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1. INTRODUCTION 

1.1. Clinical relevance of ischemia reperfusion damage 

In patients that require liver surgery organ damage caused by ischemia (loss of organ 

perfusion) and subsequent reperfusion (I/R) play an important role regarding the 

outcome of the patient. I/R damage can occur after liver transplantation (LT), liver 

resection, liver trauma as well as after hemorrhagic or septic shock during which blood 

flow to the liver is also reduced. Liver transplants are the most common cause for 

hepatic I/R.  In 2013, Eurotransplant registered 1491 liver transplants from deceased 

donors that were performed in Europe - most of them in Germany. The number of livers 

needed was higher by 522 [Eurotransplant, 2013].  

Additionally, the shortages in livers for transplantations has led to increased use of 

alternatives to “classic” cadaveric LT (liver transplants) such as split (one part of the 

liver is given to an adult, a smaller part to a child), domino (from a patient with 

amyloidosis), or living related LTs. These alternative methods now account for 15% of 

all procedures [Adam et al., 2012]. Furthermore, there has also been increased use of 

livers from extended criteria donors [Durand et al., 2008].1 In these scenarios post 

procedural liver damage might be even more detrimental. 

During classic liver transplantation, the organ´s perfusion is completely disconnected 

from the patient’s circulation system (starting ischemia) and, after some time during 

which the organ is conserved in a cold solution, reconnected to the circulation (starting 

                                                        

1 Extended criteria donors normally mean that the patients suffered from steatosis, were no older 80 years, 

had serum sodium levels higher than 165mmol/L or had other criteria that resulted in a higher risk in 

comparison with a classic donor [Bruzzone, P., Giannarelli, D., Nunziale, A., Manna, E., Coiro, S., De 

Lucia, F., Frattaroli, F.M.,  Pappalardo, G. 

Extended criteria liver donation and transplant recipient consent: the European experience. 

Transplantation proceedings. 43 (2011) 971-973. ] 
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reperfusion). Early organ failures after LTs is one of the worst complications possible 

and ten percent of  early organ failures are attributed to ischemia reperfusion injury (I/R 

injury) [Fondevila et al., 2003]. 

Post-operative non-functioning of the organ caused by damage from I/R can lead to 

need for re-transplantation or even the patient’s death.  

Of 100 liver transplanted patients 61 live after 10 years. In 7% of the whole patient 

collective re-transplantation is needed [Adam et al., 2012].  

Failure of a transplanted liver is not only an extreme hardship on the patient, it also 

dramatically increases the associated costs. The Annals of transplantation estimated the 

mean cost of a liver transplantation in Germany at 52.570€. Any complications post 

transplantation increase the cost by at least 62%. Graft failure, which can be the result 

of I/R injury increases the cost by up to 227% [Lock et al., 2010]. 

The points discussed above are some of the various reasons why a better understanding 

of hepatic I/R is something to strive for. Additionally, I/R specific pathophysiological 

events do not only take place in the context of liver surgery but also to a similar extend 

in other organs such as the heart, kidneys and lungs so a better understanding of hepatic 

I/R might reveal management strategies for other organs as well.  
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1.1.1. Hepatic ischemia  

Looking more closely at the pathomechanism of ischemia we see that there are several 

processes that lead to tissue damage when the blood supply to an organ is compromised. 

Initially the oxygen which is predominantly used for aerobic glycolysis is depleted. In 

aerobic glycolysis metabolization of one mol of glucose results in 36 mole ATP 

(Adenosine tri phosphate)[Lehninger AL, 1993]. Without oxygen, anaerobic glycolysis 

is the main source of ATP which only offers 2 moles per every 1 mole of glycose. 

Because the ATP synthesis is now anaerobic, lactate is created, which leads to the 

acidification of the cell environment which is detrimental to most enzyme dependent 

processes. There is no alternate source of molecules for metabolism available at that 

point, so the concentration of energy rich phosphates continues to decline while the 

concentration of acidic metabolites increases.  

This in itself can make the cell environment inhospitable and even result in cell death. 

Longer ischemia times lead to greater hepatic damage [Gujral et al., 2001].  

 
Before the cells become necrotic they swell up due to the inability to keep up 

transmembrane electrolyte gradient, a process that requires a lot of energy (in form of 

ATP). This swelling of cells can then restrict capillary blood flow upon reperfusion 

which is known as “no reflow” phenomenon [Kloner et al., 1974]. Although there are 

more complex mechanisms to consider the vast amount of damage during ischemia can 

be attributed to hypoxia. 
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1.1.2. Hepatic reperfusion 

Restoring the blood flow initiates reperfusion which brings new nutrients and oxygen to 

the distressed tissue. Paradoxically reperfusion leads to additional cell death. This is 

known as the “reflow paradox” [Menger et al., 1992]. 

Several intra- and extracellular mechanisms are known to be involved in this process. 

One of the mechanism is caused by intracellular reduction of ATP to AMP during 

ischemia. This leads to accumulation of adenosine. To re-phosphorylate adenosine to 

adenosine-tri-phosphate (ATP), oxygen is required so the excess of adenosine is 

partially metabolized, which leads to accumulation of hypoxanthine (under anaerobic 

conditions). Without oxygen hypoxanthine, cannot be turned to xanthine. When the 

tissue is finally reperfused and reoxygenated hypoxanthine is quickly metabolized to 

xanthine, a process in which reactive oxygen species are created.  In part the “extra” 

damage is caused by the reactive oxygen species which can damage the DNA and other 

cellular structures but are also known to initiate other cascades that lead to cell death.  

These processes are in part driven by immunologic cells. Through activation of redox-

sensitive transcription factors a complex immunological response in the hepatic 

microvascular system involving pro-inflammatory cytokines and heightened expression 

of adhesion proteins is set in motion.  In contrast to hypoxia driven organ damage 

during ischemia, during reperfusion the damage is predominantly inflammation-

mediated.  
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1.1.3. Leucocytes in I/R injury 

The protagonists of inflammation dependent damage of hepatic I/R are leukocytes. 

There are several leukocyte subgroups that are involved in I/R: Neutrophil granulocytes, 

Kupffer-cells (hepatic macrophages) and as we will explore later, lymphocytes. Kupffer 

cells as well as activated neutrophils are especially active in the initial phase of 

reperfusion, as they create reactive oxygen species and other pro-inflammatory 

chemokines that promote I/R damage [Jaeschke et al., 1991, Wanner et al., 1996]. This 

spirals into a self-promoting process during inflammation: Damaged endothelial cells 

activating leukocytes that reciprocally cause more damage to the endothelial cell. 

Destruction of the endothelium increases tissue edema and negatively affects perfusion. 

Post-ischemia leukocytes are found in the hepatic sinusoids and also post-sinusoidal 

venules. 

It is unclear whether the intravascular or the already extravasated leukocytes are 

primarily responsible for immunogenic I/R damage [Jaeschke, 2006].  The leukocyte 

extravasation has several steps to it. Leukocytes interact with specific adhesion 

molecules expressed by the hepatic microvasculature endothelium.  In stress situations, 

these adhesion molecules, such as ICAM-1 (intercellular adhesion molecule 1) and 

VCAM-1 (vascular adhesion molecule 1) from the immunoglobulin superfamily are 

highly expressed leading to increased interaction. This mechanism is not specific to I/R 

injury and is seen in almost all inflammatory environments. 

“Homing” starts when leucocytes are captured by the endothelium. Endothelial cells 

(EC) express multiple selectins (like CD62P, CD62E) and adhesion molecules (see 

above) that interact in a characteristic on-off way with L-selectins and integrins on the 

leukocyte. This interaction causes the leukocytes to be slowed down. They are not 
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flowing freely in the vessel anymore but “roll” along the endothelium getting 

increasingly activated by cytokines, which were initially excreted by the post-ischemic 

tissue, now being presented in the glycocalyx of the endothelial cells. The activation of 

the leukocyte is G-protein mediated and causes a stronger bond between the endothelial 

cell and the leukocyte by means of LFA-1 (lymphocyte function associated antigen 1), 

β1/β2-integrins as well as the endothelial adhesion molecules of the Ig-family. Next, 

processes called intraluminal crawling and transmigration take place. The leucocyte 

crawls along the endothelial barrier to find a site of transmigration. The proteins LFA-1 

(see above) and MAC-1 (Macrophage antigen-1) play an important role here [Phillipson 

et al., 2006].  

The actual transendothelial and interstitial migration is not as well explored. In the 

subsequent phase of ischemia derived hepatic damage, leukocytes follow a gradient of 

chemokines (like IL-8, MIP-2, KC and CXC [Colletti et al., 1996, Li et al., 2004, 

Simonet et al., 1994]) that drive their migration. After the leukocytes passed the 

endothelial layer they migrate toward the inflammatory epicenter excreting enzymes 

like matrix metalloproteinases (also called gelatinases), which are suspected to play a 

vital role during hepatic I/R. Supposedly they are essential to facilitate leukocytes 

crossing the basal membrane. Studies where MMP-9 was inhibited showed ameliorated 

hepatic damage after I/R  [Hamada et al., 2008].  

But not just leukocytes contribute to hepatic I/R damage. Thrombocytes also seem to be 

involved in this process [Khandoga et al., 2002a].  Activated thrombocytes release 

oxygen- and nitrogen-radicals as well as other proinflammatory and procoagulatory  

mediators [Khandoga et al., 2003].  
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1.2. CD4 T-cells in I/R 

More recent studies showed that CD4+ T-lymphocytes, besides other leukocytes 

mentioned above, might also play a critical role in the development of hepatic I/R-

injury [Khandoga et al., 2006, Kuboki et al., 2009, Mende et al., 2014, Shen et al., 2009, 

Zhang et al., 2013].  

Analogous to other leukocytes, CD4+ T-cells (of which there are several identified 

subsets2) migrate through the hepatic parenchyma to the afflicted sites during the post-

ischemic inflammatory reaction after diapedesis [Khandoga et al., 2006, Schrage et al., 

2008]. There they can promote leukocyte recruitment via IL-17 as well as suppress it 

[Caldwell et al., 2005]. This in itself shows their ability to impact hepatic I/R. 

Historically, first signs of lymphocyte involvement in hepatic I/R were seen in 

experiments in a model of isolatedly perfused rat livers [Clavien et al., 1991]. A defined 

number of lymphocytes were added to the solution the liver was perfused with. What 

stood out was that the number of lymphocytes in the solution decreased over time, more 

so in liver tissues with longer ischemia times. Post-experimental immunofluorescence 

studies also showed T-cell infiltration into hepatic tissue. 

