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Preface 
	
  

This study was performed in the laboratory of Dr. Esben Lorentzen at the Max Planck 

institute of biochemistry (MPIB). During the last 4½ years I was working on one 

main project described in this thesis. A detailed description based on the available 

literature will introduce this study. The result part of the thesis will be presented as 

three chapters, two of which are of collaborative nature and one that represents my 

main project (chapter II). All three chapters deal with the investigation of Calponin 

Homology (CH) domain containing proteins of the intraflagellar transport (IFT) 

complex. Chapter I contains the research report published in Science with my 

colleague Sagar Bhogaraju as a lead author with the title: ‘Molecular Basis of Tubulin 

Transport Within the Cilium by IFT74 and IFT81’, to which I contributed as an co-

author. The results of my main project are summarized in chapter II as a manuscript 

with the title: ‘The CH domain of IFT54 binds tubulin whereas the CH domains of 

IFT38 and IFT57 interact with IFT80 and IFT172, respectively’ that will be finalized 

for submission. In chapter III, I present a manuscript (Nature communication, under 

review) from collaborators on ciliopathy disease mutations in the protein IFT54 with 

the title: ‘Hypomorphic mutations in TRAF3IP1/IFT54 reveal a new role for IFT 

proteins in microtubule stabilization’. I contributed the in vitro work on disease 

variants to this manuscript and I am listed as a co-author on the manuscript. An 

extended discussion follows the results part in which I discuss topics that were not 

part of the manuscripts as well as future research directions for the field. 
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Contributions 
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Bhogaraju, S., Cajanek, L., Fort, C., Blisnick, T., Weber, K., Taschner, M., Mizuno, 

N., Lamla, S., Bastin, P., Nigg, E.A., et al. (2013). Molecular Basis of Tubulin 

Transport Within the Cilium by IFT74 and IFT81. Science 341, 1009–1012. 

 

For this study I established microscale thermophoresis (MST) measurements 

for determining Kd’s for tubulin-binding domains together with Dr. S. 

Bhogaraju. Additionally, I carried out the subtilisin treatment of tubulin to 

remove the E-hooks in preparative scale (Fig. S5A). 
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Weber K., Taschner M., Stiegler M., Lorentzen E., The CH domain of IFT54 binds 

tubulin whereas the CH domains of IFT38 and IFT57 interact with IFT80 and 

IFT172, respectively 

 

I performed all experiments presented in the manuscript apart from the 

purifications and pull down experiments presented in Fig. 7A and Fig. S4 

(done by Dr. Michael Taschner), the analytical ultracentrifugation (AUC) 

measurement Fig. 2B (done by Dr. Stephan Uebel) and the affinity pull down 

Fig. 1E (done by Marc Stiegler).  
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Summary 
	
  

Cilia are microtubule (MT)-based appendages projecting from the surface of many 

different eukaryotic cells. Apart from their known function in motility, cilia on many 

cell types have been thought to be vestigial remnants that lost their functionality 

throughout evolution. But it has been shown that cilia not only perform important 

functions in motility, they are also indispensable for sensory reception and signaling. 

Non-functional or missing cilia are the cause of various human diseases, referred to as 

ciliopathies. Given that >600 different proteins function inside the cilium and that the 

cilium is devoid of ribosomes, a specialized trafficking process known as 

intraflagellar transport (IFT) is in place to assemble and maintain cilia. The IFT 

complex consists of 22 proteins identified so far that organize in a ~1.5 MDa 

complex, subdivided into the IFT-A and IFT-B complex. Nine of the IFT-B proteins 

have been shown to form a salt-stable core in which the interactions between the 

proteins have been recently mapped. In contrast, not much is known about the 

interactions between the remaining seven IFT-B proteins (considered as ‘peripheral’) 

either between each other or with the ‘IFT-B core’. It has been shown that mutation or 

deletion of certain IFT-proteins or the motor proteins required for IFT can lead to 

impairment or disruption of IFT and consequently to non-functional or missing cilia. 

Recently, disease mutations in IFT proteins have emerged as the cause of ciliopathies 

although the molecular basis is often not well understood. To better understand the 

interplay between different IFT proteins as well as to identify possible cargo 

interaction sites, my project comprised the structural and biochemical characterization 

of the four IFT-B proteins IFT20, IFT38, IFT54 and IFT57.  

During my project work on IFT54 it emerged that both this protein and IFT81 were 

likely to contain an N-terminal Calponin Homology (CH) domain with potential 

tubulin-cargo binding affinity. I thus collaborated with another graduate student of the 

lab who was working on IFT81 (Sagar Bhogaraju) to setup methods to characterize 

tubulin and MT binding. For this study I specifically contributed proteolysed tubulin 

lacking the C-terminal E-hooks, which I prepared in large scale and purified to 

homogeneity. This ΔC form of tubulin was used in several figures of the Science 

paper shown in chapter I and allowed for the detailed mapping of the interaction 

between IFT81 and tubulin. Additionally, chapter I describes the high-resolution 
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structure of the N-terminal part of IFT81 that adopts a CH domain fold. 

Characterization of the CH domain of IFT81 demonstrated its ability to bind to 

tubulin and MTs. Furthermore, the binding ability of the CH domain in IFT81 

increases significantly in the presence of the positively charged N-terminal stretch of 

IFT74. Quantification of the binding between IFT81/74 and tubulin revealed a Kd of 

0.9 µM. Further examinations demonstrated that the CH domain in IFT81 selectively 

binds to the globular domain of tubulin whereas the positively charged stretch of 

IFT74 strengthen the binding via interaction with the negatively charged E-hooks of 

tubulin. These findings were the first reported tubulin-interaction site at one of the 

IFT proteins.  

In chapter II of the results I present my studies on IFT20, IFT38, IFT54 and IFT57. 

The reported interaction between IFT20 and IFT54 was confirmed and mapped to the 

coiled coil regions (CC) of both proteins. Furthermore, a yet unknown interaction 

between IFT38 and IFT57 was identified, indicating that IFT38 is indeed a member of 

the IFT-B complex. In addition, the three proteins IFT38, IFT54 and IFT57 contain 

predicted CH domains at their N-termini. Therefore, the binding ability of IFT20/54 

and IFT38/57 to tubulin was tested. Surprisingly, IFT20/54 but not IFT38/57 binds 

tubulin. Quantification of the binding between tubulin and IFT20/54 revealed a 

binding affinity of 3 µM. The interaction of IFT20/54 to tubulin was mapped to the 

predicted CH domain in IFT54. I solved the high-resolution structure of the N-

terminal region of IFT54 to demonstrate that it indeed adopts a CH domain fold. All 

these findings point to the CH domain of IFT54 as a second tubulin-binding site 

within the IFT complex.  

The CH domains in IFT38/57 lost their ability to bind tubulin raising the question of 

their molecular function. Further examinations of the IFT38/57 complex with proteins 

of the ‘IFT-B core’ did not reveal any interaction. Thus, the remaining IFT-B proteins 

were tested in direct interaction assays. An interaction between the CH domains of 

IFT38 and IFT57 with IFT80 and IFT172, respectively, could be verified. In 

summary, the CH domains in IFT38 and IFT57 seem to have lost their ability to bind 

tubulin and have been adapted to mediate the binding to the IFT-B proteins IFT80 and 

IFT172.  

Chapter III of the results contains work from collaborators, to which I contributed the 

in vitro studies. In this study, DNA was sequenced from patients suffering from the 

ciliopathy Nephronophthisis (cystic kidney disease) to reveal point mutations. Four 
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point mutations (I17S, V125A/M, M520R) were identified in IFT54/Traf3ip1/MIP-

T3. Interestingly, the point mutations I17S and V125A/M are located in the N-

terminal CH domain of IFT54, of which I solved the crystal structure as described in 

chapter II. More precisely, both residues are located in hydrophobic pockets, 

suggesting that mutation of these residues likely impairs proper folding and thereby 

disrupts the function of the CH domain in IFT54. Point-mutants of the mouse IFT54 

CH domain (I17S and V125A/M) were cloned and expressed but as expected from the 

structure could not be obtained in a soluble form but were instead degraded in our 

recombinant expression system. Sequence alignments revealed that the valine is 

evolutionary conserved. Introducing the valine mutations in full-length 

Chlamydomonas reinhardttii IFT54 resulted in soluble IFT20/54V126A/M complexes. 

Circular dichroism (CD) spectroscopy showed that both IFT54 mutants are overall 

folded proteins with a slightly lower α -helical content compared to the WT. 

Furthermore, thermal unfolding of the IFT20/54 WT and mutant complexes were 

performed resulting in a 3°C lower melting temperature of both IFT20/54 mutant 

complexes compared to the WT. This indicates that the mutations in the CH domain 

in full-length IFT54 lead to a less stable protein and presumably compromise the 

function in vivo in this way.  

In addition, the collaborators could show that injection of WT IFT54 RNA in IFT54 

deficient zebrafish embryos partially rescued the mutant phenotypes, whereas 

injection of mutated (V125A/M) IFT54 RNA failed to do so. Furthermore, the V125 

mutations impair the localization of IFT54 at cytoplasmic MTs that in turn stabilizes 

MAP4 (MT-associated protein 4) on MTs, leading to altered cytoplasmic MT 

dynamics. These findings implicate an extra-ciliary role for IFT54 and thus additional 

possibilities for the occurrence of certain ciliopathies that have not been studied yet.  
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1) Introduction 
	
  

Cilia are hair-like organelles that protrude from the surface of many different 

eukaryotic cells (figure 1). They are present in unicellular organisms such as the green 

algea Chlamydomonas reinhardtii and Trypanosoma brucei, the parasite causing 

sleeping sickness in human (Morga and Bastin, 2013). Cilia are also found in cells of 

multicellular organisms ranging from C.elegans to higher metazoans but are absent in 

Saccharomyces and Arabidopsis. Cells use motile cilia either for motility (sperm 

cells) or movement of cells or extracellular fluids (cilia facing the female fallopian 

tubes, the respiratory tract and the ventricles of the brain) (see section 1.2.4). A 

second type of cilia is the immotile (primary) cilium, first discovered 1898 by the 

Swiss anatomist K. W. Zimmermann on mammalian kidney cells (Zimmermann, 

1898). For a long time it was thought that primary cilia are only evolutionary 

remnants without any function. But during the last decades it turned out that primary 

cilia play important roles in sensory reception such as sight and smell but also serve 

as key organelles in signaling (see section 1.2). Therefore, it is not surprising that 

nowadays a large number of human diseases, referred to as ciliopathies (primary cilia 

dyskinesia (PCD), polycystic kidney disease (PKD), retinal degeneration, 

respectively), are known to be linked with non-functional, misshapen or missing cilia 

(Badano et al., 2006; Fliegauf et al., 2007; Pazour and Rosenbaum, 2002).  

 

1.1) Architecture of the cilium 

The terms cilia and flagella describe the same organelle and will be used 

interchangeable throughout this thesis. However, the eukaryotic flagellum should not 

be confused with the prokaryotic flagellum as the two structures have different 

architectures and evolutionary origins. The bacterial flagellum is an extracellular 

appendage also used for motility but the main building block is flagellin and the 

structure is not surrounded by a membrane (reviewed in (Macnab, 2003)). The 

eukaryotic flagellum has a microtubule (MT)-based axoneme surrounded by a 

membrane continuous with the plasma membrane and is classified as an intracellular 

organelle.  
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Cilia can be categorized in motile and non-motile cilia depending on their inner 

organization (figure 2). Motile cilia have nine outer MT doublets (A- and B-tubules) 

with a central MT pair, referred to as ‘9+2’ arrangement. Non-motile cilia (also called 

primary cilia) have a ‘9+0’ arrangement, missing the central pair of MTs and perform 

mainly sensory functions (see section 1.2). Two exceptions from the rule above could 

be identified in humans so far. First, the cilium on nodal cells has a ‘9+0’ 

arrangement but still contains the motor machinery to perform a unique twirling 

movement (Nonaka et al., 1998). Second, the cilia in the inner ear (kinocilium) are 

immotile due to the lack of parts of the motor machinery but have a ‘9+2’ 

arrangement (Dabdoub and Kelley, 2005; Kikuchi et al., 1989; Sobkowicz et al., 

1995).  

 

 
Figure 1: Overview of cilia emerging from a various number of eukaryotic cell types. 

Cilia are sorted into four groups according to their MT-based axoneme (adapted 

from (Fliegauf et al., 2007)). 

 

10



The cilium emanates from a basal body, a modified mother centriole (Bornens, 2012; 

Nigg and Raff, 2009). The orientation of the basal body in the cell is important for the 

correct localization of the cilium. Triplet MTs (A-, B- and C-tubules) in the basal 

body arrange in a cartwheel structure whose symmetry is continued in the outer 

doublet MT array of the ciliary axoneme (Mizuno et al., 2012; Ringo, 1967). Distal to 

the basal body is the ‘transition zone’ in which the central pair of MTs originate, the 

C-tubules terminate and only the A- and B-tubules are continuous through and form 

the ciliary axoneme (Gilula and Satir, 1972). The MTs are assembled by adding  

αβ-tubulin dimers (8 nm length) to the ‘plus end’ (Hao et al., 2011; Johnson and 

Rosenbaum, 1992; Lechtreck et al., 2013; Marshall and Rosenbaum, 2001). The B-

tubules consist of 10 protofilaments, whereas the A-tubules and the central pair have 

13 protofilaments (Warner and Satir, 1973; Witman et al., 1972). Furthermore, MT-

associated structures are necessary to assemble and maintain a functional cilium. The 

most important structures are discussed here. (1) Two big protein complexes, the 

inner and outer dynein arms (subcategorized depending on their location), extend 

from the A-tubules of one MT doublet to the B-tubules of the adjacent MT doublet 

from motile cilia (Mitchell, 2000; Warner and Satir, 1974). The inner dynein arms 

(IDAs) are located in the inner periphery of the doublet MTs whereas the outer dynein 

arms (ODAs) are facing the ciliary membrane. Both complexes consist of several 

heavy, intermediate and light chains (reviewed in (Porter, 1996)). The heavy chains 

contain ATPase activity, hydrolyzing ATP to ADP and phosphate providing the 

driving force for the bending of motile cilia (Gibbons, 1963). The movement is 

achieved by sliding of adjacent MT doublets located next to each other (Satir, 1968; 

Summers and Gibbons, 1971). (2) Thin fibers, the nexins, span A- and B-tubules of 

the adjacent MT doublet (Gibbons, 1963). A later study using cryo electron 

tomography identified nexins as part of the dynein regulatory complex (DRC), now 

referred to as N-DRC (Heuser et al., 2009). How this complex stabilizes the ciliary 

axoneme as well as the exact protein composition are still questions to address. (3) 

Radial spokes (a complex of at least 23 proteins) connect the A-tubules and the 

central sheath, surrounding the central MT pair (Gibbons and GRIMSTONE, 1960; 

Patel-King et al., 2004; Piperno et al., 1981; Warner, 1970; Warner and Satir, 1974; 

Yang et al., 2006). Additional mutagenesis studies revealed interplay of radial spokes 

and the central sheath/MT pair in regulating the activity of dynein motors attached to 
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the A-tubules (Mitchell, 2000; Warner and Satir, 1974; Witman et al., 1978), although 

the detailed mechanism remains elusive. 

 

 
Figure 2: Cartoon representation of a cilium. Cross sections (‘9+2’ arrangement 

adapted from (Pedersen and Rosenbaum, 2008)) at various positions of the cilium 

illustrate the inner organization in more detail. The A- and B-MTs extend from the 

basal body to form the backbone of the ciliary axoneme. Transition fibers and the 

ciliary necklace (microscope picture (Czarnecki and Shah, 2012)) are thought to form 

the ciliary pore to avoid uncontrolled entry into the ciliary compartment. MT: 

microtubule, ODAs: outer dynein arms, IDAs: inner dynein arms. 
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As already mentioned above, the ‘transition zone’ is located between the distal end of 

the basal body and the axoneme. In this region transition fibers (also termed Alar 

sheets (Anderson, 1972)) form a nine-bladed propeller like structure connecting the 

ciliary membrane with all nine MT triplets of the basal body (Gibbons and 

GRIMSTONE, 1960; Gilula and Satir, 1972; O'Toole et al., 2007; Ringo, 1967). 

Distal to the transition fibers, the ciliary necklace is placed. This is a specialized 

structure composed of several parallel strands of intramembrane particles (unknown 

composition) bridging the A- and B-tubules and the ciliary membrane (Gilula and 

Satir, 1972). The transition fibers and the ciliary necklace are thought to function 

together as a ciliary pore avoiding uncontrolled entry into the ciliary compartment 

(Fisch and Dupuis-Williams, 2011; Gilula and Satir, 1972). This gateway keeper 

function supports the argument to classify cilia as an independent intracellular 

compartment. 

Proteins larger than 9 nm in diameter (~100 kDa) are unable to diffuse through the 

ciliary pore (Breslow et al., 2013). Therefore, it was speculated that either helper 

proteins or an active transport system is in place to ensure entry into the cilium. It has 

been shown that larger proteins or pre-assembled complexes (like radial spokes, 

dynein arms) are escorted through the ciliary pore through helper proteins (Hou et al., 

2007; Qin et al., 2004) but the exact mechanism how this big protein complexes pass 

the ciliary pore is still enigmatic.  

 

1.2) Functions of cilia 

1.2.1) Cilia in development 
Embryonic node cells contain one cilium per cell. These nodal cilia perform a unique 

twirling movement creating an extracellular nodal fluid flow (Nonaka et al., 1998) 

(figure 3). Non-functional or missing nodal cilia in this early step of development 

result in an inverted position of the inner organs in the body, a condition known as 

situs inversus (Okada et al., 1999; Pazour et al., 2000). Elegant work in which mouse 

embryos were cultured under an artificial fluid flow could show that the embryonic 

nodal fluid flow is essential for the correct left-right-axis determination of the 

embryo. Whereas embryos exposed to leftward flow showed normal left-right 

patterning, the body symmetry was reversed in embryos developed under a rightward 
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flow (Nonaka et al., 2002). An explanation for the importance of the nodal flow could 

be the formation of a gradient of a so far unknown morphogen towards the left side 

and thereby triggering a signaling cascade responsible for the body symmetry. In line 

with this, Tanaka and colleagues observed secretion of membrane-sheathed ‘nodal 

vesicular parcels’ (NVPs) from the nodal surface carrying Sonic hedgehog (Shh) and 

retinoic acid molecules, transported leftwards by the fluid flow (Tanaka et al., 2005). 

Furthermore, the Ca2+ channel polycystin-2 (Pkd-2) in cilia of crown cells, placed at 

the edge of the node, is pivotal in sensing the nodal flow and therefore for correct left-

right patterning (McGrath et al., 2003; Yoshiba et al., 2012).  

 

 
Figure 3: Schematic representation of embryonic nodal cells. ‘Nodal vesicular 

parcels’ (NVPs) are secreted from the cells and transported leftwards due to the 

nodal flow created from beating cilia, determining the left-right-axis pattern of the 

embryo (adapted from (Fliegauf et al., 2007)).  

 

Sonic hedgehog (Shh) signaling 

Another important role of cilia during mammalian development is their involvement 

in various signaling pathways. Cilia are indispensable for the regulation of Sonic 

hedgehog (Shh) signaling due to the localization of Shh components, like 

Smoothened (Smo) (Corbit et al., 2005), Suppressor of fused (Sufu) and the 

transcription factors Glioma 2 and 3 (Gli2, Gli3) (Haycraft et al., 2005) to cilia. Cells, 

either lacking cilia or with defective cilia, are unable to induce the pathway in 

response to exogenous Shh ligands or show impaired Shh, leading to various 

developmental defects (Badano et al., 2006; Cortellino et al., 2009; Haycraft et al., 

2005; Houde et al., 2006; Huangfu et al., 2003; Liem et al., 2012). Since the secreted 

protein Hedgehog (Hh) binds to its receptor Patched-1 (Ptch-1) the pathway is  
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Figure 4: Schematic representation of the role of cilia in various signaling pathways. 

(A) Shh signaling: Upon ligand binding of Hh to the receptor Ptch-1, Smo is 

transported into cilia to promote the activation of the transcription factor Gli3.  

(B) Wnt-signaling: Upon ligand binding, Dsh is recruited to the receptor Frizzled, 

leading to activation of the transcription factor β -cat (canonical pathway). Flow-

induced Ca2+ influx promotes Inversin expression that in turn targets cytoplasmic 

Dsh for degradation. Membrane-bound Dsh activates downstream effectors (non-

canonical pathway). (C) PDGF-signaling: Binding of PDGF to PDGFRαα leads to 

activation of the MEK/ERK cascade. (Figures adapted from (Fliegauf et al., 2007)). 
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initiated. In the absence of its ligand, Ptch-1 is located in the ciliary membrane and 

keeps Smo in an inactive state by an unknown mechanism. After Hh binding Ptch-1 is 

removed from the ciliary membrane and Smo is released and transported to the ciliary 

tip (Rohatgi et al., 2007). In the cilium, Smo blocks the processing of Gli3 by 

interacting with Sufu. Active Gli3 is then transported to the base of the cilium, enters 

the nucleus and induces the expression of several Shh target genes. In the absence of 

Smo, full length Gli3 is processed to a transcriptional repressor (Gli3R) (Berbari et 

al., 2009; Haycraft et al., 2005) (figure 4A).  

 

Wingless (Wnt)- and platelet-derived-growth factor (PDGF)-signaling 

Wingless (Wnt)-signaling can be subdivided into canonical and non-canonical 

pathways (figure 4B). The canonical route is required for cell fate determination and 

proliferation whereas the non-canonical pathway, also known as planar cell polarity 

(PCP) pathway, controls cell polarization and gastrulation (Christensen et al., 2008; 

Sato et al., 2006). Members of both routes can be found at the cell membrane close to 

the ciliary base as well as within cilia, like Inversin (Morgan et al., 2002), Dishevelled 

(Dsh) (Park et al., 2008), anaphase-promoting complex/cyclosome (APC/C),  

β-catenin (β-cat) and glycogen synthase kinase-3β (GSK) (Corbit et al., 2008). The 

canonical pathway is induced upon ligand binding of WNT to the receptor Frizzled 

leading to the recruitment of cytoplasmic Dsh to Frizzled and inactivation of GSK. As 

a consequence, Dsh stabilizes β -cat that translocates to the nucleus and induces 

transcription of Wnt-target genes. In the absence of a signal β -cat is degraded via a 

complex of axin, GSK and APC/C (Berbari et al., 2009; Fliegauf et al., 2007). The 

non-canonical pathway is mediated via flow-induced bending of cilia. This leads to 

Ca2+ influx and thus to an increased Inversin expression. In turn, Inversin targets the 

cytoplasmic pool of Dsh (not membrane-bound Dsh) for APC/C-dependent 

ubiquitylation and degradation and thus destabilizes β-cat as well. Membrane-bound 

Dsh promotes the activation of downstream effectors that in turn affect the 

cytoskeleton independent of transcription (Fliegauf et al., 2007; Sato et al., 2006). 

Signaling via platelet-derived-growth factors (PDGFs) and their receptors (PDGFRs) 

is pivotal in controlling cell survival, proliferation and embryonic development. In 

growth-arrested fibroblasts, PDGFRα localizes to the primary cilium (Schneider et al., 

2005) where it functions as a homodimer (Fredriksson et al., 2004). After stimulation 

with its ligand PDGF-AA, PDGFRαα gets auto-phosphorylated at certain tyrosines 

16



that in turn lead to the activation of the AKT- and MEK1/2-ERK1/2-pathways in and 

at the base of the cilium, and thus to ciliary resorption and cell cycle entrance (figure 

4C). In contrast, PDGFRβ is not targeted to the membrane of the very short primary 

cilia in orpk mutant mouse embryonic fibroblasts (MEFs) supporting the conclusion 

that the primary cilium exclusively regulates PDGFRαα activation and function 

(Christensen et al., 2008; Schneider et al., 2005).  

 

1.2.2) Cilia in mechanosensing 
Kidney epithelia cells have one immotile cilium per cell (primary cilium) pointing 

into the tubular lumen. Defects in renal primary cilia contribute to the pathogenesis of 

polycystic kidney disease (PKD) (Pazour et al., 2000) due to the inability of these 

cilia to sense extracellular fluid flow (Liu et al., 2005; Praetorius and Spring, 2003). 

Cilia on renal cells bend under the urine flow resulting in an increased Ca2+ influx 

(Masyuk et al., 2006; Praetorius and Spring, 2001). Membrane potential 

measurements revealed that the ciliary concentration of Ca2+ is approximately five 

times higher than in the cytoplasm (Delling et al., 2013), leading to the activation of 

Ca2+-signaling cascades (DeCaen et al., 2013) (figure 5). It has been shown that the 

heterodimer polycystin-1 (PC1)/polycystin-2 (PC2), in mammals encoded by the 

genes Pkd-1 and -2, locate to the ciliary membrane (Delmas et al., 2002; Hanaoka et 

al., 2000; Mochizuki et al., 1996; Pazour et al., 2002; Stayner and Zhou, 2001; Yoder 

et al., 2002) and are responsible for the mechanotransduction pathway of cilia 

(DeCaen et al., 2013). PC2 functions as a Ca2+ channel (Koulen et al., 2002; Vassilev 

et al., 2001), whereas PC1 is a flow-sensor, activating G-protein-coupled signaling 

pathways, which in turn activate Ca2+ and K+ channels (Delmas et al., 2002). 

Mutations in the genes Pkd-1 and -2 lead to renal cyst formation followed by renal 

failure in mice (Lu et al., 1997; Wu et al., 1998), the main phenotype of PKD. 

Cultured renal epithelial cells from transgenic mice, lacking PC1 are able to form cilia 

but no increased Ca2+ influx in response to fluid flow could be detected (Nauli et al., 

2003). Furthermore, in PKD patients a mutation in PC2 was found to result in 

impaired sensitivity to changes of the intracellular Ca2+ concentration (Vassilev et al., 

2001). These findings led to the conclusion that PKD may result from the loss of a 

regulated intracellular Ca2+ release signaling mechanism. 
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Figure 5: Mechanosensation-based signaling model: Flow-induced ciliary bending is 

pivotal for sensing the Ca2+influx into cilia via the PC1-PC2 complex, leading to the 

activation of the Ca2+- signaling cascade (adapted from (Fliegauf et al., 2007)).  

 

1.2.3) Cilia in olfaction and photoreception 
Olfactory sensory neurons end in dendritic knobs, the origin of clusters of olfactory 

cilia (Berbari et al., 2009) (figure 6B). Once the odorants contact the epithelium they 

act as ligands for olfactory G-protein-coupled receptors (GPCRs) in the ciliary 

membrane. Activation of these GPCRs triggers downstream events leading to the 

sensation of smell (McEwen et al., 2008). Defective cilia unable to respond to an 

odorant lead to loss of smell also known as anosmia (Badano et al., 2006; Kulaga et 

al., 2004).  

Rod and cone photoreceptor cells are highly polarized sensory neurons (figure 6A). 

They consist of the inner segment, where protein synthesis and maturation occurs and 

the outer segment, full of membrane discs containing GPCRs like opsin and 

rhodopsin that sense the incoming light. The ‘connecting cilium’, an immotile cilium 

with a 9+0 axoneme, bridges inner and outer segments (Berbari et al., 2009; Besharse 

and Horst, 1990). Due to the high turnover rate of the outer segment (~2000 opsin 

molecules per minute) it was speculated that an efficient mechanism exists that 

ensures the delivery of components to the outer segment (Besharse and Horst, 1990). 

This has been proven by mutational analysis in mice, leading to severe retinal 

degeneration (Marszalek et al., 2000; Pazour, 2002) a cause for retinis pigmentosa 

(RP) (Badano et al., 2006). 
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Figure 6: Cartoon representation of a photoreceptor and olfactory cell. (A) In the 

photoreceptor cell the inner and outer segments are linked through the ‘connecting 

cilium’ (adapted from (Fliegauf et al., 2007)). (B) Multiple cilia originate from the 

dendritic knob of an olfactory receptor cell.  

 

All together, cilia have been shown to play important roles in signaling and sensory 

reception and can therefore be thought of as the antennae of the cell (Berbari et al., 

2009; Christensen et al., 2008; Fliegauf et al., 2007; Gerdes and Katsanis, 2008; 

Goetz and Anderson, 2010; Singla and Reiter, 2006).  

 

1.2.4) Cilia in motility 
The motility of cilia is a result of the presents of various dynein arms facing the 

ciliary axoneme as described in section 1.1. Comparison of the bending pattern of 

wild type or mutant (either lacking IDA or ODA components) Chlamydomonas 

reinhardtii flagella indicated different functions for IDAs and ODAs (Brokaw and 

Kamiya, 1987). IDAs are thought to be responsible for the size and shape of the 

waveform by which the ciliary axoneme bends (Brokaw and Kamiya, 1987; Porter 

and Sale, 2000). On the other hand, the power and beat frequency of ciliary bending 

seems to be controlled by ODAs (Brokaw and Kamiya, 1987).  

