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Zusammenfassung

Relativistische Quantentheorie sagt die Existenz von virtuellen Elektron-Positron-Paaren
vorher, die innerhalb einer typischen Zeitskala, der Compton-Zeit des Elektrons, erzeugt
und wieder vernichtet werden. Diese virtuellen Dipole machen das Vakuum zu einem
polarisierbaren Medium, was zu einer Abänderung der klassischen Maxwell-Gleichungen
führt. Falls die Photonen eine Energie haben, welche deutlich kleiner ist als die Ruheener-
gie des Elektrons, werden diese Effekte durch die “Heisenberg-Euler”-Lagrange-Dichte
im Rahmen der Quantenelektrodynamik beschrieben. Für Feldstärken, die klein sind im
Vergleich zu dem “kritischen” Feld Ecr = 1.3 · 1016 Vcm−1, können diese Korrekturen
zur Ausbreitung von elektromagnetischen Wellen explizit ausgewertet werden.

In dieser Arbeit werden die Maxwell-Gleichungen mitsamt dieser Korrekturen für schwa-
che Felder numerisch in einer Anregungs-Abfrage-Konfiguration von zwei zusammen-
stoßenden, ebenen Wellen gelöst. Die entsprechende Wellengleichung wird dann analy-
tisch gelöst. Die Anfangsbedingungen bestehen dabei aus einem (optischen) gaußschen
“Abfrage”-Puls, der sich entgegengesetzt der “Anregung” in Form eines nur schwach va-
riierenden, starken Hintergrunds, ausbreitet. Dabei werden Vakuumpolarisations-Effekte
wie Doppelbrechung und die Erzeugung von Harmonischen (ähnlich zu Prozessen in ei-
nem nichtlinearen Kerr-Medium) untersucht.

Der erste Teil dieser Arbeit befasst sich mit der Analyse der zeitaufgelösten Dynamik
der Kollision des Abfrage-Pulses mit einem gaußförmigen, starken Hintergrund. Dabei
wird ein “Überlappungs”-Feld identifiziert, welches nur im Wechselwirkungsbereich vor-
handen ist und verschwindet, wenn die Pulse weit voneinander entfernt sind.

Der zweite Teil untersucht die Erzeugung von höheren Harmonischen im Vakuum, wobei
der Hintergrund nun als ebene Welle mit verschwindender Frequenz gewählt wird. Falls
die Weglänge des Abfrage-Pulses im externen Feld groß genug ist, können höhere Harmo-
nische durch hintereinander stattfindende Streuprozesse erzeugt werden. Für parallele
Polarisationen der beiden Pulse wird ein Multi-Skalen-Parameter identifiziert, welcher
angibt, wann diese Selbstwechselwirkung relevant wird. Wenn dieser Parameter gegen
eins strebt, entwickelt der Abfrage-Puls eine Unstetigkeit in der Trägerfrequenz, welche
auch “Schock” genannt wird.





Abstract

Relativistic quantum theory predicts the existence of virtual electron-positron pairs that
are generated and annihilated over a typical time scale given by the electron Compton
time. These virtual dipoles render the vacuum a polarisable medium thereby modify-
ing the classical Maxwell vacuum equations. For photons with energy much smaller
than the electron rest energy, these effects are well-described by the “Heisenberg-Euler”
Lagrangian within the framework of Quantum Electrodynamics. In the case of field
strengths that are small compared to the “critical” field Ecr = 1.3 · 1016 Vcm−1, the re-
sulting nonlinear corrections to the electromagnetic wave propagation can be evaluated
explicitly.

In this thesis, Maxwell equations that include these weak-field corrections are solved
numerically for a “pump-probe” setup of two colliding plane waves. The corresponding
wave equation is then solved analytically. The inital configuration is a weak (opti-
cal) Gaussian probe pulse that counterpropagates with a slowly-varying strong “back-
ground”. Vacuum polarisation effects such as birefringence and the generation of har-
monics (similar to processes in a nonlinear Kerr-medium) are analysed.

The first part of the thesis is dedicated to the study of the time-resolved dynamics when
the probe collides with a Gaussian strong pulse and an “overlap” signal is identified,
which is only present in the interaction region and disappears when the pulses are well
separated.

The second part of the thesis considers vacuum high harmonic generation in a plane
wave background of vanishing frequency. If the propagation length of the probe in the
external field is long enough, higher harmonics of the probe frequency can be generated
due to multiple scattering events. For parallel polarisations of probe and strong pulse,
a multi-scale parameter is identified which indicates when this self-interaction becomes
important. If this parameter approaches unity, the probe pulse develops a discontinuity
or “shock” in the carrier wave.
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Chapter 1

Introduction

1.1 Classical Electrodynamics

Classical Maxwell theory describes an enormous variety of phenomena, ranging from
long radio waves (wavelength λ ≈ 108 cm) to microwaves λ ≈ 1 cm down to x-rays with
λ ≈ 10−8 cm and even hard γ-radiation on the femtometre scale or smaller. Electromag-
netism is not only about the propagation of light in vacuum, but also the interaction
with charged, massive particles. The set of partial differential equations describing the
interaction of light with matter are the four Maxwell equations (in Gaussian cgs units
with c = 1),

∇∧B− ∂tE = 4πJmatter ,

∇ ·E = 4πρmatter ,

∇∧E + ∂tB = 0 ,

∇ ·B = 0 ,

(1.1)

together with the Lorentz force equation

dp

dt
= q(E + v ∧B) ,

where E and B are the electric and magnetic field, Jmatter and ρmatter are the current
and charge density, p = mv the momentum, q the charge and m the mass of the particle.
One of the major characteristics of Maxwell equations is that they are a set of linear
differential equations and the superposition principle holds: The sum of two solutions to
(1.1) is again a solution. This is due to the fact that, classically, light does not interact
with light.
An alternative and equivalent formulation of the system of coupled first order differential
equations (1.1) are the inhomogeneous wave equations for the electric and magnetic fields
(which are derived in Appendix C.2)

�E(t,x) = −4π∇ρmatter − 4π∂tJmatter ,

�B(t,x) = 4π∇∧ Jmatter ,

where � := ∂2
t − ∆ is the d’Alembert operator. The Maxwell equations can also be

modified to describe wave propagation in media as we see in the next section.
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1.2 Electrodynamics in Media: Polarisation and Magneti-
sation

For electromagnetic waves in media, the equations (1.1) now include two additional fields

∇ ·D = 4πρmatter ,

∇∧H− ∂tD = 4πJmatter ,

∇ ·B = 0 ,

∇∧E + ∂tB = 0

(1.2)

with the electric displacement field D and the magnetising field H. The electric dis-
placement thereby consists of two parts

D = E + 4πP . (1.3)

P is called polarisation and can be interpreted as the response of the medium when
an external field electric field E is applied. Due to the external field E, the electric
charges in the medium are separated and generate an additional polarisation field P,
the resulting field is then given by D.
Similarly, the magnetising field H consists of the sum of the applied magnetic field B
and the response in form of the magnetisation M:

H = B− 4πM . (1.4)

We note that in vacuum the relations

E = D , B = H

hold as M = P = 0.
Since the fields P and M can be interpreted as the response to the external applied
fields, one can make an ansatz of a power series in the external fields [FW63] for both
fields:

Pi =
∑
j

(χ(1)
e )ijE

j +
∑
jk

(χ(2)
e )ijkE

jEk +
∑
jkl

(χ(3)
e )ijklE

jEkEl ,

Mi =
∑
j

(χ(1)
m )ijB

j +
∑
jk

(χ(2)
m )ijkB

jBk +
∑
jkl

(χ(3)
m )ijklB

jBkBl ,
(1.5)

where χ
(n)
e,m are the n-th electric/magnetic susceptibility tensors. For example, χ

(1)
e 6= 0

corresponds to a linear dispersive medium and χ
(3)
e 6= 0 is typical for a nonlinear Kerr-

medium.

1.3 Development of QED and the Notion of Vacuum Po-
larisation

While Maxwell already formulated his theory of electromagnetism in 1863 [Max63], sev-
eral decades later, at the beginning of the 20th century, a new era of modern physics
began as (non-relativistic) quantum theory was invented by Planck, Einstein, Pauli,
Bohr and many others. It took more than 20 years to put it in its modern form of
matrix mechanics developed by Heisenberg, Jordan and Born and, equivalently, wave
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mechanics based on the Schrödinger equation.
The first relativistic theory of the electron was devised by Dirac in 1927 [Dir27]. The pos-
itive energy solutions to the Dirac equation, which is introduced later, were interpreted
as “holes” in the sense of a lack of electrons in the “Dirac sea”, an infinite accumulation
of particles with negative energy. Only four years later, Dirac postulated that these
holes should be interpreted as positrons [Dir31], the anti-particle of the electron with
identical quantum numbers but opposite charge.
That was the birth of what is today known as “Quantum Electrodynamics” (QED).
In the same period, Sauter [Sau31] solved the Dirac equation in a homogeneous electric
field and was able to confirm Bohr’s conjecture that finite field gradients comparable to or
higher than the rest energy of the electron mc2 over a Compton wavelength λC = h/mc ,
yield a finite probability to create real electron-positron pairs.
This led to the notion of the “critical” or “Sauter” field (later also called “Schwinger”
field)

Ecr =
m2c2

e~
≈ 1.3 · 1016 V

cm
. (1.6)

Ecr is the field needed to create the difference of potential energy of the size of the
electron rest energy over a Compton-wavelength λC.
The associated “critical” magnetic field is Bcr = 4.4 · 1013 G. If not written explicitly,
we use natural units such that ~ = c = 1 throughout such that the electric and magnetic
fields have the same units, Ecr = Bcr.
Soon afterwards, Halpern [Hal33] and Debye (see footnote in [EK35]) hypothesised the
interaction of light with light via virtual electron-positron pairs, which obviously violates
the classical superposition principle. Following this hypothesis, Euler and Kockel [EK35]
calculated the effective Lagrangian for light-by-light scattering in the limit of weak fields
compared to the critical field Ecr and low frequencies ~ω � mc2 and were the first to give
the order of magnitude of the light-by-light scattering cross-section, which is [BLP82]

σγγ =
973

10125π
α4
( ω
m

)6
λ2

C (1.7)

in this limit and λC = λC/2π is the reduced Compton wavelength. For an optical
photon with ~ω = 2 eV (corresponding to a wavelength λ = 0.62 µm) the cross-section
is σγγ = 4.4 · 10−64 cm and as such, extremely small.
While Euler and Kockel calculated corrections nonlinear in the fields, Uehling [Ueh35]
and Serber [Ser35] calculated the corrections nonlinear in the coordinates, including a
logarithmic correction to the Coulomb potential at small distances induced from virtual
e+e− pairs.
In 1936, Heisenberg and Euler were able generalise the results from Euler and Kockel
to an analytical all-order expression for the nonlinear corrections in the electromagnetic
fields valid for arbitrary strong field amplitudes in the limit of constant fields [HE36].
Soon after the derivation of what is nowadays called the “Heisenberg-Euler” Lagrangian
(HE Lagrangian), Weisskopf [Wei36] was able to re-derive the Lagrangian in a simpler
way and stated clearly, that empty space or the “vacuum” can be seen as a polarisable
medium with field-dependent electric and magnetic polarisability. For a more extensive
review of the historical developments, the reader is refered to [Dun12].
The quantum vacuum can therefore be imagined as virtual electron-positron pairs that
are generated and annihilated within a reduced Compton wavelength and “live” for a
(reduced) Compton time tC = λC/c as it is allowed by the time-energy uncertainty
[SN11]

∆E∆t ≈ ~ . (1.8)
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This idea is illustrated in the left panel of Fig. 1.1 with a random orientation of the
dipole moments of the e+e− pairs. The reduced Compton-wavelength λC and reduced
Compton-time give therefore naturally the typical length- and timescales of QED with
[MNT15]:

λC ≈ 3.86 · 10−11 cm = 3.11 · 10−7 1
eV ,

tC ≈ 1.29 · 10−21 s = 3.11 · 10−7 1
eV .

Figure 1.1: In the left panel virtual electron-positron pairs are created and annihilated in
vacuum within a Compton-wavelength λC with a corresponding “life-time” (Compton-
time) tC with arbitrary relative orientation. If an electric field is applied, these pairs
polarise the vacuum as it shown in the right panel.

The behaviour of the virtual pairs changes in the presence of a background field as it is
shown for an electric field in the right panel of Fig. 1.1. The dipoles align according to
the external field similar to a “normal” polarisable medium. With the interpretation of
the vacuum as a polarisable (nonlinear) medium, one expects similar effects as in classi-
cal electrodynamics. Among the most prominent predictions are vacuum birefringence
[Tol52; BB67a] with resulting polarisation rotation [Kin10], vacuum diffraction [DHK06;
KPK10], the generation of higher harmonics [FN07; BB81] and photon splitting [Adl71;
BB70]. The effects of birefringence and harmonic generation are studied in this thesis
and explained later in more detail, for a comprehensive review of the other phenomena,
the reader is refered to [MS06; Di +12; KH16].
In the next section we introduce the QED-action and make the connection between terms
in the Lagrangian and the polarisation P and magnetisation M.
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1.4 QED as a Lorentz Invariant Gauge Theory

As Maxwell’s theory is invariant under Lorentz transformations, it can also be put in a
manifestly covariant form. The equations (1.1) can then be compactly written as

∂µF
µν = 4πJµmatter , (1.9)

∂µ ?F
µν = 0 , (1.10)

where Fµν is the Faraday tensor, Fµν = ∂µAν−∂νAµ with Aµ being the gauge potential,
?Fµν its dual and jµmatter = (ρmatter,Jmatter). The components of F and ?F are given in
Appendix A.1.
There are two fundamental principles for modern quantum field theories. The first one
is the postulation of gauge symmetry under a certain gauge group, which is simply U(1)
in the case of QED. Furthermore, the equations of motion should be derived from an
action principle, which is in the Lagrangian description

δSQED = δ

∫
d4x LQED = 0 , (1.11)

where the QED action SQED is given by the integral SQED =
∫

d4x LQED over the
Lagrangian density LQED.
The massive particles (electrons and positrons) in QED are represented as spinor fields
Ψ that are minimally coupled to the gauge (photon) field Aµ. The equation of motion
for the spinor fields is the Dirac equation

(i /D −m)Ψ = (i/∂ − e /A−m)Ψ = 0 , (1.12)

where /D = γµDµ with γµ being the Dirac matrices satisfying the Clifford algebra γµγν+
γνγµ = 2gµν and Dµ := ∂µ + ieAµ is the covariant derivative.
A suitable Lagrangian that reproduces (1.9) and (1.12) is given by

LQED = LMW + Ψ̄(i /D −m)Ψ

= − 1

16π
FµνF

µν + Ψ̄(i/∂ −m)Ψ−AµJµmatter ,
(1.13)

where we defined the free Maxwell Lagrangian as LMW = − 1
16πFµνF

µν , the current
Jµmatter := eΨ̄γµΨ and Ψ̄ := Ψ†γ0 is the Dirac conjugate of Ψ. δSQED = 0 is then
equivalent to the Euler-Lagrange equations

∂µ
∂LQED

∂(∂µAν)
− ∂LQED

∂Aν
= 0 ,

∂µ
∂LQED

∂(∂µΨ̄)
− ∂LQED

∂Ψ̄
= 0 ,

∂µ
∂LQED

∂(∂µΨ)
− ∂LQED

∂Ψ
= 0 ,

where the first equation yields (1.9) and the second and third equation yield the Dirac
equation (1.12) and its conjugate. We note that (1.10) is the Bianchi-identity [Sza11]
which is automatically fulfilled due to the gauge symmetry.
The QED Lagrangian (1.13) is quadratic in the electromagnetic fields Fµν which corre-
sponds to free photon propagation with one incoming and one outgoing photon. That
photons do not interact classically with each other (and the equations of motion are
therefore linear, as explained above) is a direct consequence of the fact that photons are
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uncharged under the Abelian gauge group U(1).
Now the only gauge and Lorentz invariants that can be constructed for the electromag-
netic field are (up to constants)

F = −1

4
FµνF

µν =
1

2
(E2 −B2) ,

G = −1

4
Fµν ?F

µν = E ·B .

(1.14)

Since every interaction term for pure light-light interaction must be Lorentz and gauge
invariant, it can only be constructed as functions (most of the time polynomials) of F
and G, where each factor in the polynomials corresponds to two external photons. A
term ∼ (g1F2 + g2G2) with some coupling constants g1, g2 then describes four-photon
interaction and in general ∼ gF iG2j corresponds to 2(i + 2j)-photon scattering, where
i, j are integers. We note that only even powers of G can appear as G is a pseudo-scalar
and the Lagrangian needs to be a proper Lorentz scalar.
So under the assumption that the Lagrangian includes an additional interaction Lint(F ,G)
for purely photons (which corresponds to taking vacuum polarisation into account) that
depends only on the field invariants, it is shown in Appendix C.1 that these terms give
precisely contributions to the Maxwell equations (1.2) that can be interpreted as polar-
isation P and magnetisation M (as they are used in e.g. [BB81] or [DHK06]) where

P =
∂Lint

∂E
M =

∂Lint

∂B
. (1.15)

Being a relativistic effect however, the magnetic and the electric field appear in on an
equal footing in both P and M in contrast to the ansatz (1.5) in normal polarisable
media.

As we now have introduced the notion of vacuum polarisation and certain relations of
this effect to quantities in the Lagrangian, we give the outline of the thesis:

• In the next chapter we re-derive the HE Lagrangian for constant electromagnetic
fields. As a first step we briefly introduce generating functionals for correlation
functions in the path integral formalism. Then the effective action Γ for QED
is introduced using Schwinger’s “proper time” method. The calculation of Γ is
thereby reduced to finding the Klein-Gordon-propagator in position space in a
constant external field. Then a general formula for the propagator of an arbitrary
quadratic Hamiltonian with constant metric is derived. The case of the Klein-
Gordon-propagator is then an application of the result for a quadratic Hamilto-
nian and the HE Lagrangian is derived in its final form, where the details are
given in Appendix B. Employing a weak-field expansion, corrections (correspond-
ing to four-, six- and eight-photon scattering) to Maxwell’s equations and the
wave equation are derived and the pump-probe setup of two colliding plane waves
is introduced. As the effect of the strong pulse (pump) on the probe is treated
classically in the fourth chapter, dressed diagrams for the probe propagation are
also introduced.

• In the third chapter, the two different approaches to nonlinear wave propagation
used in this thesis are presented. First, the analytical solution of the wave equation
using an iterative ansatz based on the appropriate Green’s function in (1 + 1)
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dimensions is introduced that naturally leads to the notion of forward (along the
direction of the probe propagation) and backward scattered (along with the strong
pulse) signals. From the first iteration, the “overlap” signal is identified as a
boundary term in the integration of the wave equation, which is only present in
the interaction region of both pulses and disappears when both are well-separated.
Then higher iterations neglecting the change of the strong field are carried out
and interpreted using the dressed diagrams from chapter two. The second part
of the chapter is dedicated to the numerical solution of the Maxwell equations
including the weak-field nonlinearities. For the plane-wave setup, these equations
can be written in matrix form and brought to an explicit form of first-order partial
differential equations via matrix inversion. The equations are then discretised in
space using the “Pseudo-characteristic Method of Lines” yielding a coupled system
of ordinary differential equations (ODEs) and then integrated using the ODE-solver
CVODE.

• The fourth chapter is then the application of the numerical and analytical methods
and consists of two parts. The first one treats the time-resolved dynamics of
the interaction including four- and six-photon scattering of a Gaussian optical
probe and (strong) slowly-varying Gaussian pulse including an analysis of the
“overlap” signal introduced in chapter 2. Thereby changes in the first harmonic of
the probe can be interpreted as polarisation dependent vacuum birefringence due
to the strong pulse, but also higher harmonics of the probe pulse are generated.
The back-reaction of the probe on the strong pulse also leads to components with
frequencies much smaller than the probe frequency. Finally, a comparison between
the generation of the second harmonic from the asymptotic signal from six-photon
scattering and the overlap field from four-photon scattering is given.
In the second part of this chapter, the Gaussian background is replaced by a
“square pulse” with vanishing frequency. In the analytical model, an all-order-
solution for the forward-scattered probe field in the case of parallel polarisations
of the probe and strong pulse is derived. This solution can be written in terms
of the original probe with a probe-dependent refractive index and a multi-scale
parameter is identified. This parameter depends on the propagation length in
the strong background and it is found that if this parameter approaches unity, the
probe develops a discontinuity or shock due to high harmonics in the spectrum. For
non-parallel polarisations it is found numerically, that generation of these higher
frequency components is strongly suppressed and also very sensitive to dispersive
effects. Finally, we conclude with a comparison to plasma physics and a discussion
of the applicability and the possible generalisation of the results obtained in this
thesis.

• Appendix A summarises the conventions used in this thesis, in Appendix C the
formulas for the Maxwell and wave equations for additional photon-photon inter-
actions are derived. The general form of Maxwell’s equations for a Lagrangian
that depends on the secular invariants is calculated and the coefficients appearing
in this expression can be used to express the coefficient matrices for the numerical
method. In Appendix D the Green’s function for the wave equation in (1 + 1)
dimensions is derived. Finally, the formulas for the biased finite differences and
the nonlinear matrices used in the numerical simulation are given.
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Chapter 2

Effective Field Theory and
Modified Wave Propagation

We introduce path integrals and the one-loop effective action for QED using
Schwinger’s proper time method. The Heisenberg-Euler Lagrangian, the ef-
fective Lagrangian for QED in constant electromagnetic backgrounds, is then
re-derived from the general expression of the Green’s function for a quadratic
Hamiltonian on phase space. A weak-field expansion of the Lagrangian is given
and the resulting nonlinear Maxwell and wave equations are derived. The setup
of two counter-propagating plane-wave pulses considered in the thesis is intro-
duced and we comment on the allowed possible processes for two colliding plane
waves.

2.1 Path Integrals in QFT and Generating Functionals

In this section we briefly review the concept of generating functionals for correlation
functions. We use the case of a free Klein-Gordon field to show how to obtain only the
connected correlation functions from the generating functional. The same argument is
then be used in section 2.3 to obtain the connected correlation function in the interacting
case, the fully dressed propagator. For an extensive introduction, the reader is referred
to standard text books like [PS95; Sch13; Ryd96].
Among the main (measurable) quantities one is interested in in Quantum field Theory
(QFT) are cross-sections and decay rates. Those quantities can be calculated using
the so-called S-Matrix. If one considers a process of incoming particles whose initial
configuration is α and end up in a final configuration β, then the probability amplitude
for this process to happen is denoted as Sβα. The main idea is to consider the states α
asymptotically as free states, when all interaction is turned off. The transition amplitude
is then defined as

Sβα = 〈β, t→∞|α, t→ −∞〉 .

Via the LSZ-reduction formula, the calculation of the S-matrix can be related to the
calculation of n-point correlation functions Gn(x1, x2, . . . , xn) which are defined as time-
ordered vacuum expectation values of certain (possibly different) fields. Let us first
consider a free uncharged scalar field φ which satisfies the Klein-Gordon equation

(�+m2)φ(x) = 0 , (2.1)



10 2. Effective Field Theory and Modified Wave Propagation

where � := ∂2
t − ∆ is the d’Alembert operator and we set ~ = c = 1. Then the n-

point correlation functions Gn(x1, x2, . . . , xn) are defined as vacuum expectation values
of time-ordered products of the field φ:

Gn(x1, x2 . . . , xn) = 〈0|T {φ(x1)φ(x2) . . . φ(xn)} |0〉 .

Now one way to calculate the vacuum expectation value of time ordered products of field
operators is via the path integral formulation:

〈0|T {φ(x1)φ(x2) . . . φ(xn)} |0〉 =

∫
Dφ φ(x1)φ(x2) . . . φ(xn) eiScl[φ]∫

Dφ eiScl[φ]
,

where Dφ means the integration over all classical field-configurations φ(x) which are
weighted by the factor eiScl[φ] where Scl[φ] =

∫
d4x L(φ) is the classical action.

To calculate the quantities
∫
Dφ φ(x1)φ(x2) . . . φ(xn) eiScl[φ], it is convenient to introduce

an external source j (which is not to be confused with Jmatter) which couples to the field
φ. Then one can define a generating functional Z[j] for the n-point correlation function
as the path integral

Z[j] =

∫
Dφ exp

(
−i
∫

d4x(
1

2
φ(2 +m2 − iε)φ− jφ)

)
, (2.2)

where the iε is introduced to assure the proper boundary conditions. Then all correlation
functions can be expressed as functional derivatives of Z[j] with respect to the source j:

〈0|T {φ(x1)φ(x2) . . . φ(xn)} |0〉 =
1

in
1

Z[0]

δnZ

δj(x1) . . . δj(xn)

∣∣∣
j=0

,

where one sets the currents j to zero after evaluating the derivatives. Using the identity∫
Dφ exp

(
−[

1

2
(φAφ) + bφ]

)
= exp

(
1

2
(bA−1b)

)
det(A)−

1
2 ,

Z[j] can be written as

Z[j] = N exp

(
1

2

∫
d4x d4y j(x)SF(x− y)j(y)

)
, (2.3)

where

N =

∫
Dφ exp

[
− i

2

∫
d4x φ(2 +m2 − iε)φ

]
is an (infinite) constant and SF(x− y) is the Feynman propagator satisfying

(2 +m2 − iε)SF(x− x′) = −iδ4(x− x′) . (2.4)

Using the expression (2.3), one can expand the exponential pictorially (ignoring N )
which is shown in Fig. 2.1.

Apart from the first two terms, all higher graphs are disconnected. One can further
define a generating functional which only gives the connected Feynman diagrams,

W [j] = −i lnZ[j] (2.5)

such that the only connected n-point correlation function generated by W [j] is the
Feynman propagator. So we note that taking the logarithm of the generating functional
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Figure 2.1: Pictorial expansion of the generating functional Z[j] (ignoring the constant
N ) into a trivial part denoted by 1, the Feynman propagator as a straight line and
all higher order graphs that are disconnected consisting only of free propagators. The
crosses indicate the coupling to the current j.

of the free theory gives only the second term in Fig. 2.1, the free propagator when the
js are set to zero.
In the next section we introduce Schwinger’s proper time formalism which is used to
relate the Feynman propagator (the connected correlation function for the Klein-Gordon

equation) to the amplitude 〈x| e−isĤ |x′〉 with a certain Hamiltonian Ĥ and the additional
proper time parameter s, which is not to be confused with the proper time on the world
line of the particle, most of the time called τ . This connection is then used to motivate
the notion of the one-loop effective action.