Later T-cell deficiency ([nu/nu] mice) was observed to lead to a reduction in hepatic I/R 

damage [Zwacka et al., 1997]. The hepatoprotective effect of lymphocyte absence was 

then reversed through adoptive transfer of CD4 and CD8 positive T-cells, showing these 

                                                        

2
 Type 1 T helper (Th1) cells which are responsible for cell-mediated immunity and phagocyte-

dependent protective responses by activating macrophages and type 2 T 
helper (Th2) cells which are responsible for strong antibody production, eosinophil activation, and inhibitio
n of several macrophage functions are the main classes of CD4 T-cells. Additionally regulatory T-cells, NK 
cells and certain cytotoxic T-cells can also express CD4. [Romagnani, S. 
Th1/Th2 cells. 
Inflamm Bowel Dis. 5 (1999) 285-294] 
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cells as the culprit.  In subsequent studies with “signal transducer and activator of 

transcription” (STAT)-deficient mice the role of Th1-lymphocytes in the induction of 

I/R damage could be demonstrated [Shen et al., 2003]. STAT represents a family of 

transcription factors that are activated by cytokine receptor stimulation through 

phosphorylation and then proceed to activate further cytokine-induced transcription 

factors upon translocation into the cell nucleus [Hoey et al., 1999, Wurster et al., 2000]. 

While the transcription factors STAT 1 through 6 have many different functions in 

angiogenesis, tumor suppression and immunosuppression, only STAT-4 deficiency 

leads to attenuated hepatic I/R injury  [Shen et al., 2003]. Th1-lymphocyte 

differentiation and proliferation is greatly depended on STAT-4 [Nishikomori et al., 

2002].  

Research targeted at CD4+ T-cells has found a protective effect of immunosuppressive 

drugs (like  CsA, FK506 und FTY720) on the allo-antigen-independent post-ischemic 

liver injury [Anselmo et al., 2002, Kawano et al., 1995] as well as reduction of hepatic 

post-ischemic damage in mice with reduced CD4 T-cells [Le Moine et al., 2000, Martin 

et al., 2010]. 

The findings mentioned above underline the role of CD4+ T-cells in hepatic I/R but do 

not clarify the processes involved. CD4 T-cells marked with immunofluorescent dye 

have been shown to accumulate in hepatic sinusoids and ,to a lesser extent, in post-

sinusoidal venules [Khandoga et al., 2006]. Their transendothelial emigration into the 

tissue has been shown to be dependent on the adhesion molecules ICAM-1 and VAP-1 

[Lalor et al., 2002] but also on several endothelial cytokines [Cinamon et al., 2001].   

Overall CD4 T-cells are not known to be an aggressive cell type: They do not produce 
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ROS or excrete proteolytic enzymes. They can, however, modulate neutrophil 

granulocyte-activity through IL-17 excretion [Caldwell et al., 2005] but also interact 

with these and other cell types: Interactions between CD4 T-cells and platelets3 as well 

as the sinusoidal endothelium[Khandoga et al., 2006] and interactions between CD4 and 

Kupffer cells [Hanschen et al., 2008] have been documented.  

Additionally, hepatic endothelial cells selectively express adhesion molecules like 

CD54 (ICAM-1) und CD106 (VCAM-1) as well as MHC- I and II, and the 

costimulatory molecules CD80 (B7-1), CD86 (B7-2) and CD40 (76) that potentially 

play an important part in endothelium-T-cell interaction [Lohse et al., 1996]. The 

endothelial cells are able to present previously endocyted antigens on MHC I and MHC 

II molecules – therefore acting as antigen presenting cells (APC) to CD4 and CD8 

lymphocytes [Bertolino et al., 2002]. Both the endothelial cells as well as the T-cells get 

activated by I/R related mediators (TNF-α und IL-6) and ROS [Hanschen et al., 2008]. 

Recently the interaction between CD4 + T-cells and another APC, the hepatic stellate 

cells (HSC) was observed in vitro [Langhans et al., 2014, Wu et al., 2012]. This 

supports the idea of their interaction in vivo, which was also alluded to in studies of 

viral hepatitis where NK-cells as well as CD8 and CD4 cells were found in proximity to 

HSC in fibrotic liver samples [Muhanna et al., 2008]. We assume that an interaction 

between T-cells (CD4+, NK cells, regulatory T-cells) and hepatic stellate cells (HSCs), 

is critical for inflammatory response, regeneration and fibrosis formation [Glassner et 

al., 2013, Muhanna et al., 2008, Muhanna et al., 2007] [Knolle et al., 2014].  

 

 

                                                        

3 30% of intravascularly adherent T-cells colocalize with thrombocytes, which suggests interaction. 



 

 

15 

 

 

1.3. Hepatic stellate cells  

HSCs are pericytes found in the space of Disse. They are also called hepatic non-

parenchymal cells (HNPCs) (Figure 1) or Ito-cells and they are the major cell type 

involved in liver fibrosis in response to liver injury [Bissell, 2010]. The name stellate 

comes from their dendritc ultrascructure. The cell’s dendrites stretch in the 

subendothelial space and serve to receive chemotactic signals. 

 HSC exhibit two states in which they behave very differently: Deactivated/quiescent or 

activated. In the quiescent cell status, these stellate cells have many vitamin A-rich 

droplets in their cytoplasm. A characteristic which helped distinguish them from other 

cells. Upon activation during injury, however, HSC lose the storage droplets, develop a 

comparatively larger rER with Golgi-apparatus [Friedman et al., 1985], produce 

microfilaments that appear beneath the cell membrane and turn into myofibroblast like 

cells [Enzan et al., 1999, Friedman, 2008]. 

Hepatic stellate cells express a multitude of receptors such as neurotrophin receptors 

[Cassiman et al., 2001], toll-like receptors (TLR) [Paik et al., 2003],  proteinase-

activated receptors [Gaca et al., 2002] and also CB receptors [Teixeira-Clerc et al., 

2010, Teixeira-Clerc et al., 2006] as well as a multitude of  cytokines and chemokines 

such as  IL-17 and CCL2 [Weiskirchen et al., 2014]. 

Especially activated HSCs have immune regulatory functions and are thought to exert 

an immunomodulatory effect on lymphocyte reactions in vitro [Langhans et al., 2014, 

Wu et al., 2012] [Kobayashi et al., 2003]and in vivo [Friedman, 2008, Yin et al., 2013]. 

APC features and even phagocytic properties have been observed [Jiang et al., 2009].  

In fibrotic murine livers lymphocytes were seen in proximity to HSCs, mainly in the 

periportal area and along fibrotic septa, which suggests a direct interaction. Interestingly, 
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hypoxia alters the sensitivity of HSCs to certain molecules such as chemotaxins 

through activation of HIF-1α and also regulates the expression of genes that are 

important for angiogenesis and collagen synthesis [Copple et al., 2011]. 

According to recent data in literature, HSC-T-cell interactions have varying 

immunomodulatory effects which strongly depend on the character/location of the 

inflammatory reaction. Indeed, HSCs are potent antigen-presenting cells (APC) and can 

activate NKT cells as well as conventional T lymphocytes [Winau et al., 2007]. Such 

activation would enhance the immune response after liver transplantation, accelerate the 

T-cell-induced I/R injury, and even increase the graft rejection rate. On the other hand, 

HSCs were also reported to prevent activation of naïve T-cells by dendritic cells or 

artificial antigen presenting cells in a cell contact-dependent mechanism [Schildberg et 

al., 2011]. The pathophysiological relevance of HSC-CD4+ T-cell interaction during 

hepatic I/R has not been investigated, so whether CD4+ T-cells interact with HSCs 

during I/R-induced inflammation remains unclear. We propose an interaction of these 

two cell types after hepatic I/R and believe a modulation of HSC activity can influence 

their interaction.  
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Figure 1 Morphology of 

hepatic stellate cells in 

normal liver. A: A hepatic 

sinusoid with stellate cells (in 

blue, indicated with arrows) 

within the sinusoidal

architecture. B: higher 

resolution drawing of stellate 

cells in the perivascular 

space. From Friedman SL, 

Arthur MJ. Reversing 

hepatic fibrosis. Science 

Medicine 8: 194–205, 2002 
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2. HYPOTHESIS 

The hypothesis of the following experimental study was that: 

1. Hepatic stellate cells (HSCs) interact with CD4+ T-cells during I/R of the liver 

and 

2. that modulation of HSC activity affects intrahepatic T-cell migration and T-cell 

dependent I/R injury.
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3. MATERIAL AND METHODS 

 

3.1. Preliminary remark 

The following experiments were performed from November 2008 to July 2012 at the 

Walter Brendel Zentrum and contributed to a published article [Reifart et al., 2014]. The 

grant to work with animals was approved by the government of Oberbayern, filed 

under: 55.2.1.54-2532-8-13. All experiments were carried out according to the German 

legislation on animal protection. 

 

3.2. Experimental model 

The majority of the experimental modalities used in our study are established 

procedures that have proven to be reliable interventions to assess the investigated 

effects. Only the western blot to show hepatic stellate cell activity and the 

pharmacological treatment of stellate cells are methods that were scarcely described in 

research literature. More detailed information on the different techniques are described 

below. 

3.3. Animals 

The animals used in these experiments were female 5- to 7-week-old wild type Charles 

river mice (Charles River, Sultzfeld, Deutschland), as well as GFP (green fluorescent 

protein) positive Cx3CR1(gfp/gfp) obtained from the European Mouse Mutant Archive 
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(Monterotondo, Italy). The mice weight ranged from 20 for 25 g and the dosages were 

adjusted accordingly. Within the facility the animals had regular 12-hour day-night 

cycles and were housed in groups of 3 to 5 mice per makrolon-cage. Water and regular 

food (Ssniff Spezialdiäten, Soest Deutschland) were always available and unrestricted. 

 

3.3.1. Anesthesia 

Narcosis was initiated with isoflurane inhalation anesthesia (Forene®, 

Abbott GmbH, Wiesbaden, Deutschland) at 5% of total gas volume, laughing gas (N2O, 

1,5l/min) and an inspiratory oxygen level of 35%. After approximately 20 to 30 seconds 

the animals were fully anesthetized. The subsequent surgery was performed with 

isoflurane levels turned down to 1 - 2% and 3 l/min flow (50% O2, 50% N2O) was kept 

steady. 0.1mg/kg buprenorphine was injected subcutaneously for additional analgesia. 

After the anesthesia took effect, the animals were fixed to a heated metal plate which 

served as surgical field. Throughout the experiments the body temperature was 

controlled intra-abdominally as reference to keep the temperature steady between 36 

and 37 degrees Celsius. This procedure was adhered to for all animals in this study. 

 

3.3.2. Surgical procedure 

3.3.2.1. Intra-peritoneal drug injection 

To ensure intraperitoneal and atraumatic intraperitoneal injection of the different 

substrates (vehicle, vehicle plus JWH-133, vehicle plus ACPA) the mice were put under 

isoflurane anesthesia as described above. We made a very small incision in the median 
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abdominal line to give way to a clear view of the linea alba. The abdominal wall was 

then pulled up with forceps to be able see the injection of the substances into the 

abdominal cavity without damaging the intestine. After injection, the small cut was 

sutured with one knot using Ethibond 2-0. 

 

3.3.2.2. Intra-arterial catheter placement 

The surgery always started with a small incision (1cm) on the mouse`s throat giving 

way to access the left carotid artery after bluntly dissecting the fat tissue and thyroid 

gland. 