Beating of motile cilia facing the fallopian tubes in the female reproductive tract are 

absolutely necessary to move the zygote from the ovary to the uterus. Otherwise 

19



ectopic pregnancy or subfertility can occur (Lyons et al., 2006). The tail of the male 

sperm cell is also a motile cilium, thus male infertility is mostly linked with impaired 

sperm motility (Fliegauf et al., 2007; Munro et al., 1994). This phenotype is often 

seen in primary ciliary dyskinesia (PCD) a well-known ciliopathy normally combined 

with defects in nodal (see section 1.2.1) and respiratory cilia. The motile cilia on 

respiratory epithelial cells are indispensable for mucociliary clearance of the airways 

(Duchateau et al., 1985; Storm van's Gravesande and Omran, 2005). Furthermore, 

ependymal cells lining the ventricles of the brain also contain motile cilia to create the 

laminar flow of the cerebrospinal fluid (ependymal flow). Lack of this ependymal 

flow causes amongst others hydrocephalus formation in the early brain development 

(Banizs et al., 2005; Ibañez-Tallon et al., 2004). 

 

1.3) Intraflagellar transport 

How do cells construct and maintain the cilium organelle? Given that cilia are devoid 

of ribosomes and that axonomal components are assembled and turned over at the 

ciliary tip (Johnson and Rosenbaum, 1992; Marshall and Rosenbaum, 2001; Pazour et 

al., 2005), cilia rely on an active transport system for assembly and maintenance. 

Intraflagellar transport (IFT) was characterized in 1993 in the biflagellate algea 

Chlamydomonas reinhardtii (Cr) using differential interference contrast (DIC) 

microscopy visualizing particles moving bidirectional inside the cilium (Kozminski et 

al., 1993). Longitudinal sections of paralyzed Chlamydomonas flagella analyzed 

using electron microscopy showed granule-like particles (IFT particles), localized 

between the outer doublet MTs and the ciliary membrane arranged in long linear 

arrays (later referred to as IFT-trains (Pigino et al., 2009)) (figure 7). Quantification 

of the movement of the IFT-trains revealed a slower (2 µm/sec) anterograde transport 

(from the base to the ciliary tip) compared to a faster (3.5 µm/sec) retrograde 

transport (from the ciliary tip to the base) (Kozminski et al., 1993). Further analysis 

elucidated two types of IFT-trains. Long, narrow trains (~700 nm) that seem to be 

used in anterograde transport compared to short, more compact trains (~250 nm) that 

are likely responsible for retrograde transport (Pigino et al., 2009). Another study 

suggested a correlation between the state or length of the cilium and the IFT-trains 

unrelated to the direction of IFT (Engel et al., 2009). Therefore, further studies are 
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necessary to shed light on the physiological role of different IFT-train types. The most 

detailed insight into the structure of IFT-trains so far is a 3D electron tomography 

reconstruction (Pigino et al., 2009), clearly showing two lanes of repeating building 

blocks. The authors suggested that one such building block might contain the IFT 

particle, motor proteins and cargo destined for cilia (figure 7). 

 

 
Figure 7: (A) Electron micrograph of a paralyzed Chlamydomonas flagellum. The 

IFT-trains are visualized as electron dense material between the ciliary membrane 

and the outer doublet MTs (adapted from (Kozminski et al., 1995)). (B) Schematic 

representation of the IFT machinery. IFT particles are transported to the tip of the 

cilium via the motor protein kinesin-II (anterograde IFT). Retrograde IFT, back to 

the base of the cilium, is powered by cytoplasmic dynein 2 (adapted from (Rosenbaum 

and Witman, 2002)). (C) 3D electron tomography reconstruction showing IFT 

particles arranged in two rows. Distinct links (I longitudinal, d diagonal to the axis of 

IFT-trains) connect the adjacent IFT particles (white ovals). Interactions between the 

IFT particle and the outer doublet MTs are indicated with k, presumably the motor 

protein (adapted from (Pigino et al., 2009)). 

 

The first biochemical analysis of IFT particle proteins was carried out performing 

sucrose density gradient centrifugation of material isolated from Chlamydomonas 

reinhardtii flagella (Cole et al., 1998; Piperno and Mead, 1997). The 14 identified IFT 

proteins co-sediment at ~16S. Varying the ionic strength separates the proteins into 
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two subcomplexes, named IFT-A and IFT-B. The IFT-B complex can be further 

trimmed down to a salt stable ‘IFT-B core’ and loosely attached ‘peripheral’ IFT-B 

proteins (Lucker et al., 2005). Over the last years more members of the IFT complex 

and their homologues in various organisms were discovered (table 1).  

The motors responsible for IFT have also been identified. Switching a temperature 

sensitive Chlamydomonas reinhardtti fla10 (gene for kinesin-II motor subunit) mutant 

to the restrictive temperature results in shrinking of cilia, termination of IFT and loss 

of IFT proteins from the cilium (Cole et al., 1998; Kozminski et al., 1995). This led to 

the conclusion that hetero-trimeric kinesin-II drives anterograde transport. The same 

phenotype of stumpy cilia or even loss of cilia is observed in IFT-B mutants (see 

section 1.4.2) (Brazelton et al., 2001; Pazour et al., 2000) indicating that IFT-B 

proteins are important for anterograde IFT. In contrast, deletion of the gene encoding 

dynein heavy chain isoform DHC1b results in short, non-motile cilia with bulky tips 

filled with granule-like particles. In these mutants anterograde IFT could be detected 

but retrograde IFT was completely stopped (Pazour et al., 1999; Porter et al., 1999; 

Signor et al., 1999). Mutational analysis of IFT-A proteins also revealed short cilia 

with accumulated IFT-B proteins at the tip (see section 1.4.1.2) (Absalon et al., 2008; 

Efimenko et al., 2006; Piperno et al., 1998), linking cytoplasmic dynein 2 (previously 

called cytoplasmic dynein 1b) and IFT-A proteins to retrograde IFT.  

Taken together, IFT is a conserved mechanism, important for the assembly and 

maintenance of different kind of cilia in various organisms, ranging from (1) motile 

cilia in Chlamydomonas reinhardtii (Kozminski et al., 1995; Pazour et al., 1999; 

2000), sea urchin (Morris and Scholey, 1997) and Tetrahymena thermophila (Brown 

et al., 1999) to (2) ciliated sensory neurons in C.elegans (Cole et al., 1998; Haycraft et 

al., 2001; Perkins et al., 1986; Qin et al., 2001) and (3) nodal cilia (Murcia et al., 

2000), kidney primary cilia (Pazour et al., 2000) and rod outer segments in mice 

(Pazour, 2002). 
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1.4) Structure and function of individual IFT proteins 

The IFT proteins organize into a ~1.5 MDa complex that is thought to transport 

ciliary cargo within cilia. Therefore, it is not surprising that bioinformatics analysis 

predicts many domains in IFT proteins that mediate protein-protein interactions, like 

coiled coil, Tetratricopeptide repeats (TPRs) and tryptophan-aspartic acid (WD) 40-

repeats (β-propellers) (figures 8 and 10).  

The 6 IFT-A and 16 IFT-B proteins identified so far are discussed separately in the 

next sections. In addition, the IFT-B proteins are further divided into subgroups 

according to their predicted domain architecture. A short introduction will describe 

each protein and its possible role in IFT and ciliogenesis based on the available 

literature. 

 

1.4.1) IFT-A complex 

1.4.1.1) Domain architecture of IFT-A proteins 

The IFT-A complex consists of six members, namely IFT144, IFT140, IFT139, 

IFT122, IFT121 and IFT43 that can be isolated from Chlamydomonas reinhardtii as a 

stable complex (Piperno and Mead, 1997). To date, little is known about direct 

protein-protein interactions within the IFT-A complex. A reason for this lack of 

information might be the large size of these proteins, leading to difficulties to produce 

recombinantly expressed proteins. The only direct interaction known so far could be 

observed between IFT121 and IFT43 using yeast-2-hybrid assays and co-purification 

trials (Behal et al., 2012). Furthermore, after knocking down IFT139 and IFT121 in 

retinal pigment epithelium (RPE) cells, a stable ‘IFT-A core’ complex still co-

immunoprecipitates consisting of IFT144, IFT140 and IFT122 (Mukhopadhyay et al., 

2010) (figure 8B). 

Secondary structure predictions using the algorithms PSIPRED (Jones, 1999), 

TPRpred and REP revealed similar domain architecture for IFT144, IFT140, IFT122 

and IFT121 (Taschner et al., 2012) (figure 8A). All four proteins are predicted to 

consist of N-terminal WD40-repeats followed by α -helical solenoid TPRs spanning 

till the C-terminus of the proteins. This domain architecture is similar to components 

of coat protein I (COPI)- and clathrin-coated vesicles, pointing to a common ancestry 
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of these proteins (Devos et al., 2004; Jékely and Arendt, 2006; van Dam et al., 2013). 

For IFT139 only TPRs are predicted. For IFT43, the smallest protein in this complex, 

no domains apart from a short coiled coil region could be determined. None of the 

IFT-A proteins contain a predicted domain with enzymatic activity. Due to that the 

secondary structure predictions revealed only domains involved in protein-protein 

interactions, it is very likely hat the IFT-A complex serves as a structural platform 

within the IFT complex.  

 

 
Figure 8: (A) Domain architecture of Chlamydomonas reinhardtii IFT-A proteins.  

(B) Preliminary interaction map of the IFT-A complex. Possible functions of the ‘IFT-

A core’ are also depicted. 

 

1.4.1.2) Function of IFT-A proteins 

The ‘IFT-A core’ directly interacts with tubby-like protein 3 (TULP3), a member of 

the poorly understood tubby-like protein family, which seems to play a role in 

neuronal development and function. Furthermore, siRNA mediated depletion of either 

one of the ‘IFT-A core’ proteins or TULP3 in serum starved RPE cells inhibited the 

ciliary localization of a certain subset of GPCRs important for Shh signaling 

(Mukhopadhyay et al., 2010). This indicates that TULP3 serves as an adaptor between 
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the IFT-A complex and cargo proteins destined for cilia. This is also in line with 

observations in IFT122 or IFT144 deficient mice that show, apart from various 

developmental defects, impaired Shh signaling (Cortellino et al., 2009; Liem et al., 

2012; Qin et al., 2011). In contrast, mutations in THM1, the human ortholog of 

IFT139, lead to over-activation of Shh signaling (Goetz and Anderson, 2010; Tran et 

al., 2008). These findings clearly expose a correlation between IFT-A proteins and the 

Shh signaling pathway.  

In general, a common phenotype seen for IFT-A proteins are bulky cilia with 

accumulated IFT-B proteins at the ciliary tip, linking retrograde IFT to the IFT-A 

complex. These phenomena have been observed for example in dyf-2 (IFT144) 

mutants in C.elegans (Efimenko et al., 2006), mutations in the rempA locus (IFT140) 

in Drosophila (Lee et al., 2008a), mutations in THM1/TTC21B (IFT139) in mammals 

(Tran et al., 2008), depleting IFT122 in Tetrahymena thermophila (Tsao and 

Gorovsky, 2008), IFT122 deficient mice (Qin et al., 2011), RNAi knock down of 

PIFTD4 (IFT121) or PIFTF6 (IFT144) in Trypanosoma brucei (Absalon et al., 2008) 

and mutations in IFTA-1 (IFT121) in C. elegans (Blacque et al., 2006). Due to this 

conserved phenotype amongst different species it is not surprising that a set of human 

diseases, like Sensenbrenner syndrome and Jeune asphyxiating thoracic dystrophy 

(JATD), can be linked to mutations in certain IFT-A proteins (Arts et al., 2011; 

Bredrup et al., 2011; Gilissen et al., 2010). 

 

1.4.2) IFT-B complex 
So far 16 members of the IFT-B complex have been identified (Cole et al., 1998; Fan 

et al., 2010; Follit et al., 2009; Ishikawa et al., 2014; Lechtreck et al., 2009b; Lucker 

et al., 2005; Omori et al., 2008). Within the IFT-B complex, nine proteins organize in 

a salt stable ‘IFT-B core’, namely IFT88/81/74/70/52/46/27/25/22 (Taschner et al., 

2014). In addition, IFT56 could also be an ‘IFT-B core’ member through its recently 

suggested direct interaction with IFT46 (Swiderski et al., 2014). The other six IFT-B 

proteins (IFT172, IFT80, IFT57, IFT54, IFT38 and IFT20) are considered as 

‘peripheral’ proteins (Cole et al., 1998; Follit et al., 2009; Lucker et al., 2005)  

(figure 9). 

Deletion of one of the IFT-B proteins in Chlamydomonas reinhardtii lead to stumpy 

cilia or even loss of cilia (Brazelton et al., 2001; Pazour et al., 2000), indicating their 
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involvement in anterograde IFT. Furthermore, mutations in or depletion of certain 

IFT-B proteins in mice is embryonic lethal (Botilde et al., 2013; Houde et al., 2006; 

Huangfu et al., 2003; Murcia et al., 2000; Pasek et al., 2012), due to the loss of cilia 

thus confirming the importance of cilia during development (see section 1.2.1).  

 

 
Figure 9: Preliminary interaction map of the IFT-B complex including the available 

crystal structures (adapted from (Taschner et al., 2014)). The possible functions of 

individual IFT-B proteins are listed as well. Y2H: yeast-2-hybrid assay. 

 

The IFT-B proteins are predicted to be composed of mainly protein-protein 

interaction domains (Taschner et al., 2012) mediating the interactions between 

different IFT-B proteins (Baker et al., 2003; Bhogaraju et al., 2013a; Fan et al., 2010; 

Follit et al., 2009; Lucker et al., 2010; Omori et al., 2008; Taschner et al., 2011; 

2014). Additional domains are predicted in several IFT-B proteins that are not 

necessary for IFT-B complex formation (Taschner et al., 2011; 2012) (figure 10A). 
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These domains could mediate the interaction to other binding partners such as motor 

proteins or ciliary cargo (Bhogaraju et al., 2013b). 

Detailed structural information is available for a subset of IFT-B protein 

domains/regions and subcomplexes (figure 10B). 

 

1.4.2.1) IFT-B proteins IFT27, IFT25 and IFT22 

IFT22 and IFT27 show sequence similarity to Rab-like small GTPases (Bhogaraju et 

al., 2011; Qin et al., 2007; Schafer et al., 2006). Small GTPases are known to cycle 

between a GDP-bound inactive and a GTP-bound active state, a process that is highly 

regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating 

proteins (GAPs) (Bos et al., 2007; Cherfils and Zeghouf, 2013; Vetter and 

Wittinghofer, 2001). The nucleotide-binding pocket of GTPases is composed of the 

highly conserved G1 to 5 motifs. The main effector-, GEF- and GAP-binding sites of 

GTPases are the switch I and II regions. Binding of GEFs lead to conformational 

changes in the switch regions and the G1 motif (phosphate-binding loop), resulting in 

release of GDP and loading with GTP. GTP-loaded GTPases bind to downstream 

effectors in various pathways to regulate many different cell processes. The 

hydrolysis of GTP is facilitated by GAPs, leading to inactivation of the GTPase. Rab 

GTPases are typically involved in intracellular membrane trafficking and thus the 

‘IFT-B core’ complex proteins IFT22 and IFT27 (Taschner et al., 2014) are suggested 

to play a role in regulating IFT (Qin et al., 2007). In contrast to other GTPases, IFT22 

and IFT27 do not contain the prenylation motif typically located at the C-terminus of 

Rab GTPases, which allows them to associate directly with membranes (Adhiambo et 

al., 2009; Qin et al., 2007; Schafer et al., 2006). Furthermore, IFT22 is an atypical 

GTPase, lacking the G4 GTPase motif necessary for specificity for guanine over 

adenine nucleotides (Adhiambo et al., 2009; Schafer et al., 2006).  

IFT22 (RabL5 in mammals, Trypanosoma brucei; IFTA-2 in C.elegans) has been 

shown to undergo IFT (Adhiambo et al., 2009; Schafer et al., 2006). Mutations in 

IFT22 resulted in normal cilia assembly and maintenance but in an increased life span 

of these worms (Schafer et al., 2006). This would indicate a role for IFT22 in 

regulating specific cilia signaling activities rather than a role in ciliogenesis. In 

contrast, RNAi mediated knock down of IFT22 in Trypanosoma brucei leads to short 

cilia with accumulated IFT particles at the ciliary tip, a phenotype typically seen when 
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retrograde IFT is defective (Adhiambo et al., 2009). This raises the question if IFT22 

has diverse functions in different species.  

The crystal structures of Chlamydomonas reinhardtii IFT25∆C/27 complex 

(Bhogaraju et al., 2011) and human IFT25 (Ramelot et al., 2009) have been 

determined (figure 10). IFT25 adopts a jelly-roll fold and coordinates a Ca2+ ion. The 

overall structure shows a relationship to sialidases, although the galactose-binding site 

of sialidases is not conserved in IFT25 (Bhogaraju et al., 2011). The specific function 

of IFT25 is not known. Furthermore, IFT27 is indeed a GTPase and displays very low 

intrinsic GTPase activity (Bhogaraju et al., 2011) but so far no effectors could be 

identified. The fact that IFT25 and IFT27 directly interact with each other (Bhogaraju 

et al., 2011; Follit et al., 2009; Rual et al., 2005; Wang et al., 2009) and that in mutant 

mice lacking IFT25, no IFT27 can be detected anymore (Keady et al., 2012), suggest 

that IFT25 is necessary to stabilize IFT27. The mutant mice showed normal cilia 

structure but Shh signaling was impaired implicating a role for IFT25/27 in 

mammalian Shh pathway (Eguether et al., 2014; Keady et al., 2012) rather than in 

ciliogenesis. Furthermore, both proteins are absent in C.elegans and Drosophila 

(Follit et al., 2009; Lechtreck et al., 2009b; Wang et al., 2009), suggesting that they 

are dispensable for ciliogenesis. A direct interaction between IFT27 and the 

nucleotide-free state of Arl6, an Arf-like GTPase, has been recently reported (Liew et 

al., 2014). Arl6 is a member of the BBSome complex, also undergoing IFT and the 

main player in Bardet-Biedl syndrome (BBS) (Blacque et al., 2004; Nachury et al., 

2007). Mutations in the BBSome components prevent the delivery of specific 

receptors to the cilium (Berbari et al., 2008b) and cause abnormal accumulation of 

several signaling proteins (Lechtreck et al., 2009a), like the Shh proteins Ptch-1 and 

Smo (Eguether et al., 2014), within the cilium. All together, the observed data lead to 

the suggestion that GTP hydrolysis by IFT27 leads to disengagement of IFT25/27 

from the rest of the IFT complex. In turn IFT25/27 binds to Arl6 and promotes exit of 

the BBSome (and its associated cargo) from cilia (Liew et al., 2014). 

 

1.4.2.2) IFT-B proteins IFT88, IFT70 and TTC26 (IFT56) 

Bioinformatics studies indicated high content of TPRs for IFT88, IFT70 and TTC26 

(Taschner et al., 2012). The recently published crystal structure of CrIFT70/52 

revealed that IFT70 adopts a TPR superhelical structure that wraps around IFT52 
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(Taschner et al., 2014) (figure 10). This is in line with the insolubility of IFT70 in the 

absence of IFT52 and the stability of the IFT70/52 complex in high-salt conditions 

(unpublished data from Dr. Michael Taschner). Moreover, the interaction mode of the 

complex is antiparallel due to the binding of the N-terminal part of IFT70 to the C-

terminal part of the IFT52 construct (Taschner et al., 2014). In addition, previous 

publications reported the formation of an IFT70/46 heterodimeric (Fan et al., 2010) 

and an IFT88/52/46 heterotrimeric (Lucker et al., 2010) subcomplex. Further 

interactions studies with recombinant proteins in Chlamydomonas reinhardtii 

revealed that IFT88/70/52/46 forms a stable subcomplex within the ‘IFT-B core’ 

(Taschner et al., 2011). Furthermore, in CrIFT88 mutants the ‘IFT-B core’ is 

assembled but the ‘peripheral’ IFT-B proteins seem not properly attached to the  

‘IFT-B core’ (Richey and Qin, 2012). In addition, yeast-2-hybrid assays and in vitro 

pull down experiments could show a direct interaction between IFT88 and MRJ (a 

member of the Dnaj family of co-chaperones in the Hsp70/Hsc70 system (Chuang et 

al., 2002)) that in turn binds to guanylyl cyclase 1 (GC1), leading to the assumption 

that MRJ may serve as an adaptor for the transport of GC1 (Bhowmick et al., 2009). 

The same authors also reported an association of IFT88 with rhodopsin via co-

immunoprecipitation.  

TTC26 (hereafter referred to as IFT56, according to the standard MW-based 

nomenclature of IFT proteins in Chlamydomonas reinhardtti (Cole et al., 1998; 

Rosenbaum and Witman, 2002)) was identified in various studies ranging from 

genomic search approaches in C.elegans cilia (Blacque et al., 2005; Efimenko et al., 

2005) to proteomic analysis of primary cilia from mouse kidney cells (Ishikawa et al., 

2012). It has been shown that IFT56 (DYF-13 in C.elegans; PIFTC3 in Trypanosoma 

brucei) undergoes IFT (Blacque et al., 2005; Ishikawa et al., 2014) and is absolutely 

required for ciliogenesis in Trypanosoma brucei (Absalon et al., 2008). Furthermore, 

tandem affinity purification and sucrose density gradient analysis revealed IFT56 as 

part of the IFT-B complex in C.elegans (Ishikawa et al., 2014) and yeast-2-hybrid 

assays identified an interaction between IFT56 and IFT46 (Swiderski et al., 2014). 

Interestingly, CrIFT56 mutants are able to assembly short cilia but show impaired 

motility. Proteomic and biochemical analysis indicated a reduced set of certain IDAs 

(a, f and g) in oda1dyf13 mutants (lacking ODAs and IFT56). Therefore, IFT56 seems 

to play an important role in transporting IDAs into cilia (Ishikawa et al., 2014). 

Furthermore, in C.elegans IFT56 might function together with IFT70 (DYF-1) in 
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docking and activation of the homodimeric OSM-3 kinesin-II motor onto the IFT-B 

complex (Ou et al., 2005a; 2007) although a direct interaction could not be observed 

yet.  

Mutations in fleer, the zebrafish homolog of IFT70, lead to defects in the structure of 

cilia combined with reduced tubulin glutamylation and glycylation (Pathak et al., 

2011; 2007). This could imply a role for IFT70 in transporting tubulin or tubulin-

modifying enzymes into cilia but the exact molecular basis for this phenomenon is not 

understood yet.  

A breakthrough in cilia research was the discovery that IFT88 is homologous to the 

mouse protein polaris (encoded by the gene Tg737) (Pazour et al., 2000). 

Hypomorphic mutations in the Tg737 gene (orpk mice) lead to the assembly of 

stumpy cilia but the mice died shortly after birth due to the occurrence of PKD 

(Moyer et al., 1994; Pazour et al., 2000) (see section 1.2.2). Furthermore, Tg737-/- 

mice (flexo/polaris mice) die at embryonic stages, showing defective Shh and loss of 

nodal cilia, which are important for correct left-right-axis determination during 

embryogenesis (Huangfu et al., 2003; Murcia et al., 2000) (see section 1.2.1). 

CrIFT88 mutants lost their ability to assembly cilia, leading to a bald phenotype 

(Pazour et al., 2000), pointing to an important function of IFT88 in Chlamydomonas 

reinhardtii ciliogenesis as well. In C.elegans and Drosophila, the orthologs of IFT88 

are absolutely required for the formation of cilia on the dendritic tips of sensory 

neurons (Han et al., 2003; Haycraft et al., 2001).  

 

1.4.2.3) IFT-B proteins IFT52 and IFT46 

For IFT52 and IFT46 only α-helical regions at the very C-terminus are predicted, as 

well as a GIFT [for GldG, intraflagellar transport (IFT)] domain at the N-terminus of 

IFT52 (Taschner et al., 2012). The GIFT domain is suggested to bind to 

oligosaccharides (Beatson and Ponting, 2004) but this function could not be verified 

so far (Taschner et al., 2011). As already mentioned above, interactions studies with 

recombinant proteins in Chlamydomonas reinhardtii revealed that IFT88/70/52/46 

forms a stable subcomplex within the ‘IFT-B core’ (Taschner et al., 2011). Notably, 

the middle and C-terminal part of IFT52 directly interacts with the second ‘IFT-B 

core’ subcomplex IFT81/74/27/25 (Taschner et al., 2011). The recently published 

crystal structures of CrIFT70/52 and Tt52/46 (Taschner et al., 2014) strikingly show 
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that IFT52 and IFT46 are key factors for IFT-B complex stability (figure 10). The 

heterodimer TtIFT52/46 consists of α -helices tightly packed against each other. 

Therefore, it is unlikely that one of the proteins alone can constitute a domain with a 

stable conformation on its own. Due to the solved crystal structure and pull down 

experiments with recombinantly expressed proteins it was concluded that a stable 

IFT52/46 complex is necessary to assembly the entire ‘IFT-B core’ (Taschner et al., 

2014). This was already assumed earlier due to reduced numbers of IFT-B particles in 

CrIFT46 mutants (Hou et al., 2007; Richey and Qin, 2012) and the complete loss of 

cilia in CrIFT52 mutants (Brazelton et al., 2001; Deane et al., 2001) most likely due 

to the inability to assemble the IFT-B complex (Richey and Qin, 2012). 

In the Chlamydomonas reinhardtti suppressor strain Supift461 (a C-terminal fragment 

of IFT46 is still expressed), an unstable IFT-B complex is still formed (Richey and 

Qin, 2012) but ODAs were not detectable within cilia (Hou et al., 2007). Furthermore, 

yeast-2-hybrid and pull down assays revealed a direct interaction between IFT46 and 

ODA16 (Ahmed et al., 2008). Therefore, it is thought that ODA16 serves as an 

adaptor protein coupling the IFT machinery to ODAs to transport them into cilia 

(Ahmed et al., 2008; Hou et al., 2007). 

 

1.4.2.4) IFT-B proteins IFT81, IFT74, IFT57, IFT54, FAP22 (IFT38) and IFT20 

The six proteins IFT81, IFT74, IFT57, IFT54, FAP22 and IFT20 are predicted to 

contain coiled coil structures (Taschner et al., 2012), likely to mediate protein-protein 

interactions. It has been shown that IFT81 and IFT74 directly interact with each other 

via their coiled coil regions and also form a stable subcomplex with IFT27/25 within 

the ‘IFT-B core’ (Lucker et al., 2005; Taschner et al., 2011). Furthermore, IFT81 is 

able to interact with itself and IFT74 in yeast-2-hybrid assays, leading to the 

assumption of an IFT(81)2/(74)2 heterotetramer (Lucker et al., 2005). However, 

reconstitution of the ‘IFT-B core’ nonamer IFT88/81/74/70/52/46/27/25/22 by using 

recombinantly expressed proteins indicates only one copy of each protein (Bhogaraju 

et al., 2013a; Taschner et al., 2014). Interaction partners of FAP22 (hereafter referred 

to as IFT38 (Nachury, 2014), following the standard MW-based nomenclature of IFT 

proteins in Clamydomonas reinhardtti (Cole et al., 1998; Rosenbaum and Witman, 

2002)) are unknown so far. An interaction of IFT20 and IFT54 could be observed by 

immunoprecipitation (Follit et al., 2009) and yeast-2-hybrid assay (Omori et al., 
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2008). Co-immunoprecipitation and yeast-2-hybrid assays (Baker et al., 2003; Krock 

and Perkins, 2008) also indicate an interaction between IFT20 and IFT57. However, 

Lucker and colleagues could not confirm the interaction between IFT20 and IFT57 by 

performing yeast-2-hybrid assay and co-expression (Lucker et al., 2010). Therefore, 

the IFT20/57 interaction is still controversial. This is also the case for the reported 

interaction between IFT20 and KIF3B, a subunit of the anterograde heterotrimeric 

kinesin-II IFT motor, observed in co-immunoprecipitations and yeast-2-hybrid assays 

(Baker et al., 2003), because later pull down studies could not validate this interaction 

(Follit et al., 2006). Additionally, Keady and colleagues identified an interaction 

between IFT20 and rhodopsin/opsin leading to the notion that IFT20 may directly 

bind certain ciliary cargos (Keady et al., 2011). In line with this, deletion of IFT20 in 

cone photoreceptor cells leads to accumulation of rhodopsin/opsin at the Golgi 

complex (Keady et al., 2011). Additional studies are necessary to shed more light on 

IFT20 and its binding partners identified so far to elucidate the exact role of IFT20 

within the IFT process. 

One hint about the role of IFT20 came from the discovery that IFT20 is not only 

found around the basal body of cilia and within cilia like other IFT proteins but is also 

present at the Golgi (Cole et al., 1998; Deane et al., 2001; Follit et al., 2006; 2009). 