2.2 Schwinger’s Proper Time Formalism

This section is based on [Sch13].
In non-relativistic quantum mechanics, the fundamental objects of interest are observ-
ables that are represented as self-adjoint operators like position ~̂x or mentum ~̂p whereas
time is mostly only considered as a parameter. Now for relativistic theories both time
and space must be on equal footings. So there are two possible ways out [Sre07]:
Introduce the notion of a time-operator or degrade also position to be a parameter or
label.
Pauli already pointed out in 1933 ([Pau33; Pau+58], see [Bus08] for an extensive re-
view) that the existence of a self-adjoint time-operator would lead to an energy spectrum
E ∈ [−∞,∞] in the range of the entire real line. He concluded that for most physi-
cal relevant systems, which have discrete, bounded or semi-bounded energy spectra, the
concept of a self-adjoint time-operator “must fundamentally be abandoned” [Bus08]. Al-
though Pauli’s statement is not entirely correct, introducing a time-operator in quantum
mechanics is difficult in practice [Sre07]. The second choice, taking also the coordinates
~x as parameter, is the base of modern quantum field theory in which the main objects
are fields that are operators depending on the local coordinates (t, ~x) as “parameters”.
Now Schwinger’s idea is to view the considered system as a four-dimensional non-
relativistic quantum mechanics with an additional (proper) time parameter s. To il-
lustrate further the interpretation of what is called “proper time method”, we consider
again the Feynman propagator of the Klein-Gordon-Equation

(2 +m2 − iε)SF(x, x′) = −iδ4(x− x′) ,
where ε > 0 is there to ensure the appropriate boundary conditions [Ryd96]. The key
observation for the whole formalism is the identity

i

A+ iε
=

∫ ∞
0

ds eis(A+iε) , (2.6)
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where again ε > 0. Now we express SF(x) by the inverse of its Fourier transform G̃(p,m):

SF(x, x′) =

∫
d4p

(2π)4
eip(x−x

′) G̃(p,m) .

Here we assumed translational invariance such that the Fourier transform depends only
on the difference (x− x′). Applying the Klein-Gordon-operator 2 +m2 − iε then yields

(2 +m2 − iε)SF(x, x′) =

∫
d4p

(2π)4
eip(x−x

′)G̃(p,m)(−p2 +m2 − iε) . (2.7)

Using the identity

δ4(x− x′) =

∫
d4p

(2π)4
eip(x−x

′)

on the right-hand side of (2.4) then gives the expression for the propagator in momentum
space

G̃(p,m) =
i

p2 −m2 + iε
.

With (2.6), we can write

SF(x, x′) =

∫
d4p

(2π)4
eip(x−x

′)

∫ ∞
0

ds e is(p
2−m2+iε) . (2.8)

Now we proceed by introducing the one-particle Hilbert space with state vectors |x〉 , |p〉
and introduce operators p̂µ, x̂µ satisfying the eigenvalue equations p̂µ |p〉 = pµ |p〉 and
x̂µ |x〉 = xµ |x〉. Further, we assume that these states form a complete basis:

1 =

∫
d4x

(2π)4
|x〉〈x| =

∫
d4p

(2π)4
|p〉〈p| .

The momentum eigenfunctions in position space are given by

〈x|p〉 = eipx .

Using these eigenfunctions, we can write

SF(x, x′) =

∫
d4p

(2π)4

∫ ∞
0

ds eip(x−x
′)eis(p

2−m2+iε)

=

∫
d4p

(2π)4

∫ ∞
0

ds 〈x|p〉
〈
p
∣∣x′〉 eis(p

2−m2+iε)

=

∫
d4p

(2π)4
〈x|p〉 〈p|

∫ ∞
0

ds e is(p̂
2−m2+iε)

∣∣x′〉
=

∫ ∞
0

ds e−ism
2
e−sε 〈x| eisp̂2

∣∣x′〉 .
Defining (proper) time-dependent states |x; s〉 := e−isH |x〉 with H = −p̂2, this can be
rewritten as

SF(x;x′) =

∫ ∞
0

ds e−ism
2
e−sε 〈x| e−iH

∣∣x′〉
=

∫ ∞
0

ds e−ism
2
e−sε

〈
x; 0
∣∣x′; s〉 .

So apart from the factor e−sε, which ensures convergence, and the mass-dependent quan-
tity e−ism

2
, the propagator SF(x;x′) can be interpreted as the probability for a particle

located at time s = 0 at position x to propagate to position x′ within the proper time s
and integrated over all possible values of the proper time.
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2.3 Effective Action for QED

An effective action is an action that approximates the “proper” action of the theory in
a certain parameter regime such that both actions yield the same correlation functions
under these assumptions. For the case of QED, the effective Heisenberg-Euler action
should be valid for photon energies much smaller than the rest mass of the electrons,
~ω � mc2, as derivative expansions [GS96; GS99; DH99] and world line calculations
[GR11] suggest.
We already know from (1.13), that the full QED-Lagrangian is given by

LQED = − 1

16π
FµνF

µν + Ψ̄(i /D −m)Ψ .

Using the language of path integrals, one can use of the assumption of ω � m to integrate
out heavy degrees of freedom [Din16], namely the massive fermions. The effective action
Γ[A] is then defined via the path integral where the integration is only on the gauge
degrees of freedom:∫

DAeiΓ[A] =

∫
DADΨDΨ̄ exp

{
i

∫
d4x

[
− 1

16π
FµνF

µν + Ψ̄(i /D −m+ iε)Ψ

]}
with

eiΓ[A] =

∫
DΨDΨ̄ exp

{
i

∫
d4x

[
− 1

16π
FµνF

µν + Ψ̄(i /D −m+ iε)Ψ

]}
. (2.9)

Now the path integral is an infinite version of a Gaussian integral over Grassman-valued
fields, which evaluates to the determinant:∫

DΨ̄DΨ exp

{
i

∫
dx4

[
Ψ̄(i /D − (m− iε))Ψ

]}
= N det

(
i /D −m+ iε

)
with some infinite normalisation constant N . Therefore,∫

DAeiΓ[A] =

∫
DA exp

{
i

∫
dx4(− 1

16π
FµνF

µν)

}
N det

(
i /D −m+ iε

)
.

Comparing the integrands and taking the logarithm on both sides, we obtain the explicit
expression for the effective action

iΓ[A] = i

∫
dx4(− 1

16π
FµνF

µν) + ln det
(
i /D −m+ iε

)
+ lnN . (2.10)

Using the identity

Tr ln M = ln det M

for a diagonalisable matrix M, we can rewrite (2.10) as

iΓ[A] = i

∫
d4x(− 1

16π
FµνF

µν) + Tr ln
(
i /D −m+ iε

)
+ lnN .

Since the trace is independent of the basis and we want to combine the logarithm into
an effective action, we chose the position basis |x〉 to evaluate the trace:

iΓ[A] = i

∫
dx4

(
− 1

16π
FµνF

µν − i tr 〈x| ln
(
i /D −m+ iε

)
|x〉
)

+ lnN
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and tr is the leftover trace over spinor indices. So the effective Lagrangian is given by

Leff = − 1

16π
FµνF

µν − i tr
(
〈x| ln

(
i /D −m+ iε

)
|x〉
)

+ const. . (2.11)

Following the analogy of the real Klein-Gordon-field in section 2.1, one can define a
generating functional ZA[j] for the n-point correlation functions where the vacuum |0〉 is
now replaced by an interacting vacuum |Ω〉A with the gauge field Aµ present. The gen-
erating functional for the connected correlation functions is given by W [j] = −i lnZ[j]
and we saw that taking this logarithm removed all unconnected correlation functions
and only the free propagator survived. In the same sense here now the fully dressed
propagator satisfying (

i /D − (m− iε)
)
SA(x− x′) = −iδ4(x− x′)

is obtained as the connected two-point-function. From the Schwinger-Dyson equation it
is known that SA can be expanded perturbatively and this expansion has the following
pictorial representation, where the double-dashed line is the fully-dressed propagator:

Figure 2.2: Iterative solution of the Schwinger-Dyson equation for the fully-dressed
fermion propagator with a classical electromagnetic field. Only even numbers of photons
are present due to Furry’s theorem.

Here we already anticipated Furry’s theorem that only an even number of external pho-
tons are allowed due to CPT-invariance [PS95].

Now taking the trace sets x = x′, which means pictorially that one joins the ends of the
fermion lines in Fig. 2.2 such that one obtains the fully-dressed, closed loop shown in
Fig. 2.3 together with its perturbative interpretation. We note that this is similar to
the explanation of the proper time interpretation at the end of the last section for the
free case.

To further simplify the expression for the effective action, we go back to (2.11) and take
the derivative with respect to m2 [Sch13]

∂Leff

∂m2
= −i ∂

∂m2
tr
(
〈x| ln

(
i /D −

√
m2 + iε

)
|x〉
)

=
i

2m
tr

(
〈x| 1

i /D −m+ iε
|x〉
)

=
i

2m
tr

(
〈x| i /D +m

− /D2 −m2 + iε
|x〉
)
.

If one now makes a Taylor-Expansion of the 1/(− /D2 −m2 + iε) term, one gets a power
series in even powers of γ-matrices. Since this series multiplies the enumerator and the
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= + +

+ + + . . .

Figure 2.3: Expansion of the effective action into a perturbative series of Feynman
diagrams. Only an even number of external photons are present due to Furry’s theorem.

trace over odd powers of Dirac-matrices vanishes, we are left with

∂Leff

∂m2
=
i

2
tr

(
〈x| 1

− /D2 −m2 + iε
|x〉
)

=
1

2

∫ ∞
0

ds e−εse−ism
2

tr
(
〈x| e−i /D

2
s |x〉

)
.

Integrating again with respect to m2 one obtains

Leff = − 1

16π
FµνF

µν +
i

2

∫ ∞
0

ds e−εs
e−ism

2

s
tr
(
〈x| e−i /D

2
s |x〉

)
,

where we installed again the linear Maxwell Lagrangian and dropped the constant as it
does not effect the equations of motion. Now we can use

/D
2

=
1

2
({γµ, γν}+ [γµ, γν ])DµDν = D2 +

e

2
σµνFµν

with

{γµ, γν} = 2gµν ,

[Dµ, Dν ] = ieFµν ,

where {A,B} := AB +BA, [A,B] := AB −BA and

σµν :=
i

2
[γµ, γν ] . (2.12)

By making the replacement

i(∂µ + ieAµ)→ Πµ = pµ − eAµ (2.13)

we obtain

/D
2

= D2 +
e

2
σµνFµν → /D

2
= −Π2 +

e

2
σµνFµν

and therefore

Leff = − 1

16π
FµνF

µν +
i

2

∫ ∞
0

ds

s
e−ism

2
e−εs tr

(
〈x| e−isHpt |x〉

)
, (2.14)
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where we defined a proper time Hamiltonian

Hpt = −Π2 +
e

2
σµνFµν . (2.15)

We can interpret again the effective action as the propagation of a particle from position
x, time-evolved with the dressed Hamiltonian Hpt and propagated back to position x,
integrated over all proper times s. It runs around a loop in proper time s where the
complete interaction with the external field Aµ is taken into account. Therefore, one can
interpret Γ[A] =

∫
d4x Leff as the one-loop effective action for QED in agreement with

Fig. 2.3.
Now we reduced the problem of integrating out the fermion dynamics to finding an
expression for the propagator in position space

〈x| e−isHpt |y〉 . (2.16)

As we saw from (2.15), Hpt consists of two parts:

Hpt = H1 +H2 ,

where H1 = −Π2 and H2 = e
2σ

µνFµν . As we assume Fµν in H2 to be a function of the
position operator,

Fµν = Fµν(x̂) ,

we can write

〈x| e−is(H1+ e
2
σµνFµν(x̂)) |y〉 = 〈x| e−isH1 |y〉 e−is

e
2
σµνFµν(y) . (2.17)

The main task is now to derive the explicit expression for

〈x| e−isH1 |y〉 . (2.18)

In the next section we are going to derive an expression of the propagator for a general
quadratic Hamiltonian H with constant metric on a 2n-dimensional phase space using
techniques from symplectic geometry. This machinery then allows us to derive the
Heisenberg-Euler Lagrangian in an alternative way as a special case with n = 4.

2.3.1 Propagator for Quadratic Hamiltonians

It’s a pleasure to thank Michael M. Kay for showing and carefully explaining to me the
derivation presented in this section [Kay16].

In this section we derive an explicit formula for the propagator for an arbitrary quadratic
Hamiltonian on a 2n-dimensional phase space with constant metric:

〈x| e−itH |y〉 (2.19)

with a Hamiltonian

H =
1

2
(x̂TG1x̂+ x̂TG2p̂+ p̂TG3x̂+ p̂TG4p̂) , (2.20)

where x̂ and p̂ are operators on the 2n-dimensional phase space and the Gi are constant
n× n-dimensional matrices with i = 1, 2, 3, 4. We note that in the one-dimensional case
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with G1 = G4 = 1 and G2 = G3 = 0, H is simply the Hamiltonian of a one-dimensional
harmonic oscillator

H =
1

2
(p̂2 + x̂2) .

The connection between (2.19) and the propagator appearing in the effective Lagrangian
(2.14) is made explicit later.
In this chapter we change notation from Greek indices µ, ν, . . . to lowercase letters
i, k, l, . . . which run from 1, 2, . . . , n where n is the dimension of the space. If we now
introduce the 2n-dimensional coordinate operator X̂ = (x̂, p̂) , then we can write the
Hamiltonian as

H =
1

2
〈X̂,GX̂〉 :=

1

2

2n∑
I,J=0

X̂IGIJX̂
J , (2.21)

where 〈, 〉 denotes the standard Euclidean scalar product. The capital indices I, J, . . .
run from 1, . . . , 2n over the whole phase space and the metric G is given by a the block
matrix

G =

G1 G2

G3 G4

 .

The idea is now to view the propagator 〈x| e−iHt |y〉 as the wave function 〈x|ψ(y, t)〉 of
the state |ψ(y, t)〉 where

|ψ(y, t)〉 := e−iHt |y〉 (2.22)

and use that |ψ(y, t)〉 is a solution to the Schrödinger equation

i
d

dt
|ψ(y, t)〉 = H |ψ(y, t)〉 (2.23)

with initial condition |ψ(y, 0)〉 = |y〉. This equation is hard to solve directly, but one
can replace it with a first order partial differential equation which is the statement that
|ψ(y, t)〉 is an eigenstate of a certain “time-evolved” operator. This condition then fixes
the state up to a phase which is in the end determined by explicitly requiring that the
constructed state solves the Schrödinger equation (2.23).
Specifically, we have

e−iHtx̂keiHte−iHt |y〉 = yke−iHt |y〉 (2.24)

which follows from multiplying x̂k |y〉 = yk |y〉 with e−iHt from the left. So |ψ(y, t)〉 is an
eigenstate of the “time-evolved” position operator

x̂k(t) := e−iHtx̂keiHt . (2.25)

In general, we define the time-evolved operators X̂K(t) as

X̂K(t) := e−iHtX̂KeiHt .

The corresponding equation of motion for XK(t) is then

d

dt
X̂K(t) = −i[H, X̂K(t)] (2.26)

= −ie−iHt[H, X̂K ]eiHt .
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To further simplify this expression, we introduce the standard symplectic matrix Ω given
by

Ω =

(
0 −1n

1n 0

)
, (2.27)

where 1n is the identity matrix in n dimensions. The canonical commutation relation

[x̂i, p̂k] = iδik

can then be written as

[X̂I , X̂J ] = iΩIJ .

We note that that ΩIJ are the components of Ω−1. For the commutator −i[H, X̂K ] we
therefore obtain

−i[H, X̂K ] = −i
2n∑

I,J=0

X̂IGIJ [X̂J , X̂K ] (2.28)

=

2n∑
I,J=0

X̂IGIJΩJK (2.29)

= −
2n∑
I=0

(Ω−1G)KI X̂
I (2.30)

=: −
2n∑
I=0

ΛKI X̂
I (2.31)

where we used (Ω−1)T = −Ω−1, G = GT and defined

Λ := (Ω−1G) . (2.32)

The equation of motion (2.26) can be rewritten as

d

dt
X̂K(t) = −

2n∑
I=0

ΛKI X̂
I(t) . (2.33)

Now we know that the general solution to (2.26) is given by the flow

ϕ1(t, X̂) :=

(
x̂(t)
p̂(t)

)
= e−itH

(
x̂
p̂

)
eitH , (2.34)

where a flow on a manifold M is defined as a map

ϕ : R×M →M

such that

ϕ(0, p) = p ,

ϕ(t, φ(s, p)) = ϕ(t+ s, p) .

Now we define another (symplectic) flow

ϕ2(t, X̂) = StX̂ , (2.35)
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where

St := e−tΛ . (2.36)

In Appendix B.1 it is shown that two flows on a manifold M are identical if their
derivatives at t = 0 are identical. So since

d

dt
ϕ2(t, X̂)

∣∣∣
t=0

= −i[H, X̂] =
d

dt
ϕ1(t, X̂)

∣∣∣
t=0

(2.37)

it follows that ϕ1 = ϕ2. As a consequence the position operator x̂k obeys

e−iHtx̂keiHt =

2n∑
I=0

(St)kIX
I . (2.38)

Now we need some information on the operator St = e−tΛ. We note that Λ is an element
of the Lie-Algebra sp(2n) of the symplectic group Sp(2n), whose defining property is

ΩM +MTΩ = 0

for M ∈ sp(2n). If we take M = Ω−1G, we have

ΩΩ−1G+G(Ω−1)TΩ = 0 ,

where we used ΩT = −Ω and G = GT . Therefore, Λ ∈ sp(2n).
Since Λ is an element of sp(2n), St is a symplectic matrix where the defining property of
the symplectic group Sp(2n) is leaving the standard skew-symmetric matrix Ω invariant:

P TΩP = Ω (2.39)

for P ∈ Sp(2n). We denote the n× n-blocks of St as

St =:

(
St1 St2
St3 St4

)
. (2.40)

The relation (2.39) gives certain conditions on the blocks Sti which are collected in
Appendix B.2.
Now we use this information to derive a differential equation for the propagator in
position space.
As we have seen in (2.24), we have the eigenvalue equation

e−itHxkeitH |ψ(y, t)〉 = yk |ψ(y, t)〉 . (2.41)

Using (2.38), this can be rewritten as

2n∑
I=0

(St)kIX
I |ψ(y, t)〉 = yk |ψ(y, t)〉 . (2.42)

Multiplying (2.42) from the left with 〈x|, we obtain the differential equation

(St1x− iSt2∇) 〈x|ψ(y, t)〉 = y 〈x|ψ(y, t)〉

or, equivalently,

(St1x− iSt2∇)ψty(x) = yψty(x) , (2.43)



20 2. Effective Field Theory and Modified Wave Propagation

where we defined

ψty(x) := 〈x|ψ(y, t)〉 .

Now we want to solve (2.43) for ∇ψty(x). This requires the inverse (St2)−1, which we
assume to exist for simplicity. Under this assumption we obtain

∇ψty(x) = i(St2)−1(y − St1x)ψty(x) , (2.44)

which has the solution

ψty(x) = f(y, St) exp
(
− i

2
〈x, (St2)−1St1x〉+ i〈(St2)−1y, x〉

)
(2.45)

with an arbitrary function f(y, St) which still has to be determined and we used that
(St2)−1St1 is symmetric, which follows from (B.5). As the time evolution is unitary, we
know

ψty(x) = 〈x| e−itH |y〉 = ψ−tx (y) (2.46)

and therefore

ψty(x) = f(x, S−t) exp
( i

2
〈y, (S−t2 )−1S−t1 y〉 − i〈(S−t2 )−1x, y〉

)
. (2.47)

Now we can use (B.5) to rewrite (2.47) as

ψty(x) = f(x, S−t) exp
( i

2
〈y, (S−t2 )−1S−t1 y〉+ i〈(x, S−t2 y〉

)
. (2.48)

Comparing equations (2.45) and (2.48) yields

f(y, St) = N(St) exp
( i

2
〈y, (S−t2 )−1S−t1 y〉

)
. (2.49)

So the full propagator ψty(x) is determined up to the unknown function N(St):

ψty(x) = N(St)Φt
y(x) , (2.50)

where

Φt
y(x) := exp

( i
2
〈y, (S−t2 )−1(S−t1 )y〉 − i

2
〈x, (St2)−1St1x〉+ i〈(St2)−1y, x〉

)
. (2.51)

For later use we express

(S−t2 )−1S−t1 = −[(St2)T ]−1(St4)T

= −St4(St2)−1

(which follows from (B.5)) and therefore

Φt
y(x) = exp

(
− i

2
〈y, St4(St2)−1y〉 − i

2
〈x, (St2)−1St1x〉+ i〈(St2)−1y, x〉

)
.

Finally, we need to find the function

N(S)

for S in the Lie Algebra of Sp(2n). The condition (2.46) implies

N(S−1) = N(S) .
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Now we consider the flow condition

ψs+ty (x) = 〈x| e−iHse−iHt |y〉 =

∫
Rn

dnu 〈x| e−iHs |u〉〈u| e−iHt |y〉

=

∫
Rn

dnu ψsu(x)ψty(u) . (2.52)

Setting x = y = 0 in this relation gives

N(Ss+t) = N(Ss)N(St)

∫
Rn

dnu Φs
u(0)Φt

0(u) (2.53)

and the integral can be evaluated:∫
Rn

dnu Φs
u(0)Φt

0(u) =

∫
Rn

dnu exp

(
− i

2
〈u, (Ss4(Ss2)−1 + (St2)−1(St1))u〉

)
= (−2πi)

n
2 det

(
(Ss4)(Ss2)−1 + (St2)−1(St1)

)− 1
2 .

Next we manipulate further the determinant

det
(
(Ss4)(Ss2)−1 + (St2)−1(St1)

)
= det(Ss2)−1 det

(
(Ss4) + (St2)−1St1S

s
2

)
= det(Ss2)−1 det

(
St2
)−1

det
(
St2S

s
4 + St1S

s
2

)
= det(Ss2))−1(det

(
St2
)
)−1 det

(
(SsSt)2

)
.

So (2.53) is then given by

N(Ss)N(St) = (−2πi)
n
2N(Ss+t)(det(Ss2))−

1
2 (det

(
St2
)
)−

1
2 det

(
(SsSt)2

) 1
2 ,

which is satisfied if one defines

N(St) =

(
i

2π

)n
2

(det
(
St2
)
)−

1
2R(St) , (2.54)

where R(St) is an arbitrary function that fulfils

R(Ss)R(St) = R(St+s) .

As a last step we show that actually R(Sa) = 1 ∀a by requiring that ψty(x) satisfies the
Schrödinger-equation, which completes the calculation. This is done in Appendix B.3.
The final result is therefore given by

〈x| e−iHt |y〉 =

(
i

2π

)n/2
(detSt2)−1/2 exp

(
− i

2
〈y, St4(St2)−1y〉 − i

2
〈x, (St2)−1St1x〉

)
· exp

(
i〈(St2)−1y, x〉

)
. (2.55)

2.3.2 The Heisenberg-Euler Lagrangian

Now as we have the expression for the propagator for an arbitrary Hamiltonian H =
1
2〈X,GX〉 for a constant metric G, we can proceed to derive the Heisenberg-Euler La-
grangian. The expression we want to calculate is (2.14):

Leff = − 1

16π
FµνF

µν +
i

2

∫ ∞
0

ds

s
e−ism

2
e−εs tr

(
〈x| e−iHpts |x〉

)
.
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Now to use (2.55), we make the substitution s→ − t
2 , such that

Leff = − 1

16π
FµνF

µν +
i

2

∫ 0

−∞

dt

t
ei
t
2
m2

eε
t
2 tr
(
〈x| e−iHt |x〉

)
with Hamiltonian

H =
1

2
Π2 − e

4
σµνFµν

and we saw in (2.17) that the propagator for the full Hamiltonian reduced to

〈x| e−is(− 1
2

Π2+ e
4
σµνFµν(x̂)) |y〉 = 〈x| e−i 12Π2t |y〉 eit

e
4
σµνFµν(y) ,

where Πµ = p − eAµ. Now we assume constant electromagnetic fields such that Fµν =
∂µAν − ∂νAµ = const.. To describe constant fields Fµν , we chose the Schwinger-Fock
gauge [Foc37; Sch51]

Aµ = −1

2
Fµαx

α .

So Π2 can be written as

Π2 = gµν(pµ +
e

2
Fµαx

α)(pν +
e

2
Fνβx

β)

= pµg
µνpν −

e

2
xαFαµg

µνpν +
e

2
pµg

µνFνβx
β − e2

4
xαFαµg

µνFνβx
β . (2.56)

Now we introduce a metric G

G =

 e2

4 F
T g−1F e

2F
T g−1

e
2g
−1F g−1

 ,

such that (2.56) can be written as

H =
1

2
(〈p, g−1p〉+

e

2
〈x, F T g−1p〉+

e

2
〈p, g−1Fx〉+

e2

4
〈x, F T g−1Fx〉)

=
1

2
〈X,GX〉

and we used that F is anti-symmetric.
Then Λ is given by

Λ = Ω−1G =

 e
2g
−1F g−1

e2

4 Fg
−1F e

2Fg
−1

 . (2.57)

As the next step we need to evaluate (2.55) with n = 4. For the exponential in (2.55)
we obtain (see (B.11) in Appendix B.4)

Φt
y(x) = exp

[ i
4
〈(y − x), eF coth

(e
2
g−1Ft

)
(y − x)〉 − i〈x, e

2
Fy〉

)]
(2.58)

from which we infer that Φ(x, x) = 1 since F is antisymmetric.
The determinant of (St2)−1 (c.f. (B.10)) factorises into

det
(
St2
)−1

= det
e

2
F det exp

(e
2
g−1Ft

)
det sinh

(e
2
g−1Ft

)−1
. (2.59)
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In Appendix B.5 it is shown that

det exp
(e

2
g−1Ft

)
= 1

by using the antisymmetry of g−1F . Further, from (B.18) we know

det

( e
2F

sinh e
2g
−1Ft

) 1
2

= i
e2ab

4 sinh e
2at sin e

2bt
,

which is shown by determining the eigenvalues of g−1F and the secular invariants a and
b are defined as

a =

√√
F2 + G2 + F , b =

√√
F2 + G2 −F .

Therefore,

det
(
St2
) 1

2 = i
e2ab

4 sinh
(
e
2at
)

sin
(
e
2bt
) .

What is left to calculate the Heisenberg-Euler Lagrangian (2.14) is to evaluate

tr eiet
1
4
σF =

∑
i

eieλit = 4 cosh
(e

2
at
)

cos
(e

2
bt
)

(2.60)

which is done in Appendix B.6.

