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Abstract

In Natural Language Processing (NLP), together with speech, text is one of the main
sources of information. Computational systems that process raw text need to perform
a transformation of text input into machine-readable format. Final performance of the
NLP systems depends on the quality of these input representations, that is why the main
objective for representation learning is to keep and highlight important features of the
input tokens (characters, words, phrases, etc.).

Traditionally, for Neural Networks (NNs) such input representations are one-hot vec-
tors, where each word is represented with a vector of all-but-one zeros, with value 1 on the
position that corresponds to the index of the word in the vocabulary. Such a representation
only helps to differentiate words, but does not contain any usable information about re-
lations between them. Word representations that are learned by NNs – word embeddings
– are then arranged in a matrix, where each row corresponds to a particular word in a
vocabulary and is retrieved by multiplication of the corresponding one-hot vector and the
embedding matrix.

These word embeddings are initialized randomly, and during training adjust their values
to capture the contextual semantic information with respect to the training objective.
When a word is frequent, it is seen often during training and its representation is updated
frequently; for the same reason embeddings for rare words experience much less updates.
This makes it difficult for NNs to learn good word embeddings for words that occur just
several times in a corpus.

In this work, we propose a method to improve quality of word embeddings of rare words.
The main idea is to initialize a NN that learns embeddings with sparse distributional vectors
that are precomputed for rare words from a given corpus.

We introduce and investigate several methods for building such distributional represen-
tations: with different ways to combine one-hot representations of frequent and distribu-
tional representations of rare words, different similarity functions between distributional
vectors, different normalization approaches applied to the representations in order to con-
trol the input signals’ amplitude.

We evaluate the performance of our proposed models on two tasks. On a word similarity
judgment task, the embeddings of words are used to compute similarity scores between two
words in given pairs; then these similarity scores are compared with human ratings. With
use of the same NN architecture, word embeddings that are trained using distributional
initialization show significantly better performance than word embeddings trained with
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traditional one-hot initialization.
On language modeling task, where models compete in predicting probability of a given

sequence of words, models with distributional initialization show minor improvements over
models with one-hot initialization.

We also study a very popular word2vec tool (Mikolov et al., 2013a) that is used to
obtain word embeddings without supervision. The main question we ask is how much the
quality of learned word embeddings depends on the initial random seed. The obtained
results suggest that training with word2vec is stable and reliable.

Acknowledgments. This work was supported by Deutsche Forschungsgemeinschaft (grant
DFG SCHU 2246/10-1, FADeBaC).



Zusammenfassung

Text ist neben Sprache eine der Hauptinformationsquellen in der natürlichen Sprachver-
arbeitung. Um Rohtexte zu verarbeiten, müssen Computer die Texteingabe zunächst in
maschinenlesbares Format umwandeln. Von der Qualität dieser Eingaberepräsentation
hängt die finale Leistung von Sprachverarbeitungssystemen ab. Hauptziele des Repräsen-
tationslernens sind daher der Erhalt und die Hervorhebung wichtiger Eigenschaften der
Eingabe (Buchstaben, Wörter, Phrasen, etc.).

Traditionelle Eingaberepräsentationen für neuronale Netze (NNs) sind sogenannte 1-
aus-N Vektoren, die jedes Wort als einen Vektor darstellen, der nur aus Nullen und einer
Eins an jener Position besteht, die dem Index des Wortes im Vokabular entspricht. Solche
Repräsentationen können zwar Wörter differenzieren, enthalten aber keine weiteren In-
formationen, z.B. bezüglich Relationen zwischen Wörtern. Wortrepräsentationen können
andererseits auch von NNs gelernt werden. Diese sogenannten Worteinbettungen werden
meist in einer Matrix angeordnet, in der jede Zeile einem bestimmten Wort in einem Vok-
abular entspricht. Für das Training kann durch Multiplikation des zugehörigen 1-aus-N
Vektors und der Einbettungsmatrix auf sie zugegriffen werden.

Worteinbettungen werden meist zufällig initialisiert und während des Trainings so
angepasst, dass sie kontextabhängige semantische Informationen bezüglich des Trainingsziels
widerspiegeln. Da häufige Wörter oft während des Trainings gesehen werden, werden ihre
Repräsentationen mehrfach aktualisiert. Aus demselben Grund werden Einbettungen sel-
tener Wörter weitaus weniger angepasst. Dies erschwert es NNs, gute Worteinbettungen
für Wörter zu lernen, die nur wenige Male in einem Korpus auftreten.

In dieser Arbeit schlagen wir eine Methode vor, um die Qualität von Worteinbettungen
für seltene Wörter zu verbessern. Dazu wird ein NN, das Einbettungen lernt, mit dünnbe-
setzten verteilten Vektoren initialisiert, die für seltene Wörter aus einem gegebenen Korpus
vorberechnet werden.

Wir führen verschiedene Methoden ein, solche verteilten Initialisierungsvektoren zu
erstellen und untersuchen sie: Wir betrachten unterschiedliche Möglichkeiten, 1-aus-N
Repräsentationen für häufige Wörter und verteilte Vektoren für seltene Wörter zu kom-
binieren, vergleichen Ähnlichkeitsfunktionen für verteilte Vektoren und stellen Norma-
lisierungsansätze vor, die auf die Repräsentation angewandt werden können, um die Am-
plitude des Eingabesignals zu kontrollieren.

Zur Bewertung unserer vorgeschlagenen Modelle betrachten wir zwei Aufgaben. Die
erste Aufgabe ist die Beurteilung von Wortähnlichkeiten. Dabei werden Worteinbettun-
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gen verwendet, um Ähnlichkeiten zwischen den Wörtern eines gegebenen Wortpaares zu
berechnen. Diese werden dann mit menschlichen Bewertungen verglichen. Bei Verwen-
dung der gleichen NN Architektur zeigen Worteinbettungen, die mit verteilten Initial-
isierungen trainiert wurden, signifikant bessere Leistungen als Worteinbettungen, die mit
traditionellen 1-aus-N Initialisierungen trainiert wurden.

Die zweite Aufgabe ist Sprachmodellierung, das heißt, die Vorhersage der Wahrschein-
lichkeit einer gegebenen Wortsequenz. Dabei zeigen Modelle mit verteilter Initialisierung
geringfügige Verbesserungen gegenüber Modellen mit 1-aus-N Initialisierungen.

Wir betrachten außerdem das weit verbreitete word2vec (Wort-zu-Vektor) Programm
(Mikolov et al., 2013a), das verwendet wird, um unüberwacht Worteinbettungen zu lernen.
Die Hauptfrage, die wir untersuchen, ist, wie stark die Qualität der gelernten Worteinbet-
tungen von dem Startwert der Zufallszahlen abhängt. Die erhaltenen Ergebnisse deuten
darauf hin, dass das Training mit word2vec stabil und zuverlässig ist.



Chapter 1

Introduction

1.1 Motivation

Starting from 1950s, with development of computer science, the question of creation of
machines that are powerful enough to show intelligent behavior arose. At first, expectations
of researches from the 1950-60s were extremely positive: fast progress was achieved with
coarse modeling methods, on non-tedious tasks together with quite unsatisfactory solution
of hard ones (see Dreyfus (1972)). But all the bright expectation in AI research were
broken in mid 1960s1, that slowed down artificial intelligence (AI) development. It also
was shown that much more efforts should be put in order to make systems more human-like
and applicable to real-world problems.

It appeared to be hard to tackle the problem of AI creation all at once. Thus AI re-
search field got split in several sub-fields, where researchers try to solve specific problems
depending on the type of input information and human cognitive functions (e.g., thought,
perception, memory, speech) to imitate. For example, perception is addressed in pattern
recognition, data and text mining, information extraction; psycholinguistics focuses on the
interconnection of awareness, thought and linguistics; knowledge extraction and manage-
ment, expert systems and knowledge bases try to extract, keep and use knowledge from
different sources; etc.

The modeling of the complete human cognition is not possible without modeling of
human language. Speech played an extremely important role in the formation and develop-
ment of humankind. Language helps people to communicate their experience, accumulate
and transfer it through the time. Speech is the basis of the human thoughts; moreover,
reasoning and abstract thinking are not possible without speech.

Natural Language Processing (NLP) is a field that studies how to process – understand
and generate – natural language by the computational means.

There is a big number of problems that NLP is occupied with:

• speech and acoustic signals processing are sorted out by speech recognition, speech

1For examples see ALPAC report (Pierce and Carroll, 1966) with critique of machine translation or
book by Minsky and Papert (1972) on perceptrons/neural networks.
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segmentation, digital signal processing ;

• written text is digitized by means of optical character recognition;

• digitized representation is then tokenized on sentence or word level (this is extremely
important for unsegmented languages like Chinese, Japanese, Thai);

• syntactic information is then acquired with help of parsing, part-of-speech tagging
and morphological segmentation;

• word sense disambiguation, sentiment analysis, relationship extraction, coreference
resolution extract semantics from the text;

• machine translation tries to represent semantics of a sentence in a source language
with a sentence in a target language;

• when search is needed, information retrieval, information extraction, question an-
swering start to play role; and so on.

One of the popular toolkits to work on NLP problems is provided by Machine Learning
(ML). The idea behind ML is to make machines (computers) able to learn – “to improve
automatically with experience”(Mitchell, 1997).

ML algorithms can be divided into 3 categories based on the feedback that is available
for them during the training:

• supervised algorithms, when the input and desired output are given;

• unsupervised algorithms, when only input signals are given;

• algorithms with reinforcement, when some feedback is available during the training,
but the relations between input and output are not well-defined.

One of the main disadvantages of supervised methods is that the correct outputs should
be available for the algorithm to use, and to provide these correct outputs huge amount
of human labor is needed. On the other hand, unsupervised methods can learn from raw
data with no manual work involved.

There are many algorithms and models proposed by ML researchers: decision trees,
support vector machines, linear classifiers, hidden Markov models to name a few. One of
them, artificial neural networks, is in our particular interest.

Neural Networks (NNs) were proposed as an attempt to emulate human brain. Its
main basic element is a neuron, that corresponds to a unit in a NN. Units are organized
in interconnected layers: from the input layer where the input signals come from, through
a number of hidden layers inside the network, to the output layer where the output of
the network is produced. Signals undergo non-linear transformations passing through the
network that emulates neural activity in a human brain.

Deep Learning (DL) is a part of ML that attempts to discover structure in the input
data with employment of NNs with multiple layers and non-linear transformations. With a
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success in vision and speech processing fields, DL also achieves good results in NLP tasks,
e.g., question answering (dos Santos et al., 2016), part of speech tagging (Huang et al.,
2015), paraphrase identification (Cheng and Kartsaklis, 2015).

The big area where DL plays an important role is representation learning (also called
feature learning). In NLP, we rarely work with raw data itself; usually, the input is
tokenized and each token (e.g., word or letter) receives its digital representation. Con-
structing this representation, we would like it to reflect properties that are helpful in
solving particular NLP tasks. Many types of word representations exist: cluster-based
representations, distributional representations, distributed representations (also known as
word embeddings).

In Chapter 2, we would like to discuss existing approaches to build distributed word
representations in more details and propose an extension of a well-known tool word2vec
that allows to increase quality of learned word embeddings for rare words.

Another NLP task where word representations are useful is language modeling – task of
predicting probability of a given word sequence. In decades of research, different approaches
were proposed to tackle language modeling and its smoothing objective, such as n-gram
models, factored language models, neural language models. Different DL architectures also
were applied to solve this task. We will discuss them in detail in Chapter 3, together with
our proposed extension of an existing log-bilinear language model.

word2vec, a very popular tool to learn distributed word representations, was developed
by (Mikolov et al., 2013a). Together with its modifications, it is widely used by NLP
researchers nowadays. Despite of the popularity, only several works attempts to study how
and why word2vec works. In Chapter 4, we would like to shed some light on how usage of
different initial random seeds influences on learned with word2vec word embeddings. We
compare the structure of learned embedding spaces and perform qualitative analysis of the
obtained embeddings.

1.2 Thesis outline

The main question we are investigating in the scope of this work is how to improve perfor-
mance of NLP tasks through improving quality of word representations learned by NNs.

In Chapter 2, we talk about existing word representations and importance of learning
good representations for rare words. We propose to address this problem by introducing
distributional representations of words at the input layer of NN architecture. Then we
describe a base of our work: word2vec tool and construction of distributional representa-
tions. Experiments follow, with description of training corpus, evaluation task, evaluation
data sets and use of hyper-parameter θ that is responsible for determining which words are
rare. Discussion of the results highlights the important findings and canvasses the role of
chosen hyper-parameters (θ values and types of distributional models), variability of the
results and scalability of the proposed approach. Further, related works are listed, with
conclusion and possible extension of our approach at the end.

In Chapter 3, we talk about application of our suggestion – initialization of NNs with
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distributional words representations – to language modeling task. We start introducing
existing language models, continue with more detailed and formal description of language
modeling framework with proposed distributional representations and their integration at
the input layer of log-bilinear language model. We also talk about models training, inter-
polation and evaluation. Experimental setup describes corpus, target words vocabularies,
scope of rare words threshold – hyper-parameter θ, and training regime of NN. In the Ex-
periments, we give a detailed description of the set of experiments that we conduct in order
to test our proposal: for each experiment, we first give a short motivation, followed by the
used distributional representations and training parameters; results and their discussion
follow. Conclusions that lead us to certain decisions in further experiments are mentioned
at the end. The Discussion section sheds light on the performance with respect to the
change of hyper-parameters and high-level decisions: choice of θ, distributional schemes,
learning rate. Conclusion summarizes the results of experiments; and future work sketches
the further research directions. Related work section briefly talks about works in the scope
of our research topic.

In Chapter 4, we investigate the performance of word2vec depending on the initial
random seed that is used to initialize the word embedding matrix. We first give overview
of the different model types word2vec can train with the hyper-parameters involved. Then
we describe the sources of randomization in word2vec: those variables and architecture
decisions that result in different learned embeddings. We introduce our modification of
the source code that allow us to change the random seed, and report the values of other
hyper-parameters used to launch word2vec. Corpus and evaluation metrics are described
right before we proceed to the experiments. Related work section sheds some light on the
existing works that study word2vec tool. Conclusion summarizes the obtained results, and
future work shares some ideas about the extensions of the current investigation.

1.3 Contributions of the Thesis

In our work, we present several original ideas:

1. Distributional initialization of neural networks (by the example of word2vec and
vLBL).

2. Different treatment of words with different frequency by combination of distributional
and one-hot vector representations.

3. Proposal of distributional representations with use of different combination schemes
(mixed, separate, ONLY), different association functions (co-occurrence in a window,
with use of positioned PPMI and positioned letter 3-grams), and different normal-
ization schemes (non-diagonal elements were replaced with constant; scaled; rows or
columns got normalized with different scaling coefficients).

4. Analysis of the word2vec tool: analysis of the learned word embeddings with respect
to different initial random seeds used in the word embedding matrix initialization.
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We present empirical evaluation of ideas 1–3 on word similarity judgment task and
language modeling task.

Analysis of the proposed models is provided for different hyper-parameters and distri-
butional representations, with the discussion of the achieved performance.

Analysis of the word2vec tool is performed by means of the models trained for different
random seeds: we compare the number of the common words in the top 10 nearest neigh-
bors, the distances between embedding vectors for words, and the difference in a quality
of the learned embeddings employing word similarity judgment task.
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Chapter 2

Learning Better Embeddings for
Rare Words Using Distributional
Representations

This chapter covers work already published at international peer-reviewed con-
ferences. The relevant publication is (Sergienya and Schütze, 2015). The re-
search described in this chapter was carried out in its entirety by myself. The
other author(s) of the publication(s) acted as advisor(s) or were responsible
for work that was reported in the publication(s), but is not included in this
chapter.

2.1 Summary

In this chapter, we are going to talk about our investigation on learning better word
embeddings for rare words using distributional representations for Neural Network (NN)
training.

The main goal of this work is to improve distributed words representations, with em-
phasis on representations of rare words. There are two main types of word representations:
low-dimensional dense word embeddings that capture the contextual semantic informa-
tion and high-dimensional distributional vectors in which each dimension corresponds to
a context word. We propose to initialize an embedding-learning model with distributional
vectors. Evaluation on word similarity tasks shows that this initialization significantly
increases the quality of embeddings learned for rare words.

2.2 Introduction

Machine Learning (ML) provides a great toolkit to solve real-world problems of different
nature. One of the main challenges of the ML is to find a way to represent real-world
objects in a machine-readable format, namely find an approach to build their explicit
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numerical representations. Since results of ML algorithms deeply depend on the quality of
their input, learning better representations for objects of interest is a way to improve the
quality of ML systems in general.

In a course of ML research, many ways to represent raw input data were developed. The
simplest one is symbolic representation: arrange objects in a list and then address them by
their index in this list. Other widely used approaches start with decisions on substantial
characteristics of objects of interest (feature engineering) and assess the presence of such
characteristics on a given scale (feature learning).

Application-dependent feature learning is widely used in fields with perceptive input:
to represent audio and visual signals. For audio signals, most popular are RASTA-PLP
features [Hermansky (1990), Hermansky and Morgan (1994)] and MFCC features (Mer-
melstein, 1976) that capture energy in a signal at various frequencies. For visual process-
ing, extracted features usually include information about contours (active contour model),
edges, corners and points of interest, ridges, regions with constant properties, such as
brightness or color (blob detection); image histograms and SIFT features (Lowe, 1999)
are also widely used. In Natural Language Processing (NLP), a word feature vector usu-
ally includes a word’s morphological structure, part-of-speech tags, shape features (e.g.,
capitalization, hyphenation, use of numbers).

The modern trend in ML is to reduce manual work needed for feature engineering
by introduction of representation learning – an unsupervised way to automatically detect
features from big amounts of unlabeled data. Taken into account the speed of growth of
computational power, representation learning becomes a more and more interesting area
of research.

Currently, big collections of unlabeled text data are available for language processing,
so it is not surprising that many ways of automatic construction of word representations
were proposed targeting NLP applications. They can be divided into 3 main groups:
clustering-based, distributional word representations, and distributed word embeddings.

Clustering-based methods propose to cluster words from a corpus according to the con-
texts in which they occur. The most famous example of clustering approach was introduced
by Brown et al. (1992) and is based on the idea that vocabulary partitioning should max-
imize the average mutual information. This representation is used in language modeling
and represents the probability of the next word as a product of the probability of the
next class and the probability of the next word given its class. The clustering approach
is successfully used in many NLP tasks, e.g. name entity recognition (Miller et al., 2004),
dependency parsing (Suzuki et al., 2009).

Distributional methods in modeling word representations rely on the idea called the
distributional hypothesis originated from work (Harris, 1954): “difference of meaning cor-
relates with difference of distribution.” To put this another way, distributional regularities
in the text correlate with its meaning; and distributional methods aim to detect these
regularities. These methods represent words as vectors of a co-occurrence matrix in which
rows correspond to target words and columns correspond to contexts. The main differences
between proposed implementations of the distributional hypothesis arise from the defini-
tion of context, the association measure between word and its context, and the function
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to measure similarity between two given words. Context representations include a window
of words of a fixed size, or a sentence, or a paragraph, or a whole document that contains
or corresponds to a target word; context can also reflect structural relationships: it can
indicate whether a target word is in syntactic or semantic relationships with contexts, e.g.
is a a head of noun phrase or is a subject of a predicate. Association measure between a
target word and its context can be represented, e.g., with an indicator variable (0 or 1), a
co-occurrence count or its modification (e.g. PMI, PPMI), or account for frequency of a
target word and contexts (e.g. tf–idf). Similarity of given words is usually measured as a
cosine or the Euclidean distance between their vectors. The most well-known examples of
distributional models include:

• Hyperspace Analogue to Language (HAL) (Lund and Burgess, 1996): in this model,
context vocabulary is the same as target vocabulary, context is a window of a fixed
size; a target-context matrix contains a number of co-occurrences of that pair; simi-
larity measure is the Euclidean distance.

• Latent Semantic Analysis (LSA) (Dumais et al., 1988) and Latent Semantic Indexing
(LSI) (Deerwester et al., 1990) analyze relationships between a set of documents
(contexts) and the terms (targets) they contain. The term-document matrix consists
of tf–idf values, and singular value decomposition (SVD) is used to reduce the number
of rows in it. Similarity between documents is measured by cosine between column
vectors.

• Latent Dirichlet allocation (LDA) (Blei et al., 1993) is a generative probabilistic
model of a corpus, where every document is seen as a mixture of latent topics, and
each topic is characterized by a distribution over words.

• Construction of a co-occurrence matrix can be memory and time consuming, that
is why several incremental approaches where proposed. Řeh̊uřek and Sojka (2010)
describe LSA matrix construction for document streaming. Random indexing by
(Sahlgren, 2005) applies Johnson–Lindenstrauss lemma about random projections
from high- to low-dimension Euclidean space to reduce dimensionality of co-occurrence
matrix.

Distributed word embeddings are low-dimensional (usually from 50 to 500) dense vector
representations of target vocabulary, where space geometry agrees with linguistic regu-
larities. The main idea behind distributed word representations is to beat the curse of
dimensionality that distributional methods suffer from: a test sequence of words is often
never seen during the training, that leads to zero probability of that sequence; and in order
to avoid such cases exponential number of parameters needed to be trained. Use of dense
word representations with proper probability function of such representations reduces the
number of trained parameters (makes it proportional to the size of the vocabulary) and
helps to avoid zero probabilities of test sequences. Common ways to obtain word em-
beddings are to use NNs or via dimensionality reduction of co-occurrence matrices. Deep
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Learning (DL), a branch of ML that uses multiple layer NNs with complex non-linear
transformations for data processing, is currently one of the most popular approaches to
apply NNs for embedding learning:

• Neural Network Language Model (NNLM) by Bengio et al. (2003) introduce NN
architecture for language modeling task (predict the next word of a sequence given
n−1 previous words). Words in the vocabulary are represented with low-dimensional
real-valued feature vectors. This model shows better results than traditional n-gram
language models.

• Collobert et al. (2011) use a DNN architecture where input is trainable word em-
beddings and output is a score per possible tag for a given task: part of speech
tagging, name entity recognition, chunking, or semantic role labeling. They compare
performance of this model with a model where initial word embeddings are trained
in a language modeling manner on a large volume of unlabeled data, and show that
use of pre-trained embeddings improves performance. They also explore an idea of
multi-task learning – where embedding level of the NN architecture is shared between
models with different supervised tasks.

• Log-Bilinear language model (LBL) by Mnih and Hinton (2007), learn word repre-
sentations by predicting a target word embedding given embeddings of its context. It
does not have non-linearities, but perform comparatively well to n-grams and other
NNLMs. This model was optimized by means of hierarchical clustering (Mnih and
Hinton, 2008) and negative sampling (Mnih and Teh, 2012) training procedure to
hierarchical LBL.

• Turian et al. (2010) embeddings are trained based on combination of existing embed-
dings of Brown clusters, Collobert et al. (2011) and Mnih and Hinton (2008) with
tuning on name entity recognition and chunking tasks.

• word2vec tool (Mikolov et al., 2013a) allows training of two log-linear models that
became a popular baseline in NLP research. Proposed architectures aim to increase
training speed while giving up the non-linearity. They have projection layer that is
shared for all word positions in each context, followed by an output layer. Word
embeddings are trained in an unsupervised manner by predicting a word given its
context or predicting a context given middle word. In greater detail, word2vec models
are described in Section 2.3.1.

Several techniques of dimensionality reduction of co-occurrence matrices exist, and their
result are sometimes seen as a distributed representation formation:

• Statistical and algebraic methods include SVD, Principal Component Analysis (PCA,
Pearson (1901)), Independent component analysis (ICA), Canonical correlation anal-
ysis (CCA, Hotelling (1936)), Two Steps CCA (TSCCA, Dhillon et al. (2012)), Sparse
Random Projections (Li et al., 2006).
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• Hellinger PCA proposed by Lebret et al. (2013) induces initial representations using
Hellinger distance for PCA technique and then specializes them for tasks of named
entity recognition and movie review scoring. NNs with such initialization perform
similar or even outperform embeddings of Collobert et al. (2011), Turian et al. (2010),
and Mnih and Hinton (2008).

• Another method of dealing with large dimensionality or co-occurrence matrix –
Stochastic Low-Rank Approximation – was proposed by Lebret and Collobert (2015).
It encodes a distribution of probabilities of words given their contexts by reducing
reconstruction error of low-rank approximation.

• GloVe (Pennington et al., 2014) is a log-bilinear regression model that captures
global corpus statistics directly from a given corpus by factorizing word-to-word
co-occurrence matrix to obtain target and context embeddings.

(Levy et al., 2015) shows that despite of a confrontation between distributed and dis-
tributional methods for learning better word representations, popular word2vec and GloVe
models can be reformulated in a matrix factorization problem with a specific choice of
hyper-parameters. If such hyper-parameter values are applied to an SVD of PPMI co-
occurrence matrix, the performance of SVD becomes comparable to the mentioned dis-
tributed models.

2.2.1 Rare words in NLP

Why should we care about rare words? According to Zipf’s law, the frequency of any
word in a given text corpus is inversely proportional to its rank in the frequency table.
For example, in a ukWaC+WaCkypedia corpus (see Section 2.4.1), 82% of its vocabulary
have frequency ≤ 5. Rare words are often words of interest for NLP applications: in
languages with rich morphology, some word forms can appear very limited number of times
in a training corpus; new words (or new word senses) appear all the time, (e.g., çàñòàáèë

(from slogan during the President elections in 2010 “Çà ñòàáèëüíîñòü!” – “For stability!”):
person that supports political course of the President in Belarus; âàòíèê (from “âàòíèê”
– extremely pragmatic and cheap cotton-filled coat popular in USSR): person who is fanatic
Russian/Soviet patriot, since 2011), or get borrowed from another language. It is tempting
to fix vocabulary and ignore words below some frequency thresholds, but ignoring such
words would mean to throw away useful and important information as well. Thus good
estimation of rare words’ embeddings can result in a better and richer performance of NLP
applications.

2.2.2 Problem statement

In NLP with DL, traditional initialization of a NN is one-hot initialization, where all words
are referred with their index in the vocabulary [e.g., Bengio et al. (2003), Collobert et al.
(2011), Mikolov et al. (2013a)]. This index representation can be seen as a vector with
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all-but-one zeros and one 1 at the word’s index position. The main drawback of this one-
hot representation is that it does not contain any usable information about a word except
for its identity. For example, words like laptop and laptops have indices 6626 and 11769
respectively, that completely ignores the fact that these words are semantically the same
and differ only in number. Hence one-hot representation makes it hard for NN to learn
good word representations just from a few examples seen during the training. Adding some
extra knowledge definitely could help the trainer to improve learned representations.

This work investigates one possible way to incorporate extra knowledge by means pro-
posed in distributional semantics: for every target word in a vocabulary build a distribu-
tional vector and provide this vector as an input to a NN.

We study two ways to build distributional vectors, together with two association mea-
surement schemes.

2.3 Methods

2.3.1 word2vec

The tool word2vec was introduced by Mikolov et al. (2013a). It provides two log-linear
models, continuous bag-of-words and continuous skip-gram, to learn distributed word rep-
resentations. One of the big advantages of the word2vec tool is that it avoids dense matrix
multiplication; that makes its training extremely efficient and suitable to be applied to
large amounts of unstructured text data.