IFT20 is located at the Golgi complex (Follit et al., 2006; 2009) by interaction with 

the golgin GMAP210 (Follit et al., 2008). This finding led to the assumption that 

IFT20 may serve as a key player linking membrane protein maturation at the Golgi to 

IFT. The reported interactions of IFT20 with IFT54 (see above) indicate that IFT54 

forms a bridge between Golgi-IFT20 and the IFT-B complex. This assumption is 

supported by the unique property of IFT54 in displacing IFT20 from the Golgi 

complex (Follit et al., 2009). RNAi induced strong depletion of IFT20 in RPE cells 

blocks cilia assembly, whereas moderate depletion in NRK epithelial cells leads to a 

reduced amount of PKD-2 (Follit et al., 2006), a Ca2+ channel located in the ciliary 

membrane and main player in PKD (Pazour et al., 2002; Vassilev et al., 2001) (see 

section 1.2.2). Furthermore, in GMAP210 deficient mouse embryonic kidney cells, 

IFT20 is not localized to the Golgi complex anymore and cilia are shorter, displaying 

reduced amounts of PKD-2 (Follit et al., 2008). These findings indicate that IFT20 

and GMAP210 function together in the transport of membrane proteins from the 

Golgi to the base of the cilium.  
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Figure 10: (A) Domain architecture of the Chlamydononas reinhardtii IFT-B proteins 

known to date. (B) Available crystal structures of different parts of the IFT-B complex 

(pdb ID is indicated in brackets): CrIFT251-135/27 complex (2YC2, 2YC4) (Bhogaraju 

et al., 2011), CrIFT811-126 (4LVP, 4LVR) (Bhogaraju et al., 2013a), CrIFT70/52330-381 

complex (4UZY), TtIFT52540-603/46236-347 complex (4UZZ) (Taschner et al., 2014). 

 

IFT54 (DYF-11 in C.elegans) undergoes IFT presumably as part of the IFT-B 

complex (Kunitomo and Iino, 2008; Omori et al., 2008). Furthermore, exploring 

different deletion mutants of IFT54 in C.elegans revealed that the C-terminal coiled 

coil region is sufficient for proper localization and ciliogenesis (Kunitomo and Iino, 

2008). Knock out of IFT54 in mice is embryonic lethal (Berbari et al., 2011), pointing 

to an important function of IFT54 during development. Morpholino knock down of 

IFT54 (elipsa in zebrafish) causes phenotypes typical for ciliary defects (Omori et al., 

2008). The same authors reported a direct interaction between IFT54 and rabaptin-5, 

which in turn binds to Rab8. This small GTPase is thought to be involved in transport 

of vesicles to the cilium and fusion of these vesicles with the plasma membrane at the 
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base of the cilium (Moritz et al., 2001; Nachury et al., 2007), indicating that IFT54 

serves as a bridge to IFT. 

In C.elegans IFT57 (CHE-13) undergoes IFT while the che-13 mutants show defects 

in ciliogenesis (Haycraft et al., 2003; Perkins et al., 1986). Furthermore, IFT57 is a 

homolog of HIPPI in mammals, which in turn binds to Huntington-interacting  

protein 1 (HIP-1), a protein that might be relevant for the pathogenesis of 

Huntington’s disease (Gervais et al., 2002). HIPPI deficient mice die at embryonic 

stages with detectable defects in nodal cilia, left-right patterning and Shh signaling 

(Houde et al., 2006), but the molecular mechanisms of IFT57 still have to be 

explored. 

IFT38 (also known as FAP22 (Clamydomonas reinhardtii), DYF-3 (C.elegans), Qilin 

(zebrafish), Cluap1 (mammals), PIFTA1 (Trypanosoma brucei)) can be pulled down 

from zebrafish lysate with other IFT-B proteins using TAP-IFT54-GFP (Omori et al., 

2008). Furthermore, IFT38 undergoes IFT in C.elegans (Ou et al., 2005b) and time-

lapse fluorescence microscopy revealed a total loss of IFT in IFT38 deficient worms 

(Ou et al., 2005b). RNAi mediated knockdown of IFT38 in Trypanosoma brucei 

revealed its importance for proper ciliogenesis (Absalon et al., 2008). Furthermore, 

proteomic analysis of isolated Trypanosoma brucei flagella identified amongst several 

IFT proteins, tubulin, radial spokes, ODAs and IDAs also IFT38 (Subota et al., 2014). 

In mammals, Cluap1 is mainly localized at the base and tip of cilia whereas Cluap1-/- 

mice have no ciliated node cells, show repressed Shh signaling and die at embryonic 

stages (Botilde et al., 2013; Pasek et al., 2012). These findings led to the hypothesis 

that IFT38 is involved in ciliogenesis as part of the IFT-B complex but the exact 

function of IFT38 remains elusive.  

Bioinformatics analysis predicted an α-helical domain in the N-terminal region of 

IFT81, IFT57, IFT54 (Taschner et al., 2012) and IFT38 (Schou et al., 2014). Using 

the HHPred algorithm (Soding et al., 2005), the domain showed similarity to 

Calponin Homology (CH) domains (IFT81: E=2.2 x 10-2, IFT54: E=2 x 10-57, IFT57: 

E=7, IFT38: E=0.034). Determining the high-resolution structure of the N-terminal 

domain of IFT81 indeed revealed a CH domain fold (Bhogaraju et al., 2013a) (figure 

10). The CH domain is often found in MT and/or actin binding proteins, like the MT-

plus-end-tracking protein EB1 (Hayashi and Ikura, 2003), Ndc80 that is involved in 

kinetochore-MT attachment during cell division (Ciferri et al., 2008) and actinin-4, 

important for cytoskeleton scaffolding and organization (Lee et al., 2008b). In line 
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with this structure prediction, Ling and colleagues could show that the N-terminal part 

of the human orthologue of IFT54 (MIP-T3/TRAF3IP1) interacts with MTs in a MT-

cosedimentation assay (Ling and Goeddel, 2000). Further experiments indicated this 

region of MIP-T3 also binds to tubulin (Ling and Goeddel, 2000). Additionally, 

overexpressing MIP-T3 in HEK293 cells followed by LC-MS/MS analysis identified 

amongst others tubulin and actin as binding partners of MIP-T3 (Guo et al., 2010). 

Taken together, these findings may indicate a role for the N-terminal domain of 

IFT54 in tubulin transport to construct the cilium. If the putative CH domains in 

IFT57 and IFT38 also function as MT and/or actin binding domains still have to be 

elucidated. In contrast, the CH domain in IFT81 has already been shown to serve 

together with IFT74 as a tubulin-binding module. Whereas the CH domain in IFT81 

binds selectively to the globular domain of tubulin, IFT74 provides a positively 

charged stretch of residues attaching to the negatively charged E-hooks of tubulin to 

strengthen the binding (Bhogaraju et al., 2013a).  

 

1.4.2.5) IFT-B proteins IFT172 and IFT80 

IFT172 is the largest member of the IFT-B proteins. It has similar domain architecture 

to IFT-A proteins (see section 1.4.1); WD40-repeats at the N-terminal region 

followed by α -helical TPRs (Taschner et al., 2012) pointing to a relationship with 

components of COPI- and clathrin-coated vesicles (Devos et al., 2004; Jékely and 

Arendt, 2006; van Dam et al., 2013). The other IFT protein with two predicted WD40 

β-propellers at the very N-terminus followed by a α -helical solenoid tail is IFT80 

(Taschner et al., 2012).  

In zebrafish, IFT172 was identified (amongst IFT81, IFT57 and IFT38) in a 

mutagenesis screen as a cause of PKD, a well-known cilium-related disease (Sun et 

al., 2004). Co-immunoprecipitation and GST-pull down experiments revealed an 

interaction of IFT172 with EB1, a MT-plus-end-tracking protein, at the ciliary tip 

(Pedersen et al., 2003; 2005). This interaction is also observed independently of other 

IFT proteins pointing to a possible role of IFT172 and EB1 in remodeling the IFT 

particle between anterograde and retrograde transport at the ciliary tip (Pedersen et 

al., 2005). This hypothesis is strengthened by the finding in Chlamydomonas 

reinhardtti that fla11 (encodes IFT172) mutants at the restrictive temperature show an 

accumulation of IFT particles at the ciliary tip, pointing to an involvement of IFT172 
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in retrograde transport (Iomini et al., 2001). A similar phenotype has also been 

observed in Tetrahymena thermophila (Tsao and Gorovsky, 2008). Co-

immunoprecipitations in Chlamydomonas reinhardtii revealed an interaction between 

IFT172 and cytoplasmic dynein 2 independent of IFT (Pedersen et al., 2006). 

Furthermore, IFT172 is required for the entry of the retrograde motor dynein 2 into 

the ciliary compartment (Pedersen et al., 2006; Williamson et al., 2012). Mutations in 

mouse IFT172 (wimple) are embryonic lethal, showing characteristic phenotypes of 

defective Shh signaling (Huangfu et al., 2003).  

Knocking out IFT80 in Tetrahymena thermophila or C.elegans leads to defects in 

ciliogenesis (Beales et al., 2007; Fujiwara et al., 1999; Perkins et al., 1986). 

Furthermore, mutations in IFT80 cause JATD (see section 1.4.1.2), a severe human 

disease resulting in infancy death (Beales et al., 2007). This is in line with 

observations in IFT80 deficient zebrafish, demonstrating phenotypes like cystic 

kidneys and photoreceptor degeneration, typical for JATD (Beales et al., 2007; Hudak 

et al., 2010). Mice with a hypomorphic mutation in IFT80 show a high percentage of 

embryonic lethality pointing to an important function of IFT80 during development, 

whereas the postnatal survivors did not show any discernable phenotype. MEF cells 

established from these mice revealed an impaired activation of Shh signaling but had 

no defects in cilia assembly (Rix et al., 2011). A possible reason could be that the 

IFT80 level necessary for ciliogenesis is masked by the hypomorphic expression in 

this cell line. It is therefore very likely that a knock out of IFT80 will show a total loss 

of ciliation and complete embryonic lethality like other IFT proteins (see above 

IFT172, IFT88) (Rix et al., 2011). 

 

 

Taken together, almost all of the IFT-B proteins consist of multiple domains. Most of 

these domains mediate protein-protein interactions within the IFT-B complex. 

Furthermore, it has been extensively shown that IFT is absolutely required for the 

assembly and maintenance of cilia in various organisms. But the exact mechanism of 

how IFT proteins recognize and bind ciliary cargo is largely unknown. Therefore, 

further biochemical and structural studies are required to gain more insights into the 

functions of the individual domains in the IFT proteins and therefore in the IFT 

process.   
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1.5) Transport of proteins to the cilium 

Compared with other trafficking routes the knowledge of the transport to the cilium is 

still in its infancy. As already mentioned in section 1.3 cilia are devoid of ribosomes, 

thus all proteins destined for cilia have to be transported to the cilium. Membrane 

proteins such as ion channels and signaling receptors destined for the ciliary 

membrane have to be synthesized in the endoplasmic reticulum and processed in the 

Golgi complex. After maturation, the proteins undergo vesicle-mediated transport to 

the base of the cilium where the vesicles fuse with the ciliary membrane (Nachury et 

al., 2010). Coat formation is a conserved mechanism in cells to ensure sorting and 

transport of proteins from a donor to an acceptor membrane (Dacks and Field, 2007). 

Small GTPases of the Rab and ADP-ribosylation factor (Arf) family are known to 

play important roles in intracellular membrane trafficking (Gillingham and Munro, 

2007; Leroux, 2007). 

Vesicle budding at the trans Golgi network (TGN) is mediated through ciliary 

targeting complexes, comprised of the small GTPases Rab11 and Arf4, the Arf GAP 

ASAP1, the Rab11/Arf effector FIP3 (Rab11 family-interacting protein 3) and 

Rabin8, the GEF for Rab8 and effector of Rab11 (Knodler et al., 2010; Mazelova et 

al., 2009; Sung and Leroux, 2013; Wang et al., 2012). Respectively, at the TGN, Arf4 

directly binds the ciliary targeting motif (CTM) VxPx of rhodopsin (Sung et al., 1994; 

Tam et al., 2000) and thus ensures the correct sorting of rhodopsin to vesicles 

destined for cilia (Deretic et al., 2005). After recruitment of FIP3, which binds 

simultaneously to Rab11 and Arfs (Shiba et al., 2006), and ASAP1 that directly 

interacts with Rab11 and FIP3 (Inoue et al., 2008; Mazelova et al., 2009) vesicle 

budding is initiated (Mazelova et al., 2009). Whereat the exact chronology of protein 

recruitment as well as the interactions between the proteins are not completely 

understood yet. The budding process is further supported by the BAR 

(Bin/amphiphysin/Rvs) domain at the N-terminus of ASAP1 which induces 

membrane curvature (Nie et al., 2006; Peter et al., 2004). Furthermore, GTP-loaded 

Rab11 interacts with Rabin8 and stimulates its GEF activity towards Rab8 that in turn 

promotes docking and fusion of the vesicles with the plasma membrane at the base of 

the cilium (Knodler et al., 2010; Moritz et al., 2001; Nachury et al., 2007; Westlake et 

al., 2011). Reaching the ciliary compartment, the membrane proteins are transported 

with the IFT machinery to their destined position. In line with this, Rab8 interacts 
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with BBS proteins (Nachury et al., 2007) and binds rabaptin-5, which in turn interacts 

with IFT54 at the basal body (Omori et al., 2008), thus probably linking vesicular to 

intraciliary trafficking.  

Furthermore, it has been shown that the BBSome complex undergoes IFT and it was 

therefore proposed to serve as an adaptor between the IFT complex and IFT cargo 

(Blacque et al., 2004; Lechtreck et al., 2009a; Nachury et al., 2007). In line with this, 

the BBSome as well as the IFT-A complex are crucial for the transport of several 

membrane proteins into and/or out of the cilium (Berbari et al., 2008b; Liem et al., 

2012; Mukhopadhyay et al., 2010). In addition, due to the predicted similar domain 

architecture of several IFT-A and BBSome proteins to components of COPI- and 

clathrin-coated vesicles (Devos et al., 2004; Jékely and Arendt, 2006; van Dam et al., 

2013), it is assumed that the IFT-A and BBSome complexes either polymerize into 

flat coats to cluster membrane proteins or they bud of cargo-containing vesicles that 

fuse with the ciliary membrane (Nachury et al., 2010). One possibility could be the 

recognition of selective CTMs probably via the predicted WD40-repeats in several 

IFT-A and BBSome proteins, a property known from clathrin-mediated transport 

(Haar et al., 2000). Jin and colleagues indeed could demonstrate that the BBSome 

assembles in a coat and directly recognizes the CTM of somatostatin receptor 3 

(Sstr3) that is then transported to the ciliary membrane (Jin et al., 2010). The CTM of 

Sstr3 ((F/Y/W)/R motif) is conserved in several ciliary GPCRs including rhodopsin, 

serotonin receptor 6 (Htr6) and the olfactory receptor proteins ODR-10 and STR-1 

(Brailov et al., 2000; Corbit et al., 2005; Dwyer et al., 2001; Händel et al., 1999). 

Deletion of the (F/Y/W)/R motif in C. elegans ORD-10 and STR-1 resulted in trapped 

proteins in the cell body (Dwyer et al., 2001). The same CTM was also identified in 

mammalian Smo. Mutation of this motif prevents ciliary location and activity of Smo 

in zebrafish embryos and cultured cells (Corbit et al., 2005). However, carefully 

examination of the high-resolution structure of rhodopsin (Palczewski et al., 2000) 

reveals that the FR motif (Phe313 Arg314) is buried in the hydrophobic core of the short 

amphipatic helix VIII and thus probably necessary for proper protein folding. 

Therefore, the question arises if the dislocation of GPCRs after mutating the 

(F/Y/W)/R motif is rather a cause of structural impairments of the proteins than in 

ciliary targeting.  

Further localization experiments with different fragment of Sstr3 and Htr6 revealed 

that the third intracellular loop of these GPCRs is sufficient for ciliary localization. 
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Sequence comparison of this region of Sstr3 and Htr6 with all known human GPCRs 

identified a consensus sequence of Ax(S/A)xQ. Mutation of the conserved alanine or 

glutamine in this motif resulted in mislocalization of Sstr3 and Htr6 (Berbari et al., 

2008a).  

The CTMs mentioned above have been identified only in a few membrane proteins 

located in the ciliary membrane. Due to the high abundance of proteins in the ciliary 

membrane, targeting of these proteins to the ciliary compartment seems to be more 

complex. Either additional, yet unidentified CTMs are present in ciliary proteins or 

different recognition methods exist to target membrane proteins to the ciliary 

compartment.  

Even less is known about the ciliary transport of soluble proteins like tubulin and 

radial spoke proteins, after their synthesis at free polysomes. Elegant work in 

Chlamydomonas reinhardtii, combining biochemical characterization of vesicles 

containing ciliary cargo and in situ localization of ciliary proteins on these vesicles by 

using gold labeling and electron microscopy revealed new insights into this topic 

(Wood and Rosenbaum, 2014). The authors were able to detect amongst others the 

membrane protein PKD-2 (see section 1.2.2) as well as radial spoke proteins, IFT46 

and tubulin at the outside surface of vesicles destined for cilia and proposed a model 

in which the cell couples the transport of axonemal and membrane components to the 

ciliary compartment. This is in line with previous studies reporting an association of 

IFT proteins (IFT140, IFT88, IFT57, IFT52 and IFT20) with cytoplasmic vesicles in 

photoreceptor cells and retinal neurons of mice (Sedmak and Wolfrum, 2010; 2011). 

Furthermore, it has been shown that tubulin directly binds to the IFT complex 

(Bhogaraju et al., 2013a). In addition, there is evidence that radial spokes, ODAs and 

motor proteins also serve as IFT cargo (Hou et al., 2007; Johnson and Rosenbaum, 

1992; Qin et al., 2004; Scholey, 2012). In the C-terminal tail of the homodimeric 

anterograde IFT motor KIF-17 the KRKK motif was identified as a CTM (Dishinger 

et al., 2010; Scholey, 2008). Furthermore, KIF-17 interacts with the nuclear import 

protein importin-β2 pointing to a relationship to nuclear localization signals. 

Gradients of importin-β2 and the small GTPase Ran are crucial for the entry of KIF-

17 into the ciliary compartment and therefore play important roles in ciliogenesis 

(Dishinger et al., 2010; Fan et al., 2011).  

Taken together, all the findings mentioned above indicate an involvement of IFT 

proteins not only in cilia assembly and maintenance but also in cell trafficking 
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processes although a direct link between the IFT machinery and CTMs of ciliary 

proteins have not been identified so far. It is plausible that ciliary cargo may compete 

via their CTMs at more generic binding sites. In contrast, high abundant proteins in 

cilia, like tubulin, dynein arms and radial spokes most likely have dedicated binding 

sites on the IFT complex (like the CH domain in IFT81 (Bhogaraju et al., 2013a)) to 

ensure efficient delivery to the tip of growing cilia. Future research is required for a 

more complete understanding of the direct interactions between the IFT complex and 

ciliary cargo.  

 

1.6) Aim of the thesis 

To date a lot of information is available concerning the process of IFT in various 

model organisms, like Chlamydomonas reinhardtii, C.elegans and mouse. But 

mutational analysis or knock out of the IFT proteins in vivo often resulted in common 

phenotypes, making it impossible to assign specific functions of individual IFT 

proteins. Therefore, it is essential to put more effort in the characterization of the 

molecular mechanisms underlying the IFT process. One strategy is the determination 

of high-resolution structures of IFT proteins. One advantage of high-resolution 

structures is the possibility to determine the exact boundaries of domains or specific 

mutations in protein-protein interfaces or possible cargo/adaptor binding sites. 

Introducing point mutations or deleting entire domains in vitro will give more detailed 

insights into the IFT complex organization as well as the entire IFT process. To date, 

only few direct interactions have been reported between IFT proteins and ciliary 

cargoes: IFT81/74-tubulin (Bhogaraju et al., 2013a), IFT88-MRJ (Bhowmick et al., 

2009) and IFT46-ODA16 (Ahmed et al., 2008).  

The study described in this thesis aimed at understanding the role of the IFT-B 

proteins IFT57, IFT54, IFT38 and IFT20 within the IFT process. Therefore, the 

expression and purification protocols of the four IFT proteins had to be established. 

Furthermore, the predicted CH domains in IFT57, IFT54 and IFT38 were 

characterized using a combination of biochemical and biophysical approaches. In 

addition, the high-resolution structure of the CH domain of IFT54 was obtained.  
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ensuring that multiple genes have precisely timed
transcription starts and sufficient levels of activa-
tion (21).

The ancestral roles of the mammalian pluri-
potency control factors Pou5f1 and Sox2 during
the early development of nonmammalian verte-
brates have long been a mystery (28). Our results
show that the composition of post-MBT Pou5f1
and Sox2 binding sites, co-occupancy with Nanog,
their chromatin state, and Pol II binding are similar
in zebrafish embryos and mammalian ES cells
(fig. S13 and supplementary text). Thus, the an-
cestral function of the pluripotency factors is zy-
gotic gene activation and developmental timing
control in the early vertebrate embryo. In a sense,
it is a first major reprogramming event from tran-
scriptionally silent cleavage-stage cells to pluri-
potent post-MBT blastomers. In this context,
Pou5f1 and Sox2 contribute to all main embry-
onic regulatory pathways. Considered together
with the orthology of target gene sets, the zygotic
priming-activation-timing mechanism may have
evolved to control the cell pluripotency state in
mammalian development.
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Molecular Basis of Tubulin Transport
Within the Cilium by IFT74 and IFT81
Sagar Bhogaraju,1 Lukas Cajanek,2 Cécile Fort,3 Thierry Blisnick,3 Kristina Weber,1
Michael Taschner,1 Naoko Mizuno,1 Stefan Lamla,4* Philippe Bastin,3
Erich A. Nigg,2 Esben Lorentzen1†

Intraflagellar transport (IFT) of ciliary precursors such as tubulin from the cytoplasm to the ciliary
tip is involved in the construction of the cilium, a hairlike organelle found on most eukaryotic
cells. However, the molecular mechanisms of IFT are poorly understood. Here, we found that
the two core IFT proteins IFT74 and IFT81 form a tubulin-binding module and mapped the
interaction to a calponin homology domain of IFT81 and a highly basic domain in IFT74.
Knockdown of IFT81 and rescue experiments with point mutants showed that tubulin binding
by IFT81 was required for ciliogenesis in human cells.

Cilia are microtubule-based organelles that
function inmotility, sensory reception, and
signaling (1). Ciliary dysfunction results

in numerous diseases and disorders commonly
known as ciliopathies. Intraflagellar transport (IFT)
is involved in cilium formation (2, 3) but also

functions in other cellular processes, such as the
recycling of Tcell receptors at the immune synapse
(4). IFT relies on kinesin-2 and IFT-dynein mo-
lecularmotorsmoving along themicrotubule-based
axoneme of cilia (5–7) and on the IFT complex,
which contains at least 20 different protein sub-
units. Although ~600 proteins are known to reside
in the cilium (8), we know very little about how
they are recognized as ciliary cargo by the IFT
machinery (9–11).

To identify potential cargo-binding sites on the
IFT complex, we carried out bioinformatical and
biochemical screening and identified conserved
domains that were not required for IFT complex
formation. We reasoned that such domains could
protrude from the IFT particle-core structure and
would thus be in a prime position for cargo rec-

ognition. The two IFT core proteins IFT74 and
IFT81were found to possess N-terminal domains
(IFT74N and IFT81N) that were not required
for IFT complex formation or stability (fig. S1).
Whereas IFT81N is highly conserved in sequence
and predicted to be a folded domain, IFT74Nwas
likely to be disordered and was highly basic with
an isoelectric point (pI) > 12 (fig. S2). To charac-
terize the properties of IFT74N and IFT81N, we
purified recombinant Homo sapiens (Hs) IFT81N,
Chlamydomonas reinhardtii (Cr) IFT81N, and a
truncated HsIFT74/81 heterodimeric complex (fig.
S3) (IFT74N alone degraded rapidly and could
not be purified) and determined the crystal struc-
ture of CrIFT81N (Fig. 1, A to C; fig. S4, A to D;
and table S1). The crystal structure revealed that
IFT81N adopts the fold of a calponin homology
(CH) domain with unexpected structural similarity
to the kinetochore complex component NDC80
with microtubule (MT)–binding properties (12).
Given that the cilium consists of a MT-based
axoneme, IFT of large quantities of tubulin is re-
quired for cilium formation (13). We thus tested
the tubulin-binding properties of HsIFT81N using
affinity pull-downs (Fig. 1D and fig. S4E) and
microscale thermophoresis (MST) with unpo-
lymerized bovine ab-tubulin (Fig. 1, E and F).
HsIFT81N bound tubulin with a dissociation
constant (Kd) of 16 mM via a highly conserved,
positively charged surface patch, which was en-
hanced 18-fold by IFT74N (Fig. 1G and fig. S3).
Because this result was unexpected, we also car-
ried out MT sedimentation assays and electron
microscopy (EM) to visualize IFT81 or IFT74/81
bound to MT (fig. S5). The IFT74/81 complex,
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but not IFT81N, at low mM concentration co-
sedimented with MT during ultracentrifugation
(fig. S5, D and E) and decorated MT (fig. S5F).
Thus, the tubulin-binding module is formed by the
IFT74/81 complex rather than by IFT81N alone.

To dissect the binding mode in the IFT74/
81:ab-tubulin complex, samples were prepared
from MT and unpolymerized ab-tubulin lacking
the highly acidic C-terminal tails, often referred
to as E-hooks (12) (fig. S5A). ab-tubulin lacking
E-hooks had similar affinity for IFT81N as intact
tubulin (fig. S5, B and C), which suggested that
IFT81N recognizes the globular domain of ab-
tubulin with no substantial interaction with the
E-hooks. IFT74/81 displayed robust MT binding
in sedimentation assays, which was, however, re-
duced to background levels in the absence of the
b-tubulin E-hook (fig. S5E). Thus, IFT81N ap-
pears to bind the globular domain of tubulin to
provide specificity, and IFT74N recognizes the
b-tubulin tail to increase affinity (Fig. 1H).

To examine the role of tubulin binding by
IFT74/81 in a cellular system, we transiently ex-
pressed Flag-HsIFT81 or Flag-HsIFT81∆N in hu-
man RPE-1 cells and induced formation of primary
cilia either by treatment with 0.5 mMcytochalasin
D (Fig. 2) (14) or serum starvation (fig. S6, A and
D). In these experiments, centrioles were visual-
ized by staining for CAP350 and cilia by staining
for the small guanosine triphosphatase Arl13b

or acetylated tubulin. We detected both Flag-
HsIFT81 and Flag-HsIFT81∆N at the tip of the
primary cilium and, to a minor extent, also along
the axoneme (fig. S6A), suggesting that IFT81N
is not required for the transport of IFT81 with-
in the primary cilium. Remarkably, however, the
expression of Flag-HsIFT81∆N had a strong neg-
ative impact on the extent of ciliogenesis (fig. S6,
B to D), suggesting that excess IFT81DN caused
a dominant-negative effect, presumably through
formation of IFTcomplexes unable to bind tubulin.

To further investigate the function of the
tubulin-binding domain of IFT81 in ciliogenesis,
we carried out small interfering RNA (siRNA)–
rescue experiments. siRNA-mediated depletion
of IFT81 (fig. S6E) strongly reduced the percent-
age of ciliated cells (Fig. 2), which could be rescued
by coexpression of an siRNA-resistant full-length
IFT81, as expected. In contrast, none of the IFT81
mutants deficient in tubulin binding in vitro
(HsIFT81mut1 and HsIFT81mut2) compensated
fully for the depletion of endogenous IFT81.Where-
as expression of the deletion mutant (HsIFT81DN)
or the mutant with reduced tubulin-binding abil-
ity (HsIFT81mut1) resulted in partial rescue,
expression of HsIFT81mut2, in which the entire
tubulin-binding patch was mutated, completely
failed to rescue the siRNA-mediated knockdown
of IFT81 (Fig. 2B). Thus, the entire negative effect
on cilium formation by IFT81 depletion was reca-

pitulated with a specific tubulin-binding–deficient
mutant.