The effective Lagrangian is then given by

Leff = − 1

16π
FµνF

µν − e2

8π2

∫ 0

−∞

dt

t
ei
t
2
m2

ab coth
(e

2
at
)

cot
(e

2
bt
)
.

We note that we dropped the ε-term as it is not needed here [Sch13]. Now we substitute
back t → −2s, rotate along the imaginary axis s → −is and apply Cauchy’s Theorem
to obtain

Leff = − 1

16π
FµνF

µν − e2

8π2

∫ ∞
0

ds

s
e−sm

2
ab cot(eas) coth(ebs) .

For later convenience, we rescale s→ s/m2 such that

Leff = − 1

16π
FµνF

µν − e2

8π2

∫ ∞
0

ds

s
e−s ab cot

(
eas/m2

)
coth

(
ebs/m2

)
and introduce dimensionless variables e/m2a→ a and e/m2b→ b. The Heisenberg-Euler
Lagrangian is then

LHE = −m
4

8π2

∫ ∞
0

ds

s
e−s ab cot(as) coth(bs) (2.61)

and the effective Lagrangian reads

Leff = − 1

16π
FµνF

µν + LHE .
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Now the damping term e−s in LHE ensures convergence of the integrand for large values
of s, but if one expands the integrand for small values of s, one sees from

ab cot(as) coth(bs) =
1

s2
+

1

3
(−a2 + b2)− 1

45
(a4 + 5a2b2 + b4)s2 +O(s4) (2.62)

that the integrand is divergent for small values of the proper time s. To renormalise
the Lagrangian we use “minimal substraction” [Sch13] and substract the divergent parts
from (2.62).
So the final result for the renormalised Heisenberg-Euler Lagrangian is

LHE = −m
4

8π2

∫ ∞
0

ds
e−s

s3

[
s2ab cot as coth bs− 1 +

s2

3
(a2 − b2)

]
. (2.63)

We note again that all fields appearing in (2.63) are normalised to Ecr.

2.3.3 Weak-field Expansion

In the case of fields with E � 1, the full Heisenberg-Euler Lagrangian (2.63) can be
expanded into a power series and the integral evaluated explicitly for the first terms in
the expansion.
The applicability of this weak-field expansion is connected to the probability of real e+e−-
creation. Schwinger [Sch51] was the first to give an explicit expression for the probability
of this process in a volume equal to the reduced Compton wavelength λ = ~/mc cubed
in the Compton time λ/c:

P = E2 exp(−π/E)/4π3 .

The non-perturbative character of the exponential leads to an exponential suppression
of real electron-positron pair-creation. So for E � 1 a weak-field expansion should be
valid and dissipative effects like pair-creation heavily suppressed.
As we have already seen, the un-renormalised one-loop-effective action had the pictorial
representation Fig. 2.3. Using minimal substraction at the end of the last section, we
removed one diagram to ensure the correct normalisation for free photon propagation
and the graph corresponding to charge-renormalisation. The weak-field expansion of the
renormalised effective action is therefore pictorially:

= + + + . . .

Figure 2.4: Perturbative pictorial expansion of the renormalised effective action.

Now the Heisenberg-Euler Lagrangian is the effective Lagrangian in the limit ω � m,
so the fermion loops are replaced by effective vertices as it is shown in Fig. 2.5. Due to
the shape of the original diagrams, we also refer to the effective diagrams for four-, six-
and eight-photon scattering as box-, hexagon- and octagon-diagrams interchangeably.
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Applying a weak-field expansion of (2.63) for E � 1 yields:

LHE =
m4

α

∞∑
i=1

Li , (2.64)

L1 =
µ1

4π

[(
E2 −B2

)2
+ 7(E ·B)2

]
, (2.65)

L2 =
µ2

4π

(
E2 −B2

) [
2
(
E2 −B2

)2
+ 13 (E ·B)2

]
, (2.66)

L3 =
µ3

4π

[
3
(
E2 −B2

)4
+ 22

(
E2 −B2

)2
(E ·B)2

+ 19 (E ·B)4
]
, (2.67)

where

µ1 =
α

90π
, µ2 =

α

315π
, µ3 =

4α

945π
. (2.68)

We note that L1, L2 and L3 have directly the interpretation of the effective vertices shown
in the right-hand side of Fig. 2.5. Indeed, it has been shown that the leading-order term
of the weak-field expansion agrees with the direct calculation of the four-photon box
diagram in the low-frequency limit ~ω � mc2 [KN50].
In the next section we give the corresponding Maxwell and wave equations that follow
from the Heisenberg-Euler Lagrangian.

ω � m

ω � m

ω � m

Figure 2.5: In the limit of photon energies ω � m, the loop diagrams involving even
numbers of external photons are replaced by effective vertices denoted by solid dots as
they are described by the effective Lagrangian densities consisting of the corresponding
polynomials in the field in variants F and G.
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2.4 Modified Electromagnetic Wave Propagation

As it was derived in (2.63), the Heisenberg-Euler Lagrangian is given by

LHE = −m
4

8π2

∫ ∞
0

ds
e−s

s3

[
s2ab cot as coth bs− 1 +

s2

3
(a2 − b2)

]
,

where the secular invariants a and b are given by

a =
[√
F2 + G2 + F

]1/2
, b =

[√
F2 + G2 −F

]1/2
(2.69)

and we recall that electric and magnetic fields are in units of the critical field Ecr.
The linear Maxwell Lagrangian in this normalisation is then

LMW = − m4

16πα
FµνF

µν .

The equations of motion are obtained by applying the Euler-Lagrange equations to the
Lagrangian L = LMW + LHE. Therefore, the nonlinear Maxwell equations in covariant
form read

∂µF
µν = 4π

(
(C1 ∂µF

µν + C2 F
µν∂µ(FαβF

αβ) + C3 ?F
µν∂µ(?FαβF

αβ)

+C4

[
?Fµν∂µ(FαβF

αβ) + Fµν∂µ(?FαβF
αβ)
])

, (2.70)

∂µ ?F
µν = 0 . (2.71)

The general expressions for the coefficients Ci are derived in App. C.3.
For the first and second order weak-field expansion of (2.63), the coefficients Ci in (2.70)
that follow from L1 and L2 are given by

C1,box =
α

90π2
(E2 −B2) , C2,box = − α

180π2
,

C3,box =
7

4
C2,Box , C4,box = 0 ,

(2.72)

C1,hex =
α

630π2
[6(E2 −B2)2 + 13(E ·B)2] , C2,hex = − α

105π2
(E2 −B2) ,

C3,hex =
13

24
C2,hex , C4,hex = − 13α

1260π2
|(E ·B)| .

(2.73)

We note that only the dynamical equation that couples to matter is modified while the
Bianchi Identity (2.71) remains untouched.
Expressing Maxwell’s equations equations in electric and magnetic fields, we acquire

∇∧E + ∂tB = 0 , (2.74)

∇∧B− ∂tE = 4πJ[E,B] (2.75)

with

J[E,B] =
[
C1 (∂tE−∇ ∧B) + (C2E + C4B) ∂t(FµνF

µν)

+ (C2B− C4E) ∧∇(FµνF
µν)

+ (C4B− C3E) ∧∇(Fµν ?F
µν)

+ (C3B + C4E) ∂t(Fµν ?F
µν)
]
.

(2.76)
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We note that the current (2.76) is equivalent to

J[E,B] = (∇∧M + ∂tP) (2.77)

as it is used in Appendix C.2 where the dimensionless magnetisation M and dimension-
less polarisation P are defined as

M =
∂LHE

∂B
, P =

∂LHE

∂E
.

Another way to study the modified propagation of light due to vacuum polarisation is to
solve the corresponding wave equation for the electric field (which is derived in Appendix
C.2)

�E = T[E,B] , (2.78)

where � = ∂2
t −∇2 and the source term is given by

T = −4π
[
∇∧ ∂tM + ∂2

t P−∇(∇ ·P)
]
. (2.79)

We note that T is related to the current J via T = −4π∂tJ + 4π∇(∇ · P). Since we
work with the weak-field expansion (2.64), we can write the current J and the source T
as

J =

∞∑
i=1

Ji , and T =

∞∑
i=1

Ti (2.80)

with

Ji = [∇∧Mi + ∂tPi] ,

Ti = −4π
[
∇∧ ∂tMi + ∂2

t Pi −∇(∇ ·Pi)
]

and the polarisations and magnetisations are correspondingly defined as

Mi =
∂Li
∂B

, Pi =
∂Li
∂E

. (2.81)

Before proceeding further with the solution of the Maxwell equation and the wave equa-
tion, we introduce the initial setups studied in this thesis.

2.5 Scattering of Two Plane Wave Pulses

We consider a pump-probe setup of two counter-propagating pulses which are approx-
imated as plane waves. Thereby an optical probe with a finite envelope function and
carrier frequency ωp propagates along the characteristic x− := t − z and collides with
a slowly-varying strong or pump pulse that counter-propagates along x+ := t + z. x±

are also called “light cone coordinates”. The analytic expression for the initial probe is
thereby taken to be

E(0)
p (x−) = εεεpE

(0)
p (x−) = εεεpEpfp(x−/τp) cos

(
ωpx

−) (2.82)

with E
(0)
p (x−) := Epfp(x−/τp) cos(ωpx

−), a field amplitude Ep, the envelope function
fp with pulse duration given by τp and a polarisation vector εεεp. The quantity ωpx

−

can be written as the Lorentz invariant phase ϕp := kpx = ωpx
− with wave four-vector
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kp = ωp(1, k̂p) and k̂p = (0, 0, 1). We use the space-time dependence Ep(x
−) and Ep(ϕp)

interchangeably. The envelope function fp(x
−/τp) is, if not mentioned otherwise, always

chosen such that

|∂t,zfp(x−/τp)| � |ωpfp(x−/τp)| . (2.83)

So, apart from from the analysis of the overlap-signal in section 4.1 and the numerical
study of a few-cycle-pulse in section 4.3.1, we work in a slowly-varying-envelope approx-
imation [BC91] and neglect any contribution of the derivative of fp. In the numerical
solution no such approximation is made.
The initial strong pulse is assumed to be peaked around the carrier frequency ωs ≈ 0,
such that

E(0)
s (x+) = εεεsE

(0)
s (x+) = εεεsEsfs(x−/τs) cos

(
ωsx

+
)

(2.84)

≈ εεεsEsfs(x+/τs) . (2.85)

E
(0)
s (x+) := Esfs(x+/τs) with amplitude Es, polarisation vector εεεs, ϕs := ksx

+ = ωsx
+

with wave four-vector ks = ωs(1, k̂s) and k̂s = (0, 0,−1). In contrast to the probe pulse,
we always assume in the analytical calculation

|∂t,zfs(x+/τs)| � |ωsfs(x+/τs)| (2.86)

such that only the derivative of the envelope has to be taken into account.
Since both probe and strong field are plane waves, we can express their magnetic fields
via the electric fields:

B(0)
p,s = k̂p,s ∧E(0)

p,s . (2.87)

In the following section we introduce the corresponding diagrams for the processes which
are allowed for our plane-wave pump-probe setup.

2.5.1 Diagrammatic Approach and Wave Mixing

The universality of the coupling allows us to simply insert the sum of field of the electic
fields E = Es + Ep and magnetic fields B = Bs + Bp into the weak-field expansion
(2.64). For four-photon scattering (box diagram), the Lagrangian is given by (2.65),
which translates into

L1 =
µ1

4π

(
(E2 −B2)2 + 7(E ·B)2

)
=
µ1

4π

[
4
(

(Ep ·Es)
2 − 2(Ep ·Es)(Bp ·Bs) + (Bp ·Bs)

2
)

+ 7
(

(Ep ·Bs) + (Es ·Bp)
)2]

.

Here we used that the field invariants of the probe and strong field vanish separately.
If we now express the magnetic fields via the electric fields as explained above, it is
enough to consider the contributions from the electric fields and we can draw the vertex
diagrams for L1 which is depicted in Fig. 2.6.
Let us for now look only at the energy-conservation from Fig. 2.6 as we are interested in
the mixed frequencies and higher harmonics later on. The full energy/momentum con-
servation then leads to certain further constraints as it is explained shortly. From the
viewpoint of energy conservation, the allowed processes are shown in Fig. 2.7, where the
right external leg in each diagram is taken to be the generated signal from the process for
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Ep Ep

Es

Es

Figure 2.6: Vertex for four-photon scattering in the plane wave pump-probe setup.

convenience. The plus/minus signs at the other legs correspond to the positive/negative
frequency components in the cos-terms in the initial pulse profiles (2.82) and (2.84).
Since also the observed resulting signal with frequency ωj is real, we need here to treat
the positive and negative frequency contributions symmetrically.

±ωp ±ωj

±ωp

±ωs

(a) ωj ∈ {2ωp ± ωs, ωs}

±ωp ±ωj

±ωs

±ωs

(b) ωj ∈ {ωp, ωp ± 2ωs}

Figure 2.7: Shown are the different combinations of frequencies that follow from pure
energy conservation in Fig. 2.6. We will see shortly that the assumption of plane waves
leads to further constraints on these processes. The right leg is chosen for convenience to
be the generated signal. The plus/minus signs indicate incoming/outgoing frequencies
as the initial pulses consist of positive and negative frequency components: cos(ωx) =
1
2(eiωx + e−iωx). Since also the generated signal with frequency ωj is real, we need to
consider ±ωj in the diagram.

If we consider the scattering process in Fig. 2.7a with the scattering of ωp+ωp+ωs → ωj
with the resulting frequency ωj = 2ωp+ωs, we have to distinguish two different processes.

One where the wave vector of the outgoing signal is parallel to k̂p and therefore propa-
gating along the probe light cone, and the one which propagates in the opposite direction
along with the strong pulse. Therefore, the former signal is called “forward-scattered”
and the latter the

”
backward-scattered“ signal. Let us now consider energy/momentum

conservation for both cases.
For the forward-scattered signal we have

kj = ωj

(
1

k̂p

)
= 2ωp

(
1

k̂p

)
+ ωs

(
1

−k̂p

)
, (2.88)
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where we used k̂p = −k̂s. As the asymptotic signal with kj has to be on-shell with
(kj)

2 = 0 when both pulses are well-separated again, we obtain the contradiction

0 = 4ωpωs 6= 0 (2.89)

from (2.88) since k2
p = k2

s = 0 and we infer that this forward-scattering is not allowed.
The other possibility could be that the signal is backward-scattered, so we have

k′ = ω′
(

1

−k̂p

)
= 2ωp

(
1

k̂p

)
+ ωs

(
1

−k̂p

)
from which we also get a contradiction. So both processes are actually not allowed.
We see that the assumption of plane wave pulses leads to such strong constraints that
it forbids “wave mixing” with ωj = nωp + mωs due to energy-momentum conservation
[BKR16].
So, as we see in more detail in section 4.1, for Fig. 2.7a only ωj = ωs is allowed and can
therefore be seen as a change in the strong pulse. Similarly, in Fig. 2.7b only ωj = ωp is
allowed and has to be interpreted as a change in the probe pulse.
The situation is different for the overlap signal, there also all mixed frequencies appear,
depending on the order of the weak-field expansion. So to observe wave mixing in the
asymptotic limit a non-vanishing angle between the ~k-vectors of the colliding pulses is
needed.

For six-photon scattering (the hexagon diagram), we have the Lagrangian density for
the plane-wave setup

L2 =
µ2

4π

[
2(E2 −B2)3 + 13(E2 −B2)(E ·B)2

]
=
µ2

4π

[
16 (Ep ·Es)

3 − 16 (Bp ·Bs)
3 − 48 (Ep ·Es)

2 (Bp ·Bs) + 14(Ep ·Es) (Ep ·Bs)
2

+ 14(Ep ·Es) (Bp ·Es)
2 + 48(Ep ·Es) (Bp ·Bs)

2 + 28(Ep ·Es)(Ep ·Bs)(Bp ·Es)

− 14(Bp ·Bs) (Ep ·Bs)
2 − 14(Bp ·Bs) (Bp ·Es)

2 − 28(Bp ·Bs)(Ep ·Bs)(Bp ·Es)
]
.

The corresponding effective vertex is shown in Fig. 2.8. The possible processes allowed
from pure energy conservation are given by Fig. 2.9 and we note again that no mixed
frequencies like ωj = 2ωp ± 3ωs in Fig. 2.9a or ωj = 3ωp ± 2ωs in Fig. 2.9b are allowed
due to the same argument of energy/momentum conservation as for the box diagram.
The detailed analysis of the allowed processes from the hexagon diagram is given in
section 4.1.

In general, the weak-field expansion leads to

Ln ∼ (Ep ·Es)
n+1 + similar terms ,

where the similar terms involve also the magnetic fields in expressions like (Bp ·Es), so
in the corresponding vertex diagram (n+ 1) legs stem from the strong and (n+ 1) from
the probe field.
As we now have seen that the assumption of plane waves puts certain additional con-
straints of the allowed processes, we introduce the main setups considered in this thesis.
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Ep

Es
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Ep
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Figure 2.8: Effective vertex from the hexagon diagram for a plane wave pump-probe
setup.

±ωp

±ωp

±ωs

±ωs

±ωj

±ωs

(a) ωj ∈ {2ωp ∓ 3ωs, ωp + 3ωs, 3ωs, ωs}

±ωp

±ωp

±ωs

±ωs

±ωj

±ωp

(b) ωj ∈ {3ωp ∓ 2ωs, ωp ∓ 2ωs, ωp}

Figure 2.9: Possible processes that are allowed from pure energy conservation for six-
photon scattering. The leg pointing directly to the right is taken for convenience to be
the generated signal by the considered process. We note that the generation of the mixed
frequencies like ωj = 2ωp + 3ωs is forbidden asymptotically due to further constraints
from full energy/momentum conservation as it is explained for the box diagram.
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2.5.2 Pump-Probe Setup with Quasi-constant Backgrounds

0 5 10 15 20
z/τp

−0.005

0

0.005

0.01

0.015

0.02

0.025
E

(a)

0 5 10 15 20
z/τp

(b)

Figure 2.10: Shown are the two main pump-probe setups considered in this thesis.
(a): An optical probe pulse collides with a strong Gaussian background. (b): An
optical probe pulse collides with a constant-crossed background. The different line styles
indicate different amplitudes Es of the background field. The typical box length is
L = 3.2 · 10−3 cm.

Throughout the thesis, we take the probe pulse to have a Gaussian envelope

fp(x
−/τp) = e

−
(
x−
τp

)2

,

such that (2.82) is given by

E(0)
p (x−) = εεεpE

(0)
p (x−) = Epεεεpe−

(
x−
τp

)2

cos
(
ωpx

−)
and E

(0)
p (x−) = Epe

(
x−
τp

)2

cos(ωpx
−). The specific choices for the strong background

envelope functions differ for the two main parts of the thesis. For the simulations of the
overlap signal in section 4.1, the strong field is given by a Gaussian background

E(0)
s (x+) = Esεεεse−

(
x+

τs

)2

. (2.90)

This corresponds to setting fs(x
+/τs) = e

−
(
x+

τs

)2

and ωs = 0 in (2.84). A snapshot of
this simulational setup is shown in panel (a) in Fig. 2.10.
For the main analysis of the generation of higher harmonics in section 4.2, the background
is chosen to be a rectangular pulse profile

fs(x
+/τs) = Rect(x+/τs) , (2.91)

where

Rect(x+/τs) := θ(x+/τs + 1/2)− θ(x+/τs − 1/2) (2.92)



2.5 Scattering of Two Plane Wave Pulses 33

and θ(x) is the Heaviside step function. Thereby, most of the time, ωs is approximated
with ωs = 0 as it is shown in panel (b) of 2.10.
As it will be further explained in section 3.2 for the numerical method, infinite gradients
as in (2.92) are difficult to treat numerically, therefore in the simulation we approximate
the rectangular pulse by some mirrored Fermi-Dirac potential

Rect(x+/τs) ≈ FD(x+) :=
1

1 + exp
(
|x+|−zm

zb

) ,

where the parameter zb and zm play the role of the “temperature” and “chemical poten-
tial”. They control the steepness and width of the strong pulse and are always chosen
to be zb = 5 · 10−5 cm and zm = 100 · zb. The definition of the pulse duration τs is
given by (4.25) and defined by the analytical result for the generation of the second
harmonic. As we now commented on all possible lowest order processes from the box-
and hexagon diagram and gave the explicit expressions for the strong background, we
now further introduce dressed diagrams for the forward-scattered probe which are useful
in the interpretation of the analytical, iterative solution of the wave equation in section
3.1.4.

2.5.3 Dressed Diagrams for Four- and Six-photon Scattering

When we consider high harmonic generation in section 3.1.4, the frequency of the strong
pulse is approximated as ωs = 0 and we want to neglect the back-reaction of the probe
pulse on the strong pulse. This corresponds to treating the strong pulse as a classical
source and it is convenient to introduce dressed photon lines where we omit all external
legs from the strong pulse. In the next chapter we solve the wave equation analytically
using an iterative ansatz and the diagrams are useful to illustrate the different steps
in the iteration. Since the effect of pure four-photon and six-photon scattering with a
classical source is of a different nature for the plane wave setup considered, we introduce
two different types of

”
dressing“ in the following.

Effective Four-photon Scattering

For four-photon scattering the two possible processes are shown in Fig. 2.7 and we note
again, that the assumption of plane waves forbids the asymptotic generation of mixed
frequencies like ωp + 2ω2, as explained in section 2.5.1. In section 4.1 we see, that Fig.
2.7a asymptotically only generates the output frequency ωj = ωs and can therefore be
seen as a change in the strong pulse and is therefore left-travelling. For Fig. 2.7b it is
similar and only a ωj = ωp signal is generated, which is a change in the probe field and
therefore forward scattered. As explained above, we neglect the back-reaction of the
probe on the strong field, so the relevant dressed diagram is shown in Fig. 2.11, where
the interaction vertex with the classical background has been replaced by a square.

Effective Six-photon Scattering

The asymptotic forward scattered signal from the hexagon diagram, which is generated
by the process shown in Fig. 2.9b, consists of a signal with frequency 2ωp and a dc
component which travel along the probe light cone as it is shown in section 4.1. The
other process in Fig. 2.9a is backward scattered and has again to be interpreted as an
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±ωp ±ωj

±ωs

±ωs

±ωp ±ωp

Figure 2.11: Dressed vertices for four-photon scattering of the probe where the pump
pulse is treated as a classical source. The interaction with the external field is replaced
by a black box as a new effective vertex. The right line indicates the generated signal.

action on the strong pulse. The effective vertex for the generation of the asymptotic
second harmonic together with a dc component of six-photon scattering is be denoted
by an empty circle and the dressed diagram for Fig. 2.9b is shown in Fig. 2.12:

(a)

±ωp

±ωp

±ωs

±ωs

±ωj

±ωs

±ωp

±ωp

±2ωp, 0

Figure 2.12: Dressed diagrams for the asymptotic generation of the second harmonic
and a dc component. The effective vertex which incorporates the interactions with the
classical background is denoted by an empty circle. The horizontal right line is thereby
the generated signal of the process.

In the next chapter we are going to solve the wave equation analytically and explain the
numerical solution of the corresponding Maxwell equations.



Chapter 3

Solution of the Nonlinear
Equations of Motion

In the first part of this chapter we derive the solution of the wave equation for
the electric field from an iterative ansatz using the Green’s function in (1 + 1)
dimensions. From a suitable integration by parts, the forward- and backward
scattered fields are introduced and afterwards a surface term is derived which
we call the “overlap” field. This term appears in the first iteration as soon as
there is any kind of inhomogeneity in the strong field and it vanishes identically
in homogenous constant backgrounds. Afterwards, higher iterations for the
change in the probe field without taking the back-reaction on the strong pulse
are derived and the iterative solution is illustrated using the dressed diagrams
introduced in the previous chapter.
In the second part we treat the alternative formulation as coupled nonlinear
Maxwell equations, which are first order in time and space. For the case of (1+1)
dimensions, the linear Maxwell equations can be written in a simple matrix
form. The nonlinearities due to vacuum polarisation are then matrices that
extend the linear case. The system is discretised in space using the “Pseudo-
characteristic Method of Lines” and spatial derivatives are approximated with
finite differences. Using matrix inversion, the equations are then converted to a
system of ordinary differential equations (ODEs) and integrated in time using
the ODE-solver CVODE.

3.1 Analytical Solution of the Wave Equation

We want to solve the inhomogeneous wave equation

�E = T[E,B] , (3.1)

where E = Ep + Es and the source term is given by (2.79). In the following we restrict
ourselves to fields which only depend only on one temporal dimension (t) and one spatial
dimension (z) which means translational invariance in the x- and y-direction. Therefore,
the wave equation reduces to

(∂2
t − ∂2

z )E(t, z) = T[E(t, z),B(t, z)] .
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The inital probe E
(0)
p and the strong pulse E

(0)
s both satisfy the homogenous wave equa-

tion

(∂2
t − ∂2

z )E(0)
p (t, z) = (∂2

t − ∂2
z )E(0)

s (t, z) = 0

independently. Since all solutions to the homogeneous wave equation in (1 + 1) dimen-

sions are plane waves, the separate field invariants vanish identically with G(0)
p = G(0)

s =

F (0)
s = F (0)

p = 0. Therefore, we can express their magnetic fields B
(0)
p and B

(0)
s via their

electric fields, B
(0)
p = k̂p∧E

(0)
p and B

(0)
s = k̂s∧E

(0)
s . We also assume that the solution to

(3.1) is also a plane wave propagating along the same axis as the pump and the strong
pulse. Therefore, we can write T[E,B] = T[E]. Since the nonlinear corrections due to
vacuum polarisation depend on the field invariants G and F , we have

T[E(0)
s ] = 0 , T[E(0)

p ] = 0 .

However, for an electromagnetic field E that consists of two counter-propagating plane
waves E = Ep + Es, these invariants do not vanish and we therefore have the wave
equation

(∂2
t − ∂2

z )(Ep + Es) = T[Ep + Es] . (3.2)

To solve (3.2), we employ an iterative procedure

(∂2
t − ∂2

z )(E(n+1)
p + E(n+1)

s ) = T[E(n)
p + E(n)

s ] . (3.3)

We set E = Ep + Es in the following, such that (3.3) becomes

(∂2
t − ∂2

z )E(n+1) = T[E(n)] . (3.4)

The iterative solution is then given by

E(n+1)(t, z) = E(0)(t, z) + ∆E(n)(t, z) (3.5)

with

∆E(n)(t, z) =

∫
dt′dz′GR(t− t′, z − z′)T(n)(z′, t′) , (3.6)

where T(n) := T[E(n)] andGR(t, z) is the retarded Green’s function for the wave equation
in (1 + 1) dimensions (see App. D for a derivation)

GR(t, z) =
1

2
θ(t)θ(t− |z|) . (3.7)

3.1.1 Forward and Backward Scattering

The source term T(n) is given by the sum

T(n)(t, z) =
∞∑
i=1

Ti

[
E(n)(t, z)

]
, (3.8)

where the index i denotes the order in the weak-field expansion and E(n) := E
(n)
p +E

(n)
s .