The continuous bag-of-words model (CBOW) architecture consists of an input
layer, one projection layer and an output layer as shown in Figure 2.1 (left). This model
is called “bag-of-words” because it ignores the order of the words in the context at the
projection layer: embeddings of the context words influence equally on the combined rep-
resentation. Also words from the context are represented with the same embedding vector
disregarding their position in the current context.

The continuous skip-gram model (Skip-gram) architecture consists of an input
layer, one projection layer and an output layer as shown in Figure 2.1 (right). This model
is a bag-of-words model: the projection layer is shared among all words, so the position
information is not taken into account during the training. The model tries to maximize
prediction of a word based on another word from the context. Precisely, given an input
sequence of words from a training corpus, w1, w2, ..., wT , the skip-gram model tries to
maximize the average log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j|wt),

where c is the size of the context window.
To estimate p(w|wI), Mikolov et al. (2013b) use a hierarchical softmax : a reduced

version of a full softmax that benefits by structuring the possible output options in a
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binary tree. This reduces the number of nodes for evaluation from vocab size output
nodes to log2 vocab size output nodes. A Huffman binary tree (Huffman, 1952) is used in
the implementation.

Input Projection Output

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Input Projection Output

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

SUM

Figure 2.1: word2vec architectures: (left) CBOW predicts the current word based on the context
of this word; (right) Skip-gram predicts surrounding words given the current word

This architecture achieves competitive performance on a number of NLP tasks (word
similarity, relational analogy) and is used as a baseline to compare with.

Skip-gram model is considered to perform better for infrequent words1(Mikolov et al.,
2013b), therefore we choose this model as a basis for our experiments.

2.3.2 Association measurement schemes

Association measurement schemes decide which association function is used in the creation
of distributional representations.

The two schemes described in this work employ functions that differ in the information
they provide about the target word: the BINARY scheme concentrates on whether the
target word and context words appear in the same window in the corpus; the PPMI scheme
measures a positive pointwise mutual information (PPMI) – a degree of association between
the target and context words.

BINARY. Let v1, . . . , vn be the vocabulary of context words. In BINARY scheme, every
entry 1 ≤ i ≤ n in the distributional vector of a target word w is set to 1 iff w and vi
co-occur at a distance of at most ten words in the corpus and to 0 otherwise.

PPMI. As an alternative to binary {0, 1} values, PPMI can be used:

PMI(w, vi) = log P (w,vi)
P (w)P (vi)

,

1code.google.com/p/word2vec/

code.google.com/p/word2vec/
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Figure 2.2: One-hot vectors of frequent words and distributional vectors of rare words are
separate in separate initialization (left) and overlap in mixed initialization (right). This example
is for BINARY weighting.

PPMI(w, vi) =

{
0, PMI(w, vi) < 0,
PMI(w, vi), otherwise,

where P (w, vi) is the probability to observe a target word w in the window of 10 words to
the left and 10 words to the right with respect to a context word vi, and P (w) and P (vi)
are the probabilities to observe a word w and a context word vi in the corpus respectively.

Pointwise mutual information (PMI) is a measure of association used in information
theory and statistics. It was first used in the distributional similarity area by Church and
Hanks (1990) and popularized by Turney (2001). The PPMI variant – positive PMI – was
known since (Niwa and Nitta, 1994a), and is a common association measure used in NLP
[Bullinaria and Levy (2007), Baroni et al. (2014), S and Kaimal (2012)].

In PPMI scheme, frequent words receive one-hot representations and rare words receive
PPMI representations: entry 1 ≤ i ≤ n in the distributional vector of a target word w is
set to the PPMI of w and vi. In order to keep all values in the initialization matrix in the
same range, we rescale values in the PPMI vectors to ensure they are in [0, 1], dividing
them by the maximum value from the initial vectors of all words:

PPMIrescaled(w, vi) =
PPMI(w, vi)

maxk,j PPMI(wk, vj)
.

As all PPMI values for following experiments were rescaled, we will refer to them as
“PPMI” for simplicity.

2.3.3 Combination schemes

Created distributional vectors for rare words are then combined with one-hot vectors for
frequent words in two different manners: separate and mixed (see Figure 2.2). Recall that
n is the dimensionality of the distributional vectors. Let k be the number of words with
frequency > θ, where the frequency threshold θ is a parameter.
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SEPARATE. In separate initialization, the input representation for a word is the concate-
nation of a k-dimensional vector and an n-dimensional vector. For a word with frequency
> θ, the k-dimensional vector is a one-hot vector and the n-dimensional vector is zero
vector. For a word with frequency ≤ θ, the k-dimensional vector is a zero vector and the
n-dimensional vector is its distributional vector.

MIXED. In mixed initialization, the input representation for a word is an n-dimensional
vector: a one-hot vector for a word with frequency > θ and a distributional vector for a
word with frequency ≤ θ.

In summary, separate initialization uses separate representation spaces for frequent
words (one-hot space) and rare words (distributional space). Mixed initialization uses the
same representation space for all words; and rare words share weights with the frequent
words that they co-occur with.

2.4 Experimental setup

2.4.1 Training corpus

For training, we use a corpus created by Baroni et al. (2009): a concatenation of ukWaC
and WaCkypedia2. ukWaC is a 2 billion word corpus constructed from the Web limiting
the crawl to the .uk domain and using medium-frequency words from the British National
Corpus (BNC) as seeds. WaCkypedia is a 2009 dump of the English Wikipedia (about
800 million tokens), cleaned using the Wikipedia extractor. The corpus is preprocessed
based on the procedure described in (Turian et al., 2010): we remove sentences that are
less than 90% lowercase; lowercase; replace URLs, email addresses and digits with special
tokens; tokenize with (Schmid, 2000); replace words of frequency 1 with <unk>; and add
end-of-sentence tokens. After preprocessing, the corpus contains 2.4 billion tokens and 2.7
million word types.

In our experiments, target vocabulary and context vocabulary consist of the set of
unique words from the training corpus.

2.4.2 Evaluation task

To estimate the quality of the trained word embeddings, the word similarity judgment task
is employed. The task setting consists of a similarity data set(s) that contains pairs of words
together with similarity rating. The tested system then tries to predict the similarity rating
given pairs of words from the data set. The Spearman’s correlation coefficient between
provided and predicted ratings is measured, and a high correlation score is treated as
evidence of high quality of the representations created by the system.

2wacky.sslmit.unibo.it

wacky.sslmit.unibo.it
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RG MC MEN WS RW SL
# pairs 65 30 3000 353 2034 999
# words 48 39 751 437 2942 1028

Table 2.1: Number of words and pairs in the six similarity data sets used for evaluation.

2.4.3 Evaluation data sets

To evaluate trained word embeddings, we use six word similarity judgment data sets:

RG (Rubenstein and Goodenough, 1965) data set contains 65 word pairs with one score
per pair on a scale from 0 to 4. These scores are the means of judgments made by 51
subjects on the degree to which paired words are synonymous.

Ex.: {bird, cock} = 2.63; {graveyard, madhouse} = 0.44.

MC (Miller and Charles, 1991) data set is a 30 pairs subset of RG data set, rated by
38 undergraduate subjects. The pairs of nouns were chosen to cover different levels of
similarity and were rated on a scale from 0 to 4. The average rating was reported.

Ex.: {journey, voyage} = 3.84; {graveyard, forest} = 0.84.

MEN3 was introduced by (Bruni et al., 2012) to test multimodal systems. It contains
3,000 word pairs with semantic relatedness ratings provided by Amazon Mechanical Turk
and normalized to [0, 50]. These words were randomly selected from combination of ukWaC
and WaCkypedia corpora with occurring frequency ≥ 700.

Ex.: {dance, dancers} = 49; {bikini, pizza} = 1.

WordSim353 (WS)4 (Finkelstein et al., 2001) data set contains 353 pairs of words that
were rated by 13 subjects on an 11-point scale to assess words attributional similarity.

Ex.: {professor, doctor} = 6.62; {professor, cucumber} = 0.31.

The Stanford Rare Word (RW)5 (Luong et al., 2013) data set contains 2034 pairs of rare
words. Word candidates, found in Wikipedia with frequencies up to 10000, were selected
randomly from 5 frequency bins and paired with interesting words picked from WordNet.
Then created pairs were rated by 10 humans on a scale of [0, 10].

Ex.: {casteless, unwanted} = 7.50; {radiators, beginning} = 0.

SimLex-999 (SL)6 is a data set introduced by (Hill et al., 2015) to focus on capturing
similarity, rather than relatedness or association. It contains 999 pairs: 666 noun-noun,
222 verb-verb and 111 adjective-adjective pairs. The scores were obtained from 500 native
English speakers, and lay on a scale of [0, 10].

Ex.: {cow, cattle} = 9.52; {portray, notify} = 0.78; {guilty, ashamed} = 6.38.

Data sets statistics are presented in the Table 2.1.

16 pairs in RW that contain at least one word that is not covered by the corpus vocab-
ulary were excluded from the evaluation.

3clic.cimec.unitn.it/~elia.bruni/MEN
4alfonseca.org/eng/research/wordsim353.html
5www-nlp.stanford.edu/~lmthang/morphoNLM/
6cl.cam.ac.uk/~fh295/simlex.html

clic.cimec.unitn.it/~elia.bruni/MEN
alfonseca.org/eng/research/wordsim353.html
www-nlp.stanford.edu/~lmthang/morphoNLM/
cl.cam.ac.uk/~fh295/simlex.html
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Figure 2.3: Corpus frequencies of the words in
the similarity data sets.

[1, 10] [1, 20] [1, 50] [1, 100]
RG 0 0 0 0
MC 0 0 0 0
MEN 0 0 0 0
WS 0 0 0 0
RW 24 55 189 387
SL 0 0 1 1

Table 2.2: Number of words in frequency inter-
vals in the similarity data sets.

2.4.4 Corpus downsampling

The goal of our work is to investigate the effect of using distributional initialization vs. one-
hot initialization on the quality of embeddings of rare words. Therefore we decided to use
words from word similarity data sets as a proxy to assess the quality of word embeddings
learned for rare words. However, except for RW, the six data sets contain only a single word
with frequency ≤100, all other words are more frequent (see Figure 2.3 and Table 2.2).

To address this issue, all words in the six data sets are artificially made rare by a pro-
cedure we called corpus downsampling. We randomly choose θ occurrences of the words
from the similarity data sets in the corpus (if a word occurs less than θ times, all of it oc-
currences were chosen), and replace all other occurrences with a different token (e.g., “fire”
is replaced with “*fire*”). This procedure ensures that all words from the six data sets are
rare during the training and that our setup directly evaluates the impact of distributional
initialization on rare words.

For example, in the training corpus words from the similarity data sets have the follow-
ing frequencies: stadium: 68,115, quality: 631,619, indirectness: 64. After downsampling,
all of those words will have frequency θ.

2.4.5 Use of the parameter θ

Note that we use θ for two different purposes:

(i) θ is the frequency threshold that determines which words in the vocabulary are clas-
sified as rare and which as frequent: in Figure 2.2 changing θ corresponds to moving
the horizontal dashed line in separate and mixed initialization up and down;

(ii) θ is the parameter that determines how many occurrences of a word are left in the
corpus after the corpus downsampling procedure.
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We covary these two parameters in the experiments; e.g., we apply distributional ini-
tialization with θ = 20 (to the words with frequency ≤ 20) to a corpus constructed to
have θ = 20 occurrences of words from similarity data sets. We do this to ensure that all
evaluation words are rare words for the purpose of distributional initialization and so we
can exploit all pairs in the evaluation data sets for evaluating the efficacy of our method
for rare words.

We investigate changes in the quality of the learned word embeddings for four values of
the frequency threshold θ ∈ {10, 20, 50, 100}. One of the questions to asks here is whether
the value of θ should depend on the size of the training corpus. Our intuition is that it is
independent of corpus size. If a certain amount of information – corresponding to a certain
number of contexts – is required to learn a meaningful representation of a word, then it
should not matter whether that given number of contexts occurs in a small corpus or in a
large corpus. However, if the contexts themselves contain many rare words (which is more
likely in a small corpus), then a corpus size could be an important variable to take into
account.

2.4.6 word2vec modification

We modified word2vec7 (Mikolov et al., 2013a) to accommodate distributional initializa-
tion; to support distributional vectors at the input layer, we changed the implementation
of activation functions and back propagation. Constructed distributional vector of words
are provided to the model together with the vocabulary before the training starts. For
training, we use the Skip-gram model, hierarchical softmax, set the size of the context
window to 10 (10 words to the left and 10 to the right), min-count to 1 (train on all to-
kens), embedding size to 100, sampling rate to 10−3 and train models for one epoch (see
Table 2.3).

2.4.7 Training regime

For each of the four values of the frequency threshold θ ∈ {10, 20, 50, 100}, we train 5
word2vec models: one with one-hot initialization and one for each of the four combinations
of association measurement (BINARY, PPMI) and distributional initialization (mixed,
separate). In total, it results in 4× (1 + 2× 2) = 20 models trained.

To get a reliable assessment of performance, we perform 5 training runs, starting with
a different seed for the corpus downsampling and initialize the parameters of the models
randomly. As results, averaged correlation values of the 5 runs are reported. Every model
is trained for 1 epoch, that takes ∼3 hours to train on 23 CPU cores, 2.30GHz. Other
word2vec parameters are reported in Table 2.3.
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parameter value description

cbow 0 use Skip-gram architecture (for CBOW architecture, cbow=1)
hs 1 use hierarchical softmax
size 100 word embedding size
window 10 size of the context window

(10 words to the left and 10 words to the right)
min-count 1 discard words that appear less than <int> times
sample 0.001 Set threshold for occurrence of words. Those that appear with higher

frequency in the training data will be randomly down-sampled;
default is 0.001, useful range is (0, 0.00001)

negative 0 do not use negative examples
iter 1 number of training epochs
alpha 0.025 initial learning rate; default value for Skip-gram model
threads 23 use 23 threads to train a model

Table 2.3: Parameter values used for word2vec training.

2.5 Experimental results and discussion

Table 2.4 shows experimental results, averaged over 5 runs. The evaluation measure is
Spearman’s correlation ×100 between human and machine-generated pair similarity judg-
ments.

2.5.1 Frequency threshold θ

The main result is that for θ ∈ {10, 20} distributional initialization is better than one-hot
initialization (see bold numbers): compare lines 1&5 with line 9; and lines 2&6 with line
10. This is true for both mixed and separate initialization, with the exception of WS, for
which mixed (column G) is better in only 1 (line 5) of 4 cases.

Looking only at results for θ ∈ {10, 20}, 18 of 24 improvements are significant8 for
mixed initialization and 16 of 24 improvements are significant for separate initialization
(lines 1&5 vs 9 and lines 2&6 vs 10).

For θ ∈ {50, 100}, mixed initialization does well for RG, MC and SL, but the gap
between mixed and one-hot initializations is generally smaller for these larger values of θ;
e.g., the difference is larger than 9 for θ = 10 (A1&A5 vs A/B9, C1&C5 vs C/D9, K1&K5
vs K/L9) and less than 9 for θ = 100 (A4&A8 vs A/B12, C4&C8 vs C/D12, K4&K8 vs
K/L12) for these three data sets.

Recall that each value of θ effectively results in a different training corpus – a training
corpus in which the number of occurrences of the words in the evaluation data sets has
been reduced to ≤ θ (cf. Section 2.4.5).

Our results indicate that distributional initialization is beneficial for very rare words

7code.google.com/p/word2vec
8Two-sample t-test, two-tailed, assuming equal variance, p < .05

code.google.com/p/word2vec
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– those that occur no more than 20 times in the corpus. Our results for medium rare
words – those that occur between 50 and 100 times – are less clear: either there are no
improvements or improvements are small.

Thus, our recommendation is to use θ = 20.

2.5.2 Scalability

The time complexity of the basic version of word2vec is O(ECWD log V ) (Mikolov et al.,
2013a) where E is the number of epochs, C is the corpus size, W is the context window
size, D is the number of dimensions of the embedding space, and V is the vocabulary
size. Distributional initialization adds a term I, the average number of entries in the
distributional vectors, so that time complexity increases to O(ECWD(log V + I)). For
rare words, I is small, so that there is no big difference in efficiency between one-hot
initialization and distributional initialization of word2vec. However, for frequent words I
would be large, so that distributional initialization may not be scalable in that case. So
even if our experiments had shown that distributional initialization helps for both rare and
frequent words, scalability would be an argument for only using it for rare words.

2.5.3 Binary vs. PPMI

PPMI scheme is almost always better than BINARY, with three exceptions (I8, L7, L8)
where the difference between the two is small and not significant. The probable explanation
is that as the PPMI values are real values in the [0, 1] interval, that allow them to convey
detailed, graded information about the strength of association between two words. In
contrast, the values in the BINARY scheme are from {0, 1} set: that allow them only
to indicate whether there was any instance of co-occurrence at all – without considering
frequency of co-occurrence and without normalizing for base frequencies.

2.5.4 Mixed vs. Separate

From the 48 pairs of mixed/separate models, where all other parameters are the same,
mixed models outperform separate ones in 34 cases, significantly so in 28. There are also 7
cases where separate models are significantly better than mixed. We attribute the better
performance of the mixed models to the weights rare and frequent words share. Information
about word distribution (as it is represented in the separate model) is not enough on its
own; what seems to be more helpful are the interconnections between frequent and rare
words that mixed initialization provides.

Moreover, mixed initialization is less variable – as a function of the parameter θ –
and more predictable than separate initialization: performance for mixed initialization
always goes up as θ increases, e.g., 56.54→ 59.08→ 63.20→ 68.33 (column A, lines 1–4).
In contrast, separate initialization performance often decreases, e.g., from 47.06 to 45.31
(column B, lines 1–2) when θ is increased. Since more information (more occurrences
of the words that similarity judgments are computed for) should generally not have a
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negative effect on performance, the only explanation is that separate initialization is more
variable than mixed and that this variability sometimes results in decreased performance.
Figure 2.2 explains this difference between the two initializations: in mixed initialization
(right panel), rare words are tied to frequent words, so their representations are smoothed
by representations learned for frequent words. In separate initialization (left panel), no
such links to frequent words exist, resulting in higher variability.

Because of its lower variability with respect to parameter θ, our experiments suggest
that mixed initialization is a better choice than separate initialization.

2.5.5 One-hot vs. Distributional initialization

Our experiments show that distributional representation is helpful for rare words. It is
difficult for one-hot initialization to learn good embeddings for such words, based on only
a small number of contexts in the corpus. In such cases, distributional initialization makes
the learning task easier since in addition to the contexts of the rare word, the learner
now also has access to the global distribution of the rare word and can take advantage of
weight sharing with other words that have similar distributional representations to smooth
embeddings systematically.

Thus, distributional initialization is a form of smoothing: the embedding of a rare word
is tied to the embeddings of other words via the links shown in Figure 2.2: the 1s in the
lower “rare words” part of the illustrations for separate and mixed initialization. As is
true for smoothing in general, parameter estimates for frequent events benefit less from
smoothing or can even deteriorate. In contrast, smoothing is essential for rare events.
Where the boundary lies between rare and frequent events depends on the specifics of the
problem and the smoothing method used, and is usually an empirical question. Our results
indicate that that boundary lies somewhere between 20 and 50 in our setting.

One of the intrinsic problems that our approach faces in its base design is that if
a word is rare, its distributional vector will be sparse and less informative, which does
not guarantee to be a good starting point for a NN trainer. This is true and suggests
that it may not be possible to learn a very high-quality representation for a rare word.
But what we want to show is that using the same word2vec training procedure, better
representations can be learned. Our explanation for obtained positive experimental results
is that distributional initialization implements a form of smoothing, that helps in case of
rare events.

2.5.6 Variance of results

Table 2.4 reports the averages of five runs. The variance of results was quite high for low-
performing models. For higher performing models – those with values ≥ 40 – the ratio of
standard deviation divided by mean ranged from .005 to .29 (see Table 2.5). The median
was .044. While the variance from run to run is quite high for low-performing models and
for a few high-performing models, the significance test takes this into account, so that the
relatively high variability does not undermine our results.
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A B C D E F G H I J K L
RG MC MEN WS RW SL

θ mixed sep mixed sep mixed sep mixed sep mixed sep mixed sep

1

B
IN

A
R

Y 10 .054 .228 .283 .407 .034 .023 .129 .082 .027 .080 .103 .146
2 20 .067 .026 .290 .448 .039 .032 .138 .074 .037 .012 .051 .091
3 50 .060 .066 .102 .230 .014 .011 .036 .034 .020 .026 .055 .069
4 100 .042 .065 .097 .212 .013 .005 .014 .052 .016 .039 .036 .057

5

P
P

M
I 10 .041 .141 .279 .095 .027 .032 .094 .047 .033 .090 .076 .131

6 20 .056 .045 .259 .217 .023 .013 .123 .093 .026 .023 .074 .072
7 50 .065 .067 .106 .206 .016 .010 .031 .029 .024 .026 .066 .044
8 100 .035 .056 .093 .247 .012 .008 .030 .035 .006 .023 .021 .103

9

on
e-

h
ot

10 .166 .968 .036 .091 .054 .241
10 20 .069 .500 .020 .115 .023 .104
11 50 .040 .145 .015 .017 .021 .056
12 100 .043 .048 .011 .020 .021 .066

Table 2.5: Standard deviations of Spearman’s coefficients divided by their mean values for results
reported in Table 2.4.

A B C D E F G H I J K L
RG MC MEN WS RW SL

θ mixed sep mixed sep mixed sep mixed sep mixed sep mixed sep

1

B
IN

A
R

Y 10 *54.61 43.34 36.29 34.60 *44.43 *45.92 33.90 *40.14 *25.06 20.31 *18.03 *13.77
2 20 *60.36 *46.92 *48.33 *35.14 51.93 *52.15 41.08 *47.66 *29.15 *27.07 *20.94 *17.21
3 50 *63.61 50.78 *53.52 36.58 58.25 53.83 44.14 45.76 31.33 29.19 *24.20 *22.10
4 100 68.20 52.58 60.95 34.05 61.97 55.28 48.04 45.18 32.87 29.66 *26.27 24.25
5

P
P

M
I 10 *55.11 *50.33 *37.36 *47.29 *48.68 *50.58 37.78 *45.88 *25.72 *22.99 *19.50 *15.75

6 20 *59.82 *54.03 *49.88 *50.61 *55.14 *57.25 43.41 *52.80 *29.57 *27.94 *21.91 *18.47
7 50 *65.69 *63.37 *58.15 *59.14 60.57 *61.34 46.41 55.23 32.03 30.08 *25.01 *21.59
8 100 *70.44 60.23 *66.17 55.66 63.33 61.00 48.50 56.06 32.89 31.01 *27.02 21.85

9

on
e-

h
ot

10 34.72 23.83 40.01 35.61 20.18 8.40
10 20 42.55 23.29 50.74 43.59 26.10 13.28
11 50 59.00 46.23 60.42 54.34 32.40 20.04
12 100 65.87 58.95 65.32 60.38 35.19 23.84

Table 2.6: Spearman’s correlation coefficients ×100 between human and embedding-based simi-
larity judgments, averaged over 10 runs. Correlations of models with distributional initialization
that are higher (resp. significantly higher) than corresponding one-hot correlations are set in bold
(resp. marked *).



24
2. Learning Better Embeddings for Rare Words Using Distributional

Representations

To justify the performance stability, we run our experiment for 5 more times, resulting
in 10 runs in total. Averaged results can be found in Table 2.6. The performance pattern
does not change much: models with distributional initialization that performed better on 5
runs maintain their reputations, with some correlation values becoming significantly higher
with comparison to Table 2.4 (line 2, columns B, D, H, J; columns A and C for line 8;
column F, line 7; and column J, line 5). The gain of performance for these models can be
explained with increase of differences between mean values of correlations of models with
distributional and one-hot initializations.

2.5.7 Summary

Summing up, we have shown that distributional initialization improves the quality of word
embeddings for rare words. Our recommendation is to use mixed initialization with PPMI
values and the value θ = 20 of the frequency threshold.

2.6 Related work

We would like to mention several lines in research attempts to improve quality of word
representations. Such works can be assigned to several broad categories.

2.6.1 Incorporation of external knowledge into the input layer

One way to make use of existing information about a word is to represent it as a vector
and concatenate this vector with an input vector of a word.

Alexandrescu and Kirchhoff (2006) employ factors – explicit word features – as a part
of an initial word representation. Proposed factors consist of word shape features (affixes,
capitalization, hyphenation, etc.) or other annotations (part-of-speech classes). Bian et al.
(2014) construct such a vector with usage of part-of-speech tags, morphemes, word’s entity
vector. Qiu et al. (2014) propose to segment words into morphemes and insert them into
the training vocabulary; then an embedding for a word is represented as a weighted sum
of learned embeddings of the word itself and its morphemes.

2.6.2 Incorporation of external knowledge as an objective func-
tion

External knowledge about words can be also provided to a trainer in a form of an objective
function or regularization term(s).

Relational and categorical knowledge, extracted from a knowledge graph, can be in-
tegrated into a training objective as two separate regularization functions as is shown by
Xu et al. (2014). Yu and Dredze (2014) propose to add an objective function that learns
word’s entity type and its relations to a word2vec training objective. As a continuation
of this work, Celikyilmaz et al. (2015) use an additional objective that takes care about



2.6 Related work 25

word’s relations in a knowledge graph. Joint optimization of distributional (predict word
given its context) and relational (distance in a WordNet(Miller, 1995) graph) objectives
was proposed in a work (Fried and Duh, 2015). Huang et al. (2012) introduce local and
global context via a joint training objective of a neural network language model. Global
context here is represented as a sum of word embeddings of words from the document.
Same spirit is shared by a work (Sun et al., 2015) that pays attention to a syntagmatic
(“relate words that co-occur in the same text region”) and paradigmatic (“relate words
that occur in the similar contexts but may not co-occur in the text”) relations of a word:
they try to predict a word given its context and a vector representation of the whole phrase
itself. In the work (Cotterell and Schütze, 2015) authors try to predict a feature vector of
morphological tags of a target word as an extra objective incorporated in an LBL training.

2.6.3 Words representation as a composition of other words

Several works explore a word representation acquisition with more trust given to the dis-
tributional hypothesis: they make word representation heavily depend or been constructed
from learned representations of other, similar to a target, words.

Niwa and Nitta (1994b) compare 2 different semantic representations for rare words:
co-occurrence vectors gathered from a corpus and distance vectors built from dictionaries.
Yogatama et al. (2015) use context to represent words and then learn word representa-
tions applying matrix factorization. Le et al. (2011) cluster rare words together, making
representation of rare words close to each other. Celikyilmaz et al. (2015) propose to con-
strain the context of a word with the corresponding entity. Levy and Goldberg (2014a)
include dependency-based context (surrounding words with their dependency labels) into
embeddings learning with word2vec, in contrast to the traditional linear context. Cui et
al. (2015) incorporate morphological knowledge into word2vec. Word embeddings of words
that are morphologically similar to a target are combined together (their sum is weighted
by a similarity score) in a parallel branch of a Skip-gram trainer.