The fact that IFT81DN formed stable IFTcore
complexes (fig. S1) suggested that the ciliogen-
esis phenotype was because of reduced tubulin
binding and not a general failure of IFT. To rule
out whether mutation of the IFT81N CH domain
resulted in general IFT deficiency, we turned to
the unicellular protozoan parasite Trypanosoma
brucei, where IFT has beenwell studied (15), and
tested the effect of IFT81N CH-domain disrup-
tion on IFT. Yellow fluorescent protein (YFP)–
tagged but otherwise normal IFT81 or mutant
IFT81 (IFT81I46D,L47D, Dm) where the CH do-
main was unfolded (fig. S7A) were expressed
at wild-type levels. One of the two IFT81
alleles was replaced with either YFP::IFT81 or
YFP::IFT81Dm, leaving one WT IFT81 allele
unaltered (fig. S7B). Both the localization and
the IFT speed of IFT81 and IFT81Dm were
similar to that observed for other IFT proteins as
judged by live-cell imaging and kymographic
analysis (Fig. 3 and movies S1 and 2) (15). Thus,
IFT81N is not required for IFTcomplex assembly
or normal IFT in vivo, which corroborates that the
ciliogenesis phenotype observed upon IFT81N
CH-domain mutation (Fig. 2) was indeed because
of tubulin-binding deficiency.

Axonemal precursors such as tubulin are added
to the tip of the cilium in a length-dependent man-

Fig. 1. IFT81 and IFT74 form a tubulin-binding module. (A) Cartoon
representation of the crystal structure of CrIFT81N domain, with conserved
lysines and arginines implicated in tubulin binding shown as sticks. (B) Elec-
trostatic surface potential of IFT81N displaying the positively charged patch
with the residues labeled according to the HsIFT81 sequence. (C) Surface con-
servation of IFT81N demonstrates that the basic patch is well conserved among
different species (also see fig. S2). (D) Tubulin binding evaluated by glutathione
(GSH) affinity pull-down of bovine ab-tubulin using glutathione S-transferase
(GST)–HsIFT81N. Whereas tubulin does not bind the GSH beads and is not pulled
down by GST alone, a substantial portion is pulled down by GST-HsIFT81N,
demonstrating binding. Whereas the single-point mutation R87E does not

strongly impair binding, the K73K75/EE double mutant (mut1) results in reduced
amounts of pulled-down tubulin, indicating reduced binding. (E) Quantification of
tubulin binding to untagged HsIFT81N bymicroscale thermophoresis reveals a Kd
of 16 mM. (F) The HsIFT81N mut1 has drastically reduced binding with a Kd of
187 mM, showing that the basic patch is required for tubulin binding. (G) Mi-
croscale thermophoresis titration of tubulin with truncated HsIFT7481 complex
reveals a Kd of 0.9 mM. The curves in (E), (F), and (G) are calculated for three
independent experiments, and the error bars represent the mean T SD. (H) The
experiments shown in (D) to (G), along with the data in fig. S5, suggest a model
in which IFT81N recognizes the globular domain of tubulin, providing specificity,
and IFT74N binds the acidic tail of b-tubulin, providing increased affinity.

30 AUGUST 2013 VOL 341 SCIENCE www.sciencemag.org1010

REPORTS

45



ner (16, 17). The removal of tubulin from the
axonemal tip, on the other hand, appears to be
constant, with no dependence on cilium length
(17, 18). These observations inspired the balance-
point model, in which the length of a mature cil-
ium is the result of equal delivery and removal
rates for axonemal precursors (17, 19). Further-
more, the concentration of tubulin in the cytoplasm
influences ciliogenesis and cilium length in mam-
malian cells (20). Based on the measured affinity
between IFT74/81 and tubulin (Kd = 0.9 mM) (Fig.
1G), we calculated the fraction of IFT complexes
bound to ab-tubulin as a function of tubulin con-
centration (Fig. 4A). Because the cellular tubulin
concentration is estimated to be in the low mM
range (21) and tubulin expression is induced at the
onset of ciliogenesis (22), the IFT74/81:tubulin
affinity is optimal for regulating cilium length via
tubulin transport (Fig. 4B). The prediction is thus
that most IFT complexes are loaded with tubulin
during early stages of ciliogenesis, whereas lower
occupancies are found during steady-state cilium
length (Fig. 4), which agrees well with previously
obtained data demonstrating that tubulin transport
in full-length cilia yields only faint traces on
kymographs, likely due to low tubulin occupancy
on IFTcomplexes (13). During cilium growth, both
anterograde IFTcomplex concentration and tubulin
binding are negatively correlated with cilia length,
resulting in a decreasing assembly rate as the cilium
approaches steady-state length.

Here, we have shown that the two core IFT
proteins IFT74 and IFT81 form a tubulin-binding
module required for ciliogenesis, which suggests a
role of IFT74/81 in the transport of tubulin within
cilia. The fact that the high-affinity binding of tu-
bulin occurs only for the IFT74/81 complex and

Fig. 2. Tubulin binding by IFT81 is required for ciliogenesis in human cells. (A) Transient expression
of Flag-IFT81, but not the tubulin-binding–deficient IFT81 mutants (in green), rescues the ciliogenesis defect
after IFT81 siRNA knockdown. Primary cilia formation was induced by 0.5 mM cytochalasin D and detected
by antibody to Arl13b (in red). CAP350 (in blue, inset images only) was used to visualize centrosomes. Mut1

and Mut2 are K73K75/EE and K73K75K113K114R115/EEEEE tubulin-binding mutants, respectively. Scale
bar, 5 mm. (B) Quantification of the rescue experiment shown in (A). n = 3 independent experiments;
statistical analyses by one-way analysis of variance.
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Fig. 3. IFT81N is not required for normal IFT.
(A) Immunofluorescence analysis of methanol-fixed
trypanosomes expressing the indicated YFP fusion
proteins from the endogenous locus stained with an antibody to green flu-
orescent protein (GFP) (green) and with the antibody to PFR2 L8C4 to visualize
the flagellum (red). The left panel corresponds to a control strain expressing
YFP::IFT81 and the right panel to themutant YFP::IFT81Dm, where the IFT81N CH
domain is unfolded. Scale bar, 5 mm. (B) Kymograph generation and separation
of anterograde and retrograde traces. Kymographs were extracted from videos of
cells expressing YFP::IFT81 (movie S1) or YFP::IFT81Dm (movie S2). Panels show
the complete kymograph, anterograde events, and retrograde events (from left to
right). The x axis corresponds to the length of the flagellum (horizontal scale bar,

5 mm) and the y axis to the elapsed time (vertical scale bar, 5 s). (C) Quantitation
of the kymograph analysis shown in (B). Anterograde (blue) and retrograde veloc-
ity (red) distribution of IFT particles are calculated from cells expressing YFP::IFT81
and YFP::IFT81Dm. The kymographic analysis reveals robust anterograde traffick-
ing with a speed of 1.75 T 0.55 mm/s for YFP::IFT81 (n= 294 tracks from 15 cells)
and 1.68 T 0.72 mm s−1 for YFP::IFT81Dm (n = 244 tracks from 15 cells). These
values are in line with those reported for anterograde movement of GFP-IFT52
(15). Curiously, retrograde transport was slowed down in the case of YFP::IFT81Dm,
where a second population of relatively slow trains was detected.
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not for IFT81 alone could help ensure that tubulin
cargo only binds in the context of properly as-
sembled IFTcomplexes.Because tubulin constitutes
the backbone of all cilia, it makes sense that the
tubulin has a dedicated cargo-binding site on the
IFT core complex (23). We hypothesize that, al-
though abundant ciliary cargo proteins such as
tubulin may undergo IFT via dedicated transport
modules, less abundant ciliary proteins are likely
to compete for generic cargo-binding sites on the
IFT complex.
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Crystal Structure of MraY, an Essential
Membrane Enzyme for Bacterial Cell
Wall Synthesis
Ben C. Chung,1 Jinshi Zhao,1* Robert A. Gillespie,1* Do-Yeon Kwon,2 Ziqiang Guan,1
Jiyong Hong,2,3 Pei Zhou,1,2 Seok-Yong Lee1†

MraY (phospho-MurNAc-pentapeptide translocase) is an integral membrane enzyme that catalyzes an essential
step of bacterial cell wall biosynthesis: the transfer of the peptidoglycan precursor phospho-MurNAc-pentapeptide
to the lipid carrier undecaprenyl phosphate. MraY has long been considered a promising target for the
development of antibiotics, but the lack of a structure has hindered mechanistic understanding of this critical
enzyme and the enzyme superfamily in general. The superfamily includes enzymes involved in bacterial
lipopolysaccharide/teichoic acid formation and eukaryotic N-linked glycosylation, modifications that
are central in many biological processes. We present the crystal structure of MraY from Aquifex
aeolicus (MraYAA) at 3.3 Å resolution, which allows us to visualize the overall architecture, locate
Mg2+ within the active site, and provide a structural basis of catalysis for this class of enzyme.

Bacteria maintain their cell shapes at dif-
ferent osmotic pressures by using themesh-
like layers of the cell wall to surround and

stabilize the membrane. The cell wall of both
Gram-negative andGram-positive bacteria is com-
posed of peptidoglycan, a cross-linked polymer

of carbohydrates and amino acids. Because bio-
synthesis of peptidoglycan is a critical process for
bacteria, it has been a major target for antibiotics
(1, 2). Peptidoglycan biosynthesis involves three
main stages. First, the peptidoglycan precursor
UDP-N-acetylmuramoyl (MurNAc)–pentapeptide
(L-Ala-g-D-Glu-diaminopimelic acid/L-Lys-D-Ala-
D-Ala) is synthesized in the cytosol. Second, this
hydrophilic precursor is attached to a carrier lipid,
and the lipid-linked precursor is flipped across
the membrane to the periplasm.Third, peptido-
glycan precursors are polymerized to form the
cell wall.

MraY, or phospho-MurNAc-pentapeptide
translocase, is an integral membrane protein re-
sponsible for the second stage of peptidoglycan
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Fig. 4. Model for tubulin transport and ciliary length control. (A) Fraction of IFT complex bound to
tubulin at varying tubulin concentrations is plotted using the equation OIFT = [Tub]/{Kd + [Tub]}. OIFT is
the fraction of IFT bound to tubulin, Kd is the binding constant that is experimentally determined in this
study as 0.9 mM, and [Tub] is the local concentration of free tubulin at the base of the cilium. (B) From
the point of initiation of flagellar regeneration, the relationship between the ciliary length, the con-
centration of anterograde IFT particles, and OIFT is plotted.
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Materials and Methods 
 
Purification and reconstitution of IFT-B complexes 

For purification of the C.reinhardtii IFT81ΔN/74ΔN/His6-27/25ΔC complex, insect cells 

(HighFive, Invitrogen) were infected with baculovirus expressing the complex and grown 

for 72hours. Extract preparation was carried out as described previously (24), and the 

complex purified using a combination of Ni-NTA, ion-exchange (monoQ column) and 

size exclusion chromatography. Purification of the IFT70/IFT52/IFT46 complex from 

E.coli was performed as described previously (24). Reconstitution of the heptameric 

IFT81ΔN/74ΔN/70/52/46/His6-27/25ΔC complex was achieved by mixing equimolar 

amounts of the IFT81ΔN/74ΔN/His6-27/25ΔC complex and the IFT70/52/46 complex, 

followed by Superose6 size exclusion chromatography after an incubation at 4°C for 

3hours. 

Protein purification and crystallization 

His tagged CrIFT81 (residues 1-126) was expressed in E.coli BL21 (DE3) GOLD pLysS 

strain and lysed by sonication in a buffer containing 50mM Tris pH 7.5, 150mM NaCl 

and 10% glycerol. The protein was purified by Ni-NTA affinity chromatography 

followed by TEV cleavage to remove the His tag and size exclusion chromatography in a 

buffer of 10mM HEPES pH 7.5, 150mM NaCl using a superdex 75 or 200 column. 

CrIFT81N was concentrated to 20mg/ml and crystallized by vapor diffusion. Crystals of 

CrIFT81N appeared in 0.8M (NH4)2SO4, 0.1 M Tris pH 8.0 precipitant condition (Figure 

S3C). HsIFT81N was purified using the same procedure. Point mutants of HsIFT81N 

were made using the Quikchange site directed mutagenesis protocol from Agilent 

Technologies® and all the mutants were expressed and purified like the WT protein. The 
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IFT81/74_CC complex was produced by co-expression of His6-HsIFT81 (residues 1-215) 

and His6-HsIFT74 (residues 1-272) in the E.coli strain BL21 (DE3) GOLD pLysS. Cells 

were lysed and the proteins were purified using the same procedure as described above. 

 

X-ray diffraction data collection and structure determination 

Crystals of CrIFT81N were flash cooled in liquid nitrogen in mother liquor supplemented 

with 25% glycerol as a cryoprotectant.  Diffraction data were collected at the Swiss light 

source (SLS, Villigen, Switzerland) and processed with the XDS package (25). Single 

wavelength anomalous dispersion X-ray diffraction data were collected from tantalum 

bromide (Ta6Br12) soaked and experimental phases calculated using the PHENIX 

package (26). The program BUCCANEER (27) was used to automatically build ~80% of 

the CrIFT81N structure. The model was completed by iterative cycles of manual model 

building in the program COOT (28) and refinement in PHENIX. The obtained structure 

from the Ta6Br12 soak was then used as a search model for molecular replacement with 

native data. 

 

MT co-sedimentation assays 

99% pure bovine brain tubulin was obtained from Cytoskeleton® and MT were 

polymerized according to the manufacturers instructions. For co-sedimentation 

experiments, 3µM of MTs were pre-incubated with 3µM of protein (HsIFT81N or 

HsIFT74/81_CC) at room temperature for 30min in BRB80 buffer (80mM Pipes-KOH 

pH 6.8, 1mM EGTA, 2mM MgCl2) supplemented with 20µM taxol to a final reaction 

volume of 50µL. This reaction mixture was pipetted onto 100µL of cushion buffer (50% 
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glycerol, 80mM Pipes-KOH pH 6.8, 2mM MgCl2, 1mM EGTA) supplemented with 

20µM taxol. The resulting solution was centrifuged at 40.000rpm for 30min in a 

Beckmann TLA100 rotor. Supernatants and pellets were analyzed using SDS-PAGE 

followed by coomassie staining. 

 

Electron microscopy 

Taxol-stabilized MTs at a concentration of 5µM were mixed with 1.5µM of GST-

HsIFT81N or HsIFT74/81_CC in 50 µL of BRB80 buffer. The mixture was incubated for 

30 BRB80min at room temperature and 5µL of this reaction mix were placed onto a glow 

discharged EM grid followed by 2-3 rounds of washing with BRB80 buffer. The sample 

was stained using 1% Uranyl acetate solution. Images were collected using a FEI-CM200 

microscope operating at 160kV at 38,000X magnification corresponding to a pixel size of 

2.78Å. 

 

Tubulin co-precipitation assays 

3µM of tubulin and 10µM of GST tagged proteins were mixed in 100µL of BRB80 

buffer and incubated on ice for 30min. The reaction mixture was then added to 15µL of 

pre-blocked GSH beads and incubated on a shaker for 1hour at 4°C. The beads were 

washed extensively with the BRB80 buffer and the proteins bound to GSH beads were 

eluted with 30mM glutathione and analyzed by SDS-PAGE.  

 

Microscale thermophoresis (MST) 
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Bovine tubulin was labeled on lysine side-chains using the Cy3 protein labeling kit from 

Jena Bioscience according to the manufacturers instructions. The average number of 

lysines labeled per αβ-tubulin dimer was estimated to be 3.6. 200nM of labeled tubulin 

was titrated with 0.03-2000µM of HsIFT81N or HsIFT81Nmut1 in a total volume of 

20µL and 10-16 thermophoresis measurements recorded. Each sample was incubated at 

room temperature for 10min before measurement. For the HsIFT81/74_CC complex, a 

lower concentration of 0.003-200µM was used. Thermophoresis measurements were 

carried out using the NanoTemper Monolith NT.115 instrument (NanoTemper 

Technologies GmbH) using 50% LED and 65% laser power with the laser on for 40sec 

followed by an off period of 10sec. The resulting raw data were analysed using the 

NanoTemper software to obtain binding curves and Kds were calculated using Prism 

(GraphPad Software). 

 

Subitlisin treatment of tubulin/microtubules 

8µM of preformed and taxol stabilized MTs were mixed with 1.25µM of subtilisin in 

BRB80 buffer containing 20µM taxol in a total volume of 50µL. This reaction mixture 

was incubated at 30°C for 30min and the proteolysis stopped by adding 1mM PMSF. 

Proteolysed MTs were spun at 40.000rpm for 30min in a Beckmann TLA100 rotor and 

the pellet re-dissolved in BRB80 buffer supplemented with 20µM taxol. For the subtilisin 

treatment of soluble tubulin, 25µM of tubulin were mixed with 1.25µM of subtilisin in a 

total volume of 120µL of BRB80 buffer. The solution was divided into two equal halves, 

which were incubated at 30°C for 30min or 120min, respectively, followed by 

inactivation of the protease by the addition of 1mM PMSF. Untreated and subtilisin 
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treated tubulin were purified using size exclusion chromatography (superdex 200 

column) as shown in Fig. S5A. 

 

Cell culture and transfections 

The RPE-1 and U2OS cells were cultured as previously described (29). For transient gene 

expression, cells were transfected with TransIT-LT1 (Mirus) according manufacturers 

instructions with pcDNA3.1-IFT81 full length (F.L.) and pcDNA3.1-IFT81ΔN (human 

IFT81 sequences). For the rescue experiments, RNAi resistant plasmid was generated by 

making silent mutations in the siRNA spanning regions of IFT81 gene and subsequent 

cloning of this construct into the pcDNA5.1 vector. This RNAi resistant pcDNA5.1-

IFT81 F.L. plasmid was further used to generate rescue plasmids with point and deletion 

mutations (mut1, mut2 and ΔN). For rescue experiments, RPE-1 cells were first 

transfected with control (GL2) or IFT81 siRNA (target sequence: 

GGATATCAGTGCAATGGAA and CAGCTCATTAAGAGAGTTGAA, each at 50µM) 

using Oligofectamine (Invitrogen) according manufacturers recommendations. Cells were 

subsequently nucleofected with pcDNA5.1-IFT81 (F.L., mut1, mut2 or ΔN) rescue 

plasmids using Amaxa 4D-Nucleofector (Lonza) and the DS137 program, 48h after the 

siRNA transfection.   Following the plasmid transfection, the formation of primary cilia 

in RPE-1 cells was induced either by 0.5µM Cytochalasin D (Sigma) or by changing into 

serum-free media for 24h.  
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Immunofluorescence microscopy 

Cells grown on coverslips were washed with PBS and fixed in methanol (-20°C/5min). In 

case of the detection of acetylated tubulin, cells were cold treated (+4°C/30min) prior the 

methanol fixation. Blocking, incubation with primary and secondary antibodies, and 

washing were done as described before (29). The following primary and secondary 

antibodies were used: mouse anti-acetylated tubulin (6-11B-1, Sigma), rabbit anti-Arl13b 

(17711, Proteintech), mouse anti-Flag (M2, Sigma), rabbit anti-Flag (F7425, Sigma), rat 

anti-IFT81, goat anti-CAP350 (30), rabbit anti-Cep135 (31) (both Alexa 647-labeled), 

rabbit anti-Cep152 (32) (Alexa 555-labeled), Alexa 488 anti-mouse, Alexa 488 anti-

rabbit, Alexa 555 anti-mouse, Alexa 555 anti-rabbit (all from Invitrogen), and Cy2 anti-

rat (Jackson Immuno Research). Direct labeling of primary antibodies was done with the 

Alexa-antibody labeling kit (Invitrogen). Coverslips were mounted on slides using 

Glycergel (Dako). Wide-field imaging was performed on a DeltaVision system (Applied 

Precision) with a 60x/1.2 or 100x/1.4 Apo plan oil immersion objective.  Image stacks 

were taken with a z-distance of 0.2µm, deconvolved (conservative ratio, 3-5 cycles) and 

projected as maximal intensity image using SoftWoRX (Applied Precision). For cell 

counts, at least 50 transfected cells per condition and experiment were analyzed for the 

presence/absence of primary cilia. 

 

Statistical analyses 

Statistical analyses (Students t-test, one-way ANOVA with Bonferronis multiple 

comparison test) were performed using Prism. p<0.05 was considered as statistically 
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significant difference (*), p<0.01 (**), p<0.001 (***). Results are presented as mean plus 

standard error of the mean (SEM). 

Generation of trypanosome expressing YFP::IFT81 cell lines 

All cells used for this work were derived from T. brucei strain 427 (procyclic stage) and 

were cultured in SDM79 medium supplemented with hemin and 10% foetal calf serum. 

Cell lines expressing unaltered or mutated YFP::IFT81 were obtained after endogenous 

tagging. The first 500 nucleotides of the IFT81 gene (Gene DB number Tb927.10.2640) 

were chemically synthesized (GeneCust, Luxembourg) and cloned in frame with 

the YFP gene within the HindIII and ApaI sites of the p2675 vector (33). The construct 

was linearized within the IFT81 sequence with the enzyme XcmI and nucleofected (34) 

in wild-type trypanosomes, leading to integration by homologous recombination in the 

endogenous locus and to expression of the full length coding sequence of IFT81 fused to 

YFP. Expression of an IFT81-YFP fusion protein of the correct size was confirmed by 

western blotting with an anti-GFP antibody (Roche) that cross-reacts with YFP. The 

IFT81 I46D, L47D double-mutant (YFP::IFT81Dm) was generated from the p2675IFT81 

plasmid using the Quikchange site directed mutagenesis protocol from Agilent 

Technologies®. The construct was linearized and transfected, leading to similar 

expression levels of YFP::IFT81Dm as for unaltered YFT-IFT81 described above. 

Life microscopy analysis of trypanosome cells 

Trypanosomes were taken from cultures grown at 1.107 cells/mL and the expression 

of YFP::IFT81 or YFP::IFT81DM was observed in live cells using a spinning disk 
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UltraView Vox microscope equipped with an oil immersion objective (magnification 

x100 with a 1.4 numerical aperture). Images were acquired using the Volocity software 

(Perkin Elmer) with an EMCCD camera (ImagEM X2, Hamamatsu) operating in 

streaming mode. Images were captured with an exposure time of 100ms during 30secs. 

Images were analysed using the Volocity software and Image J and kymographs were 

extracted using Quia (15). 
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Supplementary Text 

Model for ciliary length control (Fig. 4 and S8) 
 
Intraflagellar transport is known to play a direct role in ciliary length control as partial 

inhibition of IFT in a C.reinhardtii mutant resulted in shorter flagella (17). Similarly, 

partial depletion of the IFT pool results in the formation of shorter flagella in 

trypanosomes (35). To assess whether the modulation of tubulin transport is another 

plausible mechanism for controlling cilium length, we used the measured affinity 

(Kd=0.9µM) to calculate the fraction of IFT complexes bound to αβ-tubulin as a function 

of tubulin concentration (Fig. 4A).  According to this calculation, 90% of IFT complexes 

have tubulin bound when the cellular concentration of free tubulin is 8µM, whereas only 

10% of IFT complexes have tubulin bound at a tubulin concentration of 0.1µM. As the 

cellular tubulin concentration is estimated to be in the low µM range (21), the affinity to 

IFT74/81 is thus optimal for such a regulatory mechanism. Tubulin is concentrated at the 

transition zone fibres emanating from the basal body (36), a location where IFT protein 

also concentrate (37). Furthermore, tubulin expression is induced at the onset of 

ciliogenesis followed by a gradual decrease in tubulin concentration during cilium growth 

(22, 38-41). This implies that the tubulin-loading of IFT74/81 is maximal during the early 

stages of ciliogenesis and may decrease as the cilium elongates and the concentration of 

free tubulin in the cytoplasm is reduced (Fig. 4B and S8). As a result, less tubulin is 

delivered to the tip of the cilium as it continues to grow. Combined with modulating IFT, 

this mechanism could provide an additional important control of cilium length. 

Further regulation of the IFT of axonemal precursors is likely to occur via post-

translational modifications that modulate affinity to the IFT machinery. Tubulin itself is 
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known to undergo a large number of modifications (42), primarily in the acidic C-

terminal tail recognized by IFT74, and modifications in this region could thus change 

binding properties. Recently, the induction of arginine methylation, which is known to 

affect protein-protein interactions (43), was shown to occur during cilia resorption. The 

methylation pattern was punctate along the length of the cilium, reminiscent of IFT 

protein staining, indicating that one or more IFT proteins could be methylated (44, 45). 

Indeed, a protein post-translational modification database (PhosphoSitePlus®) search 

reveals that human IFT74 is methylated at R51 (46). This residue is part of the basic 

IFT74 N-terminus required for the high affinity tubulin binding by IFT74/81. 

Methylation of R51 may thus interfere with the function of IFT74 by neutralizing the 

critical positive charge required for binding to tubulin E-hooks and hence may 

compromise tubulin transport by the IFT complex. Methylation of IFT81/74 arginines to 

reduce the affinity for tubulin might thus be a regulatory pathway that is especially active 

during ciliary resorption, although further studies are required to elucidate its importance.  
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Fig. S1. 
(A) Schematics of the IFT-B core complex (not to scale) illustrate that both the IFT25/27 
and the IFT46/52/70 sub-complexes associate with the coiled coil regions of IFT74/81. 
(B) Chromatogram from size exclusion purification (left) and associated coomassie-
stained SDS-PAGE gel of the indicated peak fraction (right) for purified C.reinhardtii 
IFT25ΔC/27/74ΔN/81ΔN complex lacking the N-terminal regions of IFT74 and IFT81. 
(C) Purification of a heptameric IFT-B core complex obtained by mixing the tetramer 
shown in (B) with a trimeric IFT46/52/70 complex followed by purification using size 
exclusion chromatography. The results show that IFT74N and IFT81N are dispensable 
for IFT core complex formation. (D) Comparision of the experimentally determined 
molecular weights with the theoritical molecular weights of CrIFTtetramer (IFT74ΔN, 
IFT81ΔN, IFT25ΔC and IFT27) and crIFTheptamer (IFT74ΔN, IFT81ΔN, IFT25ΔC, IFT27, 
IFT70, IFT52 and IFT46). Analysis shows that the molecular weights obtained by static 
light scattering (SLS) comply with a single copy of both IFT74 and IFT81 in the IFT 
complex.  
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Fig. S2 
(A) Sequence alignment of the N-termini of IFT81 proteins from diverse ciliated 
organisms. Secondary structure elements derived from the CrIFT81N structure are 
indicated at the top and the conservation of residues are shown at the bottom of the 
alignment. Functional tubulin binding residues are colored green. (B) Sequence 
alignment of the N-terminal region preceding the predicted coiled-coil domain of IFT74 
from different organisms. Conservation is indicated below the sequence. Positively- and 
negatively-charged residues are shown in blue and red, respectively. The theoretical pIs 
calculated using the program ProtParam (http://web.expasy.org/protparam/) are indicated. 