It is remarkable, that the charge density, which is given by −∇ ·P and also appears in
T (see (2.79)) vanishes identically in (1+1) dimensions. Therefore, we have the relation

T = −4π∂tJ = −4π(∇∧ ∂tM + ∂2
t P) .
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In analogy to (3.8), we write

J(n)(t, z) =

∞∑
i=1

Ji

[
E(n)(t, z)

]
. (3.9)

Now we integrate by parts in (3.6), which leads to

∆E(n)(t, z) = − 2π

∫
dz′dt′ δ(t− t′)θ(t− t′ − |z − z′|)J(n)(t′, z′)

− 2π

∫
dz′dt′ θ(t− t′)δ(t− t′ − |z − z′|)J(n)(t′, z′) .

(3.10)

Evaluating the integral over the Delta-distribution in (3.10) yields

∆E(n)(t, z) = −2π

∫ z

−∞
dz′ J(n)(t− z+ z′, z′)− 2π

∫ ∞
z

dz′ J(n)(t+ z− z′, z′) . (3.11)

For a better interpretation of the two terms in (3.11) we now transform to light cone
coordinates x± = t ± z. In general, the current depends on z and t in the specific
combinations J(n)(t, z) = J(n)(t− z, t+ z) = J(n)(x−, x+). So the transformed currents
are given by

J(n)(t, z)
∣∣∣
t=t−z+z′,z=z′

= J(n)(x−, x+ + 2(z′ − z))

and

J(n)(t, z)
∣∣∣
t=t+z−z′,z=z′

= J(n)(x− − 2(z′ − z), x+) .

Now we substitute y = 2(z′ − z) in (3.11) and obtain the general formula for the nth
iteration

∆E(n)(x−, x+) = −π
∫ 0

−∞
dy J(n)(x−, x+ + y)− π

∫ ∞
0

dy J(n)(x− − y, x+) . (3.12)

This allows us to interpret the two different terms

∆E(n)(x−, x+) = ∆
−→
E (n)(x−, x+) + ∆

←−
E (n)(x−, x+) (3.13)

as a sum of a forward and a backward scattered contribution, where

∆
−→
E (n)(x−, x+) = −π

∫ 0

−∞
dy J(n)(x−, x+ + y) (3.14)

is the forward-scattered (or right-scattered) field and

∆
←−
E (n)(x−, x+) = −π

∫ ∞
0

dy J(n)(x− − y, x+). (3.15)

is the backward-scattered (or left-scattered) field. In the next section we see that both
terms in (3.12) consist of two different contributions which we call the “asymptotic field”
and the “overlap field”.
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3.1.2 Overlap and Asymptotic Field

The current J(n)(t, z) we are interested in consists of two parts

J(n)(x−, x+) =
(
∂tP

(n)(x−, x+) +∇∧M(n)(x−, x+)
)

=
(
∂tP

(n)(x−, x+) + k̂p ∧ ∂zM(n)(x−, x+)
)
,

where P(n)(x−, x+) := P[E(n)(x−, x+)] and M(n)(x−, x+) := M[E(n)(x−, x+)]. Let us
first calculate the contribution from ∂tP

(n) to the first integral in (3.12), the forward
scattered field

∆
−→
E (n)[P(n)(x−, x+)] = −π

∫ 0

−∞
dy ∂tP

(n)(x−, x+ + y)

= −π
∫ 0

−∞
dy

[
∂

∂x−
P(n)(x−, x+ + y) +

∂

∂y
P(n)(x−, x+ + y)

]
= −π

∫ 0

−∞
dy

[
∂

∂x−
P(n)(x−, x+ + y)

]
− π

(
P(n)(x−, x+)− lim

y→−∞
P(n)(x−, y)

)
. (3.16)

To illustrate the meaning of the two terms in (3.16), let us consider the case n = 0 and
i = 1 in the weak-field expansion, so we consider only four photon scattering. If we just
focus on the term which is proportional to the probe squared, then P(0) is of the form

P(0)(x−, x+) = εεε [E(0)
p (x−)]2E(0)

s (x+) ,

where we absorbed all constants in εεε. The contribution from the polarisation P to the
forward scattered field of the first iteration is then given by

∆
−→
E (0)[P(0)(x−, x+)] = −π

∫ 0

−∞
dy

[
∂

∂x−
P(0)(x−, x+ + y)

]
− π

(
P(0)(x−, x+)− lim

y→−∞
P(0)(x−, y)

)
= −π εεε ∂

∂x−
[E(0)

p (x−)]2
∫ 0

−∞
dy Es(x

+ + y)

− πεεε [E(0)
p (x−)]2

(
E(0)
s (x+)− lim

y→−∞
E(0)
s (y)

)
. (3.17)

We first consider the term involving the integral, for example, on the probe light cone
with x− = 0. Let us further assume that the integral over the strong probe is non-
vanishing and we consider the limit t, z →∞ such that the pulses are again well separated
after the scattering. Therefore, the integral gives a constant value and we refer to this
term as the asymptotic scattered field. In general we define the asymptotic iterated field
as

∆
−→
E (n)

as (x−) := lim
x+→∞

∆
−→
E (n)(x−, x+) ,

∆
←−
E (n)

as (x+) := lim
x−→∞

∆
←−
E (n)(x−, x+) .

(3.18)

The second term in (3.17) is a direct product of the probe and the strong pulse. We
note that this term is only present if there is some inhomogeneity in the background,
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but not in homogeneous constant crossed or constant magnetic backgrounds as they do
not vanish at infinity. An analysis of inhomogeneities in the background was recently
carried out in [HH14] and it is shown in section 4.1 to correspond to the overlap signals
studied in this thesis. A similar effect in non-constant backgrounds also appeared as a
similar surface term in the analysis of the polarisation flip in four-photon scattering in
[Din+14b].
If not mentioned otherwise, we assume that all fields vanish at t = ±∞. Therefore, the
first iteration for the polarisation reduces to

∆
−→
E (0)[P(0)(x−, x+)] = −π εεε ∂

∂x−
[E(0)

p (x−)]2
∫ 0

−∞
dy E(0)

s (x+ + y)

− π εεε [E(0)
p (x−)]2E(0)

s (x+) . (3.19)

Since the probe and the strong pulse depend on x± = t±z respectively and have a finite
envelope function, the product of both pulses is maximal if the pulses overlap directly
with x+ = x− = 0. At this point also the field invariants F and G take their maximal
values. In the limit when both pulses are well separated again, this contribution tends
to zero. Therefore, this signal is referred to as overlap scattered field.

Similar to the calculation that led to (3.16), we can now calculate the contribution of
M(n) to the forward scattered field

∆
−→
E (n)[M(n)(x−, x+)] = k̂p ∧ π

∫ 0

−∞
dy

[
∂

∂x−
M(n)(x−, x+ + y)

]
− πk̂p ∧M(n)(x−, x+) .

For the backward scattered field contribution from the polarisation P we obtain

∆
←−
E (n)[P(n)(x−, x+)] = −π

∫ ∞
0

dy

[
∂

∂x+
P(n)(x− − y, x+)

]
− πP(n)(x−, x+) .

The contribution from k̂p ∧ ∂zM is given by

∆
←−
E (n)[M(n)(x−, x+)] = −k̂p∧π

∫ ∞
0

dy

[
∂

∂x+
M(n)(x− − y, x+)

]
+πk̂p∧M(n)(x−, x+) .

So the analytical expressions for the overall asymptotic forward and backward scattered
signal are

∆
−→
E (n)

as (x−, x+) = −
∫ 0

−∞
dy

∂

∂x−
U(n)(x−, x+ + y) , (3.20)

∆
←−
E (n)

as (x−, x+) = −
∫ ∞

0
dy

∂

∂x+
V(n)(x− − y, x+) . (3.21)

The vectorial functions are given by

U(n)(x−, x+) = π(P(n)(x−, x+)− k̂p ∧M(n)(x−, x+)) , (3.22)

V(n)(x−, x+) = π(P(n)(x−, x+) + k̂p ∧M(n)(x−, x+)) . (3.23)

The total overlap field reads

∆E(n)
o (x−, x+) = −2πP(n)(x−, x+) , (3.24)
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where the vectorial part of P consists of the sum of the electric fields of the probe and
the strong pulse. This then defines the direction in which the signal travels. And we
note again that the overlap signal vanishes in the asymptotic limit of infinite separation
of the pulses

lim
x±→∞

∆E(n)
o (x−, x+) = 0 .

Further, we note that if one considers the setup where a probe is evolved from the infinite
past into a constant background, the appearance of the overlap signal is different from
the one in ever-present constant fields, where the overlap vanishes identically.

3.1.3 Lowest Order Iterations

In this section we calculate the first iteration

∆E(0)(t, z) = ∆
−→
E (0)

as (x−, x+) + ∆
←−
E (0)

as (x−, x+) + ∆E(0)
o (x−, x+) . (3.25)

for the box and the hexagon diagram. We write the electric fields as E
(0)
p = εεεpE

(0)
p and

E
(0)
s = εεεsE

(0)
s which yields the field invariant

F (0) =
1

2
E(0)
s E(0)

p (εεεp · εεεs − (k̂p ∧ εεεp) · (k̂s ∧ εεεs)) . (3.26)

Using the Lagrange identity [AWH12]

(a ∧ b) · (c ∧ d) = (a · c)(b · c)− (b · c)(a · d) , (3.27)

(3.26) can be further simplified to

F (0) = E(0)
s E(0)

p ρ , (3.28)

where ρ := 2 εεεs · εεεp holds. For the second invariant we can write

G = E(0)
p E(0)

s σ , (3.29)

with σ := 2εεεs · (k̂p ∧ εεεp).

Box Diagram

For four-photon scattering the effective Lagrangian is given by

L1 =
µ1

4π

[
4F2 + 7G2

]
, (3.30)

where µ1 = α
90π .

To calculate the polarisation and magnetisation, we first observe the following identities

∂F
∂E

=
∂G
∂B

= E ,

∂F
∂B

= − ∂G
∂E

= −B .
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Furthermore, we have

k̂p ∧B(0) = −E(0)
p + E(0)

s , (3.31)

k̂p ∧E(0) = B(0)
p −B(0)

s . (3.32)

The polarisation for four-photon scattering is in general

P1 =
∂L1

∂E
=
µ1

4π

[
8F E + 14G B

]
, (3.33)

which can be written for the lowest order iteration in terms of the probe and strong field
as

P
(0)
1 =

µ1

4π

[
8F (0)(E(0)

p + E(0)
s ) + 14G(0)(B(0)

p + B(0)
s )
]
.

In analogy, the magnetisation for the box diagram is

M1 =
∂L1

∂B
=
µ1

4π

[
− 8FB + 14GE

]
. (3.34)

Using (3.31), we obtain

k̂p ∧M
(0)
1 =

µ1

4π

[
8F (0)(E(0)

p −E(0)
s ) + 14G(0)(B(0)

p −B(0)
s )
]
.

Then the vectorial quantities U from (3.22) and V from (3.23) for the forward- and
backward scattered field are given by

U
(0)
1 = µ1

[
4F (0)E(0)

s + 7G(0)B(0)
s ] , (3.35)

V
(0)
1 = µ1

[
4F (0)E(0)

p + 7G(0)B(0)
p ] . (3.36)

Introducing two (constant) vectors

u1 := (4 ρ εεεs − 7 σ k̂p ∧ εεεs) , (3.37)

v1 := (4 ρ εεεp + 7 σ k̂p ∧ εεεp) , (3.38)

this can be written in a more compact way as

U
(0)
1 (x−, x+) = µ1[E(0)

s (x+)]2E(0)
p (x−)u1 ,

V
(0)
1 (x−, x+) = µ1E

(0)
s (x+)[E(0)

p (x−)]2v1 .

From (3.20) and (3.21) we know the asymptotic field from the first iteration

∆
−→
E

(0)
as,1(x−, x+) = −

∫ 0

−∞
dy

∂

∂x−
U

(0)
1 (x−, x+ + y) ,

∆
←−
E

(0)
as,1(x−, x+) = −

∫ ∞
0

dy
∂

∂x+
V

(0)
1 (x− − y, x+) ,

and therefore

∆
−→
E

(0)
as,1(x−, x+) = −µ1

∂

∂x−
E(0)
p (x−)

∫ 0

−∞
dy [E(0)

s (x+ + y)]2 u1 , (3.39)

∆
←−
E

(0)
as,1(x−, x+) = −µ1

∂

∂x+
E(0)
s (x+)

∫ ∞
0

dy [E(0)
p (x− − y)]2 v1 .

The overlap signal is calculated to

∆E
(0)
1,o(x−, x+) = −2πP

(0)
1 (x−, x+) ,

= −µ1[E(0)
p (x−)]2E(0)

s (x+) v1 − µ1[E(0)
s (x+)]2E(0)

p (x−) u1 . (3.40)
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Six-Photon Scattering

For six-photon scattering, the calculation is similar to the one for four-photon scattering,
so we state only the results.
The polarisation and magnetisation are given by

P2 =
µ2

4π

[
(48F2 + 26G2)E + 52FGB

]
, (3.41)

M2 =
µ2

4π

[
− (48F2 + 26G2)B + 52FGE

]
. (3.42)

The asymptotic fields for the first iteration of six-photon scattering are then

∆
−→
E

(0)
2,as(x

−, x+) = −µ2
∂

∂x−
[E(0)

p (x−)]2
∫ 0

−∞
dy [E(0)

s (x+ + y)]3 u2 , (3.43)

∆
←−
E

(0)
2,as(x

−, x+) = −µ2
∂

∂x+
[E(0)

s (x+)]2
∫ ∞

0
dy [E(0)

p (x− − y)]3 v2 ,

where we defined

u2 :=(24ρ2 + 13σ2)εεεs − 26ρσ(k̂p ∧ εεεs) , (3.44)

v2 :=(24ρ2 + 13σ2)εεεp + 26ρσ(k̂p ∧ εεεp) . (3.45)

The overlap signal is given by

∆E
(0)
2,o(x−, x+) = −µ2[E(0)

s (x−)]3[E(0)
p (x+)]2 u2 − µ2[E(0)

s (x+)]2[E(0)
p (x−)]3 v2 .

Eight-Photon Scattering

Although we do not consider eight-photon scattering explicitly in this thesis it is useful
to identify a corresponding nonlinearity parameter later for the effect on high-harmonic
generation and when eight-photon scattering can be neglected. As the calculation is
similar to the ones for four- and six-photon scattering, we only give the results. The
asymptotic fields are given by

∆
−→
E

(0)
3,as(x

−, x+) = −µ2
∂

∂x−
[E(0)

p (x−)]3
∫ 0

−∞
dy [E(0)

s (x+ + y)]4 u3 , (3.46)

∆
←−
E

(0)
3,as(x

−, x+) = −µ2
∂

∂x+
[E(0)

s (x+)]3
∫ ∞

0
dy [E(0)

p (x− − y)]4 v3 ,

where we defined

u3 = (96ρ3 + 88ρσ2)εεεs − (88ρ2σ + 38σ3)(k̂p ∧ εεεs) ,
v3 = (96ρ3 + 88ρσ2)εεεp + (88ρ2σ + 38σ3)(k̂p ∧ εεεp) ,

and the overlap signal is given by

∆E
(0)
2,o(x−, x+) = −µ3[E(0)

s (x−)]4[E(0)
p (x+)]3 u3 − µ3[E(0)

s (x+)]3[E(0)
p (x−)]4 v3 .
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3.1.4 Higher Iterations

In the second part of this work, we are interested in solutions which include self-
interaction of the probe that lead to a plasma-like vacuum instability and corresponding
electromagnetic shock. For that we adopt the iterative procedure (3.3) to solve the wave
equation that ignores the changes in the stronger background

(∂2
t − ∂2

z )E(n+1)
p = T[E(n)

p + E(0)
s ] (3.47)

with the iterative solution

E(n+1)
p = E(0)

p + ∆E(n)
p .

The change of the probe field is then given by

∆E(n)
p (t, z) =

∫
dt′ dz′GR(t− t′, z − z′)T(n)(t′, z′)

and in general

T(n)(t, z) =

∞∑
i=1

Ti

[
E(n)
p (x−) + E(0)

s (x+)
]
,

where the subscript i is again the order of the weak-field expansion and the retarded
Green’s function is given by (3.7). The wave equation (3.47), which neglects the back
reaction of the probe on the strong pulse, simplifies the calculation of higher iterations
and should be justified as we always assume Ep � Es. And indeed, the numerical solution
of Maxwell’s equations, which is explained later, does not use this simplification and the
results show that this treatment is justified.
We first consider higher iterations for four-photon scattering.

Box Diagram

For simplicity and later use we only focus on the parallel setup with εεεp = εεεs in this
section.
From (3.35), we know that the vectorial part responsible for the forward scattered signal
depends only on the strong pulse. Therefore, we only need to replace

E(0)
p (x−)→ E(1)

p (x−, x+)

in the field invariant F to obtain the second iteration.
If one defines the auxiliary functions

o1(x) =

∫ x

−∞
dy [E(0)

s (y)]2 ,

p1(x) =

∫ x

−∞
dy [E(0)

s (y)]2o1(y) ,

(3.48)

then the first two iterations of the asymptotic probe field can be written as

∆E(0)
p (x−, x+) = −8µ1E

′(0)
p (x−)o1(x+)εεεs ,

∆E(1)
p (x−, x+) = −8µ1E

′(0)
p (x−)o1(x+)εεεs + 64µ2

1E
′′(0)
p (x−)p1(x+)εεεs ,

where the prime “′” indicates the derivative with respect to x−.
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To get a better understanding of this expression, we insert the explicit expression for
the probe pulse

E(0)
p (x−) = Epεεεpfp(ϕp) cos(ϕp) (3.49)

and neglect the derivatives of the envelope function fp(ϕp). Thus we obtain the asymp-
totic signal

E(2)
p (x−, x+) = Epεεεpfp(ϕp)

(
cos(ϕp) + 8µ1ωp sin(ϕp)o1(x+)

− 64µ2
2ω

2
p cos(ϕp)p1(x+)

)
. (3.50)

We used that both probe and strong polarisations are parallel to combine the result in
one expression and we note that the functions o1(x+) and p1(x+) yield constant factors
in (3.50) in the asymptotic limit x+ → ∞. Using the dressed diagrams introduced in
section 2.5.3, Fig. 3.1 illustrates the general iteration of the wave equation.

E
(n+1)
p

=

E
(0)
p

+

∆E
(n)
p

E(0)
p :

E(1)
p : +

E(2)
p : + +

Figure 3.1: Shown is the iterative solution of the wave equation for the probe for four-
photon scattering with the first two iterations given explicitly.
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Hexagon Diagram

The calculation of the second iteration of the forward-scattered field for the hexagon
diagram is more involved than the one for the box diagram, so we also focus only on the
case of parallel probe and strong polarisations with εεεp = εεεs. In analogy to four-photon
scattering, we define similar auxiliary functions as integrals over the strong field

o2(x) =

∫ x

−∞
dy [E(0)

s (y)]3 ,

p2(x) =

∫ x

−∞
dy [E(0)

s (y)]3o2(y) ,

q2(x) =

∫ x

−∞
dy [E(0)

s (y)]3[o2(y)]2 .

(3.51)

Then the first two iterations can be written as

∆E(0)
p (x−, x+) = − 192µ2 E

′(0)
p (x−)o2(x+)εεεs , (3.52)

∆E(1)
p (x−, x+) = − εεεs

(
192µ2E

(0)
p (x−)E′(0)

p (x−)o2(x+)

− (192µ2)2
(
2E(0)

p (x−)[E′(0)
p (x−)]2 + [E(0)

p (x−)]2E′′(0)
p (x−)

)
p2(x+)

+ (192µ2)3E(0)
p (x−)E′(0)

p (x−)([E′(0)
p (x−)]2 + E(0)

p (x−)E′′(0)
p (x−))q2(x+)

)
. (3.53)

Again, we can insert the explicit form of the probe pulse

E(0)
p (x−) = Epεεεpfp(ϕp) cos(ϕp)

and neglect the derivative of the envelope function to obtain

E(2)
p (x−, x+) = Epεεεpf(ϕp)

(
cos(ϕp)−

1

4
(192µ2)2E2

pω
2
pp2(x+)f2

p (ϕp) cos(ϕ)

+ 96µ2Epωpf2
p (ϕp)o2(x+) sin(2ϕp)−

3

4
(192µ2)2E2

pω
2
pfp(ϕp)

2p2(x+) cos(3ϕp)

− 1

4
(192µ2)3E3

pω
3
pq2(x+)f3

p (ϕp) sin(4ϕp)
)
. (3.54)

As the functions (3.51) yield finite values in the asymptotic limit x+ → ∞ in the main
setups considered in this thesis, we see from (3.54) that the second iteration of the wave
equation generates up to the fourth harmonic. The diagrammatic iterative solution with
the processes involved in the second iteration are shown in Fig. 3.2.
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E(n+1)
p = Ep + ∆E(n)

p

= +

E(0)
p : ±ωp ±ωp

E(1)
p : ±ωp ±ωp +

±ωp

±ωp

±2ωp

E(2)
p : ±ωp ±ωp +

±ωp

±ωp

±2ωp

+

±ωp

±ωp ±3ωp,±ωp

±ωp

+

±ωp

±ωp

±ωp

±4ωp,±2ωp

±ωp

Figure 3.2: Shown is the diagrammatic iteration of the solution of the wave equation for
the probe field for pure six-photon scattering together with the processes and resulting
signals from the first two iterations.



3.2 Numerical Solution of Maxwell’s Equations 47

3.2 Numerical Solution of Maxwell’s Equations

For the scenario of two colliding plane wave pulses, the modified Maxwell equations in
(2.74) and (2.75) can be written in matrix form:

(14 + X) ∂tf + (Q + Y) ∂zf = 0, (3.55)

where f = (Ex, Ey, Bx, By)
T , 14 is the identity matrix in four dimensions, Q is an anti-

diagonal matrix with Q = adiag(1,−1,−1, 1) and X and Y are the perturbations due
to the vacuum interaction given in a general form in App. E.2.

Our numerical method, which is explained in more detail in the following, is based
on inverting the matrix (14 + X) to convert (3.55) to a system of ordinary differen-
tial equations (ODEs), discretising in space using the “Pseudo-characteristic Method of
Lines” (PCMOL) [Car80] and integrating the equations of motion using the ODE solver
CVODE [Hin+05].

3.2.1 Linear Case

Let us first consider (3.55) with X = Y = 000, which is the ~ → 0 limit. This system is
hyperbolic [Str04], which means that we can find a basis u := S f such that the matrix
Λ = SQS−1 = diag(−1,−1, 1, 1) is diagonal with real eigenvalues:

S=
1√
2

(
-1 0 0 1
0 1 1 0
1 0 0 1
0 -1 1 0

)
, u :=S f =

1√
2

(By−Ex
Ey+Bx
Ex+By
Bx−Ey

)
. (3.56)

In this new basis, we have an uncoupled system of advection equations

∂tu(t, z) + Λ ∂zu(t, z) = 0 .

The diagonal elements λi of Λ are called the “characteristic speeds“ the system, where
λi = ±1 corresponds to a component travelling along the characteristics x± with the
speed of light. We proceed by introducing a co-located grid for the components ui with
N grid points. The field components ui on the grid are arranged block wise in a large 4N -
dimensional vector ũ = (. . . ul−1

4 ul1u
l
2u
l
3u
l
4u
l+1
1 . . .), where uli = ui(l∆z) and 0 < l ≤ N is

the index of the grid point. The PCMOL uses biased differencing for each component ui
according to the sign of the corresponding characteristic speed λi, where the component
ui with λi > 0 (λi < 0) is thereby differentiated using backward (forward) finite differ-
ences using fourth-order accuracy. In [Sch91] it is argued that this biased differencing
using five-point-stencils is an effective fixed grid method for first order hyperbolic partial
differential equations because it shows a good balance between introducing minimal nu-
merical diffusion and oscillations in the solution where steep gradients are present. The
derivatives at the boundary are also approximated using only field values inside the box.
Instead of transforming the system back to f̃ (the tilde in this section indicates the dis-
cretised version on the grid), which is normally done in the PCMOL, the system is solved
for ũ. This has the advantage of having open boundary conditions since the components
ui are only allowed to flow in one direction. If we take the system to be of size L and a
spatial resolution of N grid points, then distance is measured in units of ∆z = L/(N−1),
where N − 1 corresponds to the boundary conditions being taken into account. We are
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left with a system of ODEs ũ′(t) = g[ũ(t), t], where g[ũ(t), t] = −Λ̃ D ũ, with the 4× 4
matrix Λ being mapped onto a 4N × 4N dimensional block-diagonal one, Λ̃ = 1N ⊗Λ
(⊗ is the Kronecker product [LT85]) and D being the 4N × 4N matrix representing the
biased differencing explained above. For the detailed action of D on ũ see Appendix E.1.

The initial conditions are set up in f̃ , the system is integrated in ũ using CVODE
and transformed back for output. CVODE is an ODE-solver that offers variable-order,
variable-step multi-step methods. Initially, we supply the “right-hand-side function”
g[ũ(t), t] as above. Since both the linear and nonlinear cases are non-stiff (no rapidly-
damped modes are expected), we apply the Adams-Moulton-Methods together with the
variational method to solve the resulting linear system. This provides higher accuracy
with less computational effort compared to the offered Newton iterations, since neither
approximations nor an analytical expression for the Jacobian have to be provided. We
always use the parallel implementation of CVODE together with “extended” (long dou-
ble) precision. The simulations were also confirmed to be independent of the boundary
conditions as periodic boundary conditions yield the same results.