2.6.4 Words representation as a composition of words parts

Another expected way to improve words embeddings that we would like to mention is to
decompose word into subparts, e.g., morphemes, letters, obtain representations of these
subparts and then build representation of the word as a composition of learned embeddings.

Botha and Blunsom (2014) propose to represent a word as a sum of embedding vectors
of its surface morphemes. Use of RNN on word’s morphemes to obtain word representation
on the last output layer was proposed by (Luong et al., 2013). Salimbajevs and Strigins
(2015) explore the sub-word approach, i.e., prefixes and endings, which are mostly common
for all words, are split and treated as separate words. Ling et al. (2015b) represent words
using a single embedding vector for each character. Word’s representation is then obtained
as an output of an LSTM model.
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2.6.5 Improvement of the training regime

2.6.5.1 Initialization

Le et al. (2010) propose three schemes to address word embedding initialization. Reini-
tialization and iterative reinitialization use vectors from the prediction space of a model
to initialize the context space during training: after the training converges or after each
epoch respectively. One-vector initialization initializes all word embeddings with the same
random vector to keep rare words close to each other.

2.6.5.2 Multitask learning

Ideas of training one network architecture for several different tasks (multitask learning)
or reuse one architecture for another task (transfer learning) also found their places in
DL research as ones that can help generalization. Collobert et al. (2011) show in their
work that a single unified architecture can perform well for several tasks, only marginal
improvements are obtained in comparison to separate architectures per task. Later Liu et
al. (2015b) propose multi-task DNN for learning representations across query classification
and ranking for web search tasks, showing strong positive results.

2.6.5.3 Embeddings pre-training

Greedy layer-wise pre-training or supervised fine-tuning of the unsupervised pre-trained
system can also be seen as an attempt to improve quality of learned representations. This
research has a long history started from the well-known works of (Hinton et al., 2006),
(Bengio et al., 2007) for NLP.

2.6.6 Discussion

All introduced related approaches share the same goal: to learn better word represen-
tations. Despite of some resemblance with our approach, there are several very crucial
differences that make our work interesting and more appealing to use. First, our approach
does not require external knowledge as described in Section 2.6.1 and Section 2.6.2: neither
linguistic (morphemes, part-of-speech tags, dependency parses) nor lexical (concept hier-
archies, dictionaries) nor structural (knowledge bases). Second, our approach does not
need computationally advanced theoretical solutions like a composition of several objective
functions as mentioned in Section 2.6.2. Third, our approach does not need to employ any
advanced neural network architectures like RNNs or LSTMs as mentioned in Section 2.6.4,
avoiding training complications of long-dependency architectures. Fourth, our approach
is directly concentrated on the quality of rare words representations, while in most works
these words are excluded either from training or from evaluation, even very congenial to
ours described in Section 2.6.3. Fifth, our training goal is to obtain general word embed-
dings; this is different to learning task-specific words embeddings, though can be seen as a
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pre-processing step (as in multitasking or pre-training from Section 2.6.5). Sixth, initial-
ization regimes from Section 2.6.5 are all more complex and less efficient than ours since
the initial embedding is much denser than in our approach.

Though our approach is different from the discussed above, it can be easily enriched by
proposed ideas: our distributional vectors can be extended with external knowledge; our
result embeddings can serve as pre-trained for further tuning. Distributional information
on the one hand and syntactic/semantic information on the other hand are likely to be com-
plementary, so that its combination with our approach can lead to better representations
for words of all frequencies – the main goal of the course of these works.

2.7 Conclusion

We have introduced distributional initialization of neural network architectures for learning
better embeddings for rare words. The proposed approach consists of a combination of two
types of association weights – BINARY and PPMI – with direct and indirect composition
of distributional vectors with one-hot vectors – mixed and separate – to enhance initial
representation for rare words.

Experimental results on a word similarity judgment task demonstrate that embeddings
of rare words learned with distributional initialization perform better than embeddings
learned with traditional one-hot initialization, especially for words with low frequency.

2.8 Future work

Our work is the first exploration of the utility of distributional representations as initial-
ization for embedding learning algorithms like word2vec. There are a number of research
questions we would like to investigate in the future.

First, we showed that distributional representation is beneficial for words with very
low frequency (θ ∈ {10, 20}). It was not beneficial in our experiments for more frequent
words (θ ∈ {50, 100}). A more extensive analysis of the factors that are responsible for the
positive effect of distributional representation is in order.

Second, to simplify our experimental setup and make the number of runs manageable,
we used the parameter θ both for corpus downsampling (only θ occurrences of a particular
word were left in the corpus) and as the separator between rare words that are distribu-
tionally initialized and frequent words that are not. It remains to be investigated whether
there are interactions between these two properties of our model, e.g., a high value of rare-
frequent separator may work well for words whose corpus frequency is much smaller than
the separator.

Third, while we have shown that distributional initialization improves the quality of
representations of rare words, we did not investigate whether distributional initialization
for rare words has any adverse effect on the quality of representations of frequent words
for which one-hot initialization is applied. Since rare and frequent words are linked in the
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mixed model, this possibility cannot be dismissed and we plan to investigate it in future
work.



Chapter 3

Language Modeling

3.1 Summary

We conduct another set of experiments to test the proposed approach – initialization of
neural networks with distributional vectors – with more practical goals. As a task, we
choose language modeling, and the results are measured in perplexity points. Different
distributional representations of the input vocabulary were explored, and minor improve-
ments over models with traditional one-hot initialization were achieved.

3.2 Introduction

Language modeling is a task of predicting probabilities of given sequences of words. This
makes language models (LMs) suitable for independent Natural Language Processing
(NLP) tasks such as morphological analysis (Morita et al., 2015), word segmentation
(Mansur et al., 2013), sentence completion [Gubbins and Vlachos (2013), Mirowski and
Vlachos (2015)], image captioning (Devlin et al., 2015a), spell checking (Chen et al., 2013),
and also as parts of real-world NLP systems such as automatic speech recognition [Adel
et al. (2013), Li and Fung (2014), Vu and Schultz (2014), Masumura et al. (2015)] and
machine translation [Sperr et al. (2013), Auli and Gao (2014), Parikh et al. (2014), Murray
and Chiang (2015), Luong et al. (2015), Baltescu and Blunsom (2015)].

For a long time, the most popular LMs were n-gram models that accumulate statistics
of word sequences of length n from a given training corpus and then make predictions
based on these statistics. In order to improve n-gram models performance in cases of rare
and unseen events, different techniques were proposed, such as smoothing [Katz smoothing
(Katz, 1987), Jelinek-Mercer smoothing (Jelinek and Mercer, 1980), Kneser-Ney smoothing
(Ney et al., 1994)], skipping models (Rosenfeld, 1994), clustering (Brown et al., 1992),
caching (Kuhn, 1988), sentence mixture (Iyer et al., 1994) – together with combinations of
different techniques, e.g., backing-off to the lower order n-grams, model combinations and
interpolations (for more details see Goodman (2001)).

Another class of LMs that becomes very popular is Neural Network Language Models
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(NNLMs). One of the most influential works is (Bengio et al., 2003), where they proposed to
use a feed-forward neural network architecture that at the input layer employs continuous
representations of context words – word embeddings, and outputs a probability distribution
over the prediction vocabulary.

Recently, the class of NNLMs was extended with Neural Networks (NNs) of differ-
ent nature: feed-forward NNs and continuous-space LMs [Schwenk (2007), Mansur et al.
(2013), Vaswani et al. (2013), Wang et al. (2014), Devlin et al. (2015b), Murray and Chi-
ang (2015)], Recurrent Neural Networks (RNNs) [Adel et al. (2013), Rei (2015), Morita
et al. (2015)] and LSTM (Kim et al., 2016), log-bilinear NNs (Botha and Blunsom, 2014),
convolutional NNs (Devlin et al., 2015a). In these works, different enhancements of origi-
nal architectures were investigated, such as number and combination of hidden layers and
hidden units [Devlin et al. (2015b), Murray and Chiang (2015), Luong et al. (2015)], inte-
gration of POS tags at the input of NNs (Adel et al., 2013), models combinations (Devlin
et al., 2015a), etc.

Our work is in the line of this research: we propose to enrich input layer of NNLMs
with distributional information in order to improve the quality of the LM predictions.

3.2.1 Factored Language Models

Bilmes and Kirchhoff (2003) propose to represent words as a vector of k factors, where
factors are representatives of characteristics of words, e.g., parts-of-speech, morphological
classes, stems – Factored Language Model (FLM). Its extension with NNs – Factored
Neural Language Models – was introduced by Alexandrescu and Kirchhoff (2006). The
main challenge of FLMs is to find the suitable set of factors for word representations

In our work, we represent each word with a vector that emphasizes words with similar
contexts. Thus, our approach can be seen as a FLM where factors are context words or
contextually similar words.

3.2.2 Letter n-grams and Character-based language models

The idea of using not only word surroundings but also words themselves appeared to be
fruitful in the research field.

Use of letter n-grams for words representation – word hashing – was introduced by
Huang et al. (2013) as a technique that reduces dimensionality of words representation
vectors and helps dealing with out-of-vocabulary words and spelling variations. Gao et
al. (2014) propose to concatenate letter n-gram vectors to one-hot vectors of vocabulary
words, and then use the result vector as an input representation of words for NN training.
Sperr et al. (2013) suggest to use letter n-grams (n from 1 to 4) as an input to restricted
Bolzmann machine for statistical machine translation.

Another way to employ the fine-grained information about words is to look on them
in character-based manner: by means of character-based NNs. dos Santos and Zadrozny
(2014) and dos Santos and Guimarães (2015) explore word embeddings together with
embeddings for each character of the input word in order to solve part-of-speech tagging
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and named entity recognition tasks. Kim et al. (2016) propose to create word representation
combining embeddings for each character by means of convolutional NN, and then use this
representation in LSTM.

In our work, we employ letter n-grams of words themselves and surrounding words in
two ways: as one of suggested distributional representations and also as an intermediate
representation for construction of words distributional representations.

3.2.3 Problem statement

As it was shown in Chapter 2, distributional initialization of NNs is a convenient way to
improve quality of learned word embeddings for rare words. The question we would like to
ask here is whether distributional initialization can help to improve the ability of language
models to correctly predict the next word, especially when we change the representation
of rare words only.

We train and explore several LMs with distributional initializations of words with a
specific frequency or within a specified frequency range. To build distributional represen-
tations, we use positioned vectors with PPMI values and positioned vectors with PPMI
counts of letter 3-grams of target and context words. We also study several input normal-
ization schemes that help to keep in balance activation on the input layer of NN.

3.3 Methods

The framework of our experiments includes training of n-gram and neural LMs, their
interpolation and evaluation of the obtained model. In the rest of this section, we are
going to describe in detail the theoretical background of the new and existing components
of the framework:

1. n-gram LM:

1.1 n-gram LMs,

1.2 Kneser-Ney smoothing for LMs,

1.3 Modified Kneser-Ney smoothing for LMs;

2. distributional representation of words;

3. NNLM:

3.1 LBL and vLBL architectures,

3.2 integration of the distributional representations at the input of NN,

3.3 NN training;

4. interpolation of n-gram and neural LM;
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5. evaluation of LMs.

Our contributions to this framework (points 2 and 3.2) is discussed in Section 3.3.2
and Section 3.3.3.3 : the proposed distributional representations and their integration into
NNLM training.

3.3.1 n-gram language models

3.3.1.1 n-gram language models

The question that frequently arises in some NLP problems is how to estimate the probabil-
ity of a given sequence of words. In machine translation, it is helpful to know which gener-
ated translation is more probable from the point of target language. In speech recognition,
we would like to resolve the ambiguity of the next word given its acoustic representation
and previous words. Basically, we would like to have access to a probability p(w1...wn) or
to a distribution over the next word p(wn|w1...wn−1). The straightforward way to estimate
this probability is to employ the chain rule:

p(w1...wn) = p(w1) p(w2|w1) p(w3|w1w2) ... p(wn|w1...wn−1). (3.1)

The probabilities in the right part of the equation can be estimated directly from a
given text corpus; though, there are some complications. One is that given a huge corpus,
the size of a model that stores all probabilities for all possible sequences of words observed
in this corpus will be extremely huge. Another one is that, despite of the size of a corpus,
there always going to be sequences of words that were never observed in it. This will lead
to a zero value of some multipliers in Eq. 3.1, that will lead to a zero value as a result.
This problem is caused by data sparsity, and there have been many research attempts to
fight it.

To make probability estimations of sequences feasible, utilization of Markov chains was
suggested (Shannon, 1948). The main idea of Markov chains of order n is to ignore longer
sequences. Thus, for n = 3, Eq. 3.1 takes the following form:

p(w1...wn) = p(w1) p(w2|w1) p(w3|w1w2) p(w4|w2w3) ... p(wn|wn−2wn−1).
When this approach is applied to a sequences of words, the resulting probabilistic model

is called n-gram language model.
Though such an n-gram model has a smaller size since only sequences up to length

n are stored and rate of unseen sequences reduces with the size limitation, none of the
aforementioned issues are solved completely.

In order to avoid zero probabilities of unseen or rare events, various smoothing tech-
niques were proposed, e.g., backing off to lower-order models, skip gram models, interpo-
lation and mixture of different models (see for example Goodman (2001) for more detailed
description).

We would like to illustrate smoothing techniques with an example of a simple back-
off 3-gram model that uses probability of 2-gram model in case the 3-gram has not been
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seen in the corpus (α and β here are determined probabilities of trigrams and bigrams
respectively, normalized in order to form a probability distribution):

p(wk|wk−2wk−1) =

{
α(wk|wk−2wk−1), if count(wk−2wk−1wk) > 0,
β(wk|wk−1), if count(wk−2wk−1wk) = 0,

In the next sections we would like to cast a light upon the most popular and successful
smoothing technique: Kneser-Ney smoothing and its modified form.

3.3.1.2 Kneser-Ney smoothing for language models

The problem with traditional back off smoothing technique is that while backing off to
the lower-order models, important information about co-occurring events is lost. This
leads to a bias towards words that have a limited number of preceding words. Kneser
and Ney (1995) provide an example of word dollars that occurs frequently after numbers
and country names, but is rarely seen in other contexts; so in case of backing off to a
regular unigram probability, p(dollars) will be relatively high, while the actual probability
of (x, dollar) is 0 for most of the bigrams (as they will not be seen in the corpus).

In the same paper, authors also proposed an improved version of back-off smoothing,
where backing-off probability distribution is different from normal probability distribution
and relies on a number of distinct histories of a particular word. Their final suggestion has
form:

p(w|h) =

{
α(w|h), if N(h,w) > 0,

γ(h)β(w|ĥ), if N(h,w) = 0,

where w is a word, h is a history, ĥ is a back-off history (e.g., in case of n-gram model,
ĥ is (n − 2)-gram); α is a reliable estimate of next word probability, γ is determined
completely by α and β, and distribution β is defined as:

β(w|ĥ) = N+(•,ĥ,w)
N+(•,ĥ,•) ,

where N+(•w) = |{wi : N(wi, w) > 0}|,

N+(••) =
∑
w

N+(•w).

Here N(.) is a counted number of n-grams.

3.3.1.3 Modified Kneser-Ney smoothing of n-gram model

The most popular n-gram model nowadays is modified Kneser-Ney smoothing LM, pro-
posed by Chen and Goodman (1999). They suggest to use 3 different discounting param-
eters in Kneser-Ney smoothing: D1, D2, and D3+ for n-grams with one, two and three or
more occurrences respectively. Formally, the probabilities are estimated with an equation:
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pMKN(wi|wi−1i−n+1) =
c(wii−n+1)−D(c(wii−n+1))∑

wi
c(wii−n+1)

+ γ(wi−1i−n+1)pMKN(wi|wi−1i−n+2).

The main difference with Kneser-Ney smoothing is employment of different discounts
D depending on the count of context n-gram:

D(c) =


0, if c = 0,
D1, if c = 1,
D2, if c = 2,
D3+, if c ≥ 3.

The function of γ is to make the probabilities sum to 1, i.e.

γ(wi−1i−n+1) =
D1N1(w

i−1
i−n+1•) +D2N2(w

i−1
i−n+1•) +D3+N3+(wi−1i−n+1•)∑

wi
c(wi−1i−n+1)

,

where N1(w
i−1
i−n+1•) = |{wi : c(wi−1i−n+1wi) = 1}| – the number of words that appear

exactly once after wi−1i−n+1. N2 and N3+ are defined analogously.
Chen and Goodman (1999) also propose the estimations of D(c):

D0 = 0,
D1 = 1− 2Y n2

n1
,

D2 = 2− 3Y n3

n2
,

D3+= 3− 4Y n4

n3
,

where Y = n2

n1+2n2
; ni is the total number of n-grams with exactly i counts.

In our experiments, we use n-gram LM with modified Kneser-Ney smoothing.

3.3.2 Distributional representations of words

In this section, we describe how we build distributional representations of words from a
given corpus.

In our experiments, we assign every vocabulary word a fixed vector that is built based
on the information from a training corpus. Frequent words are always represented with one-
hot vectors. For the subset of rare words, several different distributional representations
are proposed: with different combination schemes, association functions, and normalization
schemes. We decide which words receive one-hot representation (OHR words) and which
receive distributional representation (DR words) based on their frequency in the training
corpus. The choice of the parameter θ that is responsible for frequency ranges is discussed
in Section 3.4.4.

For short, further we refer to an LM initialized with particular distributional represen-
tations as “[scheme name] model”, e.g. separate model, CN model, etc.
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3.3.2.1 Combination schemes

A combination scheme decides how to combine distributional and one-hot representations
for different words. Recall that n is the dimensionality of the distributional vectors. Let k
be the number of words with frequency /∈ θ (if θ is an interval) or 6= θ (if θ is a constant),
where the frequency range θ is a parameter.

ONEHOT. This is the baseline initialization that assigns all-but-one zeros to a distribu-
tional representation of every target word wi, putting 1 to a word’s index position i:

wi =[0 ... 0 1 0 ... 0]

1 ... (i− 1) i (i+ 1) ... k

The matrix that contains one-hot representations of the vocabulary words is diagonal.
This representation is equivalent of usage of the word’s index to retrieve embedding vector
from a look-up table.

ONLY. In ONLY models, distributional representation is applied only to words with a
particular frequency (θ is a constant). All other words receive one-hot representations.
Hereafter we will refer to models with this scheme as “θ ONLY” or “θonly”, where θ is
specified in the respective experiment.

SEPARATE. In separate scheme, the input representation for a word is the concatenation
of a k-dimensional vector and an n-dimensional vector. For a word with frequency /∈ θ/6= θ,
the k-dimensional vector is a one-hot vector and the n-dimensional vector is zero vector.
For a word with frequency ∈ θ/= θ, the k-dimensional vector is a zero vector and the
n-dimensional vector is its distributional vector.

MIXED. In mixed scheme, the input representation for a word is an n-dimensional vector:
a one-hot vector for a word with frequency /∈ θ/6= θ and a distributional vector for a word
with frequency ∈ θ/= θ.

In summary, separate scheme uses separate representation spaces for words with one-hot
and words with distributional representations. Mixed initialization scheme uses the same
representation space for all words; and DR words share weights with OHR words that they
co-occur with. Schematically, mixed and separate representations are shown in Chapter 2,
Figure 2.2.

3.3.2.2 Association measurement schemes

Association measurement schemes decide which association function is used in creation of
distributional representations.

There are several association functions that we explore: co-occurrence in a window of a
fixed size, cosine similarity of vectors that are built from context words: on positions {-2,
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-1, 1, 2} with respect to a target word with PPMI values and on positions {-2, -1, 0, 1, 2}
(target word included) with counts of letter 3-grams.

Co-occurrence in a window
The simplest association scheme is similar to a BINARY scheme described in Chapter 2.
For a target word w, every entry 1 ≤ i ≤ n in the distributional vector is set to 1 iff w and
vi co-occur at a distance of at most C words in the corpus, and to 0 otherwise. {v1, . . . , vn}
is the vocabulary of context words. In experiments, we set C = 10.

Further we refer to LMs trained with such distributional representations as “binary
models” since the distributional vectors contain values equal either 0 or 1.

Positioned PMI/PPMI
For every target word, we consider words at a distance of at most 2 (two words to the
left and two words to the right, excluding target word). We build count vectors for each
of these positions; replace raw counts in the vectors with PPMI values; and concatenate
positioned vectors. The definition of positive pointwise mutual information (PPMI) was
introduced in Section 2.3.2, Chapter 2, here we repeat it for the reader’s convenience.

PPMI values are calculated for a target word w and a context word vi with respect of
its relative position to a target word pos ∈ {−2,−1, 1, 2}:

PPMI(w, vipos) = max{log
P (w,vipos )

P (w)P (vipos )
, 0}

where P (w, vipos) is the probability to observe a target word w with a context word vi on a
relative position pos, and P (w) and P (vipos) are the probabilities to observe a word w and
a context word vi on a position pos in the corpus respectively.

For separate representations. For all words we would like to give a distributional initializa-
tion to, we concatenate 4 derived positioned PPMI vectors. We also explore normalization
schemes where PPMI values are divided by a constant value or distributional vectors are
normalized (normalization schemes are described in Section 3.3.2.3). In the first exper-
iment with separate models (Section 3.5.4), we use only these concatenated vectors as
representations of words. In other experiments, we enrich positioned vectors with diagonal
matrix that precedes the distributional vector (see Figure 3.2, last row and Figure 3.3, last
two columns). All numbers on the diagonal of the derived matrix are set to 1.

For mixed representations. For each vocabulary word, we concatenate 4 derived positioned
PPMI vectors. We then normalize the obtained vector dividing its every element by the
sum of all elements in the vector. To build distributional vector, we employ cosine similarity
of this PPMI vector for each DR word and the PPMI vectors of other words as described
below.

We would like to determine similarity threshold α in a way that average number of sim-
ilar words for each DR word would be equal to a given parameter NUMBER OF ONES
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(NOO/noo). To determine the similarity threshold α, we apply the steps described in
Algorithm 1. We pick randomly N DR words, measure similarity scores between these
words and all context words, sort context words according to the similarity scores, then
set α to the similarity score of the NOO*N element. Afterward, we create distributional
representation for each DR word, where a value in the distributional vector is set to SIMI-
LARITY WEIGHT if the similarity of the DR word and a context word is not lower than
α, and to 0 otherwise.

Data:
pre-computed similarity matrix of |DR words| × |context words|;
average number of non-zero values in the distributional vectors NUMBER OF ONES;
sample size N;
weight of non-diagonal elements SIMILARITY WEIGHT;

sampled words ← sample N random DR words;
merged list ← {} ; // list of word-similarity score pairs

foreach word in sampled words do
foreach context word in context words do

populate merged list with a pair (context word, similarity(word, context word));
end

end
sorted merged list ← sort merged list based on similarity values in descending order;

// set similarity threshold alpha to the similarity of the pair with index

NUMBER OF ONES·N:
alpha ← sorted merged list[NUMBER OF ONES · N].get similarity score();

// create distributional representations

foreach DR word and context word do create distributional representation:
if similarity(DR word, context word) ≥ alpha then

distributional representations[DR word][context word] =
SIMILARITY WEIGHT;

else
distributional representations[DR word][context word] = 0;

end

end
Result: matrix distributional representations with distributional representations of DR

words.

Algorithm 1: Deriving distributional representation for words through the similarity of
their positioned PPMI vectors.

In our experiments, we set NUMBER OF ONES to 2, 10 or 30, and set N=100. SIMI-
LARITY WEIGHT decides on which values are used in distributional representations; this
parameter corresponds to W normalization scheme (see Section 3.3.2.3). On diagonal, 1
is put (words are similar to themselves); for non-diagonal elements, we usually use 0.1.
Other values of W in range {1, 0.5, 0.01, 0.001} are also investigated.
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Further we refer to LMs trained with such distributional representations as “positioned
PPMI models”.

Letter 3-grams
Letter 3-gram scheme is very similar to positioned PMI/PPMI, described in the Sec-
tion 3.3.2.2. The only differences are:

• for similarity comparison, as count vectors we use vectors of co-occurrences of target
words with letter 3-grams of context words;

• we also use letter 3-gram representation of a target word itself in a positioned vector.

Every time target and context word are at a distance ≤ 2, counts of the target word
and all letter 3-grams of context words are increased by 1. E.g., consider as a target
word money in a phrase “the top money funds are”. Then in the co-occurrence matrix
values that lay in a row that correspond to the word money and columns that correspond
to letter 3-grams #th−2, the−2, he#−2, #to−1, top−1, op#−1, #mo0, mon0, one0, ney0,
ey#0, #fu1, fun1, und1, nds1, ds#1, #ar2, are2, re#2 will be increased by one.

Formally, for every target word, we consider words at a distance ≤ 2 (two words to
the left and two words to the right, including target word itself). Then we build count
vectors for letter 3-grams of context words for every of these positions. After this we
replace raw counts with PPMI values and concatenate count vectors. Definition of PPMI
was introduced in Section 2.3.2, Chapter 2; here we specify the modified PPMI equation
for the reader’s convenience.

PPMI values are calculated for a target word w and a letter 3-gram ti with respect to
the relative position of the context word to the target word pos ∈ {−2,−1, 0, 1, 2}:

PPMI(w, tipos) = max{log
P (w,tipos )

P (w)P (tipos )
, 0}

where P (w, tipos) is the probability to observe a target word w with a context word on a
relative position pos that contains letter 3-gram ti; P (w) and P (tipos) are the probabilities
to observe a word w and a letter 3-gram tipos in the corpus respectively.

For separate models. For all DR words, we concatenate 5 derived positioned letter 3-gram
PPMI vectors. We also explore normalization schemes where PPMI values are divided
by a constant value or distributional vectors are normalized (normalization schemes are
described in Section 3.3.2.3). We enrich positioned vectors with diagonal matrix that pre-
cedes the distributional vector. All numbers on diagonal of the derived matrix are set to
1.

For mixed models. For each target word, we concatenate 5 derived positioned PPMI vectors.
We normalize the obtained vector, and build distributional vector for each DR word based
on whether its PPMI vector is similar enough to PPMI vectors of other words. To determine
the similarity threshold α, we apply steps described in Algorithm 1. In experiments with
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letter 3-gram, we set NUMBER OF ONES = 10, N = 100, SIMILARITY WEIGHT = {1
on diagonal, 0.1 otherwise}.

Further we refer to LMs trained with such distributional representations as “letter
3-gram models”.

3.3.2.3 Normalization schemes

The main intuition in use of normalization schemes is that word representation should
provide strong word’s identity signal, that is not overridden by activation signals from
other words; to put this another way, values on diagonal of representation matrix should
be the highest (equal 1), and non-diagonal values should by limited to the subinterval of
[0, 1].

There are 4 normalization approaches we apply to our models:

1. constant (W): all non-diagonal values are set to a fixed constant, like 1 or 0.1;

2. scale (S): all non-diagonal values are divided by a fixed constant S coeff ∈ {6, 12,
60}. As the maximum value in the our distributional matrices is around 6, division
by 6 scales values to [0, 1], division by 12 scales values to [0, 0.5], and division by 60
scales values to [0, 0.1];

3. row normalization (RN): every non-diagonal value is divided by a sum of all values
(except of the diagonal “1”) in a row of the PPMI matrix, and then multiplied by a
constant coefficient. After division, all values will be in range [0, 1]; multiplication
with a constant will scale values to the range [0, RN coeff]. RN coeff ∈ {1.0, 0.5, 0.1}.

