the positions of the storms in the analysis should closely
coincide with those of the observed storms. Within the storm-cores, the analysis states
are expected to be detailed with a low error and small variance, while spurious convection
is suppressed outside of them by assimilating volume-observations of no-reflectivity. These
are the requirements for a “converged” analysis ensemble as defined in the introduction.

2.2.6 Configurations with different length scales

All experiments are performed with the full model resolution of ∆xmodel = 2 km for
both nature run and ensemble members. To produce analyses with varying scales, rLoc,h,
∆xobs, ∆xana and ∆tass are varied to create the experimental hierarchy shown in Table
2.1

(i) Horizontal localization (L8, L32): the horizontal localization is increased from of
rLoc,h = 8 km to 32 km. The vertical localization is not varied.

(ii) Superobservations (SO): The observation interval ∆xobs is increased from 2 km to
8 km in experiments L8SO and L32SO, by horizontally averaging the values and positions
of 4×4 blocks of the original observations into one central SO. If the original observations
do not cover the full 4× 4 block due to their reflectivity threshold, like at the edge of an
anvil, the SO is the average of the available original observations in the partially observed
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Table 2.1: Length scales used in the assimilation experiments, as described in Sec-
tion 2.2. rLoc,h is the cutoff length of the horizontal covariance localization function,
∆xobs is the horizontal resolution of observations, ∆xana is the horizontal resolution of
the analysis grid, ∆tass is the assimilation interval between two subsequent analyses.
nobs,ana = (rLoc,h/∆xobs)

2 is the number of horizontal observation points per one local
analysis within a r2

Loc,h square. nobs,total = nobs,ana · 180/∆tass is the total number of
assimilated local observations in the 3 hour assimilation period.

rLoc,h ∆xobs ∆xana ∆tass nobs,ana nobs,total
(km) (km) (km) (min) (per ana) (in 3 h)

L8 8 2 2 5 16 576
L8SO 8 8 2 5 4 144
L8SOCG 8 8 8 5 4 144
L8SOCG20 8 8 8 20 4 36

L32 32 2 2 5 64 2304
L32SO 32 8 2 5 16 576
L32SOCG 32 8 8 5 16 576
L32SOCG20 32 8 8 20 16 144

block. This procedure is preferable to data-thinning and reduces the information to the
desired coarse scale (Alpert and Kumar, 2007; Salonen et al., 2009; Seko et al., 2004; Xu,
2011). The entries of the observation error covariance matrix R are kept the same for
one SO as for one original observation. The vertical resolution of the observations is not
varied.

(iii) Coarse Analysis Grid (CG): The analysis grid spacing ∆xana is increased from
2 km to 8 km in experiments L8SOCG and L32SOCG by computing the local analy-
sis weights wa(i) at every fourth model grid point (∆xmodel = 2 km) and then linearly
interpolating onto the full model grid (Yang et al., 2009). After interpolation, the trans-
formation from ensemble space into model space is performed in the LETKF as a linear
combination of background members. The vertical resolution of the analysis grid is not
varied.

(iv) Assimilation interval (20): The cycling interval ∆tass is increased from 5 min to
20 min in experiments L8SOCG20 and L32SOCG20. A comparable amount of obser-
vations is provided at every intermittent analysis time for the analogous 5-minute and
20-minute experiments, as the generation of synthetic observations from the nature run is
not changed but only performed less often. By increasing the cycling interval, the amount
of assimilated information within the 3 hour assimilation period is therefore reduced and
the model dynamics of the ensemble are given a longer time to adapt to the updated
analysis states.

The factor 4 difference in all parameters between (i) and (iv) implies that all exper-
iments with “L32SO” have the same number of observations per local analysis as the
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reference experiment L8, while the pure L32 has to fit the analysis ensemble to more
local observations (see nobs in Table 2.1).

The parameter combinations listed in Table 2.1 were selected first (i) to use obser-
vation and background information about larger-scale correlations for the analysis, (ii)
to reduce the horizontal resolution of the observation information, (iii) to let the filter
compute only directly on this coarsened scale before the full scales are updated, and (iv)
to further temporally reduce the amount of information provided to the analysis.

The analysis field of local linear ensemble member combinations wa(i) in (i) is therefore
computed with a larger horizontal overlap (rLoc = 32 km), so the “assembly” of members
in L32 is performed less locally than with the small localization of rLoc = 8 km in L8.
It might be dynamically favorable to have less variation in the linear combination of
ensemble members especially in regions with large horizontal gradients such as up- or
downdraft cores because a linear combination of nonlinear dynamics such as convection
is not necessarily a dynamically consistent state for every member.

2.2.7 RMSE, spread and consistency ratio

The accuracy of analysis and forecast states x is measured by the Root Mean Square

Error (RMSE) of the ensemble mean x̄ = k−1
k∑
i=1

xi, computed in model space for the

different model variables:

RMSE(x̄) =

√√√√m−1

m∑
l=1

(xnaturel − x̄l)2, (2.4)

where m is the number of grid points. The corresponding variance is the spread spr of
the ensemble xi around its mean x̄, given by

spr =

√√√√m−1

m∑
l=1

(
(k − 1)−1

k∑
i=1

(xil − x̄l)2

)
, (2.5)

where k is the number of ensemble members. To fulfill the Gaussian assumption of
the filter, the ensemble spread should represent the actual error of the analysis, so the
consistency ratio CR

CR =
spr

RMSE
(2.6)

should be close to CR = 1. In addition to (2.4), the mean RMSE of the single members
with respect to the nature run is computed for some comparisons:

RMSEmem(x) = k−1

k∑
i=1

√√√√m−1

m∑
l=1

(xnaturel − xil)2

 . (2.7)

As in previous studies, RMSE and spread are evaluated for rainy model grid points
above the detection threshold of 5 dBZ where the up- and downdraft dynamics are most
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active and the error reduction most significant. Additionally, the present study evaluates
RMSE and spread for all grid points of the domain. This results in a generally low error
level because many small error values of clear air regions contribute to the mean error,
but is of interest since temperature and wind errors can occur outside of precipitating
regions, especially in the boundary layer. Analysis and forecast errors are compared
to a reference error level computed from a free-running control ensemble that has the
same initial conditions as the background ensemble of the LETKF but does not undergo
assimilation and runs parallely to the assimilation experiments.

In Section 2.4, additional feature-based scores are described and applied to analyses
and forecasts.

2.3 Assimilation results

First the reference experiment L8 is evaluated during the assimilation window 14-17 UTC
in Section 2.3.1, then the assimilation results of the scale-varying experiments L8S0-
L32SOCG20 (Table 2.1) are compared to L8 in Section 2.3.2. The ensemble forecast
parts of the experiments are discussed in Section 2.4.

An example of the assimilation results for one realization of the nature run is given
in Figs. 2.3, 2.4 and 2.5, which compare snapshots of the nature run 03 to the analysis
ensemble means at 17 UTC. The composite reflectivity is the vertical maximum of the
3D-reflectivity field (Fig. 2.3). T at the height of z = 150 m shows the cold pools
(Fig. 2.4), W at z = 3500 m shows regions of up- and downdrafts (Fig. 2.5). Visually,
the L8 analysis closely matches the nature run, particularly in reflectivity and vertical
velocity.
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Figure 2.3: Composite Reflectivity of Nature Run 03 (cf. Fig. 2.2 at 17 UTC) and of
the corresponding Analysis Ensemble Means of the different scale-experiments at the
last analysis time 17 UTC.
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Figure 2.4: As Fig. 2.3, but showing the temperature T at z = 150 m.
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Figure 2.5: As Fig. 2.3, but showing the vertical velocity W at z = 3500 m.
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2.3.1 Performance of the reference scheme L8

Fig. 2.6 shows the RMSE of the ensemble mean and the spread of L8 during the assimila-
tion window and during the forecast window from 17 to 20 UTC for each of the prognostic
model variables and the derived Reflectivity (Refl), computed at all model grid points.
To illustrate the relative error reduction, the RMSE and spread of the free-running ensem-
ble (which has not undergone any assimilation) are also depicted. An “error-reduction”
is therefore a reduction of RMSE with respect to the free error level given by the control
ensemble, which changes throughout the diurnal cycle due to an increase in domain-wide
storm coverage (cf. Fig. 2.1). The two observed variables are U and Refl, all other
variables are updated only through covariances provided by the background ensemble.

The reduction of RMSE for all model variables shows the effectiveness of the LETKF-
cycling. The error of the meriodional wind U decreases during the assimilation window.
At the same time the spread adjusts towards a good consistency ratio by 17 UTC, showing
that the chosen inflation factor is appropriate. The zonal wind V , although only updated
through covariances, behaves similarly to U . This is probably due to the strong coupling
of U and V in the domain sounding with a south-westerly background wind.

The pressure field PP , the humidity QV and the temperature T (illustrated by cold
pool structures in Fig. 2.4) also benefit from the LETKF-cycling updates through ensem-
ble covariances. Note that the filter-update of T is slightly detrimental at analysis times
before 16 UTC, showing a “reversed” saw-tooth pattern (visible in a close examination of
Fig. 2.6), while the error decreases during the 5 minutes of forecast intervals due to the
dynamical convergence of the ensemble members towards a physical meaningful state.
This indicates that the direct ensemble covariances of T with the observed U and Refl
are probably not well-sampled by the background ensemble. The deficient T -analysis in
the EnKF-assimilation of radar data has been noticed in previous studies (Zhang et al.,
2004; Dong et al., 2011).

Information about vertical motion ofW (up- and downdrafts in Fig. 2.5) is provided by
observations of Refl (cf. Fig 5 of Tong and Xue, 2005) because the observed reflectivity
field is confined to vertically active regions and by horizontal convergence patterns of U
that enclose the up- and downdrafts (cf. Fig 8 of Snyder and Zhang, 2003).

The horizontally intermittent Refl field is well-captured by the analysis ensemble (cf.
Fig. 2.7), and the RMSEs of the precipitation variables QR, QS and QG are reduced. QR,
QS and QG are used to compute observations and first guesses of Refl in the observation
operator and therefore are well-constrained by the ensemble covariances. The unobserved
cloud variables QC and QI also benefit from the LETKF-update. On the other hand, the
spread of the precipitation variables is strongly reduced and does not recover during the
assimilation window. This probably happens due to the non-Gaussian and multimodal
climatological distribution of the clouds prior to the assimilation which is converged
towards a Gaussian solution in the analyses. The variance of a multimodal distribution
with rain and no-rain present is larger than the variance of Gaussion distributions around
rain and no-rain (Dance, 2004; Craig and Würsch, 2013). The localized Gaussian analysis
solutions of the filter therefore exhibit a smaller spread than the climatology which is the
free error level, displayed for example in Fig. 2.6. This convergence towards a Gaussian
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Figure 2.6: RMSE and spread of the ensemble mean of L8 through the assimilation (14-17
UTC) and forecast (17-20 UTC) phases of the experiment, with gray shading indicating
the forecast phase. The gray lines show the RMSE and spread of the mean of the free
control ensemble without any assimilation. All grid points are evaluated. The error values
are averaged over five repetitions of the experiment.
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analysis solution is illustrated in Fig. 2.8 which shows histograms of W and Refl of the
L8 analysis ensemble, computed from the grid point values of all analysis members at
locations inside the storm in the nature run (i.e. points satisfying Wnature = 5±0.5 m s−1

or Reflnature = 25±0.5 dBZ in left and right panels, resp.). These show an approximately
Gaussian distribution around the observed (Refl) or covariance-derived (W ) values from
the nature run.

Fig. 2.9 shows the RMSE and spread of L8 as in Fig. 2.6, but now computed only
at those grid points where Refl of the nature run exceeds the observation threshold of
5 dBZ. The overall variance of all variables is larger in these convective regions, as is
the relative amount of error reduction. This is because observations of U and Refl are
available for the whole subset volume where RMSE and spread are evaluated. The main
difference between Fig. 2.6 and Fig. 2.9 during the assimilation period from 14 to 17
UTC appears in U , V , T and QV with a stronger error reduction inside the thresholded
subset, but also a smaller spread when compared to the evaluation including all grid
points. During the forecast period from 17 to 20 UTC, the spread of such variables
which are strongly associated with convective updrafts (W , Refl, QR, QG and QI)
quickly exceeds the RMSE of the forecast ensemble mean if all grid points are considered
(Fig. 2.6). This increase in variance is due to the development of spurious updrafts in the
L8 forecast ensemble members. The grid points of these spurious cells are not contained
in the thresholded subset of the observed storms (Fig. 2.9). They will be discussed in the
forecast results Section 2.4.

As the relative differences between the two choices of grid point sets for RMSE-
computations are small during the assimilation period, and the full-domain RMSEs of
Fig. 2.6 contain information about the whole three-dimensional fields, further discussion
of RMSEs in this paper will refer to the full domain. Furthermore, since the RMSE
behaviour of many variables are similar to each other, only plots of four representative
variables U , W , T and QR will be considered. U will serve as a proxy for V , T as proxy
for PP and QV , and QR as a proxy for QC, QI, QR, QS, QG and Refl (Fig. 2.10).

Summarizing the results for the high-resolution assimilation, the L8-scheme appears
to produce LETKF-analyses that are comparable in quality to the previous convective
EnKF studies with radar data mentioned earlier. The mean of this strongly converged
ensemble is representative of the best possible solution, with little variance among the
analysis members inside the observed storms.
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2.3.2 Influence of length scales on assimilation results

In Section 2.2.6 and Table 2.1, the different length scales employed in the schemes L8SO
– L32SOCG20 are specified. Here, the assimilation results of the various experiments are
evaluated in comparison to the reference experiment L8 (Section 2.3.1).

First, the effect of increasing only the localization radius is considered (step i in the
experimental hierarchy of Section 2.2.6), by comparing L8 to L32, where the horizontal
localization rLoc,h is changed from 8 km to 32 km. In L32, the storms in the analysis
ensemble mean do not converge well onto the observations. This is clearly visible in the
plots of the last analysis ensemble mean in Figs. 2.3, 2.4 and 2.5. The mean reflectivity
field is much weaker than the nature run, as is the cold pool intensity. These results are
typical for the five repetitions of the experiment although the fields differ in detail. The
RMSE of the L32 ensemble mean (Fig. 2.10) shows very poor performance for U , W and
QR. For T , the ensemble mean of L32 is strongly degraded by every analysis cycle and
is even worse than the free error level. These deficiencies indicate that the number of 50
ensemble members is too small in L32: for every local analysis, 4 times the number of
full-scale (∆xobs = 2 km) observations must be fitted by the LETKF, in comparison to
L8. As a result, the spread of L32 decreases, leading to a very poor consistency ratio for
all variables (not shown).

Second, the change in horizontal observation resolution ∆xobs from 2 to 8 km (step
ii: superobservations SO) is evaluated by comparing L8SO to L8, and L32SO to L32. In
L8SO, the analysis field of reflectivity appears more spotty (Fig. 2.3) than in L8. In single
members of L8SO in Fig. 2.11, the inner storm core is somewhat broken up and spurious
convective cells exist in many locations. The superobservations are obtained by coarse-
graining horizontally onto 4x4 blocks, so that fine-scale errors are obscured and are not
penalized appropriately in the analysis. This is evident in the worse RMSE of W and QR
of L8SO compared to L8 (Fig. 2.10). For U and T , L8SO does not perform much worse
than L8, indicating that less horizontal information is needed for a reasonable analysis of
the horizontally smoother variables U and T . It is perhaps surprising that in L8SO the
filter cycling does not completely fail although there is very little horizontal overlap in
the solution of adjacent local analyses when the observation resolution of ∆xobs = 8 km
matches the localization radius of rLoc,h = 8 km, resulting in a very non-smooth analysis
solution.

In L32SO, the same horizontal number of observations per local analysis is available as
in L8, but with a coarser observation resolution of 8 km. Indeed, the analysis ensemble
of L32SO is now able to converge towards the superobservations, in contrast to L32
(Fig. 2.10), albeit with less precision in the small scales than L8. This can be seen
comparing Fig. 2.3 and Fig. 2.12, which shows L32SOCG as a proxy for L32SO.

In the third set of experiments, the LETKF computations are performed on an anal-
ysis grid with a horizontal resolution decreased from ∆xana = 2 km to 8 km (step iii:
coarse analysis grid CG). The resulting field of local analysis weights wa(i) is then inter-
polated onto the model grid. Using ∆xobs = 8 km (SO) in combination with ∆xana = 8
km (SOCG), the analyses of the SOCG-experiments are computed at the same horizontal
scale where the observations are available. The full-resolution covariances in model space
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Figure 2.11: As Fig. 2.7, but for L8SO.
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Figure 2.12: As Fig. 2.7, but for L32SOCG.
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Figure 2.13: As Fig. 2.7, but for L32SOCG20.
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sampled from the background ensemble are still used for the analysis ensemble. Com-
paring the ensemble mean field plots of L8SOCG to L8SO and L32SOCG to L32SO, the
change from SO to SOCG appears insignificant. The RMSE shown in Fig. 2.10 shows
little influence of the coarse grid method in both L32SO(CG) and L8SO(CG). This in-
dicates that the fields of wa(i) are smooth enough to be accurately represented on the
coarse grid (although the setup of L8SO and L8SOCG could not be recommended for
actual usage due to the lack of horizontal overlap between local analysis regions).

Finally, the interval between the cycling steps is increased from 5 to 20 minutes
(step iv: 20 minutes). In L8SOCG20, this less frequent introduction of observation
information leads to strong deterioration in the analysis mean solution of storm positions
and cold pools (Figs. 2.3 and 2.4) and the RMSEs are significantly worse than for L8SOCG
(Fig. 2.10).

In L32SOCG, the lowest spatial resolution of observations and analysis is reached,
and L32SOCG20 additionally lowers the temporal resolution. As for the L8SOCG20
experiment, the precision of the analysis mean is degraded (Fig. 2.10). In Fig. 2.12,
the analysis members of L32SOCG show a much larger spatial variability of the storm
field than L8 (Fig. 2.7). This variability is even larger with L32SOCG20 (Fig. 2.13).
Fig. 2.8 compares the distributions of W and Refl of the analysis ensembles of L32SOCG
and L32SOCG20 to analysis ensemble L8, at subsets of points inside the nature run’s
storms. Fig. 2.8b shows that the analysis distribution of L32SOCG is broader than L8
and includes values of zero reflectivity. This is even more evident for L32SOCG20 where
many non-precipitating points are present, and the values of precipitating points are
distributed broadly around the observed value. This behavior is closely coupled to the
non-observed W -updrafts in Fig. 2.8a where L32SOCG and L32SOCG20 show a more
climatological distribution than the closely converged L8, where climatology is defined
here by the frequency distribution of Refl or W at the rainy grid points in the nature
runs (cf. Fig. 2.2).

The RMSE of the L32SOCG20 analysis mean of W (Fig. 2.10) is larger than that
of the free ensemble and it shows that the ensemble mean of L32SOCG20 has converged
towards a solution where the mean updrafts cores are displaced with respect to the
nature run (cf. Figs. 2.3, 2.13). This large RMSE of W is therefore associated with a
doubly penalty, in contrast to the error of the free ensemble, where the randomly-placed
convective updrafts contribute no strong features to the ensemble mean. Despite the
larger RMSE, the consistency ratio of L32SOCG20 and L8 in W at 17 UTC is CG ≈ 0.2
inside the storms (cf. W in Fig. 2.10), so both the finest and the coarsest experiment
have converged to a comparable degree on the updrafts of the nature run.

Before the forecast results are presented in the next section, we look briefly in Fig. 2.14
at the mean RMSE of the individual ensemble members with respect to the nature run,
as defined in (2.7). Although the single members are not themselves the solution of
the LETKF (which is the ensemble mean and analysis perturbations from the mean),
RMSEmem can tell us about the deviations of the single members from the truth. It is
remarkable that RMSEmem for U and T is the lowest in L32SOCG20, and for W and QR
it is well within the range of other experiments, compared to Fig. 2.10. For U and T , this
property indicates that horizontally smooth fields such as U and T are sensitive to the
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introduction of noise by the filter-increments (Greybush et al., 2011; Holland and Wang,
2013), especially for T , where the error of the “low-information” experiment L8SOCG20
is also smaller than for other experiments.