HsIFT74N   --------------------------------------------------------MASN 4
CfIFT74N   --------------------------------------------------------MASN 4
DrIFT74N   ------------------------------------------------------------
CrIFT74N   ----------------------------------------MDRPSSRGALALGAGGLGKA 20
CeIFT74N   MEIYLELLTNQNGLSKLIISFNYSALSHIFHSWSVLVSMTTKHASTTNTRMERPSTASSR 60
                                                                            
HsIFT74N   HKSSAARPV---SRGGVGLTGRPPSGIRP--LSGNIRVATAMPPGTAR--------PGSR 51
CfIFT74N   HKPSAARPV---SRGGIGLPGRPPSGIRP--PSGNTRVATGLPPGTAR--------PGSR 51
DrIFT74N   --MSAQRPA---SRGSFG-----PGAGRP--QTAS-RVGTAMAPGTAR--------PGTR 39
CrIFT74N   PTGGAVQQP---DRPMTGQRGAAPAGPMR--APAGASIIGAGPPGTAMRG-----GPGPA 70
CeIFT74N   PRTSTGRAPSARARPPSAMRAPPPQPTYENRPTTGMSMRNGGPPVPPSRSGMIPVPPSRS 120
              .: :      *   .     *        . .  :  . .* ..         *.  
HsIFT74N   GCPIGTG-----GVLS-------------------SQIKVAHRPVTQQGLTGMKTGTK-G 86
CfIFT74N   GGPIGTG-----GVLS-------------------SQIKVADRPVTQQGLSGMKTGMK-G 86
DrIFT74N   GAHLATP-----GVLS-------------------AQIKVADRPVTQQGLSGMKTGIK-G 74
CrIFT74N   GGPPGTAYK-RMGTASQRPGTGQQAAAAAAAARAGQQLQVENRPITNHGVSGMKTAAA-G 128
CeIFT74N   GGPPAPMPVSRAGGPPRAPTSMGGRPMTG----MARPPTAGLRPVTQQGLRAPPSRMGTG 176
           *   ..      *  .                       .  **:*::*: .  :    *
HsIFT74N   PQRQ 90
CfIFT74N   PQRQ 90
DrIFT74N   PQRQ 78
CrIFT74N   VGRQ 132
CeIFT74N   NSRQ 180
             **

Predicted pI
12.55
12.55
12.48
12.08

HsIFT81N   MSDQIK-FIMDSLNKEPFRKNYNLITFDSLEPMQLLQVLSDVLAEIDPK-QLVDIREEMPEQT 61
CfIFT81N   MSDQIK-FIVDNLNKEPFRKNYNLITFDSLEPMQLLQVLNDVLAEIDPK-QVVDIREEMPEQT 61
DrIFT81N   MSEQLK-FIVEQLNKEPFKKNFNLITFDSLEPMQLLQTLSDVLAEIDPK-QAIDIREELPEQT 61
CeIFT81N   MSNDIQGFILHFLNEEPFNLNLSSLQFDQLPPQQLLQILSNVLSWVSDT-DRIDIKREAAEET 62
CrIFT81N   -MGDVS-YIVDSLGLPPFSYQMSLLSFTEKGPQELLQLLSDVFSTISPKHQKVDVAKEVPDQT 61
              ::. :*:. *.  **  : . : * .  * :*** *.:*:: :. . : :*: .* .::*
           
HsIFT81N   AKRMLSLLGILKYKPSGNATDMSTFRQGLVIGSKPVIYPVLHWLLQRTNELKKRAYLARF--- 121
CfIFT81N   AKRMLSLLGILKYKPPGNATDMSTFRQGLVIGSKPVIYPVLHWLLQRTSELKKRAYLARF--- 121
DrIFT81N   AKRMFTLLGMLKYKPSGGMSEVSSFRQGLVSGSKPVVHPILHWLLQRIPELKKRAYLARF--- 121
CeIFT81N   AIRILNMLRILRYRPPQDQDEQEEWRAGIVEGRKTSLYPLLVFLFENSEGLKERAYLSKY--- 122
CrIFT81N   ADRLIGFLKIIKYRP--NVQDPLLFRQLVAAGDRETLYQILRWVVPQAQLLEKRAFVGYYLSF 122
           * *:: :* :::*:*  .  :   :*  :. * :  :: :* ::. .   *::**::. :
           

KY
KY
KY
RY
KY

FRQ
FRQ
FRQ
WRA
FRQ
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LK
LK
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KRA
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KE

1
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Fig. S3 
(A) Size exclusion profiles of IFT81N wild-type and mutant proteins demonstrating that 
all mutant proteins elute similarly to the wild-type protein and are thus likely to be 
properly folded. (B) Coomassie stained SDS-PAGE gels of purified HsIFT81N and 
CrIFT81N. (C) Hexagonal crystals of CrIFT81N grown by vapor diffusion. (D) 
Purification of truncated HsIFT74/81 complex (HsIFT7481_CC) by size exclusion 
chromatography. HsIFT7481_CC contains all of the N-terminal domains and a sufficient 
portion of the coiled-coil domains to form a stable complex. 
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Fig. S4 
(A) 2.3Å resolution crystal structure of CrIFT81N shown as a cartoon representation. The 
termini and α-helices of the domain are labelled. (B) Homology model of HsIFT81N 
based on the crystal structure of CrIFT81N displayed in the same orientation as in panel 
(A). (C, D) Crystal structures of the CH-domains of the MT-binding proteins NDC80 and 
EB1 after superpositioning onto the CrIFT81N structure shown in (A). (E) αβ-tubulin 
pull-down with wildtype and mutant GST-HsIFT81N proteins. (Top) Coomassie-stained 
SDS gel of input and eluted proteins. (Bottom) Western-blot using anti α-tubulin 
antibody to visualize tubulin pulled-down by GST-HsIFT81N. Mutation of conserved 
basic residues of IFT81N reduces the amount of pulled-down tubulin. 

 A  B  C  D  E

N

C

N

C
r.m.s.d=2.6Å

N

C r.m.s.d=0.6Å

N

C r.m.s.d=3.6Å

CrIFT81N
Crystal structure

HsIFT81N
Homology model

HsNDC80
Crystal structure

HsEB1
Crystal structure

1

1’

22’

3
3’

4I

4II

66

45

35

25

M
W

 (k
D

a)

anti α-tubulin

Tubulin

HsIFT81N-GST

Input Elution
+ +

++
+ +

+ + ++++
- - - -

----
- - - -

Tubulin
HsIFT81N-GST
HsIFT81Nmut1-GST
HsIFT81Nmut2-GST

Lane 1 2 3 4 5 6

62



 16 

 

 

Fig. S5 

(A) (left) Coomassie-stained SDS-PAGE gel of subtilisin-protease treated αβ-tubulin to 
remove the E-hook of β-tubulin (after 20 min) or both α- and β-tubulin (after 130 min). 
(right) size-exclusion chromatography of proteolysed tubulin (B) Microscale 
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thermophoresis titration of αβ-tubulin lacking the C-terminal tail of β-tubulin (tubulin 
ΔβE-hook) with HsIFT81N (panel (A), 20 min treatment) showing a similar affinity as 
for intact αβ-tubulin. (C) Microscale thermophoresis titration of αβ-tubulin lacking both 
the acidic C-terminal tails with HsIFT81N gives a Kd of 16µM. Panels (B) and (C) 
demonstrate that IFT81N does not required the tubulin E-hooks for interaction.  (D) MT-
sedimentation assay with HsIFT81N and subsequent SDS-PAGE analysis of the 
supernatant (S) and the pellet (P) reveal only background levels of HsIFT81N co-
sedimenting with MT. (E) MT-sedimentation experiments where intact αβ-tubulin or 
tubulin lacking the C-terminal tail of β-tubulin is co-sedimented with the 
HsIFT74/81_CC complex demonstrates that the high-affinity interaction mediated by 
IFT74N requires the C-terminal tail of β-tubulin. The concentration of tubulin and 
HsIFT81N used in the experiments in panels (D) and (E) was 5µM. (F) Negative stain 
EM of taxol stabilized MT incubated with HsIFT81N or HsIFT74/81_CC complex. 
HsIFT74/81_CC but not HsIFT81N decorates MT. The concentration of tubulin was 
1µM and that of IFT81N and  HsIFT74/81_CC was 1.5µM. 
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Fig. S6 
(A) Both Flag-IFT81 and Flag-IFT81∆N (in green) are detected at the basal body and the 
tip of the primary cilium (induced by serum starvation) in RPE1 cells (see the 
arrowheads). Acetylated tubulin immuno-staining (in red) was used to visualize primary 
cilia. Scale bar, 1 µm. (B) Transient expression of Flag-IFT81∆N, but not Flag-IFT81 (in 
green) impairs formation of primary cilia induced by 24h treatment with 0.5µM 
cytochalasin D in RPE1 cells. Primary cilia were detected by Arl13b immuno-staining (in 
red), CAP350 (in blue) was used to visualize centrosomes. Arrowheads show Flag 
positive cells. Scale bar, 5 µm. (C) Quantification of the effects of Flag-IFT81 and Flag-
IFT81∆N expression on the presence of primary cilia induced by 0.5µM cytochalasin D. 
n=3, p<0.001(***) by Student’s t-test. (D) Quantification of the effects of Flag-IFT81 
and Flag-IFT81∆N expression on the presence of primary cilia induced 24h serum 
starvation. n=4, p<0.05(*) by Student’s t-test. (E) IFT81 siRNA knockdown efficiency 
was probed by testing the levels of IFT81 protein with anti-IFT81. Transfection of either 
IFT81 oligo1 or IFT81 oligo2 reduced the protein levels. Combination of oligo1 and 
oligo2 had the maximum effect on the IFT81 protein levels and hence it was used in the 
siRNA rescue experiments shown in Fig. 2. Various control RNAi (GL2, Cep164 & 
Cep170) did not affect IFT81 levels. Levels of α-tubulin in each lane are indicated as a 
loading control. 
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Fig. S7 
(A) Expression and Ni-NTA pulldown of His tagged WT and I46D, L47D (Dm) 
structure-based mutant of Tryponosma brucei (Tb) IFT81(1-136). Both proteins are 
highly expressed as seen from the lanes labeled ‘Bacteria’. The ‘Ni-pulldown’ lanes show 
that while the WT construct is highly soluble, the mutant solubility is severely 
compromised indicating that this double mutation disrupts the fold of the N-terminal 
domain of TbIFT81. (B) Western blotting analysis of total protein samples from the Tb 
cells expressing normal and the mutant (Dm) version of IFT81.  50µg of total protein for 
each lane are separated on a 4-15% SDS-PAGE and probed with the anti-GFP marker to 
detect the fusion proteins GFP-IFT52 (47), YFP::IFT81 or YFP::IFT81(I46D, L47D). 
The blot was reprobed with L13D6 to detect paraflagellar rod (PFR) proteins as loading 
control. 
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Fig. S8 
Model for ciliary length control: 3 representative phases of cilia growth are shown. Each 
phase is characterized by a varying fraction of IFT complexes bound to tubulin. OIFT is 
highest in the initial elongation phase and gradually decreases as the cilia approaches its 
steady state length. 
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Table S1. Data collection and refinement statistics 

       Statistics for the highest-resolution shell are shown in parentheses. 

 Cr81N_Native Cr81N_Ta6Br12 

Data collection and scaling   

    Wavelength (Å) 0.9793 1.2545 

    Resolution range (Å) 38  - 2.5 (2.6 - 2.5) 38  - 2.3 (2.4 - 2.3) 

    Space group P 64 2 2 P 64 2 2 

    Unit cell (Å) 75.1, 75.1, 93.4 76.1 76.1, 94.1 

    Unique reflections 5727 (869) 13616 (2177) 

    Multiplicity 12.0 (12.0) 20.1 (20.0) 

    Completeness (%) 99.5 (96.9) 99.8 (98.1) 

    Mean I/sigma(I) 21.9 (3.0) 49.2 (12.4) 

    R-sym 0.05 (0.64) 0.03 (0.20) 

Refinement   

    Number of reflections 5162 13116 

    Protein residues 120 124 

    Number of atoms   

        Protein 948 981 

        Ligands (Ta) NA 4 

        Water 0 21 

    R-work 0.2522 (0.3448) 0.2141 (0.2736) 

    R-free 0.2854 (0.3657) 0.2391 (0.3218) 

    Ramachandran favoured (%) 95.6 96.6 

    Ramachandran outliers (%) 0 0 

    RMS(bonds) 0.009 0.009 

    RMS(angles) 1.37 1.30 

    Average B-factors   

        Protein       98.7 57.1 

        Solvent NA 57.2 
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Movie S1 and S2 
Movies of WT and Dm mutant IFT81 YFP tagged trypanosome cell lines, respectively. 
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Abstract 
The Intraflagellar transport (IFT) system is needed to form and maintain the 

cilium, an important organelle that functions in motility, sensory reception and 

signaling on many different cell types. Recently it has been shown that the 

Calponin Homology (CH) domain of IFT81 together with the positively charged 

N-terminal patch of IFT74 serves as tubulin-binding module, linking tubulin 

transport within cilia to IFT. Three additional CH domains are predicted in 

IFT38, IFT54 and IFT57. Here, we show that IFT20/54 and IFT38/57 can be 

expressed and purified in two stable subcomplexes. Furthermore, we solved the 

high-resolution crystal structure of the IFT54 CH domain and show that this 

domain mediates tubulin binding within the IFT20/54 complex. In contrast, the 

CH domains of IFT38/57 lost their ability to bind tubulin and instead mediate 

interactions with IFT80 and IFT172 within the IFT-B complex. 
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Introduction 
Cilia are microtubule (MT)-based appendages protruding from the surface of many 

different cell types (Fliegauf et al., 2007). To build and maintain a functional cilium a 

specialized intraflagellar transport (IFT) is in place (Kozminski et al., 1993). The IFT 

complex consists of 22 proteins that can be divided into two subcomplexes, IFT-A 

and IFT-B (Cole et al., 1998; Fan et al., 2010; Follit et al., 2009; Ishikawa et al., 2014; 

Lechtreck et al., 2009; Lucker et al., 2005; Omori et al., 2008; Piperno and Mead, 

1997). Nine of the IFT-B proteins have been shown to form a stable ‘IFT-B core’ 

consisting of IFT88/81/74/70/52/46/27/25/22 (Taschner et al., 2014). Yeast-2-hybrid 

assays further indicate an interaction between IFT56 and IFT46, pointing to IFT56 as 

a member of the ‘IFT-B core’ (Swiderski et al., 2014). The remaining six IFT-B 

proteins (IFT172, IFT80, IFT57, IFT54, IFT38, IFT20) are considered as ‘peripheral’ 

proteins (Cole et al., 1998; Follit et al., 2009; Lucker et al., 2005; Nachury, 2014).  

Ciliary cargo is transported via IFT and the motor protein heterotrimeric kinesin II 

from the basal body region to the tip of the cilium (anterograde IFT) (Cole et al., 

1998; Craft et al., 2015; Hao et al., 2011; Kozminski et al., 1995; Qin et al., 2004). At 

the ciliary tip, exchange of the cargo and remodeling of the IFT complex takes place 

and dynein 2 transports the IFT complex and recycling products back to the cell body 

(retrograde IFT) (Marshall and Rosenbaum, 2001; Pazour et al., 1999; Porter et al., 

1999; Qin et al., 2004; Signor et al., 1999). Given that >600 different proteins 

function inside the cilium and in the ciliary membrane (Pazour et al., 2005) only little 

is known about cargo interaction sites within the IFT complex. 

Recently, Bhogaraju and colleagues could show that the ‘IFT-B core’ proteins 

IFT81/74 provide a tubulin-binding module (Bhogaraju et al., 2013). The N-terminal 

part of IFT81 adopts a Calponin Homology (CH) domain fold and selectively binds to 

the globular domain of tubulin whereas the positively charged N-terminus of IFT74 

strengthens the binding via interaction with the negatively charged E-hooks of  

β-tubulin. Quantification of the binding revealed a Kd of 0.9 µM. Furthermore, in 

Chlamydomonas reinhardtii it has been shown that the frequency of GFP-tubulin 

moved by anterograde IFT in growing cilia is elevated (18.3 ± 6.9 particles/min) 

compared to steady-state cilia (~0.3 particles/min) (Craft et al., 2015). Given that the 

entry rate of IFT-trains does not correlate with the length of cilia (Craft et al., 2015; 

Dentler, 2005; Engel et al., 2009), Craft and colleagues proposed a model in which 
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growing cilia induce a signal resulting in an increased load of tubulin onto IFT 

particles and thus to an elevated tubulin concentration within cilia (Craft et al., 2015). 

The ciliary axoneme has a MT-based backbone. Therefore, the main building block to 

assemble a cilium is tubulin. Thus, the question arises if one tubulin-binding module 

within IFT is sufficient to assemble a cilium. Calculations done, taken into account 

the growing rate of the cilium (Rosenbaum et al., 1969), the frequency of IFT particle 

entrance into a cilium (Dentler, 2005; Engel et al., 2009; Mueller et al., 2005) and the 

length of IFT-trains (Pigino et al., 2009), led to the hypothesis of more than one 

tubulin-binding module within the IFT machinery to achieve the transport rate of 

tubulin necessary to assemble functional cilia (Bhogaraju et al., 2014). Bioinformatics 

analysis using the HHPred algorithm (Soding et al., 2005) predicted three additional 

CH domains in the N-terminal part of IFT38, IFT54 and IFT57 (Schou et al., 2014; 

Taschner et al., 2012). Therefore, these three proteins are possible candidates for 

additional tubulin-binding sites within the IFT process.  

To understand the interplay between different IFT-B proteins as well as to identify 

further possible cargo interaction sites we focused in this study on IFT20, IFT38, 

IFT54 and IFT57 due to the similar domain architecture of the latter three. Here we 

show that IFT57 directly interacts with IFT38, as part of the IFT-B complex. In 

addition, we solved the high-resolution structure of the N-terminal CH domain of 

IFT54 and could verify their tubulin-binding ability indicating another cargo-binding 

site within the IFT complex. Furthermore, we observed that the predicted CH 

domains of IFT38 and IFT57 lost their tubulin-binding ability and instead mediate the 

binding to IFT80 and IFT172.  

 

Results 

Purification of the IFT54/20 complex 

An interaction between IFT20 and IFT54 was reported based on immunoprecipitation 

(Follit et al., 2009) and yeast-2-hybrid assays (Omori et al., 2008). To obtain a stable 

IFT20/54 subcomplex for detailed biochemical studies, Chlamydomonas reinhardtii 

IFT20 and IFT54 were recombinantly expressed in insect cells. Whereas IFT20 could 

be purified in isolation, IFT54 was prone to degradation during the purification 

procedure. Thus, co-expression was carried out, resulting in a dimeric IFT54/20 

complex (Fig. 1B). Mass spec analysis identified the proteins as full-length. 
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In order to test whether the C-terminal coiled coil (CC) regions are sufficient to 

mediate complex formation, truncated C. reinhardtii (Cr) and M. musculus (Mm) 

versions harboring the CC region of IFT20 (CrIFT201-125, MmIFT20) and IFT54 

(CrIFT54346-510, MmIFT54462-625) were designed, expressed in E.coli and purified. 

Size exclusion chromatography (SEC) resulted in a single peak that shifted to higher 

MW compared to the single proteins, showing that indeed the CC regions are 

sufficient to form the dimeric complex (Fig. 1C, S1A). Secondary structure 

predictions revealed an additional α-helical CH domain at the very N-terminus of 

IFT54. The CH domain was cloned (CrIFT541-134, MmIFT541-133), purified and tested 

for their ability to bind IFT20. The SEC elution profiles resulted in two peaks, 

showing that the CH domain in IFT54 is not able to interact with IFT20. In agreement 

with previously published results (Follit et al., 2009; Omori et al., 2008), this 

demonstrates that C. reinhardtii and M. musculus IFT20 interacts with IFT54 via the 

CC region and not the CH domain (Fig. 1D, S1B).  

Furthermore, a direct interaction between IFT20 and IFT57 was reported (Baker et al., 

2003; Krock and Perkins, 2008) although it was not confirmed in a later study 

(Lucker et al., 2010). To assess if IFT20, IFT54 and IFT57 can form a trimeric 

complex, pull down experiments using the purified CC regions of IFT20, IFT54 and 

IFT57 (CrIFT201-125, CrIFT54346-510, CrIFT57301-469) were performed. The obtained 

results clearly demonstrated that GST-tagged IFT57CC does not interact with 

IFT20CC/54CC (Fig. 1E). 

 

IFT38 interacts directly with IFT57 

IFT38 (also known as FAP22 (C. reinhardtti), DYF-3 (C.elegans), Cluap1 

(mammals), Qilin (D.rerio) and PIFTA1 (T. brucei)) has been shown to undergo IFT 

(Ou et al., 2005) and is required for ciliogenesis in Trypanosoma bruceii (Absalon et 

al., 2008). Furthermore, IFT38 can be pulled down amongst other IFT-B proteins 

from zebrafish lysate using TAP-IFT54-GFP (Omori et al., 2008), pointing to IFT38 

as a member of the IFT-B complex.  

Both, IFT38 and IFT57 harbor C-terminal CC regions, known to mediate protein-

protein interactions. Therefore, it was tested whether these two proteins form a 

complex. Single expression of CrIFT38 in insect cells resulted in insoluble protein. 

CrIFT57 was soluble but tended to aggregate during the purification procedure. Co-

expression of IFT38 and IFT57 resulted in a soluble complex, eluting in a single peak 
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in SEC (Fig. 2A). In order to confirm the formation of an IFT38/57 complex, 

analytical ultracentrifugation (AUC) was performed. AUC resulted in one peak with a 

MW of 81 kDa, which corresponds to the predicted molecular weight of a 

heterodimeric IFT38/57 complex (MWcalculated = 93 kDa) (Fig. 2B).  

In summary, we could confirm the direct interaction between IFT20/54 as previously 

reported (Follit et al., 2009; Omori et al., 2008). Additionally, we identified a new 

direct interaction between IFT38 and IFT57 demonstrating that IFT38 is indeed a 

member of the IFT-B complex. 

 

IFT20/54 but not IFT38/57 binds tubulin via the N-terminal CH domain 

The Calponin Homology (CH) domain is well known from various tubulin/MT- or 

actin-binding proteins, like the MT-plus-end tracking protein EB1 (Hayashi and 

Ikura, 2003), Ndc80 that plays important roles in kinetochore-MT attachment during 

cell division (Ciferri et al., 2008) and actinin4, involved in the scaffolding and 

organization of the cytoskeleton (Lee et al., 2008). In order to test if the predicted CH 

domains in IFT38, IFT54 and IFT57 also function in MT/tubulin-binding, pull down 

experiments were carried out using recombinantly purified CrIFT20/54 and 

CrIFT38/57. Surprisingly, IFT20/54 but not IFT38/57 was able to pull down tubulin 

(Fig. 3A). Quantification of the binding between tubulin and CrIFT20/54 was 

achieved by performing microscale thermophoresis (MST) measurements, where 

fluorescently labeled tubulin was titrated with untagged CrIFT20/54 and revealed a 

binding constant (Kd) of 3 µM (Fig. 3B). To further narrow down the tubulin-binding 

region of IFT54, the N-terminal CH domain of IFT54 was also tested for its tubulin 

binding ability. Previous studies already showed that the N-terminal part of IFT54 is 

able to interact with tubulin (Ling and Goeddel, 2000). By pull down experiments, we 

mapped the tubulin-binding region of IFT54 to the CH domain in IFT54  

(CrIFT541-134, MmIFT541-133) (Fig. 3C). In order to reveal the IFT54 CH domain 

binding site on tubulin, we further tested if the globular domain of tubulin is sufficient 

for binding to IFT54, like in IFT81 (Bhogaraju et al., 2013) or whether the E-hooks of 

tubulin are crucial for the binding to IFT54. Therefore, tubulin was treated with the 

protease subtilisin for 20 min to cut off the C-terminal tail of β-tubulin or for 130 min 

to also remove the C-terminal tail of α -tubulin. Subtilisin-treated tubulin was then 

used in pull down experiments. The CH domain of M. musculus IFT54 was still able 
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to bind to tubulin regardless of the presents of E-hooks, indicating that the IFT54 CH 

domain binds to the globular domain of tubulin (Fig. 3D).  

 

IFT20/54 also binds to MTs 

In order to verify the MT-binding ability of IFT20/54, MT-sedimentation assays were 

performed. Adding MTs to CrIFT20/54 resulted in pelleting of IFT20/54 thus 

confirming the interaction between IFT20/54 and MTs (Fig. 4A). MTs are built from 

polymerized αβ-tubulin heterodimers. In the previous section we could show that the 

CH domain of IFT54 binds to tubulin, therefore it was tested if the CH domain is also 

sufficient to mediate the binding to MTs. Surprisingly, the CH domain of IFT54 alone 

is either not able to bind to MTs (C. reinhardtti, Fig. 4B) or binds MTs only very 

weakly (M. musculus, data not shown). But as already reported from Bhogaraju and 

colleagues the CH domain in IFT81 is sufficient to bind MTs but the positively 

charged N-terminus of IFT74 increases the binding affinity (Bhogaraju et al., 2013). 

A closer look at the unstructured region between the CH domain and the CC region of 

IFT54 revealed a slightly positive charge at pH 7.5 with an isoelectric point (pI) of 

9.32. Therefore, longer constructs of C. reinhardtii and M. musculus IFT54 were 

designed, including the CH domain followed by different lengths of the unstructured 

region (CrIFT541-187, CrIFT541-227, CrIFT541-346, MmIFT541-190, MmIFT541-257). The 

longest CrIFT54 constructs spans till the predicted start of the CC region. All longer 

constructs tested in the MT-sedimentation assay were able to bind to MTs (C. 

reinhardtti, data not shown; M. musculus, Fig. 4C). This finding suggests that parts of 

the positively charged unstructured region in IFT54 contribute to MT-binding. 

Taken together, IFT20/54 but not IFT38/57 is able to bind to tubulin/MTs. Within 

IFT54 itself, the CH domain together with the slightly positive charged patch adjacent 

to the CH domain mediates the binding to tubulin/MTs. 

 

Crystal structure of the IFT54 CH domain 

Crystallization trials were performed with the N-terminal CH domain of IFT54 

(CrIFT541-134, MmIFT541-133) to further elucidate the MT/tubulin-binding ability of 

IFT54. Crystals were obtained for the C. reinhardtii and M. musculus IFT54 CH 

domain (Fig. S2). Native crystals diffracted to 1.9Å (CrIFT541-134) and 1.6Å 

(MmIFT541-133). A SAD dataset of Selenomethionine substituted CrIFT541-134 crystals 

was also collected at the Se peak wavelength at the Swiss Light Source (Villigen, 
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Switzerland). The final model of CrIFT541-134 (R-free: 0.244 and R-work: 0.2087) 

was used as a molecular replacement model to solve the structure of MmIFT541-133 

(R-free: 0.2161 and R-work: 0.1905) (table S1, Fig. 5A and B). The solved structure 

shows a bundle of five α-helices adopting the fold of a CH domain. Overlying the C. 

reinhardtii and M. musculus IFT54 CH domain gave a very high accordance, as 

expected from the sequence alignments (Fig. 6A) with a root-mean-square deviation 

(RMSD) of 0.750 Å (665 to 665 atoms). In contrast, superimposing the CH domains 

of IFT54 and IFT81 revealed a slightly different arrangement (RMSD: 3.3) (Fig. 5C).  

 

A conserved patch of the IFT54 CH domain mediates the binding to tubulin 

Electrostatic surface potential analysis showed a positively charged patch at one side 

of the IFT54 CH domain, which is evolutionarily conserved (Fig. 6C and D). It is 

very likely that this patch mediates the binding to MTs/tubulin due to possible 

electrostatic interactions with the negatively charged E-hooks of tubulin. Although we 

could show that the globular domain of tubulin is sufficient to mediate the binding 

between tubulin and the CH domain of IFT54 (Fig. 3D), the electrostatic interactions 

could still contribute to the binding. In order to address if the positively charged patch 

of the IFT54 CH domain is indeed the site of interaction with tubulin, tubulin-binding 

mutants of the M. musculus IFT54 CH domain were designed (Fig. 6B). Five single 

mutations and one triple mutation were cloned, expressed in E.coli cells and purified 

(Fig. S3). Tubulin pull down experiments were carried out with all six mutants. 

Surprisingly, all five single mutants either located in the positively charged patch 

(R18E, K25E, K29E, R33E) or next to the patch (R94) were able to bind to tubulin. 

The triple mutant (K64E K66E K69E) located at the edge of the positively charged 

patch completely abolished tubulin binding (Fig. 6E and F). This demonstrates that 

positively charged surface residues of the IFT54 CH domain mediate tubulin binding. 

 

The CH domains of IFT38 and IFT57 directly interact with IFT80 and IFT172 

The IFT20/54 complex binds tubulin via the CH domain in IFT54 (see previous 

sections). But we could not detect any interaction between IFT38/57 and tubulin (Fig. 

3A). In order to verify if IFT20/54 and IFT38/57 interact with the ‘IFT-B core’, we 

performed in vitro pull down assays with recombinantly expressed proteins but could 

not observe any binding (data not shown). Therefore, we put our attention on the 

remaining IFT-B proteins.  
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Full length CrIFT172 was expressed in insect cells but it was not soluble during the 

purification procedure. Therefore, we focused on a truncated version of IFT172. 

IFT172∆C (IFT1721-968) and full length IFT80 were expressed in insect cells and 

purified (Fig S4). SEC analysis revealed that IFT172∆C and IFT80 do not form a 

complex (data not shown). In affinity pull down assays using a mixture of 

recombinantly purified IFT172∆C/IFT80 and the CH domains of IFT38 (CrIFT38 

1-133) and IFT57 (CrIFT571-234) we could observe that the CH domain in IFT38 

selectively pulls down IFT80 whereas the CH domain in IFT57 interacts with 

IFT172∆C. The CC regions of IFT38 (CrIFT38126-325) and IFT57 (CrIFT57301-469) do 

not contribute to complex formation. Taken together, the predicted CH domains in 

IFT38 and IFT57 lost their ability to bind tubulin but instead mediate the interaction 

to the IFT-B proteins IFT172 and IFT80.  

 

Discussion 
We could confirm the reported interaction between IFT20 and IFT54 (Follit et al., 

2009; Omori et al., 2008) with recombinantly purified proteins. An interaction 

between IFT20 and IFT57, as reported previously (Baker et al., 2003; Krock and 

Perkins, 2008) is rather unlikely taking the results presented here into account. 

Moreover, a strong direct interaction between IFT38 and IFT57 could be shown, 

pointing to IFT38 as a new member of the IFT-B complex.  

Furthermore we were able to confirm the tubulin/MT-binding ability of IFT54 

reported by Ling and colleagues (Ling and Goeddel, 2000). Structural determination 

of the predicted α-helical domain at the N-terminus of IFT54 clearly showed that the 

domain adopts a CH domain fold. We could obtain tubulin binding for the C. 

reinhardtti and M. musculus IFT54 CH domain as well as for the CrIFT20/54 full-

length complex but surprisingly not for the CrIFT38/57 complex, although the 

predicted α-helical domains in IFT38 and IFT57 are classified as CH domains (Schou 

et al., 2014; Taschner et al., 2012).  