4. column normalization (CN): every non-diagonal value is divided by a sum of all
values (except of the diagonal “1”) in a column of the PPMI matrix, and then
multiplied by a constant coefficient. After division, all values will be in range [0, 1];
multiplication with a constant will scale values to the range [0, CN coeff]. CN coeff
∈ {1.0, 0.5, 0.1}.

• In CN normalization without coefficient (“CN-none”), we divide every PPMI
value by its context frequency. The idea here is to suppress frequent features
that appear too often, and support infrequent features in the role they play in
word representation.

We apply these strategies to restrict activation on the input of an NN. RN normal-
ization is conceptually different from CN normalization: in RN normalization, values that
correspond to every context word are scaled depending on each other; in CN normalization,
values that correspond to every input unit of NN are scaled depending on each other.

Normalization strategies are different for mixed and separate models: W normalization
is applied to mixed models only, and S, RN, and CN normalizations are applied to separate
ones. The reason we use different normalization schemes is that the construction of the
distributional matrices is different:
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• in case of mixed models, distributional matrix is basically a similarity matrix of target
and context words, and it is up to us to decide which values to assign to non-diagonal
elements;

• in case of separate models, distributional representations of DR words are concate-
nated positioned vectors that contain real values from [0, 6], and we would like to
preserve the association degree between words by scaling these values.

3.3.2.4 Unknown words treatment in distributional representations

Since unknown words can appear in the training corpus (when reduced vocabulary is used),
we need to have a method to construct distributional representations for <UNK> token.
We propose 3 strategies:

• onehot: represent unknown token with a one-hot vector;

• averaged: representation vector of unknown token is set to the vector of a word
with frequency 1 that is the closest to an average of vectors of words with frequency
1;

• random: representation vector of unknown token is set to a representation of a
random word with frequency 1.

3.3.3 Neural Language Models

We decide to use Log-Bilinear language model (LBL) language model for its simplicity and
fast training. In the rest of this section, we describe LBL model and its modification –
vector LBL (vLBL), which is the NNLM we use.

3.3.3.1 Log-bilinear language model

LBL was introduced by Mnih and Hinton (2007) as a simple LM that predicts a vector
representation for the next word as a linear function on representations of the context
words. The next word is then determined by the probability distribution over the words
from the output vocabulary. These probabilities are computed based on how similar words
representations are to the predicted representation. Following Mnih and Hinton (2008),
these computations can be formalized as:

q̂ =
n−1∑
i=1

Cirwi ,

P (wn = w|w1:n−1) =
exp(q̂T qw + bw)∑
j exp(q̂

T qj + bj)
.

Here rwi stands for vector representations of context words, Ci are weight matrices
for each context position i, qw are representations of words in the prediction space, q̂
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is a predicted representation, and equation for P (wn = w|w1:n−1) computes probability
distribution over vocabulary words. bw is a bias for each word w, and it is used “to capture
the context-independent word frequency” (Mnih and Hinton, 2008).

There are several proposed modified versions of LBL: hierarchical LBL (Mnih and
Hinton, 2008), vLBL and inverse vLBL (ivLBL) (Mnih and Kavukcuoglu, 2013).

3.3.3.2 Vector Log-Bilinear Language model

vLBL was proposed by Mnih and Kavukcuoglu (2013) as a simplification of LBL model.
Main goal of such simplification is to make model more scalable by reducing the number of
parameters to train. This modification, as an original LBL model, operates on target and
context representations of word w: qw and rw respectively. Predicted vector is computed
similar to LBL model:

q̂(wn−11 ) =
n−1∑
i=1

ci � rwi ,

where rwi stands for vector representations of context words, ci are weight vectors for
each context position i (the main difference with LBL model, where Ci are weight matrices),
q̂ is a predicted representation given history of (n − 1) words wn−11 . The composition in
this case is a point-wise multiplication.

In our experiments, we used even more simplified version of vLBL from (Mnih and
Kavukcuoglu, 2013) where the combination of context vectors is just an average of context
words’ vectors: q̂(wn−11 ) = 1

n−1
∑n−1

i=1 rwi .

3.3.3.3 Initialization of LBL with distributional vectors

In order to employ during the training the created distributional representations for words
(see Section 3.3.2), we change the computations of context representations rwi . Now rwi is
computed as a composition of distributional vector dwi of a word and randomly initialized
low-dimensional matrix Rw:

rwi = dwiRw.

The dwi vectors stay fixed during the training, while values of Rw are adapted.

3.3.4 Neural network language model training

We train our NNLM with use of AdaGrad for adapting learning rate. In order to speed
up the training, we employ noise-contrastive estimation in our learning objective. These
methods are described below.
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3.3.4.1 AdaGrad

To train vLBL model, we use AdaGrad. AdaGrad was proposed in (Duchi et al., 2011) as
an adaptive gradient algorithm that “dynamically incorporates knowledge of the geometry
of the data observed in earlier iterations to perform more informative gradient-based learn-
ing”. It is widely used in the NLP research field to improve NNs training, for examples see
(Mikolov et al., 2013a), (Botha and Blunsom, 2014), (Socher et al., 2013).

The main idea of AdaGrad is to use the history of computed gradients on steps 1..t
together with the gradient of step (t + 1) in the derivation of the parameter updates for
the (t + 1)th step. In a gradient descent algorithm, the next values of parameter vector
xt+1 are computed according to previous values xt, learning rate η and gradient gt:

xt+1 = xt − ηgt.

Duchi et al. (2011) propose to compute the update of each parameter xt+1,i as follows:

xt+1,i = xt,i −
η√∑t
t′=1 g

2
t′,i

gt,i.

This update can be applied to the whole parameter vector xt+1 at once:

xt+1 = xt − η diag(Gt)
−1/2 � gt.

Here matrix Gt =
∑t

τ=1 gτg
T
τ ; � stands for a point-wise multiplication.

3.3.4.2 Noise-contrastive estimation

Noise-contrastive estimation (NCE) was proposed by Gutmann and Hyvärinen (2012) as
a method to speed up the training of NNs.

The main computational bottleneck of NNs is the estimation of the partition function Z
that is needed to turn scores predicted by NN for each word into a probability distribution
over the vocabulary:

P h
φ (w) =

1

Z
exp(sφ(w, h)),

Z =
∑
w′

exp(sφ(w′, h)),

where sφ(w, h) is a scoring function with parameters φ defined by the NN.
The value of Z is computed for every pass of training example through the NN, that

makes training time depend on the vocabulary size – usually an extremely huge number.
The main idea of NCE is to avoid complex computation of a partition function by replacing
estimation of the probability density with a binary classification problem. In other words,
we would like the model to be able to differentiate between samples derived from the real
data distribution and the samples derived from a known noise distribution.
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Following (Mnih and Kavukcuoglu, 2013)1, we denote with P h
d (w) the distribution we

would like to learn (d for “data”, h for “history”). By creating a noise distribution Pn(w)
(n for “noise”) and making the model to classify which distribution the sample comes from,
we reduce the problem to a binary classification. Mnih and Kavukcuoglu (2013) suggest to
use the global unigram distribution of the training data as the noise distribution. Assume
that on each training pass the model needs to differentiate one data sample from k noise
samples. Then the posterior probability has the form:

P h(D = 1|w) =
P h
d (w)

P h
d (w) + kPn(w)

. (3.2)

As we do not have access to the data distribution but only to its estimate, the posterior
probability can be re-formulated taking into account the model parameters φ:

P h(D = 1|w, φ) =
P h
φ (w)

P h
φ (w) + kPn(w)

(3.3)

The following objective function suits to learn how to distinguish samples from data
and from noise distribution:

Jh(φ) = EPhd

[
logP h(D = 1|w, φ)

]
+ kEPn

[
logP h(D = 0|w, φ)

]
=

= EPhd

[
log

P h
φ (w)

P h
φ (w) + kPn(w)

]
+ kEPn

[
log

kPn(w)

P h
φ (w) + kPn(w)

]
(3.4)

The gradient can then be computed as follows:

∂

∂φ
Jh,w(φ) =

kPn(w)

P h
φ (w) + kPn(w)

∂

∂φ
logP h

φ (w)−
k∑
i=1

[
P h
φ (xi)

P h
φ (xi) + kPn(xi)

∂

∂φ
logP h

φ (xi)

]
(3.5)

In contrast to a partition function, in this case the gradient computations contain only
a sum over k noise samples. This makes training time independent of the vocabulary size,
but dependent only on the number of noise samples k. Another key point of NCE is that

weights
Phφ (xi)

Phφ (xi)+kPn(xi)
are always between 0 and 1, that makes training with NCE very

stable (Gutmann and Hyvärinen, 2010).

3.3.5 Models interpolation

A combination of models usually performs better than independent models [Chen and
Goodman (1999), Schwenk (2007), Masumura et al. (2015)], since it allows the resulting

1Eq. 3.2, Eq. 3.3, Eq. 3.4, Eq. 3.5 are based on (Mnih and Kavukcuoglu, 2013).
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model to benefit from strength of both interpolated models. That is why we interpolate
every learned LBL model with a modified Kneser-Ney n-gram model.

Applied interpolation is a linear combination with parameter λ ∈ [0, 1]:

PINT (wn|w1..wn−1) = λPLBL(wn|w1..wn−1) + (1− λ)PMKN(wn|w1..wn−1).

3.3.6 Models evaluation

After the models are trained, we use them to predict test data and report achieved per-
plexity. Special strategies to handle cases where the model needs to predict a word that it
has not seen during training are discussed in Section 3.3.6.2.

3.3.6.1 Perplexity

There are 2 main approaches to evaluate the performance of LMs: extrinsic evaluation and
intrinsic evaluation.

In extrinsic evaluation, LM is used as a part of a bigger system (e.g., maching trans-
lation, speech recognition) and evaluate quality of LM based on the performance of this
system.

Intrinsic evaluation for LM is done with perplexity – the measurement of how good a
probability model can predict a given sample. Maximizing probability of a word sequence
is the same as minimizing perplexity. Perplexity is computed as follows:

PPL(w1...wN) = N

√
1

P (w1...wN)
= N

√√√√ N∏
i=1

1

P (wi|w1...wi−1)
= b−

1
N

∑N
i=1 logb P (wi|w1...wi−1),

where b usually is set to 2 or e. In our experiments, we set b = 10.

3.3.6.2 Unknown words treatment in language model predictions

Probability evaluation of unknown words – those that were not seen during the training
– require a special treatment. Usually a development set is used to optimize the hyper-
parameters, and the final performance is measured on the test set. But in our work we use
development set (here we refer to it as a “test set” in the experiments, see Section 2.4.1)
both to estimate parameters and to report the model performance. The reported results
are preliminary, and should be used as suggestions for the directions of future research
with evaluation on the test set.

The two cases that need special treatment consider full and partial vocabulary.

Full vocabulary
In case our training vocabulary contains all words from the training set, we

• add an <UNK> token to the vocabulary,
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• set Pnew(<UNK>) = unknown dev
|dev| ,

• to compensate, the probabilities of known words wi get squeezed:
Pnew(wi) = (1− Pnew(<UNK>))PLBL(wi).

where |train| and |dev| are sizes of train and development set respectively, unknown dev
is number of unknown words in the development set. Pnew are the resulting probabilities
used for the model evaluation.

Partial vocabulary
In case we experiment on reduced vocabulary where we replace some words in the training
set with <UNK> token (experiments in Section 3.5.3), we employ a slightly different
strategy: number of unknown words is estimated as a composition of a number of all
unknown words in the training corpus and unknown words in the development set. Then
the probabilities of seen unknown words are set proportionally to the number of their
occurrences in the training corpus; the probabilities of unseen unknown words are replaced
with estimated unknown words count. The probabilities of known words are left unchanged.
To be exact:

First, we estimate a total number of unknown words – through a ratio of unknown words
in the development set and a frequency of <UNK> token:

unknown train estimate = |train|unknown dev|dev| ,

unknown total estimate = freqtrain(<UNK>) + unknown train estimate.

Here |train| and |dev| are sizes of train and development set respectively, unknown dev
is number of unknown words in the development set, freqtrain(<UNK>) is a fre-
quency of <UNK> token in the training set.

Second, though we replace words from the training corpus with <UNK> token, we still
know what words are there. We call these words seen unknown words, and put their
frequencies in a map {(seen unknowni → freqtrain(seen unknowni))}.

Third, we replace predicted probabilities with Pnew:

– for unknown words:

∗ for seen unknown words:
Pnew(seen unknowni) = freqtrain(seen unknowni)

unknown total estimate
PLBL(<UNK>);

∗ for never seen unknown words:
Pnew(unseen unknown) = unknown train estimate

unknown total estimate
PLBL(<UNK>);

Here freqtrain values are taken from the map created on the second step.

– for known words: leave the predicted values without changes.
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3.4 Experimental setup

3.4.1 Training corpus

For training, we use the Wall Street Journal corpus (WSJ) created by Marcus et al. (1999)
from Wall Street Journal articles of 1989. We use the traditional split of the WSJ corpus
into 3 parts: parts 00–20, parts 21–22 and parts 23–24.

We use parts 00–20 as a train set; it contains 1,004,073 tokens in 42,075 sentences with
45,565 word types.

Parts 21–22 were used as a test set; it contains 80,156 tokens in 3371 sentences with
10,804 word types.

The rest parts 23–24 contains 89,537 tokens in 3762 sentences with 11,291 word types,
and were not used in our experiments.

We use train set for building distributional representations and for models training,
and report results on the test set.

Usually a development set is used to optimize the hyper-parameters, and the final per-
formance is measured on the test set. In our work here, we use “traditional” development
split of the WSJ – parts 21–22 – both to estimate hyper-parameters and to report model
performances. The reported results are preliminary, and should be used as suggestions for
the directions of future research with evaluation on the test split of the WSJ (parts 23–24).

3.4.2 Vocabularies

To make the corpus suitable for language modeling task, we add to the vocabulary special
tokens for an unknown word <UNK>, beginning of a sentence <S>, end of a sentence
<\S>, and padding <PAD>.

We explore several different ways to construct target and context vocabularies:
45K vocabulary includes all 45,569 words from the WSJ training set.
2vocab vocabulary includes all words from the WSJ training set that have frequency ≥ 2,
contains exactly 24,532 words.
10K vocabulary includes top frequent 10K words from the WSJ training set, contains
exactly 10,004 words (10K + 4 special tokens). The smallest frequency observed in this
vocabulary is 6.

There are also 2 special vocabularies that are built from preprocessed corpus:
40K vocabulary is created from the training corpus where all digits are replaced with one
token; this leads to a vocabulary of size 40,370.
35K vocabulary is created from the training corpus where all digits are replaced with one
token and all words are lower cased; this leads to a vocabulary of size 35,385.

3.4.3 Evaluation task

We train a modified Kneser-Ney n-gram LM and several LBL models on the WSJ train set,
interpolate each LBL model with the modified Kneser-Ney model and report the perplexity
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of the interpolated model on the WSJ test set. The lower the perplexity, the higher is the
probability that our model assigns to the test set and the better the model is considered.

Unlike Wang and Cho (2015) that evaluate and report perplexity for words with par-
ticular part-of-speech tag only, we are interested not only in the increase of performance
for rare words, but in overall LM performance. That is why we report perplexity points
obtained for all words in the test corpus as results of our experiments.

3.4.4 Frequency ranges for distributional initialization: hyper-
parameter θ

θ # of words
1 21037
2 6648
3 3335
4 2147
5 1501
6 1198
7 827
8 694
9 598
10 489
20 158

θ # of words
[1, 1] 21037
[1, 2] 27685
[1, 5] 34668
[1, 10] 38474
[2, 2] 6648
[2, 5] 13631
[2, 10] 17437
[6, 6] 301
[6, 10] 2909

Table 3.1: Number of words in the 45K vocabulary for particular values of the frequency range
θ: constant θ on the left and interval θ on the right.

Parameter θ is a frequency range that determines which words from the vocabulary re-
ceive distributional initialization and which receive one-hot: words with frequency ∈ θ are
initialized with distributional vectors; others are initialized with one-hot2.

We would like to investigate the performance of LMs when rare words receive distri-
butional initialization, that is why for this we pick words that have low frequencies. In
experiments, θ is set to one of the intervals {[1, 1], [1, 2], [1, 5], [1, 10], [2, 2], [2, 5], [2, 10],
[6, 6], [6, 10]}, or to a constant value from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20} for ONLY models:
further “frequency is in θ” means that frequency either belongs to the interval or frequency
is equal θ. We specify the utilized values of θ for each experiment. Table 3.1 shows how
many words in the 45K vocabulary have particular frequency for different values of θ.

2In contrast to Chapter 2, it is not correct to call words with frequency /∈ θ “frequent” anymore since
for ONLY models there are rare words that also receive one-hot initialization; though all words that receive
distributional initialization in following experiments are rare.
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Same as in Section 2.4.5 of Chapter 2, the argument about the ranges of values of θ
is valid in the experiments of this chapter: the values of θ do not depend on the training
corpus size because if a certain amount of information is needed to learn meaningful rep-
resentations for words, than it should not matter whether that given number of contexts
occurs in a small corpus or in a large corpus. However, if the contexts themselves con-
tain many rare words (which is more likely in a small corpus), then a corpus size should
probably be taken into account.

3.4.5 Training regime

vLBL architecture and training method are implemented in Python 2.7 by means of the
Theano library [Bergstra et al. (2010), Bastien et al. (2012)].

Number of training epochs. We usually train vLBL models for 10 or 20 epochs, since
the convergence appears much earlier. In case the model does not converge, we continue
training up to 50 epochs.

Batch size is set to 100.

Learning rate. We first set learning rate to 0.5, but change is later to 0.1 after evaluation
of different values of learning rate in Section 3.5.7. During the training, the learning rate
is adapted with AdaGrad.

Number of noise samples for NCE is set to 25. Same as (Mnih and Kavukcuoglu, 2013),
we use global unigram distribution of the training data as the noise distribution.

Word embeddings size is set to 100.

Context window for training vLBL model is 2 words to the left (3-gram model). We pad
sentences to the left with <PAD> token and allow learning of end-of-sentence token <\S>.

Interpolation weight. For experiments in Section 3.5.3-Section 3.5.5, we change interpola-
tion weight λ in [0, 1] with step 0.1. Starting from the experiment in Section 3.5.6, we
explore λ in [0, 0.2] with step 0.02. λ is used to weight output of LBL model, (1 − λ)
weights output of modified Kneser-Ney LM.

Training time of one epoch of LM is ∼30 min, predicting time for one epoch is ∼20 min
on a single 2.80GHz or 3.00GHz CPU core.

3.4.6 Reporting results

In experiments, we store every model after each training epoch. Then we interpolate every
stored model with modified Kneser-Ney n-gram model, changing LBL interpolation weight
λ in interval [0, 1] (as mentioned above). We report, for every model initialization setting,
the best value that was achieved during interpolation and indicate epoch number and LBL
interpolation weight for this value.
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3.5 Experiments

3.5.1 Modified Kneser-Ney n-gram models

We train 3-gram and 5-gram modified Kneser-Ney LM with SRILM toolkit 3 4. Perplexity
of these n-gram models is 173.07 for 3-gram model (KN3) and 186.17 for 5-gram model.
All words from the training corpus were included in the vocabulary. We use 3-gram model
for interpolation with our trained LBL models.

3.5.2 Baseline models with one-hot initialization

vocabulary
45K 2vocab 10K

perplexity 392.78(2e) 201.46(2e) 194.75(2e)
interpolated perplexity 171.90(2e, .1) 148.58(2e, .4) 146.81(2e, .5)

Table 3.2: Perplexity of vLBL models with one-hot initialization for different vocabularies (see
Section 3.4.2). Interpolation is performed with modified Kneser-Ney 3-gram model (KN3). In
parentheses: for the best value, number of the epoch and LBL interpolation weight λ [λPLBL +
(1− λ)PMKN ].

We train three vLBL models with one-hot initialization, changing target and context
vocabulary sizes: 45K, 2vocab, 10K (see Section 3.4.2). These models are used as baselines
for comparison with vLBL models with distributional initialization.

Table 3.2 shows the best perplexity results of one-hot initialized models, together with
number of epochs and LBL interpolation weight λ ∈ [0, 1] with step 0.1.

Initial learning rate for vLBL training is set to 0.5. Number of epochs is set to 30 for
model with 45K vocabulary, and to 20 for models with 2vocab and 10K vocabularies.

3.5.3 Binary mixed models with different target/context vocab-
ularies

Description

In this experiment, we would like to investigate the performance of LMs with different
target and context vocabularies for different values of interval θ. We compare performance
of one-hot initialized models with binary mixed distributional models, setting target/con-
text vocabularies to 45K, 2vocab, and 10K. Parameter θ takes values from intervals {[1, 1],
[1, 2], [1, 5], [1, 10]}; in case of 10K/10K, intervals are {[6, 6], [6, 10]} since the 10K vo-
cabulary does not contain words with frequency less than 6. Co-occurrence window size

3www.speech.sri.com/projects/srilm
4For the training scripts, see Appendix B

www.speech.sri.com/projects/srilm
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Figure 3.1: Binary mixed distributional representations for different target/context vocabularies
as in Table 3.3. 10K/10K models have different interval θ.
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target/context
one-hot

θ
vocabulary [1, 1] [1, 2] [1, 5] [1, 10]

45K/45K
171.90(2e, .1)

173.84(2e, .1) 175.18(4e, .1) 175.59(16e, .1) 175.94(20e, .1)
45K/10K 174.39(3e, .1) 175.38(2e, .1) 176.75(11e, .1) 177.41(20e, .1)

2vocab/2vocab
148.58(2e, .4)

– 153.56(3e, .4) 157.49( 9e, .3) 160.34(19e, .3)
2vocab/10K – 154.06(2e, .4) 159.43(14e, .3) 162.24(16e, .2)

[6, 6] [6, 10]
10K/10K 146.81(2e, .5) – – 148.25(3e, .4) 152.70( 8e, .4)

Table 3.3: Perplexity of vLBL models with one-hot and binary mixed initialization, interpolated
with KN3. In parentheses: for the best value, number of the epoch and LBL interpolation weight
λ. For all vocabularies and θ values, vLBL with one-hot initialization performs better than
models with binary mixed initialization. We continue to use setting 45K/45K in the following
experiments.

for building distributional representations is 21: 10 context words to the left and 10 to the
right of a target word were taken into account.

Distributional representations

Distributional representations are build using words co-occurrences according to Section 3.3.2.2,
and their matrices are shown in Figure 3.1. Number of words that receive distributional
representations for different values of θ can be found in Table 3.1.

For unknown token, for 45K/45K and 45K/10K settings, averaged representation strat-
egy is used. For 10K/10K, 2vocab/10K, 2vocab/2vocab, one-hot representation is used.

LBL training

vLBL models are trained for 20 epochs with initial learning rate of 0.5.

Results

Results are presented in Table 3.3. One-hot initialized LMs outperform binary mixed mod-
els for all tested vocabularies and all frequency intervals for distributional initialization.
Reduction of the target vocabulary (from 45K to 2vocab and then to 10K) leads to a
decrease of perplexity, while reduction of the context vocabulary (from 45K to 10K for
45K target vocabulary, and from 2vocab to 10K for 2vocab target vocabulary) leads to an
increase of perplexity. Performance of models for all target/context vocabularies combina-
tions goes down with the increase of the interval size: best results are observed for θ=[1, 1]
and worst are observed for θ=[1, 10].
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Discussion

Target vocabulary. The behavior we observe for different target vocabulary sizes is ex-
pected: the smaller the target vocabulary the smaller is perplexity. This happens due
to the fact that reduction of the target vocabulary draws a reduction of the number of
possible predictions and an increase in the probability of the unknown token.

Context vocabulary. The reduction of the context vocabulary decreases the amount of
available information at the input level of the NN, that leads to a decrease of the model’s
capacity and worsen the performance.

Different frequency intervals. The probable reason for the performance decay with expan-
sion of intervals of θ is that, due to the fact that every value in distributional vectors is
equal to 1, LBL model with such distributional initialization receives too ambiguous and
noisy signals at its input layer. Numbers of values in the distributional matrices could be
seen in Figure 3.1. The possible solution to the low performance and its decay is to use
normalization schemes, introduced in Section 3.3.2.3, to control the strength of the signals
at the input layer of the NN.

Conclusions

In this experiment, for different target/context vocabularies the performance of distribu-
tional models for interval θs do not exceed one-hot models. We would like to investigate
models performance incorporating knowledge about words positions in the context window.
In the following experiments, we employ 45K/45K setting of target/context vocabulary for
distributional representations creation.

3.5.4 Positioned PMI/PPMI models with interval θ

θ
values [1, 1] [1, 2] [1, 5] [1, 10]

W1noo10 PMI 172.86(2e, .1) 172.93(3e, .1) 172.67(2e, .1) 172.84(3e, .1)
mixed W1noo2 PPMI 172.61(2e, .1) 172.76(2e, .1) 172.65(2e, .1) 172.58(2e, .1)

W0.1noo10 PPMI 172.40(2e, .1) 172.49(2e, .1) 172.26(2e, .1) 172.45(2e, .1)

separate PPMI 173.10(4e, .1) 173.36(4e, .1) 173.83(5e, .1) 174.38(9e, .1)

Table 3.4: Perplexity of vLBL models with positioned PMI/PPMI mixed and separate initial-
ization, interpolated with KN3. In parentheses: for the best value, number of the epoch and
LBL interpolation weight λ. All models with distributional initialization perform worse than
one-hot baseline (171.90); fine-grained analysis with ONLY models is needed. “noo” for NUM-
BER OF ONES, “W” for non-diagonal values.



3.5 Experiments 53

θ
[1, 1] [1, 2] [1, 5] [1, 10]

W
1n

o
o1

0

m
ix

ed

W
1n

o
o2

W
0.

1n
o
o1

0

se
p
ar

at
e

Figure 3.2: Positioned PMI/PPMI mixed and separate distributional representations as in Ta-
ble 3.4. “noo” for NUMBER OF ONES, “W” for non-diagonal values.
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Description

Since plain binary co-occurrence vectors did not work well, we decided to follow the ap-
proach of Levy and Goldberg (2014b) to employ positioned PMI/PPMI vectors in order
to build distributional word representations.

Distributional representations: Mixed

Mixed distributional representations for words with frequency ∈ θ are build as described
in Section 3.3.2.2. Parameter θ receives values from {[1, 1], [1, 2], [1, 5], [1, 10]}.

Specific parameters for mixed distributional representations are set as follows:

• W1noo10:

– NUMBER OF ONES = 10;

– SIMILARITY WEIGHT = 1 for all words;

– pointwise mutual information (PMI) values are used in positioned vectors;

• W1noo2:

– NUMBER OF ONES = 2;

– SIMILARITY WEIGHT = 1 for all words;

– PPMI values are used in positioned vectors;

• W0.1noo10:

– NUMBER OF ONES = 10;

– SIMILARITY WEIGHT = 1 on diagonal and 0.1 for nearest neighbors;

– PPMI values are used in positioned vectors.