This introduction of noise is also evident in the vertical wind field in Fig. 2.5 in
the form of spurious gravity waves, where the W -field of L32SOCG20 in locations of
updrafts appears smoother than in all other experiments, and outside the storms is much
less tainted by gravity wave noise (compared to the nature run), especially those with
∆tass = 5 min.

2.4 Ensemble forecasts from analyses with different

length scales

The main goal of this paper is to evaluate the influence of the spatial scale of ensemble
perturbations on the quality of convective ensemble forecasts, and to assess how the
benefits of a high-resolution analysis are limited by the predictability of the atmospheric
system.

As described before, after the 3 hours of cycled LETKF-assimilation, ensemble fore-
casts with leadtimes up to 3 hours are run from 17 to 20 UTC for all experiments.
This section will focus on the forecast results of L8, L32SOCG and L32SOCG20, which
exemplify the differences between fine and coarse resolution LETKF analyses.

2.4.1 Forecast fields and RMS Error

For U and T , the RMSE of the forecast ensemble mean (Fig. 2.10) grows similarly slowly
for all experiments, aside from the badly converged L32. The RMSE of the forecast
ensemble mean is generally larger for the L32-experiments than for the L8-experiments,
but appears to converge towards the end of the forecast window.

For W and QR, the RMSE of the L8 forecast ensemble mean increases from a low
error to the free error level within the 3 hours from 17 to 20 UTC (Fig. 2.10). The
RMSEs of L32SOCG and L32SOCG20 also converge towards the free error level, but
from a larger (and for L32SOCG20 doubly penalized) inital error at 17 UTC. As large
values of W and QR are present mainly within convective cell cores, the convergence
to the uncorrelated free ensemble error level in Fig. 2.10 is consistent with W and QR
which smoothe out in the forecast ensemble mean, becoming similar to the very smooth
free ensemble mean fields of W and QR due to the random position of the storms in
the free control ensemble. This smoothing can be seen directly in Fig. 2.15 for the mean
forecast composite reflectivity, in Fig. 2.16 for T and in Fig. 2.17 for W . The forecast
ensemble mean reflectivity field, in particular, resembles a smoothed probability map
of the nature run’s storm position. For W and Refl, the analysis ensembles of L8,
L32SOCG and L32SOCG20 had different initial distributions of values (Fig. 2.8) inside
the nature run’s storm locations, with the values for L8 narrowly distributed around the
observation. However, after 3 hours (Fig. 2.18), the distributions of W and Refl from
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Figure 2.15: As Fig. 2.3, but showing Composite Reflectivity of Nature Run 03 (cf. Fig.
2.2 at 20 UTC), and the Forecast Ensemble Means of the different scale-experiments
at 20 UTC, after 3 hours of ensemble forecast.
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Figure 2.16: As Fig. 2.15, but showing the temperature T at z = 150 m.
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Figure 2.17: As Fig. 2.15, but showing the vertical velocity W at z = 3500 m.
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Figure 2.18: As Fig. 2.8, but for the forecast ensemble-members at 20 UTC after 3 hours
of ensemble forecast (cf. Figs. 2.15 and 2.17)

the three forecast ensembles are indistinguishable and similar to the climatology of the
simulated convective regime.

The RMSEmem values of the members in Fig. 2.14 grow similarly slowly for U and
T to the RMSE of the ensemble mean for all experiments. However, the RMSEmem of
W and QR overshoots the free error level for all experiments except L32SOCG20. The
free error level here, in contrast to error of the ensemble mean in Fig. 2.10, is strongly
penalized due to the random storm positions in the single free control members. The
overshooting RMSEmem of the forecasts of L8 compared to L32SOCG indicates a strong
double penalty for the forecast updrafts. In Fig. 2.19, a snapshot of a 1 hour forecast
of L8 is displayed. It can be seen that spurious convection arises in the L8 forecast
members outside of the true storm position of the nature run. Within the region of
stratiform precipitation, the positions of the active parts of the updrafts have diverged
very strongly. Such spurious development was found in almost all experiments (L8SO –
L32SOCG, not shown) and has been observed in previous studies (cf. Fig 3 of Aksoy et al.
(2010)). This is also evident through the rapid growth of spread for storm-core variables
like W , Refl, QR, QG and QI in Fig. 2.6 after 17 UTC. In L32SOCG20 however,
almost no spurious convection is seen in the 1 hour forecast outside of the organized
convective systems (cf. Fig. 2.20) and the respective spread of W , Refl, QR, QG and
QI grows more slowly and stays below the RMSE of the forecast mean (not shown), as
opposed to L8. This indicates that the analysis states of L32SOCG20 are internally more
consistent although the members had not converged closely to the observations, whereas
the strongly converged analysis of L8 is not well handled by the model dynamics and is
probably unbalanced in some sense.
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Figure 2.19: Composite reflectivity of Nature Run 03 (cutout of the domain), Forecast
Ensemble Members 01,15,35,50 and Forecast Ensemble Mean of L8 at 18 after 1 hour
of forecast.
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Figure 2.20: As Fig. 2.19, but for L32SOCG20.
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2.4.2 Spatial forecast verification methods

To supplement the visible and the RMSE forecast evaluation of the volume fields, two
spatial verification measures for QPFs are chosen to compare the forecast rain fields to
the nature run. The composite reflectivity field is used here because high reflectivity is
usually accompanied with strong precipitation and winds – the essential threats to be
predicted by a convective storm forecast. For this purpose, the composite reflectivity
fields of both the nature run and the forecasts are masked to values above a threshold of
10 dBZ to separate the storms and overlapping anvils for object identification.

The Displacement and Amplitude Score DAS (Keil and Craig, 2009) uses a pyramidal
matching algorithm to compare two fields by an optical flow technique. A vector field
is computed that morphs the forecast onto the reference field and vice versa, using a
maximum search radius of 45 km here. The average magnitude of the displacement
vector field, normalized by maximum search radius, defines the DIS-component of the
DAS-score, displayed in Fig. 2.21.

The SAL-score (Wernli et al., 2008) compares statistical properties of thresholded
rain-objects. The structure or S-component indicates whether the forecast objects are
smoother and broader than the observations (S > 0) or spikier (S < 0), with S = 0
indicating the correct structure. Only average object properties are compared rather
than matching individual objects, so SAL-S is independent of location errors and biases
(Fig. 2.22a). The amplitude or SAL-A-component (Fig. 2.22b) compares the domain-wide
total reflectivity (not thresholded) between forecast and observation and thus displays
the overall bias. The SAL-L-component (Fig. 2.22c) determines the location error by
measuring the horizontal deviation of the centroid of the forecast reflectivity field from
the centroid of the observations. Without matching objects, the curves of the location
error SAL-L are therefore less continuous than the DIS-score. This is a consequence of
the small sample of five random cases which is used in this study.

2.4.3 Spatial forecast verification results

The DIS-score in Fig. 2.21 shows that after the 3 hours of assimilation, the reference exper-
iment L8 has the lowest position error for the reflectivity field. The L8 experiments with
superobservations suffer from the low SO-observation resolution and the small overlap,
so the L8SOx experiments are disregarded here. The L32-experiments however appear
comparable. In the first 30 minutes of the ensemble forecast, the DIS displacement error
of the L8-members grows rapidly and exceeds L32SOCG20, then saturates. The DIS of
the L32SOCG20-members grows slowly and converges with L8, L32SO and L32SOCG
towards the end of the forecast window. This finding corroborates the results of the the
RMSEmem of QR and W in Fig. 2.14 which showed the influence of spurious storms in
the forecast (cf. Figs. 2.19 and 2.20).

The rapid displacement error growth of the L8 members is also displayed by the SAL-
score: In the first 30 minutes of the ensemble forecast, the bias SAL-A of L8 increases,
the location error SAL-L of L8 grows strongly, and the structure SAL-S of L8 decreases
to negative values associated with spikier objects. This means that during this first half
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thresholded by 10 dBZ. Displayed is the mean DIS-score of the ensemble members of
all experiments, with the Nature Run as reference. The score is averaged over the five
random repetitions of all experiments. (A value of DIS = 0 is a perfect match.)
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52
2. The Impact of Data Assimilation Length Scales on Analysis and

Prediction of Convective Storms

hour additional small and mislocated convective cells are triggered in L8: additional
cells increase the bias SAL-A, small decrease the structure SAL-S, and mislocated cells
increase the location error SAL-L (DIS). In contrast, none of this appears to happen in
the experiment L32SOCG20 which has the coarsest analysis properties.

2.4.4 “Balance” of initial states

The development of spurious updraft cores in L8 – L32SOCG suggests that the states
of the analysis ensemble members are in some way inconsistent with the forecast model
dynamics. In Fig. 2.5, it is apparent that all analyses except that of L32SOCG20 have
fine-scale gravity wave noise present in the W variable that is not found in the nature
run. While it is not expected that convective forecasts are close to geostrophic balance,
the apparent excess of free gravity waves suggests the initial states for the ensemble
forecasts may suffer from a similar “dynamical imbalance”, caused by noisy analysis
increments of the LETKF. In Fig. 2.23, the surface pressure tendencies of L8, L32SOCG
and L32SOCG20 during the first 20 minutes after 17 UTC are plotted as an indicator
of possible imbalance (Greybush et al., 2011). The initial pressure tendencies in L8 are
substantially larger than for the large-scale analyses until timestep 25 (= 5 minutes),
which is also the cycling interval of all experiments except L8SOCG20 and L32SOCG20.
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2.5 Summary of results

The aim of this study on convective scale data assimilation was to assess how errors grow
in 3-hour ensemble forecasts from analysis ensembles computed with differing length
scales. Data assimilation of long-lived and organized convective systems was performed
under the assumption of a perfect model in order to focus on the intrinsic predictability
of the storm systems. An LETKF system with 50 members was used in an idealized
OSSE testbed with simulated Doppler radar observations of reflectivity and radial wind.
The reference and ensemble storms were triggered randomly in the convection-permitting
COSMO-model with ∆xmodel = 2 km, using radiative forcing and initial small-amplitude
random noise in a horizontally homogeneous environment with periodic boundary condi-
tions. The nature run and the ensemble all used the same model with the same horizontal
resolution and the same initial sounding.

2.5.1 Assimilation schemes with different length scales

A reference experiment L8 was set up to reproduce the typical behavior of a convective
EnKF DA system in which the exact observation error covariance matrix R was known
and used by the LETKF. Assimilation schemes were devised in which the localization
radius of R was increased from 8 to 32 km (L8 and L32), the observation resolution was
coarsened from 2 to 8 km as superobservations (SO), the analysis grid resolution of the
LETKF was coarsened (CG) from 2 to 8 km, and the assimilation interval was increased
from 5 to 20 minutes.

The background and analysis ensembles of each of the experiments succeeded in con-
verging towards the observations, with the exception of L32 which suffered from under-
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sampling due to the large localization radius in combination with full-resolution obser-
vations. This undersampling of the background error covariance in L32 resulted in an
overconfidence of the filter that converged towards a wrong solution which missed some
convective cells. The analyses of L8 had the lowest RMSE and displacement errors af-
ter 3 hours of cycling. The introduction of superobservations made the analyses of the
L8SO-experiments less precise than L8 while enabling the L32SO-experiments to converge
properly. Using a coarser analysis grid (CG experiments) in the SO-experiments made
no significant difference, because the analysis computation was merely performed on the
same coarse horizontal scale as the observations. An increased cycling interval of 20 min-
utes degraded the precision of the analyses, but resulted in less spurious gravity wave noise
in the members through less frequent introduction of analysis increments. It was found
that the spatially and temporally coarsened observation information in L32SOCG and
L32SOCG20 rendered their filter solutions much less Gaussian than L8. The point-value
distributions of these solutions were closer to the climatology of the simulated convective
regime.

2.5.2 Ensemble forecasts from analyses with different scales

In the ensemble quantitative precipitation forecasts (QPF), the displacement error of the
storm’s reflectivity field was measured by the object-based and field-based scores DAS
and SAL. During the first hour, forecasts from the reference experiment L8 were clearly
superior to those of the coarser schemes in terms of storm positions and internal structure.
This advantage was lost in as little as half an hour of forecast lead time through the rapid
error growth of small perturbations and the emergence of spurious convective cells. The
coarsest scheme L32SOCG20 with large perturbations had much slower error growth and
fewer spurious cells.

2.5.3 Imbalance and limited predictability

Inspection of the forecast fields suggested that rapid growth of spurious convective cells
occurred in LETKF configurations where the analysis showed small-scale gravity wave
noise. Surface pressure tendencies at the start of the ensemble forecast were therefore
evaluated for indications of dynamical imbalance introduced by the analysis increments.
The smaller initial pressure tendencies in the L32SOCG20 experiment in comparison
with L8 suggest less imbalance, although the analysis errors are larger in the coarse
resolution experiment. The L32SOCG20 experiment also featured slower initial growth
rates of RMSE. This was not caused by a need to spin up small scale motions since the
analysis ensemble was always constructed from the full resolution background ensemble.
Rather, the rapid error growth in L8 was associated with the appearance of small-scale
spurious convective cells which may have been triggered by spurious gravity wave noise
from the high resolution analysis increments as noted previously. As this noise was
also present in clear air regions around the observed storms, the possiblity of triggering
spurious convection by interfering gravity waves (Hohenegger and Schär, 2007) cannot
be ruled out. The lower noise level of the experiments with a 20 minute cycling interval
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agrees with experiences in operational convective data assimilation (Seity et al., 2010). A
hypothetical better data assimilation scheme that did not introduce spurious imbalance
might have slower initial error growth than the L8 results here, but it is unlikely that the
results would would be better than those of a coarser resolution analysis after 1-2 hours
since some rapid development of new convective cores is seen in all configurations and the
perturbations of the L32SOCG20 updraft positions from the analysis are already larger
than coarse observation scale of 8 km within the first forecast hour.

2.6 Discussion and Outlook

2.6.1 On the methods used in this study

The forecast results displayed the limited predictability of the dynamics in large convec-
tive systems. In previous twin-experiment studies on error growth (Zhang et al., 2003,
2007; Hohenegger and Schär, 2007; Done et al., 2012), uncorrelated noise with very small
amplitude was used, which does not disrupt the model dynamics as the LETKF ensemble
perturbations do. This study should therefore be seen in the tradition of predictability
studies that used perturbations created by data assimilation systems (Kuhl et al., 2007;
Aksoy et al., 2010; Craig et al., 2012).

One feature of the experiments of this paper is that the linear combinations of ensem-
ble members wa(i) are computed by the LETKF on different scales only in the transformed
ensemble perturbation space, but the final analysis increments are added in the physi-
cal space and therefore contain also the smallest scales, as they are sampled from the
full-resolution background ensemble members. This means that the analysis states of
the members are full scale for all experiments, regardless of the reduction of the physical
observation resolution in the SO-experiments or the posteriorily downscaled coarse grid
analysis in the CG-experiments. An alternative approach would be to spatially coarsen
not only the input-parameters of the transforming LETKF-solver but also the final phys-
ical solution of the algorithm, in order to update larger physical scales only and leave
the fine scales untouched. For example, Gao and Xue (2008) computed ensemble co-
variances from a background ensemble with 4 km horizontal resolution in an Ensemble
Square Root Filter to update an analysis state of a 1 km resolution model. To mimic this
for the present LETKF study, one could i) coarse-grain the background ensemble for the
LETKF, ii) compute the analysis weights on this coarse scale and iii) apply the analysis
update in physical space on the coarse scales only1. This might also reduce the imbalances
that are introduced by the filter, and take into account that the effective resolution of
numerical models is much lower than the grid-spacing implies (Skamarock, 2004). Damp-
ing the analysis noise by the means of more diffusion on the small scales could be an
instrument to keep the model state stable during a rapid update cycling. Incremental
Analysis Update (IAU) (Bloom et al., 1996) is often used to prevent insertion shocks
by distributing the increments of intermittent analyses throughout the forecast window.
Also, a digital filter initalization (DFI) (Lynch and Huang, 1992) could be helpful to

1This idea was discussed in personal communication with Chris Snyder.
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reduce the initial gravity wave noise of the ensemble forecasts (Whitaker et al., 2008),
although DFI might be problematic for a non-hydrostatic model as used here wherein the
analysis states contain gravity wave motion explicitly, so essential parts of the dynamic
signal could be filtered out erroneously.

As a general remark, the spatial and temporal predictability depends on the model
resolution, the model physics and the type of long-lived storm that is simulated. A
resolution of 2 km is not sufficient to simulate storm-internal variance on the scale of
single plumes. These become addressable with horizontal resolutions of 250 m and less
(Bryan and Morisson, 2012; Craig and Dörnbrack, 2008). Using such a model that is
able to resolve three-dimensional turbulence, an even finer assimilation scheme could be
applied to further investigate the limits of predictability. In addition, using a different
environmental sounding could result in different convective modes, such as mesocyclones,
multicell storms and linear squall lines, and the predictability limit will probably be
influenced by the degree of storm-internal organization (Lilly, 1990; Aksoy et al., 2010).
The quantitative time limit found in this study is specific to the atmospheric model
configuration and the data assimilation algorithm used here and should not be generalized.

2.6.2 Idealized vs. operational convective data assimilation

The present study adressed the limitation of intrinsic convective predictability, assuming
a perfect model. In the current convective DA systems (e.g. KENDA), model error may
well be the largest factor limiting the practical predictability in convective QPF. In real
world experiments, it may also happen that the radar DA tries to converge the analysis
members towards convective modes that are not supported by the model physics and the
predicted sounding (Stensrud and Gao, 2010; Aksoy et al., 2010). On the other hand, in
an operational model the predictability of convective system may be enhanced by effects
of synoptic and orographic forcing (Hohenegger and Schär, 2007; Craig et al., 2012).

2.6.3 Outlook

The results of this study showed that the impact of high resolution information in
convective-scale data assimilation is limited by the intrinsic predictability of the flow to
a time interval of a few hours at most, and probably also by the balance and noise prop-
erties of the initial states generated by the LETKF. These could potentially be mitigated
through a priori constraints (Janjić et al., 2014) or post-processing like DFI. The obser-
vation error covariance matrix (Desroziers et al., 2005) is also likely to affect convergence
and balance properties of the solution – choosing a larger observation error than actu-
ally added to the synthetic observations may result in less convergence but also in more
compatible model states, as preliminary experiments (not shown) indicated. Another
related issue is the initial ensemble generation for the filter. The random storms used
here lead to large analysis increments in the first couple of cycles, which is likely to have
detrimental effects on the dynamics (Lien et al., 2013; Kalnay and Yang, 2010). In the
present LETKF-framework with intermittent and instantaneous state updates consisting
of linear combinations of the member states, any noise that is not dissipated between
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subsequent analyses is always fed back into the system and can possibly amplify or res-
onate. Methods that accelerate the convergence of the filter, such as Running-In-Place,
could lead to more consistent states by the end of analysis period, if their increments
are smooth enough. However, it is not clear how successful these methods would be for
convective-scale data assimilation, where the notions of “balanced” or “consistent” states
cannot yet be precisely defined or measured.