3.2.2 Nonlinear Case

By discretising the full nonlinear system (3.55), the matrices X and Y also become
4N × 4N dimensional. The system then can also be brought into ODE form ũ′(t) =
g[ũ(t), t] by inverting the matrix (14N + X̃). Since X depends only on local field values,
it is of block diagonal form:

X̃ =

N⊕
l=1

Xl ,

where
⊕

is the direct sum and Xl are the matrices X evaluated at grid point l. This
can be used to reduce the inversion of X̃ to N times the inversion of a 4×4 matrix. The
structure of Xl allows us to rewrite Xl as Xl = G Hl with

G =


1 0
0 1
0 0
0 0

 , Hl =

(
xl11 xl12 xl13 xl14

xl21 xl22 xl23 xl24

)
, (3.57)

where the xlij are the values of the non-vanishing matrix elements of X given in App.
E.2, evaluated at position l. Then we can apply the Woodbury Formula [GVL12],

(14 + Xl)−1 = 14 −G(12 + HlG)−1Hl , (3.58)

to further reduce the inversion to one of the 2× 2 matrix

(12 + HlG) =

(
1 + xl11 xl12

xl21 1 + xl22

)
.

which is done via a LU-factorisation for all grid points using an LU-factorisation at each
evaluation of the function g[ũ(t), t].
For the parameters considered, the nonlinear corrections X and Y do not change the
signs of the characteristic speeds, so we use the same biased differencing as in the linear
case. The nonlinear ODE-system is then given by

ũ′(t) = −S̃(14N + X̃)−1(Q̃ + Ỹ)S̃−1Dũ ,
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where S̃ = 1N ⊗ S, Q̃ = 1N ⊗Q,

Ỹ =
N⊕
l=1

Yl , (3.59)

in analogy to X̃ and the inverse matrix

(14N + X̃)−1 =
N⊕
l=1

(14 + Xl)−1 (3.60)

is calculated block wise as in (3.58). All fields are normalised by Ecr. The parameters
for CVODE are the same as in the linear case. The signals are analysed under the
assumption ω = |k| using a spatial Fourier transform in Wolfram Mathematica [WR12].
As we later analyse harmonic spectra of the forward scattered probe field that are nor-
malised to the initial probe intensity, we give the conventions for the Fourier transform:

Êp(ω) =

∫ ∞
−∞

dx− Ep(x
−) eiωx

−
. (3.61)

The initial probe intensity is defined as

I(0)
p (ωp) = |Ê(0)

p (ωp)|2 (3.62)

and the intensity of the forward-scattered field is then

Ip(ω) = |Êp(ω)|2 (3.63)

such that

I(ω)

I
(0)
p (ωp)

=

[
|Êp(ω)|
|Ê(0)

p (ωp)|

]2

.
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Chapter 4

Harmonic-Generation and
Shockwaves

The first part of this chapter focuses on the time-resolved analysis of the
processes that arise from the first iteration of the wave equation (including
the overlap signal) for four- and six-photon scattering. The setup is chosen
as two colliding plane waves pulses where the strong background is Gaussian.
The main effects are birefringence, harmonic generation (also called photon
merging) and the back reaction of the probe on the strong background. We also
identify a certain parameter regime where the overlap can possibly dominate
the asymptotic signal. Finally, a comparison between the harmonic generation
considered and other vacuum processes like photon splitting and pair-creation
is made.

The second part investigates vacuum high harmonic generation (VHHG) due
to multiple consecutive scattering events in a quasi-constant, rectangular back-
ground with vanishing frequency. The nonlinear wave equation of the probe
pulse for the box- and hexagon-diagram is solved to all orders for the case of
parallel probe and strong polarisations. For six-photon scattering, this solution
can be written as a probe-dependent refractive index that leads to generation
of high harmonics and eventually to the development of a discontinuity in the
wavefront. This shocking appears after a characteristic propagation length in
the background that is quantified and the solution is compared to those solutions
known for the inviscid Burger’s equation. Further, the polarisation-dependency
of the harmonic generation is studied numerically and an outlook on ultra-short
probe pulses and the effect of inhomogeneities in the background is given. We
conclude with a discussion of similarities to harmonic generation in real plas-
mas, comment on the measurability of the effects studied and on the validity of
the approach.

4.1 Overlap Dynamics

4.1.1 Simulational Setup

In this part of the thesis we analyse the predictions from the lowest order iteration
of the wave equation leading to the nonlinear response (3.25) for four- and six-photon
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scattering. The strong background is thereby chosen to be a Gaussian as it is shown in
panel (a) of Fig. 2.10:

E(0)
s (x+) = Esεεεse−

(
x+

τs

)2

.

Since we only consider the first iteration, we drop the iteration index n in this sec-
tion. To analyse the different frequency components, we simulate the same setup once
with linear propagation, once with only four-photon scattering, with only six-photon
and with both four-and-six-photon scattering included. The corresponding numerical
signal is transformed at each time step to k-space via a spatial Fourier transform using
Wolfram Mathematica [WR12]. Then the same step with only linear propagation is
also transformed to k-space and the linear spectrum substracted from the nonlinear one.
This allows for the analysis of the contributions to the fundamental harmonic and the
slowly varying dc component, since one needs to separate it from the linear probe and
strong background. The different frequency components are filtered under the assump-
tion ω = |k| and then transformed back to coordinate space. In all figures the solid lines
are the theoretical predictions, the dashed lines represent the numerical signal. Since the
simulation gives only the sum of all contributions, we extract each different component
of a harmonic via substraction of the dominant analytical expression from the numerical
signal. All signals shown are in units of the probe amplitude Ep.
Although both the analytical solution and the numerical simulation are able to treat ar-
bitrary relative polarisations of the strong and probe fields, we mainly focus on the cases
with parallel and perpendicular relative polarisations. The labels ∆E‖ and ∆E⊥ rep-
resent the two cases εεεp · εεεs = 1 (parallel setup) and εεεp · εεεs = 0 (perpendicular setup).
The full angular dependency of the phase shift resulting from four-photon scattering and
the asymptotic generation of higher harmonics, which involve higher iterations in the
analytical solution of the wave equation, will be analysed in section 4.2.
The parameters for the simulations shown in this chapter were N = 4·105 grid points, the
box length L = 3.2 · 10−5 cm, the amplitude of the strong and probe pulse Es = 2 · 10−2

and Ep = 5 · 10−3. The probe wave length is λp = 2.5 · 10−8 cm corresponding to a fre-
quency ωp = 2.5 · 108 1

cm = 0.6 eV. The pulse durations are τp = 5 · λp and τs = 9/7 · τp.
For a clearer arrangement, we separate each frequency and begin with the fundamental
probe frequency ωp, continue with the analysis of the second harmonic, followed by the
dc component and conclude with the third harmonic which is the only further higher
harmonic generated from four- and six-photon scattering within the lowest order itera-
tion of the wave equation. Afterwards, we compare under which circumstances photon
merging in a magnetic field background resulting in the 2ωp-signal might be prevalent
compared to other vacuum polarisation effects like photon splitting and thermally in-
duced electron-positron pair-creation.

4.1.2 Fundamental Harmonic

One of the most prominent dispersive effects predicted from vacuum polarisation is vac-
uum birefringence. The birefringence manifests itself as an alternation of the refractive
index which is to lowest order independent of the amplitude of the probe field and de-
pends only on the strength of the strong background and the relative polarisation of the
probe and strong field. We see shortly how this effect arises in the asymptotic signal of
our analytical treatment. But first we consider the overlap signal.
Evaluating (3.24) for the overlap scattered field from the box diagram, we have the
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following contribution to the first harmonic ωp:

∆E1,o,ωp(x
−, x+) = −µ1EpE2

s e
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(
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)2

e
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(
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)2

cos
(
ωpx

−)u1 . (4.1)

The asymptotic change in the fundamental frequency is given by (see (3.39))

∆
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E 1,as,ωp(x

−, x+) =
1

2
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√
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2
EpE2

sωpτse
−
(
x−
τp

)2
(

1 + erf
(√2x+

τs

))
sin
(
ωpx

−)u1 . (4.2)

The time development of the overlap (4.1) and asymptotic field (4.2) for different times
of the interaction in the parallel and the perpendicular setups is shown in Fig. 4.1 and
Fig. 4.2. One sees that the asymptotic signal dominates the overlap field.
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Figure 4.1: Time evolution in the parallel setup of the nonlinear response in the funda-
mental frequency ωp at four different times t4 > t3 > t2 > t1. The upper panels show
the position of the probe and strong pulse in the simulation box. The lower panels show
the overlap and asymptotic fundamental harmonic ωp from four-photon scattering. Solid
lines are the analytical expressions and the dashes show the numerical signal. All fields
are in units of the probe amplitude Ep.
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Figure 4.2: Time evolution of the change in the fundamental harmonic ωp for four-
photon scattering in the perpendicular setup. The upper panels show the positions of
the different polarisation components of the initial probe and strong pulse at different
times t4 > t3 > t2 > t1. The dashes indicate the numerical signal. All fields are
normalised to Ep.

As already mentioned, it is a well-known result that four-photon scattering in constant
crossed field backgrounds causes vacuum birefringence and as such it can be seen as a
change in the refractive index n = 1→ n = 1 + δn1 for the probe while passing through
the background. The change in the refractive index is given by [BB67b; DG00]

δn1 = 4µ1E2
s

[
4 (εεεp · εεεs)2 + 7 (εεεp ∧ εεεs)2

]
. (4.3)

We write n1 where the index 1 indicates that this effect is caused by four photon scat-
tering. This change of the refractive index causes a phase shift in the carrier phase of
the probe field, cos(ϕp)→ cos(ϕp − δϕp).
For parallel and perpendicular polarisations, the asymptotic change in the probe field
(4.2) is always parallel to the probe field, so we can write

E(1)
p (x−, x+) = Epεεεpe−

(
x−
τp

)2(
cos(ϕp) + δϕp(x

+) sin
(
ωpx

−))
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for δϕp(x
+)� 1. The phase shift δϕp(x

+) is then given by

δϕp(x
+) =

ωp
2

∫ x+

−∞
dy n

‖,⊥
1 (y) , (4.4)

for the parallel and perpendicular case and the phase-dependent refractive index is de-
fined as

δn
‖,⊥
1 (y) = 2µ1[Es(y)]2 (11∓ 3) . (4.5)

We note that this phase-shift is in agreement with (4.2). The integral (4.4) over the
strong pulse is a measure for the energy density in the strong background and numerical
experiments showed that the expression for the phase shift is valid for all kinds of slowly-
varying backgrounds. This agrees with the observation in [Din+14b], where it is shown
that birefringence signals are dominated by the energy content of the strong pulse and
not by the specific shape. We note that the refractive index is, to lowest order in α,
independent of the probe amplitude. So after passing the strong pulse, the whole pulse
is shifted by the overall phase δϕp:

δϕp := lim
x+→∞

δϕp(x
+) =

ωp
2

∫ ∞
−∞

dy n
‖,⊥
1 (y) . (4.6)

If one also wants to interpret the overlap signal (4.1) as a refractive index different from
unity, one obtains

δϕp,o(x+) =
ωp
2

∫ x+

−∞
dy n

‖,⊥
1,o (y) , (4.7)

where the refractive index for the overlap signal is defined as [KBR16]

δn
‖,⊥
1,o (x+) = 2µ1(11∓ 3)

Ep(ϕp)

∂−Ep(ϕp)
∂+[Es(x

+)]2 . (4.8)

If one takes a plane wave probe with τp → ∞, this agrees with eqs. (28) and (29) of
[HH14] for the parallel and perpendicular setup with the identifications ωφ = ωs, ω = ωp,

ξ(ϕ) = Ep(ϕp), ωsΓ2 = ∂+Es(x+)
Es(x+)

. But since the overlap signal is in phase with the probe

and contains the derivative of the strong field, the interpretation as a pure refractive
index needs further investigation including higher order processes of four-photon scat-
tering.
For the parameters considered, the asymptotic field exceeds the overlap signal. Only for
ωpτs � 1 the overlap signal dominates over the asymptotic one.

Although we made the assumption ωpτp � 1, the numerical analysis also shows the
contribution from the derivative of the Gaussian envelope-function:

∆
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E 1,d,ωp(x

−, x+) = µ1

√
π

2
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s
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τp
e
−
(
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)2
(

1 + erf
(√2x+

τs

))
cos
(
ωpx

−)u1 . (4.9)

Since we always assume ωpτp � 1, the derivative of the envelope function only con-
tributes comparable to the overlap field for the current parameters (ωpτp ≈ 25). This is
shown in Fig. 4.3.
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Figure 4.3: Comparison of the maximal overlap signal with the derivative of the envelope
function for the fundamental harmonic ωp from four-photon scattering. The dashes show
the numerical signal.

From six-photon scattering we also obtain a contribution to the first harmonic which
is much smaller than the one from the box diagram since Ep, Es � 1. For the overlap
signal this is given by

∆E2,o,ωp(x
−, x+) = −3

4
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pE2
s e
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)2

e
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cos
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ωpx

−)v2 . (4.10)

For the asymptotic signal, we see from (cosϕp)
3 = 1

4(3 cosϕp + cos 3ϕ) that the ωp
contribution stems from the current J2 where the vectorial part is of the probe and is
therefore left-travelling:
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2
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3

))
v2 . (4.11)

We note that the ωp-dependence in (4.11) disappears asymptotically as the integral over
the probe pulse gives a constant (small) value, which is due to the absence of wave
mixing as explained in section 2.5.1. Snapshots of both signals for the maximal overlap
of the strong pulse and the probe pulse are shown in Fig. 4.4.

4.1.3 Second Harmonic

We note that there is no lowest order, forward-scattered signal of the second harmonic
from four-photon scattering since in this (1 + 1) dimensional setup as the generation
is suppressed for kinematical reasons [Adl71]. This is also in agreement with our ob-
servation that the forward scattered signal from four-photon scattering only gives a
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Figure 4.4: Overlap and left-travelling signal for the fundamental harmonic from six-
photon scattering. The dashes show the numerical signal.

contribution to the fundamental harmonic. But the 2ωp signal can be generated as an
overlap signal from pure four-photon scattering:
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The asymptotic generation of the right-travelling asymptotic field is given by the hexagon
diagram:
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A direct comparison of these two signals is shown in Fig. 4.5 and Fig. 4.6 for differ-
ent interaction times and the time development of the maximum of the overlap and
asymptotic field in the parallel setup is plotted in Fig. 4.7.
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Figure 4.5: Time evolution in the parallel setup of the second harmonic 2ωp for the
overlap signal stemming from four-photon scattering and the asymptotic signal from
six-photon scattering. The dashes show the numerical signal. The overlap field signal
exceeds the asymptotic one.
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Figure 4.6: Time evolution in the perpendicular setup of the second harmonic 2ωp for
the overlap signal stemming from four-photon scattering and the asymptotic signal from
six-photon scattering. The dashes show the numerical signal.
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Figure 4.7: Shown is the maximum of the amplitude of the second harmonic for the
overlap field (red dashed), the asymptotic field (green dashed-dotted) and the sum field.
The turquoise-black dots show the numerical results.

We see that the overlap field dominates over the asymptotic signal for our parameters. To
get a better qualitative understanding when this is the case, let us define a nonlinearity
parameter

ζ =
1

η

∫ ∞
−∞

dϕs χ(ϕs)
2 , (4.14)

where

χ(ϕs) =

√
|kp · Fs|
m

(4.15)

is the quantum efficiency parameter [Rit85] for the probe photons and η :=
kpks
m2 . The

overlap field does not include any explicit integral of the strong field or the derivative of
the probe pulse, whereas the factor ωpτs in ζ (and the asymptotic signal) is a measure
for how many probe oscillations

”
fit“ into the strong background. For the current setup

χ =
√

2πE2
sωpτs ≈ 3 · 10−2 and one sees that for ζ � 1, the overlap field can dominate.

Apart from the two dominant overlap and asymptotic signals (4.12) and (4.13), there is
also a backward-scattered signal where the vectorial part of J1 is of the probe pulse:
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As we already had for the left-travelling first harmonic from six-photon scattering, the in-

terpretation of ∆
←−
E 1,as,2ωp(x

−, x+) as an asymptotic 2ωp signal is not completely correct
as the integral of the probe field squared,∫ ∞

−∞
dy [E(0)

p (y)]2 =
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√
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2
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p τp

(
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2
p

)
,
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yields a fixed value and therefore any dependence on 2ωp disappears in the limit of
asymptotically separated pulses due to the absence of wave mixing. A snapshot of this
signal is shown in Fig. 4.8:
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Figure 4.8: Snapshot of the left-travelling asymptotic second harmonic of the box dia-
gram when probe and strong pulse show maximal overlap.

There are two further signals from the hexagon, the overlap field and the contribution
from the derivative of the envelope function:
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A space-time plot of both fields is shown in Fig. 4.9 and we see that both signals are
negligible as ωpτp � 1 and Es � Ep.

4.1.4 DC Component

For both four- and six-photon scattering there are signals which are quadratic in the
probe pulse

[E(0)
p (x−)]2 =

1

2
E2
p

(
e
−2

(
x−
τp

)2

+ e
−2

(
x−
τp

)2

cos
(
2ωpx

−)) .

The signal therefore consists of two parts, one which contains only the envelope function
of the probe alone and one that contributes potentially to the second harmonic, as we
already encountered above. The first one is a signal which is peaked around ω = 0 and
we therefore refer to it as the zeroth harmonic, dc component or rectification.
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Figure 4.9: The left panel shows the overlap field of the second harmonic from six-photon
scattering, the right panel shows the asymptotic field where the derivative acts on the
envelope function of the probe. Since ωpτp � 1, the signal is much smaller than the
asymptotic signal shown in Fig. 4.5 and Fig. 4.6. The dashes show the numerical signal.

For four-photon scattering, this signal stems from the process in Fig. 2.7 (a) and since the
vectorial part in J1 is here of the probe pulse, it is left-travelling and can be interpreted
as a change in or back reaction on the strong background caused by the probe pulse.
The lowest order contribution of the overlap and asymptotic signal is given by
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(4.17)

The time-development of the amplitudes and the space-time evolution for (4.17) are
shown in Fig. 4.10 and Fig. 4.11 and we see again that the overlap dominates the
asymptotic signal.

For six-photon scattering, the dc component can not be interpreted as a change in
background as the vectorial part in J2 is of the strong pulse and the signal is right-
travelling. Since it contains frequencies of order ≈ 1

τp
� ωp, the contribution only comes

from the derivative of the envelope function and if ωpτp � 1, the right-travelling zeroth
harmonic mostly only show a small contribution to the overall dynamics. The analytical
expressions for the overlap and asymptotic field are
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(4.18)

A space-time plot is shown in Fig. 4.12.
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Figure 4.10: Shown is the maximal amplitude of the dc component in the parallel case
from the box diagram as it travels leftwards with the strong probe. The red dashed line
is the overlap, the green dashed-dotted line the asymptotic and the black solid the sum
field. We see that also here the overlap signal dominates the asymptotic one.
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Figure 4.11: Time evolution of the left-travelling rectification from four-photon scatter-
ing.
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Figure 4.12: Different snapshots of the parallel and perpendicular right-travelling dc
component from six-photon scattering.
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4.1.5 Higher Harmonics

The next higher harmonic would be 3ωp, but the direct asymptotic generation of a 3ωp
signal for the scattering of plane waves appears only in eight-photon scattering, as it is
shown in section 3.1.3 since the forward-scattered current J3 involves the probe cubed
and cos(x)3 = 1

4(3 cos(x) + cos(3x). To lowest order, there is no right-travelling third
harmonic from four- and six-photon scattering. But if the vectorial part of J2 is from the
probe field, the third harmonic is generated as an overlap and asymptotic left-travelling
signal:
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Two snapshots of both fields for the maximal overlap of the probe and strong field are
shown in Fig. 4.13. We note again that the 3ωp-dependence of the asymptotic signal
disappears in the limit x− →∞ due to the absence of wave mixing.

−1 0 1
z[τs]

−2

−1

0

1

2
×10−12

∆E
‖
2,o,3ωp

(t2, z)

∆E⊥2,o,3ωp(t2, z)

−1 0 1
z[τs]

−2

−1

0

1

2
×10−14

∆
←−
E
‖
2,as,3ωp

(t2, z)

∆
←−
E⊥2,as,3ωp

(t2, z)

Figure 4.13: The third harmonic 3ωp is generated as an overlap signal (left panel) and as a
left-travelling asymptotic signal (right panel) in six photon scattering. The perpendicular
generation is less efficient than the parallel case.

In general, the asymptotic n-th harmonic involves 2(n+1)-photon scattering amplitudes
for plane waves and can be directly calculated from the weak-field expansion (2.64) of
the Heisenberg-Euler Lagrangian. Both the overlap and the asymptotic field originate
from an integration of a single term in the wave equation. But since the overlap field
appears as a boundary term, it shows a different space-time dynamics compared to the
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asymptotic field. Nevertheless, they show the same selection rules for the polarisation
of the scattered photons of the higher harmonic. In the parallel setup, all harmonics are
generated in the parallel mode

lγ‖ → γ′‖ ,

where γ‖ is an incoming probe photon with a polarisation parallel to the strong pulse,
l ∈ N+ and γ′ the scattered photon. For the perpendicular setup with εεεp · εεεs = 0, the
incoming probe photons γ⊥ generate the even harmonics parallel to the strong field and
the odd harmonics parallel to the probe:

2lγ⊥ → γ′‖ , (2l − 1)γ⊥ → γ′⊥ .

For the direct generation from the corresponding weak-field expansion, the n-th harmonic
has a dependence En ∼ En+1

s Enp ωpτs following from the explanation above. But since we
are in a regime Ep, Es � 1, the higher harmonics are strongly suppressed. In the second
part of this thesis we analyse a different mechanism for high harmonic generation, which
involves only the box and hexagon diagram, but requires longer propagation lengths
Φ = ωpτs .

4.1.6 Discussion

We saw from (3.17) that the overlap signal depends on the past of the background
field as it is a surface term stemming from an integral over the derivative of the back-
ground. As a consequence, it disappears for fields which are completely homogeneous
like homogeneous constant-crossed and constant, homogeneous magnetic fields. For the
overlap signal to appear, some inhomogeneity in the background is needed. Therefore,
it makes a difference whether one considers forever-constant fields or the propagation
of the photons into a background which is evolved from the past. We saw for quasi-
constant backgrounds that it is valid to integrate the change of the refractive index due
to four-photon scattering (see (4.3)) over the shape of the background since the effect
is only dependent on the energy density of the strong field. But as most of current
and future experiments use high-power lasers to measure vacuum polarisation effects,
the background can not be treated as constant. Therefore, it might be necessary to
include the overlap signal into this notion for recent and future experiments trying to
measure vacuum birefringence as it was analysed in [HH14]. Strong inhomogeneities in
the magnetic fields in the atmospheres of astrophysical objects like neutron stars might
also influence calculations which rely on locally constant field approximations such as
the so-called

”
vacuum resonance“ [HL01; HL04]. Such signals might be investigated with

missions similar to GEMS [Gho+13] or telescopes like NuSTAR [Har+10].

The strongest magnetic fields available appear at neutron stars like Soft Gamma Re-
peater and X-Ray Pulsars. The field strengths surrounding such magnetars are close
or also above the critical field Ecr and therefore the emitted radiation is very likely to
be subjected to photon-photon scattering effects while passaging the magnetosphere.
Polarisation measurements of the emitted X-Rays could be therefore very well suited to
study the nonlinear properties of the vacuum [Gho+13; Tav+13]. In such extreme envi-
ronments also the process of photon splitting γ → 2γ′ of one photon into two photons of
lower frequency is expected to be of particular importance. In the following we compare
the number of photons per unit volume which are merged into the second harmonic
from the overlap and the asymptotic field with the number of photons that are split in
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a quasi-constant magnetic background. The photon splitting density was calculated in
[PR72] and is given by

ργ→2γ′ =
α3

10

[
19

315π

]2 L

λ
B6
( ω
m

)5
ρ . (4.20)

λ = 2π/m is the reduced Compton wavelength, L is the propagation length, ρ is the
density of incoming photons of the probe with frequency ω and B is the magnetic field
strength. We note that the splitting density (4.20) has strong dependence on (ω/m)5

and in our case, where the magnetic field is perpendicular to the propagation direction
of the probe photons, also dispersion has to be taken into account. To compare this
expression with the result for photon merging, we take the plane wave limit of the probe
with τp → ∞, the constant field limit for the background, τs → ∞ and set the electric
fields to zero. To quantify the effect of the overlap signal, we define the relative field
variation ∆ = ∆B/B of the background where ∆B is the difference in the magnetic field
over the propagation distance L of the probe. From (4.12) and (4.13) we then have the
following photon densities for the overlap and the asymptotic processes:

ρo
2γ→γ′ = 2α3

[
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180π

]2

B2∆2 ω

m
(ρπλ3)ρ ,

ρ2γ→γ′ = 8α3

[
37± 11

315π

]2

B2ζ2 ω

m
(ρπλ3)ρ .

(4.21)

ζ is defined by ζ = B2ωL and the ± is for the probe photon polarisation being parallel or
perpendicular to the magnetic background. Although the dependence of the generation
of the second harmonic on ω/m is only linear compared to (4.20), for photon merging a
high density of probe photons in a cylinder of radius and height λ along the probe light
cone is needed as it can be seen from (4.21). To get a more qualitative understanding
when harmonic generation is more dominant than splitting, let us consider a photon
gas in contact with a thermal bath at temperature T . The number of photons per unit
volume with a certain energy in the interval [ω, ω+ δω], where δω � ω, is then given by
a Bose-Einstein distribution

ρ ∼ ω2δω

exp
(

ω
kBT

)
− 1

,

where kB is the Boltzmann constant. Using this expression in (4.20) and (4.21) yields
the following ratios for photon splitting and merging:
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exp
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ω
kBT

)
− 1

.

Apart from dispersive effects also dissipative effects like e+e− pair-creation can take
place. In [KDG12; KGDP13] two different mechanisms of thermal pair-creation were
considered. The first one is the scattering of two photons off each other with an internal
fermion propagator, which is then summed over the ensemble of the thermal photon gas
yielding a number density

ρ2γ→e+e− ∼ 2m4
( α

2π

)2
(
kBT

m

)3

e
− 2m
kBT , (4.22)
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which is valid for kBT/m � 1. As this result originates from the integration over a
rectangular volume, the adjusted version for a propagation distance is given by

ρ2γ→e+e− ∼ 2
1

λ3

L

λ

( α
2π

)2
(
kBT

m

)3

e
− 2m
kBT .