Distributional representations: Separate

Separate distributional representations are build as described in Section 3.3.2.2. Parameter
θ receives values from {[1, 1], [1, 2], [1, 5], [1, 10]}.

<UNK> representation is averaged. Sparse distributional matrices are shown in Fig-
ure 3.2.

LBL training

For vLBL training, learning rate is set to 0.5, number of epochs is 30.

Results

Results are presented in Table 3.4. One-hot model performs better than positioned PMI/PPMI
mixed and separate distributional models with interval θ.
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Discussion

Different values of θ. The performance of mixed and separate models does not follow a
stable pattern: it goes up and down for different analyzed intervals of words frequencies.
This means that fine-grained analysis of performance on different frequencies is needed in
order to explain these alternations.

SIMILARITY WEIGHT. Model with W=0.1 outperform other two mixed models, with
NOO=2 and W=1. The reason of the better performance of model with W=0.1 than
model with W=1 can be that in case when all values in the distributional matrix are the
same (W=1), it is hard for the NN to identify words due to the fact that some different
words have the same vectors at the input layer.

NUMBER OF ONES. The performance of mixed model with NOO=2 is better for all
intervals than of model with NOO=10. We would expect that combination of embeddings
of several context words with target word will introduce more noise at the input layer of
NN in case of NOO=10 than in case NOO=2, that will influence negatively on the model’s
performance.

Conclusions

To investigate reasons of poor performance of the models with distributional initialization,
we need to conduct fine-grained analysis. For this, we investigate distributional initializa-
tion only for words with a particular frequency in the following experiments.

We also found out that model with W=0.1 outperforms models with equal weights
(W=1), so we are going to set W=0.1 in the future experiments.

All following models are trained with use of positioned PPMI vectors to build distribu-
tional representations.

3.5.5 ONLY distributional models

Description

Next we decide to apply distributional representations to words with a particular frequency
– ONLY models as described in Section 3.3.2.1. The frequencies we are interested in are
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20}. Sparse distributional matrices are shown in Figure 3.3.

Distributional representations

In current experiment, for mixed models we set NUMBER OF ONES = 10 and SIMILAR-
ITY WEIGHT = {1 on diagonal; 0.1 for non-diagonal elements}. We explore 2 additional
models:

• mixed 10only model without weighting: weights for all values are set equal to 1 in
the distributional vector (W=1),
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θ mixedW0.1noo10 separateS12 separateS60

10
W=1

– –

2-10 – –

Figure 3.3: Initialization matrices for mixed and separate θ ONLY models, where words with
frequency = θ receive distributional representations. “noo” for NUMBER OF ONES, “W” for
non-diagonal values, “Sx” for S coeff=x. Matrices correspond to Table 3.5.

• mixed 2-10 model, where distributional representations are used for words with fre-
quencies in the interval [2, 10].

For separate models, we apply S normalization scheme: divide all non-diagonal values
by a constant 12 or 60 to scale values to [0, 0.5] and [0, 0.1] respectively.

<UNK> representation strategy is averaged.

LBL training

For vLBL training, initial learning rate is set to 0.5. Number of epochs is set to: for mixed
1 to 9 ONLY – 20, mixed 10 ONLY and 10 ONLY without weighting – 30; mixed2-10 – 20;
separate 1 to 9 ONLY – 10, separate 10only models – 20. The number of training epochs
does not influence on the resulting performance since models show best results with ≤ 3
epochs.

Results

Results are presented in Table 3.5. ONLY models show improvement over one-hot baseline
from .06 to .46 for θ ∈ {2, 3, 4, 5, 6, 7, 8, 10} for mixed models, from .06 to .29 perplexity
points for θ ∈ {3, 4, 5, 6, 7, 8, 10} for separate models with S normalization with S coeff =
12, and from .05 to .32 perplexity points for θ ∈ {4, 5, 6, 7, 9, 10} for separate models with
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θ mixedW0.1noo10 separateS12 separateS60

1 172.18(2e, .1) 173.03(2e, .1) 172.69(1e, .1)
2 171.80(2e, .1) 171.98(2e, .1) 171.96(2e, .1)
3 171.44(2e, .1) 171.71(2e, .1) 171.98(2e, .1)
4 171.66(2e, .1) 171.61(2e, .1) 171.58(2e, .1)
5 171.81(2e, .1) 171.69(2e, .1) 171.85(2e, .1)
6 171.79(2e, .1) 171.81(2e, .1) 171.80(2e, .1)
7 171.84(2e, .1) 171.84(2e, .1) 171.80(2e, .1)
8 171.76(2e, .1) 171.75(2e, .1) 171.92(2e, .1)
9 171.90(2e, .1) 172.09(2e, .1) 171.57(2e, .1)
10 171.71(2e, .1) 171.75(2e, .1) 171.81(2e, .1)
10 W=1 172.44(3e, .1) – –
2-10 171.81(2e, .1) – –

Table 3.5: Perplexity of vLBL models with θ ONLY mixed and separate initialization, interpo-
lated with KN3. In parentheses: for the best value, number of the epoch and LBL interpolation
weight λ. Models that perform better than one-hot baseline (171.90) are highlighted. “noo” for
NUMBER OF ONES, “W” for non-diagonal values, “Sx” for S coeff=x. For almost all values of
θ, mixed and separate ONLY models outperform one-hot baseline.

S normalization with S coeff = 60. In particular, mixed3only and separate4only models
have the best results. Also, mixed2-10 model perform better than one-hot model.

Discussion

For almost all values of θ, mixed and separate ONLY models outperform the one-hot
baseline; though in cases of separate models, the performance does not differ much from
the baseline: the models with fair difference are separate with S coeff = 12 and S coeff =
60 with θ = 4 (.29 and .32 perplexity points), and separate with S coeff = 60 with θ = 9
(.33 perplexity points).

Performance for small values of θ. ONLY models show different performance for different
values of θ. This suggests potential for further research and improvement: probably, words
with different frequency should be treated differently.

SIMILARITY WEIGHT. Mixed10only model with W=0.1 outperform the mixed10only
model without weighting (W=1). The only difference in these models is the value amplitude
of non-diagonal elements of the distributional matrix and the fact that non-diagonal and
diagonal elements have the same values. There are several consequences of having the same
weight for diagonal and non-diagonal elements:

• It pollutes the NN input signal from a target word: combination of context words
embeddings with the same weight as a target word embedding takes into account
not only useful information about relationships between words, but also introduce
unnecessary noise that harms performance.
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• It prevents the desired effect of error propagation; when weights are the same, target
and context words embeddings are changed equally while we would like the most of
the effect to go to the target word embedding.

• It makes DR words indistinguishable since words with same context will have exactly
the same distributional vectors.

We assume that these are reasons why when all values in the distributional vectors are the
same, it is hard for the NN to correctly identify and train embeddings for each DR word
because word identity signal (diagonal value) is the same as subsidiary signals (non-diagonal
values). We are going to investigate the effect of different values of W in Section 3.5.6.1.

Mixed1only and mixed with θ=[1,1]. The difference in performance for mixed1only and
mixed with θ = [1, 1] happens due to randomization procedure for picking similarity thresh-
old α in Algorithm 1.

Conclusions

For small values of θ, where the number of times word was seen in the corpus is too small
for a meaningful representation, normalization methods could help. We hope they will
intensify the signal of word’s identity and diminish and balance the signals of connections
between words. We are going to investigate normalization techniques in the following
experiments.

Since the best values of λ are always around 0.1, from now on we will interpolate with
λ ∈ [0, 0.2] with step 0.02. For such LBL interpolation weights, the best value of one-hot
model is 171.49(2e, .06).

Use mixed3only and separate4only models for comparison as their performance is the
best among the ONLY models.

3.5.6 Exploring normalization schemes

In this experiment, we would like to investigate different ways of normalization of vectors
that are used to build distributional representations. We conjecture that normalization
can help to balance the signal at the input layer of NN, that can lead to better word
representations inside the NN, and results in a better performance of LM.

W normalization is applied to mixed models, and S, RN, and CN normalizations are ap-
plied to separate models. Normalization schemes are described in detail in Section 3.3.2.3.

3.5.6.1 Constant normalization for mixed3only model

Description

For mixed models, “to normalize” means to define a value of SIMILARITY WEIGHT that
is used for a non-diagonal elements in distributional representations. We set this value to



3.5 Experiments 61

SIMILARITY WEIGHT
0.5 0.1 0.01 0.001

Figure 3.4: Weighted mixed3only distributional representations as in Table 3.6.

SIMILARITY WEIGHT
0.5 0.1 0.01 0.001

171.47(2e, .06) 171.19(2e, .06) 171.35(2e, .06) 171.26(2e, .06)

Table 3.6: Perplexity of vLBL models with weighted mixed3only initialization, interpolated with
KN3. In parentheses: for the best value, number of the epoch and LBL interpolation weight
λ. All mixed3only models perform better than one-hot baseline (171.49); λ ∈ [0, 0.2] with step
0.02. Because of the best performance, parameter SIMILARITY WEIGHT is set to 0.1 in the
following experiments.

one from {0.5, 0.1, 0.01, 0.001}. Weights on diagonal are always kept equal 1. Distri-
butional matrices have the same structure for different values of SIMILARITY WEIGHT
and are shown in Figure 3.4.

Distributional representations

In the experiment, we use mixed3only model: all words receive one-hot representation, ex-
cept words with frequency equals 3, that receive positioned PPMI distributional represen-
tation (see Section 3.3.2.2). Other parameters are set as follows: SIMILARITY WEIGHT
= 1 for diagonal; non-diagonal values are set to one from {0.5, 0.1, 0.01, 0.001}; NUM-
BER OF ONES = 10. <UNK> representation is averaged.

LBL training

For vLBL training, initial learning rate is set to 0.5. For W ∈ {0.1, 0.01, 0.001}, number
of epochs is 20, for W = 0.5 number of epochs is 10 (that is not crucial since the model
converges much earlier).
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Results

Results are presented in Table 3.6. Mixed3only models with W ∈ {0.1, 0.01, 0.001} out-
perform one-hot baseline. Value of W that leads to the best performance is 0.1.

Discussion

Obtained results confirm our hypothesis about balanced activation at the input layer of
NNs: the optimal value of the subsidiary signals should not be very high or very low. In
case when it is very high (1 or 0.5), the activation at the input layer becomes very noisy
and makes model unable to distinguish different words. In case of very low (0.001) values,
the signal of the additional information (non-diagonal elements) is not strong enough to
improve the performance.

Conclusions

The best normalization value obtained is W=0.1, so we will use this value in our further
experiments.

3.5.6.2 CN and RN normalizations of separate10only model

separate10only

Figure 3.5: Separate10only distributional matrix, same for all normalization schemes and coef-
ficients. Corresponds to Table 3.7.

Description

To explore normalization schemes for separate models, we use as a basis separate10only
model to which we apply CN and RN normalization with coefficients 1.0, 0.5, and 0.1.

Distributional representations

In separate10only model, only words with frequency 10 receive distributional representa-
tions – in a separate manner as described in Section 3.3.2.2. In the distributional vectors



3.5 Experiments 63

normalization coefficient
none

1 0.5 (12 for S) 0.1 (60 for S)

CN 171.80(3e, .04) 171.44(2e, .06) 171.34(2e, .06) 171.54(2e, .06)
RN 171.25(2e, .06) 171.38(2e, .06) 171.32(2e, .06) –
S – 171.40(2e, .06) 171.45(2e, .06) –

Table 3.7: Perplexity of vLBL models with normalized separate10only initializations, interpolated
with KN3. In parentheses: for the best value, number of the epoch and LBL interpolation weight
λ. Normalization schemes: CN – column normalization, RN – row normalization, S – scale
normalization (see Section 3.3.2.3). Models that perform better than one-hot baseline (171.49)
are highlighted. Normalized separate models perform better than one-hot.

creation, raw positioned PPMI values are re-scaled according to S, or RN, or CN normaliza-
tion schemes as described in Section 3.3.2.3. For all normalization schemes, distributional
matrices look the same as they differ only in the values amplitude. We depict only one of
them in Figure 3.5.

<UNK> representation is averaged.

LBL training

For vLBL training, initial learning rate is set to 0.5; CN models are trained for 10 epochs,
RN models – for 20 epochs.

Results

Results are presented in Table 3.7. Separate10only models with different normalization
techniques slightly outperform one-hot baseline: from .04 to .24 perplexity points.

Discussion

Normalization. Almost all separate models with normalization work slightly better than
one-hot baseline, that suggest that careful usage of normalization can make an impact on
LM performance.

CN and RN comparison. Models with RN normalization work a bit better than models
with CN normalization. The reason may be that RN normalization intensifies words’
identity signal against the background activation of the connections between words. CN
normalization, on other hand, can end up assigning for different words more or less the
same level of activation among different dimensions, that will confuse language model.

CN coeffs and RN coeffs. There is no big difference in performance of RN models for
different coefficients. On other hand, the performance of CN models go up when the
upper limit of the normalization interval goes down. This can be due to the reduction
of ambiguity in the distributional vectors: the difference in the word identity signal on
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the diagonal and signals of connections between words (non-diagonal elements) becomes
bigger.

CN-none. Model with normalization where entries of distributional vectors were divided
by the frequency of contexts performs worse than one-hot baseline, and also worse than
models with S normalization scheme. The reason can be that, despite of scaling of frequent
contexts, some values in the vector still are several times higher than diagonal elements,
that introduces a lot of noise at the input layer of NN.

Conclusions

Separate10only models with S, RN, and CN normalization show better results than models
with one-hot initialization. Normalization is a promising technique that needs further
investigation.

3.5.7 Change of learning rate hyper-parameter

one-hot mixed3only

Figure 3.6: One-hot and mixed3onlyW0.1noo10 distributional representations as in Table 3.8.

learning rate
1 0.5 0.1 0.05 0.01

one-hot 172.46(4e, .02) 171.68(2e, .06) 171.11(3e, .08) 171.61(13e, .06) 172.48(50e, .04)
mixed3only 172.17(3e, .04) 171.41(2e, .06) 170.84(3e, .08) 171.31(11e, .06) 172.50(50e, .04)

Table 3.8: Perplexity of vLBL models with one-hot and mixed3onlyW0.1nn10 initializations,
trained with different initial learning rates, interpolated with KN3. In parentheses: for the best
value, number of the epoch and LBL interpolation weight λ. Models that perform the best in
each row are highlighted. The best performance for one-hot model is reached with learning rate
0.1.
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Description

Hyper-parameter settings usually have a great influence on models performances. Good
choice of them can lead to a faster convergence and better overall results. There are
advanced techniques to perform the hyper-parameter optimization, such as exhaustive grid
search and manual search (e.g., Larochelle et al. (2007), Hinton (2010)), random search
(Bergstra and Bengio, 2012), bayesian optimization (Snoek et al., 2012).

In our case, for the learning rate hyper-parameter, we decide to explore performance
of models for several commonly used values and then pick the best value for our further
experiments. To do so, we train LMs with one-hot and mixed3only initializations with
learning rate set to {1.0, 0.5, 0.1, 0.05, 0.01} and analyze the results 5.

Distributional representations

We use one-hot and mixed3onlyW0.1noo10 distributional models. For mixed3only model,
distributional representations are constructed for words with frequency 3 as described in
Section 3.3.2.2. Parameters are set as follows: SIMILARITY WEIGHT = {1 for diagonal
elements, 0.1 for non-diagonal elements}; NUMBER OF ONES = 10. <UNK> represen-
tation is averaged for mixed models, and onehot for one-hot models.

Used sparse distributional matrices are shown in Figure 3.6.

LBL training

We train vLBL models for 10 epochs for learning rate ∈ {1.0, 0.5, 0.1}, and for 50 epochs
for learning rate ∈ {0.05, 0.01}.

Results

Results are presented in Table 3.8. Both one-hot and mixed3only models perform better
with initial learning rate of 0.1. For learning rate 0.01, we stop training after 50 epochs.
Perplexity of this model is going down very slow, but is still higher than for other learning
rates, so we decided not to train models till convergence.

Discussion

Choice of appropriate initial learning rate is very important for NN training. In case
learning rate is very small, convergence is slow and can take a lot of time as we have seen
in case of learning rate 0.05 and 0.01. High initial learning rate can slow down the training
by bringing the model far away from an optimal solution at the very beginning; probably,

5At the same time, new implementation of training method is introduced with main changes in batches
population and iterations through the epochs. These changes do not influence on models architecture.
The changes in the implementation and learning rate lead to slight changes in the model performances, as
expected, that makes us to re-train some models to make the evaluation comparison valid. We are going
to report the changed performance in the next sections.
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this is what happens with learning rate 0.5 and 1. It is important to note that different
models have different range of suitable learning rates that needs to be investigated. Our
investigation shows that for our experiments the optimal learning rate is 0.1.

Conclusions

Best results are obtained for learning rate = 0.1, so we keep this value for further training.

We also changed number of training epochs to 10 as we found out that models do
usually converge much faster.

With the change of learning rate, baseline is also changed: one-hot model perplexity is
171.11(3e, .08), mixed3only model perplexity is 170.84(3e, .08). Since learning rate is an
important hyper-parameter that can severely influence the performance, in order to make
the comparisons valid we re-train some of the previous models. We are going to refer to the
previous models and experiments as “old (lr=0.5)”, and to new ones as “new (lr=0.1)”.

3.5.7.1 Re-training of positioned PPMI mixed models with interval θ

θ
[1, 1] [1, 2] [1, 5] [1, 10]

Figure 3.7: Positioned PPMI mixed distributional representations for interval θ as in Table 3.9.

one-hot
θ

[1, 1] [1, 2] [1, 5] [1, 10]

171.11(3e, .08) 171.18(3e, .06) 171.18(3e, .06) 171.28(3e, .06) 171.35(3e, .06)

Table 3.9: Perplexity of vLBL models with one-hot and positioned PPMI mixed initializations
with interval θ values, interpolated with KN3. In parentheses: for the best value, number of the
epoch and LBL interpolation weight λ. All models perform worse than one-hot baseline (171.11),
same as in Section 3.5.4.
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Description

In this section, we report results of re-training LMs with positioned PPMI mixed distribu-
tional representations of words with frequencies in θ from {[1, 1], [1, 2], [1, 5], [1, 10]}.

Distributional representations

Distributional models creation is described in Section 3.3.2.2. Parameters of mixed models
are set as follows: SIMILARITY WEIGHT = {1 for diagonal elements, 0.1 for non-diagonal
elements}, NUMBER OF ONES = 10. <UNK> representation is averaged.

Sparse distributional matrices are shown in Figure 3.7.

LBL training

vLBL training is performed for 10 epochs, learning rate is set to 0.1.

Results

Results are presented in Table 3.9. Same as in Section 3.5.4, all positioned PPMI mixed
models for different θ intervals perform worse than one-hot baseline.

Discussion

The performance of mixed models slightly differs for analyzed intervals of θ, but is still
worse than one-hot model. The suggestion for further examination here is the same as in
Section 3.5.4: perform fine-grained analysis with ONLY models.

Conclusions

In order to investigate reasons of poor performance of positioned PPMI mixed models with
interval θ, we need to perform fine-grained analysis with ONLY models: this is done in
Section 3.5.7.2 and Section 3.5.7.3.

3.5.7.2 Re-training of separate normalized ONLY models

Description

Since learning rate is changed, we retrain several separate ONLY models.

Distributional representations

For separate ONLY models, we decided to re-train the best model for θ values from {1, 2,
3, 4, 5, 6, 7, 8, 9, 10} (θ = 4), one model on the investigation interval border (θ = 10) and
one outside of the interval (θ = 20). Normalization space is widely explored:

• CN-none and CN with coefficients from {1, 0.5, 0.1, 0.05, 0.01} is applied;
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separate
4only 10only 20only

Figure 3.8: Separate ONLY distributional representations as in Table 3.10. Matrices for different
normalization schemes look the same since only amplitude of values is different: zero and non-zero
values remain their property. Therefore only one matrix for each θ is shown.

• RN is applied with coefficients from {1, 0.5, 0.1};

• S is applied with with coefficients 6, 12, or 60 – to scale values to the intervals [0,1],
[0, 0.5], and [0, 0.1] respectively.

<UNK> representation is averaged. Sparse distributional matrices are shown in Figure 3.8.

LBL training

vLBL training is performed for 10 epochs, learning rate is set to 0.1.

Results

Results are presented in Table 3.10. S normalized separate4only models with S = 6 and 12
perform better than one-hot baseline; other examined models perform worse. Normalized
separate models work better than models without normalization.

Discussion

Use of normalization. Separate 4only, 10only and 20only models with normalized vectors
work better than corresponding models without normalization. This suggests limitations
that are put by normalization are beneficial for separate distributional models.

CN, RN, and S comparison. There is no big difference in perplexity results for different
normalization techniques applied to separate 10only and separate 20only models. For
separate 4only, models with S normalization perform a bit better than models with RN
normalization (from .05 to .21 perplexity points), which in their turn perform slightly
better than models with CN normalization (from .07 to .28 perplexity points); though
these differences are not conclusive.
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normalization separate
schemes coeffs 4only 10only 20only

CN

– 171.11(5e, .06) 171.23(5e, .06) 171.28(5e, .06)
1 171.42(5e, .06) 171.23(5e, .06) 171.24(5e, .06)

0.5 171.42(5e, .06) 171.22(5e, .06) 171.19(5e, .06)
0.1 171.30(5e, .06) 171.22(5e, .06) 171.19(5e, .06)
0.05 171.28(5e, .06) 171.22(5e, .06) 171.20(5e, .06)
0.01 171.23(5e, .06) 171.22(5e, .06) 171.22(5e, .06)

1 171.19(5e, .06) 171.24(5e, .06) 171.15(5e, .06)
RN 0.5 171.14(5e, .06) 171.21(5e, .06) 171.20(5e, .06)

0.1 171.23(5e, .06) 171.22(5e, .06) 171.23(5e, .06)

6 171.07(5e, .06) 171.19(5e, .06) 171.14(5e, .06)
S 12 170.93(5e, .06) 171.22(5e, .06) 171.16(5e, .06)

60 171.18(5e, .06) 171.23(5e, .06) 171.17(3e, .06)

no normalization 171.42(7e, .06) 171.68(6e, .06) 171.78(8e, .06)

Table 3.10: Perplexity of vLBL models with separate ONLY initialization, interpolated with
KN3. In parentheses: for the best value, number of the epoch and LBL interpolation weight
λ. Normalization schemes: CN – column normalization, RN – row normalization, S – scale
normalization (see Section 3.3.2.3). Models that perform better than one-hot baseline (171.11) are
highlighted. Models that use normalization perform better than models without normalization,
though still mostly worse than one-hot baseline.

The same argument as in Section 3.5.6.2 is valid here: Models with RN normalization
work a bit better than models with CN normalization. The reason may be that RN
normalization intensifies words’ identity signal against the background activation of the
connections between words. CN normalization, on other hand, can end up assigning for
different words more or less the same level of activation among different dimensions, that
confuses language model.

CN coeffs. As we observed earlier in Section 3.5.6.2, the performance of CN models goes
up when the upper limit of the normalization interval goes down: for separate 4only and
10only models. This can be due to the reduction of ambiguity in the word vectors. For
separate20only model, the performance is stable among different coefficients.

CN-none. Model with normalization where entries of distributional vectors were divided
by the frequency of context performs worse than one-hot baseline. The reason can be that,
despite of scaling of frequent contexts, some values in the vector still are several times
higher than diagonal elements, that introduces a lot of noise at the input layer of NN.

RN coeffs. There is no big difference in performance of RN models for different coefficients
for all 3 values of θ explored.

S coeffs. There is no big difference in performance of S models for different coefficients for
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separate 10only and 20only models. For separate4only model, the variance is higher.

Performance depending on learning rate. There is a difference in performance for separate
models with respect to one-hot baseline for models trained with learning rate 0.5 (Sec-
tion 3.5.6.2) and models trained in this section, with learning rate 0.1: the former models
perform slightly better than the baseline, and the latter perform slightly worse. In both
cases, the difference with the baseline is quite small (less than .25 perplexity points), that
makes these results inconclusive.

Conclusions

LMs where distributional representations is constructed with normalization tend to per-
form better than LMs where representations without normalization are used, though more
exploration of normalization schemes is needed in order to beat one-hot baseline.

3.5.7.3 Re-training of mixed ONLY models

θ = 20

Figure 3.9: MixedW0.1noo10 distributional representations as in Table 3.11. Given matrix
corresponds to θ = 20. The matrices for θ from 1 to 10 are the same as in Figure 3.3, left column.

Description

Since learning rate is changed, we retrain several mixed ONLY models.

Distributional representations

For mixed models, we decided to re-train ONLY models for θ ∈ [1, 10] and one extra
model with θ = 20. Distributional representation are built as described in Section 3.3.2.2
with following parameters: SIMILARITY WEIGHT ={1 for diagonal elements, 0.1 for
non-diagonal elements}, NUMBER OF ONES = 10. <UNK> representation is averaged.

Sparse distributional matrices are shown in Figure 3.9.
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θ mixed

1 171.18(3e, .06)
2 170.87(3e, .08)
3 170.84(3e, .08)
4 170.93(5e, .06)
5 170.95(3e, .08)
6 170.91(5e, .08)
7 170.90(3e, .08)
8 170.93(3e, .08)
9 170.85(3e, .08)
10 170.90(5e, .08)
20 170.86(3e, .08)

Table 3.11: Perplexity of vLBL models with mixedW0.1noo10 ONLY initializations, interpolated
with KN3. In parentheses: for the best value, number of the epoch and LBL interpolation weight
λ. All models except for one with θ = 1 perform better than one-hot baseline (171.11); this
suggests importance of normalization and different treatment for words with frequency 1.

LBL training

vLBL training is performed for 10 epochs with learning rate set to 0.1.

Results

Results are presented in Table 3.11. Mixed ONLY models with θ from 2 to 10 and 20
perform better than one-hot model.

Discussion

We observe a similar behavior to the experiment from Section 3.5.5: all models for θ ∈
[2, 10] and θ = 20 perform better than one-hot model; also their performances are indis-
tinguishable. Mixed model for θ = 1 performs worse than one-hot model and models with
other θ values. Such behavior suggests future research for different treatment of words
with frequency 1 and words with other frequencies.

3.5.8 NUMBER OF ONES for mixed3only model

NOO=10 NOO=30

170.84(3e, .08) 170.95(7e, .06)

Table 3.12: Perplexity of vLBL models with mixed3onlyW0.1 initialization with different NUM-
BER OF ONES values, interpolated with KN3. In parentheses: for the best value, number of
the epoch and LBL interpolation weight λ. Both models perform better than one-hot baseline
(171.11), and model with NOO=10 performs better than with NOO=30.
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NOO=10 NOO=30

Figure 3.10: Mixed3onlyW0.1 distributional representations for different values of parameter
NUMBER OF ONES as in Table 3.12.

Description

In the current experiment, we decided to investigate the effect of NUMBER OF ONES
parameter on the mixed ONLY model performance.

Distributional representations

Mixed3only models are trained with parameter NUMBER OF ONES set to 10 or 30. Other
parameters are set as follows:

• SIMILARITY WEIGHT = {1 for diagonal elements, 0.1 for non-diagonal elements}.

• <UNK> representation is averaged.