A further issue is the difficulty of assimilating observations of precipitation due to their
non-Gaussian climatological distribution, making the suppression of spurious convection
insufficient because (a) the background distribution of convection is typically intermittent
and therefore non-Gaussian and (b) there is no “negative rain” to assimilate in unaltered
observations (Craig and Würsch, 2013). A Gaussian anamorphosis of precipitation ob-
servations could help here to fulfill the Gaussian assumptions of the EnKF (Simon and
Bertino, 2009; Bocquet et al., 2010; Lien et al., 2013), also on the convective scales.
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Chapter 3

Noise and spurious convection in
idealized radar DA

In Chapter 2 it was shown that a high-resolution assimilation scheme such as L8 can pro-
duce analyses that strongly resemble the observed storms (Figure 2.7). In the forecast
of L8, spurious convection arises (Figure 2.19) and taints the forecast skill (e.g. Fig-
ure 2.21). The experiment L32SOCG20 has less precise analyses (Figure 2.13), but also
less spurious convection (Figure 2.20).

The two main differences of the opposing experiments L8 and L32SOCG20 are the
spatial and temporal parameters of the assimilation. L8 assimilates observations with
a spatial resolution of ∆xobs = 2 km, localized with rLoc,h = 8 km, while L32SOCG20
has ∆xobs = 8 km, localized with rLoc,h = 32 km (see Table 2.1). For L8, this is done
with an interval of ∆tass = 5 min, and L32SOCG20 uses ∆tass = 20 min. The present
chapter is devoted to the question whether the temporal or the spatial parameters during
the assimilation cause a decline in forecast quality. Apart from the parameters that are
active at every intermittent assimilation, other parameters such as the starting time of
the background ensemble shall also be investigated.

In Sections 2.4.4 and 2.5.3 it was hypothesized that the development of spurious
convective cells might be related to gravity wave noise. For this reason, surface pressure
tendencies during the forecast were displayed in Figure 2.23. In radar data assimilation
experiments with real observations, Bick et al. (2016) found that the surface pressure
tendencies may not relax towards the level of a free model run during the cycling if
analysis updates are performed with a 5 minute interval. It is therefore necessary to look
at the properties of hydrostatic imbalance for the experiments of Chapter 2. For global
data assimilation, this quantity has been used to describe the balance of analysis states
with respect to the model dynamics (e.g. Greybush et al., 2011). Also for global models,
DA algorithms can be devised that update not the wind variable, but instead the balanced
stream function which then results in more balanced analyses (Kepert, 2009). Deep
convection, as opposed to synoptic scale dynamics, mainly consists of divergent motion
which does not follow simple constraints like geostrophic or thermal wind balance (Holton,
2004). It is therefore necessary for the present setup to find a measure that describes
whether the abundance of vertical motion in the background ensemble members resembles
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the truth of the nature run. For example, Gottwald (2014) proposes the mean and
variance of model variables associated to gravity waves as a predictor for the dynamical
imbalance of analyses and forecasts, when compared to a climatology or a free reference
run. The model variable that is mainly associated to gravity waves in the present model
is vertical velocity.

Organized and long-lived convection is coupled to the underlying cold pools (Houze,
1993). Therefore, it shall first be examined whether the dynamics of the spurious con-
vection of the ensemble forecasts are cold-pool driven or if their triggering is spatially
decoupled. If a decoupling is visible, it could be sensible to evaluate the properties of
vertical motion inside and outside of the storms to learn about the influence of the as-
similation on the dynamics of the model.

Chapter 2 showed that under certain circumstances the most rigorous assimilation
schemes do not necessarily deliver the best results in the following forecasts. In their
data assimilation experiments with varying spatio-temporal scales, Zeng and Janjić (2016)
suggested a connection between noise in the analyses and forecast quality. This question
is immanent to the present experiments, since the possible existence of a trade-off between
precision and noise would have strong consequences on the operational use of convective
DA.

Section 3.1 describes the cold pool coupling evaluation, leading to the vicinity-masking
described in Section 3.3. Section 3.2 describes the measures for the abundance of vertical
motion. The experiments for this Chapter are described in Section 3.4 and the results are
presented in Section 3.5. Section 3.6 discusses the implications on further experiments
with real observations which are presented in Chapter 5.

3.1 Cold Pool Coupling

In the spin-up of the nature run (Figures 2.2 and 2.1), some convective systems survive
the stage of small precursor-cumuli and grow into large systems after 11 UTC. The
development of new updraft cores is closely coupled to the gust front of their underlying
cold pool. The spatial propagation of the gust fronts and the rain-maxima is therefore
synchronous. The spurious convection in L8, as depicted in Figure 2.19, arises distant
to the gust front of the cold pools that underly those analysis storms that matched the
observations closely (Figure 2.7).

To quantify the coupled and the distant triggering, a spatio-temporal correlation
C(~x, t) is computed between cold pools and the emergence of new convective cells.
The field of cold pool edges is defined as the absolute value of the temperature gra-
dient |~∇T (~x, t0)| in the lowest model level at the starting time of the free forecast
(t0 = 17 UTC). The largest temperature gradient is located at the leading edges of
the cold pools in the north-eastern direction (Figure 3.1). The field describing new con-
vection is defined by the absolute column condensation rate dCond/dt(~x, t), which has
a dipole structure with positive values for new cells and negative values for decaying
and precipitating cells behind them. The field that describes the gust front (which trig-

gers new cells) is given by |~∇T [~x(t), t0]| (Figure 3.1) with a moving frame of reference
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Figure 3.1: Column Condensation Rate (dCond/dt) of nature run 01 at 17 UTC. Black
contour lines show the absolute value of the horizontal temperature gradient at the lowest
level (lines every 0.0025 K m−1). The storm systems move towards the north east of the
domain.

~x(t) = −~v(t) · ∆t. The moving frame of reference follows the typical storm motion
with ~v = (vx, vy) = (10, 8) ms−1 to the north east. It was deduced from a time-series
like in Figure 2.2. Every 5 minutes from 17 to 18 UTC, the spatial correlation be-
tween dCond/dt(~x, t) and |~∇T [~x(t), t0]| is computed, giving a non-isotropic pointwise
two-dimensional correlation field C(~x, t). The values of C(~x, t) are evaluated along the
direction that is oriented parallel to the storm motion in order to catch the signal of rising
and decaying convection before and behind the triggering cold pool edge.

The result is shown in Figure 3.2. The nature run exhibits a clear streak of positive
correlation which, due to the moving frame of reference, is almost stationary through
time. This isolated streak of positive correlation is considered as the main reference
feature of the coldpool coupling, and deviations from it are considered to be uncoupled
features. In the direction behind the storm propagation (in the plot: to the left), a
negative correlation is visible which means that the rate of precipitation and evaporation
is largest behind the coldpool edges. Ahead of the propagating gust front (in the plot:
to the right), some weak secondary triggering maxima are visible. For L8, a signal of
triggering spurious cells can be seen by a broad pattern of positive correlation ahead of
the original gust fronts, e.g. at the coordinates of (0-50 km, 5-20 min) in Figure 3.2b.
Since this positive signal of spurious convection arises on a phase line in the plot that is
faster than the cold pool propagation speed of 12 ms−1 (vertical lines), it is regarded as
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decoupled from the coldpool edges. The experiment L32SOCG20 exhibits less spurious
signal, supporting the previous evaluations.

The moving frame of reference was chosen by a manual evaluation of time-series plots
of the nature run. This could be regarded as a limitation on the interpretation of the
cold pool coupling results, because the cold pools of the L-experiments might move with
a different speed than the ones in the nature run, e.g. due to a cold bias that causes a
faster density current. A possible indication of this is visible in the different tilting of
the main correlation streak in L8 and L32SOCG20. Still, it would not describe the broad
pattern of decoupled convection in the frontal vicinity which can be regarded as a solid
evidence to the decoupled emergence of spurious convection.
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Figure 3.2: Coldpool coupling C(~x, t) between dCond/dt(~x, t) and |~∇T (~x, t0)| for nature
run, L8 and L32SOCG20. The x-axis describes the correlation distance between the
grid points, the y-axis describes the time. For the ensemble forecast, the correlation
is computed separately for every member field. Due to the moving frame of reference,
vertical lines are associated to a phase speed of roughly 12 m/s (see text).
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3.2 Measures for abundance and variability of verti-

cal motion

In Sections 2.4.4 and 2.5.3 it was hypothesized that the development of spurious convec-
tive cells might be related to gravity wave noise, and surface pressure tendencies during
the forecast were displayed in Figure 2.23. Figure 3.3 shows horizontal and vertical slices
of the vertical velocity W . In the left part of the vertical slices, a convective system
is depicted and it is apparent that the LETKF-generated analyses are able to capture
position and intensity of the true convective activity. Yet in clear air, only L32SOCG20
resembles the nature run with respect to the amount and intensity of dry vertical motion.
In L8 the clear air regions appear very noisy. In all cases, the vertical motion directly
above the surface does not appear to reflect the dynamical intensity of the overlying
layers, which means that the surface pressure tendencies might give only limited insight
on how balanced the members are. Therefore it is advisable to look at the amount of
absolute vertical motion Wabs on a pressure level p which is a standard diagnostic output
of COSMO given by

Wabs = |W (p)|. (3.1)

Due to its definition, large-scale subsidence or rising motion contribute toWabs. There-
fore, the mean W and variance var(W ) of the vertical velocity W is split here additionally
as

W =
1

n

n∑
i

Wi , i ∈M (3.2)

and

var(W ) =
1

n

n∑
i

(Wi −W )2 , i ∈M (3.3)

where M denotes the set of all model grid points or a specific subset of n points. When
an ensemble experiment is referred to, the expression var(W ) shall describe the same
quantity, but averaged over the members [1, . . . , k], given by

var(W ) =
1

k

k∑
l

[
1

n

n∑
i

(Wi −W )2

]
, i ∈M , l ∈ [1, . . . , k] (3.4)

When comparing nature run and ensemble members of an experiment, the definitions
of (3.3) and (3.4) shall be used equivalently. Note that in the absence of large scale
vertical motion, the values of (3.1) and (3.3) describe essentially the same phenomenon:
the amount of vertical motion that deviates from the (zero) mean state. In case of (3.3),
extreme values are given a higher weight due to the quadratic norm that uses the square
of the differences from the mean.

The variance of W along the ensemble axis can be regarded to see how similar the
ensemble members are among each other. This shall be done by the means of
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Figure 3.3: Vertical velocity W of Nature Run (top, random repetition 3 of 5) and the
corresponding analysis member 1 of experiments L8 (middle) and L32SOCG20 (bottom)
at the last analysis time of 17 UTC. Left are horizontal slices through the domain, the
black line demarks the plane on which the vertical slices (right) are displayed.
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varens(W ) =
1

n

n∑
i

[
1

k

k∑
l

(Wl −
1

k

k∑
l

Wl)
2

]
, i ∈M , l ∈ [1, . . . , k] (3.5)

which is the square of the spread quantity defined by (2.5).

3.3 Masking of vicinities

The coldpool coupling results of Section 3.1 and the impression of Figure 3.3 motivate
to look at the error and statistical properties of the model fields with a distinction of the
spaces into three categories: (i) At grid points within in the storms, (ii) in their vicinity,
and (iii) in the outer environment between storms. The vicinity is defined in a geometrical
sense with horizontal distance. In Figure 3.4, the masking algorithm is exemplified:

The inner grid points are simply given by the three-dimensional set of points in
the nature run where the volume reflectivity exceeds 5 dBZ. For the vicinity mask, the
two-dimensional vertical maximum of the nature run’s reflectivity field is taken as the
source field, thresholded to 5 dBZ, and the mask is dilated horizontally with a circle of
a predefined diameter. From Figure 3.2, a radius of 16 km appears reasonable, since
a relatively wide region distant to the storm cores is already covered by the spreaded
anvils. This means that rain-free regions up to roughly 50 km in front of the cold pool
edges (cf. Figure 3.2) are covered by the vicinity mask which does not contain the grid-
points inside of the storms. All points that are not in of the dilated vicinity-mask are
categorized as outer environment and the mask is applied on all vertical levels to form a
three-dimensional volume mask. Figure 3.5 shows how many points the different masks
comprise. To gain a full impression, the reader is advised to look again at Figures 2.1
and 2.2 to see how number, size and structure of the storm systems influence the masks
over the forecast time. For example, at 10 and 11 UTC the vicinity masks covers almost
the full domain, since the small precursor storms are numerous and evenly placed with
only small distances between them.

Note that the masks are defined by the nature runs and then applied to the nature
runs themselves and at the same time to the members of forecast and analysis ensembles.
Since the displacement errors of the analysis storms are relatively small (Figure 2.3), the
inner masking points of the truth also contain storms in the ensemble members, at least
during the cycling. Still, the point-set of the nature run’s “dry” outer storm environment
may also contain “wet” spurious convective cells when applied to the ensemble members,
which is especially the case in the forecast. The growth of spurious convection in the
forecast ensemble members within the outer region is expected to be distinguishable from
slow displacement of storms that had been correctly positioned in the last analysis, since
spurious growth is observed to be very quick (Figure 3.2), while the displacement of good
storms is rather slow (Figure 2.20).
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Figure 3.4: Vicinity masking for one state of a nature run. The reflectivity (a) is the
source field, the white line in (a) marks the vertical slice that is depicted for the inner
mask (b) of grid points with Refl > 5 dBZ and the vicinity mask (d) with a horizontal
dilation of 16 km. The remaining grid points in (c) form the outer mask. White color in
the mask-plots demarks valid grid points.
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Figure 3.5: Time series of number of points in the masks (Figure 3.4) with respect to the
nature runs.

3.4 Experiments on spatial and temporal scales of

the analysis

L8 and L32SOCG20 (Table 2.1) are now regarded as reference experiments. The ex-
periment L32SOCG (also Table 2.1) has ∆tass = 5 min and is otherwise equivalent to
L32SOCG20. An additional sensitivity experiment L820 is introduced with ∆tass =
20 min which is otherwise equivalent to L8. The sensitivity of the assimilation system to
multiples of the temporal parameter ∆tass = 5 min can now be investigated by the pairs
of (L8, L820) and (L32SOCG, L32SOCG20). The sensitivity to multiples of the spatial
parameter combination 4∆xobs = 4∆xass = rLoc,h can be investigated by the pairs of
(L8, L32SOCG) and (L820, L32SOCG20). An additional sensitivity experiment L8T10
is performed that is started at 10 UTC and is otherwise identical to L8, which will be
discussed in Section 3.5.4.

3.5 Results

3.5.1 Non-hydrostatic properties

Figure 3.6 shows the surface pressure tendencies (cf. Figure 2.23) throughout the whole
experimental time. The two groups of sensitivity experiments can be distinguished by two
features: (i) (L820, L32SOCG20) relax towards relatively low levels of noise by the end
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Figure 3.6: Top: Surface pressure tendencies of one random realization of nature run
and experiments (L8T10, L8, L820, L32SOCG, L32SOCG20) (cf. Figure 2.23), during
cycling (10 or 14 to 17 UTC) and 3 hour forecasts (17 to 20 UTC). Bottom: Detail of
top picture.
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of their forecast intervals when compared to (L8, L32SOCG). (ii) (L8, L820) experience
stronger initial noise after starting from the intermittent analyses than (L32SOCG, L32SOCG20).
These two features mean that, during the cycling, analyses of (L32SOCG, L32SOCG20)
are more balanced due to their coarser spatial parameters and forecasts of (L820, L32SOCG20)
are more balanced due to their longer time interval wherein noise is being damped by the
model dynamics.

3.5.2 Abundance of vertical motion

A time-series of the unmasked Wabs from (3.1) is depicted in Figure 3.7 for different
pressure levels. It is apparent that the members of (L8, L32SOCG) overestimate the
amount of vertical motion by the end of the cycling period and throughout the forecast.
Due to the absence of masking this can either hint at storms that are too strong or too
large in number and therefore spurious. The members of (L820, L32SOCG20) mostly
underestimate Wabs by the end of the cycling, but converge to the nature run after 3
hours, meaning that their amount of vertical motion is correct then.

Using var(W ) from (3.3) and (3.4) as a measure of the abundance of vertical motion in
the ensemble members and the nature run, results for the inner, outer and vicinity spaces
are shown in Figure 3.8. The large difference between nature run and the free reference
ensemble without data assimilation is caused by the application of the nature’s mask to
the free ensemble members in which the positions of the convective cells are completely
uncorrelated to the nature run. In the clear air outer regions (left panel), the ∆tass-
grouping of experiments with DA (that was indicated by Figure 3.7) is visible again: The
experiments with ∆tass = 20 min converge to the same abundance of vertical motion by
the end of the cycling. In their forecast, var(W ) starts to increase only after 40 minutes
which is caused by storm cores in the members that displace themselves into clear air
regions with respect to the nature run. The experiments with ∆tass = 5 min grow to a
larger abundance of vertical motion in the observed outer space during the cycling, and a
strong overgrowth is visible in the forecast, which is a sign of spurious convection. While
the cycling interval of L8 and L32SOCG is the same, the latter exhibits slightly smaller
values of var(W ) in the outer space and slightly larger values in the vicinity, which can
only be attributed to the coarser spatial parameters of the experiments. In the vicinity
region (middle panel), a grouping with respect to abundance of var(W ) is not discernible
during the cycling period. In all experiments, the DA-increments are acting as suppressors
of spurious vertical motion. Since with ∆tass = 20 min there is more convective growth
during the forecast intervals, the suppressing increments of (L820, L32SOCG20) are also
larger. In the forecast of the vicinity mask, the ∆t-grouping is visible again by the feature
of a strong spurious convective overgrowth in (L8, L32SOCG) as indicated in the cold
pool decoupling (Figure 3.2). In the inner regions (right panel), no clear grouping is
visible both during the cycling and the forecast window.
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Figure 3.7: Wabs for nature run, and experiment (L8T10, L8, L32SOCG, L820,
L32SOCG20) for one random realization, during cycling (10 or 14 to 17 UTC) and 3
hour forecasts (17 to 20 UTC), for pressure levels of 300 hPa (top), 500 hPa (middle),
850 hPa (bottom).
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Figure 3.8: Variance of W (averaged over all ensemble members) for (L8, L32SOCG,
L820, L32SOCG20) during cycling and forecast, for outer (left), vicinity (middle) and
inner space (right) with respect to the reflectivity of true storms in the nature run (five
random repetitions). Note that for some lines the first assimilation and cycling step is
missing due to lost data – their starting point is always at 14 UTC at the value of the
free ensemble. The free ensemble is depicted as a grey line, the nature run is the black
line.

3.5.3 Ensemble Spread

As depicted in Figure 3.9, varens(W ) behaves in the same way as var(W ) (Figure 3.8) for
the spaces outside of the storms and in their vicinity (left and middle panel) during the
cycling and forecast windows. During the cycling window and inside the storms (right
panel of Figure 3.8), varens(W ) of (L8, L820) is forced onto small levels at every analysis
due to the smaller spatial parameter of their LETKF-scheme. L32SOCG20 has the largest
analysis and background ensemble variances, while L32SOCG exhibits an intermediate
behavior with an analysis ensemble variance smaller than L32SOCG20 and background
ensemble variances that do not grow as large as in L32SOCG20 within the shorter cycling
interval of ∆tass = 5 min. In the first 40 minutes of the forecast window in the storm-
inner space, varens(W ) of (L8, L32SOCG) strongly outgrows the general level that was
reached by their background ensembles every 5 minutes during the cycling. This means
that all information on small-scale structure that was forced onto the L8-members (with
a benefit in skill, cf. 2.10) during the cycling is very quickly lost in the forecast. This
feature of variance-overgrowth is less apparent for L820 and even less so for L32SOCG20.

3.5.4 Recycling of initial noise

As Figures 2.9 and 2.10 have shown, the very first intermittent analysis step produces the
most dominant increments with respect to the model states of the ensemble members.
This happens because the storms in the members have fully developed by that time (cf.
Figure 2.2) and are randomly positioned, thus the ensemble spread is already very large.
A large ensemble spread in the background error covariance matrix of equation (2.1) gives
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Figure 3.9: Mean pointwise ensemble variance of W for (L8, L32SOCG, L820,
L32SOCG20) during cycling and forecast, for outer (left), vicinity (middle) and inner
space (right) with respect to the reflectivity of true storms in the nature run. The free
ensemble is depicted as a grey line.
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Figure 3.10: Spread of the composite reflectivity field of 50 free ensemble members (one
random repetition) after 2,4,6 and 8 hours of spin-up, starting time was 6 UTC (cf.
Figure 2.2, 14 UTC equals 8 h spin-up).
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Figure 3.11: Power Spectrum of the spread fields of composite reflectivity for all five
repetitions, exemplified in Figure 3.10.

the observations, whose error covariance matrix is fixed here, a large weight.