The second process considered is based on the interaction of the thermal photons with
the background photons via the polarisation operator. The rate of pairs produced via
this mechanism is then obtained via the optical theorem and given by

ργ→e+e− ∼
33/4α

4
√

2π3/2

1

λ3

L
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)2

δ1/4e
− 4√

3δ . (4.23)

Again, the length L was introduced in (4.23) and the result adapted for a constant
magnetic background with

δ =

(
kBT

2m

)
B

and δ � 1. Both pair-creation rates (4.22) and (4.23) are exponentially suppressed for
kBT � m, whereas the splitting and merging rates are perturbative in kBT/m. As the
temperature of most observable neutron stars is about T = 105K [HL06], this leads to
a ratio kBT/m ≈ 10−4, so thermal pair-creation is exponentially suppressed compared
to photon merging and splitting.
After the analysis of the first iteration of the wave equation including the overlap signal
and a comparison between harmonic generation and other dispersive and dissipative
vacuum polarisation effects in this chapter, we now consider high harmonic generation
based on higher iterations of the wave equation.



70 4. Harmonic-Generation and Shockwaves

4.2 Higher-order Processes and VHHG

In this section we analyse a certain mechanism for vacuum high harmonic generation
(VHHG) which is based on multiple consecutive scattering events. As we have seen in
the previous chapter, four-photon scattering generates to lowest order a first harmonic
forward scattered signal in the scattering of two plane wave pulses. Six-photon scattering
then generated an asymptotic second harmonic and in general 2(n+1) photon scattering
leads to an asymptotic nth harmonic. But as we consider the case of Ep, Es � 1,
this direct harmonic generation is strongly suppressed as the nth harmonic scales as
En+1
s En−1

p , leading to extremely small intensities. This type of vacuum high harmonic
generation has been investigated using the full polarisation operator in [DHK05; FN07]
and using the lowest order of the weak-field expansion in [Lun+06; KK12; KBR14;
GKS13].

If the fields’ spacetime extent is much larger than a single scattering length, multiple
scattering events can occur as we have already seen in Fig. 3.1 for four-photon scattering
and Fig. 3.2 for six-photon scattering. But also combined processes like four-photon
followed by six-photon scattering can occur. Usually it is assumed that the probability for
multiple scattering events is much lower than single scattering events and multiple events
are neglected. However, if the extent of the field is large enough, then the probability for
multiple scattering increases with the propagation length so that all orders of chained
processes have to be taken into account. This is the approach we take in the following
for high harmonic generation.

If a large number of higher harmonics are generated in the spectrum, the shape of the
electromagnetic plane waves also changes and this leads to the possibility of shock wave
generation. In the “shock regime” (which is quantified later), as all orders of scattering
can play a role in the generation, the spectrum is expected to be qualitatively different
from the perturbative case of having only a single scattering event, where four-photon
scattering is the most probable and higher harmonics are exponentially suppressed. Such
a type of shock generation is also known from nonlinear optics [AL83] and often com-
pared to the optical Kerr effect [Mar10].
There have been several studies of the consequences of this self-interaction. Lutzky and
Toll [LT59] showed that if G = 0, a current that depends nonlinearly on the invariant
F = −F 2/4E2

cr = (E2 − B2)/2 leads to the generation of an electromagnetic disconti-
nuity or “shock”. After identifying an application in magnetised neutron stars, shocks
were analysed in a constant magnetic field background using a first- [Roz93], second-
[ZF82] and several- [HH98; HH99] order weak-field expansion of the Heisenberg-Euler
Lagrangian with an all-order analysis performed by Bialynicka-Birula [BB81]. An as-
trophysical environment was further modelled by introducing nonlinear vacuum effects
into equations of relativistic magnetohydrodynamics [HH99] and into a dusty plasma
[MSE05].

The outline of our analysis in this section is as follows:
First, we introduce the simulational setup, then we derive an all-order solution to the
phase shift arising from pure four-photon scattering in a constant crossed electromagnetic
background for the probe having parallel and perpendicular polarisations to the strong
field. This analysis allows us a to identify nonlinearity parameter which quantifies when
four-photon scattering is of importance in the generation of higher harmonics.
Afterwards, higher iterations of the wave equation for pure six-photon scattering in the
parallel setup are calculated and an all-order solution for the scattered field is given
which depends on another nonlinearity parameter that quantifies the transition from
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the perturbative regime to the “shock regime”. Then high harmonic generation from
chained pure four-photon scattering and from higher order weak-field terms are shown
to be negligible. This is followed by an extensive analysis of the transition into the
shock regime for the parallel case as the nonlinearity parameter approaches unity. The
angular dependency of the harmonics, the corresponding shockwaves and their interplay
with dispersive effects are studied. In the discussion, an outlook on ultra-short probe
pulses and harmonic generation in inhomogeneous backgrounds is given. This is followed
by a comparison of VHHG with harmonic generation in real plasmas and we comment
on the validity of the approach chosen in this thesis.

4.2.1 Simulational Setup

In this chapter we mainly focus on a pump-probe setup where the strong pulse is a
constant plane wave background. The analytical expression of the strong pulse is thereby
given by

E(0)
s (x+) = εεεsEsRect(x+) ,

where Rect = θ(x+/τs + 1/2)− θ(x−/τs − 1/2) and θ(x) is the Heaviside step-function.
The simulational setup is depicted in Fig. 2.10 (b). As explained in section 3.2, for the
numerical simulation, we approximate the constant background as a mirrored Fermi-
Dirac-Pulse to avoid infinite gradients:

Rect(x+) ≈ FD(x+) :=
1

1 + exp
(
|x+|−zm

zb

) . (4.24)

To define a proper effective pulse duration τs for the Rect- and the Fermi-Dirac-function,
we consider the asymptotic generation of the second harmonic of the hexagon diagram
in the parallel case with εεεp · εεεs = 0. The analytical expression is then given by (3.43):

∆E
(1)
2,p,as(x

−) = lim
x+→∞

96µ2 εεεs E2
pe
−2

(
x−
τp

)
o2(x+) sin

(
2ωpx

−)
= 96µ2εεεsE2

pE3
s e
−2

(
x−
τp

)
τs sin

(
2ωpx

−) ,
where o2 is given by (compare (3.51))

o2(x+) = E3
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The analytic expression for the pulse duration is then
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Simulation Parameters

Our analysis is valid when Es, Ep � 1 and we see shortly that the single parameter
relevant to high harmonic generation in the shock regime is ν2 = 192µ2E3

s EpΦ with
Φ = ωpτs (see (4.31)). Now we wish to simulate the occurrence of a shock wave, for
which ν2 → 1, implying Φ must be very large in order to compensate for the weak
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field strengths. However, a large Φ is computational expensive to simulate. To compare
analytical and numerical results, we therefore extrapolate the theoretical result to values
of Es 6� 1, allowing a simulation for smaller Φ to be performed, with the condition that
the physical prediction is only valid for a particular value of ν2 when Es � 1. For this
reason, we often quote simulation parameters in terms of shock parameters rather than
absolute field strengths and spatial extent.
If no other parameters are given, the probe amplitude was taken as Ep = 0.01 and
Φ = 387 with λp = 1.6 · 10−4 cm for all simulations shown. τs = 9.85 · 10−3 cm is
always given by (4.25) with zb = 5 · 10−5 cm and zm = 100 · zb. Then the corresponding
amplitude of the strong field is given by the relation

Es =

(
ν2

192µ2EpΦ

)1/3

.

Most simulations were carried out with N = 106 grid points in this chapter to properly
resolve the high harmonics and it was checked that the results are robust against change
in the resolution.
The parameters for the simulations in section 4.2.6 were the same as for the parallel
case, except of the simulation in Fig. 4.28 and the left panel of Fig. 4.29 where we
used Ep = 0.2, Es = 1.44, λp = 5.33 · 10−7 cm, for Fig. 4.30 and the right panel of Fig.
4.29 Ep = 0.01, Es = 5.67 and λp = 1.6 · 10−4 cm and for the simulations in Fig. 4.31
Ep = 2 · 10−4, Es = 14.4 and λp = 5.33 · 10−7 cm.

4.2.2 All-order Phase Shift from Four-photon Scattering

In section 4.1.2 the phase shift from the box-diagram for parallel and perpendicular po-
larisations was given. Now we analyse the phase shift for arbitrary relative polarisations
and explain why the parallel and perpendicular setup have a distinct role. The depen-
dency of the phase shift of the probe on arbitrary relative polarisation of the strong and
probe pulse for the current setup with a square pulse is shown in Fig. 4.14. To obtain
the difference of the phases the same setup is simulated once without any nonlinearities
and once with four-photon scattering turned on. When both pulses are well-separated
again, each probe is transformed to Fourier space and the absolute phase is determined
by

ϕ = arctan
Im Ẽ(ωp)

Re Ẽ(ωp)
,

where the Fourier transform is defined in (3.61). The phase-shift is then simply given
by the difference of the absolute phases of the linear and the nonlinear probe pulse. The
theoretical prediction is given by (cf. (4.4) and (4.3))

δϕp =
ωp
2

∫ ∞
−∞

dy n1(y) (4.26)

where

δn1 = 4µ1E2
s

[
4 (εεεp · εεεs)2 + 7 (εεεp ∧ εεεs)2

]
. (4.27)

If one takes an arbitrary relative polarisation, a certain ellipticity is introduced in the
probe field. This is a result of the two different refractive indices that act on the probe.
The part of the probe that is parallel to the strong field travels at a different velocity
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Figure 4.14: Shown is the angular dependency of the relative phase-shift due to four-
photon scattering of the probe pulse after passing the strong pulse. The solid line is
the theoretical prediction, the dots show the numerical result. θ is the relative angle
between the polarisations of both pulses with εεεp · εεεs = cos θ. The parameters for the
simulations were λp = 1.6 · 10−4 cm, Ep = 5 · 10−3, Es = 0.1 and N = 1.12 · 104.

than the part which is perpendicular to the strong field. So both parts get a different
phase shift. The situation is different if the probe is in one of the states with εεεp ·εεεs = 0 or
εεεp ·εεεs = 1. Then the expression for the higher iterations simplify since for G = 0 (parallel)
or F = 0 (perpendicular) the polarisation vectors (3.35) and their higher iterated versions
only contribute to the same polarisation and there is no interaction between both modes
which simplifies the iterations. In both cases the nonlinear response is always parallel to
the probe field and the first two iterations in the limit x+ → ∞ and the parallel setup
are then given by
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and a similar expression is obtained for the perpendicular setup. Further analysis of the
next two iterations reveals the following pattern illustrated on the fourth iteration:
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where we defined the multi-scale-parameter υ1 = υ

‖,⊥
1 for the parallel and perpendicular

setup of four-photon scattering as

υ
‖,⊥
1 = (11∓ 3)µ1E2

sΦ =
1

2
δn
‖,⊥
1 Φ , (4.28)

Φ = ωpτs and δn1 is the well-known vacuum refractive index (4.3):

δn
‖,⊥
1 = 2(11∓ 3)µ1E2

s .
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The first two iterations are depicted diagrammatically in Fig. 3.1. If we make a trans-
formation of variables,

∂

∂x−
= ωp

∂

∂ϕp
,

one finds in general for the summation of all diagrams for the forward scattered field

E1,ωp(ϕp) =
∞∑
n=0

(−υ1)n

n!

∂n

∂ϕnp
E(0)
p (ϕp) .

We note again that we always neglect the derivative of the envelope function of the
probe. Interpreting this infinite sum as a shift operator yields the final result

E1,ωp(ϕp) = e
−υ1 ∂

∂ϕp E(0)
p (ϕp) = E(0)

p (ϕp − υ1) . (4.29)

Expression (4.29) is valid for the parallel setup with υ
‖
1 and the perpendicular setup

with υ⊥1 as in both cases the nonlinear corrections are parallel to the probe field. The
interpretation of (4.29) is the summation of all possible graphs of the higher iterations
in Fig. 3.1, giving a fully dressed electromagnetic field solution for the probe pulse
where all interactions with the external classical source (the strong pulse) are taken into
account.

This all-order solution to the phase shift in a plane wave propagating through a con-
stant background derived from the Heisenberg-Euler Lagrangian complements a recent
example solution of the phase shift derived from the Schwinger-Dyson equation applied
to the polarisation operator [Meu+15].

4.2.3 All-order Solution for Six-photon Scattering

As we already discussed in section 4.1, the direct asymptotic generation of the nth
harmonic involves the process of 2(n+1)-photon scattering for E � 1. So for the second
harmonic, six-photon scattering is the dominant process, but we also saw that higher
iterations generated higher harmonics. For the parallel case, the first two iterations of
the wave equations in our setup are given by
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(4.30)

where the quantity υ2 = ν2e
−
(
x−
τp

)2

is what we refer to as
”
shock parameter“ for six-

photon scattering with

ν2 = 192µ2E3
s EpΦ . (4.31)
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For the case with εεεp ·εεεs = 1, each iteration only contributes a term which is parallel to the
probe pulse as the field invariants G = G(n) = 0 vanish identically and are not affected
by higher iterations. So all harmonics are generated parallel to the probe field. The first
two iterations are shown diagrammatically in Fig. 3.2. Analysing higher iterations as
in the case of the box-diagram leads to the all-order solution for the forward scattered
probe pulse:

Ep(ϕp) = 2Epεεεp
∞∑
j=1

(−1)j+1

[
J2j

(
2jυ2

)
2jυ2

sin(2jϕp)

+
J2j−1

(
(2j − 1)υ2

)
(2j − 1)υ2

cos((2j − 1)ϕp)

]
(4.32)

Here Jl(·) is the lth-order Bessel function of the first kind [GR07].
It is really remarkable that the all-order-solution (4.32) resembles the Bessel-Fubini
solution [FG35; Bla66] to Burger’s equation which describes the propagation of lossless
finite-amplitude planar acoustic waves in inviscid fluids [Ros07; Péc12],

uBF(t, z) = 2u0

∞∑
j=1

Jj(jνBF)

jνBF
sin
(
jω0(t− z)

)
, (4.33)

where the initial profile is given by a sinusoidal

uBF(t = 0, z) = u0 sin(ω0z)

and 0 ≤ νBF ≤ 1 is a normalised propagation distance of the wave from the point of
excitation. Although the physics and the nonlinearities are of completely different origin,
νBF plays the same role as the shock parameter ν2 and many known behaviours of (4.33)
will be recovered in section 4.2.5 where the generation of shockwaves is analysed and the
similarities are shown explicitly.
We note that for the perpendicular setup, the first iteration is parallel to the strong pulse
and therefore the higher iterations mix. This can be seen from the vacuum current for
the hexagon diagram consisting of the polarisation (3.41) and magnetisation (3.42). In
the first iteration for the perpendicular case, the field invariant F (0) = 0. Now since the
first iteration gives a probe component parallel to the strong pulse, both quantities G(n)

and F (n) become non-zero and develop a much more complicated space-time-dependency
compared to the parallel case. Both the parallel and perpendicular components therefore
interact via the FG term in the current.
The selection rules are the same as we found in section 4.1 although the mechanism here
is different from considering the direct harmonic generation. The even harmonics are
generated parallel to the strong field and the odd ones parallel to the probe field.
The analysis of arbitrary relative polarisations turns out to be particularly difficult and
the harmonic generation is also seen to be highly suppressed in general compared to
the parallel case. In section 3.1.4 we derived a formula for the second iteration in the
parallel case and already the second iteration for arbitrary relative polarisations is quite
complicated and therefore even higher iterations become more and more involved.

4.2.4 Other Processes in Vacuum Harmonic Generation

VHHG from Higher Order Four-photon Scattering

As the calculation in section 3.1.3 shows, there is no generation of the second harmonic
as a lowest order process as the field invariants of the probe and strong field vanish
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separately. But this does not completely exclude the generation of the second harmonic
from four-photon scattering as it can be generated via a higher-order process. When the
probe and strong pulse overlap, their field invariants Fp,s,Gp,s do not vanish separately
anymore and this signal can be used as an input for a chained process as it is shown
in Fig. 4.15. To get a qualitative estimate for the intensity of the merged 2ωp-field, we

±ωp ±2ωp

±ωs ±ωs

±ωs

Gp,s 6= 0

±ωp

Fp,s 6= 0

Figure 4.15: Chained vertices for the asymptotic generation of the second harmonic from
four-photon scattering in the plane wave pump-probe setup.

assume that the incoming probe photon scatters once which leads to a change δn1 =
16µ1E2

s in the probe field and therefore in the field invariants F ,G. This scattered
signal then scatters with an additional single probe photon as it is shown in Fig. 4.15,
which contributes an additional contribution υ1 = 8µ1EsEpΦ and results in a combined
contribution of

ν1 = 2(8µ1)2E3
s EpΦ . (4.34)

Since v2 = ν2 exp
[
−(x−/τp)

2
]

is bounded from above, v2 ≤ ν2, we quantify the effect
of six-photon scattering to VHHG by ν2. To compare the effectivity of the generation
of the second harmonic from four- and six-photon scattering, we therefore consider the
ratio

ν1

ν2
=

7

17145π
≈ 2.6 · 10−4 . (4.35)

So the generation of the second harmonic from the box diagram is always suppressed by a
factor of 10−4 compared to the asymptotic signal from the hexagon diagram, independent
of the chosen parameters. This is also observed in the numerical simulations where the
ratio of the amplitudes of the second harmonic from the box- and hexagon-diagram is
given by √

Ibox(2ωp)

Ihex(2ωp)
= 1.8 · 10−4 ,

which is close to the estimate (4.35). One can now even go further with the analogy to
the generation of higher harmonics and use the calculation of the hexagon diagram with
ν1 as shock parameter. From (4.30) we then infer the relative intensities

I(2ωp)

I
(0)
p (ωp)

=
(ν1

2

)2
= 10−7.6 ,

I(3ωp)

I
(0)
p (ωp)

=

(
3ν2

1

8

)2

= 10−14.8 ,

I(4ωp)

I
(0)
p (ωp)

=

(
ν3

1

12

)2

= 10−23.0 .
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A comparison with a numerical simulation in which ν1 = 3.3 · 10−4 (Es = 5, Ep =
10−2,Φ = 1550) is shown in Fig. 4.16. We see that the estimate (4.34) predicts the
numerical intensities correctly within one order of magnitude. The generation of higher
harmonics is less effective in the perpendicular setup than in the parallel one. This is
also common to six-photon scattering. As a comparison, the shock parameter for pure
six-photon scattering for this scenarios exceeds ν1 by several orders of magnitude since
ν2 = 2.7� ν1.

1 2 3 4 5
ω/ωp

10−30

10−25

10−20
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10−10
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1
I
(ω

)/
I

(0
)

p
(ω

p
)

εεε‖, ‖ set-up

εεε‖, ⊥ set-up
εεε⊥, ⊥ set-up

Figure 4.16: High harmonic generation from multiple four-photon scattering for ν1 =
3.3× 10−4. εεε‖ (εεε⊥) denotes the component parallel (perpendicular) to the probe field.

Dispersive Effects

Although we argued in the last section that the box-diagram gives only a negligible
(direct) contribution to harmonic generation, the dispersive effect with one incoming and
one outgoing probe photon might potentially influence the generated harmonic spectra.

Since we also introduced a parameter υ1 (see (4.28) and we set υ1 = υ
‖
1) to quantify the

dispersive effects, the ratio

υ1

ν2
=

7

24EsEp
indicates when it should be a good approximation to only consider the hexagon diagram.
But for this ratio to be small, we would require

EpEs �
7

48
≈ 0.15 , (4.36)

which is not justified. We therefore study the cases without any (υ1 � 1), with weak
(υ1 ≈ 1) and with strong (υ1 � 1) dispersive effects separately.

Higher-order Weak-field Expansion

As we have seen in section 4.1.5, using the next term in the weak-field-expansion of
the Heisenberg-Euler Lagrangian, also the third harmonic can be directly produced as
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an asymptotic signal. Since we quantified six-photon scattering with ν2 in the parallel
setup, we use the same argument to quantify the effect of eight-photon scattering using
the shock-parameter ν3 = 1536µ3E4

s E2
pΦ which is obtained from (3.46). To justify when

higher-orders in the expansion can be neglected, the quantity

ν3

ν2
=

32EsEp
3

must be small. Therefore, the condition for the hexagon diagram being the dominant
process in Harmonic generation is given by

EpEs �
32

3
,

which is fulfilled since we always consider Ep � 1 and Es � 1. Since higher terms in the
weak-field expansion introduce further factors of Ep and Es, we take this as an indicator
that only considering six-photon scattering as the dominant process in vacuum harmonic
generation should be a justified approximation.

4.2.5 VHHG and Electromagnetic Shockwave

It turns out that the most effective setup for high harmonic generation is the parallel
case with εεεp · εεεs = 1 (leading to G = 0), whereas all cases where G 6= 0 are substantially
suppressed compared to the case with vanishing G.
Therefore, we first consider only high-harmonic generation from pure six-photon scat-
tering in the parallel setup for different parameter regimes.

Perturbative Regime for VHHG (Parallel Case)

It was shown in section 4.2.3 that the all-order solution for the forward-scattered probe
field for ν2 ≤ 1 is given by a certain combination of Bessel functions (cf. (4.32)) that
depends on the shock-parameter ν2 which also serves as a perturbative parameter if
ν2 � 1. This parameter range is what we call

”
perturbative - “ or

”
pre-shock regime“.

To get a better qualitative understanding of the solution in this regime, one can expand
the Bessel-function Jj(jν2) in (4.32) as [Wat51]

Jj(jν2) =
1

Γ(j + 1)

(
jν2

2

)j
+O

(
(jν2)j+1

)
for 0 < jν2 �

√
j + 1. Let us define the coefficients al(ν) of the scattered field (4.32) as

aj(ν2) =
2Jj(jν2)

jν2
. (4.37)

Then in the pre-shock regime with ν2 � 1, the coefficients satisfy

|al(ν2)| = 1

Γ(j + 1)

(
jν2

2

)j−1

+O(νj+1
2 ) . (4.38)

Now for the higher harmonics with l� 1, we can use the Stirling formula [AWH12]

Γ(1 + j) ≈
√

2πj

(
j

e

)j
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to approximate the Gamma-Function and obtain

|al(ν2)| = (ν2e)j

ν2j3/2
√

2π
+O(νj+1

2 ) .

The ratio of two succeeding coefficients is then given by∣∣∣∣aj+1(ν2)

aj(ν2)

∣∣∣∣ ≈ ν2

from which we infer that the (n+ 1)th harmonic is exponentially suppressed compared
to the nth harmonic.
This exponential suppression is also seen in the log-log-plot Fig. 4.17 of the normalised

intensity I(ω)/I
(0)
p (ωp) and shows the excellence agreement of the perturbative expansion

(4.38) with the numerical simulation for ν2 = 0.05� 1, where the red dots indicate the
theoretically predicted peak intensity. We note that assuming ν2 � 1 corresponds to
considering only the lowest order chained process to generate a given harmonic. Since
already the probability for two probe photons to generate the second harmonic is very
small, the merging of this signal into a third (or even higher) harmonic is exponentially
suppressed. If one gradually increases ν2 such that ν2 � 1 is no longer fulfilled, one
could expect a change in the exponential behaviour of the spectrum since more and more
different processes can contribute to a given harmonic and ν2 can no longer be seen as a
perturbative parameter. This is what we call the

”
shock regime“ and is analysed in the

next section.
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Figure 4.17: Normalised intensities of the harmonics generated in the perturbative regime
with ν2 = 0.05. The higher harmonics are exponentially suppressed.

Shock Regime ν2 → 1 (Parallel Case)

As we have seen in the previous section, the pre-shock regime was characterised by the
nonlinearity parameter being small, ν2 � 1 and the generated harmonics in the probe
pulse are highly suppressed. As this parameter is increased from zero towards one, a
qualitatively different behaviour of the harmonic spectrum is observed as it is shown in
Fig. 4.18 for different values from ν2 = 0.05 up to ν2 = 1.

Starting at approximately ν2 = 0.6, parts of the spectrum are no longer exponentially
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Figure 4.18: Harmonic spectra in the parallel setup for different values of ν2. The dots
show the leading-order perturbative term, the dashed line is the all-order analytical
solution and the solid line is from numerical simulation. The harmonics start showing
at approximately ν2 ≈ 0.6 a transition from exponential suppression to a power-law
behaviour.

suppressed but rather show the behaviour of a power law. This is the parameter range
which we call “shock regime”. Approaching ν2 → 1, the intensities of all shown harmon-
ics obey

I(jωp) ∼ jγ(ν2) , (4.39)

where j is the number of the harmonic and γ(ν2) is a increasing function of ν2. From
numerical results the exponent satisfies γ(ν2) < −3.4. From a physical point of view
this corresponds to summing all possible contributions to a given harmonic.
This can also be understood from the iterations of the wave equation. For example, the
third iteration of the wave equation also gives a contribution to the second harmonic,
but is suppressed by an additional factor of ν2. But since also the coefficients of the
higher iterations grow with the order of the iteration, in the shock regime all the higher
terms can no longer be neglected. The perturbative expansion (4.38) is not even suitable
to reproduce the correct qualitative behaviour of the spectrum for ν2 approaching one.
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Another consequence of the fact that a perturbative expansion is no longer valid comes
from the all-order solution (4.32) which depends not only on the parameter ν2 but on
quantity v2 = ν2 exp

(
−(x−/τp)

2
)
. To obtain the correct theoretical peak intensities that

match the numerical simulations for higher values of ν2, one has to transform the Bessel-
functions with the envelope function taken into account. This is done numerically using
Wolfram Mathematica.
Similar to the analysis of the perturbative case where we obtained the exponential sup-
pression of the higher harmonics, we can also observe the qualitative power-law from
the behaviour of the Bessel-functions. To do so, we take the infinite-plane-wave limit
τp → ∞ for the probe pulse which corresponds to setting the envelope function to one
and v2 = ν2. The relative intensity of two consecutive harmonics is then given by∣∣∣∣aj+1(ν2)

aj(ν2)

∣∣∣∣2 =

∣∣∣∣Jj+1[(j + 1)ν2]

Jj(jν2)

∣∣∣∣2( j

j + 1

)2

. (4.40)

Considering the higher harmonics with jν2 � 1, the absolute values of the Bessel-
functions can be approximated as [Wat51]

|Jj(jν2)| ∼ (2πj)−
1
2 ,

where phase terms were neglected. The coefficients therefore obey

|aj(ν2)| ∼ 1

ν2 j
3
2

√
2

π
(4.41)

and from (4.40) follows ∣∣∣∣aj+1(ν2)

aj(ν2)

∣∣∣∣2 ∼ ( j

j + 1

)3

, (4.42)

which correctly predicts a power-law dependence of the harmonics. For the normalised

intensity Ip(jωp)/I
(0)
p (ωp), it follows from (4.41) that for ν2 = 1, the gradient in a log-

log-plot is given by

log

(
Ip(jωp)

I
(0)
p (ωp)

)
∼ log

∣∣∣∣aja0

∣∣∣∣2 ∼
jv→∞

− log
2

π
− 3 log j .