Sparse distributional matrices are shown in Figure 3.10. There is approximately 30,000
more non-zero values in the distributional matrix for NOO=30.

LBL training

vLBL training is performed for 10 epochs, learning rate is set to 0.1.

Results

Results are presented in Table 3.12. Both mixed models with NUMBER OF ONES =
10 and 30 perform better than one-hot model. Model with NUMBER OF ONES = 10
performs better than one with 30.

Discussion

The same argument as in Section 3.5.4 is valid here: when NOO is set to 30 the values of
subsidiary signals from context word embeddings is getting higher, hence the input to a
NN becomes more noisy. The increase of ambiguity worsens the performance of LM.
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Conclusions

For the future experiments, we decide to set parameter NUMBER OF ONES to 10.

3.5.9 Letter 3-gram models

In the next set of experiments, we use distributional representations that are built by
means of letter 3-grams as described in Section 3.3.2.2. We explore mixed and separate
models, initializing words with frequency in intervals θ, together with θ ONLY models
where words with frequency = θ receive distributional initialization. Performances of
models with different normalization schemes is also investigated.

3.5.9.1 Letter 3-gram models with interval θs

θ
[1, 1] [1, 2] [1, 5] [1, 10]

se
p
ar

at
e

m
ix

ed

Figure 3.11: Mixed and separate normalized letter 3-gram distributional representations for
words with frequencies in intervals θ as in Table 3.13. Separate matrices have the same structure
independently of used normalization scheme.

Description

In the first experiment with letter 3-grams, we investigate the performance of LMs initial-
ized with letter 3-gram distributional representations with interval θ from {[1, 1], [1, 2],
[1, 5], [1, 10]}.
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θ
coeffs [1, 1] [1, 2] [1, 5] [1, 10]

se
p
ar

at
e

1 172.04(7e, .04) 171.95(6e, .04) 172.03(6e, .04) 171.72(4e, .04)
CN 0.5 172.07(7e, .04) 171.87(5e, .04) 171.81(3e, .04) 172.08(6e, .04)

0.1 171.68(5e, .06) 171.64(7e, .04) 171.90(5e, .04) 171.64(7e, .06)
1 172.10(7e, .04) 172.01(5e, .04) 172.02(5e, .04) 171.93(5e, .04)

RN 0.5 172.05(5e, .04) 171.99(5e, .04) 172.04(4e, .04) 172.04(4e, .04)
0.1 171.90(4e, .04) 171.87(4e, .04) 171.94(4e, .04) 171.90(4e, .04)
6 171.96(7e, .04) 172.15(7e, .04) 172.41(6e, .04) 171.93(7e, .04)

S 12 171.91(6e, .04) 171.93(5e, .04) 172.22(6e, .04) 172.05(3e, .04)
60 171.56(3e, .06) 171.62(4e, .04) 171.76(3e, .06) 171.44(3e, .06)

mixed 171.23(5e, .06) 171.30(3e, .06) 171.17(4e, .06) 171.24(6e, .06)

Table 3.13: Perplexity of vLBL models with mixedW0.1noo10 and separate letter 3-gram initial-
ization with different normalization schemes, interpolated with KN3. Normalization schemes: CN
– column normalization, RN – row normalization, S – scale normalization (see Section 3.3.2.3).
In parentheses: for the best value, number of the epoch and LBL interpolation weight λ. All
models perform worse than one-hot baseline (171.11). Detailed analysis with ONLY models is
needed.

Distributional representations

We build mixed distributional representations of words as described in Section 3.3.2.2.
Parameters are set as follows:

• SIMILARITY WEIGHT = {1 for diagonal elements, 0.1 for non-diagonal elements};

• NUMBER OF ONES = 10;

• PPMI values are used;

<UNK> representation is averaged.
Separate distributional representations are built as described in Section 3.3.2.2 with dif-

ferent normalization schemes (see Section 3.3.2.3 for details) and with different coefficients:
CN and RN coefficients are in {1, 0.5, 0.1}, and S coefficients are in {6, 12, 60}.

Sparse distributional matrices are shown in Figure 3.9.

LBL training

vLBL training is performed for 10 epochs, learning rate is set to 0.1.

Results

Results are presented in Table 3.11. All models with interval θ perform worse than one-hot
baseline.
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Discussion

θ values. Performance of mixed and separate models for different interval θs is worse than
one-hot baseline, and also not stable. The conclusion here would be the same as in earlier
related experiments (Section 3.5.3, Section 3.5.4, Section 3.5.7.1): fine-grained analysis
with ONLY models is needed.

Separate models with different normalization schemes. All separate models with different
normalization schemes perform similarly to each other on different interval θs.

Normalization coefficients. All models, except of CN on θ = [1, 5], with upper bound 0.1
(CN coeff = RN coeff = 0.1, S coeff = 60) perform slightly better than models with other
coefficients. This supports our hypothesis that activation of non-diagonal elements should
be bounded in order to emphasize identity signal on the diagonal.

Conclusions

Fine-grained analysis with ONLY letter 3-gram models is needed.

3.5.9.2 Letter 3-gram ONLY models

θ mixed
1 171.23(5e, .06)
2 170.88(5e, .08)
3 170.85(5e, .08)
4 170.93(5e, .08)
5 170.93(3e, .08)
6 170.79(5e, .08)
7 170.87(5e, .08)
8 170.88(5e, .08)
9 170.85(5e, .08)
10 170.90(5e, .08)
20 170.85(3e, .08)

Table 3.14: Perplexity of vLBL models with mixedW0.1noo10 letter 3-gram ONLY initialization,
where words with frequency = θ receive distributional representations, interpolated with KN3.
In parentheses: for the best value, number of the epoch and LBL interpolation weight λ. Models
that perform better than one-hot baseline (171.11) are highlighted.

Description

Next we would like to look on the performance of ONLY mixed and separate models to
assess the influence of letter 3-gram distributional initialization of words with frequency
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θ mixed separate

1

2

3

4

5
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θ mixed separate

6

7

8

9

10
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separate CN coefficient
θ 1 0.5 0.1
1 172.04(7e, .04) 172.07(7e, .04) 171.68(5e, .06)
2 171.47(5e, .06) 171.60(5e, .06) 171.33(5e, .06)
3 171.46(5e, .06) 171.27(5e, .06) 171.33(5e, .06)
4 170.93(5e, .08) 171.15(5e, .06) 171.30(5e, .06)
5 171.50(5e, .06) 171.25(5e, .06) 171.28(5e, .06)
6 170.86(5e, .08) 171.20(5e, .06) 171.34(5e, .06)
7 171.34(5e, .06) 171.27(5e, .06) 171.22(5e, .06)
8 171.72(5e, .06) 171.34(5e, .06) 171.35(5e, .06)
9 171.39(5e, .06) 171.32(5e, .06) 171.22(5e, .06)
10 171.35(5e, .06) 171.26(5e, .06) 171.24(5e, .06)
20 171.54(5e, .06) 171.26(5e, .06) 171.21(5e, .06)

separate RN coefficient
θ 1 0.5 0.1
1 172.10(7e, .04) 172.05(5e, .04) 171.90(4e, .04)
2 171.30(5e, .06) 171.17(5e, .06) 171.22(5e, .06)
3 171.34(5e, .06) 171.40(5e, .06) 171.34(5e, .06)
4 171.19(5e, .06) 171.20(5e, .06) 171.23(5e, .06)
5 171.28(5e, .06) 171.25(5e, .06) 171.24(5e, .06)
6 171.34(5e, .06) 171.37(5e, .06) 171.31(5e, .06)
7 171.21(5e, .06) 171.22(5e, .06) 171.22(5e, .06)
8 171.34(5e, .06) 171.32(5e, .06) 171.34(5e, .06)
9 171.23(5e, .06) 171.24(5e, .06) 171.23(5e, .06)
10 171.24(5e, .06) 171.22(5e, .06) 171.22(5e, .06)
20 171.18(5e, .06) 171.20(5e, .06) 171.22(5e, .06)

separate S coefficient
θ 6 12 60
1 171.96(7e, .04) 171.91(6e, .04) 171.56(3e, .06)
2 171.31(5e, .06) 171.19(5e, .06) 171.31(5e, .06)
3 171.35(5e, .06) 171.21(5e, .06) 171.36(5e, .06)
4 171.05(5e, .06) 171.14(5e, .06) 171.17(5e, .06)
5 171.50(5e, .06) 171.39(5e, .06) 171.24(5e, .06)
6 171.20(5e, .06) 170.99(5e, .06) 171.38(5e, .06)
7 171.39(5e, .06) 171.29(5e, .06) 171.24(5e, .06)
8 171.68(5e, .06) 171.30(5e, .06) 171.35(5e, .06)
9 171.37(5e, .06) 171.33(5e, .06) 171.24(5e, .06)
10 171.40(5e, .06) 171.22(5e, .06) 171.25(5e, .06)
20 171.41(5e, .06) 171.24(5e, .06) 171.19(5e, .06)

Table 3.15: Perplexity of vLBL models with separate letter 3-gram ONLY initialization (where
words with frequency = θ receive distributional representations) with different normalization
schemes, interpolated with KN3. In parentheses: for the best value, number of the epoch and
LBL interpolation weight λ. Normalization schemes: CN – column normalization, RN – row
normalization, S – scale normalization (see Section 3.3.2.3). Models that perform better than
one-hot baseline (171.11) are highlighted.
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θ mixed separate

20

Figure 3.12: Initialization matrices for mixed and separate letter 3-gram ONLY models, where
words with frequency = θ receive distributional representations. Matrices correspond to Ta-
ble 3.14 (mixed column) and Table 3.15 (separate column).

equal θ on LM performance.

Distributional representations

Distributional representations are built as described in Section 3.3.2.2 and Section 3.3.2.1.
Parameters for mixed distributional representations are set as follows:

• SIMILARITY WEIGHT = {1 for diagonal elements, 0.1 for non-diagonal elements},

• NUMBER OF ONES = 10.

For separate representations, we use CN, RN, and S normalization schemes with coef-
ficients in {1, 0.5, 0.1} for CN and RN and in {6, 12, 60} for S.

<UNK> representation is averaged.
Sparse distributional matrices are shown in Figure 3.12.

LBL training

vLBL training is performed for 10 epochs, learning rate is set to 0.1.

Results

Results are presented in Table 3.14 and Table 3.15. In general, mixed models perform
good (models with θ from {2, 3, 4, 5, 6, 7, 8, 9, 10, 20} are better than one-hot baseline),
separate models perform poorly.

Discussion

Mixed models with θ from {2, 3, 4, 5, 6, 7, 8, 9, 10, 20} perform better than one-hot
baseline; and performance is almost the same for different values of θ. It seems like the
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main complication for the models with interval θs are words with frequency 1. This result,
same as for positioned PPMI models, suggests different treatment for words with different
frequencies.

Separate models. In all explored space of normalization schemes with different coefficients,
only 4 models show better performance than one-hot baseline: separate 4only with CN coeff
= 1 and S coeff = 6, and separate 6only with CN coeff = 1 and S coeff = 12.

1 ONLY models. Models where only words with frequency equals 1 receive distributional
representation perform worse than any other ONLY models – for all normalization schemes,
for all explored coefficients, for both mixed and separate models. This could be a reason
interval models perform poorly: they include words with frequency = 1 in their receiving
distributional initialization words set.

3.5.10 Experiments on preprocessed corpus

45K 40K 35K

m
ix

ed
3o

n
ly

Figure 3.13: Mixed3onlyW0.1noo10 distributional representations as in Table 3.16. Only words
with frequency 3 receive distributional representations.

45K 40K 35K

onehot 171.11(3e, .08) 162.29(5e, .12) 160.37(5e, .14)
mixed3only 170.84(3e, .08) 163.11(4e, .12) 160.92(5e, .14)

Table 3.16: Perplexity of vLBL models with one-hot and mixed3onlyW0.1noo10 initializations
with vocabularies for different preprocessed corpora, interpolated with KN3. In parentheses:
for the best value, number of the epoch and LBL interpolation weight λ. Models that perform
better in each row are highlighted. Better performance of mixed model for unchanged corpus
(the largest vocabulary) suggests potential benefit in using distributional initialization on larger
corpora.
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Description

In current experiment, we want to investigate the performance of LM in case preprocessed
corpus is used for its training and for creation of distributional representations. We apply
2 preprocessing strategies:

• replace all digits with one token: this leads to a target vocabulary of size 40,370
(40K);

• replace all digits with one token and lowercase all words: this leads to a target
vocabulary of size 35,385 (35K).

Distributional representations

We train 2 models – one-hot and mixed3only – for each corpus version. Sparse distribu-
tional matrices are shown in Figure 3.13.

For mixed distributional representations, we set SIMILARITY WEIGHT = {1 for di-
agonal elements, 0.1 for non-diagonal elements}, NUMBER OF ONES = 10. <UNK>
representation is averaged for mixed models, and is one-hot for one-hot model.

LBL training

vLBL training is performed for 10 epochs, learning rate is set to 0.1.

Results

Results are presented in Table 3.16. Mixed3only model outperforms one-hot on unchanged
corpus. For preprocessed corpora, one-hot initialization works better.

Discussion

Though the one-hot model outperforms mixed model on preprocessed corpora, better re-
sults of mixed distributional initialization on the unchanged corpus can mean better scores
of models with distributional initialization on larger corpora.

3.6 Discussion

In the course of experiments, we compare performance of models with distributional ini-
tialization with one-hot initialized model. Here we would like to compare LM performances
with respect to hyper-parameters of distributional representations: different combination,
normalization and association measurement schemes.



82 3. Language Modeling

3.6.1 Combination schemes

3.6.1.1 Mixed vs. Separate initialization

In contrast to Chapter 2, it would be incorrect to directly compare performance of LMs that
employ mixed and separate initialization due to the fact that we construct distributional
vectors differently: for separate models, distributional vectors are just concatenations of
positioned context vectors, while for mixed models, distributional vectors are built based on
similarity of the concatenated positioned vectors. We also applied different normalization
schemes for mixed and separate models with different hyper-parameters.

If we ignore these facts and look on the numbers different separate and mixed models
achieved for the same upper bound on the non-diagonal elements (1, 0.5 or 0.1), we can
see that in most of the cases separate models perform poorer than mixed models. The
possible reasons could be that:

1. mixed models enjoy connections between words provided by distributional represen-
tations – through sharing the vectors space; whereas word representation vectors
for words with distributional and one-hot representation in separate models live in
orthogonal spaces,

2. the hyper-parameter space for separate representations needs more exploration in
order to tune the parameters well.

3.6.1.2 Mixed and separate initializations vs. ONLY initialization

It is not possible to directly compare performance of ONLY models and mixed or separate
models as words that receive distributional initialization are different6.

3.6.2 Association measurement schemes

We examine LMs with different association measurement schemes: binary, positioned
PPMI and letter 3-grams, with respect to old/new learning rates.

3.6.2.1 Binary, positioned PPMI and letter 3-gram models for interval θs

For θ ∈ {[1, 1], [1, 2], [1, 5], [1, 10]}, we would like to compare performance of following
models: binary and positioned PPMI mixed with old learning rate value (Section 3.5.3
and Section 3.5.4), positioned PPMI and letter 3-gram mixed with new learning rate value
(Section 3.5.7.1 and Section 3.5.9.1).

We summarize these performances in Table 3.17.
Binary and positioned PPMI comparison (lines 1 and 2 of Table 3.17). On average, per-
formance of binary and positioned PPMI mixed models for interval θ drops by 2.71 points,

6Except of ONLY models with θ = 1 and models with θ = [1, 1] that have exactly the same distributional
matrices, therefore this comparison is unnecessary.
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mixed models
learning window θ

one-hot
rate size [1, 1] [1, 2] [1, 5] [1, 10]

binary – old(0.5) 10+10 173.84(2e, .1) 175.18(4e, .1) 175.59(16e, .1) 175.94(20e, .1) 171.90(2e, .1)
p-ppmiW0.1noo10 old(0.5) 2+2 172.40(2e, .1) 172.49(2e, .1) 172.26(2e, .1) 172.45(2e, .1) 171.90(2e, .1)
p-ppmiW0.1noo10 new(0.1) 2+2 171.18(3e, .06) 171.18(3e, .06) 171.28(3e, .06) 171.35(3e, .06) 171.11(3e, .08)
3-gramW0.1noo10 new(0.1) 2+1+2 171.23(5e, .06) 171.30(3e, .06) 171.17(4e, .06) 171.24(6e, .06) 171.11(3e, .08)

Table 3.17: Perplexity of vLBL models with mixed initializations for interval θ, interpolated with
KN3. Baseline performance is reported in the last column. In parentheses: for the best value,
number of the epoch and LBL interpolation weight λ. window size corresponds to a number of
words from left and right (l+r) of a target words used to build distributional representations;
in case of letter 3-gram models (line 3-gram), window includes also target word in the middle:
2+1+2. binary indicates binary models, p-ppmi indicates positioned PPMI models, and 3-gram
indicates letter 3-gram models.

with difference growing with interval expansion: 1.44 → 2.69 → 3.23 → 3.49. There are
several possible explanation of such an effect:

• difference in hyper-parameters for binary and positioned PPMI models makes them
incomparable, e.g., context size, weighting, NUMBER OF ONES value;

• usage of PPMI values in distributional representation construction together with lim-
itation on NUMBER OF ONES emphasizes most relevant and discard least relevant
information in the words representations, that allows positioned PPMI mixed models
outperform binary mixed models.

Both models perform worse than corresponded one-hot baseline.

Positioned PPMI and letter 3-gram comparison (lines 3 and 4 of Table 3.17). Performances
of positioned PPMI and letter 3-gram mixed do not differ much from each other for different
θ values: the maximum difference is .12 perplexity points. Also both models perform worse
than corresponded one-hot baseline. We assume this is due to the resemblance between
positioned vectors with PPMI values and letter 3-grams counts that leads to the similar
distributional representation of vocabulary. To see the difference, we would suggest to
increase the training corpus size.

3.6.2.2 Positioned PPMI and letter 3-gram models for θ ONLY

Mixed and separate distributional representations for different θ ONLY values were tested
on LMs, and here we would like to compare positioned PPMI and letter 3-gram schemes.

Mixed models. For mixed models, positioned PPMI representation was introduced in Sec-
tion 3.5.7.3 and letter 3-gram representation in Section 3.5.9.2. We summarize models
performances in Table 3.18.

Same as for models with interval θ, performance of positioned PPMI and letter 3-gram
ONLY models do not differ much from each other for different values of θ (maximal delta
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θ
mixedW0.1noo10

positioned PPMI letter 3-gram
1 171.18(3e, .06) 171.23(5e, .06)
2 170.87(3e, .08) 170.88(5e, .08)
3 170.84(3e, .08) 170.85(5e, .08)
4 170.93(5e, .06) 170.93(5e, .08)
5 170.95(3e, .08) 170.93(3e, .08)
6 170.91(5e, .08) 170.79(5e, .08)
7 170.90(3e, .08) 170.87(5e, .08)
8 170.93(3e, .08) 170.88(5e, .08)
9 170.85(3e, .08) 170.85(5e, .08)
10 170.90(5e, .08) 170.90(5e, .08)
20 170.86(3e, .08) 170.85(3e, .08)

Table 3.18: Perplexity of vLBL models with mixedW0.1noo10 positioned PPMI and letter 3-
gram ONLY initializations, interpolated with KN3. In parentheses: for the best value, number
of the epoch and LBL interpolation weight λ. Models that perform better than one-hot baseline
(171.11) are highlighted.

is .12). Suggested explanation is the same as above: positioned PPMI vectors are alike
positioned letter 3-gram vectors, that leads to the similar distributional representations of
vocabulary words.

Separate models. For separate models, positioned PPMI representation was employed in
Section 3.5.7.2 and letter 3-gram representation in Section 3.5.9.2. We summarize models
performances in Table 3.19.

Performance of 10 ONLY models does not differ much for positioned PPMI and letter
3-gram representations. Performance of 4 ONLY models is very similar for different distri-
butional representations, with two exceptions: CN normalization with CN coeff = 1 and
S normalization with S coeff = 12.

3.6.3 Normalization schemes

We use normalization schemes described in Section 3.3.2.3 to scale values in the word
representation vectors. The overall finding is that normalization helps distributional models
to perform better.

3.6.3.1 Normalization for mixed models

As we mentioned above, for mixed models “to normalize” means to define a value of
SIMILARITY WEIGHT W that is used for a non-diagonal elements in words distributional
representations. The diagonal elements were always kept equal to 1.

In Section 3.5.4 and Section 3.5.5 (for mixed10only models with and without weighting),
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separate4only separate10only
coeff positioned PPMI letter 3-gram positioned PPMI letter 3-gram

1 171.42(5e, .06) 170.93(5e, .08) 171.23(5e, .06) 171.35(5e, .06)
CN 0.5 171.42(5e, .06) 171.15(5e, .06) 171.22(5e, .06) 171.26(5e, .06)

0.1 171.30(5e, .06) 171.30(5e, .06) 171.22(5e, .06) 171.24(5e, .06)
1 171.19(5e, .06) 171.19(5e, .06) 171.24(5e, .06) 171.24(5e, .06)

RN 0.5 171.14(5e, .06) 171.20(5e, .06) 171.21(5e, .06) 171.22(5e, .06)
0.1 171.23(5e, .06) 171.23(5e, .06) 171.22(5e, .06) 171.22(5e, .06)
6 171.07(5e, .06) 171.05(5e, .06) 171.19(5e, .06) 171.40(5e, .06)

S 12 170.93(5e, .06) 171.14(5e, .06) 171.22(5e, .06) 171.22(5e, .06)
60 171.18(5e, .06) 171.17(5e, .06) 171.23(5e, .06) 171.25(5e, .06)

Table 3.19: Perplexity of vLBL models with separate 4only and 10only positioned PPMI and
letter 3-gram initializations, interpolated with KN3. In parentheses: for the best value, number of
the epoch and LBL interpolation weight λ. Normalization schemes: CN – column normalization,
RN – row normalization, S – scale normalization (see Section 3.3.2.3). Models that perform
better than one-hot baseline (171.11) are highlighted.

we compare performance of W=1 and W=0.1, and found out that models with W=0.1
perform better both for interval and for ONLY θ. Then, in Section 3.5.6.1, we built
distributional representations setting W to values from {0.5, 0.1, 0.01, 0.001}, and there
we found out that for good performance proper activation at the input layer of NN is
crucial: the optimal value should not be very high or very low. In case when it is very high
(1 or 0.5), the activation at the input layer becomes very noisy and makes model unable to
distinguish different words. In case of very low (0.001) values, the signal of the additional
information (non-diagonal elements) is not strong enough to improve the performance.

These findings recommend to set W = 0.1 for the best performance.

3.6.3.2 Normalization for separate models

We explore CN, RN, and S normalization schemes for separate models with different coef-
ficients: {1, 0.5, 0.1, 0.05, 0.01} for CN, {1, 0.5, 0.1} for RN, and {6, 12, 60} for S. We also
looked at the CN-none model, where vector’s values were divided by the frequency of con-
texts. We have found that models with normalization perform better than models without
normalization, that means that limitations put by normalization are beneficial. On other
hand, only a couple of normalized separate models perform better than one-hot baselines,
that suggest that careful application of normalization can enhance LM performance.

Comparison of different normalization schemes
We conducted 2 experiments (Section 3.5.6.2, Section 3.5.7.2) on positioned PPMI models
and 2 experiments (Section 3.5.9.1, Section 3.5.9.2) on letter 3-gram models.

For positioned PPMI models, RN models slightly surpass CN models for separate10only
in Section 3.5.6.2 (differences in [.02, .55]) and for separate4only in Section 3.5.7.2 (differ-
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ences in [.07, .28]). Though in later experiment the performance of RN and CN models was
indistinguishable for separate 10only and 20only models (differences in [-.01, .09]). The
reason that RN models work a bit better than CN models may be that RN normalization
intensifies words’ identity signal against the background activation of the connection be-
tween words. CN normalization, on other hand, can end up assigning for different words
more or less the same level of activation among different dimensions, that will confuse
language model.

RN models also slightly outperform S models for separate10only in Section 3.5.6.2 (dif-
ferences in [.02, .13]), but are beaten by S normalization in Section 3.5.7.2 with differences
in [.01, .21] for separate 4only and 20only models; for separate10only, the performance is
similar.

Performances of CN and S models do not differ much for separate10only in Sec-
tion 3.5.6.2 (differences in [-.04, .11]) and Section 3.5.7.2 (differences in [-.01, .04]), and
for separate20only in the later experiment (differences in [.02, .10]). For separate4only, S
outperforms CN models with differences are in [.12, .49].

CN-none model evaluated in Section 3.5.6.2 showed no advantage over CN, RN, and
S models for separate10only setting, together with one-hot baseline. In Section 3.5.7.2,
performance of CN-none models is indistinguishable from other normalization schemes
for separate 10only and 20only models, and slightly better than CN and RN models for
separate4only.

For letter 3-gram models, no distinct performance pattern was observed: performance
varied from 0 to .48 perplexity points for different normalization schemes and different
coefficients with no advantage for a particular parameters choice.

Despite of small improvements observed for different normalization schemes, no conclu-
sion can be drawn from the comparison. On other hand, almost all normalized models
performed better than one-hot baseline, that suggests potential for future research here.

3.6.4 Unknown words treatment

We did not evaluate impact of different representations used to represent unknown token
<UNK>.

3.6.5 Words frequency range for distributional initialization θ

3.6.5.1 Performance for interval θ

As summarized in Table 3.17 and Table 3.20, both mixed and separate models with ex-
plored distributional representations perform poorer that one-hot baseline (see experiments
on binary models in Section 3.5.3, on positioned PPMI models in Section 3.5.4 and Sec-
tion 3.5.7.1, on letter 3-gram models in Section 3.5.9.1). The common suggestion there
was to perform fine-grained analysis with ONLY models to see what caused such results.
The findings are described in Section 3.6.5.2.
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θ
coeff [1, 1] [1, 2] [1, 5] [1, 10]

le
tt

er
3-

gr
am

1 172.04(7e, .04) 171.95(6e, .04) 172.03(6e, .04) 171.72(4e, .04)
CN 0.5 172.07(7e, .04) 171.87(5e, .04) 171.81(3e, .04) 172.08(6e, .04)

0.1 171.68(5e, .06) 171.64(7e, .04) 171.90(5e, .04) 171.64(7e, .06)
1 172.10(7e, .04) 172.01(5e, .04) 172.02(5e, .04) 171.93(5e, .04)

RN 0.5 172.05(5e, .04) 171.99(5e, .04) 172.04(4e, .04) 172.04(4e, .04)
0.1 171.90(4e, .04) 171.87(4e, .04) 171.94(4e, .04) 171.90(4e, .04)
6 171.96(7e, .04) 172.15(7e, .04) 172.41(6e, .04) 171.93(7e, .04)

S 12 171.91(6e, .04) 171.93(5e, .04) 172.22(6e, .04) 172.05(3e, .04)
60 171.56(3e, .06) 171.62(4e, .04) 171.76(3e, .06) 171.44(3e, .06)

positioned PPMI 173.10(4e, .1) 173.36(4e, .1) 173.83(5e, .1) 174.38(9e, .1)

Table 3.20: Performance of separate models with interval θ. All models perform worse than
one-hot baselines: 171.90 for positioned PPMI models and 171.11 for letter 3-gram models. In
parentheses: for the best value, number of the epoch and LBL interpolation weight λ. Normal-
ization schemes: CN – column normalization, RN – row normalization, S – scale normalization
(see Section 3.3.2.3).