Figures 3.10 and 3.11 show the temporal evolution of the ensemble spread and its
spectral decomposition (cf. Section 4.7) during the spin-up. It is apparent that at early
times such as 10 UTC (4 h spin-up) the spread is small in scale and amplitude and
relatively homogeneous, as the distribution of small showers in Figure 2.2 had already
indicated. The large number of points in the storm-vicinity at 10 UTC (Figure 3.5)
illustrates that an experiment that starts early will produce localized increments of the
observed small showers that influence much more adjacent grid points than at 14 UTC.

At the later times of 12 and 14 UTC, the spread structure is dominated by the signal
of large-scale storms. These have a smoother shape than before and thus more energy
in the large scales and less energy in the small scales (Figure 2.2). Since the storms are
always randomly positioned and the ensemble size is very limited, the spread distribution
is not as homogeneous as before (e.g. at 10 UTC) and gaps exist in the spread field
where the members randomly agree on the state of “no storm forecast”. Due to the
random initialization (cf. Section 2.2.1), there is no rule that a certain location should
be storm-free in all members at a certain point in time – which will be problematic if a
storm is observed exactly on that particular location in the nature run. Therefore, the
ensemble does not cover all possible states, so the background error covariance matrix is
rank deficient, even when localized to a single grid point.

The experiment L8T10 investigates the influence of an earlier start of L8 at 10 UTC.
Figure 3.12 shows that the first increment of L8T10 is much smaller than for L8 and the
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Figure 3.12: RMSE (solid) and spread (dashed) of the ensemble mean of L8 and L8T10
through the assimilation (10 or 14-17 UTC) and forecast (17-20 UTC) phases of the
experiment, with gray shading indicating the forecast phase. The gray lines show the
RMSE and spread of the free control ensemble without any assimilation. All grid points
are evaluated. The error values are shown for one random repetition of the experiment.
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Figure 3.13: Variance of W (averaged over all ensemble members) for one random repe-
tition of L8T10 and L8 during cycling and forecast, for the vicinity region with respect
to the reflectivity of true storms in the nature run. The free ensemble is depicted as a
grey line, the nature run is the black line.
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RMSE of all variables is kept smaller throughout the cycling period, and in the forecast.
Figures 3.7 and 3.13 show that the noise properties of L8T10 are favorable to L8, and
spurious convection does not grow as explosively. The result can be interpreted such that
the noise of the very first increment in L8T10 is small enough to be damped away by the
model dynamics and is therefore not fed back as strongly as in L8 during the cycling.

3.6 Summary and discussion

Motivated by Chapter 2, additional experiments have been performed that vary the
assimilation interval but keep the spatial properties constant, and vice versa. Two mech-
anism have been identified that cause noise in the analyses and spurious convection in
the forecast. On the one hand, small-scale localization of 8 km combined with grid-scale
observations of 2 km resolution cause strong analysis increments that are less hydrostat-
ically balanced compared to the choice of larger spatial parameters. Together with this,
an over-abundance of vertical motion is seen in the noisy members, which then grows
into spurious convection. This spurious convection is both dislocated with respect to
the truth and decoupled from the triggering cold pool mechanisms. On the other hand,
an assimilation interval of 5 minutes appears to cause a feedback-growth of noise in the
analysis steps, while with an interval of 20 minutes this noise is damped before the next
analysis update, leading to less spurious abundance of vertical motion.

Different measures were used to quantify the abundance of vertical motion. Surface
pressure tendencies mainly gave an indication on gross imbalances that were introduced
by the intermittent analysis updates and how quickly they were dissipated. The amount
of absolute vertical motion provided a first overall impression whether there was too
much or too little convection during the cycling and during the forecasts. The cold pool
coupling method motivated to look at the mean and variance of vertical velocity within
and outside of the observed storms. By this method, spurious overgrowth could be
identified in the vicinity and distance of the true storms, while all ensemble experiments
showed a comparably good match to the nature run inside the well-observed inner parts
of the storms.

A sensitivity experiment L8T10 was started at a four hours earlier time of the spin-up
where scales and amplitude of the background ensemble spread were smaller and had a
more homogeneous structure. As a consequence, the previously unfavorable parameter
choices of the noisy L8-experiment did not exhibit the same behavior of noise-recycling,
since their initial analysis increments were smaller and caused less noise in the initial up-
date step. The forecasts from this experiment were very precise and exhibited no serious
spurious convection, just as L32SOCG20. Still, L8T10 must be regarded as an extreme
choice of parameters, since such a homogeneous distribution of clouds in the initial en-
semble is usually never observed in the reality of mid-latitude convective systems, since
they are not triggered in the same way as the very idealized ensemble that is used here.
An expected behavior would rather be the observation of a growing thunderstorm that
is only contained in few or no background ensemble members. This scenario resembles
the conditions of the presented experiments which started at 14 UTC after 8 hours of
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spin-up, so the conclusions drawn from experiments which start at that time are still
valid for further applications.

With the present DA-setup, the combinations of the experiment L32SOCG20 exhibit
a low noise level and do not overly force the analysis ensemble members into accordance
with respect to the inner-storm structure. Following the suggestions of Zeng and Janjić
(2016), this is a sign that the parameter combination of the latter experiment is well-
chosen for forecasts of three hours and should be used as a first orientation for setups
with real observations.
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Chapter 4

Assimilation of Mode-S EHS
Aircraft Observations in
COSMO-KENDA

4.1 Introduction

For more than two decades, operational Numerical Weather Prediction (NWP) has ben-
efited from aircraft observations. Typically transmitted by the Aircraft Meteorological
Data Relay (AMDAR, WMO, 2003), the aircraft observations provide the Data Assimi-
lation (DA) systems with in-situ measurements of the important dynamical variables of
temperature and wind (Daley, 1991). AMDAR data contain vertical profiles near airports
and upper-air observations at flight level with cruising altitudes around 10 km above sea
level (ASL), corresponding to a layer between 200 and 300 hPa.

A new aircraft data source has been introduced in de Haan (2011). It uses airport
radars in the surveillance Mode-S to collect traffic control reports of commercial aircrafts
from which observations of wind and temperature can be derived. de Haan (2011) has
described this data set of Mode-S EnHanced Surveillance (Mode-S EHS)1 and has found
a quality comparable to AMDAR by comparing collocated measurements from the same
aircrafts. de Haan and Stoffelen (2012) have assimilated Mode-S EHS observations from
Schiphol Airport into the High Resolution Local Area Model (HIRLAM) using the 3dVar
algorithm. In the study, HIRLAM is run with a resolution of 10 km and Mode-S obser-
vations are assimilated in 3-hourly and 1-hourly intervals. The assimilation of Mode-S
data has shown a reduction in wind forecast errors by approximately 5 percent (de Haan
and Stoffelen, 2012). Strajnar et al. (2015) also found benefits when assimilating Mode-S
observations from a different data source in a local model over Slovenia.

The present study aims to assimilate the Mode-S EHS data with the Kilometer-scale
ENsemble Data Assimilation (KENDA) system (Schraff et al., 2016) which is being devel-
oped at Deutscher Wetterdienst (DWD). KENDA couples a Local Ensemble Transform
Kalman Filter (LETKF, as in Bishop et al., 2001; Hunt et al., 2007) with a 40 member

1https://www.eurocontrol.int/articles/mode-s-operational-overview
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ensemble of the Consortium for Small-scale Modeling (COSMO) (Baldauf et al., 2011)
model in the domain over Germany (COSMO-DE). COSMO-DE is a non-hydrostatic,
convection permitting model that runs operationally with a horizontal resolution of 2.8
km and 50 vertical levels. COSMO-KENDA provides a framework for convective-scale
ensemble data assimilation of different observation types and aims to replace the pre-
viously used nudging scheme for observed model variables and the latent heat nudging
scheme (Stephan et al., 2008).

The present study aims at using the additional aircraft Mode-S EHS data to im-
prove in particular the estimates of temperature and wind, in order to provide better
background forecasts for the assimilation of radar data. Past studies have assimilated
observations from Doppler radars with an Ensemble Kalman Filter (EnKF) in order to
forecast convective systems (for example Stensrud et al., 2009). Aksoy et al. (2010) and
Stensrud and Gao (2010) stress the important dependence of convective forecasts on
correct environmental profiles of wind and temperature which are usually provided by
radiosondes and aircraft observations. In the present study, NWP experiments with and
without Mode-S EHS are performed, i.e. by supplementing the previously used AMDAR
data or by replacing it. For verification purposes, radiosondes are not assimilated and
used as fully independent observations.

Since the large amount of additional aircraft observations is expected to reduce the
ensemble spread, it is tested how robust the alleviating mechanisms of background co-
variance inflation (Zhang et al., 2004; Li et al., 2009) and adaptive covariance localization
(Perianez et al., 2014) are. Further, estimates of the observation error are made following
Desroziers et al. (2005). Thinning experiments are performed that gradually increase the
amount of Mode-S EHS data to see whether the assimilation system reaches a point of
saturation where no more additional benefit is taken from the observations. Forecasts
with lead times up to three hours are computed to see how the error reduction of the
Mode-S EHS data persists.

Since any error reduction is related to a change of the model state, a quantification
of those model state modifications is of interest in this study, particularly with respect
to the assimilated data amount. Using OSSEs of a regional EnKF system that assimi-
late datasets comparable to the present study, Zhang et al. (2006) and Meng and Zhang
(2007) have investigated how the difference total energy grows for selected variables with
and without data assimilation. They found that for vertical velocity and cloud variables,
the growth of difference energy is mainly in the small scales, while for wind and temper-
ature, the growth in difference is dominated by the larger scales. This was done using a
localization radius of 900 km. In the present study, adaptive localization length scales of
order 100 km are applied. The true state is not known, so a control experiment without
data assimilation will be used as the reference state. It will be evaluated which scales of
the horizontal kinetic energy are affected by the data assimilation experiments and how
quickly the different scales will relax towards the control experiment during the three
hour forecasts.

Section 4.2 describes the conventional observations in COSMO-KENDA and the prop-
erties of the Mode-S EHS aircraft observations. Section 4.3 briefly introduces the forecast
model COSMO-DE, describes how the LETKF and the adaptive algorithms of the DA
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Figure 4.1: Domain extent of COSMO-DE with conventional observations. The circles
indicate positions of the surface based stations. The areas of the circles correspond to
the average daily number of single observations of the wind variable per station. The
average number of observations per day are: 11851 PROF, 5813 SYNOP, 1571 TEMP.

system are set up and how the observation errors are estimated. Section 4.4 describes the
experimental period and the different configurations for the assimilation experiments. In
Section 4.5, the DA results during the continuous cycling with an interval of one hour and
of three hour forecasts are evaluated. Section 4.6 discusses the observation error estimates
and how the adaptive KENDA settings act when the Mode-S EHS data density is varied.
Section 4.7 discusses the impact of Mode-S EHS data on the kinetic energy spectrum
of the forecasts. Section 4.8 summarizes the results and discusses their implications on
forecasts with COSMO-KENDA.

4.2 Observations

The conventional observations which are currently assimilated in the COSMO-KENDA
system consist of surface pressure and 10-m wind observations from surface stations
(SYNOP), upper air observations of wind, temperature and humidity from radiosondes
(TEMP) and aircrafts, and wind profiler data (PROF). Fig. 4.1 illustrates the amount and
spatial distribution of the conventional data set that is used in the experimental period
from 7th till 12th of May 2014. Most of the 30 radiosondes provide vertical soundings
of wind, temperature and relative humidity only at 0 and 12 UTC, some also at 6 and
18 UTC. The six wind profilers continuously sample with intervals between 5 and 30
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Figure 4.2: Panels a) and b) show the horizontal density of assimilated aircraft observa-
tions of AMDAR and the full Mode-S EHS set per average day. The color scale in b) is
enhanced by a factor of 10 with respect to a). Panels c) and d) show the vertical density
against longitude. Differences in the low level distributions are due to highly frequented
airports and are overly exaggerated by the color scales of c) and d). Panels e) and f)
show the overall vertical density.
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minutes. Hourly assimilated surface data from SYNOP stations are located only in such
in land areas with a surface height below 100 m ASL and on the sea surface, due to a
rigorous quality control (Schraff et al., 2016). The amount of aircraft measurements of
wind and temperature collected in the AMDAR format are illustrated in Fig. 4.2. While
the bulk number of single observations in AMDAR is similar to the profiler category, the
horizontal distribution is broader.

de Haan (2011) has first presented Mode-S EHS aircraft data as a meteorological
observation source. In contrast to the actively submitted AMDAR reports from specially
equipped planes, flight control messages of Mode-S EHS are collected by airport radars
from all commercial aircrafts within a radius of 270 km every 4-20 s (depending on
the purpose of the scanning radars) in the region of Mode-S EHS over Europe and are
distributed in a postprocessed quality by the Royal Netherlands Meteorological Institute
(KNMI)2. Therefore, this experimental data set is limited to the range of the collecting
airport radars (Fig. 4.2b). The horizontal extent in the COSMO-DE domain is therefore
slightly smaller than for AMDAR, but the number of observations is roughly 15 times
larger (Fig. 4.2ef). The single Mode-S EHS report messages contain information on
latitude/longitude, flight level, ground speed, airspeed, track angle, heading angle and
Mach number. As with AMDAR, the horizontal wind observations are derived from the
vectors of airspeed with heading angle and ground speed with track angle. The reported
Mach number has been computed by the board computer of the aircraft from the in-situ
temperature and airspeed. Reverting this calculation using the ideal gas law, the observed
temperature is regained and bias-corrected (see de Haan, 2011; de Haan and Stoffelen,
2012, for details), whereas AMDAR reports contain the direct temperature measurement
from the airplane thermometer. Relative humidity is not contained in the Mode-S EHS
reports. The number of AMDAR reports which contain relative humidity are negliglibe
in the current setup.

de Haan (2011) further describes the post-processing that is applied to the Mode-S
EHS data, e.g. exclusion of observations with a large roll angle, magnetic heading offset
corrections and bias corrections for different aircraft types. In collocated comparisons
with AMDAR-data of the same airplane de Haan (2011) finds observation error standard
deviations of comparable magnitude for wind and a slightly larger magnitude for the
temperature in case of Mode-S EHS.

Along the flight-tracks of single planes, the raw Mode-S EHS observations have been
averaged in order to meet the criteria of AMDAR (WMO, 2003; de Haan and Stoffelen,
2012): During the ascending flight phase, the first nine observations are vertically 10 hPa
apart and after that they are 50 hPa apart. On the flight level, consecutive observations
are 60 s apart, resulting in a distance of approximately 15 km for a typical flight speed
of 250 m s−1. In the descending flight phase, observations with p < 900 hPa are 50 hPa
apart, for p > 900 hPa they are 10 hPa apart. The resulting horizontal distribution of
Mode-S EHS within the observed region (Fig. 4.2b) is more homogenous than AMDAR
(Fig. 4.2a), while the latter also contains profiles from airports outside of the Mode-S
EHS coverage (Fig. 4.2cd). In both AMDAR and Mode-S EHS, the cruising flight level

2http://mode-s.knmi.nl
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between 200 hPa and 300 hPa is relatively well-observed. In middle levels, patterns of
ascending and descending aircrafts become visible which converge towards the locations
of the airports, leaving horizontal data gaps in the low levels between 700 and 1000 hPa
(Fig. 4.2). The ratio of flight level data compared to data at p > 300 hPa is larger for
Mode-S EHS than for AMDAR (Fig. 4.2ef). This is because Mode-S EHS also observes
a lot of aircrafts which are passing over the COSMO-DE model domain in flight level
without ascent or descent. The number of available observations at different times of day
depends on the flight activity which is highest during the daytime between 6 UTC and
21 UTC and lowest at night (de Haan and Stoffelen, 2012).

4.3 Data Assimilation with COSMO-KENDA

COSMO-DE (Baldauf et al., 2011) is a non-hydrostatic model, which is run operationally
at DWD with a model domain of 461 by 421 grid points horizontally, covering Germany
and parts of neighbouring countries (Fig. 4.1). It has a 2.8 km horizontal grid resolution
and 50 vertical layers. The data assimilation framework of KENDA has been developed
at the DWD for operational use (Schraff et al., 2016). It is an ensemble based data assim-
ilation system that uses the LETKF algorithm (Hunt et al., 2007). This section describes
the settings of the KENDA system for the assimilation experiments with COSMO-DE of
this study.

4.3.1 Local Ensemble Transform Kalman Filter

COSMO-KENDA uses a 40 member ensemble to sample the background error covariance,
whose each member i with state xbi consists of the prognostic variables of wind, vertical
velocity, temperature, pressure perturbation, specific humidity, and cloud water and ice.
The prognostic variables of turbulent kinetic energy, rain, snow and graupel are excluded
from the analysis update (Schraff et al., 2016). In this study, an analysis ensemble xai is
computed every full hour using the observations yo from -1 h to 0 h of the analysis time.
Observations closer than 0.67 degree to the lateral boundaries are excluded so that the
analysis update is only performed in the inner domain. All observations above 100 hPa
are excluded and no analysis update is performed above 100 hPa in order to keep the state
close to the model top (20 km, approximately 40 hPa) unchanged between background
and analysis.

The LETKF calculations are done on a coarse analysis grid and the analysis weights
are interpolated onto the model grid before the ensemble forecasts are started (see Yang
et al., 2009, for details). The coarse analysis grid is horizontally reduced by a factor
of 3 with respect to the COSMO-DE model, resulting in a spacing of roughly 8 km
(COSMO-DE: 2.8 km), and it has 30 vertical levels (COSMO-DE: 50 levels).

The boundary conditions (BCs) are provided by an LETKF-ensemble of the ICON
(Icosahedral non-hydrostatic) general circulation model (Zängl et al., 2014). This global
LETKF system uses a 3 hourly cycle in which observations from surface stations, ra-
diosondes, aircrafts, and satellites are assimilated (Fernandez et al., 2015; Schraff et al.,
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2016), using a localization radius of 1000 km. The ICON forecasts between the analyses
of 0, 3, 6, ... UTC are saved every hour and provide the BCs for the COSMO-DE-
ensemble. Since the BCs of 0, 3, 6, ... UTC are represented by global analyses, they
contain information also from observations inside the COSMO-DE domain. Due to the
lack of longer global forecasts, the local ensemble forecasts of this study have been limited
to the 3 hours of leadtime between the global analyses to study only the internal error
evolution within COSMO-DE.

4.3.2 Observation error statistics

The computation of analyses in the LETKF depends on a proper specification of the
observation error statistics. Following Desroziers et al. (2005) and Li et al. (2009), the
observation error covariance R can be estimated from the differences between observations
and background in the observation space do−b = yo − H(xb) and between observations
and analysis in observation space do−a = yo−H(xa) by using Rest = E[do−ado−b

T ], where
E denotes the expectation operator, H is the observation operator, and xa, xb are the en-
semble means of analysis and background, respectively. Before the estimation, the means
of do−b and do−a are subtracted to make the estimation unbiased. In COSMO-KENDA,
only the diagonal of the estimated Rest is used for the observation error covariance ma-
trix. The cross covariances between different observations are neglected. The variance is
estimated offline after the analysis cycling, using the bulk do−b and do−a of the five day
period. The observation error standard deviation of the wind observations U and V is
estimated from the windspeed

√
U2 + V 2. Rest(p) is evaluated for 100 hPa tall bins of

pressure height p. For SYNOP, PROF, and AMDAR, the estimates of the observational
error statistics have been made in a previous study by Schraff et al. (2016) using the same
approach and are denoted as R0.