The carotid artery was then marked and ligated cranially to improve accessibility. This 

operation was performed at a micro-surgical work station using an operation 

microscope (Leitz, Wetzlar, Deutschland) that allowed magnification of the operation 

field by 5 to 42 times.  Then the artery was clipped caudally. A small incision was made 

to allow a polypropylene catheter (inner diameter 0,28mm, Portex, Lythe, Great Britain) 

to enter the vessel lumen. The catheter was then fixed with two ligatures. Afterward the 

clip was removed allowing real-time measurement of mean arterial pressure, as well as 

a way for continuous intravenous administration of 0,2ml/g (body weight) /h saline 

solution (0,9%) to compensate for volume loss due to bleeding and perspiration. The 

mean arterial pressure was then continuously registered by a transducer (Statham 

Transducer Typ P 23 ID, Statham Instruments Inc., Oxnard, USA) and an electric 

manometer (Press. Ampl. 863E154E, Siemens Medizinische Technik, München, 

Deutschland), which allowed measurements in mmHg. These measurements, as well as 

temperature measurements were displayed on a workstation computer und saved for 
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eventual analysis. 

The intra-arterial catheter was also used to inject, CD4 positive, T-cells and fluorescent 

dye. Upon completion of the experiment blood samples were taken from the site where 

the carotid catheter had been removed. The mean amount of blood was about 1mL.  
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3.3.2.3. Reversible partial liver ischemia 

After a median laparotomy, reversible warm liver ischemia was induced by clipping the 

left liver lobe with a 11mm straight Yarsagil Aneurysm Clip (Medicon®), clamping the 

supplying nerve vessel bundle[Biberthaler et al., 2001b]. The laparotomy was then 

closed with 5-0 polyester sutures to prevent the liver and bowels from drying out and 

heat loss. The mean time from the start of the operation till ischemia was 20 minutes. 

90-minute warm ischemia was monitored by mean arterial pressure and intraperitoneal 

temperature sensors.  

Figure 2 Murine anatomy. The mark of the clip placement shows the dominant 

left liver lobe. Note that only female animals were used in the experiments.

Modified from: Margaret J. Cook, The Anatomy of the Laboratory Mouse, 54. 

Abdominal viscera. [http://www.informatics.jax.org/cookbook/figures/figure54.shtml] 
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3.3.2.4. Reperfusion 

After a 90-minute period the abdomen was reopened and the clip removed, restoring 

blood-flow to the left liver-lobe. The total reperfusion time was 120 minutes. Sham-

operated animals underwent the same procedures with the difference of a short (3 sec) 

clamping of the left liver lobe instead of full ischemia. All other procedures were the 

same. They were monitored under anesthesia for a total time of 230 minutes (20minutes 

+90minutes +120minutes).  

3.3.3. Isolation and labeling of CD4+ T-cells 

 For the intravital microscopic studies, CD4+ T-cells were isolated from spleens of 

syngeneic mice (C57/BL6). In order to do this the mice were anesthetized in the manner 

mentioned above. A median laparotomy gave way to access the spleen which was then 

carefully extracted to minimize the amount of peri-splenic fat and vessel tissue 

extracted. The spleen was then homogenized with a S24 glass pestle homogenizer 

adding 3ml of a buffer solution (DPBS, no Mg, no Ca²+, 2mM EDTA, 2,5ml albumin 

5% solution in 500ml). In the next step the T lymphocytes were isolated with the 

MACS® Separation System (Miltenyi Biotec, Bergisch-Gladbach, Germany) using anti-

mouse CD-4+ antibody labelled magnetic beads following the manufacturer’s 

instructions [Miltenyi et al., 1990]. Here positive separation was used. 

This process uses anti bodies that are linked to superparamagnetic biotinylated-micro 

particles (about 100 nm diameter), so called Microbeads.  After homogenization, the 

mixture ran through a 30-micrometre filter to avoid congestion of the columns that were 
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7used later. Then the homogenate was centrifuged for the first time at 4 degrees 

Celsius for 10 minutes at 1500 rounds per minute. At the end of this cycle the fluid was 

emptied and the bottom pellet re-suspended in 2ml of the buffer solution. The cell 

suspension was then incubated with the CD4 Microbead-Antibody solution for 15 

minutes at 4 degrees Celsius. After the incubation, the mixture was replenished with 

buffer to reach 10ml again and a second cycle of centrifuging allowed to get rid of 

superfluous antibodies. The pellet was suspended in 2ml buffer again. Then the solution 

was passed through the Miltenyi column (containing steel wool) that was mounted on a 

magnetic manifold. This column had been rinsed with rinsed with PBS puffer. Cells that 

were labeled with the antibody stick to the column due to the magnetic force. Unlabeled 

cells passed through the column. 

In the second part of the isolation process the column with the target cells was removed 

from the magnetic manifold. The Microbeads no longer had extra support in the column 

and could be flushed out with PBS using a specially designed plunger. The result was a 

solution rich in CD4 T-cells. The concentration of Isolated CD4+ T-cells was assessed 

with a Coulter-Counters (Coulter® AC-T Series; Coulter Corporation, Miami, USA) 

and then labeled with the fluorescent dye CFSE (carboxyfluorescein diacetate 

succinimidyl ester, 5 μM, Molecular Probes, Eugene, OR, 10 min incubation).  A total 

of 1x107 CFSE-labeled CD4+ T-cells was infused intra-arterially after 120 min of 

reperfusion and then visualized using intravital microscopy.  

The isolation procedure did not lead to T-cell activation as measured by expression of 

the markers CD62L, CD44, and CD69 and the purity of the CD4+ T-cells subsets was 

routinely >95% as determined by fluorescence activated cell sorting analysis. The 

viability of CD4+ cells following the isolation procedure was approximately 94% as 
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determined in our own previous studies (see [Hanschen et al., 2008, Khandoga et al., 

2006]). 

 

 

Figure 3 Positive selection of CD4 T-cells with magnetic mircrobead antibodies 
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3.3.4. Intravital fluorescence microscopy 

3.3.4.1. Experimental set-up 

Intravital fluorescence microscopy was performed using a modified Leitz-Orthoplan 

microscope with a 100 Watt HBO mercury lamp attached to a Ploemopak illuminator 

(Leitz, Wetzlar, Germany). This served to achieve epi-illumination. To get adequate 

microscopic pictures the left liver lobe was propped up on a small plate holding a 

spoon-like structure made of synthetic modeling clay. Then a thin cover glass was laid 

on top of this contraption, not touching the liver tissue. Saline solution was used to have 

the liver tissue be suctioned to the cover glass. This allowed us to correct for natural 

convexity of the liver, maximizing the number of acini that could be seen in focus. 

During the intravital microscopy a special saline drip contraption continuously 

replenished the fluid the liver was floating in. This also prevented the liver tissue from 

drying out.   Intravital microscopic images at a magnification level of 500 – a water 

immersion objective (W 25/0.6; Leitz) was used - were recorded by a charge-coupled 

device camera (FK 6990, Cohu; Prospective Measurements, San Diego, CA) and tape-

recorded for off-line evaluation (S-VHS Panasonic AG 7330; Matsushita Electric, 

Tokyo, Japan). Videotaped images were quantitatively analyzed offline in blinded 

fashion using an image analysis program (CAPIMAGE®, Dr. Zeintl, Heidelberg, 

Germany). 

Initially the CFSE labeled CD4 T-lymphocytes were injected into the carotid catheter 

and acini were filmed. 

Thereafter, Fluorescein isothiocyanate (FITC)-labeled dextran (MW 150000; 0.1ml, 
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Figure 4 The experiments were conducted in two different operation sites. The main operation site (1) featured 

the mouse undergoing hepatic ischemia. The second operation site (2) was needed to simultaneously explant the 

spleen for further processing and CD4 T-cell isolation as described above. Prior to the experiment the animals 

were treated with the different endocannabinoid agonists (ACPA, JWH 133) or the vehicle solution (tocrissolve) 

as pictured on the left of the figure. 

 

 

5%, Sigma-Aldrich) was infused. This showed sinusoidal perfusion. Erythrocytes 

were seen in black contrasting the then fluorescent blood plasma. Intravital microscopy 

lasted approximately 20 min before the experiments were concluded. 

OP site 1 
OP site 2 

JWH 133 

ACPA 

vehicle 
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3.3.4.2. CD4 T-cell visualization 

CD4+ T-cells were visualized in seven to 10 randomly chosen acini using an I2/3 filter 

block (excitation: 450-490 nm, emission >515 nm; Leitz).  Each acinus was put into 

focus and then recorded on VHS for approximately 13 seconds.  In a second step the 

recordings were evaluated with CAPIMAGE (a video analysis software) and the 

number of T-cells per acinus were counted. The results are stated in number of CD4 T-

cells per acinus.  

 

3.3.4.3. Sinusoidal perfusion 

To assess the sinusoidal perfusion the plasma was contrasted with FITC-labeled 

dextran. Then Seven to ten acini were recorded to show the hepatic perfusion. Non-

perfused sinusoids per acinus were counted. The results of this measurements are stated 

in % of occluded sinusoids of all visible sinusoids in the acinus 

 

3.3.5. Liver enzyme measurements 

To quantify the hepatocellular damage aspartate aminotransferase (AST) and alanine 

aminotransferase (ALT) activities were measured in the blood samples that had been 

taken from the carotid artery at the end of the experiment. The volume of the blood 

samples averaged around 1ml. These samples were drawn with a small plastic syringe 

that had been exposed to a 20.000 IE/ml heparin solution. The sample was then put in a 

small plastic vial and immediately centrifuged at 2000 x g for 10 min.  
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The plasma was then separated from the cellular components and stored at -80°C until 

all collected samples were brought to the laboratory for activity measurements. Serum 

aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were 

determined at 37°C with an automated analyzer (Hitachi 917, Roche-Boehringer, 

Mannheim, Germany) using standardized spectrometric test systems (HiCo GOT and 

HiCo GPT, Roche-Boehringer). The values are presented in IU/L as recommended by 

the German society for clinical chemistry. 

 

3.3.6. Histology 

After the end of the experiments the left liver lobe was extracted and partitioned into six 

equally sized pieces. Four samples were immediately frozen at -80 degrees Celsius to 

later be used for western blots. Two samples were put in a solution of 4% 

paraformaldehyde (pH 7,4) to be conserved. These samples were embedded into 

paraffin at a later point in time. 

 

3.3.6.1. Staining for α-smooth muscle actin (α-SMA) 

Four micrometer thick microtome cut Paraffin-fixed, liver sections were incubated with 

Animal Research Kit Peroxydase (Dako). We used anti-α-SMA as primary monoclonal 

antibody (dilution 1:200, Abcam, Cambridge, UK). Next the slices were incubated with 

horseradish peroxidase-conjugated Streptavidin and diaminobenzidine, and then 

counter-stained with haemalaun. As negative controls, primary antibody was replaced 

with non-immune immunoglobulin at the same concentration. No staining was observed 

in the negative controls. The staining was performed on the liver tissue samples from 
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the set of experiments including the pharmacological interventions. Therefore, we 

could study the effects of the substrates on α-SMA expression in response to the I/R 

damage. 