The −3 is probably an overestimate, since v2 = ν2 exp
(
−(x−/τp)

2
)

and for most parts
of the probe, v2 < 1. The numerical and theoretical exponent for the spectrum in the
last pane of Fig. 4.18 with ν2 = 1 is found to be γ = −3.4 which can be likely traced
back to the influence of the finite pulse duration τp. A space-time plot of the deformed
probe field with ν2 = 1 is shown in Fig. 4.19.

We note that the all-order solution (4.32) can also be derived from a probe-dependent
refractive index n = 1 + δn2 with a phase-dependent refractive index for six-photon
scattering with ν2 = δn2Φ, where

δn2[Ep, Es] = 192µ2E
3
sEp . (4.43)

Then the asymptotic scattered field can be written as

Ep(ϕp) = E(0)
p (ϕp − ν2[Ep]) .

The solution shows that the parts of the probe with a higher (positive) amplitude travel
with slower phase velocity whereas the parts with smaller (negative) amplitude are ac-
celerated compared to the linear propagation where all parts travel with the same phase
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Figure 4.19: In the parallel setup the probe pulse develops a significant steepening while
passing a strong electromagnetic background which eventually leads to a discontinuity
if ν2 → 1. The short black dashes show the analytical solution (4.32).

velocity. The effect is also typical of a second-order susceptibility [Rad+08]. Finally, the
steepening of the wavefronts becomes so high that a discontinuous shock is introduced
in the solution. Also the Bessel-Fubini solution (4.33) develops such a discontinuity as
νBF → 1 which is shown in Fig. 4.20.
In the left panel both expressions are evaluated for the same arguments and the right
panel shows that both graphs are related by a reflection z → −z and a phase shift of
−π/2. Using the established relation between both solutions, the critical value ν2 = 1
corresponds to the situation where the solution develops a discontinuous shock. Follow-
ing the argumentation from the inviscid flow, then dissipative effects need to be taken
into account. For our scenario this would correspond to electron-positron pair-creation.
Further, since so many high harmonics are generated in the spectrum, the condition
jωp � m is no longer valid, which questions the applicability of the Heisenberg-Euler
Lagrangian to effectively describe the light-light interaction due to the nonlinear quan-
tum vacuum.

Although we just argued that the predictions of ν2 > 1 might be unphysical without
taking any further modifications into account, we study now the regime with ν2 > 1
for completeness and the results are useful for the analysis of the influence of dispersion
relative polarisations on the generated spectrum for ν2 = 1.
From the theory of the solution to Burger’s equation it is also known that the infinite
sum of Bessel-functions (4.33) becomes divergent for ν2 > 1 and does not yield the
proper physical solution to the differential equation. The theoretical prediction for the
pulse shape from (4.32) for several values of ν2 > 1 are shown in Fig. 4.21, which show
a drastically different behaviour than the solution for ν2 = 1. We note that the graphs
in Fig. 4.21 agree with those for the Bessel-Fubini solution shown in [She91].
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Ep(ωp(t− z))

EBF (ωp(t + z)− π/2)

Figure 4.20: The left panel shows a comparison between the scattered probe field (4.32)
with ν2 = 1 and the adapted Bessel-Fubini solution (4.33) with νBF = 1. Both graphs
show a similar steepening of the wavefronts, but the shock fronts appear on different
sides of the pulse different direction. The right panel shows that both solutions are
related to each other by z → −z and δϕp = π/2.

There exist several extensions of the Bessel-Fubini solution for Burger’s equation for
an infinite plane wave as initial condition. The general solution is thereby given by
the Cole-Hopf transformation [Whi11] as a quotient between two Fourier series [EH04],
where one limit gives the Bessel-Fubini solution for νBF < 1 and the other one is known
as the Fay solution, valid for νBF � 1. In [EH99] a linear system of equations is found,
from which the coefficients in a series expansion of each Fourier coefficient can be derived
one by one for regions where both the Bessel-Fubini and the Fay solution yield wrong
solutions.
Since a similar analysis for our pump-probe setup is out of the scope of this thesis, we
only state the result that coefficients of the solution for ν2 � 1 finally [EH04] approach
those of a pure saw-tooth-profile [Rud95] in the probe field as ν2 →∞:

E(ϕ) = εεεE
∞∑
j=1

(−1)j+1

[
cos(2j − 1)ϕ

2j − 1
+

sin 2jϕ

2j

]
. (4.44)

We note that only in the asymptotic limit ν2 → ∞ all harmonics are generated with
a power-law dependence I(ω) ∼ ω−2, for finite ν2 the exponent γ is less, γ < −2, and
there exists some kind of cut-off for the generation of high harmonics. In the numerical
solution, one might think that this is due to a finite grid resolution, but since we use
5000 grid points per wavelength in all relevant simulations and the theoretical limit
to resolve a given frequency is two points per corresponding wavelength given by the
Nyquist-Shannon-theorem [Nyq28; Sha49; PFT], frequencies up to ωp ∼ 500 should be
properly resolved and propagated. The result also turns out to be insensitive to higher
resolutions.
The qualitative behaviour of the spectrum with a power-law-exponential-transition with
a cut-off was also discovered using a simple-wave analysis of the propagation of a plane
wave in a strong magnetic field in [HH98].
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Figure 4.21: The behaviour of the all-order solution (4.32) changes drastically for ν2 > 1
which shows that the infinite sum of Bessel-functions is not convergent anymore, leading
to unphysical behaviour.

Several numerical spectra for ν2 > 1 are shown in Fig. 4.22. The highest ν2 that we were
able to achieve numerically was ν2 = 1.4. The corresponding asymptotic probe is shown
in Fig. 4.23. For higher values of ν2, the ODE-Solver did not show convergence in the
numerical solution, which indicates that higher resolutions would be needed. But this
leads to problems with the desired accuracy in the solution corelated with much more
computational effort. An alternative would be to adapt numerical “shock-capturing”
methods [LLV92; Tor13] or use “adaptive-mesh-refinement”[BC89; BO84; ER15].
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Figure 4.22: The numerical solution develops a shallower power law dependence as the
shock parameter ν2 is increased above one. The universal exponent as predicted by the
analytical solution for Burger’s equation is thereby γ(ν2 → ∞) = 2, which is indicated
by the green short-dashed line. The power law with exponent given in the lower-left
corner is given by the long blue dashed.
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Figure 4.23: The numerical simulation of the probe after passing a strong field with
ν2 = 1.4 has such steep gradients that it introduces spurious oscillations in the numerical
solution.

Up to now we only considered six-photon scattering as single source of VHHG. But
as it was argued in section 4.2.4, the effect of a modified refractive index on harmonic
generation can not be neglected since we consider a parameter regime with Ep, Es �
1. For general arbitrary relative polarisations, the two different refractive indices lead
to complicated phase relations between the different harmonics. The case of parallel
polarisations is special since there all harmonics are generated parallel to the probe
pulse and are therefore exposed to the same change of refractive index. Since this
change is, to lowest order, independent of the frequency [Adl+70], the phase lag is
common to all harmonics and the generated spectra are essentially unaffected by four-
photon scattering. The spectra for ν2 = 1 of pure-six- and combined four-and-six-photon
scattering are shown in Fig. 4.24 together with the absolute value of their difference. As
we already estimated in (4.35), the effect is of the order 10−4 − 10−5 for the intensity
of the second harmonic. Although the spectra do not differ significantly, the dispersive
nature of four-photon scattering can be observed. In Fig. 4.25 a space-time plot of both
asymptotic signals reveals that the box-diagram causes a clearly visible phase-shift of
the entire probe pulse, without affecting its shape.

For arbitrary relative polarisations, the two different refractive indices introduce different
phase relations between the generated harmonics. As a consequence, the prevention of a
synchronous interplay between the frequency components lead to a suppression of VHHG
and also the nature of the deformation of the probe pulse in the shock regime shows a
strong dependence on the relative polarisations.
These effects are studied in the next section for different parameter regimes.
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Figure 4.24: The left panel shows the spectra for pure six- and combined four- and six-
photon scattering in the parallel case with ν2 = 1. The right panel shows the difference
between the two spectra.
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Figure 4.25: Shockwave with v1 = 2.57 and ν2 = 1 for the hexagon diagram and com-
bined box and hexagon. The only clearly visible influence is the induced phase shift by
v1.

4.2.6 Polarisation Dependency

So far our discussion was for parallel probe and strong polarisations and we saw that four-
photon scattering does not contribute significantly to the generation of the shockwave.
We split the discussion of how dispersive effects on relative polarisations influence the
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generation of higher harmonics into three parameter regimes which are quantified using

the shock-parameter υ1 := υ
‖
1 (cf. (4.28)) for pure four-photon scattering. First we

consider the limiting case of absence of dispersion with υ1 � ν2, then the influence of
the dispersive vacuum with υ1 ≈ ν2 followed by an analysis of the strong dispersive
regime with υ1 � ν2.

Dispersionless Vacuum: υ1 � ν2

In the non-parallel case with arbitrary relative polarisation between the probe and strong
pulse, the shock-behaviour of the pulse and the generated spectra are already different
from the parallel case for only six-photon scattering. This is demonstrated for the per-
pendicular setup for the values ν2 = 0.05, 0.6, 1 of the parallel shock-parameter in Fig.
4.26 where the different line styles indicate the relative polarisations of the harmonic to
the probe pulse. For the parallel setup, all higher harmonics were generated parallel to
the probe pulse. In the perpendicular case, all even harmonics are generated parallel to
the strong background while all odd harmonics are parallel to the probe pulse.
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Figure 4.26: Harmonic spectra from numerical simulation of the perpendicular setup for
different regimes of solution: (a) ν2 = 0.05, (b) ν2 = 0.6, (c) ν2 = 1. The red solid lines
(blue dashed) peaks are harmonics parallel to the probe (strong) pulse.

The solution shows a much more complicated behaviour due to the asynchronous in-
teraction of the different harmonics which eventually leads to a suppression to VHHG
in this case. One might be tempted to think the form of the polarisation (3.41) and
the magnetisation (3.42) for the hexagon diagram that a similar analysis with another
shock parameter ν⊥2 = 104E3

s EpΦ might be valid. But this is not the case due to the
complicated interaction of the different harmonics in different polarisations via the GF
mixing term in the current.
Although the all-order solution (4.32) is only valid for the parallel case, we use it to
explain the qualitative behaviour in the perpendicular setup. Therefore, we state the
solution again and split it into even and odd frequencies:

Ep(ϕp, ν2) = Eeven
p (ϕp, ν2) + Eodd

p (ϕp, ν2) , (4.45)



4.2 Higher-order Processes and VHHG 89

where

Eeven
p (ϕp, ν2) = 2Epεεεp

∞∑
j=1

(−1)j+1J2j

(
2jυ2

)
2jυ2

sin(2jϕp) ,

Eodd
p (ϕp, ν2) = 2Epεεεp

∞∑
j=1

(−1)j+1J2j−1

(
(2j − 1)υ2

)
(2j − 1)υ2

cos((2j − 1)ϕp) .

(4.46)

and again υ2 = ν2 e
−
(
x−
τp

)2

includes the envelope function of the probe. A space-time
plot of the corresponding numerical shock-wave for ν2 = 1 in the perpendicular setup is
shown in the left panel of Fig. 4.27. The component perpendicular to the probe pulse
shows a similar behaviour as in parallel case, the development of a saw-tooth-profile,
but with double the probe frequency. In contrast, the superposition of harmonics with
polarisation parallel to the probe pulse show a different behaviour and tend to develop a
rectangular pulse shape. The split solution for the parallel case with ν2 = 1 is shown in
the upper right panel of Fig. 4.27 which qualitatively explains the generated shockwave
form due to the selection rules for the polarisation of even and odd harmonics. The even
harmonics are generated parallel to the strong pulse such that this behaviour is similar
to Eeven

p (ϕp, 1), the odd frequencies generate a pulse shape similar to Eodd
p (ϕp, 1).

As in the parallel case, we expect both components to attend an asymptotic spectral
intensity I(ω) ∼ ω−2 as ν2 → ∞, leading the following expressions for the scattered
field:

Erect(ϕ) = E
∞∑
j=1

(−1)j+1 cos(2j − 1)ϕ

2j − 1
,

Esaw(ϕ) = E
∞∑
j=1

(−1)j+1 sin 2jϕ

2j
.

(4.47)

The corresponding graphs of these asymptotic pulse shapes are shown in the lower right
panel of Fig. 4.27. As in the parallel case, both components develop a shock front.

In the next section we investigate the effect of a background with υ1 ≈ ν2.

Dispersive Vacuum υ1 ≈ ν2

For the parallel case, dispersive effects from four-photon scattering did not influence the
shape of the generated shockwave since all harmonics were objected to the same disper-
sion relation and therefore gained the same asymptotic phase shift. For the perpendicular
setup, the different refractive indices lead to different phase relations between the har-
monics and therefore might potentially influence the shape of the generated shockwave.
For weak dispersion with υ1 = 0.5 and ν2 = 1 the resulting shockwave is shown in Fig.
4.28.
Apart from a phase shift by −υ1, the the pulse shows a similar shape as in the non-
dispersive case shown in the left panel of Fig. 4.27 where only six-photon scattering was
considered. The corresponding spectrum for υ1 = 0.5 is depicted in the left panel of Fig.
4.29.
Further increasing the shock parameter υ1 leads to a significant change in the deforma-
tion of the probe pulse. This is shown for υ1 = 2.5 in Fig. 4.30.
The asymptotic component parallel to the probe pulse for υ1 = 2.5 develops a similar
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Figure 4.27: The left panel shows a space-time plot of the shockwave generated in the
perpendicular setup for ν2 = 1 from pure six-photon scattering. The red solid line is the
shape of the component parallel to the probe pulse consisting only of odd harmonics. The
blue line with long dashes is the newly generated component parallel to the strong field
which is only formed from even frequencies. The short dashed line indicate the initial
probe profile. The upper right panel shows the split solution (4.46) of the parallel case
with ν2 = 1 and the lower right panel show the limit of ν2 →∞ (4.47) as a comparison.

deformation as it is observed for a pulse propagating in an optical Kerr medium, for
which the polarisation has the form

Pi = χ
(1)
ij Ej + χ

(3)
ijklEjEkEl , (4.48)

where χ(j) is the jth susceptibility tensor. In this case, the refractive index depends
on the modulus of the electric field of the probe [MN04], n = 1 + δn(|Ep|2), and as a
result, the parts of the probe with higher amplitude travel with a smaller phase velocity
than those with a smaller amplitude. As we have seen, the parallel component of the
probe contains only the odd harmonics and therefore the behaviour described by (4.48)
is consistent, since the highest nonlinear term stems from E3

p and all higher powers are
suppressed since Ep � 1. The perpendicular component does not show any particular
deformation.

The corresponding spectrum is shown in the right panel of (4.29) and we observe that
the ordering of the harmonics is no longer monotone and the higher even harmonics are
more suppressed that the odd one. This is due to the refractive index being smaller by a
factor of 4/7 for the component parallel to the probe and the perpendicular component
is objected to higher dispersive effects, leading to a more complicated phase relation
between the harmonics. In the parallel setup each generated harmonic experiences the
same dispersion relation and therefore the interaction of all generated signals can add
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Figure 4.28: Shockwave in the weakly dispersive, perpendicular setup with ν2 = 1 and
υ1 = 0.5. The red solid line indicates the component parallel to the probe field, the
long blue dashes field parallel to the strong pulse and the short dashes show the initial
pulse profile. Although both components are objected to different refractive indices, the
behaviour is still similar to the case of pure-six-photon scattering.

up synchronously.
For the perpendicular setup, the odd (even) harmonics are generated perpendicular (par-
allel) to the strong pulse and thus the different refractive indices induce different phase
lags between the harmonics. Each scattered signal, which might be the input for another
chained process, obtains a different phase. In contrast to the parallel case, these phase
mismatches lead to an incoherent summation of all possible processes. Therefore, the
generation of high harmonics is less effective and the development of shocks suppressed.

The problem and influence of different refractive indices on the generation of higher
harmonics is also common to nonlinear optics and known as “phase-matching” problem
[Trä07]. The mismatch of phase relations between the interacting waves can lead to
a large suppression of the conversion into higher frequencies in nonlinear media. Our
observations of carrier-wave shocking are similar to those in reported in [Kin+07], where
numerical studies using a pseudospectral spatial-domain technique [TKN05] were used
to model nonlinear light propagation and showed excellent agreement with theory in
the dispersionless limit. The authors also observed that a nonlinear refractive index has
potentially a large influence on the effectiveness of carrier-wave steepening due to the
phase mismatch.
In the next section even higher dispersive effects are studied and we will see that the
phase mismatch explained above leads to so heavy suppression of harmonic generation
that also the derivative of the envelope function become visible.
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Figure 4.29: Small dispersion (left panel with υ1 = 0.5) does not influence the harmonic
generation in perpendicular setup significantly. As dispersive effects become stronger
(right panel with υ1 = 2.5), the ordering of the harmonics is changed and the generation
of the perpendicular harmonics (blue dashed line) becomes higher suppressed compared
to the parallel component (red solid line).
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Figure 4.30: The shape of the generated shock wave changes significantly in the parallel
component (red solid) as dispersive effects become stronger (υ1 = 2.5, ν2 = 1). The
perpendicular field (blue long dashes) is also generated, but the steepening is suppressed.
The initial pulse profile is indicated by the short dashes.
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4.2.7 Strongly-dispersive Vacuum υ1 � ν2

For the regime where four-photon scattering is much more prevalent than six-photon
scattering, a comparison of the different harmonic spectra for shock parameters υ1 = 25
and ν2 = 1 is shown in Fig. 4.31 for the perpendicular setup with comparison four–, six-
and four-and-six photon scattering.
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Figure 4.31: We consider strong dispersive effects with υ1 = 25 and ν2 = 1 in the
perpendicular setup. The left pane shows the harmonic spectra generated from pure
four-photon scattering, the middle pane from just six-photon scattering and the right
pane for when both are combined. The red solid (blue dashed) peaks are harmonics
parallel to the probe (strong) pulse.

Again, the harmonic generation is highly suppressed due to the highly distorted phase
relations of the generated frequencies. Up to now we always assumed that the derivative
of the envelope function of the probe pulse can be neglected (cf. (2.83)), which turned out
to be a good approximation. In the numerical simulation, the derivative of the envelope
also appeared as it was analysed in section 4.1 in the discussion of the overlap signal. But
as we always treated the case ωpτp � 1, the effect was never directly visible but only after
filtering the corresponding component. Now in the strongly dispersive case the phase
mismatch of the higher harmonics in the perpendicular setup is so high that already
the generation of the second harmonic is strongly suppressed and the deformation of
the probe pulse becomes clearly visibly. A space-time plot of the deformed component
parallel to the strong pulse is shown in Fig. 4.32.
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Figure 4.32: Shown is the probe component parallel to the strong pulse for the perpen-
dicular setup in the presence of strong dispersion with υ1 = 25 with ν2 = 1. The effect
of high harmonic generation is strongly suppressed by dispersion and the deformation
of the envelope becomes visible.



4.3 Discussion for VHHG 95

4.3 Discussion for VHHG

4.3.1 Ultra-short Probe Pulses

As we saw in the previous section, in the case of strong dispersion, the effect of the
derivative of the envelope function can also be directly observed. Up to now, we have
taken ωpτp � 1 such that neglecting the envelope was a good approximation. If one
relaxes this condition and considers very short pulses, the all-order solution (4.32) could
possibly become invalid as ωpτp � 1 was used in the derivation. Therefore, we simulated
a few-cycle-pulse with ωpτp = 5 in the ν2 = 1 parallel setup. The inital profile together
with the generated shockwave is shown in Fig. 4.33.

z
−Ep

0

Ep

Figure 4.33: Shock wave induced in a few-cycle pulse with ωpτp = 5 (red solid line)
together with the inital probe profile (blue dashed) in the parallel setup after passing a
constant background with ν2 = 1. The effect of pulse steepening is similar to the case
analysed in section 4.2.5 for long pulses with ωpτp � 1.

The resulting spectrum together with the initial probe spectrum and a long pulse with
ν2 = 1 is shown in Fig. 4.34. The initial spectrum of the probe is much broader as
the pulse is shorter in position space. Again, the inclusion of four-photon scattering
has a negligible effect on the spectrum as it only causes a phase shift. As we see, the
spectrum of the shocked short pulse is much smoother than that of the long pulse, but
obeys essentially the same power law as the long probe. This can be understood from the
inital spectrum. In the long-pulse case, the initial spectrum is peaked strongly around ωp
with the limit of a δ-peak for the plane wave limit τp →∞. Therefore, the nth harmonic
is sharply peaked around the well-defined frequency nωp. As the width of the initial
spectrum scales with ∼ 1

τp
, for the shorter pulse a much broader range of frequencies



96 4. Harmonic-Generation and Shockwaves

1 5 10 20 30
ω/ωp

10−30

10−24

10−18

10−12

10−6

1

I
(ω

)/
I

(0
)

p
(ω

p
)

Figure 4.34: The spectrum of the few-cycle shock wave shown in Fig. 4.33 (red thick
line) compared to the spectrum of a long pulse (thin black line) in the parallel ν2 = 1
case. The spectra show the same power-law-scaling, but the peaks of the short pulse
spectrum are much more smoothened out compared to long pulse. This results from
the initial probe spectrum (blue dashed) containing much more frequencies which merge
into less sharply peaked sum frequencies.

can merge together into higher harmonics. So for n photons with individual frequencies
ωp,l from this larger spectrum, the resulting signal has a frequency at

∑n
l=1 ωp,l. The

similarity of the power-law-behaviour of the spectrum is an indication that our original
analysis is also valid in the few-cycle case, but the extensive analysis of this case is
beyond the scope of this thesis.

4.3.2 VHHG in Inhomogeneous Backgrounds

As constant fields comparable to the critical field are very hard to generate in terrestrial
experiments, mainly focused laser beams are used to study vacuum polarisation effects.
Therefore, the assumption of a constant background, often assumed to be a “constant-
crossed-field” with |E| = |B| = const. and E · B = 0, is questionable. To study more
realistic scenarios, at least one single cycle in the background has to be considered. To
give an outlook on the study of inhomogeneities in the background, we have included a
single sinusoidal oscillation in the background as it is shown in Fig. 4.35. As we have
seen in (4.30), the second harmonic scales to lowest order in ν2 with ν2 ∼ E3

s Ep, the third
one with (ν2)2 and in general the nth harmonic with (E3

s Ep)n−1. So the even harmonics
originate from integrals over odd powers of the strong field, the odd ones from even
powers of the strong field. As we included a sinusoidal oscillation in the background,
one would expect the even harmonics to be heavily suppressed as opposed to the odd
ones because the integration over odd powers of a sinusoid vanishes. For the analysis of
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Figure 4.35: Simulational setup to study the effect of inhomogeneities in the background
on VHHG. The otherwise constant background now includes a single sinusoidal oscilla-
tion. The different line styles indicate different field strengths.

the odd harmonics, let us consider the third harmonic for simplicity. As we have seen,
the third harmonic scales with (ν2)2 ∼ E6

s , so it originates from an integral over sin6 ϕs.
From the identity

sin6 ϕs =
5

16
− 15

32
cos 2ϕs +

3

16
cos 4ϕs −

1

32
cos 6ϕs

we see that sin6 ϕs also has a constant contribution. One could now think that only the
constant term with 5

16 is relevant to reach the same intensity for the third harmonic as

in the constant background. If this were the case, then a simulation with ν2 = (16
5 )1/2

with the oscillating strong field should lead to the same intensity of the third harmonic
as ν2 = 1 with a constant background. The 16

5 would then compensate for the 5
16 in

the sin6 ϕs to yield the same “effective” ν2 for the generation of third harmonic. The
resulting spectrum for pure six-photon and combined four- and six-photon scattering is
shown in Fig. 4.36. We see that the harmonic generation is strongly suppressed compared
to the constant case although we adjusted the relevant value ν2 to compensate for the
inhomogeneity. This suggests that the shape of the background introduces a much more
complicated interplay of the harmonics and cannot be compensated by a power scaling.
Also for the setup of a Gaussian background one might naively think that an “effective”
pulse duration τs can be defined and the all-order solution (4.32) would apply. But there
was no numerical indication that this is the case.
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Figure 4.36: The red solid line is the generated spectrum for an optical probe after
passing a constant background with ν2 = 1. The green long dashed line is the spectrum of
the probe with only six-photon scattering included after passing a sinusoidal background
as it is shown in Fig. 4.35 with an adjusted value ν2 → ν2(16

5 )1/2. The blue short dashes
are the probe spectrum with the additional inclusion of four-photon scattering in the
simulation. The generation of harmonics is heavily suppressed in both cases of a non-
constant strong pulse.