The estimates obtained for Mode-S EHS should indicate the quality of the data set
compared to AMDAR. It will be tested if the estimated observation error standard devia-
tions

√
Rest are the same or similar to the previously estimated values

√
R0 for AMDAR.

Note however that this technique is based on the innovation statistics of the DA system
and can not replace the external comparison already done in de Haan (2011) for the
estimation of the measurement error for Mode-S EHS and AMDAR.

4.3.3 Methods of accounting for model and sampling error

The background error covariance derived from the ensemble does not adequately represent
the uncertainty of the background field due to sampling and model error. In KENDA, the
methods of background covariance inflation, adaptive covariance localization, relaxation-
to-prior-perturbation (RTPP) and random surface perturbations are implemented. These
methods are briefly introduced here and their effects are presented in Section 4.6.

The RTPP scheme of Zhang et al. (2004) relaxes the analysis ensemble perturbations
of the LETKF towards the background ensemble perturbations at every grid point of the
model. In KENDA, the relaxation is performed with a factor of αr = 0.75, thus limiting
the maximum influence of the analysis to 25% of the maximum change. This helps to
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keep the analysis ensemble spread alive by acting as an inflation with both multiplicative
and additive aspects, albeit in the space spanned by the ensemble only (Zhang et al.,
2004; Whitaker and Hamill, 2012). Harnisch and Keil (2015) showed its beneficial effects
on ensemble forecasts with the COSMO-KENDA system.

Following Li et al. (2009), an adaptive multiplicative covariance inflation with factor ρ
is applied separately for every coarse analysis grid point (Schraff et al., 2016) and relaxed
in time by mixing the current ρ estimate with the estimate of the previous cycle. ρ is
larger than 1 where the background ensemble spread in observation space Tr(HPbH)
is small in proportion to how much the magnitude of do−b deviates from the specified
observation error R, expressed by the difference [do−b

Tdo−b − Tr(R)].

In the present KENDA setup based on Schraff et al. (2016), the horizontal localization
is adaptive to the number of observations in the vicinity of an analysis grid point (Perianez
et al., 2014) so that the spatial influence is distributed to the appropriate scales (Janjić
et al., 2011, 2012). The horizontal localization length scale lloc is defined here as the
radius where the Gaussian-like covariance function (Eq. 5.1 from Gaspari and Cohn,
1999) goes down to exp(−0.5). With lower and upper bounds of 50 and 100 km, lloc is
adaptively determined to contain 100 observations which is 2.5 times the ensemble size
of 40. The vertical localization length scale is fixed and ranges from 0.075 ln(p) at the
surface to 0.5 ln(p) at the model top.

As described by Schraff et al. (2016), the sea surface temperature (SST) and the soil
moisture are randomly perturbed in every analysis by adding temporally and spatially
correlated perturbation fields in order to enhance the spread near the model surface and
in the boundary layer.

4.4 Experiments with varying aircraft datasets

The experiments of this study were performed from 7th till 12th of May 2014. The
meteorological situation was a west-wind period with passing cyclones. A warm front
passage on 8th of May caused stratiform precipitation and a cold front passage on 10th
of May caused predominantly convective precipitation with embedded thunderstorms and
showers. The period was chosen because synoptically and locally forced convection was
present and a convection permitting model such as COSMO-DE is expected to produce
more realistic weather systems than its driving global model.

The initial COSMO-DE ensemble, consisting of the downscaled global ICON-LETKF
ensemble, is started at 0 UTC on the 6th of May. One day of cycled data assimilation
is performed to spin up COSMO-DE and the time-relaxed adaptive covariance inflation.
The resulting analysis ensemble and the covariance inflation field ρ at 0 UTC on the 7th
of May are then used as initial conditions for all other experiments.

Table 4.1 summarizes the performed experiments for the chosen test period. The
monitored observations (mon.) are not assimilated, therefore their model equivalents are
only influenced by the cross correlations calculated by the LETKF by the means of the
assimilated observations (denoted by •). The control experiment NoDA is performed
without data assimilation. All DA experiments assimilate the selected data sets in an
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Mode-S EHS AMDAR SYNOP PROF TEMP

NoDA mon. mon. mon. mon. mon.

Aconv mon. • • • mon.

Mconv • mon. • • mon.

MAconv • • • • mon.

MAconvTh10 • 10% • • • mon.

MAconvTh50 • 50% • • • mon.

Table 4.1: Experiments (rows) performed with COSMO-KENDA. Observations with bul-
let points • are assimilated, observations with ‘mon.’ are monitored. In case of ‘• x %’,
only a random subset of x percent is assimilated.

hourly interval. The basic experiment Aconv assimilates conventional (SYNOP, PROF)
and AMDAR observations. From Aconv, the Mconv experiment is derived by setting
AMDAR to monitoring and assimilating Mode-S EHS. The experiment MAconv assimi-
lates both AMDAR and Mode-S EHS data sets. In MAconvTh10 and MAconvTh50 the
Mode-S EHS data is randomly thinned to 10 percent and 50 percent of the full density
that is used in MAconv. The random thinning makes sure that the spatial and temporal
distribution characteristics of the Mode-S EHS observation space are preserved, only with
a lower density. The observation error standart deviation

√
R0 which was preliminarily

estimated for AMDAR is used identically for the assimilation of Mode-S EHS. The ob-
servation operator is applied during the model integration of COSMO at the appropriate
time of the respective observation. Therefore the do−b of a 1-hour forecast is a collection
of innovations along the temporal trajectory. In case of the 3 hour forecasts, do−b refers
to the observations within the third hour of the forecast window.

The experimental results are evaluated separately in the observation spaces of each
upper air system (TEMP, AMDAR, Mode-S EHS) for wind speed, direction and temper-
ature. Where the results of the observation systems are qualitatively similar, only the
radiosonde space is shown. The Root Mean Square (RMS), the mean and the standard
deviation (STD) of do−b are computed at every forecast step for every ensemble member
and are averaged over the 5 day period. To test whether the ensemble is underdisper-
sive, for every pressure level the consistency ratio (CR) is computed which also takes the
observation error variance R into account, as in Schraff et al. (2016):

CR =
STD√

RMS2 − Tr(R)n−1
obs

(4.1)
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The CR should ideally be one. For R, the previously defined Rest was used posterior to
the experiments.

The profiles of RMS and mean of do−b are tested for significant differences among the
experiments. Using the Student’s t-test, the nullhypothesis that the results were identical
shall be rejected on a confidence level of 95 percent. Since the experiments share the same
model and boundary conditions and have a mutual subset of assimilated observations, the
forecast errors are correlated among the experiments. Therefore, the t-test is performed
as a paired difference test in which the number of degrees of freedom n is reduced by
half. In case of the 1-hourly cycling, the test is performed using the hourly profiles of
RMS and mean of do−b of the single members as the testing sample with n = (5 days ·
24 cycles · 40 members ) · 2−1 = 2400. In case of the 3 hour forecasts, two ensemble sets
of profiles per day are tested between the experiments with n = (5 · 2 · 40) · 2−1 = 200.

4.5 Results

The RMS, mean and STD of do−b in the control experiment NoDA are shown in Figs.
4.3, 4.4, and 4.5, respectively. The wind speed STD of NoDA is largest at 300 hPa height
(Fig. 4.5adg), the largest STD in wind direction is close to the surface (Fig. 4.5beh) and
the largest temperature STD in NoDA is at 250 hPa (Fig. 4.5cfi). In the radiosonde
space, a warm bias of the background exists in NoDA above 400 hPa and a cold bias
around 700 hPa (Fig. 4.4c).

As a first diagnostic for the observation error, the RMS of NoDA is examined, under
the assumption that the model equivalents in the upper air observation spaces of all three
systems are subject to the same forecast error characteristics. For wind speed, the obser-
vation systems TEMP, AMDAR and Mode-S EHS behave similarly (Fig. 4.3adg) which
hints at comparable observation errors. For temperature (Fig. 4.3cfi), the NoDA RMS
of Mode-S EHS in lower levels (Fig. 4.3i) is larger than for the other systems. For wind
direction (Fig. 4.3beh), the NoDA RMS of Mode-S EHS is much smaller. This difference
in directional observation error could be a consequence of the heading correction in the
post-processing of Mode-S EHS (de Haan, 2011) which is calibrated for different com-
mercial aircraft models. According to WMO (2003), such a correction is not performed
for AMDAR.
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Figure 4.3: Mean RMS (do−b) of the ensemble members for upper air observations of
wind speed (left), wind direction (middle) and temperature (right) throughout the 1-
hourly cycling, for experiments NoDA, Aconv, Mconv and MAconv.
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Figure 4.4: Mean (do−b) of the ensemble members for upper air observations of wind
speed (left), wind direction (middle) and temperature (right) throughout the 1-hourly
cycling, for experiments NoDA, Aconv, Mconv and MAconv.
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Figure 4.5: STD of the ensemble do−b(x
b
i) and RMS of the ensemble mean do−b(xb) for

upper air observations of wind speed (left), wind direction (middle) and temperature
(right) throughout the 1-hourly cycling, for experiments NoDA, Aconv, Mconv and MA-
conv. Where data is actively assimilated, the consistency ratio CR is computed using the
estimated values of Fig. 4.9, and is scaled by the respective RMS to fit into the x-axes
of the plots.
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4.5.1 Results with AMDAR and Mode-S EHS observations

The main experiments Aconv, Mconv and MAconv compare the usage of AMDAR and
Mode-S EHS as the only assimilated aircraft observation types (Aconv and Mconv) and
the combination of assimilating both (MAconv). In Fig. 4.3, the significance symbols are
omitted because where the RMSs of DOB are reduced by adding additional data, the
reductions are significant in all cases.

The RMS in the radiosonde space is continuously reduced with respect to NoDA for
wind speed and temperature (Fig. 4.3ac) and less so for wind direction (Fig. 4.3b) when
AMDAR and additionally Mode-S EHS data are assimilated in the experiments Aconv
and MAconv. Also, the STD is continuously diminished (Fig. 4.5abc).

The RMS values of Mconv in AMDAR space and of Aconv in Mode-S EHS space
show the influence of the data sets across the two aircraft observation spaces. The RMSs
of wind speed (Fig. 4.3dg) and temperature (Fig. 4.3fi) are reduced across the spaces
for Aconv and Mconv, while the cross-space RMSs in wind direction (Fig. 4.3eh) are
increased for levels below 700 hPa. This might again be a consequence of the heading
correction of Mode-S EHS.

In Fig. 4.5, the ratio of the RMS and the STD give information about the consistency
of background error and spread, assuming that the biases in DOB are small enough. The
CRs of windspeed and temperature are close to 0.9 or 1 for all experiments, except close
to the surface where values around 0.75 are reached.

4.5.2 Results with varying Mode-S EHS data coverage

As there are far more Mode-S EHS data than AMDAR data, it is tested how the forecasts
depend on the amount of Mode-S EHS observations. In the experiments MAconvTh50
and MAconvTh10, the assimilated portion of the Mode-S EHS observations is randomly
thinned to roughly 50 and 10 percent of the original set.

During the cycling, the wind speed RMS in the radiosondes (Fig. 4.6a) is significantly
reduced going from 10 percent to 50 percent for all levels except 700 and 1000 hPa,
while an increase from 50 percent to 100 percent does not yield benefits. For the wind
direction (Fig. 4.6b), there is no significant RMS reduction when increasing the data
amount. For temperature (Fig. 4.6c), the RMS is decreased going from 10 percent to
50 percent and from 10 to 100 percent for all levels except the surface. At 400 and 300
hPa, an improvement is also visible when going from 50 percent to 100 percent of Mode-S
EHS. The wind and temperature STD in the radiosonde space is continuously reduced
when adding more data (Fig. 4.7, AMDAR and Mode-S are analogous and not shown),
but not in a linear dependence on the data amount.
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A two-colored diamond on a level means that the RMSs of the left experiment are signif-
icantly smaller than of the right experiment.
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4.5.3 Results of the 3 hour ensemble forecasts

The daily analysis ensembles at 9 and 21 UTC were saved and ensemble forecasts of three
hours were initialized from all experiments, so that also the radiosondes launched at 12
and 0 UTC could be used for the verification. The forecast RMS of do−b (third hour of
3 h window) is shown in Fig. 4.8.

For wind speed, significant reductions in forecast RMS between Aconv and MAconv
take place at all levels except the surface. The clearest reduction is visible when using
Mode-S EHS for the verification (Fig. 4.8g). The radiosonde space (Fig. 4.8a) is positively
affected mainly in levels above 500 hPa. For AMDAR, additional Mode-S EHS data of
MAconvTh10 and MAconvTh50 is beneficial at 700 hPa (Fig. 4.8d), which could be due
to the shared observation spaces of the aircraft systems (Fig. 4.2). For wind direction
RMS, the radiosonde space verification shows no significant improvement due to Mode-
S EHS (Fig. 4.8b). Still, in AMDAR the wind direction forecast is improved on the
flight levels (Fig. 4.8e), and in the Mode-S EHS space also the 700 hPa level is improved
(Fig. 4.8h). For temperature RMS, an improvement due to additional Mode-S EHS data
is visible for all three systems (Fig. 4.8cfi) from 700 to 200 hPa.

The 3-hour forecast RMSs are, in some cases, improved by increasing the amount of
assimilated Mode-S EHS. The wind speed RMS of MAconv is smaller than both Aconv
and MAconvTh10 at 300 hPa (Fig. 4.8a), 500 and 700 hPa (Fig. 4.8g). The 700 hPa
wind direction is improved within Mode-S EHS going from MAconvTh10 to MAconv
(Fig. 4.8h). For temperature, an improvement from MAconvTh10 to MAconv is visi-
ble from 700 to 200 hPa (Fig. 4.8cfi). An improvement from MAconvTh50 to MAconv
appears only in the 300 hPa radiosonde wind speed (Fig. 4.8a). A deterioration of fore-
cast RMS at 500 hPa is apparent in some cases when increasing the data amount from
MAconvTh50 to MAconv (Fig. 4.8dec).
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4.6 Effects of adaptive KENDA settings

The settings used in KENDA affect the representations of both background and analysis
error covariances. The specified values of the observation error are discussed first in
Section 4.6.1. Secondly, the influence of the methods that account for model and sampling
error in KENDA are examined in Section 4.6.2.

4.6.1 Results of the observation error estimation

The estimated error standard deviation
√

Rest of AMDAR and Mode-S EHS are depicted
in Fig. 4.9 together with the initial error estimate

√
R0 of Schraff et al. (2016) that was

used for the assimilation.
√

Rest for windspeed in AMDAR is lower than
√

R0 (Fig. 4.9a),
which can be attributed to a different experimental period and a difference in the driving
global ensemble.

The values are similar among the experiments that actively assimilate AMDAR (Aconv,
MAconvTh10, MAconv). A lower estimate is reached (Fig. 4.9a) when Mode-S EHS ob-
servations are used which reduce the estimators do−b and do−a also across the AMDAR
observation space.

√
Rest for temperature in AMDAR (Fig. 4.9b) is close to

√
R0 between

700 and 400 hPa and much smaller in the lower levels.
For the windspeed of Mode-S EHS (Fig. 4.9c),

√
Rest is, within a range of 10 per-

cent difference, quantitatively and qualitatively similar to the windspeed of AMDAR
(Fig. 4.9a) in case of the joint data experiment MAconv. For the Mode-S EHS temper-
ature (Fig. 4.9d),

√
Rest follows the shape of

√
R0 on all levels and is larger for levels

below 700 hPa where it reaches 1.2 K for Mode-S EHS in MAconv, but only 0.8 K for
AMDAR in MAconv (Fig. 4.9b). This difference in low level temperature errors is quali-
tatively consistent with the findings of de Haan (2011) and de Haan and Stoffelen (2012),
although they diagnosed larger absolute error standard deviations.

The hypothesis that a feedback R-input of the values
√

Rest estimated by MAconv
(Fig. 4.9) would give better results during the cycling was tested an iterated experiment
MAconvR1 (not shown) which did not exhibit significant improvements with respect to
MAconv.
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Figure 4.9: Estimated observation error STD
√

Rest for AMDAR and Mode-S EHS ob-
servation spaces.

√
R0 is the initial error standard deviation value used as input for the

LETKF for both AMDAR and Mode-S EHS for all experiments.

4.6.2 Accounting for model and sampling error

Fig. 4.10a shows the adaptive covariance inflation factor. It is almost continuously larger
for experiments with more observations. One maximum lies between 300 and 200 hPa
where the high data density of the flight level is situated (Fig. 4.2). Another maximum is
between 700 hPa and the surface. This is caused by a spread deficiency in the lower levels
(see CR in Fig. 4.5). While the adaptive inflation is set to counteract this deficiency, the
RTPP factor of 0.75 limits the overall reduction and inflation of spread by the analysis
update. As seen in Fig. 4.10b, the adaptive localization directly depends on the number
of observations per level. In the horizontal snapshot of Fig. 4.10c, highly frequented
airports (Amsterdam, Frankfurt, Berlin) become visible.
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Figure 4.10: a) Adaptive covariance inflation factor, averaged over the experimental
period on the pressure levels of the analysis grid. b) Adaptive localization length scale.
c) Snapshot of the localization length scale at the surface level at 8th of May 2014, 12
UTC. The plotted circles are centered on every 8th point of the coarse analysis grid, so
the overlap of the local LETKF solutions is denser than in this illustration.
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4.7 Kinetic energy spectra of three hour forecasts

One-dimensional kinetic energy spectra are derived from the analysis and forecast ensem-
ble members as in Bierdel et al. (2012). Due to the predominant westerly flow, isotropy
is not assumed and the energy spectra are calculated separately in longitudinal and lat-
itudinal directions on levels with a constant height ASL. Since on the flight levels there
are significant amounts of AMDAR and Mode-S EHS observations, an average over three
heights of 10, 11, and 12 km height ASL is chosen for the investigation. The wind field
of the ensemble was saved every 15 minutes throughout the previously mentioned 3 hour
forecasts and the corresponding spectra were calculated. Fig. 4.11 shows the difference
kinetic energy spectrum of Aconv, MAconvTh10, MAconvTh50, and MAconv with re-
spect to the NoDA experiment. In order to enhance the relative differences, the energy
of the difference wind field from the NoDA experiment is scaled by the absolute kinetic
energy spectrum of NoDA. The evaluation presumes that during the three forecast hours
the BCs are not dominant and the main part of the dynamical evolution is happening
within the COSMO-DE domain itself.

Starting from the analyses (forecast minute 0), the largest relative differences are
present on the scales below the effective resolution of 5∆x found for COSMO-DE (Bierdel
et al., 2012). Between the wavelengths of 10 and 40 km, there is a level of relatively large
difference energy, and above 40 km there is an almost steady drop. Among the series of
Fig. 4.11a-d, the analysis states are subsequently further away from NoDA when more
data is assimilated. With the ten percent of Mode-S EHS data in MAconvTh10, the
characteristics are similar to Aconv. For MAconvTh50, a significant difference to Aconv
becomes visible on all scales.

Throughout the three forecast hours, the relative difference energy on all scales is
gradually decreasing, where a value of zero would express a wind field identical to NoDA.
In all experiments, the spectrum of the relative forecast difference energy remains similar
to the analysis of the respective experiment for up to one hour, especially on scales
smaller than 200 km. After one hour, a drop in relative difference energy with respect
to the analysis can be noted on all scales. As a consequence of pulling the states further
away from the attractor of COSMO-DE, the rate of convergence towards NoDA is higher
when more data is assimilated. Although the experiments MAconvTh50 and MAconv
are almost indistinguishable after three hours of forecast with respect to the forecast
RMS (Fig. 4.8), the higher level of the relative spectra at 180 minutes in MAconv still
indicates differences in the wind field. It can be concluded that the usage of 100 percent
Mode-S data causes excessive modifications, possibly in the form of gravity wave noise
(Houtekamer and Mitchell, 2005), which are more extensive than necessary to actually
improve the forecast.