 

3.3.6.2. Ki67 staining 

 The Ki67 is a nuclear protein that became a universally used marker of cell 

proliferation [Gerdes et al., 1983], yet its functional significance has not been fully 

understood.  It is only present within the nucleus during interphase but can then be seen 

on the surface of chromosomes during mitosis [Scholzen et al., 2000]. Therefore, we 

used it to assess the hepatocellular proliferation. Ki67 staining of paraffin sections was 

performed with a commercially available kit (Dako, Hamburg, Germany). The number 

of Ki67-positive hepatocytes was counted in 10 high-power fields (microscope 

magnification x 400). All cell counts were performed in a blinded fashion.  

 

 

 

3.3.7. Western Blot  

Protein expression of CCR5, CCL21, and RANTES was assessed with Western blot in 

all experimental groups. Western blot was   initially carried out in shock-frozen tissue 

samples.  Since we detected little expression in the frozen tissues, we performed a new 

set of experiments with n=2 in each group to assess the expression from freshly isolated 

protein. To prep the frozen samples for western blotting a freshly prepared lysis buffer 

solution was used. The buffer solution consisted of 2ml fresh red blood cell lysis buffer 

with added DTT (1mM), PMSF (1mM) and fresh serine protease inhibitor at a 
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concentration of 1:100. Initially the tissue samples were homogenized with the buffer 

solution (20 µl lysis buffer per mg liver tissue) in a S24 glass pestle homogenizer and 

then incubated for 15 minutes and swiveled after 10 minutes to mix up the solution. The 

samples were chilled on ice throughout the preparation. After incubation, the samples 

were centrifuged at 4 degrees Celsius at 13000 rounds per minute for 15 minutes. The 

centrifuged sample was then pipetted to a new chilled Eppendorf container without 

touching the bottom pellet. In this new container, the samples were then mixed up. 50 µl 

of it was pipetted into a different Eppendorf container for total protein concentration 

measurements. Both samples frozen at -80 degrees Celsius and later used for western 

blot. Western blot protocols are widely described in scientific literature and will not be 

reiterated here. 
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3.4. Experimental protocols 

In reference to the previously stated goals of this study, there were two different study 

groups with slightly differing protocols:  

1. Co-localization protocol of hepatic stellate cells and CD4 positive T-

lymphocytes. Because of better spatial resolution and improved ability to use 

two different dyes, this set up required confocal microscopy. 

2. HSC depletion / activation-protocol studying the effect on CD4+ T-cell 

recruitment and I/R injury. 

 

3.4.1. Co-localization between HSC and CD4+ T-cells after I/R 

CD4 T-cell behavior in relationship to hepatic stellate cells was studied in GFP positive 

mice under identical conditions as the main experimental groups. 

 

3.4.1.1. Experimental groups 

As mentioned in the introduction we assumed an interaction between hepatic stellate 

cells and CD4 T-lymphocytes during post-ischemic reperfusion. To assess this 

interaction in the hepatic microcirculation after I/R (I: 90 min, R: 120min) we studied 

an intervention group of n=2 and a control/sham-group of n=3. A greater number of 

animals was not deemed to be necessary because we expected the used two-photon 

microscopy to have high specificity and sensitivity to show co-localizations. 

There were no drug intervention groups. 
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3.4.1.1.1. Green fluorescent protein (GFP) positive mice 

CX(3)CR1 is a seven-transmembrane receptor which is specific for the chemokine 

fractalkine. Stimulation of the receptor mediates leukocyte capture in perfused blood 

vessels [Fong et al., 1998]. This receptor is expressed on activated endothelial cells 

[Bazan et al., 1997, Pan et al., 1997], neurons [Harrison et al., 1998, Nishiyori et al., 

1998]  and dendritic cells (DC) [Kanazawa et al., 1999, Papadopoulos et al., 1999] such 

as the investigated hepatic stellate cells. The mice mentioned here express eGFP at the 

locus of the Cx3cr1 gene. They can otherwise be considered genetically identical to 

C57-BL6 mice. 

3.4.1.2. Two-photon microscopy 

For in vivo two-photon microscopy, we used an upright microscope with a water 

immersion objective (20 x 0.95 NA; Olympus, Tokyo, Japan) which was connected to a 

TriM Scope II two-photon microscope (LaVision Biotech, Gottingen, Germany). The 

two-photon microscope unit that was equipped with a Mai Tai laser tuned at 870nm. 

The fluorescence signal emitted from the tissue (filters LP495, BP525/50, LP560, 

LP665) was detected by four photomultiplier tubes. The software system ImSpector 

(LaVision Biotech) was used for image acquisition and processing. The three-

dimensional scans per time point were flattened and visualized in two dimensions as 

projections onto the X-Y axes over time. In this experimental set, isolated CD4+ T-cells 

were labeled with eFluor 660 (eBioscience). 



 

 

35 

 

 

 

3.4.1.3. Experiment procedure 

The utilized heterozygote Cx3CR1(gfp/gfp) mice exhibiting green fluorescent protein in 

HSC  [Lee et al., 2010] were used as the experiment animals receiving the standard 90-

minute ischemia procedure. CFDA-SE-labeled CD4+ T-cells, isolated and stained with 

the aforementioned protocol were injected into Cx3CR1 mice after 120 minutes of 

reperfusion. Interactions between both cell types were analyzed using in vivo two-

photon microscopy, recorded and later analyzed. CD4+ T-cell-HSC interactions were 

assessed in 5-7 acini per experiment. In each analyzed acinus, we counted CD4+ T-cells 

firmly adherent in sinusoids as well as the number of adherent CD4+ T-cells which 

were colocalized with HSCs within the same acinus. The percentage of colocalized T-

cells was calculated as follows: T-cells colocalized with HSCs/adherent CD4 T-cells per 

acinus x 100%. 
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3.4.2. HSC activity modulation 

3.4.2.1.  Experimental groups 

 

Table 1 Experimental groups for pharmacological intervention of CD4 T-cell - HSC 

interaktion 

 

In an attempt to analyze the effect of HSC targeting (depletion vs. activation) a sham-

operated group and four I/R groups (I: 90 min, R: 120 min) were analyzed (n=7 each).  

 

3.4.2.2. Experiment procedure 

The experimental procedure required to work simultaneously. The different substrates, 

which were injected intra-peritoneally 24 hours prior to the experiment were: 

- Tocrisolve TM 100 solution (200µl, i.p., Tocris Bioscience, Bristol, UK) as 

vehicle. 

-  CB-2 agonist JWH-133 [Batkai et al., 2007, Teixeira-Clerc et al., 2010] (i.p., 

0.2 mg/kg body weight in 200µl Tocrisolve, Tocris Bioscience) to reach HSC 

Animals Group Number 

WT C75/BL6 +CD4 T-cells Sham no intervention N=7 

WT C75/BL6 +CD4 T-cells I/R + JWH 133 N=7 

WT C75/BL6 +CD4 T-cells I/R + ACPA N=7 

WT C75/BL6 +CD4 T-cells I/R + Vehicle (Tocrisolve) N=7 
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depletion. 

- CB-1 agonist ACPA [Feizi et al., 2008] (i.p., 1 mg/kg body weight in 200µl 

Toscisolve, Tocris Bioscience) for HSC activation. 

Intravital microscopy was started after 120 min of reperfusion and took approximately 

20 min. Tissue and blood samples were taken at the end of the experiment.  

Figure 5 Approximately 250 min of total procedural time. There were of course slight variations in the 

time prior to ischemia because of anatomic differences between the animals. 
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3.4.2.2.1. Hepatic stellate cell depletion/activation 

Both CB agonists are suspended in Tocrisolve, a water-soluble emulsion composed of a 

1:4 ratio of soya oil/water that is emulsified with the block copolymer Pluronic F68.  

The CB-2 agonist JWH-133 (6aR,10aR)-3-(1,1-Dimethylbutyl)-6a,7,10,10a-tetrahydro-

6,6,9-trimethyl-6H-dibenzo [b,d]pyran; MW 312, Cat. No 1343) is very potent and 

selective (Ki = 3.4 nM) to CB-2 receptors. Its affinity towards the CB-2 receptor is 

approximately 200-fold selective over CB-1 receptors. 

ACPA (Arachidonylcyclopropylamide, MW 344, Cat No.1781) is a potent and selective 

CB1 agonist (Ki = 2.2 nM) that displays 325-fold selectivity over CB-2 receptors 

[Hillard et al., 1999].  The effects of these agonist were verified with the expression of 

reelin as well as, more importantly, the anti-α-SMA staining mentioned above. 

There were further attempts to portray the effects on the hepatic stellate cells more 

precisely by assessing the expression of CCR5, CCL21, and RANTES in all 

experimental groups. Western blot was carried out in shock-frozen tissue samples from 

all experimental groups as described above. Since we did not detect expression in the 

frozen tissues, we performed a new set of experiments with n=2 in all groups to assess 

the expression from freshly isolated protein. As shown by the blots, the expression of 

the mediators was too low to be detected by the used approach, even if assessed in 

freshly isolated proteins. Apparently, more sensitive techniques, more strong 

inflammatory stimulation or longer reperfusion time are required. 

The applied concentrations of JWH133 and ACPA were established in separate dose-
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finding experiments (n=3 in each substrate group) and are in line with published 

studies in mice [Feizi et al., 2008, Hillard et al., 1999].  
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3.5. Statistics 

 ANOVA on ranks followed by Student-Newman-Keuls method were used for the 

estimation of stochastic probability in intergroup comparison (SigmaPlot 12, Jandel 

Scientific, Erkrath, Germany). Mean values ±SEM are given. P values less than 0.05 

were considered significant. 
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4. RESULTS 

4.1. Co-localization between HSC and CD4+ T-cells 

In our first experiments, we tackled the question of whether CD4+ T-cells are 

colocalized with HSC in the post-ischemic liver. Freshly isolated and fluorescence-

labeled CD4+ T-cells were infused into heterozygote Cx3CR1 (gfp/gfp) mice (mice 

exhibiting green fluorescent protein-labeled HSCs), and the interaction between CD4+ 

T-cells and HSCs was visualized in the hepatic microcirculation using intravital 

microscopy. In sham-operated controls, no CD4+ T-cell-HSC colocalizations were 

observed. After I/R, 26%±3% of all accumulated CD4+ T-cells were colocalized with 

HSCs in sinusoids (Figure 6Error! Reference source not found. A). This suggests a 

direct interaction between both cell types. There were more colocalizations (31%±5%) 

after a prolonged reperfusion time (140 min vs. 120 min, Fig. 1B). The CD4+ T-cell-

HSC colocalizations were also shown using the intravital two-photon microscopy. This 

technique is a superior alternative to intravital fluorescence microscopy and confocal 

microscopy because of its deeper tissue penetration, efficient light detection, and 

reduced photo toxicity. Figure 6 (C) to (E) demonstrates proximity and attachment of 

both cell types in the liver microcirculation.  
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F G 

Figure 6 Interactions between HSCs and CD4+ T-cells in vivo. CD4+ T-cell-HSC interactions 

were analyzed in vivo after infusion of fluorescence-labeled CD4+ T-cells into Cx3CR1 (gfp/gfp) 

mice (mice exhibiting GFP-labeled HSCs). The intravital microscopic images (upper panel) 

demonstrate co-localization of CFDA-SE-labeled CD4+ cells (arrows) with GPF-expressing 

HSCs (arrow heads) in hepatic sinusoids of a mouse after 90 min of ischemia following 120 min 

(A) or 140 min (B) of reperfusion. Representative images from at least three independent 

experiments. The bottom panel (C-E) presents imaging of the hepatic microcirculations with 

multiphoton microscopy in vivo. CD4+ T-cells are labeled ex vivo with eFluor ®660 (red), HSCs 

are GPF-positive (green). Image C (arrows) shows co-localizations between T-cells and HSCs.  