Regarding the tubulin/MT binding of IFT54, we could clearly show that indeed the 

CH domain mediates the interaction to tubulin because a triple mutant (MmIFT54K64E 

K66E K69E) abolished tubulin binding. Even though both C. reinhardtti and M. musculus 

IFT54 CH domains are able to bind tubulin, differences occur in their binding ability 

to MTs. Whereas in M. musculus the CH domain of IFT54 is sufficient to obtain MT 
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binding, in C. reinhardtii the presence of the slightly positive patch adjacent to the 

CH domain clearly supports MT binding.  

For the binding of IFT81/74 to tubulin a Kd of 0.9 µM was measured (Bhogaraju et 

al., 2013). In this study we determined a slightly higher Kd (3 µM) for the binding of 

IFT20/54 to tubulin. An explanation for the differences in the obtained affinities of 

IFT81/74 and IFT20/54 to tubulin could be the model presented by Craft et al., (Craft 

et al., 2015). They proposed that the load of tubulin on IFT-trains increases in a 

growing cilium, therefore we hypothesize that the tubulin-binding sites of both 

IFT81/74 and IFT20/54 are occupied by tubulin. In contrast, in a steady-state cilium 

only the IFT81/74 module with a higher affinity to tubulin is loaded with tubulin.  

Taken together, we could confirm the prediction of additional tubulin-binding 

modules apart from IFT81/74 (Bhogaraju et al., 2013) within the IFT complex 

(Bhogaraju et al., 2014). The IFT20/54 complex serves as a second tubulin-binding 

module via its CH domain in IFT54. If further binding sites for tubulin/MTs exist in 

the IFT machinery still has to be elucidated. In contrast, the predicted CH domains in 

IFT38 and IFT57 lost their tubulin-binding ability and mediate the binding to the  

IFT-B proteins IFT80 and IFT172. 

 

Material and Methods  
Cloning, expression and purification of recombinant proteins from E.coli 

Truncations of CrIFT57, Cr/MmIFT54, CrIFT38 and Cr/MmIFT20 either containing 

the N-terminal CH domain or the C-terminal CC region were cloned into bacterial 

pEC vectors with cleavable GST- or hexahistidine (HIS)-tags as described previously 

(Taschner et al., 2014) and expressed in the E.coli BL21 (DE3) Gold pLysS strain. 

E.coli cells were lysed by sonication in 50 mM Tris*HCL pH 7.5, 150 mM NaCl,  

5 mM β-mercaptoethanol and 10% glycerol. The lysates were cleared by 

centrifugation (Beckman Coulter® Avanti® J-26XPI, 25000 rpm) and passed over a 

Ni2+-NTA column (affinity chromatography, GE Healthcare). After affinity-tag 

cleavage using tobacco etch virus (TEV) protease, anion exchange chromatography 

(MonoQ, GE healthcare) and size exclusion chromatography (SEC) (HiLoad75, GE 

healthcare) in 10 mM HEPES pH 7.5, 150 mM NaCl and 1 mM DTT was performed. 

All samples were analyzed using SDS-PAGE. 
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Cloning, expression and purification of recombinant proteins from insect cells 

For heterodimeric CrIFT54/20 and CrIFT38/57 complex purification as well as 

CrIFT172∆C and CrIFT80, the proteins were cloned either untagged or with TEV-

cleavable HIS-tag into pFL vectors. After producing viral particles as previously 

described (Taschner et al., 2014), the proteins/protein complexes were expressed by 

infection of HighFive insect cells (Invitrogen). The cells were homogenized using a 

Dounce Homogenizer in a 20 mM HEPES pH 7.5 buffer containing 250 mM sucrose, 

5 mM β-mercaptoethanol, 10 mM KCl, 1.5 mM MgCl2 and protease inhibitor cocktail 

(Roche) and then purified in large-scale as described above.  

 

Affinity pull down experiments 

Tubulin pull down experiments were carried out using a final concentration of 4 µM 

tubulin (Cytoskeleton #TL238) mixed with 7 µM HIS-tagged protein/protein complex 

in a total volume of 100 µL 1xBRB80 (80 mM PIPES-KOH, 1 mM MgCl2, 1 mM 

EGTA, pH 6.8) buffer supplemented with 20 mM imidazole. After 30 min of pre-

incubation, the protein solution was incubated with BSA-blocked Ni2+-NTA beads. 

After extensive washing the proteins were eluted from the beads using 1xBRB80 

buffer supplemented with 500 mM Imidazole. Pull downs were analyzed using SDS 

PAGE followed by Western Blot. The nitrocellulose membrane was pre-blocked for 

30 min in 5% milk/PBST before the 1st antibody (anti-alpha tubulin (mouse), Sigma-

Aldrich T9026) was added for at least one hour. After three washes in PBST the 2nd 

antibody (anti-mouse IgG-HRP (goat), Enzo BML-SA204-0100) was added to the 

membrane for 45 min, followed by three washes in PBST. The Amersham™ ECL™ 

Prime Western Blotting Detection Reagent from GE Healthcare and an ImageQuant 

LAS4000 device (GE Healthcare) was used to detect the signal. 

Pull down experiments to determine the interaction between different proteins or 

complexes, were also performed. Therefore 60 µg of purified GST- or HIS-tagged 

protein/protein complex was mixed with an excess of purified HIS-tagged or 

untagged protein in a total volume of 150 µL buffer (10 mM HEPES pH 7.5, 100 mM 

NaCl, 10% glycerol, 1 mM DTT, 10 mM Imidazole), pre-incubated for 30 min at 

4°C, and then incubated on BSA-blocked GSH- or Ni2+-NTA-beads. Extensively 

washing with buffer was followed by an elution step using the same buffer 

85



supplemented either with 30 mM reduced glutathione (GSH-beads) or with 500 mM 

Imidazole (Ni2+-NTA beads). All pull downs were analyzed using SDS-PAGE. 

 

Analytical ultracentrifugation (AUC) 

Sedimentation velocity experiments were performed on an Optima XL-I analytical 

ultracentrifuge (Beckman Inc., Palo Alto, Ca, U.S.A.) using an An-60 Ti rotor and 

double-sector epon centerpieces. The CrIFT38/57 complex (0.56 mg/mL) was in a  

10 mM HEPES (pH 7.5) buffer containing 100 mM NaCl, 10% glycerol and 2 mM 

TCep. Buffer density and viscosity was measured using a DMA 5000 densitometer 

and an AMVn viscosimeter, respectively (both Anton Paar, Graz, Austria). Protein 

concentration distribution was monitored at 280 nm, at 54.000 rpm and 20°C. Time-

derivative analysis was computed using the SEDFIT software package, version 12.1b 

(Schuck, 2000), resulting in a c(s) distribution and an estimate for the molecular 

weight Mf (from the sedimentation coefficient and the diffusion coefficient, as 

inferred from the broadening of the sedimentation boundary, assuming all observed 

species share the same frictional coefficient f/f0).  

 

Microscale thermophoresis (MST) 

The lysine side chains of bovine tubulin (Cytoskeleton #TL238) were fluorescently 

labeled using the Cy3 protein labeling kit from Jena Bioscience according to their 

protocol. 100 nM of fluorescently labeled tubulin were then titrated with purified 

CrIFT20/54 (200 µM) in a total volume of 20 µL to carry out 16 data points. The 

measurements were recorded on a NanoTemper Monolith NT.115 device 

(NanoTemper Technologies GmbH) using the following settings: LED power 65% 

(green), MST power 50%, Laser on 40sec, Laser off 5sec. The raw data were then 

analyzed using the software from NanoTemper to visualize the binding curves and 

Prism (GraphPad Software) to calculate the Kds. 

 

Subtilisin treatment of tubulin 

Bovine tubulin (Cytoskeleton #TL238) was incubated at 30°C with 1.25 µM of the 

protease subtilisin. Incubation time was either 20 min to cut off the C-terminal tail of 

β-tubulin or 130 min to remove also the C-terminal tail of α-tubulin. 1 mM PMSF 

was added to stop the proteolysis. After ultracentrifugation in a Beckmann TLA100 

rotor (68000 rpm, 30min, 35°C) the pellet was resuspended in 20 µL of 1xBRB80. 
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Subtilisin-treated tubulin was purified using size exclusion chromatography (SEC) 

(Superdex200, GE healthcare) (Bhogaraju et al., 2013) and then used for tubulin pull 

downs. 

 

MT-cosedimentation assay 

Lyophylized bovine tubulin (Cytoskeleton #TL238) was solved in 1xBRB80 buffer 

supplemented with 3 mM GTP according to the manufactures protocol and incubated 

for 45min at 37°C. 50 µM Taxole was added to stabilize the polymerization of 

tubulin. After a second incubation for 40min at 37°C, ultracentrifugation in a 

Beckmann TLA100 rotor (68000 rpm, 30min, 37°C) was performed and the pelleted 

MTs resuspended in 20 µL of 1xBRB80 supplemented with 20 µM Taxole.  

2 µM of the polymerized MTs were mixed with 2 µM of protein/protein complex in a 

total volume of 50 µL 1xBRB80 buffer containing 5 mM DTT and 20 µM Taxole. 

After 20 min incubation at room temperature the reaction mix was pipetted on 100 µL 

Cushion buffer (1xBRB80, 50% glycerol, 20 µM Taxole). After ultracentrifugation in 

a Beckmann TLA100 rotor (48000 rpm, 20min, 25°C), a supernatant sample was 

taken, the pellet extensively washed with 1xBRB80, 20 µM Taxole buffer and then 

resuspended in 2x SDS loading dye. Supernatant and pellet samples were then 

analyzed by SDS-PAGE. Western Blot analysis was carried out as described above. 

The 1st antibody (anti-HIS-tag (Novagen 70796-3)) was used to detect the HIS-tagged 

protein/protein complex and as 2nd antibody anti-mouse IgG-HRP (goat) (Enzo BML-

SA204-0100).  

 

Crystallization of the IFT54 CH-domain 

The CH domains of C. reinhardtii and M. musculus IFT54 were expressed and 

purified in large-scale amounts as described above. Furthermore, CrIFT54CH was 

also expressed in E.coli BL21 (DE3) Gold pLysS strain growing in medium 

containing Selenomethionine (SeMet) and purified, to obtain the phases needed to 

solve the high-resolution structure. All crystals appeared using the sitting drop vapour 

diffusion method after mixing the protein solution at a ratio of 1:1 with the reservoir 

solution. CrIFT54CH (~28 mg/mL) crystals were obtained at 18°C in 50 mM 

Tris*HCL pH 8.3 supplemented with 2% MPD, 80 mM ammonium sulfate, 30% 

PEG5000 and 5% glycerol. CrIFT54CH SeMet (~24 mg/mL) crystals grew at 18°C in 

50 mM Tris*HCL pH 8.3, 80 mM ammonium sulfate, 2% MPD, 26% PEG5000 and 
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7% glycerol. Crystals of MmIFT54CH (~36 mg/mL) were obtained at 4°C in a 

solution containing 4% MPD, 0.2 M ammonium acetate, 32% PEG3350 and 50 mM 

MES pH 5.8.  

 

Data collection and structure determination 

Native CrIFT54CH crystals diffracted X-rays to 1.9Å, MmIFT54CH crystals to 1.6Å 

and CrIFT54CH SeMet crystals to 2Å at the Swiss Light Source (Villigen, 

Switzerland). The final model of CrIFT54CH was taken as a molecular replacement 

model to solve the structure of MmIFT54CH. XDS was used to process the data, 

model building and refinement was performed with COOT and PHENIX.  
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Fig. 1: IFT20 and IFT54 form a dimeric complex. (A) Predicted domain 
architecture of C. reinhardtii IFT20, IFT38, IFT54 and IFT57. (B) Size exclusion 
chromatography (SEC) profile of a CrIFT20/54 purification and corresponding SDS-
PAGE of the elution peak showing that both proteins elute in one peak, pointing to 
the formation of a dimeric complex. (C) SEC profiles of MmIFT20, MmIFT54CC and 
MmIFT20/54CC showing that the MmIFT20/54CC peak is shifted to higher MW. 
This demonstrates that the coiled coil (CC) region of MmIFT54 is sufficient to 
interact with MmIFT20. (D) The predicted α -helical Calponin Homology (CH) 
domain at the N-terminus of MmIFT54 is not necessary for complex formation with 
MmIFT20, indicated by two distinct peaks in the SEC elution profile. (E) Ni2+-NTA 
and glutathione (GSH) affinity pull downs using the CC regions of CrIFT20, CrIFT54 
and CrIFT57. The CC regions of CrIFT20 and CrIFT54 form a complex that cannot 
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pull downed by the CC region of CrIFT57, indicating that IFT20, IFT54 and IFT57 
do not form a trimeric complex.  
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Fig. 2: IFT38 directly interacts with IFT57. (A) CrIFT38 and CrIFT57 elute in one 
peak in SEC, pointing to a direct interaction of the two proteins. The SDS-PAGE of 
the peak fractions indicates the formation of an IFT38/57 complex in stoichiometric 
amounts. (B) Analytical ultracentrifugation (AUC) of the dimeric complex HIS-
CrIFT38/HIS-CrIFT57. To obtain a better clarity only every 5th scan is depicted. The 
calculated MW of CrIFT38/57 is 93 kDa. In AUC, only one main peak was 
determined (MWAUC = 81 kDa), pointing to an IFT38/57 complex.  
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Fig. 3: IFT20/54 but not IFT38/57 binds tubulin. (A) Ni2+-NTA affinity pull down 
using bovine αβ-tubulin and both dimers CrIFT20/54 and CrIFT38/57. Only the 
IFT20/54 complex pulls down tubulin. (B) Quantification of the binding affinity 
between bovine αβ-tubulin and untagged CrIFT20/54 using microscale 
thermophoresis (MST) revealed a Kd of 3 µM. The curve was calculated for five 
independent measurements. The error bars represent the mean ± SD. (C) Glutathione 
(GSH) affinity pull down experiments using bovine αβ-tubulin and glutathione S-
transferase (GST)-Mm/CrIFT54 CH domain. The GST-tag does not pull down 
tubulin. The IFT54 CH domain is sufficient to pull down tubulin. (D) Bovine αβ-
tubulin was treated with the protease subtilisin to remove the E-hooks of β-tubulin (20 
min) or α - and β -tubulin (130 min). GSH affinity pull downs of subtilisin-treated 
tubulin and MmIFT54CH indicate that the CH domain in IFT54 binds to the globular 
domain of tubulin.  
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Fig. 4: IFT20/54 also binds to MTs. (A) MT-cosedimentation assay, using 
polymerized bovine αβ-tubulin and CrIFT20/54 Adding MTs to CrIFT20/54 resulted 
in an increased amount of pelleted CrIFT20/54. (B) The CH domain of CrIFT54 
alone does not bind to MTs in MT-cosedimentation assays. (C) MT-cosedimentation 
assays of N-terminal constructs of GST-MmIFT54 (comprising the CH domain and 
parts of the positively charged unstructured middle region) and MTs revealed 
pelleting of both IFT54 constructs. The GST-tag does not pellet with MTs. Additional 
residues adjacent to the CH domain seem to contribute to MT binding.  
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Fig. 5: High-resolution structure of the IFT54 CH domain. (A/B) Cartoon 
representation of the IFT54 CH domain of C. reinhardtii (residues 1-134) in cyan (A) 
and M. musculus (residues 1-133) in purple (B). (C) Superimposition of the CH 
domains in Cr/MmIFT54 and CrIFT81 (pdb: 4VLP) indicate slight differences for the 
CH domain in IFT81 and IFT54. 
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Fig. 6: The CH domain in IFT54 is a tubulin-binding module. (A) Sequence 
alignment of the N-terminal CH domain of IFT54 in different species. The secondary 
structure for IFT54 is displayed above the sequence. The positively charged arginines 
and lysines that are highly conserved and could play a role in tubulin binding are 
marked in cyan. Mus musculus (Mm), Danio rerio (Dr), Chlamydomonas reinhardtii 
(Cr), Drosophila melanogaster (Dm), Caenorhabditis elegans (Ce), Trypanosoma 
bruceii (Tb) (B) Cartoon representation of the crystal structure of MmIFT54 CH 
domain. The residues probably implicated in tubulin binding are presented as blue 
sticks (single mutants). The residues of the designed MmIFT54 triple mutant are 
indicated with a red circle. (C) Electrostatic surface potential of IFT54 indicates a 
positively charged patch. The amino acids mutated in the triple mutant are lying at the 
edge of this patch (red circle). (D) The conversation scores demonstrates that the 
positively charged patch at the surface of IFT54 is highly conserved throughout 
different species, as well as the position of the mutated residues in the triple mutant 
(red circle). (E/F) GSH affinity pull down experiments using bovine αβ-tubulin and 
MmIFT54. Tubulin alone does not bind to GSH beads. Wild type MmIFT54 as well as 
the single mutants of MmIFT54 (R18E, K25E, K29E, R33E, R94E) pull down 
tubulin. In contrast, the triple mutant of MmIFT54 (K64E K66E K69E) fully 
abolishes tubulin binding.  
  

99



 
 
Fig. 7: The CH domains in IFT38 and IFT57 directly interact with IFT172 and 
IFT80 (A) GSH affinity pull down assays using a mixture of CrIFT172∆C/IFT80 as 
input and either CC- or CH-constructs of CrIFT38 and CrIFT57. The CH domain of 
IFT57 specifically pulls down IFT172∆C, whereas the CH domain of IFT38 binds to 
IFT80. None of the CC regions of IFT38 or IFT57 is able to pull down IFT172∆C or 
IFT80. (B) Preliminary interaction model of the interaction between the four IFT-B 
proteins IFT172, IFT80, IFT57 and IFT38. 
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Supplemental information 

 
Table S1: Summary of data collection and refinement statistics 

       Statistics for the highest-resolution shell are shown in parentheses. 
 
  

 CrIFT54CH 
SeMet 

CrIFT54CH 
native 

MmIFT54CH 
native 

Data collection and scaling anomalous signal  
from Se to ~2Å 

  

    Wavelength (Å) 0.979140 1.0 1.0 

    Resolution range (Å) 37.2 - 1.60 
(1.66 - 1.60) 

36.365 - 1.88 
(1.99 - 1.88) 

36.47 - 1.59 
(1.69 - 1.59) 

    Space group F222 F222 P1 

    Unit cell (Å) a = 57.83, b = 145.90, 
c = 148.80,  

α = β = γ = 90.0 

a = 57.66, b = 145.82, 
c = 147.87,  

α = β = γ = 90.0 

a = 38.00 , b =  59.80,    
c =  61.50, 

α =  108.50, β =  
105.40, γ =  90.30 

    Total reflections 556754 (86179) 117060 (14884) 176087 (26494) 

    Unique reflections 80222 (12779) 25144 (3712) 60996 (9267) 

    Multiplicity 6.9 (6.7) 4.7 (4.0) 2.9 (2.9) 

    Completeness (%) 99.7 (98.4) 98.2 (90.9) 93.9 (88.4) 

    Mean I/sigma(I) 15.14 (2.53) 11.16 (1.73) 10.45 (1.59) 

    R-merge  0.113 (0.563) 0.173 (0.937) 0.146 (0.969) 

    CC½ N/A 0.997 (0.683) 0.998 (0.552) 

Refinement    

    Number of reflections 41577 25133 60975 

    Protein residues 265 265 528 

    Number of atoms 4613 2231 4515 

        Protein (non solvent) 2079 2054 4084 

        Water (solvent) 376 177 431 

    R-work 0.1844 (0.2334) 0.2087 (0.2825) 0.1905 (0.2854) 

    R-free 0.2137 (0.2578) 0.2440 (0.3152) 0.2161 (0.3239) 

    Ramachandran favoured (%)  99.63 98.88 

    Ramachandran outliers (%)  0.0  0.0 

    RMS bonds (Å) 0.010 0.011 0.007 

    RMS angles (Å) 1.187 1.260 1.005 

    Average B-factors 15.31 23.45 19.49 
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Fig S1: Complex formation between IFT20 and IFT54 is mediated via the CC 
domains. (A) SEC profiles of the CrIFT20CC, CrIFT54CC and CrIFT20CC/54CC 
elution peaks showing that the CrIFT20CC/54CC peak is shifted to higher MW. This 
demonstrates that CC regions of CrIFT20 and CrIFT54 are sufficient for complex 
formation. (B) The predicted N-terminal α -helical CH domain of CrIFT54 is not 
necessary for complex formation with CrIFT20, indicated by two peaks in the SEC 
profile and the corresponding SDS-PAGE. 
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Fig. S2: Purification of the CH domain in IFT54. (A/B/C) SEC profiles and 
corresponding SDS-PAGE of the elution peaks are shown for CrIFT54CH (residues 
1-134) (A), CrIFT54CH (residues 1-134) (all methionines substituted by 
selenomethionines (SeMet)) (B) and MmIFT54CH (residues 1-133) (C).  
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Fig. S3: Purification of MmIFT54 CH domain wild type and triple mutant. 
Comparison of the SEC profiles of MmIFT54 CH domain wild type (MWtheoretical = 
15.1 kDa) and triple mutant (K64E K66E K69E) (MWtheoretical = 15.1 kDa) 
demonstrates that the triple mutant elutes similar to the wild type. This indicates that 
the triple mutant is properly formed.  
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Fig. S4: Purification of IFT80 and IFT172∆C. (A/B) SEC profiles and 
corresponding SDS-PAGE of the elution peaks are shown for CrIFT80 (A) and 
CrIFT172∆C (residues 1-968) (B).  
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2.3) Chapter III 

 

 

 

‘Hypomorphic mutations in TRAF3IP1/IFT54 reveal a new 

role for IFT proteins in microtubule stabilization’ 
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Hypomorphic mutations in TRAF3IP1/IFT54  reveal a new role for IFT proteins in 

microtubule stabilization  

Albane A. Bizet1,2, Anita Becker-Heck3, Rebecca Ryan1,2, Kristina Weber4, Emilie Filhol1,2, 

Pauline Krug1,2, Jan Halbritter5, Marion Delous1,2, Bolan Linghu6, Edward J. Oakeley3, 
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Introductory paragraph: 

Ciliopathies are a large group of clinically and genetically heterogeneous disorders caused by 

defects in primary cilia1. We identified mutations in TRAF3IP1 (TNF Receptor-Associated 

Factor Interacting Protein 1) in 8 patients from 5 families with nephrophthisis (NPH) and 

retinal degeneration, the two most common manifestations of ciliopathies. TRAF3IP1 encodes 

IFT54, a subunit of the IFT-B complex required for ciliogenesis. The identified hypomorphic 

mutations result in mild ciliary defects in patients but also reveal an unexpected role of IFT54 

as a negative regulator of microtubule stability via MAP4 (Microtubule-Associated-Protein 

4). Microtubule defects are associated with altered epithelialization/polarity in renal cells and 

with pronephric cysts and microphthalmia in zebrafish embryos. Our findings highlight the 

regulation of cytoplasmic microtubule dynamics as a role of the IFT54 protein, beyond the 

cilium, contributing to the development of NPH-related ciliopathies.  

 
Main text :  

NPH is an autosomal recessive renal ciliopathy characterized by massive interstitial 

fibrosis, tubular basement membrane thickening and cyst formation, leading to end-stage 

renal disease (ESRD) during childhood2. To date, NPH-causing mutations have been 

identified in more than 20 genes (NPHP1-19)3-5, accounting for about 50% of all cases 

presenting with NPH6.   

Linkage analysis combined with whole exome sequencing in parallel to targeted  

exome sequencing ("ciliome")3,7,8 conducted in 1,427 individuals with NPH revealed 

mutations in TRAF3IP1 in 8 individuals from 5 unrelated families (Table 1). Three families 

carried three different homozygous missense mutations, whereas in one family, the affected 

individual NPH683-21 was compound heterozygous for a missense and a stop codon mutation 

(Table 1 and Supplementary Fig. 1 a-c). Lastly, we identified a homozygous mutation in 

individual NPH1110-22, that creates a new donor splice site after exon 13, leading to a 

premature stop codon with consecutively increased mRNA decay (Supplementary Fig. 1 d-
g). All of these patients presented with tubulo-interstitial nephritis characteristic of NPH 

(leading to ESRD between 3 and 16 years). Extra-renal manifestations included mild to severe 

retinitis pigmentosa (RP) consistent with Senior-Løken Syndrome (Table 1, Fig. 1a-d and 
Supplementary Fig. 2).  In addition, four patients presented with liver defects, six with 

skeletal anomalies (polydactyly, microdactyly, pelvic defects) and four with obesity (Table 1 
and Fig. 1e), phenotypes also commonly associated with mutations in IFT genes8-10. We thus 

propose NPHP20 as an alias for TRAF3IP1. 
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The IFT complex is required for ciliogenesis and is composed of two complexes, IFT-

A and IFT-B, involved in retrograde and anterograde transport respectively11. TRAF3IP1 

encodes IFT54, which forms a peripheral IFT-B sub-complex with IFT2012 and is important 

for the entry of assembled IFT particles and their cargos into cilia13. Inactivation of Traf3ip1 

is embryonic lethal and causes characteristic ciliopathies phenotypes, including neural 

developmental defects, polydactyly and microphthalmia in mice14, and curved body axis, 

pronephric cysts and retinal degeneration in the elipsa zebrafish mutant15,16. Although the 

organ involvement seen in affected individuals is consistent with loss-of-function animal 

models, the milder phenotypes observed suggest the identified mutations are hypomorphic. 

IFT54 binds to IFT20 via its C-terminal coiled-coil (CC) domain17 (Fig. 1f). In 

contrast to the two truncating alleles, none of the missense mutations, including the C-

terminal p.M520R, had any impact on IFT20 binding, indicating that the IFT54-IFT20 IFTB 

subcomplex is preserved in most patients (Supplementary Fig. 3). Interestingly, the N-

terminal p.I17S and p.V125M/A substitutions are predicted to disrupt two hydrophobic 

pockets of the N-terminal calponin-homology (CH) domain of IFT54, which was previously 

known to be involved in tubulin binding18 (Fig. 1g). Consistently, introduction of the p.I17S 

or p.V125A/M mutations in the isolated CH-domain (1-133), generated insoluble (likely 

unfolded) recombinant proteins (Supplementary Fig. 4a-d). Moreover, circular dichroism 

and calorimetry experiments, using full-length IFT54 in complex with IFT20 

(Supplementary Fig. 4e), indicated that the CH domain of the IFT54 mutants is not 

accurately folded at 37°C (Fig. 1h). Altogether, these data indicate that the N-terminal 

mutations likely affect tubulin binding and stability of IFT54 in vivo.  

To confirm the pathogenicity of the identified TRAF3IP1 mutations, we injected WT 

and mutated RNA in both elipsa mutant and traf3ip1 morphant zebrafish embryos. While 

injection of WT RNA resulted in a partial rescue of the mutant phenotypes, injection of 

mutated RNA constructs mimicking the human mutations could not rescue the curved body 

axis, glomerular cysts, dilated pronephric tubules, oval eye shape and loss of photoreceptors, 

and even led to an exacerbation of the eye phenotype (Fig. 2a-c' and Supplementary Fig. 
5a-c). This further proves that mutations in TRAF3IP1 are causal for NPH and retinal 

degeneration.  

IFT54 is an anterograde IFT that localizes at the base (transition zone and basal body) 

and at the tip of cilia in control cells (fibroblasts and IMCD3 cells, Fig. 3a-b' and 
Supplementary Fig. 6a-c). Remarkably, IFT54 was absent from the transition zone and from 

the tip of cilia in fibroblasts from affected individuals as well as in mIMCD3 knock-down 
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(KD) cells expressing IFT54 mutants (Fig. 3a-b', Supplementary Figs. 6c and 7a), 

indicating that the mutations impair entry of IFT54 into the ciliary compartment. Therefore, 

we assessed the effects of TRAF3IP1 mutations on ciliogenesis in patients' fibroblasts. While 

there was no difference in the percentage of ciliated cells, cilia were significantly longer (Fig. 
3c-c"). Consistently, ciliogenesis defects in Traf3ip1-depleted zebrafish embryos and 

mIMCD3-KD cells were partially rescued by re-expression of IFT54-mutants, except 

p.R155* (Supplementary Figs. 5d and 6d). This suggests that the observed phenotype in 

patients as well as in zebrafish may not be caused by ciliogenesis defects per se.  

The cilia formed in patients' fibroblasts presented no obvious change in the 

localization of key ciliary proteins (IFT46, IFT140, FBF1, Inversin, Anks6 and Smoothened; 

Supplementary Fig. 7b-g), suggesting no general defect in ciliary composition and 

trafficking. However, adenylyl cyclase III (ACIII) was strongly decreased (Fig. 3d-d'). 
Consequently, translocation of PKA catalytic subunits from the cilia base to the cytoplasm 

was impaired upon forskolin treatment, an AC activator (Fig. 3e-e'). Our results therefore link 

IFT54 to regulation of the cAMP/PKA pathway and provide a rationale for the obesity 

observed in these patients, as previously reported in ACIII deficient mice19. 