4.8 Summary and Discussion

In order to evaluate the benefit of additional aircraft in-situ observations of wind and
temperature that are collected by airport radars (Mode-S EHS), experiments were per-
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formed with the COSMO-KENDA system, which couples an LETKF to an ensemble
of the nonhydrostatic model COSMO-DE. The Mode-S EHS observations are available
within most of the domain of the COSMO-DE model over Germany. The amount of
Mode-S EHS observations is 15 times larger than of the traditionally used AMDAR, with
a similar observation density distribution. Cycled ensemble data assimilation was per-
formed for a period of 5 days with a cycling interval of 1 hour. Mode-S EHS data were
assimilated in addition to AMDAR, assuming the same observation error. Using 100
percent of the Mode-S data improved the upper air innovation RMSs during the 1-hour
cycling and in the verification of 3 hour ensemble forecasts, in comparison to assimilating
only AMDAR aircraft data. A comparable improvement was visible when assimilating
50 percent of Mode-S EHS instead of none. The 3-hour forecasts that were started from
the experiment with 100 percent Mode-S EHS data had often significantly lower errors
than from the experiment with 10 percent. Still, using 100 percent Mode-S EHS instead
of 50 percent degraded the 3-hour forecasts in some cases. It is therefore concluded that
a saturation of benefit exists between 50 percent and using 100 percent of Mode-S EHS.

By using innovation statistics in observation space, the observation error standard
deviation of Mode-S EHS was estimated to be comparable to AMDAR in the wind vari-
able. For temperature, the observation error of Mode-S EHS was diagnosed to be 50
percent larger for levels below 700 hPa. It must be noted that observation error standard
deviations obtained by this method depend on the background ensemble spread of the
cycling system, so the estimated observation errors can only be regarded as inherently
compatible with the present DA system. Still, the current KENDA setting appeared
mostly insensitive to slightly wrong prescribed observation errors.

The ensemble spread was generally consistent with the forecast errors, except near
the surface due to a deficiency of small scale error growth (Schraff et al., 2016). KENDA
contains mechanisms that maintain the ensemble spread, namely the RTPP scheme,
adaptive covariance inflation, and adaptive localization. The effects of these methods
were evaluated and it was concluded that they enable the assimilation system to use the
larger number of aircraft observations without a collapse of the ensemble spread. The
spread reduction exhibited a non-proportional dependence on the increasing number of
observations. In the future, unified inflation methods such as presented in Ying and
Zhang (2015) could be helpful in further dealing with this issue.

The ability to benefit from a high observation density strongly depends on the RTPP
relaxation parameter. With less relaxation towards the background ensemble than the
currently used factor of 0.75, the resulting analysis ensemble could contain smaller errors
because the observations are given more weight. In future experiments, also a more
sophisticated thinning could be applied to reduce the observation density only where
it is redundant or where saturation effects are apparent. The high temporal density
of Mode-S EHS observations could be exploited in a 15 minute cycling interval. An
observation system that fills the low level data gaps between airports could be useful
for airport forecasts, especially for warnings of small scale phenomena such as rapidly
evolving gustfronts and downbursts. A wider usage of surface stations than in the present
study could supplement the high density of upper air observations, if provided with proper
vertical localization.
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Spectra of the difference kinetic energy with respect to a control experiment showed
that the LETKF data assimilation affects all model scales. The amount of observation
data in the experiments was reflected by the degree of modification of analysis and fore-
cast states. A stronger modification caused a faster relaxation towards the attractor of
the control experiment. In further studies, different regimes (dry/wet) or seasons (win-
ter/summer) could be chosen to compare the influence of dense observation sets when
error growth is dominated by either synoptic or local processes. The spectral difference
energy of temperature and cloud fields could give insight on scale dependent error growths
(Zhang et al., 2007; Selz and Craig, 2015; Zhang et al., 2016). Forecasts with longer lead
times than three hours should be performed to evaluate if the Mode-S EHS benefit is
persistent, along with a testperiod longer than 5 days to improve the significance of the
results. A rigorous survey of the imbalances that depend on the Mode-S EHS assmilation
should be performed, in order to identify effects of a possible overfitting and overly small
localization lengths (see Chapter 2). In Chapter 5, a version of the present DA-setup
is used to additionally assimilate observation sets with even higher resolutions, such as
radial winds and reflectivity of convective systems from Doppler radars.
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Chapter 5

Influence of Observation Types in
Radar Data Assimilation

In Chapter 3 it was investigated how temporal and spatial parameters of radar assimila-
tion influence the dynamical properties of analyses and forecasts in an idealized convective
situation. The present Chapter is devoted to the question which influence the observa-
tion types of wind and reflectivity have on the dynamical properties of EnKF-produced
analyses.

5.1 Introduction and motivation

The question how a DA-analysis reacts to different observation types has been raised by
Talagrand (1981) who discusses how the assimilation of different variables influence the
dynamics of a Shallow Water Model (SWM) (Gill, 1982). The SWM equations mimic the
behavior of global atmospheric dynamics whose rotational components are geostrophically
balanced with the surface height field and whose divergent components are expressed by
fast-moving inertia-gravity waves of the surface height.

Talagrand (1981) identifies observations of the surface height variable, which expresses
the underlying mass, and of the wind variable, which is related to rotational and diver-
gent motions, as the two main observation types. He concludes that by using only mass
observations, the first time derivative of divergence is modified, but only the second time
derivative of vorticity. Using only wind observations, gravity wave motion is reconstructed
directly. Since this reconstruction may introduce noisy increments, geostrophic adjust-
ment to the mass field has to take place, which is a slow process that may be overridden
by further increments due to wind observations. For increments of mass observations
(as was done already by Charney et al., 1969, using temperature observations), the slow
geostrophic adjustment is the only process that may rectify the vorticity. Kalnay (2003)
further elaborates on this topic in their Chapter 5.7, and derives an equation that predicts
which influence wind observations vob with an error |δvob| and height observations Φob

with an error |δΦob| have on the error of the reconstructed rotational part of the stream
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Figure 5.1: Left column, top to bottom: Observation fields of reflectivity (REFL), graupel
mixing ratio (QG), snow mixing ratio (QS), vertical velocity (W). Right column, top to
bottom: horizontal wind perturbation (U minus mean of U, masked by a threshold of 5
dBZ reflectivity, and unmasked), Laplacian of wind field with overlaid wind field arrows.
All at model level 16 (12 km above ground) from nature run 01 of 2 at 14 UTC.
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function |δψ| when assimilated simultaneously:

1

|δψ|2
=

f 2
0

g2|δΦob|2
+

n2

|δvob|2
(5.1)

Here f0 is the coriolis parameter, which has its maximum value at the poles and is zero at
the equator, g is the gravitational acceleration, and n is the wavenumber of the observed
motion. Kalnay (2003) concludes that short waves (large n) in the tropics (small f0) are
well-reconstructed using wind observations, while large waves (small n) outside of the
tropics (large f0) benefit most from mass-observations of the surface height.

Zeng and Janjić (2016) performed Local Ensemble Transform Kalman Filter (LETKF)-
assimilation experiments with a SWM and assimilated combinations of surface height and
wind observations. They observed a reduction in the noise of the analysis fields when
adding wind observations to the assimilation of height observations. In the same pro-
cess, the generation of spurious enstrophy (and therefore vorticity) is bounded by the
wind observations. These findings only apply for global scales where geostrophically bal-
anced rotational components have the largest scale (bounded by the Rossby radius of
deformation) and divergent motion like fronts and large hydrostatically balanced gravity
waves have a relatively small scale. As an example for a practical implementation of
noise reduction in global models, Hamrud et al. (2015) present an EnKF setup for the
hydrostatic Integrated Forecasting System (IFS) in which the surface pressure tendency
(cf. Chapter 3) is analyzed as a control variable (Lorenc, 2003; Kepert, 2009). From this
surface analysis, the overlying mass divergence is derived and distributed in the members,
which causes a damping of noise and thereby a reduction of forecast errors (as in Zeng
and Janjić, 2016) for surface based observations.

For convective scales, it is necessary to look at the small scale phenomena that are
given by the non-hydrostatic cumulus dynamics of deep convection such as thunder-
storms. When viewed from above at the height of the tropopause, thunderstorms are
characterized by a point-like updraft core (or overshooting top) and a divergent wind
field that is centered on the core and spreads into the surrounding (Figure 5.1). The
model variable that is related to strong up- and downdrafts is vertical velocity which
gains its driving buoyancy by the means of diabatic heating due to condensation. The
resulting hydrometeors are a good tracer of vertical motion and are observed e.g. by the
means of radar reflectivity. In case of COSMO, the dominant hydrometeor variable of
the updraft cores is graupel (QG in Figure 5.1). The divergent motion is, depending on
the number of overlapping beams from different radar sites, fully or partially observed by
the radial wind observations which contain mostly horizontal wind components (such as
U in Section 2.2.2). Figure 5.2 provides a simplified picture of the associated dynamics.

A background ensemble which contains a convective updraft also contains correlations
to the corresponding divergent flow pattern through its ensemble covariances (Snyder
and Zhang, 2003; Tong and Xue, 2005). Therefore, without localization and with an
assumed absence of sampling noise, the assimilation of reflectivity observations will cause
an analysis increment that also contains a wind pattern which modifies both the stream
function and the divergence.
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Figure 5.2: Conceptual illustration of the convective dynamics in Figure 5.1 (see also
Figure 1.1). Point (A) is inside the updraft, points with (B) are in the divergent wind
pattern. p′ is the perturbation pressure that is associated to the updraft (cf. Figure 7.1
of Houze, 1993).

It therefore makes sense to formulate an equation similar to (5.1) for the divergence
D. As a basis, the thermodynamic equation

∂Θ

∂t
+ vh · ∇hΘ + w

∂Θ̄

∂z
= Q (5.2)

relates the potential temperature Θ (Holton, 2004) with the horizontal wind vh and the
vertical velocity w to a heat-source term Q. Assuming a quasi-steady state of an updraft
circulation (as in Figure 5.2), the temporal derivative ∂Θ/∂t is canceled. The advection
term is assumed to be negligible since the horizontal gradient of potential temperature
is much smaller than the vertical gradient (and evened out by gravity waves very fast),
thus vh · ∇hΘ = 0. The remaining term on the left side is w∂Θ̄/∂z where Θ̄(z) is the
vertical sounding of the environmental temperature, with the vertical derivative as the
stability parameter. In a quasi-steady state of an updraft, the rising motion is therefore
in balance with the local heating rate Q which is renamed as Θ̇:

w
∂Θ̄

∂z
= Θ̇ (5.3)

The divergence is given by D = ∇ · v3d and can, via scale analysis, be related to the
vertical velocity scale W over a scale height H as

D ∝ W

H
(5.4)



5.1 Introduction and motivation 107

and to the horizontal wind V over a horizontal length scale L as

D ∝ V

L
. (5.5)

Substituting the W of (5.4) into (5.3) provides an estimate of how D is related to Θ̇ and
the stability ∂Θ̄/∂z:

DH
∂Θ̄

∂z
∝ Θ̇ . (5.6)

The estimation equation for D can then, analogous to Equ. (5.1), be formulated as

1

|δD|2
=

(H ∂Θ̄
∂z

)2

|δΘ̇ob|2
+

L2

|δvob|2
. (5.7)

δΘ̇ob is the observed change in heating rate in the column and can be estimated by

δΘ̇ob =
Lvδrob
cpHρ

, (5.8)

where δrob is the observed change of rain rate in the column (in kg m−2 h−1), H is the scale
height, ρ is a reference air density, Lv = 2.6 106 J kg−1 is the latent heat of condensation,
and cp = 1004 J K−1 kg−1 is the specific heat of dry air at constant pressure. For H,
a typical value is the height of the tropopause at 10 km, and a typical air density is
ρ = 1 kg m−3.

The question which relative influence a rain-observation and a wind-observation has
on the divergence in the model state may now be reformulated as a question of scale:
Below which scale is the influence of rain-observations dominant, and above which scale
is the influence of horizontal wind observations dominant? To answer this, one may
equate the right hand side terms of Equ. (5.7), with the substitute (5.8), to get

(H ∂Θ̄
∂z

)2

|Lvδrob
cpHρ
|2

=
L2

|δvob|2
. (5.9)

Using ∂Θ̄/∂z = 3 K km−1 as a typical value of stability (computed from the Payerne
sounding in Chapter 2), an observed change in rain rate of δrob = 10 kg m−2 h−1 and an
observed change in horizontal wind of |δvob| = 10 m s−1, a horizontal scale of approxi-
mately L ≈ 40 km is estimated. This scale concurs with the depiction in Figure 5.1 and
the vicinity size around convective storms that was derived in Chapter 3.

When performing an analysis update with an EnKF that assimilated rain- and wind-
observations, the increments are by definition tainted by errors such as sampling noise in
the background ensemble covariances. These errors can, as was shown in Chapter 3, dis-
rupt the dynamical balance between model variables and thus be harmful to the forecasts.
Since there is an interplay between the effects of hydrometeor observations (reflectivity)
and wind observations (radial velocity), the present chapter is devoted to the question
which influence the different radar-based observations types exert on the dynamical balance
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of the forecast model. If possible, the question whether a small noise level is related to
small forecast errors (Hamrud et al., 2015; Zeng and Janjić, 2016) shall also be asked. As
a research tool, a self-nested version of COSMO is used, in which radar data assimilation
is performed similar to the experiments of Chapter 2. Two versions of assimilating rain-
observation will be evaluated. On the one hand, the statistically based EnKF method
is used to update the model according to radar observations. On the other hand, the
physically based Latent Heat Nudging (LHN) method (Stephan et al., 2008) is tested.

Section 5.2 describes the model and the DA-setup, together with the observation
system. Section 5.3 describes the convective case and the evaluation measures. In Sec-
tion 5.4, the results during cycling and 3-hour forecasts are presented. Section 5.5 provides
a summary and gives an outlook on possible further studies based on the presented setup
and research question.

5.2 Setup of the COSMO-MUC Model and the DA

5.2.1 COSMO-MUC model

Similar to Hagelin et al. (2014), the model of COSMO-MUC (Soelch, 2015) is being
developed as a nested version of COSMO-DE (see Chapter 4), centered around the Munich
Airport MUC as shown in Figure 5.3. The Initial Conditions (IC) of COSMO-MUC are
cut-out fields from COSMO-DE. The Boundary Conditions (BC) for COSMO-MUC are
provided by COSMO-DE with an interval of 15 minutes. In between these times, the BC
are interpolated linearly in time. COSMO-MUC has the same horizontal resolution of
2.8 km as COSMO-DE and the same vertical structure with 50 levels.

5.2.2 Data Assimilation with COSMO-MUC-KENDA

As in Chapter 4, DA is performed with the LETKF of the Kilometre-scale Ensemble
Data Assimilation (KENDA) for both COSMO-DE and COSMO-MUC. COSMO-DE-
KENDA employs 40 ensemble members and 1 deterministic run. As in Schraff et al. (2016)
and Chapter 4, an LETKF-ensemble of ICON with 3-hourly global analyses (Fernandez
et al., 2015) provides the hourly BCs. Every member of COSMO-DE then provides
the BCs for one member of the COSMO-MUC ensemble. As part of this study, the
additional nesting-layer was introduced into the cycling-system to run COSMO-MUC
as an inner ensemble system that is driven by the outer ensemble system of COSMO-
DE. This included the development and testing of newly written software that drives
the COSMO-MUC ensemble experiments with partly different DA-parameters, correctly
transfers the boundary conditions, and archives the very high number of output files in
a consistent data structure.

5.2.3 Observation System

As in Chapter 4, observations of surface stations (SYNOP) are used, but now with a less
strict filtering: All observations of surface temperature (T2M), wind (U10M, V10M) and
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Figure 5.3: Domain extents of COSMO-DE (orange) and COSMO-MUC (red). The
global driving model is ICON (see text).

relative humidity (RH2M) are assimilated in COSMO-DE-KENDA and COSMO-MUC-
KENDA, as long as the true station height does not differ more than 150 meters from
the station height that is represented by the model (for wind: 100 meters). Aircraft
observations of AMDAR and Mode-S are assimilated in all experiments without thin-
ning, as in the experiment MAconv described in Table 4.1. The COSMO-MUC domain
contains three of the C-Band radar stations of the DWD-network: Türkheim (TUR),
Memmingen (MEM), and Isen (ISN). The model equivalents of radar observations are
computed in COSMO using the Efficient Modular VOlume scanning RADar Operator
(EMVORADO, Zeng et al., 2016). An example of their horizontal coverage is given in
Figure 5.4. The grid-like structure in the horizontal is caused by averaging raw radar
observations into superobservations (see Section 2.3.2) with a horizontal bin-resolution of
10 km. Similar to (Aksoy et al., 2009; Bick et al., 2016) and Chapter 2, a value of 5 dBZ
was assigned to the reflectivity observations and the model equivalents below 5 dBZ, in
order to use them to suppress spurious convection in the analysis members (Aksoy et al.,
2009). The observation limits of the single stations are apparent: TUR covers the western
half of the MUC domain, MEM a circle up to Regensburg, ISN almost the full domain.
Note that due to the upward ray propagation of the lowest scan angle, the height of the
lowest observed level increases with distance from the radar stations. Still, the radar
observations, if provided with enough hydrometeors, can cover a larger volume than the
aircraft observations, so these two observation spaces are not congruent (illustrated by
Figure 5.5). Figure 5.6 illustrates how radar observations provide information about po-
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Figure 5.4: COSMO-MUC observation coverage at analysis time of 26.5.2014, 12 UTC.
Shown are SYNOP stations, LLWAS profiler at airport MUC, radiosonde 10868 (Ober-
schleissheim). The different panels show the radial velocity observation coverage of the
radar stations TUR, MEM, ISN in that particular hour.
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sition and intensity of convection through reflectivity and about the underlying dynamics
through radial velocity.

5.2.4 DA Setup

Following the recommendations of Chapters 2 and 3, the DA parameters for radar are
chosen similar to the experiment L32SOCG20 (as was done in Bick et al., 2016). The
horizontal localization length scale (see Section 2.2.5) for radar reflectivity and radial
wind was chosen as lhor,rad = 16 km, corresponding to a cutoff length of roughly 60
km. For conventional observations, the horizontal localization was chosen adaptively (cf.
Section 4.3.3) with a lower limit of lhor,min = 25 km and an upper limit of lhor,min = 50 km.
The forecast window between analyses was chosen with a length of ∆t = 15 min. As a
conservative choice, the observation error standard deviation was assumed to be 10 dBZ
for reflectivity and 5 m s−1 for radial velocity as in (Bick et al., 2016).