We observed proximity between both cell types (D) as well as their attachment (E). The yellow-

colored area in (E) is a mixed result of the green and red, reflecting the overlay and attachment of 

CD4+ T-cells and HSCs to each other. Size bar 50 µm in all images. No co-localization was 

observed in sham-operated animals (F: intravital microscopy; G: two-photon microscopy). The 

findings are representative of at least three different experiments per group. [Reifart et al., 2014] 
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4.2.  Immunostaining for α-SMA as a marker of HCS activation 

In the next set of experiments, we modulated the HSC activity by stimulating CB-1 and 

CB-2 receptors with specific agonists. A stimulation of CB-2 leads to HSC apoptosis, 

whereas CB-1 agonists activate HSCs. Expression of smooth muscle actin (SMA) is a 

recognized marker of HSC activation in the liver tissue. Using immunostaining, we 

showed that α –SMA expression was enhanced in the untreated group after I/R as 

compared to the sham operated controls (Figure 7). In contrast, α -SMA expression was 

almost absent in the I/R group pretreated with CB-2 agonist JWH-133. In the post-

ischemic group, pretreated with the CB-1 agonist arachidonylcyclopropylamide 

(ACPA), the α -SMA expression was strongly enhanced. Taken together, the HSC 

activity was negatively influenced by the CB-2 agonist and stimulated by the CB-1 

agonist in our model of hepatic I/R.  
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Figure 7 Expression of α-SMA. Microphotographs show immunostaining for α-SMA (arrows) as 

a marker of HSC activation in the liver tissue of a sham-operated mouse (A), a mouse after I/R 

(90min/120min) pre-treated with Tocrisolve as vehicle (B), a mouse after I/R pre-treated with 

CB-2 agonist JWH-133 (C), and a mouse after I/R pre-treated with CB-1 agonist ACPA (D). 

Microscope magnification ×400. Representative images from seven experiments per group. 
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4.3.  CCR5, CCL21, and RANTES Western blot results 

Unfortunately, there was no experimental group in which the expression of CCR5, 

CCL21, and RANTES could be detected by the used approach. Even when assessed in 

freshly isolated proteins there was no signal. 
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4.4.  CD4+ T-Cell recruitment 

To answer the question of whether the targeting of HSCs through the CB receptors can 

affect T-cell migration, the recruitment of CD4+ T-cells in the hepatic microvasculature 

was analyzed using intravital microscopy. As shown in Figure 8, only few CD4+ T-cells 

were found accumulated in sinusoids of sham-operated mice (2.8±0.2/acinus). In 

contrast, CD4+ T-cell recruitment was significantly enhanced in the vehicle-treated 

group after I/R (8.4±0.4/acinus). In mice undergoing HSC depletion with JWH-133, the 

post-ischemic CD4+ T-cell accumulation was reduced by about 60% (p<0.05). The 

activation of HSCs using ACPA did not significantly influence the post-ischemic T-cell 

recruitment as compared with the I/R group treated with the vehicle solution. As 

observed in an additional set of experiments using Cx3CR1(gfp/gfp) mice, the 

percentage of CD4+ T-cell colocalized with HSCs remained almost unchanged after 

pretreatment with ACPA (28%±5% and 30%±3% after 120 min and 140 min of 

reperfusion, respectively) as compared to the vehicle-treated I/R group. Thus, HCS 

depletion attenuates the I/R-induced CD4+ T-cell migration, whereas HSC activation 

does not affect it.    
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Figure 8 CD4+ T-cell recruitment. Accumulation of CD4+ T-cells was quantitatively analyzed 

using intravital microscopy in sham-operated mice (A), mice after I/R (90min/120min) pre-

treated with Tocrisolve as vehicle (B), mice after I/R pre-treated with CB-2 agonist JWH-133 (C), 

and mice after I/R pre-treated with CB-1 agonist ACPA (D). N=7 animals per group, mean ± SEM, 

*p<0.05 vs. sham-operated group, #p<0.05 vs. I/R + vehicle.  

 

 

 



 

 

48 

 

 

 

4.5.  Microvascular and hepatocellular I/R injury 

 Sinusoidal perfusion failure was quantified using intravital microscopy after plasma 

labeling with FITC-dextran. The data are presented as a percentage of non-perfused 

sinusoids to all sinusoids visible per acinus. In the sham-operated group, only 7%±1% 

of all sinusoids were not perfused. In contrast, sinusoidal perfusion failure was 27%±3% 

in the vehicle-treated I/R group. The pretreatment with JWH-133 significantly improved 

the post ischemic perfusion, whereas the perfusion failure was even higher (53%±2%) 

in the ACPA pretreated group as compared to the vehicle-treated I/R group (Figure 9). 

The liver enzyme activities were determined in serum as markers of hepatocellular 

necrotic injury. In line with the data on sinusoidal perfusion, we observed a dramatic 

increase of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) 

activities in the vehicle-treated I/R group. The HSC depletion with JWH-133 

significantly reduced the liver enzyme activity (AST by ~2.5-fold, ALT by ~3-fold). 

The I/R group which underwent HSC stimulation with ACPA, showed comparable 

AST-ALT activities as the I/R vehicle group (Figure 10).  
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Figure 9 Sinusoidal perfusion failure. Sinusoidal perfusion failure (=percentage of non-

perfused sinusoids) was measured using intravital microscopy as a parameter of 

microvascular hepatic injury in sham-operated mice (A), mice after I/R (90min/120min) 

pre-treated with Tocrisolve as vehicle (B), mice after I/R pre-treated with CB-2 agonist 

JWH-133 (C), and mice after I/R pre-treated with CB-1 agonist ACPA (D). N=7 animals per 

group, mean ± SEM, *p<0.05 vs. sham-operated group, #p<0.05 vs. I/R+ vehicle.  
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Figure 10 Liver enzyme activity. Serum activity of the liver enzymes AST and ALT was 

determined as a marker of hepatocellular necrotic injury in sham-operated mice (A), 

mice after I/R (90min/120min) pre-treated with Tocrisolve as vehicle (B), mice after I/R 

pre-treated with CB-2 agonist JWH-133 (C), and mice after I/R pre-treated with CB-1 

agonist ACPA (D). N=7 animals per group, mean ± SEM, *p<0.05 vs. sham-operated 

group, #p<0.05 vs. I/R+vehicle.  
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5. DISCUSSION 

5.1. Synopsis 

This experimental study was designed to observe the modulation of hepatic stellate cells 

with cannabinoid receptor agonists and the effects of these pharmacological 

interventions on CD4 T-cell behavior during hepatic I/R in regards to HSCs and total 

I/R damage. Our main finding is that depleting or deactivating HSCs, with a CB2 

receptor agonist, attenuates the I/R-induced CD4+ T-cell recruitment and reduces tissue 

injury. In contrast, hyper-activation of HSCs, with a CB1 agonist, does not affect CD4+ 

T-cell migration and even enhances I/R injury, in particular, microvascular perfusion 

failure. Furthermore, we showed that CD4 + T-cell co-localize with hepatic stellate cells 

in the perisinusoidal space. 

We will initially discuss the methods used and then address points related to our results 

and what conclusions we draw from our findings. 
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5.2.  Model 

5.2.1. Animals 

In this study, we strived to show interactions of CD4 T-lymphocytes and hepatic stellate 

cells in the post-ischemic liver. The pathophysiology of post-ischemic hepatic injury is 

characterized by the complex interactions of different systems within the healthy macro-

organism.  Since not all components and influencing factors surrounding the process of 

I/R are known there is no accurate in vitro model. I/R injury is best studied in animals. 

Two strains of mice, were used. The vast majority of animals used were C57 Black 6 

mice. Some experiments required use of heterozygote CxCR1 mice. 

 

    To visualize the cells behavior in vivo, we needed to use an animal model that allows 

intravital-microscopic analysis of hepatic microcirculation. Since this is only 

established in small animals such as mice, hamsters and rats, the possible species for 

this model were narrowed down. Of these three species, mice are the most 

immunologically studied. There is a vast array of antibodies available to reliably target 

specific cell types.  The decision to use C57 Black6 mice was fortified by the fact that 

these animals are especially favored in studies regarding liver microcirculation because 

of their liver architecture. The sites of relevant pathophysiological effects such as the 

presinusoidal arterioles, the sinusoids and the post-sinusoidal venules are situated very 

close to the liver surface and can therefore be studied microscopically [Menger et al., 

1999]. The model of reversible liver lobe ischemia in mice is well established 

[Biberthaler et al., 2001a, Brown et al., 1997, Horie et al., 1997, Khandoga et al., 2002a, 
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Khandoga et al., 2002b].  Moreover, CD4 T-cells can reliably be isolated from murine 

spleens. Lastly the availability of GFP positive mice, that allowed us to have hepatic 

stellate cells be fluorescent was a point in favor this species.   

The decision to use heterozygous Cx3CR1(gfp/gfp) mice exhibiting green fluorescent 

protein in HSC [Lee et al., 2010] was based on the fact that these mice express eGFP at 

the locus of the Cx3cr1 gene. This causes hepatic stellate cells, as well as other cell 

types to be fluorescent upon excitation with 395 nm and also, to a lesser extend at 

475 nm [Bazan et al., 1997, Harrison et al., 1998, Nishiyori et al., 1998, Pan et al., 

1997]. The emission peak of GFP is at 509 nm, which can be seen as green light.  

Cx3CR1 is a seven-transmembrane receptor for the chemokine fractalkine. Stimulation 

of the receptor aids leukocyte capture and adhesion in the blood vessel [Fong et al., 

1998]. In heterozygous Cx3CR1 (gfp/gfp), fractalkine receptor function is not inhibited 

which is why these mice are considered phenotypically identical to C57-BL6 mice 

[Jung et al., 2000, Lee et al., 2010]. 