The mild cilia structural defects associated with hypomorphic mutations of TRAF3IP1 

seem insufficient to account for the large phenotypic spectrum of the patients, suggesting 

additional function(s) for IFT54. Indeed, among several previously identified candidate 

partners of IFT5418, we found that the interaction of IFT54 with MAP4 was severely impaired 

by the N-terminal mutations p.I17S, p.V125A and p.V125M (Fig. 4a). MAP4 is the major 

MAP in non-neuronal cells20 that stabilizes microtubules21 and is a negative regulator of 

ciliary length22. Ciliary MAP4 staining was drastically reduced in patients�’ fibroblasts (Fig. 
4b-b'), which might explain the observed increased cilia length in mutant fibroblasts and 

suggests that MAP4 may be an IFT54 cargo for ciliary import. 

In addition to its ciliary localization, IFT54 can be found along cytoplasmic 

microtubules23,24, and N-terminal mutations effectively impaired this localization 

(Supplementary Fig. 8). Unexpectedly, MAP4 staining was strongly increased along 

cytoplasmic microtubules in mutant cells, which correlated with enhanced protein expression, 

but without changes in mRNA levels (Fig. 4c-c' and Supplementary Fig. 9a-d). These 

results suggest that IFT54 negatively regulates MAP4 expression and its recruitment to 

microtubules, which in turn is expected to result in their stabilization21. Consistently, 

acetylation of α-tubulin, a modification occurring on stable microtubules25, was enhanced in 

mutant cells as well as in patients�’ kidney tubules (Fig. 4d and Supplementary Fig. 9d-e), a 
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yet unexplained observation in several ciliopathy models14,26,27. The increased stability of 

microtubules was confirmed by the presence of abnormally cold-resistant MAP4-positive 

microtubules in mutant cells (Fig. 4e and Supplementary Fig. 9f). In addition, EB1 staining 

at the plus-tips of microtubules28 was drastically reduced (Fig. 4f) indicating a less dynamic 

microtubule network. This result was confirmed in vivo using EB3-GFP as a reporter of plus-

tip dynamics, as elipsa mutant embryos showed slower rates of microtubule polymerization 

compared to heterozygous control siblings (Fig. 4g-g'). Altogether, these data emphasize a 

novel role for IFT54 as a negative regulator of microtubule stability through MAP4. 

Remarkably, MAP4 loss-of-function mutations have been reported in patients with Seckel 

syndrome 29, featuring microcephaly and dwarfism. We demonstrate here that TRAF3IP1 

hypomorphic mutations conversely cause increased expression of MAP4 and result in NPH, 

retinal degeneration and hepatic fibrosis. Therefore, fine regulation of MAP4 appears to be 

essential for proper tissue homeostasis.  

 Microtubule network architecture is crucial for epithelial integrity28,30, hence we 

investigated the impact of TRAF3IP1 mutations on epithelialization. The microtubule network 

appeared disorganized in polarized Traf3ip1-KD mIMCD3 cells, and was restored by re-

expression of IFT54-WT but not by IFT54-mutants (Supplementary Fig. 10a). The 

reformation of tight junctions and cell polarity were assessed following Ca2+ switch and trans-

epithelial resistance (TER) measurement (Fig. 5a-d). Traf3ip1-KD cells presented a 

decreased TER and reduced E-cadherin and β-catenin localization at cell junctions, both of 

which were partially rescued by re-expression of WT and the p.V125M mutant but not by the 

p.R155* or p.M520R mutants (Fig. 5a-b and Supplementary Fig. 10b). These results 

suggest that some IFT54 mutant proteins may perturb the establishment of cell junction 

during epithelialization, as we previously reported for NPHP1 and NPHP431. In addition, 

Traf3ip1-KD cells and cells re-expressing IFT54-mutant proteins appeared flatter than 

controls and displayed decreased expression of the apical marker Gp135 (Fig. 5a, c-d). In 3D 

culture, mIMCD3 control cells formed single lumen spheres, whereas Traf3ip1-KD cells 

formed abnormal structures with small lumens filled with dividing cells and/or surrounding 

misarranged nuclei, with dramatically altered expression of the tight junction component ZO1 

(Fig. 5e-e'). Normal lumen formation and ZO1 localization were restored by re-expression of 

IFT54-WT but not by IFT54 mutant proteins (Fig. 5e-e'). These results demonstrate that in 

addition to its known role in ciliogenesis, IFT54 plays a key function in the early steps of 

epithelial morphogenesis, a process independent of cilia32. 
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In summary, we identified mutations of TRAF3IP1 as a cause of NPH associated with 

retinal degeneration. Detailed analyses of TRAF3IP1 pathogenic mutations have unveiled a 

cilia-independent role for this IFT protein in cytoplasmic microtubule stabilization. In 

addition to IFT54, other NPHPs and IFT proteins have been reported to localize along the 

cytoplasmic microtubule network27,33,34, suggesting a shared extra-ciliary function. Here we 

show that IFT54 acts as a negative regulator of MAP4, likely by preventing its association 

with microtubules either by directly competing with MAP4 and/or by inducing MAP4 

phosphorylation by PKA35 or other MAP4 regulating kinases21. Mutations of IFT54 in turn 

result in the stabilization of MAP4 on microtubules and therefore increased MAP4 

expression. We propose that altered cytoplasmic microtubule dynamics and cell polarity 

defects constitute an understudied disease mechanism, which may contribute significantly to 

the tubulo-interstitial lesions observed in NPH, retinal degeneration or hepatic fibrosis, all 

common progressive features of "ciliopathies".  
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Figure legends  
Figure 1: Identification of TRAF3IP1 mutations in patients with nephronophthisis and 
retinal degeneration. Periodic acid schiff (a), trichrome (b) and silver methenamine (c) 

staining on kidney sections from individual NPH302-23 (a-b) and NPH1110-22 (c) revealed 

massive interstitial fibrosis (arrow-heads) with cell infiltration, atrophic tubules with 

thickening of the basement membrane (arrows), as well as dilatation of proximal tubules 

(asterisks), characteristic of NPH. (d). Fundus photograph of individual NPH1110-22 showed 

characteristic aspects of RP, with pigmentary reorganization, papillary pallor and thin retinal 

vessels. (e). Left hand X-ray of individual NPH1110-22 showing short fingers 

(brachydactyly).(f) Organization of exons of TRAF3IP1 cDNA (top panel) and functional 

domains of IFT54 protein with an N-terminal calponin homology (CH) domain involved in 

tubulin binding, an Arginine-rich motif and a C-terminal coiled-coil domain involved in 

IFT20 binding. Black bars indicate positions of the identified mutations. Family numbers are 

underlined. H, homozygous; h, heterozygous. (g) Crystal structure of the CH domain of 

MmIFT54 showing that the I17 and V125 residues locate in conserved hydrophobic pockets 

(dotted line circles). The mutant residues S17 and M125 were introduced (red) to show their 

effects on these hydrophobic pockets. (h) Secondary structure determination and thermal 

unfolding using circular dichroism (CD) spectroscopy for WT as well as p.V126A and 

p.V126M mutants of CrIFT54 in complex with CrIFT20.  

 

Figure 2: Patient mutations do not rescue the ciliopathy-associated phenotypes 
characteristic of elipsa mutants. (a)  Lateral views of zebrafish larvae at 72 hpf of WT 

control, elipsa uninjected larvae and elipsa larvae injected with WT or mutant RNA 

constructs (p.R154* and p.V459R correspond to the human p.R155* and p.M520R mutations, 

respectively). Approximately 20% of V125M-injected elipsa larvae displayed an alternative 

stunted phenotype with pronephric cysts and eye defects, but lacking the characteristic body 

axis curvature. (a’) Phenotype distribution as determined by quantification of angle of body 

axis curvature (n  30, 4 independent experiments). Scale bar, 0.5 mm. (b) Eye phenotypes (5 

dpf) of WT control, elipsa uninjected larvae and elipsa larvae injected with WT/mutant RNA 

constructs, lateral views, anterior to the left. Scale bar, 0.1 mm. (b’) Surface area of the retina 

(mean +/- SD of n=10, 2 independent experiments, *P= 0.05, **P < 0.01, and *** P< 0.001, 

Dunnett's multiple-comparison test). (c) H&E staining of histological cross sections of elipsa 

mutant larvae injected with WT or mutant RNA constructs at 72 hpf. Gross cystic dilations of 

the glomerular region extending to the pronephric tubule are indicated by asterisks. (c’) 
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Percentage of pronephric cysts in elipsa mutant larvae as well as rescued larvae (n  30, 4 

independent experiments). 

 

Figure 3: Mutations in TRAF3IP1 impair IFT54 ciliary trafficking and cilia-mediated 
signaling. (a) Ciliary distribution of IFT54 in serum-starved control and patients' fibroblasts 

stained for IFT54 (red), the axonemal marker acetylated α-tubulin (green) and the basal body 

marker γ-tubulin (blue). (a’) Percentage of cilia with IFT54 at the distal tip of cilia (arrows in 

(a), mean +/- SEM of n=4 experiments, ***P<0.001, Bonferronni's multiple-comparison test). 

(b) Distribution of IFT54 at the basal body in ciliated fibroblasts stained for IFT54 (red) and 

for γ-tubulin (blue) and centrin (green), markers of proximal and distal parts of centrioles, 

respectively. A schematic representation of the orientation of the two centrioles, with the 

localization of the distal (DAP) and subdistal (sDAP) appendages shown. Scale bars, 1µm. 

(b') Intensity of IFT54 staining at the transition zone (TZ, mean +/- SEM of n=3 experiments, 

***P<0.001, Dunn's post-hoc test). (c) Ciliogenesis was analyzed by immunofluorescence in 

fibroblasts stained for ARL13B (cilia, green). Scale bar, 10µm. (c') Percentage of ciliated 

cells and (c'') cilia length (n>200 cells from 4 independent experiments; ns: not-significant, 

***P<0.001, Dunn's post-hoc test). (d) ACIII (red), acetylated α-tubulin (green) and γ-tubulin 

(blue) stainings in serum-starved fibroblasts. Scale bar, 1µm. (d') Intensity of ACIII within 

cilia (mean +/- SEM of n 3 experiments, *P<0.05, Dunn's post-hoc test). (e) Fibroblasts were 

treated with 1µM forskolin, an activator of ACs, for 1hr and stained for ARL13B (green) and 

PKAc (red). Scale bar, 2µm. (e') Percentage of cells with PKAc at the cilia base after 

forskolin treatment (mean +/- SEM of n=3 experiments, *** P<0.001, Dunnett's post-hoc 

test).  

 
Figure 4: Mutations of TRAF3IP1 lead to impaired interaction and increased 
recruitment of MAP4 to cytoplasmic microtubules causing microtubule stabilization. (a)  

Lysates from HEK293T cells co-expressing Flag-tagged WT or mutant forms of MmIFT54 

(p.K155*, p.I453R and p.M458Mfs3* correspond to the human mutations p.R155*, p.M520R 

and p.M525Mfs3*) and GFP-MAP4 were immunoprecipitated with an anti-GFP antibody. 

The co-immunoprecipitation of GFP-MAP4 and Flag-IFT54 constructs was followed by 

western-blot (WB) using GFP and Flag antibodies. (b) Serum-starved fibroblasts were fixed 

in PFA to visualize ciliary MAP4 (red; acetylated α-tubulin, green). Scale bar, 2µm. (b’) 

Intensity of ciliary MAP4 staining (mean +/- SEM of n=5 experiments, *P<0.05, ***P<0.001, 

Dunn's post-hoc test). (c) Expression of MAP4 and GAPDH in control and patients' 
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fibroblasts was analyzed by WB. (c’) Relative expression of MAP4 normalized to that of 

GAPDH (mean +/- SEM of n=5 experiments, *P<0.05, Dunn's post-hoc test). (d) Fibroblasts 

were stained for acetylated α-tubulin (green). Scale bar, 10µm. (e) Fibroblasts treated for 10 

min on ice (to depolymerize the microtubules) were fixed with MeOH (to visualize MAP4 on 

microtubules) and stained for α-tubulin (green), γ-tubulin (light blue) and MAP4 (red). Scale 

bar, 10µm. (f) Fibroblasts were stained for α-tubulin (green) and the microtubule plus-tip 

associated protein EB1 (red). Scale bar, 2µm. (g). WT and elipsa embryos were injected with 

EB3-GFP to follow the dynamics of the growing ends of microtubules which were analyzed 

by time lapse confocal microscopy and Imaris tracking software. Pseudo colors were used to 

visualize the speed of EB3 comets (from blue (slow) to red (fast)). (g’) Track speed analysis 

of EB3-GFP comets in WT and elipsa embryos (n=6, mean +/- SD, *** P<0.001, t-test). 

 

Figure 5: TRAF3IP1 mutations lead to epithelialization and polarity defects. (a) 

mIMCD3 cells grown until confluence on filters were subjected to Ca2+-free medium to 

disrupt the tight junctions. Six hours after Ca2+ addition, cells were analyzed by 

immunofluorescence using the apical marker Gp135 (red) and β-catenin (light blue) to stain 

the cell junctions. Scale bar, 10 µm. (b) Following Ca2+ switch, tight junction re-formation 

was assessed by measurement of trans-epithelial resistance (TER) at different time points 

(mean +/- SEM of n=5 independent experiments, two-way ANOVA; ns: not-significant, 

***P<0.001 at 6hrs). (c) Height of mIMCD3 cells grown on filters measured as the distance 

from the base to the top of the cells (GFP staining, not shown; mean +/- SD of n 20, from 3 

independent experiments, ***P<0.001, Bonferonni's multiple-comparison test). (d). 

Expression of the apical marker Gp135 was analyzed by Western-blot with α-tubulin as a 

loading control. (e) mIMCD3 cells grown in matrigel 3D matrix to form spheroids were 

stained for ZO1 (tight junctions, red) and analyzed by confocal microscopy. Equatorial 

sections of representative spheres are shown for each cell line. Scale bars, 10 m. (e’) 
Percentage of abnormal spheroids (no/small lumen filled with cells) (mean +/- SD, n=80 

spheroids from 2 independent experiments, *** P  0,001, ** P <0.002, Bonferonni's 

multiple-comparison test). 
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Materials and Methods: 

Patients and families: 

Written informed consent was obtained for all individuals enrolled in this study and approved 

by the Institutional Review boards at the University of Paris Descartes and at the University 

of Michigan.  
 
Homozygosity mapping, whole exome (WES) and "ciliome" sequencing and mutation 

calling 

Homozygosity mapping in the family NPH302 and A4336 was performed using �‘Human 

Mapping 250k NspI�’ array and parametric logarithm of odds (LOD) scores were calculated 

with MERLIN software 36 for NPH302, and GENEHUNTER 2.137  / ALLEGRO38 for A4336, 

assuming autosomal-recessive inheritance. In A4336, whole exome sequencing (WES) and 

variant burden analysis was performed as described previously 39. In brief, genomic DNA was 

isolated from blood lymphocytes and subjected to exome capture using Agilent SureSelectTM 

human exome capture arrays (Life TechnologiesTM) followed by next generation sequencing 

on the IlluminaTM sequencing platform. Illumina�’s processing software ELAND (CASAVA 

1.8.2) was used to map reads to the human reference genome (build 19), and SAMtools37 was 

used to call single nucleotide variants and insertion/deletion at targeted bases. Variants with 

minor allele frequencies <1% in the Yale (1,972 European subjects), NHLBI GO Exome 

Sequencing Project (4,300 European and 2,202 African American subjects), dbSNP (version 

135) or 1,000 Genomes (1,094 subjects of various ethnicities) databases were selected and 

annotated for impact on the encoded protein and for conservation of the reference base and 

amino acid among orthologs across phylogeny. Sequence reads were mapped to the human 

reference genome assembly (GRCh37/hg19) using CLC Genomics WorkbenchTM (version 

4.7.2) software (CLC bio, Aarhus, Denmark). Mutation calling was performed by 

geneticists/cell biologists, who had knowledge of the clinical phenotypes and pedigree 

structure, as well as experience with homozygosity mapping and exome evaluation. In 

NPH302-23, WES and variant burden analysis was performed as described previously40. 

Ciliary exome targeted sequencing and bioinformatics filtering was conducted in NPH579-22, 

NPH638-21 and NPH1110-22, using a custom SureSelect capture kit (Agilent Technologies) 

targeting 4.5 Mb of 20,168 exons (1 221 ciliary candidate genes), including TRAF3IP17,41. 

Briefly, Agilent SureSelect librairies were prepared from 3 µg of 300 genomic DNA samples 

sheared with a Covaris S2 Ultrasonicator according to manufacturer�’s instructions. The 

SOLiD molecular barcodes for traceable ID of samples were added at the end of the capture 
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step. The Ovation Ultralow System (NuGEN Technologies) was used to prepare HiSeq2500 

pre-capture barcoded libraries. The ciliome capture by hybridization was performed on a pool 

of 10 to 16 barcoded precapture libraries. Sequencing performed on SOLiD5500XL (Life 

Technologies) and HiSeq2500 (Illumina) was done on pools of barcoded ciliome librairies (64 

barcoded ciliome libraries per SOLiD FlowChip and 16 ciliome libraries per lane of HiSeq 

FlowCell). Paired-end reads were generated (75+35 for SOLiD, 100+100 for HiSeq) and 

mapped on human genome reference (NCBI build37/hg19 version) using Burrows-Wheeler 

Aligner (Illumina) or mapread (SoliD). Downstream processing was carried out with the 

Genome Analysis Toolkit (GATK), SAMtools, and Picard Tools, following 

documented best practices (http://www.broadinstitute.org/gatk/guide/topic?name=best-

practices). All variants were annotated using a software system developed by the Paris 

Descartes University Bioinformatics platform. The mean depth of coverage obtained was 

greater than 90x, and more than 89% of the exome was covered at least 15x. Different filters 

were applied to exclude all variants located in non-exonic regions, pseudogenes, UTRs  or 

known polymorphic variants with a frequency above 1% i.e. present in databases such as 

dbSNP, 1000 genome projects and all variants identified by in-house exome sequencing (5150 

exomes and 1020 ciliomes).  The functional consequence of missense variants was predicted 

using SIFT (http://sift.jcvi.org/www/SIFT_enst_submit.html) and PolyPhen2 software 

(http://genetics.bwh.harvard.edu/pph2/). Sanger sequencing using the primers described in 

Table S1 was performed to validate the NGS findings and the segregation of the mutation 

within all the families. 

 

Cloning, expression, purification and pull down experiments of recombinant proteins 

Truncations of MmIFT54 containing the N-terminal CH-domain (either WT or point-

mutations) were cloned into bacterial pEC vectors with cleavable GST- or hexahistidine-tags 

as described previously42 and expressed in the E.coli BL21 (DE3) Gold pLysS strain. E.coli 

cells were lysed by sonication in 50mM Tris-HCL pH 7.5, 150mM NaCl, 5mM β-

mercaptoethanol and 10% glycerol. The lysates were incubated with BSA-blocked Ni2+-NTA 

or GSH-beads for 1h followed by 3 washes with lysis buffer. Bound material was eluted in 

lysis buffer supplemented with 500mM imidazole (Ni2+-NTA beads) or 30mM reduced 

glutathione (GSH-beads). Large-scale purification of the MmIFT54 CH-domain included the 

additional steps (after affinity-tag cleavage using tobacco etch virus (TEV) protease) of anion 

exchange chromatography (MonoQ, GE healthcare) and size exclusion chromatography 
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(HiLoad75, GE healthcare) in 10mM HEPES pH 7.5, 150mM NaCl and 1mM DTT. All 

samples were analyzed using SDS-PAGE. 

For heterodimeric IFT54/20 complex purification, full-length CrIFT54 (WT or point-mutants) 

and CrIFT20 were cloned either untagged or with TEV-cleavable HIS-tag into pFL vectors. 

After producing viral particles as previously described42, IFT20/54 (WT or V126A/M) were 

expressed by infection of HighFive insect cells (Invitrogen). The cells were homogenized 

using a Dounce Homogenizer in a 20mM HEPES pH 7.5 buffer containing 250mM sucrose, 

5mM β-mercaptoethanol, 10mM KCl, 1.5mM MgCl2 and protease inhibitor cocktail (Roche) 

and then purified in large-scale as described above.  

 

Circular dichroism (CD) spectroscopy  

Secondary structure content was analysed on a Jasco J-715 spectropolarimeter at 4°C using 

0.1mg/mL of recombinant purified proteins in a 0.1-cm quartz cuvette. The measurements 

were performed in 10mM HEPES 7.5, 100mM NaCl, 10% glycerol and 5mM DTT. Data 

were obtained and processed using the Spectra Manager v2.06 software from Jasco. The 

measured curves were buffer corrected and secondary structure assignments were done using 

the CONTIN fitting method and SMP56 as the reference protein set. Melting curves were 

measured continuously from 10-90°C, with additional full spectra taken in 10°C steps. Data 

analysis was performed in Spectra Manager v2.06. 

 

Zebrafish strains and morpholinos 

Adult zebrafish were maintained at 28°C, in system water with a conductivity of 500 S and a 

pH of 7. Embryos were cultured at 28°C in embryo medium with 0.1% w/v methylene blue. 

The elipsa tp49d mutant, which encodes a premature stop codon at position 195, (previously 

described) was obtained as a gift from J. Malicki. Heterozygous sibling embryos were used as 

controls for all experiments using the elipsa mutant line. An anti-sense morpholino targeting 

traf3ip1 (previously published16) was used for all knockdown experiments. Wild-type Tü:AB 

fish were used for all morpholino experiments.  

To rescue the elipsa/traf3ip1 knockdown phenotype, full length zebrafish ift54 coding 

sequence was amplified by RT-PCR. Site-directed mutagenesis was then used to introduce 

mutations at the desired locations. The resulting products were then cloned into the pGEM-

Teasy vector and constructs were linearized and transcribed using the SP6/T7 mMessage 

mMachine kit (Ambion). Approximately 100 pg of mRNA was injected into embryos at the 1-

cell stage.  
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Effects of RNA injections (WT and mutated RNAs) were evaluated based on severity 

of body curvature, analysis of pronephric cilia, presence or absence of pronephric cysts and 

surface area of the retina. Body curvature was quantified by measuring the internal angle of 

each larva using ImageJ software. Larvae were classified as follows: severe (0-60°), moderate 

(60-90°), mild (90-120°) and normal (over 120°).  Live embryos and larvae were 

photographed using a Leica M165FC microscope and camera. For histological analysis, 

larvae were fixed in 4% paraformaldehyde (PFA), embedded in paraffin and sectioned at 5 

m. Sections were stained with haemotoxylin & eosin and photographed with a Nikon 

DXM1200F camera and an Olympus BX41 microscope.  

 

Plasmids, cell culture and establishment of stable cell lines 

MmFlag-Ift54 construct was a gift from G. Pazour17. Human cDNA of TRAF3IP1 (Invitrogen) 

was cloned into the pcDNA-DEST40 N vector. The mutations were created using the 

QuickChange site-directed mutagenesis kit according to the manufacturers protocol 

(Stratagene). For gene silencing of TRAF3IP1, the shRNA sequences described in Table S1 

were  cloned into the lentiviral pLKO.1 vector that contained a cassette conferring puromycin 

resistance. mIMCD3 were transduced with non-targeted (shNTC) or Traf3ip1-specific shRNA 

sequences and selected by adding puromycin (2µg/ml) to the culture medium 

(DMEM/F12(1:1) with GlutaMaxI medium containing 10% FBS, 100 U/ml penicillin and 100 

mg/ml streptomycin). For rescue experiments, shNTC and shTraf3ip1(shRNA #461) 

mIMCD3 cells were transfected with pDEST40-GFP-TRAF3IP1-WT or mutant plasmids 

using Amaxa Cell Line Nucleofector (Solution V, program O17)43, sorted by FACS and 

selected with 0.35 mg/ml G418 (Life Technologies). Fibroblasts were obtained from skin 

biopsies of patients and cultured in Optimem supplemented with 10% FBS, 100 U/ml 

penicillin and 100 mg/ml streptomycin (all from Life Technologies). Ciliogenesis was 

induced by starving the cells in serum-free Optimem for 24hrs. 293T cells were cultured in 

DMEM supplemented with 10% FBS, 100 U/ml penicillin and 100 mg/ml streptomycin. 

 

Antibodies 

The used antibodies are: acetylated -tubulin (6-11-B-1) and -tubulin (T5168) from Sigma; 

EB1 (610534) and anti-PKAc (610980) from BD biosciences; EB2 (K52), acetylated -

tubulin (ab24610) and -tubulin (ab18251) from Abcam; IFT54 (HPA037858, Atlas 

Antibodies); ZO1 (61-7300, Life Technologies); ARL13B (17711-1-AP, Proteintech); Gp135 

(AF1556, R&D); γ-tubulin (DQ-19, Sigma); γ-tubulin (C-20), MAP4 (H-300and G-10) and 
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ACIII (C-20) from Santa Cruz. Highly cross adsorbed secondary antibodies (Alexa Fluor 488, 

Alexa Fluor 546, AlexaFluor 555, AlexaFluor 532 and Alexa Fluor 647) were obtained from 

Molecular Probes (Life Technologies). 

 

Immunofluorescence and image analysis 

Zebrafish embryos at 48 hpf were fixed overnight at 4°C in 4% PFA, washed in PBS and 

incubated in PBS-Triton-4% BSA for 1 hour at 4°C prior to antibody incubation. 

Alternatively,  fibroblasts and mIMCD3 cells were fixed in 4% PFA, permeabilized with 

0.2% Triton-X 100 or fixed in ice-cold Methanol for 5min and incubated with 1% skim milk 

or 1% BSA, 0.1% Tween20 prior to incubation with primary (1 to 3 hours at room 

temperature or overnight at 4°C) and secondary (30 minutes at room temperature) antibodies. 

Appropriate controls were performed omitting the primary antibodies. DNA was stained with 

Dapi or Hoechst (except for STED imaging). Confocal images were taken on either Zeiss 

LSM 700 or LEICA SP8 microscopes. Images were analyzed with ImageJ. Alternatively, 

super resolution images were acquired using a LEICA SP8 gSTED microcoscope, equipped 

with a 660nm laser that quenches the fluorescence outside the centre of the focus. Images 

were then deconvoluted using Huygens software. Ciliogenesis analyses were performed on a 

CV7000 confocal microscope from YOKOGAWA with 40X long distance. Z-stacks were 

acquired with identical acquisition settings (gain, offset, laser power) and all measurements of 

fluorescence intensity were performed on maximum intensity projection, calculated with the 

Yokogawa software. For all cilia numerical values (frequency, length), we developed one 

specific pipeline using CellProfiler software44. In brief, nuclei were detected as primary 

objects using Otsu Adaptive two-class thresholding. For cilia length, a mask was constructed 

by applying MoG global thresholding on ARL13B staining, followed by measurement of the 

major axis length. Cilia frequency was calculated by dividing cilia and nuclei counts. All data 

points are performed in duplicate with 4 fields acquired per well, and an average of 300 

cells/field. Cell profiler pipeline was run using the Linux cluster interface JENKINS. 

Spheroids were directly analysed using the ZEN 2011 software (Zeiss).  

 

Calcium switch assay and TER measurement 

mIMCD3 cells grown on  65mm Transwell filters for 7 days were subjected to Ca2+ switch as 

described in Straight et al.45. TER was determined using a Millicell-ERS volt�–ohm meter 

(Millipore) immediately after the addition of normal growth medium and at the indicated time 
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points. 6hrs after Ca2+ switch, cells were fixed with 4% PFA and processed as described 

above. 

 

Spheroid Assay 

3D spheroid cell culture was performed using 5% Matrigel (BD) in chamber slides (Lab-

TEK). 10,000 cells were plated per chamber and spheroids were grown at 37°C/5% CO2 for 5 

days. Spheroids were fixed with 1% PFA, further stained and analysed as described in 

�“immunofluorescence analysis�”. 

 

Protein extraction and western blotting 

Cells were extracted in 50mM Tris-HCl, 150mM NaCl, 0.5% sodium deoxycholate, 2mM 

EDTA, 1% Triton X-100 and 0.1% sodium dodecyl sulfate. Protein dosage was then 

performed using the BCA protein assay kit (ThermoScientific). 30-50µg of proteins were 

loaded on 8% or 10% acrylamide gels, blotted on PVDF membrane (Millipore) and the 

membrane was incubated using the indicated antibodies. Western blots were then analyzed 

with Bioprofil software. 