For binary mixed models, performance go down with the expansion of θ intervals (see
Table 3.17). The possible explanation is that since all values in the distributional repre-
sentations are equal 1, LM receives more and more ambiguous signals at the input layer
with the grow of frequency interval. Indeed, employment of PPMI values and limitation
of NOO to 10 to control this activation brings reduction of the perplexity.

For separate positioned PPMI model, performance go down with the expansion of θ
(see Table 3.20). The reason can be the same as described above for binary mixed models.
The hypothesis that activation of non-diagonal elements should be bounded in some way
– either by putting limit on the maximal value or by the number of non-zero values in
a vector – to emphasize identity signal on the diagonal is supported also by results for
separate letter 3-gram models. As can be seen in Table 3.20, all models except of CN on θ
= [1, 5] with maximal value 0.1 (CN coeff = RN coeff = 0.1, S coeff = 60) perform slightly
better than models with other coefficients.

3.6.5.2 Performance of ONLY models for different θ

The experiments (for more details see Section 3.5.5, Section 3.5.7.3, Section 3.5.9.2) showed
that performance of mixed models for θ from {2, 3, 4, 5, 6, 7, 8, 9, 10, 20} is greater than
one-hot baseline with differences up to .46 perplexity points. This finding shows that use of
distributional representations for words of determined frequencies is beneficial, and future
research on combination of different representations of words with different frequency looks
promising.

ONLY models with θ = 1 usually perform worse than ONLY models with other θ values
altogether with one-hot baseline model (see first lines in Table 3.5, Table 3.11, Table 3.14,
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θ
mixedW0.1noo10

positioned PPMI, positioned PPMI,
letter 3-gram

old lr=0.5 new lr=0.1
1 172.18(2e, .1) 171.18(3e, .06) 171.23(5e, .06)
2 171.80(2e, .1) 170.87(3e, .08) 170.88(5e, .08)
3 171.44(2e, .1) 170.84(3e, .08) 170.85(5e, .08)
4 171.66(2e, .1) 170.93(5e, .06) 170.93(5e, .08)
5 171.81(2e, .1) 170.95(3e, .08) 170.93(3e, .08)
6 171.79(2e, .1) 170.91(5e, .08) 170.79(5e, .08)
7 171.84(2e, .1) 170.90(3e, .08) 170.87(5e, .08)
8 171.76(2e, .1) 170.93(3e, .08) 170.88(5e, .08)
9 171.90(2e, .1) 170.85(3e, .08) 170.85(5e, .08)
10 171.71(2e, .1) 170.90(5e, .08) 170.90(5e, .08)

2-10 171.81(2e, .1) – –
20 – 170.86(3e, .08) 170.85(3e, .08)

one-hot 171.90(2e, .1) 171.11(3e, .08) 171.11(3e, .08)

Table 3.21: Perplexity of vLBL models with mixed ONLY initializations, interpolated with KN3.
In parentheses: for the best value, number of the epoch and LBL interpolation weight λ. Models
that perform not worse than one-hot baseline (last line) are highlighted.

Table 3.15). Such behavior needs more detailed investigation that also can help to improve
performance of distributional models with interval θ.

Mixed2-10 and mixed with θ = [1, 10]
It is worth to mention that distributional matrix for θ = [1, 10] is not just a composition of
distributional matrices for mixed2-10 model and mixed model with θ = 1, since the values
of the similarity threshold α in Algorithm 1 are different for these matrices. Therewith it
is not completely correct to ground the low performance of model with θ = [1, 10] on the
low performance of 1 ONLY model, albeit the perplexity results suggest this prominently.
We would like to explore this possibility in the future work.

Separate models
From Section 3.5.5, performance of separate models with S coeff=12 and S coeff=60 nor-
malizations is similar for θ from {2, 3, 4, 5, 6, 7, 8, 9, 10} with the biggest difference for
models with θ = 1. The same pattern was observed for mixed models.

For Section 3.5.7.2 where θ was set to 4, 10, or 20, we can see that performance of
not normalized models is decreasing for θ changing in the order 4, 10, 20. While for
normalized models the performance depends on normalization technique chosen: for CN,
θ = 4 performs worse than 10 and 20; for RN, models with different θ perform the same;
for CN-none and S, θ = 4 performs better than 10 and 20.

Such difference in the performances for combinations of θ and normalization schemes
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brings us to the conclusion that performance of ONLY models for different θ mostly de-
pends on other hyper-parameters, and in order to assess it appropriately more experiments
needed. Same observation is true for the experiment in Section 3.5.9.2.

3.6.6 Change of learning rate

New learning rate was introduced and used since Section 3.5.7. This change led to the
slight changes in the model performances that made us to re-train some models to make
the comparison valid. In the analysis of the experiments, we did not compare performance
of old and new, re-trained, models.

3.7 Conclusion

In this chapter, we described experiments conducted to test the performance of neural
networks initialized with distributional vectors on language modeling task.

We proposed several distributional representations for words employing different com-
bination schemes (mixed, separate, ONLY), different association functions (co-occurrence
in a window, with use of positioned PPMI and positioned letter 3-grams), and different
normalization schemes (non-diagonal elements were replaced with constant; scaled; rows
or columns got normalized with different scaling coefficients).

We explored in detail behavior of LMs where different subsets of words received distri-
butional initialization: parameter θ received values either from the set of intervals {[1, 1],
[1, 2], [1, 5], [1, 10], [2, 2], [2, 5], [2, 10], [6, 6], [6, 10]}, or set to a constant value from {1,
2, 3, 4, 5, 6, 7, 8, 9, 10, 20}.

As a neural language model, we chose vLBL model (Mnih and Kavukcuoglu, 2013) – a
modification of log-bilinear language model introduced in (Mnih and Hinton, 2007). After
the training, vLBL was interpolated with modified Kneser-Ney model of order 3 and the
perplexity results were reported.

From the experiments conducted and analysis made, we can conclude following: Simple
binary representations as in Chapter 2 do not work well enough for language modeling task
with very simple vLBL model and small training corpus used. The introduced complexity
of explored distributional representations did not pay back with strong and stable increase
of performance. The improvements that were observed for different settings suggest uti-
lization of mixed initialization with weighting scheme for words with frequencies up to 10
(with careful treatment of words with frequency 1).

To acquire better results on language modeling task, further research is required.

3.8 Future work

There are several ideas that look promising to implement right ahead. Experiments with
ONLY models suggest different treatment of words with frequency 1 and words with other
frequencies, e.g., apply one-hot representations for them in models with interval θ.
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As it is mentioned in Section 3.3.6, perplexity is a tool of intrinsic evaluation; what
is more important is how the particular LM can influence the performance of a practical
system in, for example, machine translation or speech recognition field. That is why the
next logical step will be to embed LMs with one-hot and distributional initializations into
such systems and assess the change in the performance.

The experimental results we got in our work were tied to specific choices we had made
beforehand on model architectures and representations used. There is a number of sugges-
tions for extensions that can be applied to the current models.

One of the main changes that, as we hope, is going to make a difference is utilization
of the distributional representations for both input and output of the NN of LM. Based on
the results of Botha and Blunsom (2014), we expect this to make LM predictions more
accurate.

We are also interested in using bigger training corpora (e.g., ukWac+Wackypedia, as
in Chapter 2). Though small corpus makes training faster, more information is needed to
model natural language for the real world applications. Complex neural LMs can benefit
from usage of bigger training corpus; it also can make the advantages of neural LMs with
distributional representations more vivid.

We have chosen simple vLBL as our neural language model mostly for the reason of
fast training. Nevertheless we expect neural LMs with more sophisticated architecture
(e.g., LBL, NNLM, LSTM) to be more suitable for the current task: position-awareness of
LBL model and non-linearity of NNLM can play crucial role in tasks of natural language
processing. The former takes into account the fact that words in sentences are usually
ordered, the later promotes non-linear interactions between words in a sentence.

3.9 Related work

Different ways to improve modern NNLMs have been proposed in the research commu-
nity. Here we would like to focus on recent works that, similar to our, incorporate extra
information as a part of the input to the NNs in order to improve predicted probabilities.

It was shown that incorporation of syntactic dependencies in n-gram models (Gubbins
and Vlachos, 2013), RNNs (Mirowski and Vlachos, 2015), or LSTMs (Zhang et al., 2016)
is helpful for sentence completion task.

Information provided by social networks such as users relations and user characteristic
topics can become a source of smoothing for trained LMs according to (Yan et al., 2015)
and (Tseng et al., 2015).

Incorporation of information about history context was investigated in works (Mansur et
al., 2013) and (Zhang et al., 2015). Mansur et al. (2013) proposed for prediction of the next
word or character to use its history context feature set, that includes different combinations
of unigrams and bigrams that are at a distance ≤ 2 from the target element. Zhang et
al. (2015) proposed to use as an input of NN a combination of one-hot representation
of the current word and fixed-size vector that accumulates the previous history. Though
we put emphasis on use of global statistics, these ideas are akin to our work: in both
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papers, the information about the previous/surrounding context influences on the word’s
representation.

One-hot representation of vocabulary words was enriched by concatenation with one-
hot vector of part-of-speech tags in work of Adel et al. (2013). Such approach showed good
results on language modeling for code-switching speech task with RNNs in comparison
to 3-gram models, that suggests that sharing part of the representation among words is
beneficial.

Kim et al. (2016) explored word representations that are based on the convolution over
embeddings of each character ; these representations are further fed to the input of LSTM
for language modeling. Unlike our work, authors used much more complex architecture to
construct words representations (CNN) and to train a language model (LSTM).

Probably, the closest to ours is approach of Botha and Blunsom (2014). Based on the
idea that morphologically similar words should have close representations, they proposed
to represent each word as a sum of embeddings of its morphemes. These additive represen-
tations were then used in LBL model training, on the input and output layers. Unlike the
proposed approach, our models do not require morphological analysis at the pre-processing
step.
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Chapter 4

Variability of word2vec

4.1 Summary

Lately in the Deep Learning (DL) research field, the word2vec tool (Mikolov et al., 2013a)
has become very popular both as a baseline to compare to for a variety of Natural Language
Processing (NLP) tasks and as a source of high-quality word embeddings.

In this chapter, we would like to investigate whether the solution that word2vec finds is
unique: how much do obtained embeddings differ from each other depending on the number
of training epochs and on the random seed used to generate values for initialization of the
word embedding matrix.

4.2 Introduction

word2vec was introduced in (Mikolov et al., 2013a). Code availability, the simplicity of us-
age and speed of training make word2vec very attractive and popular in NLP research com-
munity. Baroni et al. (2014) provide a comparison of count-based and context-predicting
models on semantic tasks, where among the former models word2vec architectures are
evaluated; and based on the results they “would certainly recommend anybody interested
in using [distributional semantic models] for theoretical or practical applications to go for
the predict models.” Researchers present modifications of the tool [Ling et al. (2015a), Le
and Mikolov (2014)], use it as a baseline [Schnabel et al. (2015), Liu et al. (2015a), Stratos
et al. (2015)], pre-train word embeddings with it [Yu et al. (2015), Yu and Dredze (2015),
Qian et al. (2015)], and generate embeddings for lexical units of different granularity [e.g.,
for word senses (Iacobacci et al., 2015), for synsets and lexemes (Rothe and Schütze, 2015),
for word phrases with the word2phrase pre-processing tool1].

Though the popularity of word2vec increases, only a limited number of works tackle
the question of how word2vec works or analyze the quality of the solutions it finds. In this
chapter, we are going to present evaluations of the structure of the learned embeddings

1code.google.com/archive/p/word2vec/

code.google.com/archive/p/word2vec/
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spaces with respect to the random seeds used in the initialization of the word embedding
matrix. The structure of the embedding space is evaluated by means of a number of
common nearest neighbors and correlations of distances between word vectors. The learned
semantics is evaluated with a word similarity judgment task. In the experiments, we explore
four model types: two basic Neural Network (NN) architectures of word2vec: CBOW and
Skip-gram, together with two hyper-parameter settings: hierarchical softmax and negative
sampling.

In the rest of this chapter, we describe word2vec hyper-parameters and its random
initialization in Section 4.3, followed by Section 2.4 with the description of a proposed
modification that allows us to set a random seed for pseudo-random number generator,
hyper-parameters settings, corpus and evaluation tasks. Section 4.5 talks about the ob-
tained results. Section 4.6 lists works with focus on the word2vec tool itself. Conclusions
and future work are presented in Section 4.7 and Section 4.8.

4.3 Methods

4.3.1 word2vec

We introduced the word2vec tool in Section 2.3.1 of Chapter 2, describing the continuous
bag-of-words model (CBOW) and the continuous skip-gram model (Skip-gram), together
with hierarchical softmax approach to estimate predicted probabilities.

Another approach, an alternative to hierarchical softmax, proposed in (Mikolov et
al., 2013b) is negative sampling. It resembles NCE (see Section 3.3.4.2 for more detailed
description of NCE) in the objective it puts on the model: to distinguish the correct
prediction from words picked from the noise distribution. According to (Mikolov et al.,
2013b), “The main difference between the negative sampling and NCE is that NCE needs
both samples and the numerical probabilities of the noise distribution, while negative
sampling uses only samples. And while NCE approximately maximizes the log probability
of the softmax, this property is not important for [learning high-quality distributed vector
representations].”

Use of negative sampling with 5 samples is a default option of word2vec, and we would
like to explore this setting in our experiments along with hierarchical softmax.

4.3.2 Random initialization of word2vec

There are several parameters that get their value assigned before or during the training
with randomization involved. It is worth to mention that there is no call of any random
number generator in word2vec, and when a random number is needed, it is generated in the
way depicted in Algorithm 2. This code implements a linear congruential pseudo-random
number generator introduced by (Lehmer, 1949) and described in (Knuth, 1997).

Such pseudo-randomization happens in several places in the word2vec code:

• first seed, initial value is 1:
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// initiate random variable with a given value

next random = initial value;
// generate random values

while random value is needed do
next random = next random * (unsigned long long)25214903917 + 11;
// use generated pseudo-random value next random
{...};

end

Algorithm 2: Pseudo-random number generation in word2vec.

– to initialize the matrix of word embeddings;

• second seed, initial value is thread ID:

– during the subsampling of frequent words;

– during the training, to choose a context window size for each target word;

– during negative sampling, to choose indices of words that are used as negative
examples;

In this chapter, we experiment only on setting the initial value for random number
generation that is involved in the initialization of the word embedding matrix.

Another pieces that lead to different results of word2vec execution are multithreading
and asynchronous updates of the NN weights. Before the training, the whole corpus is
divided equally among the threads, and each thread passes through the part it is assigned
to for as many epochs as specified. Asynchronous stochastic gradient descent is used for
updates, that makes the order of updates depend on the order the treads are evoked and
executed. Though there is no lock on the embedding matrix, authors claim that stochastic
gradient descent will correct the parameter values during the next steps2. Thus such
combination of multithreading and asynchronous updates makes the obtained embedding
matrices different for different runs even when all hyper-parameters are kept unchanged.

In order to remove this source of randomization, we use 1 thread to train our models,
so that all other pseudo-random values that depend on the thread ID are set in the same
way and all updates are done in a predictable order.

4.4 Experimental setup

4.4.1 word2vec modification

We modified the word2vec code3, by introducing an additional parameter seed that is then
used as an initial value in pseudo-random number generation in initialization of the word

2https://groups.google.com/forum/#!topic/word2vec-toolkit/ms94b8b5QQQ
3https://code.google.com/archive/p/word2vec/

https://groups.google.com/forum/#!topic/word2vec-toolkit/ms94b8b5QQQ
https://code.google.com/archive/p/word2vec/
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Input : Vocabulary size vocab size;
Size of hidden layer layer1 size;
Random seed seed;

Variables :
real *syn0 ; // matrix of word embeddings

unsigned long long next random ; // pseudo-random variable

// allocate memory for the word embedding matrix

posix memalign((void **)&syn0, 128, (long long)vocab size * layer1 size * sizeof(real));
// initiate random variable with a given seed

next random = seed;

// initiate word embedding matrix

for (a = 0; a < vocab size; a++) do
for (b = 0; b < layer1 size; b++) do

next random = next random * (unsigned long long)25214903917 + 11;
syn0[a * layer1 size + b] =
(((next random & 0xFFFF) / (real) 65536) - 0.5) / layer1 size;

end

end
Result: matrix of word embeddings.

Algorithm 3: Initialization of the word2vec word embedding matrix with a given random
seed.

embedding matrix as shown in Algorithm 3.

4.4.2 Model architectures and hyper-parameters

We train word2vec models exploring two architectures: continuous bag-of-words model
(CBOW) and Skip-gram, with hierarchical softmax or with negative sampling (with 5
negative examples):

• the hyper-parameter cbow is responsible for the model architecture: CBOW (cbow = 1)
or Skip-gram (cbow = 0);

• the hyper-parameter hs is responsible for usage of hierarchical softmax: hs = 1 turns
it on and hs = 0 turns it off; this parameter is complementary to neg;

• the hyper-parameter neg specifies usage of negative sampling: neg = 0 turns it off,
neg = k turns it on and uses k negative examples.

Model types and hyper-parameter values are summed up in Table 4.1.

Models with different hyper-parameters are incomparable, so we report results for them
separately.



4.4 Experimental setup 97

model label cbow hs neg
Skip-gram with negative sampling, k=5 cbow0 hs0 neg5 0 0 5
Skip-gram with hierarchical softmax cbow0 hs1 neg0 0 1 0
CBOW with negative sampling, k=5 cbow1 hs0 neg5 1 0 5
CBOW with hierarchical softmax cbow1 hs1 neg0 1 1 0

Table 4.1: Parameters for 4 types of models explored.

We set the min-count parameter to 1 (instead of default 5) in order to train embeddings
for all words in the corpus as we would like to explore the effect of random initialization
on words with low frequency.

Other parameters are set to their default values: the size of the context window to 5
(5 words to the left and 5 to the right), embedding size to 100, sampling rate to 10−3, and
the initial learning rate alpha to 0.025 for Skip-gram and 0.05 for CBOW.

We fix the number of threads to 1 in order to minimize the effect of multithreading and
asynchronous updates of NN matrices.

4.4.2.1 Number of epochs and seed parameters

The number of training epochs is set with the parameter iter, and the random seed is set
with the parameter seed.

To evaluate the performance of word2vec for different numbers of training epochs, we
fix the seed value (seed=1) and change iter in {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

To evaluate the performance of word2vec for different random seeds, we fix iter and
vary seed in {32, 291, 496, 614, 264, 724, 549, 802, 315, 77}. These numbers are randomly
picked from the discrete uniform distribution on interval [1, 1000].

4.4.3 Corpus

As corpus, we choose the Wall Street Journal corpus (WSJ) created by Marcus et al.
(1999) from Wall Street Journal articles of 1989. For training, we concatenate parts 00–20,
lowercase it and replace every digit with “0”. After the pre-processing step, the corpus
contains 1,046,148 words and the vocabulary consists of 35,382 tokens.

4.4.4 Evaluation

4.4.4.1 Vocabulary split and evaluation words

We would like to assess the effect of randomization on learned embeddings for words with
different frequencies. To do this, we first split the vocabulary according to the word
frequencies and then randomly pick 20 words from each frequency interval to perform the
evaluation task. We call these words evaluation words. The number of words in each
frequency interval and the list of picked words are shown in Table 4.2.
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frequency number
20 randomly picked words

intervals of words

[1, 10] 29043 -0.00, ayers, calisto, chiappa, el-sadr, flower-bordered, kidnappers,
mattone, mountaintop, norma, piracy, subskill, configuration, loot,
rexall, envisioned, plentiful, endorsing, curbs, templeton

[10, 100] 5670 bags, oils, belong, curry, deliberately, responses, constant, yale, tax-
exempt, denies, jerry, chosen, iowa, 0000.0, cellular, hearings, ex-
tremely, ounce, option, authority

[100, 1000] 1013 age, won, announcement, france, plc, thought, thing, merrill, role,
growing, 0.0000, black, stores, los, provide, increased, real, public,
what, federal

[1000, ...] 105 &, all, corp., not, who, up, were, would, company, 000, have, he, its,
mr., from, by, it, that, a, the

[all words] 35382 age-discrimination(1), citizenry(1), less-creditworthy(1), lugging(1),
oneyear(1), ton(24), profit-margin(1), sewing(1), unwitting(1),
rounds(2), simplicity(2), awesome(3), brush(5), cartoonist(3),
brushed(5), unpredictable(5), wsj(7), aluminum(18), dennis(24),
contributed(83)

Table 4.2: Number of words in vocabulary for each frequency interval, with 20 randomly picked
words used for evaluation (evaluation words). In parentheses: word frequency in the corpus.

4.4.4.2 Evaluation metrics

We apply 3 evaluation metrics:

• comparing 2 trained models:

1. the ratio of the common words among the top 10 nearest neighbors of evaluation
words – topNN;

2. the correlation of distances between the embedding vectors of evaluation words
and vocabulary words – rankNN.

• assessing quality of learned embeddings for a single model:

3. the Spearman’s correlation coefficients for word pairs from similarity data sets.

In the first case, for every evaluation word, we consider the top 10 nearest neighbors
according to the embeddings learned by 2 models. We report then the average ratio of
common words among these top 10 words for all evaluation words.

In the second case, for every evaluation word, we compute the Spearman’s correlation
coefficient of similarities for embeddings of this evaluation word and embeddings of vocab-
ulary words. Then we report the average of the computed coefficients for all evaluation
words.

In the third case, we employ the word similarity judgment task described in detail in
Chapter 2, Section 2.4.2 with similarity data sets described in Section 2.4.3 of Chapter 2.
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RG MC MEN WS RW SL
# pairs 65 30 3000 353 2034 999
# covered pairs 46 21 2212 321 405 907

Table 4.3: Number of covered pairs in the six similarity data sets used for evaluation.

Since the training corpus we use here differs from the one in Chapter 2, we observe different
coverages of pairs from similarity data sets (see Table 4.3). The performance is reported
with the Spearman’s correlation coefficient.

As similarity measure, we use cosine similarity between embedding vectors.

4.4.4.3 Evaluation tasks

To evaluate the performance of word2vec with respect to the random seed and the epoch
number hyper-parameters, we fix one of them and change the other in a given range as
described below.

Numbers of training epochs
First, we would like to determine how many training epochs are needed for word2vec in
order to find a solution. For this, we train models for different numbers of epochs up to
100, and then estimate performance of the trained models on a word similarity judgment
task. When the performance reaches its maximum, we can say that word2vec found the
solution.

Random seeds
After the number of epochs has been determined, we fix it and evaluate how different the
solutions are that word2vec finds for different values of the random seed.

4.5 Experimental results and discussion

4.5.1 Different number of training epochs

First, we would like to determine the number of epochs that is needed for word2vec to
find a solution: we train 11 models with the same seed=1, one thread, and the number of
epochs in {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

The results of the word similarity judgment task is reported in Table 4.4. The highest
correlation values are concentrated around 10–30 epochs, that means that word2vec needs
∼20 epochs to learn meaningful embeddings on the WSJ corpus. Such behavior is quite
consistent across different model types and different similarity data sets.
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data- number of epochs
sets 1 10 20 30 40 50 60 70 80 90 100

S
k
ip

-g
ra

m h
s0

n
eg

5

MC -.17 .25 .42 .42 .38 .37 .35 .31 .30 .33 .30
MEN .07 .10 .17 .21 .22 .22 .22 .22 .22 .22 .22
RG .12 .18 .20 .20 .13 .11 .09 .06 .03 .04 .03
RW .03 .27 .29 .27 .25 .23 .22 .22 .22 .22 .22
SL .06 .15 .17 .16 .15 .14 .13 .12 .11 .11 .11
WS .04 .20 .30 .31 .31 .30 .29 .29 .29 .29 .29

h
s1

n
eg

0

MC -.19 .38 .43 .32 .29 .27 .28 .32 .27 .26 .21
MEN .09 .20 .23 .23 .22 .22 .21 .21 .20 .20 .20
RG .01 .26 .24 .22 .22 .22 .25 .26 .23 .21 .19
RW .11 .30 .29 .28 .26 .25 .23 .22 .23 .21 .21
SL .11 .09 .08 .07 .07 .06 .05 .05 .05 .05 .04
WS .11 .34 .32 .31 .31 .31 .30 .30 .30 .30 .29

C
B

O
W

h
s0

n
eg

5

MC -.07 .55 .44 .36 .33 .24 .18 .19 .21 .24 .27
MEN .04 .13 .18 .19 .19 .19 .19 .19 .19 .18 .18
RG .18 .37 .31 .24 .19 .13 .12 .07 .06 .05 .04
RW -.07 .16 .17 .16 .15 .14 .14 .13 .13 .13 .13
SL -.00 .13 .13 .14 .14 .14 .13 .13 .13 .13 .13
WS .09 .30 .35 .35 .34 .33 .33 .33 .32 .32 .32

h
s1

n
eg

0

MC .11 .40 .34 .30 .32 .29 .32 .35 .31 .31 .34
MEN .08 .15 .13 .12 .11 .10 .09 .09 .08 .07 .07
RG .13 .26 .26 .23 .20 .16 .17 .15 .12 .11 .12
RW .02 .17 .17 .17 .16 .16 .15 .15 .15 .16 .17
SL .03 .08 .07 .05 .05 .04 .04 .03 .03 .03 .02
WS .17 .25 .22 .20 .18 .17 .17 .17 .15 .15 .14

Table 4.4: Word similarity judgment task, 1 thread. For same seed=1 and different number of
iterations, the Spearman’s correlation coefficients are reported. The best values for each data set
are highlighted. These results suggest 20 as an optimal number of epochs for word2vec on WSJ
training corpus.
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4.5.1.1 Conclusion

Experimenting with models with the same seed and increasing epoch numbers we found
out that trained models were able to better capture semantics when they were trained for
10–30 epochs. In order to get reliable results in our next experiment on models trained
with different random seeds, we fix the number of epochs to 20.

4.5.2 Different random seeds

The results for the first metric, topNN, for 4 model types are reported in Figure 4.1,
Figure 4.2, Figure 4.3, and Figure 4.4 (summarized in Table 4.5). The ratio of the common
words among the top 10 nearest neighbors of evaluation words stays almost the same for
different seeds with respect to model types and frequency intervals: the standard deviations
are in [0.0128, 0.0229]. The average number of common words varies from 5.7 to 9.2 for
different model types and intervals, which suggests that the learned models are close but
still differ from each other.

The drawback of the topNN metric is that only a limited number of words (10 from
∼35K) are taken into account for every evaluation word. In order to better explore the
structure of the learned embedding space, we perform rankNN evaluation. Results for
rankNN evaluation (reported in Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8, summa-
rized in Table 4.6) show that the correlation between models with different seeds is very
high (above 0.94 on average), while standard deviations are very small (less than 0.0049).
These findings suggest that learned embedding spaces for models with different random
seeds have very similar structure.