 

5.2.2. Anesthesia and surgical technique 

The main anesthetic effect during the surgical intervention can be attributed to 

isoflurane, which is known to have a low rate of hepatic metabolization in lab animals 

[Fiserova-Bergerova, 1973, Stevens et al., 1975]. In previous studies by this group the 

surgical technique proved to give good results in regards to hemodynamic stability 

[Khandoga et al., 2002b]. The surgery was reproducible at a high standard of quality 

after a short learning period. As reported before, there were no significant effects on 

murine mean arterial pressure and temperature comparing sham and ischemia 
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interventions [Hanschen et al., 2008, Khandoga et al., 2002a, Khandoga et al., 2004, 

Khandoga et al., 2002b]. It seems possible that the median laparotomy as well as the 

placement of the micro clip on the left liver lobe and the subsequent manipulation of the 

liver to allow intravital microscopy could hemodynamically affect the other abdominal 

organs but this would lead to an equal effect in all intervention groups. Regarding the 

inhalation anesthesia with persistent spontaneous breathing: Any negative influence of 

these effects on the studied parameters were deemed to be negligible [Andreen et al., 

1981, Gelman, 1976]. By closing the median laparotomy with a suture during all 

periods that did not require hepatic manipulation or inspection we also designed to keep 

a more physiologic intra-abdominal environment with as little temperature and fluid 

loss as possible. 

The intraperitoneal injection of the CB agonists prior to the experiments could be seen 

as potential cause of inflammation. Especially if the intestinal wall is penetrated. 

However, the surgical technique – injecting the solution under vision - makes this an 

unlikely factor.    

 

5.2.3. T-cell isolation and staining 

To track CD4+ T-cells movement in vivo during the intravital microscopic studies T-

lymphocytes were isolated from spleens of syngeneic mice (C57/BL6) and then dyed 

with CFSE (carboxyfluorescein diacetate succinimidyl ester). CFSE is well established 

to dye and track lymphocytes in vitro and in vivo [Parish, 1999]. Since CFSE can be 

toxic for cells [Quah et al., 2007] we chose a concentration well within the non-toxic 

concentrations. Since the cells only had to be tracked for a short time as opposed to 
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studies that investigate lymphocyte proliferation. Lower concentrations of dye did not 

affect cell tracking quality. FITC-labeled dextran was used for sinusoidal perfusion 

assessment. 

The T-lymphocytes were isolated with the MACS® Separation System (Miltenyi Biotec, 

Bergisch-Gladbach, Germany) using anti-mouse CD 4+ antibody labelled magnetic 

beads following the manufacturer’s instructions [Miltenyi et al., 1990].  

 The result is a solution rich in CD4 T-cells. The concentration of isolated CD4+ T-cells 

was assessed with a Coulter-Counters (Coulter® AC-T Series; Coulter Corporation, 

Miami, USA). In investigations establishing this method the purity of the CD4+ T-cells 

subsets was routinely >95% as determined by fluorescence activated cell sorting 

analysis [Hanschen et al., 2008]. A total of 1x107 CFSE-labeled CD4+ T-cells was 

infused intra-arterially after 120 min of reperfusion and then visualized using intravital 

microscopy. Because prior research in a similar model showed that injection of 

activated T-cells can lead to near exclusive accumulation in the liver [Klugewitz et al., 

2002] it was important to verify that the isolation process did not activate the T-cells. 

This was tested by measuring the expression of CD62L, CD44, and CD69, which are 

known parameters of cellular activity [Goodison et al., 1999, Lopez-Cabrera et al., 

1993, Ryan et al., 1992]. CD4+ cell viability following the isolation procedure was 

tested using propidium iodide. T-cell vitality depends on the integrity of the cell 

membrane. Propidium iodide will only be enriched in cells with a compromised 

membrane, which are therefore not seen as vital [Hanschen et al., 2008, Jin et al., 2007]. 

Viability was approximately 94% as determined when this model was established 

[Hanschen et al., 2008, Khandoga et al., 2006]. It was therefore save to conclude that 
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the injected T-lymphocyte solutions were rich in viable, non-activated CD4 positive 

T-cells.  Splenic CD4 T-cells are described to be slightly different to hepatic CD4 T-

cells in regards to their cytokine profile [Katz et al., 2005]. It is possible that splenic 

CD4 T-cells therefore have varying response patterns as compared to peripheral or 

hepatic T-lymphocytes.   

5.2.4. Intravital fluorescent microscopy 

In vivo intravital microscopy is a well-established method to observe physiological, as 

well as pathophysiological processes in different organs. Applying this method to 

observe the microcirculation [Messmer et al., 1998] is also very common. Some 

examples are the study of microcirculation in the arteries [Massberg et al., 2003], the 

lung [St Croix et al., 2006], the skin [Lindenblatt et al., 2007], the muscle [Rotter et al., 

2012] or the pancreas [Cardini et al., 2014, Preissler et al., 2006], to mention a few.  

Different wave-lengths of light and a variation of available dyes allows selective 

staining of cells and compartments. Phototoxic effects [Saetzler et al., 1997] of 

exposure to light and any of the dyes can be disregarded since this effect is not reported 

for any of the dyes used. Nonetheless we tried to keep the time of intra-vital microscopy 

short (approximately 20 minutes) and use the smallest amount of light intensity without 

compromising the quality of the results in any way [Steinbauer et al., 2000]. 

5.2.4.1. Measuring adherent T-cells 

Quantitative analysis of leucocyte accumulation and emigration in post-ischemic liver 

tissue has previously been studied with intravital microscopy [Vollmar et al., 1995, 

Vollmar et al., 1994b, Vollmar et al., 1996]. Newer work of our study group 

demonstrated that CD4 T-cells were behaving similarly [Hanschen et al., 2008, 
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Khandoga et al., 2006], although involvement of this cell type in I/R pathophysiology 

had already been seen ex vivo in immunohistology [Zwacka et al., 1997]. 

Counting the labeled lymphocytes per acinus in up to 10 acini per animal allowed us to 

calculate mean adherent T-cell level that could be compared between the different 

groups.   

5.2.4.2. Sinusoidal perfusion  

Sinusoidal perfusion is crucial to maintain regular organ function and serves as an 

important functional parameter of hepatic microcirculation [Horie et al., 1998]. 

Measuring the sinusoidal perfusion deficit is an established method that correlates with 

the severity of hepatic I/R tissue damage in vivo [Biberthaler et al., 2001b, Kondo et al., 

1998, Menger et al., 1999] but in itself is also causing a prolongation of focal hypoxia 

/anoxia as well as loss of endothelial integrity, which lead to edema formation and 

oncotic necrosis as alluded to in the introduction[Mende et al., 2014].  

In our experiments, several acini were filmed for approximately 20 seconds. The 

captured images were then evaluated off-line.   

 

 

5.2.5. Ischemia and reperfusion times 

Hepatic ischemia times from 30 to 90 minutes’ lead to clinically relevant damage 

[Sawaya et al., 1999, Yadav et al., 1998]. Past 90 minutes of warm ischemia the damage 

to the murine liver is thought to be irreversible and the modulation of cell interactions 

does not seem to have a relevant effect anymore [Yadav et al., 1999]. Because of this 
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we decided to have 90 minutes of ischemia. 

 A reperfusion time of 120 minutes was chosen to allow enough time for reperfusion 

damage and the resulting inflammatory cascades to take effect as well as leaving 

sufficient time to be able to maintain a high quality of T-cell isolation and staining, 

which had to be done simultaneously. 

5.2.6. Pharmacological intervention with CB-1 and CB-2 agonists. 

We were investigating the interaction of T-cells with HSC and the effect of 

pharmacological depletion/deactivation or activation of HSC. There are different ways 

to deplete HSC. Using Ganciclovir in transgenic mice expressing herpes simplex virus 

thymidine kinase (TK) under the glial fibrillary acidic protein (GFAP) promoter is a 

new and successful method [Puche et al., 2013, Stewart et al., 2014].  Also, the use of 

gliotoxin [Orr et al., 2004] or gliotoxin-coupled antibodies [Ebrahimkhani et al., 2011] 

showed promise. However, gliotoxin also has broad effects in vivo and in culture, 

targeting not only HSC, but also immune and endothelial cells and hepatocytes [Hagens 

et al., 2006]. We decided to use substrates that act through CB-1 and CB-2 cannabinoid 

receptors because this gave us the opportunity to make the desired interventions on the 

same receptor family while using the same vehicle medium (Tocrissolve). Both 

cannabinoid receptors are highly expressed on HSCs and their activation leads to 

opposite effects on HSC activity [Siegmund et al., 2008]. JWH-133 that acts through 

CB-2 stimulation was used to deplete HSCs [Siegmund et al., 2007, Siegmund et al., 

2008] in vivo. The hepatoprotective effect of CB-2 stimulation was demonstrated before 

[Teixeira-Clerc et al., 2010].  Increased activation of HSC as opposed to depletion was 

the result of pretreatment with ACPA, a CB-1 agonist. The dosage of 0.2 mg/kg of 
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JWH-133 was chosen because of successful ischemia/reperfusion damage 

experiments with this drug in murine kidneys [Feizi et al., 2008]. 

CB-1 agonist ACPA was used at a dosage of 1 mg/kg for HSC activation. This dosage 

was used after own dosage finding experiments as well as existing literature [Feizi et 

al., 2008, Hillard et al., 1999]. 

CB receptor are present on immune cells at different concentrations [Bouaboula et al., 

1993, Galiegue et al., 1995] - any modification of the injected T-lymphocytes can 

however be dismissed since they were not exposed to the cannabinoid agonists. Still 

effects of the CB agonists on other cell types within the mouse that is being investigated 

are hard to control for and may for example affect the amount of adherent T-cells 

because of reduced interaction with endocannabinoid-affected endothelial cells [Rajesh 

et al., 2007]. 

Direct toxic effects of the agonists on the liver can be disregarded, there are no known 

reports of hepatotoxicity for these two substances in the scientific literature. 

5.2.7. Liver enzymes as markers of hepatocellular damage 

Serum activity levels of AST and ALT correlate with hepatocellular damage [Balazs et 

al., 1961, Korsrud et al., 1972, Korsrud et al., 1973] - they are commonly referred to as 

transaminases. Alanine transaminase (ALT, also ALAT or GPT) is routinely found in 

the plasma and other tissues but is most strongly associated with liver damage [Ghys et 

al., 1975]. Aspartate transaminase (AST, also ASAT or GOT) is also somewhat specific 

to the liver but is also found in the heart [Wu, 1999], the skeletal muscle [Nathwani et 

al., 2005], the small intestine [Yamamoto et al., 2001] and the kidneys [Bhargava et al., 

1968].  Since a combination of both of these enzymes is more specific to hepatic 
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damage than just one, we used them as an additional marker to compare the results of 

our experimental groups. 

5.2.8. Immunohistochemistry 

To gain more detailed data about HSC activity levels in response to I/R and our 

pharmacological intervention we prepared immunohistochemical staining of paraffin 

slices. Immunohistochemistry is well established since the middle of the last century 

[Coons, 1951]. We settled on α-SMA and reelin staining, although recent findings 

show, that cytoglobin an ubiquitously expressed type of hemoglobin also serves as 

marker of HSC fibrosis induction/activation [Motoyama et al., 2014]. 

5.2.8.1. Staining for alpha-SMA 

Expression of α-SMA is a recognized parameter of HSC activation routinely used in 

numerous studies investigating effects of HSC depletion or activation in vivo [Bansal et 

al., 2014, Fan et al., 2013, Puche et al., 2013, Taimr et al., 2003, Yang et al., 2014].  