 

qPCR 

Total cellular mRNA was isolated using Qiagen Extraction Kit and treated with DNase I. 1 g 

of total RNA was reverse-transcribed using Superscript II (Life Technologies). Relative 

expression levels of the TRAF3IP1 or MAP4 mRNAs were determined by real-time PCR 

using either Absolute SYBR Green ROX Mix (ABgene) or TaqMan Gene Expression Assay 

(Applied Biosystems) with specific primers (Table S1). HhTRAF3IP1, HhMAP4, 

MmTraf3ip1 (Mm01285632_m1, Life Technologies) expression performed in triplicate was 

normalized to HhGAPDH or MmTbp  (Mm00446971_m1, Life Technologies) mRNA 

expression. Data were analyzed with the 2 Ct method 31.  

 

Co-Immunoprecipitation 

HEK 293T cells were co-transfected with Flag-tagged MmIFT54 constructs and GFP-IFT20 

(kindly given by G. Pazour) or GFP-MAP4 (gift from J. Nelson) using the calcium phosphate 

method. 48 hrs post-transfection, cells were lysed in 50mM Tris-HCl pH 7.5, 150 mM NaCl, 

0.5% Triton and lysates were first incubated with rabbit or mouse isotypic control antibodies 

and G-protein  beads for 1hr at 4°C. Pre-cleared lysates (containing 1mg of proteins)  were 
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then incubated with rabbit anti-Flag (Sigma) or mouse monoclonal anti-GFP antibodies 

(Roche) coupled to G-protein beads for 3 hrs at 4°C. Beads were then washed three times 

with increasing amounts of NaCl (600nM; 300nM and 150nM NaCl in 50mM Tris-HCl pH 

7.5), resuspended in 2X sample buffer and boiled for 5 min. Western blot analyses were 

conducted as described above.   

 

Microtubule tracking  

EB3-GFP plasmid (obtained from R. Köster) was linearized and reverse-transcribed using the 

SP6 mMessage mMachine kit (Ambion). Elipsa embryos were then injected with 50 pg of 

EB3-GFP RNA at the 1-cell stage, and photographed at 60 hpf. Time-lapse confocal 

microscopy images were recorded over a period of 5 minutes, and the resulting sequences 

were analysed using Imaris software to quantify the microtubule dynamics in vivo.  

 

Statistical analyses 

Results are presented as means of n  2 independent experiments ± standard error/deviation. 

Statistical analyses were performed with the GraphPad Prism software by using ANOVA 

followed by Bonferonni's or Dunnett's multiple-comparisons test versus a control group (post-

hoc) or by using Kruskal-Wallis test followed by Dunn's multiple-comparisons post-hoc test.  

p<0.05 was considered statistically significant.  
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name purpose species 
position on 
cDNA exon  sequence 

TRAF3IP1-1F gene screening human 1 GCACTGTGGGATGGAAACCG 

TRAF3IP1-1R gene screening human 1 CAGAAGCAGCTCTGCCAGCAAT 

TRAF3IP1-2F gene screening human 2 GTGGATGAGGCTGATGAGG 

TRAF3IP1-2R gene screening human 2 CCAGTTGCCACAATGAGAAA 

TRAF3IP1-3F gene screening human 3 TGTGGCAACTGGATGTCAT 

TRAF3IP1-3R gene screening human 3 GGGTTCCCGACTTTCTACTG 

TRAF3IP1-4F gene screening human 4 GGGTGGACGCTACTGTTA 

TRAF3IP1-4R gene screening human 4 AATTCTTCCTTCTGTTTTCGAT 

TRAF3IP1-5F gene screening human 5 TTAGCTGGAGAGAAGGGAG 

TRAF3IP1-5R gene screening human 5 TAGGCATAAAAGAAAACCAGTT 

TRAF3IP1-6F gene screening human 6 TTATAGAAAATATCTTGGCATA 

TRAF3IP1-6R gene screening human 6 CCCACAGAAAATCAGAG 

TRAF3IP1-7F gene screening human 7 GCTTGAAAAATAAACCTGCT 

TRAF3IP1-7R gene screening human 7 CACGCATGTGTATGTAACAG 

TRAF3IP1-8F gene screening human 8 AAATCCCAGCTAAAACAA 

TRAF3IP1-8R gene screening human 8 AAGTTATGTCCAGTCTTCAATA 

TRAF3IP1-9F gene screening human 9 ATGTTAATGAAGCCGCTGAT 

TRAF3IP1-9R gene screening human 9 ATGCCACCTCCTCTCACTT 

TRAF3IP1-10F gene screening human 10 TCCTGTTTCTATTTAGTACCAT 

TRAF3IP1-10R gene screening human 10 AGAGTCCACATTCACATTC 

TRAF3IP1-11F gene screening human 11 GGGAGCTGACATGTGAC 

TRAF3IP1-11R gene screening human 11 GCACTAAATAAATAGCAGCAG 

TRAF3IP1-12F gene screening human 12 ACTTTCTGATTGGTCGGGTTA 

TRAF3IP1-12R gene screening human 12 TGTCTGTTGGCCTATGGTGT 

TRAF3IP1-13F gene screening human 13 TTAGATTCCTCTCTGCCGAC 

TRAF3IP1-13R gene screening human 13 GGGGGAAAAAGAAGATTCA 

TRAF3IP1-14F gene screening human 14 TTTTGAGATCCACAGAAGCAT 
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TRAF3IP1-14R gene screening human 14 CAGTGTGACCCAGACCAG 

TRAF3IP1-15F gene screening human 15 TAGGTTTTTGGGATAGAGAAT 

TRAF3IP1-15R gene screening human 15 AAAGATGCTCCAACTTGTAA 

TRAF3IP1-16F gene screening human 16 GCCCTGTTCTGCCTTTGGACT 

TRAF3IP1-16R gene screening human 16 CCACCCCAACCTGTTCCTG 

TRAF3IP1-17F gene screening human 17 AAGAAGCCAACACACAAT 

TRAF3IP1-17R gene screening human 17 TAACTAGCCAGTATTCCATCT 

TRAF3IP1h-7F cDNA verification human 7 GCGGCGGTGGTGAGGCGGAC 

TRAF3IP1h-156R cDNA verification human 156 TCATCTCGGCGTCTGTGTAG 

TRAF3IP1h-563F cDNA verification human 563 TGAAAGAAGACCGCAAGCCA 

TRAF3IP1h-923F cDNA verification human 923 GCTCAGGGGAGATGTCTAAA 

TRAF3IP1h-1410F cDNA verification human 1410 GGTCAAACGGCAAGACAGCA 

TRAF3IP1h-1917F cDNA verification human 1917 AGACTGTGCCGTGGAGCCCT 

TRAF3IP1m-24F cDNA verification mouse 24 GACGCAGGAGGCTCTGGGCA 

TRAF3IP1m-292R cDNA verification mouse 292 GTTCTTTCAGGTTCGTGCCC 

TRAF3IP1m-563F cDNA verification mouse 563 AAGACAGCAAGCCTCGGGAG 

TRAF3IP1m-1022F cDNA verification mouse 1022 TAAAACCATCAAAACGGCGA 

TRAF3IP1m-1410F cDNA verification mouse 1410 CGGTGGGCTCGTGAAGAAGA 

Flag-IFT54m-mutV125A-F mutagenesis mouse 

V125A 

CAGTGATGAGGCTGCGAAGAGAGTCTTAGCTG 

Flag-IFT54m-mutV125A-R mutagenesis mouse CAGCTAAGACTCTCTTCGCAGCCTCATCACTG 

Flag-IFT54m-mutV125M-F mutagenesis mouse 

V125M 

CTCCAGTGATGAGGCAATGAAGAGAGTCTTAG 

Flag-IFT54m-mutV125M-R mutagenesis mouse CTAAGACTCTCTTCATTGCCTCATCACTGGAG 

Flag-IFT54m-mutK155*-F mutagenesis mouse 

K155* 

CAACAAGAGTGGGTAGGAGGAAGAGTCCAGAATAC 

Flag-IFT54m-mutK155*-R mutagenesis mouse GTATTCTGGACTCTTCCTCCTACCCACTCTTGTTG 

Flag-IFT54m-
mutM458Mfs3X-F mutagenesis mouse 

M458Mfs3X 

GCAGACATTGACATGGTTAGGTGCCGTCAGGGGAGC 

Flag-IFT54m-
mutM458Mfs3X-R mutagenesis mouse GCTCCCCTGACGGCACCTAACCATGTCAATGTCTGC 

Flag-IFT54m-mutI520R-F mutagenesis mouse I520R CTCAGCTGTCAGAACGCGCAGATATTGATATGGTGCCGTCAG 
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Flag-IFT54m-mutI520R-R mutagenesis mouse CTGACGGCACCATATCAATATCTGCGCGTTCTGACAGCTGAG 

GFP-IFT54-mutM520R-R mutagenesis human 

M520R 

CCATTTCAATTTCTGATCTTTCTGAGAGCTGAGG 

GFP-IFT54-mutM520R-F mutagenesis human CCTCAGCTCTCAGAAAGATCAGAAATTGAAATGG 

GFP-IFT54-mutV125M-F mutagenesis human 

V125M 

AGTGACGATGCGATGCGGAGGGTTTTAG 

GFP-IFT54-mutV125M-R mutagenesis human TAAAACCCTCCGCATCGCATCGTCACTAG 

GFP-IFT54-mutR155*-F mutagenesis human 

R155* 

AGAATGTGTGAGAAGAAGAGTCCAGAG 

GFP-IFT54-mutR155*-R mutagenesis human ACTCTGGACTCTTCTTCTCACACATTC 

IFT54 h qPCR F  qPCR human 116 1/2 TCACGGAGGTGATTAGAATGACT 

IFT54 h qPCR R  qPCR human 242 3 ACAACCACGTCTATGGCCTTT 

MAP4 h qPCR F qPCR human 1665  7 AGCACCCCTGGCTAAGGAT 

MAP4 h qPCR R qPCR human 1896 8 CCCCGTTCCTGTGATGGTTT 

MAP4 m qPCR F qPCR mouse 2774 12/13 GCCGGGCCAAAGTAGAGAAAA 

MAP4 m qPCR R qPCR mouse 2843 13 GTGACTGCATTAGGTTCAGGC 

Traf3ip1 shRNA # 461 shRNA mouse CCGGATGAGCTGCTTCAATTGATTGCTCGAGCAATCAATTGAAGCAGCTCATTTTTTG 

Traf3ip1 shRNA # 462 shRNA mouse CCGGCATCTAGGTCCTCGACGTTAACTCGAGTTAACGTCGAGGACCTAGATGTTTTTG 

Traf3ip1 shRNA # 463 shRNA mouse CCGGGAATACACAAAGAGGATAAACCTCGAGGTTTATCCTCTTTGTGTATTCTTTTTG 

 

Table S1: List of forward and reverse primers used to perform PCR investigations and sequencing, as well as mutagenesis, quantitative 

Real-Time PCR and shRNA.
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3) Discussion 
	
  

3.1) The route of ciliary tubulin 

Getting tubulin to its destined position at the ciliary tip is a long route. Examining 

mRNA by in situ hybridization revealed a localization of tubulin mRNA amongst 

others at the base of the cilium (Han et al., 1997). The specific localization of mRNAs 

is a cell-established mechanism to ensure the spatially restricted translation of 

proteins, leading to their destined position within different cell compartments 

(reviewed in (St Johnston, 2005)). Newly translated tubulin subunits have to acquire 

conformations that enables them to form αβ-heterodimers capable to form MTs. The 

cytosolic chaperonin containing TCP-1 (CCT) complex has been shown to ensure the 

proper folding of tubulin subunits (Yaffe et al., 1992). Tubulin undergoes a second 

quality control before its incorporation into the cilium. Another chaperone, the tubulin 

cofactor C (TBCC) domain-containing protein, localized at the transition fibers of the 

basal body, directly interacts with tubulin and helps in checking the GTPase activity 

of tubulin (Stephan et al., 2007; Tian et al., 1999). Further bioinformatics studies 

revealed a relationship of TBCC to human RP2, a protein involved in the eye disease 

retinis pigmentosa (RP). Therefore, it is supposed that loss or impairment of this 

quality control step could lead to various ciliopathies (Stephan et al., 2007). The IFT 

complex as well as the motors required for IFT also dock at the transition fibers 

(Deane et al., 2001; Dentler, 2005), bind ciliary tubulin via the tubulin-binding 

module in IFT81/74 (Bhogaraju et al., 2013a) and transport tubulin to the ciliary tip 

where it gets incorporated into the MT axoneme (Craft et al., 2015; Hao et al., 2011; 

Johnson and Rosenbaum, 1992; Lechtreck et al., 2013; Marshall and Rosenbaum, 

2001; Rasala et al., 2013). In this study we identified the tubulin-binding ability of the 

CH domain in IFT54 (chapter II manuscript Fig. 3 and 6). If IFT54 indeed functions 

as a second tubulin-binding site within IFT in vivo still has to be verified.  

In Chlamydomonas reinhardtii, the MTs in the ciliary axoneme are constantly turned 

over at the ciliary tip (‘+ end’) (Marshall and Rosenbaum, 2001). This process is 

likely similar to the dynamic turnover of cytoplasmic MTs, a process known as 

‘dynamic instability’ (Mitchison and Kirschner, 1984). Furthermore, turned over 
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tubulin subunits will be recycled and thus have to be transported back to the base of 

the cilium (Coyne and Rosenbaum, 1970; Marshall and Rosenbaum, 2001). The exact 

mechanism by which this tubulin turnover at the ciliary tip is achieved as well as the 

retrograde IFT and recycling of tubulin remains elusive.  

In Tetrahymena, subunits of the cytosolic chaperonin CCT complex colocalize with 

tubulin at the ciliary tip (Seixas et al., 2003). Furthermore, mutational analysis 

revealed that CCT subunits are essential for assembly and maintenance of the 

axoneme structure of Tetrahymena cilia (Seixas et al., 2010). The CCT complex is a 

hetero-oligomeric complex containing both the Hsp60-related TCP-1 and Hsp70 

chaperones (Lewis et al., 1992) and is known to mediate mainly the folding of actin 

and tubulin (reviewed in (Kubota et al., 1995)). Members of the Hsp70 family have 

been also detected in cilia of Tetrahymena and sea urchin embryos (Stephens, 1997; 

Williams and Nelsen, 1997) as well as at the tips of Chlamydomonas reinhardtii cilia 

(Bloch and Johnson, 1995). Furthermore, Hsp70 and Hsc70 are constitutively 

expressed in rat photoreceptor cells and localize to both the inner and outer segments 

(Bhowmick et al., 2009; Dean et al., 1999). Taken together, the CCT complex and 

Hsp70 proteins could be the main players in turnover of tubulin at the ciliary tip. 

However, further examinations are necessary to clarify this issue.  

 

3.2) Do posttranslational modifications (PTMs) of tubulin 

serve as regulatory elements within cilia? 

Cells are able to generate distinct MT subtypes due to the expression of different 

tubulin isoforms and through posttranslational modifications (PTMs). 

Phosphorylation, ubiquitylation, sumoylation and palmitoylation occur frequently on 

other proteins, but are not well s tudied in MTs (Westermann and Weber, 2003; 

Wloga and Gaertig, 2010). In contrast, (poly)glutamylation, (poly)glycylation, 

detyronisation and further cleavage to ∆2-tubulin are performed at the C-terminal 

acidic E-hooks of α- and/or β-tubulin. Acetylation takes place at certain lysines in the 

globular domain of α - and β -tubulin (figure 11) (reviewed in (Janke and Chloë 

Bulinski, 2011)).  

All five tubulin PTMs are highly enriched in ciliary tubulin. Acetylation was the first 

PTM discovered in Chlamydomonas reinhardtii cilia (L'Hernault and Rosenbaum, 
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1983; 1985). Tubulin enters the cilium and gets modified within the cilium either 

prior to or at its addition to the growing MTs. Later studies revealed acetylation as a 

common PTM in cilia of various organisms (Piperno and Fuller, 1985). Tyrosinated 

tubulin can be found in the A- and B-tubules and the central MT pair of the ciliary 

axoneme. However, detyrosinated tubulin seems to be restricted to the B-tubule 

(Johnson, 1998). Assembly of cilia relies on tyrosinated tubulin, detyrosination of 

tubulin in the B-tubule occurs later and seem to enhance the interactions of dynein 

and the B-tubules that powers ciliary beating (Johnson, 1998).  

 

 
Figure 11: Schematic representation of different posttranslational modifications 

(PTMs) of a tubulin-heterodimer. The C-terminal tails of tubulin (E-hooks) are 

presented as amino acid sequences from murine α1A-tubulin (residues 441 to the end) 

and β2B -tubulin (residues 432 to the end). Removal of the last tyrosine of the  

α-tubulin tail results in detyrosinated tubulin, whereat further elimination of the 

glutamic acid generates ∆2-tubulin. Polyglycylation and polyglutamylation take place 

at the E-hooks of α- and β-tubulin on different glutamic acid residues. The globular 

part of α- and β-tubulin can be acetylated at Lys40 (α-tubulin) or Lys252 (β-tubulin) 

(adapted from (Janke and Chloë Bulinski, 2011)).  

 

∆2-tubulin is confined to very stable structures like the centrosome and primary cilia. 

Furthermore, ∆2-tubulin appears in sea urchin embryonic cilia during development 

and in the sperm flagella. Therefore, ∆2-tubulin was assumed to be a marker for the 

final stage of α-tubulin maturation (Paturle-Lafanechère et al., 1994). Polyglycylation 

was first discovered in axonemal tubulin of Paramecium, a unicellular ciliated 

protozoa (Redeker et al., 1994) and has been shown to be the predominant PTM in 

mammalian sperm cell flagella (Plessmann and Weber, 1997; Rüdiger et al., 1995). 
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Functional assays in human epithelial cells revealed a total loss of ciliary beating 

when an anti-glutamylation antibody was used, in contrast to only mild effects of an 

anti-glycylation antibody. These findings suggest only structural functions for 

polyglycylated tubulin in the ciliary axoneme, whereas polyglutamylation functions in 

cilia assembly and motility (Ikegami et al., 2010; Million et al., 1999). The same 

phenotype has been observed in sea urchin sperm flagella, supporting a role for 

polyglutamylated tubulin in dynein-based motility of cilia (Gagnon et al., 1996). Two 

independent studies link tubulin glutamylation, mediated by two conserved enzymes 

of the tubulin tyrosine ligase-like (TTLL) family (amongst others localized within 

cilia) on either α- or β-tubulin, to the regulation of IDA activity within cilia (Kubo et 

al., 2010; Suryavanshi et al., 2010). Furthermore, depletion of TTLLs lead to massive 

changes in glycylation or glutamylation of tubulin resulting in severe phenotypes in 

cilia structure or even loss of cilia (Pathak et al., 2011; Rogowski et al., 2009; Wloga 

et al., 2009).  

Taken together, PTMs of tubulin are necessary for axonemal stabilization and motility 

regulations within cilia. But the question arises if tubulin PTMs serve as marker for 

ciliary tubulin as well. If yes, are tubulin PTMs necessary for the two tubulin-binding 

modules IFT81/74 (Bhogaraju et al., 2013a) and IFT54 (identified in this study 

(chapter II manuscript Fig. 3 and 6) in the IFT complex to recognize their tubulin 

cargo? Furthermore, the PTMs could also influence the binding affinity of the CH 

domains in the IFT proteins towards tubulin. Further examinations on this topic are 

crucial to understand the molecular role of tubulin PTMs in cilia assembly and 

maintenance in more detail. 

 

3.3) Divergent evolution of the CH domains within the IFT 

complex  

The CH domain is a small module composed of five to six α-helices and was 

identified in both signaling and cytoskeletal (actin/MT-binding) proteins (Castresana 

and Saraste, 1995; de Arruda et al., 1990). Nowadays, a couple of more CH-domain-

containing proteins were discovered and it has been shown that they differ in their 

binding mode to actin and MTs (Gimona et al., 2002). In MT-binding proteins, like 

EB1 and Ndc80, normally only one CH domain (CH3) is present and the proteins 
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form a complex with another CH-domain-containing-protein to fulfill their function 

(Ciferri et al., 2008; Hayashi and Ikura, 2003). In contrast, actinin4, an actin-binding 

protein, in which a tandem CH domain structure within the protein itself forms the 

actin-binding module (Galkin et al., 2010; Lee et al., 2008b). These two CH domains 

differ markedly in their sequence as well as in their binding affinity to actin. Whereas 

the amino-terminal CH domain (CH1) has intrinsic actin-binding ability, the carboxy-

terminal CH domain (CH2) binds actin either with very low affinity or not at all 

(Gimona and Mital, 1998; Way et al., 1992; Winder et al., 1995).  

 

 
Figure 12: Structure based alignment (CrIFT81 and CrIFT54) and sequence 

alignment of the four CH domains of the IFT-B complex. The secondary structures of 

IFT54 and IFT81 are displayed above the sequence. Conserved residues are 

highlighted in yellow. Residues that abolish tubulin binding are marked with asterisks 

either in cyan for human IFT81 (Bhogaraju et al., 2013a) or in green for murine 

IFT54 (chapter II manuscript Fig. 6). Note that the tubulin-binding areas as well as 

the entire amino acid sequences of the four CH domains are not well conserved. Mus 

musculus (Mm), Homo sapiens (Hs), Chlamydomonas reinhardtii (Cr). 

 

Within the IFT-B complex, four predicted α-helical domains in IFT81, IFT57, IFT54 

and IFT38 have been classified as CH domains (Schou et al., 2014; Taschner et al., 

2012). A recently published bioinformatics study (Schou et al., 2014) further grouped 

the CH domains in IFT81, IFT57 and IFT38 to the family of NN-CH domains (N-

terminal CH like domain followed by a coiled coil region) based on their sequence 

and predicted structural similarity to the MT-binding founding members Ndc80 and 

Nuf2. Apart from IFT81/74 that has been already proven to serve as a tubulin-binding 
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module via the CH domain in IFT81 and the positively charged N-terminal stretch of 

IFT74 (Bhogaraju et al., 2013a) less is known about the function of the other three 

predicted CH domains in the IFT machinery. The close structural relationship of the 

CH domains in IFT57 and IFT38 to the well known MT-binding proteins such as 

Ndc80 and Nuf2 strengthen the hypothesis that the thus far uncharacterized CH 

domains may serve as additional tubulin-binding modules in the process of IFT 

(Bhogaraju et al., 2014). Although IFT54 was not addressed in this bioinformatics 

study, previous publications already indicated the tubulin-binding ability for 

mammalian IFT54 (Ling and Goeddel, 2000). By solving the crystal structure of the 

N-terminal part of IFT54 we could show that IFT54 indeed adopts a CH domain fold 

and binds tubulin (chapter II manuscript Fig. 3 and 5). In contrast, the two putative 

NN-CH domains in IFT57 and IFT38 lost their tubulin-binding ability and mediate 

the binding to IFT172 and IFT80 (chapter II manuscript Fig. 3 and 7). Alignment 

studies revealed that the four CH domains in the IFT complex (in IFT81, IFT57, 

IFT54 and IFT38) are not well conserved (figure 12). Whereas the amino acids likely 

responsible for tubulin binding are conserved throughout IFT81 and IFT54, they are 

not present in IFT57 and IFT38. So it seems that IFT57 and IFT38 evolved 

divergently and execute different functions within the IFT process. If these functions 

are restricted to the interaction with IFT172 and IFT80 have to be addressed further.  

 

3.4) Novel interactions between IFT-B proteins 

As already mentioned in the introduction, the IFT-B complex consists of 16 different 

proteins. Within the IFT-B complex, the interactions between the nine ‘IFT-B core’ 

proteins are mapped (Lucker et al., 2010; Taschner et al., 2011; 2014) but less is 

known about interactions of the other seven IFT-B proteins with each other. An 

interaction between IFT20 and IFT54 was already reported (Follit et al., 2009; Omori 

et al., 2008) and could be proven in this study (chapter II manuscript Fig. 1B). The 

controversial IFT20/57 interaction (Baker et al., 2003; Krock and Perkins, 2008; 

Lucker et al., 2010) was also examined in this study, and could not be verified 

(chapter II manuscript Fig. 1E). But a novel interaction between IFT38 and IFT57 has 

been discovered in this study, undoubtedly linking IFT38 to the IFT-B complex 

(chapter II manuscript Fig 2). Furthermore, preliminary pull down experiments with 
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recombinantly expressed proteins indicate an interaction of IFT20/54 and IFT38/57 as 

well as a mixture of both dimers with IFT80. The N-terminal β-propellers of IFT80 

are sufficient to interact with IFT38/57 (figure 13A). Furthermore, the pentameric 

complex IFT20/38/54/57/80 seem to interact with IFT172, forming a hexameric 

complex (figure 13B). 

 

 
Figure 13: (A) Pull down experiments with recombinant purified IFT80 and 

IFT20/54, IFT38/57 and a mixture of both dimers indicate the formation of a 

pentameric complex (left). The binding of IFT38/57 to IFT80 is mediated via the  

β-propellers at the N-terminus of IFT80 (right). (B) Comparison of the size exclusion 

chromatography (SEC) profiles of IFT172 alone, the pentameric complex (identified 

in the pull down study above) and a hexameric complex revealed a shift in the elution 

profile to higher MW, indicating a stable complex between these six IFT-B proteins. 

 

All the findings mentioned in chapter II as well as the preliminary results presented 

here (figure 13) are the first description of a stable subcomplex formed by the six  

IFT-B proteins IFT172, IFT80, IFT57, IFT54, IFT38 and IFT20. Therefore, we 

suggest to name the complex IFT-B2 and to rename the ‘IFT-B core’ IFT-B1 

complex. Nevertheless, further interaction studies are necessary to map the exact 
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binding regions between the IFT-B2 members. Another question is how the 

interaction between IFT-B1 and IFT-B2 is mediated. Do they directly interact with 

each other or is a yet unidentified adaptor protein necessary. In line with this, 

additional studies concerning the overall architecture of the IFT-B complex are 

crucial to understand the complex process of IFT.  
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4) Abbreviations 
	
  

3D   Three-dimensional 

β-cat    β-catenin  

ADP   Adenosine diphosphate 

AKT   Protein kinase B  

APC/C   Anaphase-promoting complex/cyclosome  

Arf   ADP-ribosylation factor 

ASAP1  ArfGAP with SH3 Domain, Ankyrin Repeat and PH Domain 1 

ATP   Adenosine triphosphate 

BAR   Bin/amphiphysin/Rvs 

BBS    Bardet-Biedl syndrome 

Ca2+   Calcium 

CCT   Chaperonin containing TCP-1  

CD   Circular dichroism spectroscopy 

CH   Calponin Homology 

COPI   Coat protein I 

Cr    Chlamydomonas reinhardtii 

CTM   Ciliary targeting motif 

DIC   Differential interference contrast 

DRC   Dynein regulatory complex 

Dsh   Dishevelled 

ERK   Extracellular signal-regulated kinases 

FIP3   Family-interacting protein 3 

GAP   GTPase activating protein 

GC1   Guanylyl cyclase 1 

GEF   GTPase exchange factor 

GIFT   GldG, intraflagellar transport 

Gli2/3   Glioma2/3 

Gli3R   Glioma3 repressor 

GPCR   G-protein-coupled receptor 

GSH   Glutathione 

GSK    Glycogen synthase kinase-3β 
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GTP   Guanosine triphosphate 

HEK   Human embryonic kidney 

Hh   Hedgehog 

HIP-1   Huntington-interacting protein 1 

Hsc   Heat shock cognate protein 

Hsp    Heat shock protein 

Htr6   Serotonin receptor 6 

IDA   Inner dynein arm 

IFT   Intraflagellar transport 

JATD   Jeune asphyxiating thoracic dystrophy 

LC-MS  Liquid chromatography-mass spectrometry 

MEF   Mouse embryonic fibroblast 

MEK   Mitogen activated protein kinase (MAPK) 

MT   Microtubule 

MW   Molecular weight 

Ni2+   Nickel 

NRK   Normal rat kidney 

NVP   Nodal vesicular parcel 

ODA   Outer dynein arm 

Orpk   Oak Ridge Polycystic Kidney 

PC1/Pkd-1  Polycystin-1 

PC2/Pkd-2/PKD-2 Polycystin-2 

PCD   Primary cilia dyskinesia 

PCP   Planar cell polarity 

PDGF   Platelet-derived-growth factor 

PDGFR  Platelet-derived-growth factor receptor 

PKD   Polcystic kidney disease 

Ptch-1   Patched-1 

PTM   Post-translational modification 

RP   Retinis pigmentosa 

RPE   Retinal pigment epithelium 

Shh   Sonic hedgehog 

Smo   Smoothened 

Sstr3   Somatostatin receptor 3 
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Sufu   Suppressor of fused 

TBCC   Tubulin cofactor C 

TCP-1   T-complex polypeptide-1 

TGN   Trans Golgi network 

TPR   Tetratricopeptide repeat 

Tt   Tetrahymena thermophile 

TTLL   Tubulin tyrosine ligase-like 

TULP3  Tubby-like protein 3 

WD   Tryptophan-aspartic 

WT   wild type 
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