5.2.5 Latent Heat Nudging Setup

Instead of updating the model state with ensemble covariances produced by an LETKF
that assimilates rain, one can also directly force the model to produce or suppress rain
when the forecast deviates from the observations. This method is called Latent Heat
Nudging (LHN) and is operational for COSMO (Leuenberger, 2005; Stephan et al., 2008).
In LHN, a surface rain rate RRobs(x, y) (in mm/h) is heuristically derived from radar
observations of reflectivity. RRobs(x, y) is compared to the surface rain rate RRmod(x, y)
that is predicted by the model, resulting in a local mismatch factor

f(x, y) = RRobs(x, y)/RRmod(x, y). (5.10)

In the model, the latent heat (LH) release is predicted as ∆Tmod,LH . If a mismatch of
forecast and observation of rain is found (i.e. f 6= 1), a heating increment

∆TLHN = (f − 1) ∆Tmod,LH (5.11)

is applied in the model column. For f(x, y) > 1, ∆TLHN > 0 is a heating increment that
increases the local buoyancy and thus amplifies vertical motion, subsequently producing
more rain in the model. For f(x, y) < 1, ∆TLHN < 0 is a cooling increment that decreases
the local buoyancy and thus suppresses vertical motion, subsequently producing less
rain in the model. ∆TLHN is applied incrementally as a forcing term in the prognostic
equations and is therefore a smoother method than the intermittent analysis updates of
the LETKF system. While this can be regarded as an advantage with respect to the model
dynamics, the wind circulation associated to rain-producing convection is only reproduced
as a divergent secondary effect of LHN since the radial velocity observations are not
nudged. This means that the influence on the divergence field, as estimated in Equ. (5.7),
is performed only indirectly through the response of the model dynamics. Therefore,
differences in the model response are expected when the assimilation of hydrometeor
observations between LHN and LETKF is compared inside the MUC domain, especially
when radial velocity is added in the LETKF.
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Figure 5.7: Flowchart of the experiments described in Section 5.3

5.3 Experiments on the influence of observation types

In order to investigate the influence that radar observation types have on the model
dynamics, a basic ensemble data assimilation experiment (i, MUC Ens Conv) is per-
formed in which only conventional observations are assimilated (Figure 5.7). In parallel,
experiments are performed where reflectivity (ii, MUC Ens Refl), radial velocity (iii,
MUC Ens Wind) and a combination of both are assimilated (iv, MUC Ens ReflWind)
in addition to the conventional observations. The boundary conditions for these MUC-
KENDA experiments with 40 members are provided by one COSMO-DE-KENDA exper-
iment (DE Ens Refl) with 40 members which assimilates conventional observations and
radar reflectivity in an hourly cycle. DE Ens Refl does not assimilate radial wind in or-
der to keep the input of observation information similar to the nudging experiment. Two
deterministic experiments with nudging are performed, one with LHN (MUC NudgLHN)
and one without LHN (MUC NudgNoLHN) to determine the influence of the LHN scheme
within the MUC domain. Both are driven by a deterministic COSMO-DE experiment
(DE NudgLHN) that has LHN activated and is therefore comparable (with respect to
the data input) to the DE Ens Refl boundary experiment. DE NudgLHN has the same
assimilation settings as MUC NudgLHN and is driven by the boundary conditions of the
deterministic run of the ICON-Ensemble. Every 3 hours, a forecast with a lead time of 3
hours is started for both deterministic and probabilistic COSMO-MUC experiments and
for the respective boundary experiments of COSMO-DE. The forecasts of COSMO-DE
and COSMO-MUC are therefore synchronized with the 3-hourly cycle of the global ICON
BCs (cf. Section 4.3.1). As in Section 4.4, one day of cycled data assimilation without
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assimilating radar data was performed beforehand to spin up the COSMO fields and the
adaptive covariance inflation.

5.3.1 Description of the convective case

The experimental period comprises one day (26th of May 2014) where a convergence
line was located inside the MUC domain, diagonally from the north-west to south-east
(Figure 5.8). After the decay of some previous convection by 6 to 9 UTC, new convective
cells were triggered along the convergence line and merged into a larger system by 18 UTC
that filled a great part of the MUC domain (Figures 5.9 and 5.10) and continued to rain
until the morning of the next day. Figure 5.11 shows the number of radar-observations per
type throughout the day, wherein no-reflectivity observations are reflectivity observations
below 5 dBZ. Due to this temporal development, the evaluation focuses on the times
between 9 UTC and 0 UTC to cover the growth phase of the convective systems and the
mature and decaying phase.
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Figure 5.8: Synoptical situation on the 26th of May 2014 at 18 UTC.
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Figure 5.9: Observed Mean Reflectivity in the MUC domain on the 26th of May 2014
(cf. Figure 5.10). The lowest observed value is the lower threshold of 5 dBZ.
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Figure 5.10: Observed reflectivity in the MUC domain on the 26th of May 2014 for every
3 hours (cf. Figure 5.9)
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5.3.2 Evaluation Measures

As in Chapter 2, the performance of convection forecasts with lead times of 3 hours will
be evaluated by the means of the composite reflectivity field. This field is created for
this study by a self-developed software that maps the unstructured radar observation
points (cf. Figure 5.6) onto the model grid. A brute-force algorithm is employed in
which all observations within a horizontal radius of 7.5 km around a single grid point
are averaged. The vertical maximum projects the interpolated three-dimensional volume
reflectivity onto the two horizontal dimensions. Figure 5.10 shows a typical product of
this algorithm – the coarse structures are a result of the prior 10 km averaging of the
superobservations.

The Displacement and Amplitude Score (DAS) and the Structure, Amplitude, Loca-
tion (SAL) score (Section 2.4.2) are computed on the composite reflectivity fields that are
thresholded above 20 dBZ. For DAS, both the displacement error component (DAS-DIS,
cf. Section 2.4.2) and the amplitude error component (DAS-AMP) are shown. DAS-
AMP (Keil and Craig, 2009) is the sum of AMPobs and AMPfct. AMPobs is the RMS
difference between the observed rain field and the forecast rain field that is morphed
onto the observed field, and is therefore sensitive to rain objects that are missed by the
forecast. For AMPfct, the morphing is the other way around, and it is therefore sensitive
to rain objects that are falsely predicted by the forecast. DAS-AMP can be regarded as a
mixture of the categories miss rate and false alarm rate (see Wilks, 2006). Additionally,
the Fraction Skill Score (FSS) is applied. Like the DAS, the FSS (Roberts and Lean,
2008) takes into account that there are necessarily some location errors in rain forecasts
that could be counted as double penalties, even when the displacement of the forecast
feature is only one grid point away from the observed location. To prohibit this, the
observed and forecast rain-fields are thresholded (here the 20 dBZ contour is used) and
the agreement of the fractional coverage inside a spatial neighborhood (here 9 grid points
are used, resulting in a box size of around (25 km)2) is compared. An FSS-value of 1
denotes a perfect forecast with respect to the chosen threshold and neighborhood size.

The noise-measures of Chapter 3 are evaluated during the cycling for all experiments
to see whether a connection between analysis noise and forecast error can be made as in
Zeng and Janjić (2016). The masking algorithm defined in Section 3.3 is applied to the
three-dimensional reflectivity observation field on the model grid, with a vicinity distance
of 45 km around grid points that have an observed reflectivity larger than 5 dBZ. The
number of points in the masks is shown in Figure 5.12. As a traditional measure, the
forecast RMSE, spread and bias (cf. Section 2.2.7 and Section 4.4) of reflectivity and
radial velocity observations are shown.

5.4 Results

5.4.1 Quantitative Precipitation Forecast Results

Here the results of the Quantitative Precipitation Forecast (QPF) scores are presented.
For ensemble experiments, the scores are computed for every member separately and then
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Figure 5.11: Number of radar observations in the MUC domain on the 26.5.2014 by type.
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Figure 5.13: FSS of the COSMO-MUC experiments (threshold of 20 dBZ, neighborhood
size of 25 km). Vertical lines represent the start-times of 3-hour forecasts.

averaged.

Influence of LHN

First, MUC NudgNoLHN is compared to MUC NudgLHN. In the FSS (Figure 5.13), it is
apparent that short lead times (up to 1 or 2 hours) of the 3-hour forecasts benefit from
the prior influence of LHN. Within 3 hours this advantage of MUC NudgLHN may be
lost, indicated by a convergence with the FSS-value of MUC NudgNoLHN (e.g. at 14,
18, 20 UTC). The bias (Figure 5.14) shows that this behavior is not due to a continuous
systematic difference in convection amount between the two experiment, since sometimes
MUC NudgNoLHN has more convection present, and sometimes MUC NudgLHN. DAS-
DIS (Figure 5.15) shows that LHN improves the positioning of the convection in short
forecast lead times, but within most 3 hour forecast windows, this benefit is lost. For the
mature and late phase of the convection between 15 and 0 UTC, DAS-AMP (Figure 5.16)
indicates a beneficial influence of LHN on misses and false alarms that holds throughout
the 3 hours of forecast lead time.

Influence of radar assimilation in ensemble experiments

As with the comparison of deterministic LHN against NoLHN, the influence of radar ob-
servations in the ensemble experiments are evaluated now. In the FSS (Figure 5.13),
the experiments with assimilation of reflectivity (MUC Ens Refl and MUC Ens Re-
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Figure 5.14: Forecast bias (SAL-A, cf. 2) of the composite reflectivity field.
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Figure 5.15: As Figure 5.13, for the DAS-DIS component (threshold of 20 dBZ, search
radius of 45 km).
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Figure 5.16: As Figure 5.13, for the DAS-AMP component (threshold of 20 dBZ, search
radius of 45 km).

flWind) exhibit a better performance than experiments without assimilation of reflectivity
(MUC Ens Conv and MUC Ens Wind), especially for short forecast lead times. This is
expectable, since the FSS is computed using the composite derivative of the assimilated
volume reflectivity field. At the end of the 3 hour forecast windows, the advantage is lost
and the FSS scores of the ensemble experiments have mostly converged. SAL-A (Fig-
ure 5.14) indicates that between 18 and 00 UTC, there is less negative bias in the amount
of convection if only radial velocity is assimilated and reflectivity is not (MUC Ens Wind
compared to MUC Ens ReflWind). This concurs with the findings of Bick et al. (2016)
who diagnosed a lack of rain in forecasts that were initiated after the thresholded reflec-
tivity had been assimilated. As a possible reason, it was suggested that the suppression of
spurious convection due to assimilating no-reflectivity observations could damp the evolu-
tion of the truly observed storms in the forecast members. DAS-DIS (Figure 5.15) shows
even clearer than the FSS that short lead times benefit from the assimilation of reflec-
tivity with respect to the positioning of the storms. A convergence towards the ensemble
experiments without radar data after 3 hours is again apparent. When MUC Ens Re-
flWind is compared to MUC Ens Refl, it is apparent that the addition of radial velocity
to the assimilation of reflectivity does not yield significant benefits in the 3 hour forecasts
of this convective case, with respect to the presented measures. DAS-AMP (Figure 5.16)
does not show significant differences between the ensemble experiments.
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Deterministic nudging compared to ensemble data assimilation

MUC NudgNoLHN and MUC Ens Conv use the same observation set where radar data
is excluded in the MUC domain. It can be seen that the positioning of the convection
is better in the MUC Ens Conv members than in MUC NudgNoLHN run, especially in
the phase where convection triggers locally inside the MUC domain (FSS and DAS-DIS
between 9 and 18 UTC). SAL-A shows that this goes in hand with a larger negative bias
of MUC NudgNoLHN between 12 and 18 UTC. In the decaying phase between 18 and 0
UTC, this bias behavior is reversed. Overall, the ensemble experiment MUC Ens Conv
appears to make better usage of the conventional data for the assimilation of convec-
tion than the MUC NudgNoLHN experiment (see also DAS-AMP in Figure 5.16). As
a second possibility, the boundary data from DE Ens Refl could be more accurate than
to the boundary data from DE NudgLHN, but only if convection or convective triggers
are advected from the boundaries after they have been assimilated in the surrounding
COSMO-DE domain. Since this is not really the case for the stationary convergence line
of this case, it can be regarded as a negligible effect for this particular day.

LHN compared to radar assimilation in ensemble experiments

Now it is tested how beneficial LHN is when compared to the ensemble assimilation of
radar data. Comparing MUC NudgLHN to MUC Ens Refl and MUC Ens ReflWind, the
forecast performance of convection location (FSS in Figure 5.13 and DAS-DIS in Fig-
ure 5.15) is generally better in the ensemble data assimilation system. This is especially
true for the rapid growth phase between 12 and 15 UTC where there is a negative bias in
MUC NudgLHN (Figure 5.14) and its FSS, DAS-DIS and DAS-AMP (Figure 5.16) scores
are comparatively bad.

5.4.2 Verification using radar volume observations

At the start of the 3-hour forecasts, the ensemble experiments which assimilate reflectivity
(MUC Ens Refl and ReflWind) have the lowest RMSE and spread for volume reflectivity
observations (Figure 5.17). By the end of the forecasts, their error has converged with
MUC Ens Conv, while the spread in the reflectivity space is still smaller. MUC Ens Wind
is the ensemble experiment with the largest error in the reflectivity observations. The
nudging experiments are worse for reflectivity than the ensemble experiments, wherein
MUC NudgLHN has a lower RMSE than NudgNoLHN throughout the whole forecast.
The fact that MUC NudgLHN still has a much larger error than the ensemble experi-
ments is probably due to the fact that LHN only assimilates a two-dimensional rain field
(cf. Figure 5.10) while the ensemble experiments assimilate the full three-dimensional
volume data of the radars (cf. Figure 5.5). All experiments exhibit a negative bias in
reflectivity which is least severe for MUC NudgNoLHN at the end of the 3-hour forecast
and for MUC Ens Wind at the beginning. This indicates that both LHN and ensem-
ble assimilation of reflectivity have an overall suppressing influence on the hydrometeor
density in the model, assuming that the model and the observation operator are mostly
unbiased.
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Figure 5.17: Forecast RMSE, spread and bias against observations of radar reflectivity
(RREFL, in dBZ) of the MUC experiments. Results are averaged over all 3 hour forecasts.

0 20 40 60 80 100 120 140 160 180
Forecast Leadtime after initialization

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

RADVEL (RADAR None)   ,   1000.0 to 200.0 hPa
2014-05-26 03:00:00 to 2014-05-27 00:00:00

MUC ReflWind RMS
MUC ReflWind FG Spread
MUC ReflWind Bias
MUC Refl RMS
MUC Wind RMS
MUC Conv RMS
MUC NudgLHN RMS
MUC NudgNoLHN RMS

Figure 5.18: As Figure 5.17, for observations of radial velocity (RADVEL, in m s−1).



5.4 Results 125

0:00:00 0:08:20 0:16:40 0:25:00 0:33:20 0:41:40 0:50:00 0:58:20
Hourly Forecast Time (minutes)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
a
/s

Surface Pressure Tendencies (MUC domain average)

MUC Ens ReflWind
MUC Ens Refl
MUC Ens Wind
MUC Ens Conv
MUC NudgLHN
MUC NudgNoLHN

Figure 5.19: Surface Pressure Tendencies for MUC Experiments. The ensemble (MUC
Ens) experiments are averaged with respect to their 15-minute assimilation windows
within the hourly analysis update of their boundary experiments (DE Ens Refl). The
nudging (Nudg) experiments are averaged for every 3-hour window since they continu-
ously assimilate observations (only the first hour is shown).

At the start of 3-hour forecasts, the ensemble experiments which assimilate radial
velocity (MUC Ens Wind and ReflWind) have the lowest RMSE for radial velocity (Fig-
ure 5.18). Any addition of reflectivity observations increased the initial error in the radial
wind space. By the end of the forecasts, the error has converged with MUC Ens Refl and
Conv. The performance of MUC NudgLHN and NudgNoLHN is initially similar to Muc
Ens Conv and Refl, but becomes worse than all ensemble experiments at the end of the
forecast windows. Despite the fact that LHN makes no use of radial velocity observations,
the error of MUC NudgLHN is generally smaller than of MUC NudgNoLHN. This could
be related to circulation patterns induced by the LHN-forced convection that are closer
to the truth than in the absence of LHN-forcing.
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Figure 5.20: Wabs for MUC Experiments on the pressure level of 850 hPa. The ensemble
(MUC Ens) experiments are averaged with respect to their 15-minute assimilation win-
dows within the hourly analysis update of their boundary experiments (DE Ens Refl).
The nudging (Nudg) experiments are averaged for every 3-hour window since they con-
tinuously assimilate observations.

5.4.3 Abundance of vertical motion

Figure 5.19 shows the surface pressure tendencies for the MUC experiments during the
assimilation cycling. The nudging experiments exhibit the smallest deviations from hy-
drostatic balance, and the activation of LHN does not increase the signal strongly. For
the ensemble experiments, the surface pressure tendencies increase when radial velocity
or reflectivity is added to MUC Ens Conv It is remarkable that dps/dt of MUC Ens Wind
and MUC Ens Reflwind are very similar, which indicates that the addition of wind obser-
vations to the reflectivity observations does not increase the imbalance in this particular
diagnostic. After the 15 minute forecast window, the noise signal of all ensemble exper-
iments has decayed towards the nudging experiments. This means that the assimilation
interval was chosen in good accordance with the results of L32SOCG20 in Chapter 3.
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Absolute amount of vertical motion

Figure 5.20 shows Wabs from Equ. (3.1) of Section 3.2 for all six MUC experiments. The
15-minute oscillation pattern is caused by the BCs which are updated every 15 minutes.
The reference experiment is MUC NudgNoLHN which does not use any radar data inside
the MUC domain. It has the lowest values of Wabs. Since dry noisy waves and deep
convection are both contained in Wabs, the low values in MUC NudgNoLHN can be
attributed solely to the absence of noisy forcing by LHN, since the amount of convection
in MUC NudgNoLHN is very close to MUC NudgLHN on average (cf. Figure 5.14).
The Wabs values of MUC NudgLHN are the largest of all experiments. In the inter-
comparison of the MUC Ens experiments, MUC Ens Refl has the largest noise level.
When radial velocity is added (MUC Ens ReflWind), this noise is significantly damped.
Likewise, the addition of radial velocity observations (MUC Ens Wind) to the assimilation
of conventional data (MUC Ens Conv) has again a damping effect. This, together with
the behavior in the surface pressure tendencies, partly answers the question posed in the
introduction: Wind observations appear to cause less imbalance than rain observations.

In terms of the scaling relationship (5.9), the wind observations appear to have a
correcting influence on the associated circulation. They are assimilated with a localization
length scale of 16 km, which has a cut-off length of 30 km that is in the range of the
estimated 40 km in the scaling relationship, but overlapping analyses may contain wind-
patterns of even larger scale, opposed to the point-like updrafts that are observed by
reflectivity. The mere forcing of small-scale updrafts due to LHN, whose scales are on
the order of a few ∆x of the model (Stephan et al., 2008), has a strong influence on the
excitation of divergent patterns that necessarily underly the field of Wabs.

Vertical Motion in Masked Regions

The masked noise measures of Chapter 3 are evaluated here to further tackle the ques-
tion which influence the observation types have on the dynamical balance, as posed in
Section 5.1.

In the masked regions of the MUC domain, the variance of different model variables
(horizontal wind U , temperature T , vertical velocity W , reflectivity REFL, horizontal
divergence HOR DIV , rain mixing ratio QR) is computed as for W in Equs. (3.4) and
(3.5). Figure 5.21 shows var(X) for different variables X in the storm-inner region during
the cycling, and Figure 5.22 shows varens(X).

var(U) (Figure 5.21) is generally smaller when radial velocity is assimilated, which
is expectable, since U is a direct component of the radial velocities for most directions.
varens(U) and varens(T ) (Figure 5.22) are largest when no radar data is assimilated, and
smallest when all radar types are assimilated, which can be attributed to the number of
observations that decrease the ensemble spread. var(T ) is similar for all experiments.

The results for REFL are qualitatively similar to QR. When reflectivity is assimi-
lated, var(REFL) is largest and varens(REFL) is smallest. Assimilating radial velocity
in MUC Ens Wind decreases the spread varens(REFL) with respect to MUC Ens Conv,
which is caused by increments due to ensemble covariances between wind and hydrome-
teors (cf. Figure 5.1).
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Figure 5.21: Variance of U , T , W , REFL, HOR DIV , QR, for grid points inside an ob-
served reflectivity larger than 5 dBZ for COSMO-MUC ensemble experiments (averaged
over all ensemble members) during the cycling on 26.5.2014.
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Figure 5.22: As Figure 5.21, now for mean pointwise ensemble variance.
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The results for W are qualitatively similar to HOR DIV . var(W ) is largest and
increased at every analysis step when reflectivity is assimilated. These increments are
caused by ensemble covariances between hydrometeors and vertical velocity (cf. Fig-
ure 5.1). For MUC Ens Wind, var(HOR DIV ) is smallest which hints at the damping
effect of radial winds that was already indicated in Figure 5.20. The increments of
var(HOR DIV ) in MUC Ens Wind are smaller than in MUC Ens Conv, which is an-
other sign that assimilating radial velocity has either a damping effect or does not overly
excite vertical and divergent motion. This conclusion is supported by varens(HOR DIV )
which is smallest when radial velocity is added to reflectivity in MUC Ens ReflWind.
For the vicinity space (not shown), the variance results of the ensemble experiments are
similar in the same manner as for the inner space (Figures 5.21 and 5.22). For the space
distant to the convection, no significant differences were visible between the experiments
(not shown).