Some authors even define the induction of α-SMA as the single most reliable marker of 

stellate cell activation because it is absent from other resident liver cells in either normal 

or injured liver except the smooth muscle cells surrounding large vessels [Friedman, 

2008]. Hepatic stellate cells reproducibly express alpha-SMA in inflammatory settings 

preceding liver fibrosis [Carpino et al., 2005].   

 

 

5.2.8.2. Staining for CCR5, CCL21, and RANTES 

The Chemokines CCL21 [Bonacchi et al., 2003], RANTES, and CCR5 [Schwabe et al., 
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2003] are produced by activated stellate cells. But even though methodically the 

established staining resulted in positive controls. The samples of hepatic tissue showed 

no results for these markers. In all likelihood, these markers are not produced in 

quantities that allow for significant staining.  

 

5.2.9. CCR5, CCL21, and RANTES Western blot results 

Analogous to the immunohistochemistry there were no usable results of our Western 

blots investigating HSC activity. Presumably, more sensitive techniques, more strong 

inflammatory stimulation or longer reperfusion time are required. 

However, the expression of these chemokines seems to be more interesting in context of 

mechanisms potentially responsible for the cross-talk between HSCs and T-cells 

[Bonacchi et al., 2003, Seki et al., 2009] rather than their value as markers of HSC 

activation. In fact, these chemokines are also expressed in other cells (monocytes, T-cell 

subpopulations, platelets) and none of them is very specific for HSCs. In an ongoing 

follow-up study, we analyze the role of chemokines for HSC-CD4 T-cell interactions 

during hepatic I/R and are establishing in situ hybridization to assess the expression of 

chemokines and their receptors in our model. 
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5.3. Discussion of results 

Research on hepatic I/R injury is clinically relevant for liver-transplantation as well as 

hepatic trauma or shock. The main site in which I/R injury occurs is the hepatic 

microvasculature [Bilzer et al., 2000, Clemens et al., 1997, Jaeschke, 1998, Menger et 

al., 1999].  There is increasing evidence how critically involved CD4+ T-cells are in the 

induction of I/R injury of the liver [Anselmo et al., 2002, Caldwell et al., 2005, 

Hanschen et al., 2008, Khandoga et al., 2006, Kuboki et al., 2009]. This study, just as 

studies showing the protective effects of immune-suppressant drugs like Tacrolimus on 

antigen independent ischemia-reperfusion damage [Kawano et al., 1995]  and studies 

involving T-cell deficient mice [Shen et al., 2003] demonstrate this clearly. 

5.3.1. T-lymphocyte migration 

The exact mechanisms that control post-sinusoidal CD4+ T-cell migration and cell-cell 

interaction during alloantigen-independent post-ischemic inflammation remain unclear 

and it will take many more experimental studies to illuminate this topic.  Undoubtedly 

there is a multistep cascade that controls T-cell migration into inflamed tissue. This 

process includes intravascular adhesion, transendothelial migration and finally, 

interstitial migration to the site of injury within the parenchyma, similar to what has 

been described for neutrophils [Ley et al., 2007].  

In our previous work, we described the recruitment of T-cells in the post-ischemic 

hepatic microcirculation in vivo and analyzed the mechanisms of their activation and 

intravascular adhesion during alloantigen-independent hepatic inflammation 
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[Khandoga et al., 2006].   

This could also be seen in this study. We previously also described interactions between 

CD4+ T-cells and platelets in post-ischemic hepatic sinusoids and suggested a 

reciprocal activation between CD4+ T-cells and endothelial cells via CD40-CD40L and 

CD28-B7 co-stimulation, which was independent from MHC II-TCR binding. In yet 

another study Kupffer cells triggered CD4+ T-cell activation in the post-ischemic liver 

by releasing reactive oxygen species, IL-6, and TNF-α [Hanschen et al., 2008]. 

Depletion of Kupffer cells with GdCl3 led to decreased numbers of CD4 T-cells in post-

ischemic liver tissue. T-cell activation by Kupffer cells is MHC II independent as well.   

Even though hepatic immune-dependent damage is formally alloantigen-independent 

there seems to be some evidence that CD4 activation in I/R is possible through both 

allogen-independent –chemokine driven- and antigen-dependent - MHC II driven-  

pathways [Kuboki et al., 2009]. 

 

After their intravascular adherence CD4+ T-cells migrate through the sinusoidal layer to 

the site of injury. Matrix metalloproteinases play a role in this process. MMP-9 hat been 

shown to be activated in the post-ischemic liver. MMP-9 seems to be crucial for the 

recruitment of not only CD4+ T cells but also neutrophils [Leppert et al., 1995, Weeks 

et al., 1993]. A pharmacological MMP-9 inhibition led to moderate attenuation of early 

microvascular, necrotic, and apoptotic hepatocellular I/R damage as well as 

postoperative survival. 

There are multiple ways to attenuate hepatic I/R damage. Targeting T-cells is a newer 

therapeutic focus although multiple strategies such as application of augmenter of liver 
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regeneration (ALR) and blocking protease-activated receptor 4 have been seen to 

reduce I/R damage as well as CD4 T-cell infiltration [Khandoga et al., 2014, Mende et 

al., 2014].  

 The exact pathophysiological role of emigrated T-cells remains unclear, but in this 

study, we were able to add hepatic stellate cells to the list of cells T-lymphocytes 

potentially interact with following I/R.   

5.3.2. Hepatic stellate cells 

HSCs are located in the subendothelial space, between the basolateral surface of 

hepatocytes and the anti-luminal side of sinusoidal endothelial cells. They comprise 

approximately one-third of the non-parenchymal cell population and approximately 

15% of the total number of resident cells in the liver. HSCs are normally in a quiescent 

state and change into their activated state upon injury such as viral infections or hepatic 

toxins. Once activated, HSCs receive signals from damaged hepatocytes and immune 

cells through secreted molecules, causing them to differentiate into activated 

myofibroblast-like cells (reviewed in [Friedman, 2008]). As the primary extracellular 

matrix–producing cells in the liver, activated stellate cells generate a temporary scar at 

the site of injury to protect the liver from further damage. They also secrete an array of 

cytokines and growth factors which promote the regeneration of hepatic epithelial cells 

[Yin et al., 2013].  

Hepatic stellate cells are known to express cannabinoid receptors (CB1 and CB2) and 

their cell status can be modified by these receptors. Seemingly the role of Cannabinoid 

receptors and their stimulation in the setting of I/R has not been focused on. CB1 is said 

to have a profibrotic effect, whereas CB2 is said to have an antifibrotic effect. 
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Cannabinoid receptor recently emerged as a potential target for antifibrotic therapies 

[Mallat et al., 2007]. 

We documented the effects of CB1 and CB2 cannabinoid receptor agonists on hepatic 

I/R damage as well as on the recruitment of CD4 positive T-cells because it has been 

established that HSC could be deactivated/depleted using endocannabinoids [Wojtalla et 

al., 2012]. Deactivating HSC could therefore possibly protect from HSC-mediated 

injury and hepatic fibrosis - a feared long term complication of liver transplants 

[Giannone et al., 2012]. 

The modulation of HSC activity has been a difficult task. In particular, because HSCs 

activated in culture do not fully reproduce the changes in gene expression observed in 

vivo, making it difficult to correlate in vitro results with HSC behaviors in vivo [De 

Minicis et al., 2007]. As discussed above several models have been established to 

deplete HSCs in vivo so far. In our study, we modulated HSC activity by using CB-1 

and -2 agonists. Both cannabinoid receptors are highly expressed on HSCs and their 

activation leads to opposite effects on HSC activity [Siegmund et al., 2008].  We 

observed in our study that CB-2 stimulation resulted in HSC depletion in vivo, since 

only a very low expression of α-SMA was detectable in the post-ischemic liver tissue. 

In contrast, pretreatment with a CB-1 agonist massively affected α-SMA expression. 

Our data suggests that CB-1 stimulation induces a (hyper-)activation of HSCs as 

compared to the sham-operated animals without ischemia and even to the vehicle-

treated mice undergoing I/R. 
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5.3.3. HSC – T-cell interaction 

Central findings of our study are two photon microscopy visualizations of co-localized 

adherent CD4+ T-cells and HSCs during hepatic I/R in vivo. Such proximity suggests a 

direct interaction between these cell types. A direct interaction like such requires a 

binding between an adhesion receptor and a corresponding counter-receptor or a ligand 

on the cell surface.  

Interaction of CD4 T-cells with APC has been documented numerous times. Dendritic 

cells (DC) are activated by a Toll-like receptor-mediated pathway and respond with 

increased expression of MHC class II during hepatic I/R injury, which leads to antigen-

dependent activation of CD4+ T cells [Loi et al., 2004, Tsung et al., 2007]. 

The integrin protein LFA-1 on the T-cell and Intercellular Adhesion Molecule-1 

(ICAM-1) on the APC are the primary molecules of adhesion in this cell-cell interaction 

[Dustin et al., 1989]. In fact, ICAM-1, a member of the immunoglobulin superfamily as 

well as MHC II, is expressed and up-regulated on activated HSCs and therefore may be 

responsible for the observed HSC-CD4+ T-cell interactions [Yin et al., 2007].  

The HSC-T-cell proximity was more frequently observed after prolongation of 

reperfusion time. This is not surprising, since we also see more adherent CD4+ T-cells 

in the hepatic microvasculature after longer reperfusion times. Moreover, HSCs are able 

to move towards certain stimuli [Yang et al., 2003]. Such chemotaxis of HSCs might 

also increase the frequency of T-cell-HSC interactions. 

As shown by our immunostaining results, hepatic I/R leads to HSC activation during 

early reperfusion measured by α-SMA expression in the liver tissue. We believe these 

more active HSCs are more likely to interact with T-cells leading increased immune-
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derived post-ischemic damage. Therefore, it is of interest to modulate HSC activity to 

then reduce the subsequent damage. 

Depletion of HSCs with a CB-2 agonist not only attenuated CD4+ T-cell migration but 

also reduced the microvascular and hepatocellular injury as shown in our study by 

measurement of the liver enzyme activity and by analysis of the sinusoidal perfusion in 

vivo. Whether the effect of CB-2 stimulation is gradual and dose dependent or if it is a 

binary effect that is seen at a certain concentration of JWH-133 cannot be concluded 

from our data and needs to be further investigated. 

The significant role of CD4+ T-cells during alloantigen-independent post-ischemic 

hepatic inflammation has been demonstrated previously and interventions targeted at 

CD4+ T-cell activation or migration have had a clear therapeutic impact [Khandoga et 

al., 2006, Shen et al., 2009, Zhang et al., 2013]. The effects of the CB-2 agonists could 

possibly protect the liver via pathways other than the here postulated CB-2-HSC-T-cell 

axis. Activation of CB-2 receptors by specific agonists, such as JWH133 and HU-308, 

protected against I/R damage by decreasing neutrophil infiltration, tissue and serum 

TNF-α, chemokines macrophage-inflammatory protein-1α and macrophage-

inflammatory protein-2 levels, caspase 3 activity, tissue lipid peroxidation, and 

expression of adhesion molecule intercellular adhesion molecule-1 [Batkai et al., 2007, 

Mukhopadhyay et al., 2011]. These agonists also decreased the TNF-α-induced 

expressions of endothelial adhesion molecules ICAM-1 and vascular cell adhesion 

molecule-1 in human liver sinusoidal endothelial cells in vitro. This effect was 

prominent when the CB-2 agonist was applied shortly before the damage [Feizi et al., 

2008] therefore we believe this effect to be a more immanent response to CB-2 
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stimulation and hence not completely applicable to our experimental setting. We 

believe this because any G-receptor mediated effects might not be as prominent after 24 

hours as compared to irreversible effects such as HSC apoptosis. 