Evaluation on a word similarity judgment task, reported in Table 4.7, shows that found
solutions reveal the same quality of learned embeddings (standard deviation does not ex-
ceed 0.0651). Nevertheless, for two data sets – MC and RG – the model performances vary
much. The reason for such a large variability may be the small size of the MC and RG
evaluation data sets: there are only 21 pairs in MC and 46 pairs in RG. For other data
sets with more pairs the difference between the obtained results is very small and word2vec
results are remarkably stable.

In order to evaluate the difference in the performances on word similarity task for
different random seeds, we apply paired t-test (p < .05) for every seed pair, treating the
correlation coefficients for each data set as a pair in a sample. None of the seeds is found
significantly different from others (.065 < p < 1).

4.6 Related work

There is no work we are aware of that aims to explore the embeddings spaces trained with
word2vec. Tough there are several attempts in the research community to dive and explain
how and why word2vec works.

There are two descriptive works to mention: Goldberg and Levy (2014) explain an
equation for negative sampling from (Mikolov et al., 2013b); Rong (2014) explains the
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frequency intervals
[1, 10] [10, 100] [100, 1000] [1000, ...] [all]

models avg std avg std avg std avg std avg std
Skip-gram hs0 neg5 .85 .0140 .80 .0173 .80 .0213 .77 .0159 .82 .0148
Skip-gram hs1 neg0 .84 .0192 .75 .0212 .81 .0189 .90 .0155 .78 .0198
CBOW hs0 neg5 .77 .0139 .77 .0146 .83 .0128 .86 .0158 .76 .0229
CBOW hs1 neg0 .68 .0182 .61 .0214 .70 .0192 .87 .0176 .64 .0190

Table 4.5: topNN, 1 thread, 20 epochs, summary of Figure 4.1, Figure 4.2, Figure 4.3, and
Figure 4.4. For all pairs of seeds, the averaged ratio of common words in 10 nearest neighbors is
shown for 20 randomly chosen words from each frequency interval. High values suggest that the
models with different seeds are similar to each other.

frequency intervals
[1, 10] [10, 100] [100, 1000] [1000, ...] [all]

models avg std avg std avg std avg std avg std
Skip-gram hs0 neg5 1.00 .0000 .99 .0000 .98 .0000 .98 .0049 1.00 .0000
Skip-gram hs1 neg0 .98 .0000 .96 .0021 .96 .0031 .98 .0000 .98 .0048
CBOW hs0 neg5 .98 .0025 .98 .0000 .97 .0025 .98 .0000 .98 .0000
CBOW hs1 neg0 .95 .0025 .94 .0026 .94 .0029 .97 .0000 .97 .0038

Table 4.6: rankNN, 1 thread, 20 epochs, summary of Figure 4.5, Figure 4.6, Figure 4.7, and
Figure 4.8. Averaged Spearman’s correlation of distances between 20 randomly chosen words and
all vocabulary word for pairs of models with different seeds is shown. High values suggest that
the models with different seeds are similar to each other.



4.6 Related work 103

[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.1: topNN, Skip-gram hs0 neg5, 1 thread, 20 epochs. For all pairs of seeds, the ratio
of common words in 10 nearest neighbors is shown for 20 randomly chosen words from each
frequency interval. High values suggest that the models with different seeds are similar to each
other.
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[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.2: topNN, Skip-gram hs1 neg0, 1 thread, 20 epochs. For all pairs of seeds, the ratio
of common words in 10 nearest neighbors is shown for 20 randomly chosen words from each
frequency interval. High values suggest that the models with different seeds are similar to each
other.
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[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.3: topNN, CBOW hs0 neg5, 1 thread, 20 epochs. For all pairs of seeds, the ratio
of common words in 10 nearest neighbors is shown for 20 randomly chosen words from each
frequency interval. High values suggest that the models with different seeds are similar to each
other.
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[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.4: topNN, CBOW hs1 neg0, 1 thread, 20 epochs. For all pairs of seeds, the ratio
of common words in 10 nearest neighbors is shown for 20 randomly chosen words from each
frequency interval. High values suggest that the models with different seeds are similar to each
other.
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[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.5: rankNN, Skip-gram hs0 neg5, 1 thread, 20 epochs. Averaged Spearman’s correlation
of distances between 20 randomly chosen words and all vocabulary word for pairs of models with
different seeds is shown. High values suggest that the models with different seeds are similar to
each other.
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[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.6: rankNN, Skip-gram hs1 neg0, 1 thread, 20 epochs. Averaged Spearman’s correlation
of distances between 20 randomly chosen words and all vocabulary word for pairs of models with
different seeds is shown. High values suggest that the models with different seeds are similar to
each other.
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[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.7: rankNN, CBOW hs0 neg5, 1 thread, 20 epochs. Averaged Spearman’s correlation of
distances between 20 randomly chosen words and all vocabulary word for pairs of models with
different seeds is shown. High values suggest that the models with different seeds are similar to
each other.
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[1, 10]

[10, 100]

[100, 1000]

[1000, ...]

[all]

Figure 4.8: rankNN, CBOW hs1 neg0, 1 thread, 20 epochs. Averaged Spearman’s correlation of
distances between 20 randomly chosen words and all vocabulary word for pairs of models with
different seeds is shown. High values suggest that the models with different seeds are similar to
each other.
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data seeds
min max mean std

sets 32 291 496 614 264 724 549 802 315 77

S
k
ip

-g
ra

m h
s0

n
eg

5

MC .44 .43 .44 .46 .45 .43 .47 .46 .42 .44 .42 .47 .44 .0146
MEN .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .17 .0018
RG .19 .21 .19 .22 .20 .20 .22 .21 .21 .20 .19 .22 .21 .0104
RW .29 .29 .29 .29 .28 .28 .29 .29 .29 .29 .28 .29 .29 .0048
SL .17 .17 .17 .18 .17 .17 .17 .17 .17 .18 .17 .18 .17 .0044
WS .30 .31 .30 .33 .31 .31 .30 .30 .30 .30 .30 .33 .31 .0108

h
s1

n
eg

0

MC .29 .38 .29 .40 .36 .37 .30 .25 .34 .40 .25 .40 .34 .0527
MEN .24 .23 .23 .23 .24 .23 .23 .24 .23 .24 .23 .24 .23 .0025
RG .20 .19 .16 .25 .16 .24 .21 .15 .20 .20 .15 .25 .19 .0325
RW .25 .26 .27 .28 .28 .27 .27 .28 .27 .27 .25 .28 .27 .0086
SL .09 .09 .09 .08 .07 .08 .08 .09 .08 .08 .07 .09 .08 .0076
WS .30 .29 .31 .31 .31 .32 .30 .30 .31 .31 .29 .32 .31 .0079

C
B

O
W

h
s0

n
eg

5

MC .38 .44 .41 .42 .34 .44 .40 .44 .45 .45 .34 .45 .42 .0360
MEN .18 .17 .18 .17 .17 .17 .17 .17 .17 .18 .17 .18 .17 .0029
RG .27 .29 .28 .26 .25 .29 .29 .30 .30 .30 .25 .30 .28 .0168
RW .16 .18 .17 .17 .17 .19 .17 .17 .19 .18 .16 .19 .17 .0072
SL .13 .12 .13 .13 .12 .13 .13 .13 .13 .13 .12 .13 .13 .0025
WS .33 .33 .33 .34 .33 .33 .34 .34 .34 .33 .33 .34 .33 .0049

h
s1

n
eg

0

MC .39 .40 .35 .33 .37 .27 .39 .47 .33 .25 .25 .47 .36 .0651
MEN .15 .13 .14 .14 .15 .14 .14 .14 .13 .14 .13 .15 .14 .0063
RG .25 .18 .19 .19 .18 .20 .22 .26 .18 .25 .18 .26 .21 .0327
RW .14 .15 .14 .14 .16 .13 .12 .14 .15 .14 .12 .16 .14 .0120
SL .09 .06 .07 .08 .07 .08 .07 .07 .06 .06 .06 .09 .07 .0093
WS .22 .22 .22 .22 .22 .22 .22 .22 .24 .22 .22 .24 .22 .0071

Table 4.7: Word similarity judgment task, 1 thread, 20 epochs. For different seeds, the Spear-
man’s correlation coefficients are reported. Small variation (std column) between results for
models with different seeds suggests that the found solutions have similar quality of the learned
word embeddings.
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training process in details together with a tool4 that visualizes training mechanics.
In (Levy and Goldberg, 2014c) authors analyze Skip-gram models with negative sam-

pling, and conclude that it can be seen as an implicit factorization of the PMI matrix of
word/context pairs, shifted by a global constant.

In (Levy et al., 2015) authors delve deeply into the pre-processing hyper-parameters of
word2vec such as dynamic context window, subsampling of frequent words and rare words
removal. Taking into account hyper-parameters of the GloVe model (Pennington et al.,
2014), they make all hyper-parameters explicit for 4 word representation methods: PPMI
matrix, singular value decomposition of this matrix, Skip-gram, and GloVe. Afterward they
compare the performance of these methods with the same values of hyper-parameters on
word similarity and word analogy tasks, and find that no method consistently outperforms
the others. The practical recommendations are to use the Skip-gram model with many
negative samples.

4.7 Conclusion

In this chapter, we conducted experiments on the word2vec tool in order to analyze the
solutions it finds: how much the learned word embeddings differ for different initial ran-
dom seeds. For this, we modified the word2vec code and introduced a parameter that is
responsible for initial random seed in the pseudo-random number generator.

Results of evaluations for models with the same seed and different numbers of epochs
suggest that word2vec is able to learn meaningful word embeddings within 10–30 epochs
on the WSJ training corpus.

Based on the results of the experiment with different numbers of epochs, we fixed the
epoch number to 20 and trained 10 models with different random seeds. The learned
models appeared to be different, yet the structure of the learned embedding spaces was
found to be very similar.

The achieved results suggest that word2vec seems to produces remarkably stable results
for different initial random seeds employed.

4.8 Future work

In future work, we would like to investigate several extensions of our approach:

• to learn transformation matrices between learned embedding spaces for different mod-
els and evaluate their differences;

• to perform total randomization of word2vec where all pseudo-random variables are
generated based on a given seed;

• to introduce different initialization strategies for the word embedding matrix and
evaluate the quality of learned word embeddings.

4https://docs.google.com/document/d/1qUH1LvNcp5msoh2FEwTQAUX8KfMq2faGpNv4s4WXhgg/pub

https://docs.google.com/document/d/1qUH1LvNcp5msoh2FEwTQAUX8KfMq2faGpNv4s4WXhgg/pub


Chapter 5

Conclusion

In this work, we proposed to use sparse distributional vectors to initialize Neural Networks
(NNs) aiming to improve quality of word embeddings learned for rare words. Learned word
embeddings were tested on word similarity judgment task We also incorporated distribu-
tional initialization in training of neural language model, and evaluated performance on
language modeling task.

In Chapter 2, we described how to apply our proposal to representation learning with
word2vec tool. We proposed four schemes to build distributional representation for rare
words: employing binary {0, 1} or positive pointwise mutual information (PPMI) val-
ues with mixed or separate integration strategies. BINARY approach pays attention on
whether target and context words appeared in the same window in the corpus; PPMI ap-
proach also respects degree of association between target and context words. In separate
scheme, initialization vectors of frequent and rare words are put in orthogonal spaces. In
mixed scheme, they share the space, that also means they share weights of embedding
vectors.

We evaluated performance of the embeddings learned with proposed distributional ini-
tializations on six word similarity data sets: RG, MC, MEN, WS, RW and SL. All words
from these data sets, together with words whose frequency was ≤ 10, 20, 50, or 100,
received distributional initialization1; while other words received one-hot initialization.
The measured Spearman’s correlation coefficients were significantly higher for models with
distributional initialization than for models with traditional one-hot initialization, when
distributional initialization was applied for words with frequency up to 20. For medium
rare words with frequencies between 50 and 100, no or small improvement was detected.
Our final suggestion is to use mixed models with PPMI values for words with frequencies
up to 20.

We discussed our findings analyzing scalability of the proposed approach, variance of
the results, and proposed distributional schemes. In the future, we would like to investigate

1More details on the downsampling procedure of words from similarity data sets can be found in
Section 2.4.4
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where the achieved improvement came from, and what effect the distributional initialization
of rare words produces to frequent words representations.

In Chapter 3, we applied distributional initialization to neural language model vector LBL
(vLBL). We trained language model (LM) on WSJ corpus, parts 00–20, interpolated with
modified Kneser-Ney 3-gram model learned on the same corpus, and reported the perplexity
achieved by the interpolated model on parts 21–22 of WSJ corpus.

We proposed several distributional representations for words employing different com-
bination schemes (mixed, separate, ONLY), different association functions (co-occurrence
in a window, with use of positioned PPMI and positioned letter 3-grams), and different
normalization schemes (non-diagonal elements were replaced with constant; scaled; rows
or columns got normalized with different scaling coefficients).

We also explored the performance of LMs when different sets of words that received
distributional initialization. These sets were formed from words with frequency laying
either in intervals {[1, 1], [1, 2], [1, 5], [1, 10], [2, 2], [2, 5], [2, 10], [6, 6], [6, 10]}, or equal
to a constant value from {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20}.

The experiments showed that neither simple binary representations as in Chapter 2, nor
explored distributional initializations achieved stable reliable improvement over a baseline
model with one-hot initialization. The provided analysis suggested careful treatment of
words with frequency 1, and potential improvement of the performance for mixed initial-
ization with weighting scheme. In the future, the promising extensions are to introduce
distributional representations on both input and output layers of NN, to employ more
complex NN architectures, and to use a bigger corpus to train language model.

In Chapter 4, we evaluated the word2vec tool by analyzing the structure of the solutions
it found for different initial random seeds that were used in a pseudo-random number
generator that initialized the matrix of word embeddings. To set a random seed value, we
modified the word2vec source code.

First, we trained models with 1 thread for {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}
epochs in order to decide what number of epochs is needed for word2vec to learn meaningful
embeddings on the WSJ corpus. The word similarity judgment task results showed that
optimal number of epochs is ∼20 (10–30) for different model types and similarity data sets
(we used the same data sets as in Chapter 2: RG, MC, MEN, WS, RW and SL). According
to these findings, we fixed the number of epochs to 20 and trained 10 models with random
seeds from {32, 291, 496, 614, 264, 724, 549, 802, 315, 77} (ten randomly picked numbers
from [1, 1000]). The obtained embeddings spaces were evaluated by means of the number
of the common words in the top 10 nearest neighbors, the distances between embedding
vectors, and to compare the quality of the learned word embeddings we employed a word
similarity judgment task.

The evaluation showed that learned by word2vec models are different, yet had similar
structure of the embedding spaces. Thus we concluded that word2vec produced similar
results independently of a random seed used during the embedding matrix initialization.
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To summarize, our work contributes to the list of attempts to address the problem of
building representations of rare words for Natural Language Processing (NLP) tasks. New
and borrowed words, together with morphological forms of words in languages with reach
morphology, are often rare. Having good representations for them is beneficial for NLP
applications: it provides an access to the semantic information that is usually ignored with
traditional treatment of such words.
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Appendix A

word2vec call

make word2vec -dist -ppmi

wesize =100

window =10

datafolder="/ukwac/data"

resultfolder="/ukwac/results"

mincount =1

iter=1

for run in {1..5}; do

rundir=${resultfolder }/run${run}

mkdir $rundir

for rthresh in 10 20 50 100; do

for modeltype in ppmi bin; do

for model in onehot mixed separate; do

traincorpus=${datafolder }/${run}/ ukwac_wacky_sent +1unk

.hide${rthresh}

readvocab=${traincorpus}_${modeltype}_${model }.txt

output=${rundir }/ ukwacWE_${modeltype}_${model}_hide${

rthresh}_s${wesize}_w${window}_i${iter}.txt

savevocab=${rundir }/ ukwac_vocab_${modeltype}_${model}

_hide${rthresh}_i${iter}.txt

logfile=${rundir }/log_${modeltype}_${model}_hide${

rthresh}_i${iter}.txt
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./word2vec -dist -ppmi \

-train $traincorpus \

-output $output \

-size $wesize \

-window $window \

-sample 1e-3 \

-hs 1 \

-negative 0 \

-threads 23 \

-iter $iter \

-min -count $mincount \

-save -vocab $savevocab \

-read -vocab $readvocab \

-cbow 0 >> $logfile

done

done

done

done



Appendix B

SRILM calls

#order 3, train

ngram -count -order 3 \

-write -vocab wsj00 -20 _vocab_3.txt \

-text /WSJ/corpus/train -wsj -00 -20. sent \

-lm lm_kn3_train_wsj_00 -20 \

-unk \

-kndiscount \

-gt1min 1 -gt2min 1 -gt3min 1 \

#order 3, predict test

ngram -lm lm_kn3_train_wsj_00 -20 \

-order 3 \

-ppl /WSJ/corpus/test -wsj -21 -22. sent \

-debug 2 \

-unk > ppl_kn3_test_wsj_21 -22. txt

#order 5, train

ngram -count -order 5 \

-write -vocab wsj00 -20 _vocab_5.txt \

-text /WSJ/corpus/train -wsj -00 -20. sent \

-lm lm_kn5_train_wsj_00 -20 \

-unk \

-kndiscount \

-gt1min 1 -gt2min 1 -gt3min 1 -gt4min 1 -gt5min 1 \

#order 5, predict test

ngram -lm lm_kn5_train_wsj_00 -20 \

-order 5 \

-ppl /WSJ/corpus/test -wsj -21 -22. sent \

-debug 2 \

-unk > ppl_kn5_test_wsj_21 -22. txt
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[Bengio et al.2003] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jan-
vin. 2003. A neural probabilistic language model. The Journal of Machine Learning
Research, 3:1137–1155, March.



122 BIBLIOGRAPHY

[Bengio et al.2007] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle.
2007. Greedy Layer-Wise Training of Deep Networks. In Advances in Neural Information
Processing Systems 19, pages 153–160.

[Bergstra and Bengio2012] James Bergstra and Yoshua Bengio. 2012. Random search for
hyper-parameter optimization. Journal of Machine Learning Research, 13(1):281–305,
February.

[Bergstra et al.2010] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin,
Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. Theano: a CPU and GPU math expression compiler. In Proceedings of
the Python for Scientific Computing Conference (SciPy), June. Oral Presentation.

[Bian et al.2014] Jiang Bian, Bin Gao, and Tie-Yan Liu. 2014. Knowledge-powered
deep learning for word embedding. In Machine Learning and Knowledge Discovery in
Databases, volume 8724 of Lecture Notes in Computer Science, pages 132–148.

[Bilmes and Kirchhoff2003] Jeff A. Bilmes and Katrin Kirchhoff. 2003. Factored language
models and generalized parallel backoff. In Companion Volume of the Proceedings of
HLT-NAACL 2003 - Short Papers, May–June.

[Blei et al.1993] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 1993. Latent
Dirichlet Allocation. The Journal of Machine Learning Research, 3:993–1022.

[Botha and Blunsom2014] Jan A. Botha and Phil Blunsom. 2014. Compositional mor-
phology for word representations and language modelling. In Proceedings of the 31st
International Conference on Machine Learning (ICML), June.

[Brown et al.1992] Peter F. Brown, Peter V. deSouza, Robert L. Mercer, Vincent J. Della
Pietra, and Jenifer C. Lai. 1992. Class-based n-gram models of natural language.
Computational Linguistics, 18(4):467–479, December.

[Bruni et al.2012] Elia Bruni, Gemma Boleda, Marco Baroni, and Nam Khanh Tran. 2012.
Distributional semantics in Technicolor. In ACL, pages 136–145.

[Bullinaria and Levy2007] John A. Bullinaria and Jodeph P. Levy. 2007. Extracting se-
mantic representations from word cooccurrence statistics: A computational study. Be-
havior Research Methods, 39(3):510–526, August.

[Celikyilmaz et al.2015] Asli Celikyilmaz, Dilek Hakkani-Tur, Panupong Pasupat, and
Ruhi Sarikaya. 2015. Enriching word embeddings using knowledge graph for semantic
tagging in conversational dialog systems. In AAAI Spring Symposium Series, January.

[Chen and Goodman1999] Stanley F. Chen and Joshua Goodman. 1999. An Empirical
Study of Smoothing Techniques for Language Modeling. Computer Speech and Language,
13(4):359–394, October.



BIBLIOGRAPHY 123

[Chen et al.2013] Kuan-Yu Chen, Hung-Shin Lee, Chung-Han Lee, Hsin-Min Wang, and
Hsin-Hsi Chen. 2013. A study of language modeling for Chinese spelling check. In
Proceedings of the Seventh SIGHAN Workshop on Chinese Language Processing, pages
79–83, October.

[Cheng and Kartsaklis2015] Jianpeng Cheng and Dimitri Kartsaklis. 2015. Syntax-aware
multi-sense word embeddings for deep compositional models of meaning. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing, pages
1531–1542, September.

[Church and Hanks1990] Kenneth Ward Church and Patrick Hanks. 1990. Word associa-
tion norms, mutual information, and lexicography. Computational Linguistics, 16(1):22–
29, March.

[Collobert et al.2011] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Ko-
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<PAD> padding token 46, 48

<S> beginning of a sentence token 46
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<\S> end of a sentence token 46, 48

10K vocabulary from WSJ training set that includes top frequent 10K words xi, 46, 49–51

2vocab vocabulary from WSJ training set that contains words with frequency ≥ 2 46, 49,
51

35K vocabulary from WSJ training set where all digits are replaced with one token and
all words are lower cased 46, 81

40K vocabulary from WSJ training set where all digits are replaced with one token 46,
81

45K full vocabulary from WSJ training set xiii, 46, 47, 49, 51, 52

AdaGrad adaptive gradient algorithm 41, 42, 48

AI artificial intelligence 1

CBOW continuous bag-of-words model xi, xii, 12, 13, 19, 94, 96, 97, 105, 106, 109, 110

CN column normalization scheme xiv–xvi, 39, 60, 62–64, 67–69, 74, 75, 78, 79, 84–88

CN-none column normalization scheme without coefficient 39, 64, 67, 69, 85, 86, 88

CN coeff column normalization coefficient 39, 63, 69, 75, 80, 84, 87

CNN Convolutional Neural Network 91

CPU central processing unit 18, 48

DL Deep Learning 2, 3, 9, 11, 26, 93
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DNN Deep Neural Network 10, 26

DR word word that receives distributional representation 34–38, 40, 60

evaluation word one of the randomly picked words from the vocabulary picked to per-
form evaluation task xvi, 97, 98, 101

FLM Factored Language Model 30

GHz Gigahertz 18, 48

GloVe GloVe model, created by (Pennington et al., 2014) 11, 112

HAL Hyperspace Analogue to Language 9

ID identifier 95

ivLBL inverse vLBL 41

KN3 3-gram modified Kneser-Ney language model xiii–xvi, 49, 51, 52, 59, 61, 63, 64, 66,
69, 71, 74, 75, 78, 80, 83–85, 88

LBL Log-Bilinear language model xiii–xvi, 10, 25, 31, 40, 41, 44, 46, 48, 49, 51, 52, 59–61,
63, 64, 66, 69, 71, 74, 75, 78, 80, 83–85, 87, 88, 90, 91

LDA Latent Dirichlet allocation 9

LM language model 29–34, 36, 38–40, 44, 46–49, 51, 60, 63, 65, 67, 70, 72, 73, 79, 81–83,
85, 87, 89, 90, 114

lr learning rate 66

LSA Latent Semantic Analysis 9

LSI Latent Semantic Indexing 9

LSTM Long-short term memory NN 25, 26, 30, 31, 90, 91

MC data set for a word similarity judgment task, created by (Miller and Charles, 1991)
16, 19, 101, 113, 114

MEN data set for a word similarity judgment task, created by (Bruni et al., 2012) 16,
113, 114

MFCC Mel-frequency cepstral coefficients 8
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ML Machine Learning 2, 7, 8, 10

NCE noise-contrastive estimation 42, 43, 48, 94

NLP Natural Language Processing xix, 1–3, 8, 10, 11, 13, 14, 26, 29, 32, 42, 93, 115

NN Neural Network xix, 2–4, 7, 9–12, 22, 30, 31, 39, 42, 52, 55, 59, 60, 62, 64, 65, 69, 72,
85, 90, 94, 95, 97, 113, 114

NNLM Neural Network Language Model 10, 29–32, 40, 41, 90

NOO NUMBER OF ONES xi, xiii–xv, 36, 37, 39, 52–55, 58, 59, 61, 65, 67, 70–74, 79,
81, 83, 87

OHR word word that receives one-hot representation 34, 35

PCA Principal Component Analysis 10, 11

PMI pointwise mutual information xi, xiii, 9, 14, 38, 52–54, 112

PPMI positive pointwise mutual information xi, xiii–xvii, 9, 11, 13, 14, 21, 24, 31, 36–39,
52–55, 61, 63, 66, 67, 74, 80, 82–87, 89, 112–114

rankNN evaluation metrics for comparison of 2 models: reports the correlation of dis-
tances between the embedding vectors of evaluation words and vocabulary words xii,
xvi, 98, 101, 102, 107–110

RASTA-PLP Relative Spectral Transform-Perceptual Linear Prediction 8

RG data set for a word similarity judgment task, created by (Rubenstein and Goodenough,
1965) 16, 19, 101, 113, 114

RN row normalization scheme xiv–xvi, 39, 60, 62–64, 68, 69, 74, 78, 79, 85–88

RN coeff row normalization coefficient 39, 63, 69, 75, 87

RNN Recurrent Neural Network 25, 26, 30, 90, 91

RW The Stanford Rare Word, data set for a word similarity judgment task, created by
(Luong et al., 2013a) 16, 17, 113, 114

S scale normalization scheme 39, 58–60, 63, 64, 68, 69, 74, 79, 84–86, 88

S coeff scale normalization coefficient xi, xiv, 39, 58, 59, 69, 75, 80, 84, 87, 88

SIFT scale-invariant feature transform 8
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SIMILARITY WEIGHT SIMILARITY WEIGHT hyper-parameter xiv, 37, 39, 54, 55,
59–61, 65, 67, 70, 72, 74, 79, 81, 84

Skip-gram continuous skip-gram model xi, xii, 12, 13, 18, 19, 25, 94, 96, 97, 103, 104,
107, 108, 112

SL SimLex-999, data set for a word similarity judgment task, created by (Hill et al., 2015)
16, 19, 113, 114

SVD singular value decomposition 9–11, 112

tf–idf term frequency–inverse document frequency 9

topNN evaluation metrics for comparison of 2 models: reports the ratio of the common
words among the top 10 nearest neighbors of evaluation words xii, xvi, 98, 101–106

vLBL vector LBL xiii–xvi, 4, 31, 40–42, 48, 49, 51, 52, 54, 58, 59, 61, 63–69, 71, 72, 74,
75, 78–81, 83–85, 88–90, 114

W constant normalization scheme 37, 39, 55, 59–62, 84, 85

word2vec word2vec tool xi, xiii, xvi, xvii, xx, 3–5, 10–13, 18, 19, 21, 22, 24, 25, 27, 93–97,
99–101, 112–114

WS WordSim353, data set for a word similarity judgment task, created by (Finkelstein
et al., 2011) 16, 19, 113, 114

WSJ Wall Street Journal corpus xvi, 46, 47, 97, 99, 100, 112, 114
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