Differences between nudging and ensemble data assimilation

When comparing the nudging experiments with the ensemble DA experiments, it makes
sense to first look at the unmasked, domain-wide mean values of model variables, as shown
in Figure 5.23. U and T are not solely associated with convection. The mean value of U
in the nudging experiments is larger than in the ensemble experiments, while the mean
value of T is smaller. This already indicates that due to the differences in boundary
conditions and data assimilation, the nudging experiments assume a slightly different
meteorological situation than the ensemble experiments. Regarding REFL and QR in
Figure 5.23, the onset of convection is delayed with respect to the ensemble experiments
and happens only slightly earlier when LHN is active. The analysis increments for REFL
and QR are generally positive in the ensemble experiments, especially between 9 and 17
UTC and even for MUC Ens Conv. This means that the LETKF is more effective in
generating additional convection than LHN and nudging are.

The unmasked variances are shown in Figure 5.24. The main difference between
nudging and ensemble DA is again the delayed onset of rain (REFL and QR). The
maximum variance of W in MUC NudgLHN is twice as large as for MUC Ens ReflWind
and is delayed by 3 hours. This underlines the impression of Figure 5.20 that LHN
introduces more vertical fluctuations in the dynamics – at least with the presently chosen
DA settings.

5.5 Summary and conclusions

The aim of this Chapter was to investigate the influence which the assimilation of radar
observations of reflectivity and radial wind have on the model state and the performance
of QPF.

An ensemble version of nested local model COSMO-MUC was developed for this pur-
pose, as well as an augmented cycling environment for the KENDA system. Experiments
were performed with ensemble data assimilation of conventional observations and radar
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Figure 5.23: Domain mean values of U , T , W , REFL, HOR DIV , QR for COSMO-MUC
ensemble experiments (averaged over all ensemble members) and nudging experiments
during the cycling on 26.5.2014.
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Figure 5.24: Variance of U ,T ,W ,REFL,HOR DIV , QR, for all grid points, for COSMO-
MUC ensemble experiments (averaged over all ensemble members) and nudging experi-
ments during the cycling on 26.5.2014.
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data and with the deterministic nudging scheme together with LHN of radar-derived pre-
cipitation observations. The ensemble data assimilation was set up as a combination of
the KENDA settings from Chapters 2 and 4. During the cycled data assimilation, the
noise measures developed in Chapter 3 were applied and the reaction of the model on
the different DA-schemes was assessed. One day in May 2014 was chosen as a multi-case
study throughout the diurnal cycle of a stationary convective line along a low level con-
vergence line. Five forecasts with a lead time of 3 hours were performed and assessed
in terms of quantitative precipitation forecast skill and in terms of observation space
statistics for reflectivity and radial wind.

The forecast error of the ensemble experiments was mostly smaller than the forecast
error of the deterministic nudging experiments with LHN. This was especially dominant
in a phase between 12 and 15 UTC where the convection in the domain was triggered
and grew rapidly. Adding radar observations to the conventional observations proved
helpful for the first 1 or 2 hours of forecast lead time in the ensemble experiments, which
is in accordance to the findings of Chapter 2. In the same way, the prior application of
LHN proved helpful for the forecast skill in the nudging experiments. The LHN caused
oscillations of the vertical velocity and horizontal divergence that exceeded even the
ensemble experiments that assimilated all radar data. These oscillations can be regarded
as spurious gravity waves with dry and moist dynamics, since the absolute amount of
convection was comparable to the nudging experiment that did not apply LHN. By
applying EnKF-increments, the ensemble experiments experienced an introduction of
non-hydrostatic noise which appeared as non-damaging to the model state consistency,
as predicted by the experiment L32SOCG20 in Chapter 3. In the ensemble experiments,
the additional assimilation of radial velocity observations had a damping effect on the
intensity of vertical oscillations, compared to the assimilation of reflectivity only. This
supports the conceptual model of observation type influence (cf. Section 5.1) wherein a
precipitating storm core is coupled to a circulation of horizontal winds and vice versa.
Still, the absolute quality of the recovered associated circulation could not be assessed
by the means of this real data case in which the true state was unknown. Idealized
experiments with convective cells that are quasi-stationary in space and time such as
in Bretherton and Smolarkiewicz (1989) could bring insight on how effectively ensemble
covariances of precipitating cores can recover the associated circulation, in comparison to
the model response on a LHN forcing. An independent variation of the localization radius
for the two observation types could bring insight on the scales of their spacial influence
and correlation structure (Sobash and Stensrud, 2013).

With respect to the influence of the model noise on forecast errors, no conclusions
could be drawn due to two reasons. On the one hand, the number of cases was too small
for proper statistics. One the other hand, the true amount of convection and vertical
oscillations was not known since it was not observed directly. Additional Observation
System Simulation Experiment (OSSE) in an idealized framework or with a nature run
for real cases as the present one could bring clarity.

A further limitation on the interpretation of the results is the unknown influence of
the boundary conditions on the forecast skill and overall model state in the inner domain.
Statistics of the mean model states showed that the deterministic nudging experiments
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converged towards a slightly different meteorological situation than the ensemble exper-
iments. This could already be a reason for the different behavior, e.g. the time of the
onset of the main convection and its dynamical development, or the propagation direc-
tion. It could be helpful to rerun similar experiments with instances of COSMO-DE and
ICON boundaries which use the ensemble mean as a BC for the nudging experiments,
in order to have the deterministic state centered within the ensemble members. In the
quantitative precipitation forecast, only an inner part of the domain should be evaluated
that is far away enough from the model boundaries. For example, a frame of 150 km
could be cut away in 3-hour forecasts for a typical advective wind speed of 50 km/h.



Chapter 6

Summary and Discussion

The aim of this thesis is to expose some of the difficulties that come with ensemble data
assimilation of convection. These include the problem of convective predictability in
dependency of the spatial scales that are updated by the DA, the quantification of gravity
waves and spurious convective cells caused by the application of rigorous analysis schemes,
the role of the convective environment and how it can be corrected with additional aircraft
observation data, and the question which influence the Doppler radar observation types
of wind and reflectivity have on the dynamical balance of the forecast model.

In Chapter 2, analysis schemes were devised that used a different amount of observa-
tion information when performing analysis updates of idealized convective cells. Obser-
vations were drawn from a reference nature run either on the model resolution of 2 km
or on a coarse-grained resolution of 8 km, and they were used with a localization length
scale that limited the spatial influence to distances of 8 km and 32 km, in temporal as-
similation intervals of 5 and 20 minutes. It was hypothesized that within a lead time of
a few hours, the quality of forecasts from very precise analyses with small errors would
converge to the quality of forecasts from rather coarse analysis schemes with larger er-
rors. The expected reason for this convergence was that small-scale errors grow faster
than large-scale errors, until both saturate at a certain level. This expectation was met,
and forecasts from a fine-scale analysis scheme only had a better performance for roughly
40 minutes of forecast, when compared to the coarse-scale analysis scheme. This means
that there is indeed a limit on how precise an analysis needs to be, depending on the
range of forecast lead time that is aimed at. In the simplest consequence, this means
that the computational effort can be limited to reach only a certain accuracy, and the
development of an operational DA system can focus on problems that are more pressing,
such as model error and deficiencies of the spread of operational ensembles.

The main reason for the rapid decay in forecast quality described in Chapter 2 was
identified to be the appearance of spurious convection in the forecast from the fine-scale
analysis. The occurrence of spurious convective cells in an environment with consider-
able convective inhibition such as the Payerne sounding is a binary event and a major
forecast error as such, compared e.g. to a forecast error that merely consists of a change
in shape or position of a previously observed and analyzed storm. Following this con-
sideration, Melhauser and Zhang (2012) developed a distinction between practical and
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intrinsic predictability of convection. The practical predictability is related to errors in
the initial conditions which can lead to a wrong forecast of a stable convective mode, but
if these errors are reduced, the forecast catches the correct convective mode. This error
could e.g. be a convergent wind pattern in the analysis state which has a scale of order
100 km and leads to the occurrence of a Mesoscale Convective System in the forecast
– but neither the wind pattern occurred in reality, nor did the resulting storm. The
intrinsic predictability is defined by the growth of errors that are at least a magnitude
smaller than those related to the practical predictability and which may still lead to a
bifurcation in the forecast (Lorenz, 1969). These errors could consist e.g. of a pattern of
temperature-variability on the scale of the grid resolution and with an amplitude on the
order of 0.1 K, which through chaotic error growth leads to the occurrence of a convective
storm – a storm that does not appear in another experiment with a similar temperature
perturbation field which only differs by its spacial pattern. Following this concept, the
perturbations in the rigorous fine-scale scheme L8 that grew into spurious cells should be
regarded as an artifact of the parameter choices in the data assimilation, thereby mainly
affecting the practical predictability of the convective situation instead of the intrinsic
predictability that had been targeted by the Chapter’s hypothesis. In the presented con-
vective situation, the intrinsic predictability should be assessed rather with perturbations
of very small amplitude as was done in Selz and Craig (2015) and Zhang et al. (2016).

The DA settings of Chapter 2 could be criticized as too rigorous when compared to
less strict spatio-temporal parameter sets of (pre-)operational EnKF systems that pur-
sue to produce ensemble forecasts of severe convection by assimilating real observation
data (e.g. the Warn-on-Forecast system described in Wheatley et al., 2015; Jones et al.,
2016). The resulting noise which was characterized in this study could therefore be a phe-
nomenon that rarely occurs in well-tuned operational systems and is otherwise seldom
documented due to a generally success-driven tendency in scientific publishing. Still, it
is possible that even well-tuned assimilation schemes disturb the forecast model in previ-
ously unaccounted meteorological situations, and it is therefore necessary to meticulously
explore all corners of the parameter space in convective DA. Thus, the aim of Chapter 3
was to quantify the noise and dynamical imbalances caused by a rigorous assimilation
scheme. As a first measure in the previous chapter, surface pressure tendencies indi-
cated that a larger abundance of non-hydrostatic oscillations was present in the fine-scale
scheme. In the next step, the coupling of cold pools and newly triggered convection was
quantified by a newly developed spatio-temporal correlation algorithm, and it was shown
that this particular coupling was disrupted by the occurrence of spurious convective cells
that were uncoupled to the analyzed cold pools. While the coupling-properties will vary
for different convective modes and the cold pools may not be as well-observed as the pre-
cipitation of new cells, the method of cold pool-coupling may still provide a quantitative
guide line on whether the assimilation scheme produces dynamically reasonable model
states of Mesoscale Convective Systems. As a second method, the abundance of vertical
motion was quantified inside and outside of the storms by computing the variability and
ensemble spread, thereby also providing a quantitative measure for the balance in the
model (as done for an ocean model in Waters et al., 2016).

In possible follow-up studies, methods and DA-algorithms that may alleviate the
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noise-production in convective DA should be assessed by the means of the quantifications
that were successfully developed in Chapter 3. The following methods and ideas can be
grouped into different categories. In the first group, considerations are made on how the
dynamical properties of the forecast models can be respected when computing or post-
processing the analysis. The algorithm of hydrostatic balancing of analysis increments
(Rhodin et al., 2013) might reduce the noise that projects into surface pressure tenden-
cies. The development of a transformation of variables into a hypothetical balanced space
of convective updrafts (as done for hydrostatic global models by Kepert, 2009; Hamrud
et al., 2015) could be a possible approach. General dynamical recipes against initializa-
tion noise are offered by the Digital Filter Initialization (DFI) scheme developed by Lynch
et al. (1997), which reduces the effect of insertion shocks by filtering dynamical oscilla-
tions below a certain frequency, and the Incremental Analysis Update (IAU) technique
(Bloom et al., 1996), which tries to avoid insertion shocks by distributing the analysis
increments over a time-window, in contrast to the intermittent update approach of this
study. Both techniques have proven successful for global models and also for mesoscale
QPF forecasts (e.g. Peng and Zou, 2010), but it is not certain whether this approach
is applicable for convective DA. In the second group of methods, statistical approaches
are developed that intend to cure the problem of dynamical imbalance as a side-effect of
the properties of the background and observation error distributions into account more
consistently. It is possible that the noise level is sensitive to the degree of relaxation
towards the background forecast in the analysis step (RTPP, Zhang et al., 2004), and a
trade-off between precision and noise content of the analysis may exist. A combination of
relaxation methods with the multi-pass Running-In-Place algorithm (Kalnay and Yang,
2010; Wang et al., 2013) could then increase the precision of the analyses while keeping
the noise-level of individual update steps low. An inflated observation error covariance
matrix, as done in Lange (2013), may alleviate detrimental effects in the analysis update
that are caused by the non-Gaussianity of hydrometeor observations. A sophisticated ob-
servation error model, as presented in Harnisch et al. (2016) for satellite radiances, may
provide an even better solution to account for the non-normal distribution of innovation
statistics. Besides approaches that transform non-Gaussian probability density functions
into a Gaussian form during the update step, the direct consideration of higher statistical
moments (Hodyss, 2012) such as skewness and kurtosis could prove useful especially in
the case of the non-Gaussian nature of clouds and convection. In the third group of meth-
ods, dynamical considerations are mixed with a statistical approach to constrain the DA
solution to properties of the model state and dynamics. For example, the spatial structure
of ensemble spread presented in Chapter 3 indicates that the ensemble contains spurious
correlations on multiple scales. Since the imbalanced noise of the analysis updates is
related to the covariance localization, it could be worth to investigate the influence of
adaptive localization (as applied in Chapter 4) or more sophisticated methods like the
empirical localization functions developed by Anderson and Lei (2013). Scale-dependent
localization as proposed by Buehner and Shlyaeva (2015) may account for the different
dynamical scales that are associated to the convection itself and to the surrounding en-
vironment. A simple increase in ensemble size will help to reduce sampling noise on all
scales, or a simple spectral truncation could be applied to the background error covari-
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ance matrix as a first step. Other dynamical-statistical approaches are to constrain the
EnKF-solution with a variance limit (Gottwald, 2014), or to apply other algorithms that
intend to conserve quantities like energy and enstrophy (Zeng and Janjić, 2016).

In Chapter 4, ensemble DA experiments were performed with a pre-operational ver-
sion of KENDA for the COSMO-DE domain over Germany. It was discussed how the DA
parameters steer and limit the influence of the additional data, and experience was gath-
ered and documented that can help to better understand the effects of adaptive inflation
and of adaptive localization. It was verified that the additional aircraft observations of
the traffic control Mode-S are beneficial in the correction of the tropospheric profiles of
wind and temperature. Together with humidity, they constitute the convective environ-
ment, and therefore an improvement of convective forecasts is expectable when new data
sources are implemented analogously to the new developments of Chapter 4 (compare
e.g. the effect of a large number of targeted dropsondes in Hitchcock et al., 2016). In
further studies, a cross-validation of error reduction in the aircraft observation spaces
and a resulting error reduction in the QPF skill of thunderstorms should be performed,
either by data denial experiments or by using the observation impact method of Sommer
and Weissmann (2014).

The coupling of model state properties inside convective storms and in the surround-
ing environment was investigated in Chapter 3 in terms of noisy oscillations. Chapter 5
expanded this view by investigating the different influence of radar reflectivity and ra-
dial wind observations on EnKF analyses and ensemble forecasts. A conceptual model
was proposed which relates the influence of hydrometeor observations and the divergent
circulation driven by the associated latent heating in terms of these two observations
types. The setup used real observation data, as in Chapter 4, in the model domain of
COSMO-MUC which is centered around the Munich airport and nested into COSMO-
DE. The sub-cycling of multiple parallel experiments was implemented into KENDA for
this purpose. Radar data was assimilated in a dynamically consistent way, based on the
experiences gathered in Chapters 2 and 3, and 3-hour QPF were evaluated. During the
assimilation, a lower noise level in the storms and their environment was visible when
radial velocity was assimilated. It was concluded that the recovery of the convective
circulation was dynamically more consistent due to the observations of the actual wind,
as opposed to the recovery of the circulation by the means of ensemble covariances, and
opposed to the dynamical response of the model on the heating source in the updrafts.
The ensemble DA of radar data generally proved beneficial for the QPF skill and showed
some advantage over the previously used deterministic LHN scheme. In future studies,
more cases with different types of convective forcing (as in Craig et al., 2012) should be
evaluated to obtain robust statistics about the benefit of radar data and the different
subtypes of observations. Since the COSMO-MUC model is nested into COSMO-DE
with a smaller domain, it could provide a good testing ground for the increase of model
resolution. Horizontal resolutions down to the Large Eddy Simulation (LES) regime of
order 100 m could be used to study the difference in model error and, especially important
for DA purposes, the differences in model response to analysis increments from an EnKF
system. The noise-measures of Chapter 3 could be applied to find proper parameters for
radar data assimilation, such as localization lengths, covariance inflation and relaxation.
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At the time of this publication, a master’s thesis is being co-advised by the author,
in which the dynamical properties of the spurious convection is investigated to further
characterize the noise that is caused by the DA (see Chapter 3). Motivated by the work of
Torri et al. (2015), dynamical properties of the convective triggering in the nature run are
traced along the trajectories of Lagrangian particles. The same is done for the ensemble
forecasts of the DA experiments, in order to characterize the conditions and mechanisms,
such as perturbations of vertical velocity, pressure, and buoyancy, which lead to the arise
of erroneous and spurious convection. A distinction between dynamically consistent and
inconsistent triggering is sought, so that further measures can be developed to quantify
the dynamical consistency of analyses, in dependency of the algorithm and the parameters
of the DA. Further, an ongoing PhD project uses the technical framework of the idealized
setting of Chapter 2 that was developed by the author, which consists of the idealized
COSMO-setup with externally coupled observation operators and a proprietary cycling
environment. In this project, the distinction of practical and intrinsic predictability is
investigated in terms of the scales and amplitudes of DA-induced perturbations and other
error sources. For these different perturbations, error doubling times and the resulting
predictability limits are quantified, and situations of convective equilibrium are taken
into consideration. Also, the influence of external constraints on the predictability is
investigated, such as synoptic scale forcing or the influence of model orography, in order
to assess the prospects of convective scale DA for the forecasting of severe and potentially
hazardous convective phenomena.
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List of Abbreviations

AMDAR Aircraft Meteorological Data Relay

BC Boundary Conditions

CAPE Convectively Available Potential Energy

CIN Convective Inhibition

COSMO Consortium for Small-scale Modelling

DA Data Assimilation

DAS Displacement and Amplitude Score

DFI Digital Filter Initialization

ECMWF European Centre for Medium-Range Weather Forecasts

EnKF Ensemble Kalman Filter

FSS Fraction Skill Score

IAU Incremental Analysis Update

IC Initial Conditions

IFS Integrated Forecasting System

IGW Inertia-Gravity Wave

KENDA Kilometre-scale Ensemble Data Assimilation

LETKF Local Ensemble Transform Kalman Filter

LES Large Eddy Simulation

LHN Latent Heat Nudging
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MCS Mesoscale Convective System

NWP Numerical Weather Prediction

OI Optimal Interpolation

OSSE Observation System Simulation Experiment

QPF Quantitative Precipitation Forecast

SAL Structure, Amplitude, Location

SWM Shallow Water Model

WRF Weather Research and Forecasting
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