5.3.4. Hepatocellular damage and perfusion failure 

Hyper-activating HSCs with the CB-1 agonist ACPA does not additionally enhance 

hepatocellular injury (determined by the liver enzyme activity) compared with the I/R-

induced activation. It did however, markedly increase sinusoidal perfusion failure. The 

post-ischemic shutdown of the hepatic microcirculation is triggered by sinusoidal 

narrowing caused by endothelial cell edema [Vollmar et al., 1994a], by activated 

Kupffer cells and by HSC-mediated vasoconstriction [Bauer et al., 1994, Pannen et al., 

1998]. Therefore, it seems likely that HSC hyper-activation via CB-1 receptors 

increases sinusoidal resistance through stellate cell contractility, which further 

deteriorates post-ischemic tissue perfusion. There was a non-significant difference in 

numbers of adherent T-cells and almost equal transaminase levels between the CB-1 

and the regular I/R group. It is not clear if a greater number of experiments would have 

shown a significant difference in T-cell adherence between these two groups. The very 

similar transaminase levels surprisingly did not really reflect the increased perfusion 

damage. One could speculate that the effect of the CB-1 agonist on the liver led to 

decreased immune mediated damage (which could be demonstrated by lower leukocyte 

adherence) but increased perfusion mediated damage. It seems the increased activation 

of HSCs as measured through alpha-SMA did not lead to immanently increased 

expression of the factors involved in T-cell attraction/interaction. 
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5.3.5. Markers of proliferation  

Although activated HSCs promote liver regeneration after liver injury [Khan et al., 

2007], we did not observe any changes in the number of Ki67-positive, proliferating 

cells in all experimental groups.  We assume, the reperfusion time of two hours to be 

too short to detect a proliferative response in this model. 

There is significant evidence that HSCs can modulate the hepatic immune response. 

They are known to have various immune functions, which range from immunogenic 

antigen presentation over mechanism for inhibiting T-cell-mediated cytotoxicity to even 

the induction of T-cell apoptosis [Jiang et al., 2013, Xia et al., 2013, Zhao et al., 2012] . 

Indeed, activated HSCs can stimulate T lymphocytes and cause lymphocyte 

proliferation due to their function as professional APC [Unanue, 2007, Vinas et al., 

2003, Winau et al., 2007]. Furthermore, activated HSCs produce chemokines such as 

monocyte chemotactic peptide, CCL21, RANTES, and CCR5, which could play a role 

for T-cell activation during inflammation or I/R but direct detection of these 

chemokines was not possible [Schwabe et al., 2003]. 

Activated HSCs do express the co-stimulatory molecule B7-H1, which can bind to 

counter-receptor programmed death ligand-1 (PD1) on T-cells. PD1 is expressed on a 

range of immune cells including CD4+ T-cells and, at very low levels, PD1 activation is 

sufficient to inhibit the earliest stages of T-cell activation [Friedman, 2008, Yu et al., 

2004]. This shows that hepatic stellate cells can exert a protective effect on hepatic 

tissue. An immunotolerizing role is also suggested by experimental models in mice in 

which transplanted stellate cells protect islet allografts from rejection [Chen et al., 2006] 

and enhance engraftment of transplanted hepatocytes [Benten et al., 2005].  Therefore, 
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there might be more negative effects to HSC depletion that could not be observed in 

this acute study. Yet the overall results lead to an improved understanding of HSC in 

hepatic I/R. 
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5.4. Conclusion 

In summary, our in vivo data suggest that  

I. CD4+ T-cells co-localize and interact with HSCs upon their migration into the 

hepatic parenchyma;  

II. a selective depletion/deactivation of HSCs via CB-2 activation reduces CD4+ T-

cell-dependent I/R injury,  

III. HSC hyperactivation via CB-1 receptors is not protective and even enhances 

perfusion failure.  
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5.5. Prospects 

In light of our findings we can assume that HSCs might represent a potential target for 

future therapeutic strategies against T-cell-mediated I/R injury during liver 

transplantation. The results do not allow us to draw the conclusion that HSC depletion 

only attenuates injury mediated by T-lymphocytes. In all likelihood, more cells are 

involved and responsible for I/R injury in this context.  There is a multitude of aspects 

that must be clarified to advance on this topic and a potential use of CB agonists in the 

context of liver transplantation cannot be expected any time soon. The next step might 

be to investigate other cell types that interact with hepatic stellate cells, as well as trying 

to grasp possible negative effects of hepatic stellate depletion, as well as boarder effects 

of CB-2 receptor stimulation in a chronic mouse model. Still vast amount of research in 

this field shows that there are many possible to approaches to tackle the problems 

associated with hepatic I/R. Hopefully some of these creative solutions will transition 

into the clinical work and someday help to improve patient’s prognosis. 
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6. ABSTRACT 

Background. CD4+ T-cells play a critical role during hepatic ischemia-reperfusion 

(I/R) injury although the mechanisms of their migration in the post-ischemic liver 

remain unclear. Recent studies suggest that emigrated T-cells are colocalized with 

hepatic stellate cells (HSCs) during viral hepatitis. We answered the questions of 

whether hepatic stellate cells (HSCs) interact with CD4+ T-cells during I/R of the liver 

and whether modulation of HSC activity affects T-cell-dependent I/R injury. 

 

Methods. In mice, migration of CD4+ T-cells was analyzed in vivo using conventional 

intravital microscopy and two-photon microscopy in sham-operated mice and in mice 

after I/R (90 min/120min). CD4+ T-cell-HSC interactions were visualized after infusion 

of fluorescence-labeled CD4+ T-cells into Cx3CR1 mice (mice exhibiting GFP-labeled 

HSCs) after I/R. Because the activation of HSC is controlled by endocannabinoid 

receptors, CB-1 and CB-2, the mice received treatment before I/R with the CB-2 agonist 

JWH-133 to reach HSC depletion or the CB-1 agonist arachidonylcyclopropylamide to 

activate HSCs. Sinusoidal perfusion and liver transaminases were used as markers of 

I/R injury.  

 

Results. Hepatic I/R induced CD4+ T-cell recruitment in sinusoids. More than 25% of 

adherent CD4+ T-cells were colocalized with HSCs during reperfusion after ischemia, 

but not in the sham-operated mice. This is suggesting a direct cell-cell interaction. The 

HSC deactivation with JWH- 133 significantly attenuated the CD4+ T-cell recruitment 
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in the post-ischemic liver and reduced I/R injury as compared to the vehicle-treated 

group. The HSC hyperactivation by CB-1, however, did not affect T-cell migration and 

even increased perfusion failure.  

 

Conclusion. Our in vivo data suggest i) that CD4+ cells interact with HSC upon their 

migration thought the endothelial layer; ii) a selective depletion/deactivation of HSC 

reduces T-cell-dependent I/R injury, whereas a HSC hyperactivation even accelerates 

the injury. Taken together, HSC might represent a potential target for future therapeutic 

strategies against T-cell-mediated I/R injury.



 

 

75 

 

 

 

7. ZUSAMMENFASSUNG 

CD4+T Zellen spielen eine zentrale Rolle während des Ischämie-Reperfusions 

Schadens. Dennoch sind die genauen Mechanismen der Zell Migration in der post-

ischämischen Leber noch nicht verstanden sind.  

In unserer Studie versuchten wir zu beantworten ob a) die CD4 T-Zellen während 

Ischämie-Reperfusion mit hepatischen Sternzellen interagieren und ob b) die 

pharmakologische Beeinflussung der Sternzellaktivität einen protektiven Effekt auf den 

T-Zell vermittelten I/R Schaden hat. 

Die Migration von frisch isolierten und mit Immunfluoreszenzfarbstoff markierten CD4 

positiven T-Zellen wurde mittels Intravitalmikroskopie in einer Sham- und der I/R 

Gruppen von Mäusen untersucht. 

Sinusoidale Leberperfusion und Leberenzyme wurden als Marker zur Abschätzung des 

Leberzellschadens verwendet. 

Die in Punk a) postulierte Interaktion zwischen T-Zellen und hepatischen Sternzellen 

wurde durch Injektion von fluoreszenzmarkierten T-Zellen in post-I/R-Mäuse mit GFP-

exprimierenden Sternzellen (Cx3CR1) mittels Two-photon Mikroskopie untersucht.  

Nachdem in Studien gezeigt wurde, dass hepatische Sternzellen in ihrer Aktivität durch 

Stimulierung von Endocannabinoidrezeptoren (CB1 /CB2) beeinflusst werden können, 

erhielten die Tiere in unseren Versuchen entweder den CB-2 Agonist JWH-133 zur 

Depletion von Sternzellen oder den CB-1 Agonist ACPA zur Aktivierung dieser. 

Hepatische I/R führte in allen Gruppen zu T-Zell Rekrutierung in den Sinsusoiden. In 

der JWH-133 Gruppe führte die Deaktivierung der Sternzellen zu einer deutlich 

verringerten Ansammlung von T-Lymphozyten in die Sinusoide sowie signifikant 
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geringeren hepatischen I/R Schaden verglichen mit den anderen Gruppen. HSC über-

Aktivierung durch CB-1 Stimulation hatte keinen Einfluss auf T-Zell Rekrutierung, 

ging jedoch mit höherem hepatischem Perfusionsversagen einher. 

Demnach suggerieren unserer Daten, dass a) in der Tat eine Interaction zwischen HSC 

und T-Zellen während der Postischämie stattfindet und b) selektive 

Depletion/Deaktivierung von HSC durch CB-2 Agonisten zu geringerem I/R Schaden 

führt. 

Somit könnten HSC in Zukunft als ein potentielles Ziel für therapeutische 

medikamentöse Intervention im Rahmen der T-Zell vermittelten I/R Schaden gesehen 

werden. 
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 List of abbreviations:  

ALT Alanine aminotransferase  

α-SMA α-smooth muscle actin  

AST  Aspartate aminotransferase  

ACPA Arachidonylcyclopropylamide 

CB-1 and CB-2 Cannabinoid Receptor type 1 and 2  

CFSE Carboxyfluorescein diacetate succinimidyl ester 

FITC Fluorescein isothiocyanate 

GFP Green fluorescence protein 

HGF Hepatocyte growth factor 

HSC Hepatic stellate Cell 

ICAM-1 Intercellular adhesion molecule-1 

I/R Ischemia-reperfusion 

LFA-1 leukocyte function- associated antigen-1 

NK cells Natural killer cells 

PD-1 Programmed death ligand-1  
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