4.3.3 Comparison with Harmonic Generation in Laser-irradiated Plas-
mas

The results obtained in this thesis suggest a certain similarity of VHHG via the virtual
electron-positron “plasma” to the generation of high harmonics in laser-irradiated foils.
There are no nonlinear effects of light propagation for plane waves as the nonlinearity
only depends on the field invariants F and G and they vanish identically for plane waves.
In this sense, the quantum vacuum also shows a certain transparency to light propaga-
tion similar to the one of a plasma which is a linear medium for photon frequencies
above the plasma frequency [Bit13]. Unlike the plasma in a laser-irradiated foil, where
one assumes complete ionisation as the laser hits the target, the vacuum first has to
be “activated” by a strong background, which is similar to pump-probe experiments in
spectroscopy (see e.g. [SBN04; Lup+14]).
The rectangular function used to model the constant background in the current chapter
on VHHG is also used as an initial profile function for the electron density of a target in
a laser-experiment [McK+13] and for the laser profile used in capillary discharge waveg-
uides to produce Multi-GeV electron beams [Lee+14]. Another similarity is the selection
rules for harmonic generation, which are also present in the relativistic oscillating mirror
(ROM) model [Gor+05]. In our parallel pump-probe setup, all harmonics were generated
parallel to the probe pulse, while in the perpendicular case the even harmonics were gen-
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erated parallel and the odd ones perpendicular to the strong pulse. In the ROM-model,
selection rules for the generated harmonics for oblique incident of the laser on the target
are also found. Odd harmonics are generated in the p-polarisation (where p stands for
“parallel” to the plane of incidence) and the even ones in the s-polarisation (“senkrecht”,
so perpendicular to the plane of incidence [LJP96]). The more effective generation of
harmonics parallel to the probe pulse is also reminiscent of nonlinear Compton scatter-
ing [Kin14] where the emission of photons with polarisation parallel to the background
is preferred.
The power-law behaviour for the intensity of lower harmonics together with the exponen-
tial suppression of higher harmonics is also observed for the real plasma present in laser-
foil experiments. In the ROM-model, theoretical predictions with I(ω) ∼ ω−5/2[Gor+04]
and a universal exponent of I(ω) ∼ ωγ with with γ = −8/3 [BGP06] have been derived.
Experimental values for such exponents were found for solid-state targets to be intensity
dependent with ranges from −5.50 to −3.38 [Nor+96]. For our vacuum high harmonic
generation, the power-law behaviour in the numerical and analytical spectra first ap-
pears evidently at shock parameters of ν2 ≈ 0.85. We found that the exponent increases
as a function γ = γ(ν2) and yields similar values of −4.5 . γ < −2.
The existence of a cutoff harmonic for finite values of ν2 is also found for photon merg-
ing, but unlike the ROM-model, no scaling behaviour for the cutoff frequency could be
determined from the numerical results as higher values with ν2 > 1.4 were not feasible
to simulate.
The theoretical value γ = −2 corresponds to the case ν2 → ∞ and would only be ob-
tained for an infinite propagation distance. But this value is never reachable because of
the production of real electron-positron pairs from seeded pair-creation [Rei62; NR64].
Another possibility is the multi-photon Breit-Wheeler processes [BW34; Pik+14] for
which a probe photon γp with four-wave vector kp would have to interact with n pho-
tons from the background with wave vector kbg satisfying [Sei+16]

s = (k + n kbg)2 = 2ωnω′
(

1− cos^(~kp,~kbg)
)
> 4m ,

where s is the Mandelstam variable [PS95], m is the mass of the electron and cos^(~k,~kbg) =
−1 corresponds to our setup of counter-propagating pulses. Such relaxation effects would
likely lead to a depletion of the higher harmonics and therefore prevent the generation
of extremely high gradients in the probe. Further alternative possible mechanisms to
prevent the probe wave from developing a shock front are explained in the next sec-
tion on the validity of the approach chosen in this thesis. Also taking transverse pulse
dimensions into account leads naturally to dispersive effects [MN04] that can possibly
dominate the vacuum nonlinearities.

The spectra of high harmonics generated in laser-gas and laser-liquid interactions shows
a qualitatively different behaviour, namely the development of a “plateau” region in the
spectrum which is not present in VHHG. The effect observed in these experiments is
the three-step recombination mechanism [Trä07; WSG08]. The gas or liquid is used as a
target for a laser pulse whose amplitude is comparable to the Coulomb field experienced
by the electrons due to the nucleus. The electron can then tunnel outside the binding
potential of the nucleus (which is lowered by the laser) and additionally gets accelerated
by the external field. A recombination of the electron and the nucleus then leads to the
emission of high harmonics. As this effect is of completely different fundamental nature,
no such “plateau” region is observed in vacuum high harmonic generation as studied in
the present work.

Harmonic generation in the parallel setup was only minimally effected by dispersive
effects due to the non-unitary refractive index induced by the strong background. This
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is because all modes obtain the same phase lag and therefore the interaction lead to a
coherent summation of higher order processes, leading to a monotonic increase of the
higher harmonics with the propagation distance.

The perpendicular setup did not show such an effective harmonic generation since the
different harmonics interacted in a complicated, non-phase-synchronous way since the
possible chains leading to a given harmonic experienced different refractive indices for
different propagation distances. The summation of this incoherent, complicated phase
relation leads to an overall phase mismatch resulting in a suppression of harmonic gen-
eration. A similar effect is found for nonlinear optical materials in [Kin+07] which
eventually leads to an attenuation of pulse-steepening effects.

4.3.4 Validity of Approach

With the generation of very high harmonics, the assumption that the variation of the
field inhomogeneity does not vary significantly over a Compton wavelength also becomes
invalid such that the applicability of the Heisenberg-Euler Lagrangian is questionable.
Extensions to the Heisenberg-Euler Lagrangian including derivatives of the field invari-
ants F and G also exist in the literature [MME81; GS96; GS99; DH99]. Let us follow
the analogy from section 4.2.5 that the all-order solution of the scattered field for a La-
grangian can be obtained as a solution to a nonviscid Burger’s equation. We start from
a Lagrangian containing only polynomials of the field invariants F and G and obtain
schematically an equation

∂tEp(t, z) + c Ep(t, z)∂zEp(t, z) = 0 (4.49)

with some constant c. Then such a derivative term in the Lagrangian would naturally
introduce a second order derivative term in (4.49) possibly acting as a dissipative (vis-
cous) term [Tho13] which might prevent the wave from developing infinite gradients.
Similarly, also dispersive effects from the frequency dependent refractive index in a strong
external field as it was found by Toll in [Tol52], can be used to introduce a third deriva-
tive [ZF82] into Burger’s equation for constant magnetic backgrounds, finally leading to
a Korteweg-de-Vries-type equation. The Korteweg-de-Vries equation is known for allow-
ing Soliton-type solutions such that also dispersive effects might finally prevent the wave
from shocking. The detailed study of these effects is outside the scope of this thesis, but
may inform future research.

In the pump-probe setup considered in this thesis the effect of transverse directions and
therefore longitudinal polarisations was ignored. We note that the invariants F and G
also remain small for single focused laser pulses that have additional longitudinal field
components Ez and Bz opposed to counter-propagating pulses. For example, a radially
polarised Gaussian beam with amplitude E0, frequency ω and wave vector ~k = kêz along
the z-axis exhibits G = 0, but

F =
1

2
(E2 −B2) ≈ 1

2
θ2

0E
2
0 sin2(ωt− kz)

close to the focus [McD00], where

θ0 =
2

kw0
(4.50)
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is the diffraction angle and w0 the width of the pulse in the transverse plane of the beam.
Then the limit w0 → ∞ corresponds to the plane wave case with θ0 → 0 and therefore
F → 0. To see in which parameter range the assumption of plane waves is justified, we
define the diffraction parameter

l =
w2

0

λpτs
, (4.51)

where w0 is the again the “waist” of the probe pulse. If one assumes that the extension
of the probe pulse in the directions perpendicular to the propagation is smaller than the
one of the strong background, then l � 1 represents the “far zone” in which diffractive
effects play an important role whereas the “near zone” is characterised by l� 1 and in
this regime neglecting diffraction should be a good approximation [Lev68].
Another effect of transverse dimensions would be the enhancement of self-focusing [cS00;
KT07]. For six-photon scattering, the scattered field is a function of the field itself leading
to the generation of higher harmonics and an increase of intensities and some relaxation
effects, such as real electron-positron-pair creation might more relevant.
Neglecting transverse dimensions also leads to the vanishing of an asymptotic second har-
monic from pure four-photon scattering. In [KK12] it was shown that for non-parallel
probe and strong pulse wave vectors, elastic four-photon scattering (which corresponds
to four-wave mixing which is forbidden as explained in the last chapter) is permitted
and the scattered field obtains an additional factor 1 − cos(θ) from non-parallel probe
and strong wave vectors. θ is thereby the angle between the k-vector of the probe and
strong pulse such that θ = 0 corresponds to parallel propagation and therefore vanishing
of all nonlinearities.
It is also shown that for long pulses with τ � w0, the scattered field is dominated by the
focusing of the beam while for short pulses (τ � w0) the scattered field is dominated by
the longitudinal pulse shape.
Polarisation effects from heavier Standard Model particles like muons with mass mmu ≈
200m were neglected as this would correspond to a change in the critical field Ecr →
200Ecr and therefore these effects are heavily suppressed since all fields are normalised
by this factor.
Corrections from scattering with even heavier particles like pions (which comprise a
quark-anti-quark pair) or closed quark loops, were shown to be relevant only at much
higher energy scales than considered in this thesis [FD08]. Therefore, considering ef-
fects of vacuum polarisation due to virtual electron-positron pairs should be a good
approximation.

4.3.5 Measurability

The analysis of high harmonic generation showed that the probe develops a discontinu-
ity as the shock-parameter ν2 = 192µ2E3

s EpΦ ≈ 1 in the parallel setup whereas in the
perpendicular case the generation of the high frequency components was suppressed and
also strongly sensitive to dispersion.
So in the ideal case one would consider six-photon scattering in the parallel setup (which
is insensitive to the leading-order vacuum refractive index). The current highest electric
field of a laser pulse produced in a laboratory is of the order E = 3× 10−4Ecr [Yan+08].
Assuming both probe and strong field are of this order of magnitude, ν2 ∼ E4 and the
limit ν2 → 1 would require extremely high pulse durations and/or frequencies. And as
the coefficient µ2 = α/315π � 1, it is clear that the shock regime is currently well out of
the reach of optical laser-based experiments.
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Vacuum induced electromagnetic shock waves are more likely to be important in astro-
physical contexts like the the evolution of X-ray pulsars and strongly-magnetised neutron
stars or “magnetars” [Maz+79; CCY92; HL03].
The surrounding magnetic fields of these objects are comparable to Ecr or even higher
and are assumed to have a depth of 0.1-10 cm [HL06]. The current results were derived
for a constant crossed field background, but can be generalised to a constant magnetic
field, which should be a good approximation to the local field in strongly-magnetic pul-
sars, which is expected to be that of a dipole [HL06] on the stellar scale. But also there,
the assumption of a completely homogeneous background is questionable and we have
seen that VHHG is strongly sensitive to shape of the strong field.
In laser-based experiments, vacuum polarisation will more likely be measured as elastic
photon-photon scattering [Men+06; Hei+06; Fer+07; TM10; KPK10; KDK10; KH11;
MK11; Din+14b; Din+14a; HH14; GKS13; KS15] or lowest-order photon merging
[BMS01; Lun+06; KK12; GKS14] . The current best experimental limits for photon-
photon scattering in an all-optical laser setup [Ber+00] and in setups combining magnetic
fields with resonant optical cavities [Zav+12; Cad+14] are still a few orders of magnitude
above the QED prediction.



Chapter 5

Conclusions and Outlook

5.1 Conclusions

Many predictions of vacuum polarisation effects are obtained for constant, homogeneous
backgrounds, but the analysis becomes difficult as soon as one considers fields that are
non-uniform in space and time.

This thesis is dedicated to the study of the propagation of optical radiation in electro-
magnetic backgrounds where the photon wavelength is much shorter than the typical
variation of the background. The main effects considered here are a probe-dependent
refractive index experienced by the probe due to the background and the generation of
higher harmonics.

After a short introduction to the notion of vacuum polarisation and a derivation of the
Heisenberg-Euler Lagrangian in chapter 2, the simulational setup of two plane wave
pulses, where a probe pulse collides with a strong “background”, has been introduced
and possible allowed processes for this setup in the case of weak fields have been dis-
cussed.

In chapter 3, the analytical, iterative solution to the wave equation in (1+1) dimensions
for the electric field has been introduced. The first iteration has led to the dynamically-
generated “overlap” signals that do not arise in standard scattering theory. Neglecting
the back-reaction of the probe on the strong pulse, further iterations have been calculated
and for six-photon scattering interpreted as processes that generate higher harmonics in
the probe spectrum.
In the second part of the chapter, a numerical method has been adopted to solve the
Maxwell equations that include the weak-field corrections from the Heisenberg-Euler
Lagrangian. This allows, to the best of our knowledge, the first direct numerical time
integration of the full quantum-modified Maxwell equations.

In chapter 4, both methods have been applied to pump-probe setups. In the first
part, the strong background has been a pure Gaussian envelope and the time-resolved
dynamics of the collision of both pulses has been studied. A complete analysis of all
processes from four- and six-photon scattering that arise from the first iteration of the
wave equation has been carried out with theory and simulation showing excellent agree-
ment. The main effects here have been birefringence, harmonic generation and also the
back reaction of the probe on the background. As the overlap signal can potentially
dominate the asymptotic signal in the presence of inhomogeneities, the question of the
validity of locally-constant-field-approximations arises and indicates the need of a more
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careful analysis of their applicability.
The second part of this chapter then has been dedicated to the study of the influence
of higher order processes. The strong pulse has been chosen to be a square pulse with
vanishing frequency. For this setup with parallel pulse polarisations, the wave equation
can be solved explicitly for four- and six-photon scattering and two analytical all-order-
solutions for the scattered probe pulse has been derived. One leads to an integrated
phase shift of the entire probe which originates from a linear refractive index indepen-
dent of the probe field. The other one can be compactly written as a refractive index
depending on the probe amplitude, leading to vacuum high harmonic generation in the
interaction region. Based on the weak-field expansion of the Heisenberg-Euler model,
the probe-dependent phase eventually leads to the development of a “shock” after a
characteristic propagation length. The process of high harmonic generation turns out to
be very sensitive to relative non-parallel polarisations and to dispersive effects similar to
the problem of “phase-matching” in quantum optics.
In the last part of chapter 4, a brief outlook on ultra-short pulses and the study of high
harmonic generation in inhomogeneous backgrounds based on the numerical method has
been given. In the discussion, a comparison with plasma physics has been made and the
validity of the approach using plane waves has been discussed.

5.2 Outlook

There are several experiments like PVLAS [PV] and the two upcoming ELI-NP [EL]
and HIBEF [HI] experiments that are designed to finally measure real photon-photon
scattering for the first time. Due to the smallness of the effect, extremely high intensities
and/or large field extents are required and hence many experiments rely on tightly-
focused lasers. We saw that in this case the assumption of plane waves becomes invalid
and deviations are expected. Therefore, generalisations of the methods used in this
thesis to more than (1 + 1) dimensions are desirable to connect to these experiments.
For the Green’s function approach, this has already been done successfully by several
authors, but only for the first iteration of the wave equation. The generalisation of the
numerical method to higher dimensions has already been developed with the advantage
to treat arbitrary pulse shapes and collision geometries which could be used to optimise
experimental setups. A further improvement will demand the inclusion of real electron-
positron pair-production, but up to now, no self-consistent model that includes dispersive
and dissipative vacuum polarisation effects has been developed.

There have been many different proposals to measure vacuum polarisation over the last
decades such that experimental data is much desired and needed. The experiments
will help to confirm a more than 80 years old prediction considered untestable at the
time when it was made. Additionally, the search can also lead to indicators of physics
“Beyond the Standard Model”. This could be the existence of new particles like “weakly
interacting sub-eV/massive particles” (WISPs and WIMPs), axion-like particles or gauge
bosons of a hidden U(1)-factor that extends the gauge group of the Standard Model.
Therefore, independent of the observation of light-by-light scattering, such experiments
will give insights, at least in terms of experimental bounds, on the existence of new
physics.
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Appendix A

Conventions and Notation

A.1 Conventions

Apart from the second chapter with the derivation of the propagator for arbitrary
quadratic Hamiltonians, Greek indices like µ, ν, α take values in 0, 1, 2, 3. Small latin
indices like i, j, k take the values 1, 2, 3. The metric tensor is defined as

gµν = gµν = diag(1,−1,−1,−1) . (A.1)

Scalar products are then defined as kx := gµνk
µxµ = k0x0 − k · x with the Einstein

summation convention that summation over repeated indices is implicit.
If not written explicitly, we chose natural units with h = c = 1.
The field strength or Faraday tensor is given by

Fµν =


0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0

 . (A.2)

The dual field strength is defined as

?Fµν =
1

2!
εµνσρFσρ ,

where εµνσρ is total anti-symmetric in all indices with ε1234 = 1. In components, ?Fµν

is given by

?Fµν =


0 −B1 −B2 −B3

B1 0 E3 −E2

B2 −E3 0 E1

B3 E2 −E1 0

 . (A.3)

The following identities hold:

F i0 = Ei , ?F i0 = Bi , (A.4)

F ij = −εijkBk , ?F ij = εijkEk . (A.5)

The field invariants are defined as

F = −1

4
FµνF

µν =
1

2
(E2 −B2) ,

G = −1

4
Fµν ?F

µν = E ·B .
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The secular invariants are then defined in terms of F and G as

a :=

√√
F2 + G2 + F ,

b :=

√√
F2 + G2 −F

and satisfy

ab = G , (A.6)

a2 − b2 = 2F . (A.7)

A.2 List of Symbols

Chapter 1

D, H Electric displacement and magnetising field, first appearing in
(1.2).

P, M Polarisation and magnetisation, appearing for the first time in (1.3)
and (1.4), properly defined in in (1.15).

χ
(n)
e,m n-th electric/magnetic susceptibility tensors, first appearing in

(1.5).
~, c Planck’s constant, speed of light in vacuum.
e−, e+ Electrons and positrons.
m, e Mass of the electron and the charge of the electron is −e < 0.
Ecr, Bcr Critical field strength defined in (1.6) and below (1.6).
λC Compton wavelength of the electron define on Page 3
σγγ Cross section for light-by-light scattering, given by (1.7).
λC, tC Reduced Compton-wavelength and Compton-time defined on Page

3.
Fµν , ?Fµν Electromagnetic field strength or Faraday Tensor defined in (A.2)

and (A.3).
gµν , gµν Minkowski metric defined in (A.1).
F , G Electromagnetic field invariants defined in (1.14).
Jµmatter Matter four-current Jµmatter = (ρmatter,Jmatter) introduced on Page

5.
LMW Maxwell-Lagrangian LMW introduced on Page 5.
γµ γ-matrices satisfying γµγν + γµγν = 2gµν .
σµν Spin matrices defined in (2.12).
Dµ, Πµ Covariant derivative defined on Page 5 and canonical momentum

given by (2.13).
/A Feynman-slash notation with /A := γµAµ.
Ψ, Ψ̄ Dirac spinor and its Dirac conjugate with Ψ̄ := Ψ†γ0

SQED, LQED QED action and QED Lagrangian defined in (1.11) and (1.13).
Lint(F ,G) Interaction Lagrangian for effective photon-photon interaction, ex-

plained on Page 6.

Chapter 2

φ(x) Scalar field satisfying the Klein-Gordon-equation (2.1).
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∇, ∆ Nabla operator and Laplacian with ∆ = ∇2.
� d’Alembert operator defined by � := gµν∂µ∂ν = ∂2

t −∆.
Z[j] Generating functional for n-point correlation functions in presence

of a source j, defined in (2.2).
W [j] Generating functional for the connected n-point correlation func-

tions in presence of a source j, defined in (2.5).
SF(x, x′) Feynman propagator defined by (2.4).
Γ[A], Leff Effective action and effective Lagrangian for the photon field, de-

fined in (2.9) and (2.11).
Hpt Proper-time Hamiltonian defined in (2.15).
H General quadratic Hamiltonian defined in (2.20) with constant met-

ric G on phase space.

X̂ := (x̂, p̂) Coordinate operator X̂ := (x̂, p̂) on phase space consisting of the
position operator x̂ and position operator p̂, defined on Page 17

〈, 〉 Standard Euclidean scalar product on 2n-dimensional phase space
defined in (2.21).

ψty(x) Wave function of |ψ(y, t〉 with ψty(x) = 〈x|ψ(y, t)〉 and

|ψ(y, t)〉 ψ(y, t) := e−iHt|y〉 is the time-evolved state of |y〉 defined in (2.22).
x̂(t) Time-evolved operator x̂ defined in (2.25).
Ω Standard symplectic matrix given by (2.27).
1n n-dimensional identity matrix.
St := e−tΛ Symplectic flow defined in (2.36) and its generator Λ defined in

(2.32).
Sti Blocks of the symplectic flow St, defined in (2.40).
f(y, St) Function used to define ψty(x) in (2.45).

N(St) Function to further refine the expression of ψty(x) in (2.50) with

Φt
y given by (2.51).

N(St) Another function defined by (2.54) further refining ψty(x).

a, b Secular invariants defined in (B.15).
LHE Heisenberg-Euler Lagrangian given by (2.63), the Leff for constant

fields with Fµν = const.

Li, µi i-th term in the weak-field expansion (2.64) of LHE with coefficient
µi given in (2.68).

Ci Coefficients in the covariant nonlinear Maxwell equations (2.70)
which are derived in App. C.3.

J[E,B] Vacuum current in the Maxwell equations (2.75) defined by (2.76)
and (2.77).

T[E,B] Vacuum source term in the inhomogeneous wave equation (2.78)
defined in (2.79).

Ji[E,B],
Ti[E,B]

Source terms for the ith-order weak-field expansion, defined in
(2.80).

Mi,Pi Magnetisation and polarisation for the ith-order weak-field expan-
sion, defined in (2.81).

x+, x− Light cone coordinates defined on Page 27.

E
(0)
p (x−) Analytic expression for the initial electric field of the probe pulse

given by (2.82).
εεεp, ωp, kp, τp Polarisation vector, carrier frequency, wave vector of the probe and

probe pulse duration, defined on Page 27.

E
(0)
p (x−),

fp(x
−)

Amplitude function and envelope function of the probe pulse de-
fined on Page 27.
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ϕp Lorentz-invariant phase of the probe pulse, introduced Page 27.

E
(0)
s (x+) Analytic expression for the initial strong pulse given by (2.84).

εεεs, ωs, ks, τs Polarisation vector, carrier frequency, wave vector of the strong
pulse and pulse duration, defined on Page 27.

E
(0)
s (x+), fs(x

+) Amplitude function and envelope function of the strong pulse de-
fined on Page 27.

ϕs Lorentz-invariant phase of the probe pulse, introduced Page 27.

B
(0)
p,s Initial magnetic fields of the pulses given by (2.87).

Chapter 3

E(n), E
(n)
p , E

(n)
s Iterative solution to the wave equation for the electric field (3.3),

where n is the iteration index given by (3.5). In general, upper
right indices in parentheses indicate iterated quantities.

∆E(n+1)(t, z) Nonlinear correction in the iterative solution containing the inho-
mogeneity of the wave equation, defined in (3.6).

GR(t, z) Retarded Green’s function for the wave equation defined in (3.7).

T(n)(t, z) Source term for the wave equation depending on the nth iteration
of the electric field, defined in (3.8).

J(n)(t, z) Current in Maxwell equations and the integrated version of the it-
erated wave equation, depending on the nth iterated fields, defined
in (3.9).

∆E(n)(x−, x+) Iterated electric field with arguments transformed to light cone
coordinates. Defined in (3.12).

∆
−→
E (n)(x−, x+) Forward or right scattered field defined in (3.14).

∆
←−
E (n)(x−, x+) Backward- or left scattered field defined in (3.15).

P(n), M(n) Polarisation and magnetisation which depend on the nth iteration
of the fields, defined on Page 38.

∆
−→
E

(n)
as (x−) Asymptotic forward scattered field defined by (3.18).

∆
←−
E

(n)
as (x+) Asymptotic backward scattered fields defined by (3.18).

U(n), V(n) Vectorial functions appearing in the asymptotic forward and back-
ward scattered fields, defined in (3.22) and (3.23).

∆E
(n+1)
o Overlap field defined in (3.24).

σ, ρ Geometric factors depending on the relative polarisations of the
probe and strong pulse, defined in (3.28) and (3.29).

P1, M1 Polarisation and magnetisation for the box diagram, defined in
(3.33) and (3.34).

P
(n)
i , M

(n)
i Polarisation and magnetisation for the ith term in the weak-field

expansion, depends on the n-th iteration of the electric and mag-
netic fields. In general, lower right indices refer to the order of the
weak-field expansion in this chapter.

u1,v1 Constant polarisation vectors for U1 and V1 defined in (3.37) and
(3.38).

ui,vi Constant polarisation vectors for Ui and Vi.
′ A prime indicates the derivative with respect to x−.
oi(x), pi(x), qi(x) Integrals over certain powers of the strong pulse defined for the box

diagram in (3.48) and in (3.51) for the hexagon diagram.

Q, X, Y Matrices appearing in the numerical formulation of Maxwell’s equa-
tions defined on Page 47.



A.2 List of Symbols 113

f Vector consisting of the electric and magnetic fields, defined on
Page 47.

u Electric and Magnetic fields in the eigenbasis of Q, defined in
(3.56).

S Transformation matrix between f and u, defined in (3.56).
Λ Diagonal matrix with the eigenvalues λi of Q, defined on Page 47.
ũ Discretised version of u on the grid. In general, tilde indicate the

discretised quantities on the numerical grid.
L, N , ∆z Box-length, number of grid points and spacing on the grid, intro-

duced on Page 47.
g[ũ, t] Right-hand side function of the ODEs in the numerical method,

introduced on Page 47.
Xl, Yl The values of X and Y at grid point l, see Page 47.
G, Hl Matrices to factorise 14 + Xl, defined in (3.57).

Êp(ω) Fourier transform of the probe field, defined in (3.61).

I
(0)
p (ωp) Intensity of the initial probe, defined in (3.62).
Ip(ω) Intensity spectrum of the forward-scattered probe field, defined in

(3.63).

Chapter 4

∆E‖, ∆E⊥ Components of the nonlinear field response in the parallel (εεεp ·εεεs =
1) and in the perpendicular (εεεp ·εεεs = 0) setup, introduced on Page
52.

∆Ei,as,ω(x−, x+) Nonlinear asymptotic scattered field of the ith weak-field expansion
with a frequency ω, first used in (4.2).

∆Ei,o,ω(x−, x+) Nonlinear overlap field, first used in (4.1).
∆Ei,d,ω(x−, x+) Nonlinear field from a derivative function, i is again the order of

the weak-field expansion and ω the frequency of the signal.
δn1 Non-trivial refractive index from four-photon scattering in constant

crossed backgrounds, defined in (4.3).
δϕp Phase-shift due to δn1 introduced on Page 54.
δϕp,o Phase shift due to the overlap signal, given by (4.7).
ζ Nonlinearity parameter for the overlap signal, defined by (4.14).
χ Quantum efficiency parameter, defined by (4.15).
Φ Propagation length introduced on Page 67.

Rect(x+) Rectangular function, defined on Page 71.
FD(x+) Mirrored Fermi-Dirac-potential defined in (4.24).

υ
‖,⊥
1 Multi-scale-parameter for four-photon scattering defined in (4.28).
υ2 Shock parameter for six-photon scattering which includes the probe

envelope function fp(x
−), defined on Page 74 with

ν2 Pure shock parameter for six-photon scattering, defined in (4.31).
Jl(·) lth order Bessel function of the first kind, introduced on Page 75.
uBF(t, z) Bessel-Fubini solution to Burger’s equation, defined in (4.33).
νBF Normalised propagation distance appearing in the Bessel-Fubini

solution (4.33).
ν1 Shock parameter for chained four-photon scattering to generate a

second harmonic, defined in (4.34).
ν3 Shock parameter for eight-photon scattering, defined of Page 78.
aj(ν) Coefficients appearing in the all-order solution (4.32), defined in

(4.37).
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γ(ν) Variable exponent in the intensity of the harmonics, introduced in
(4.39).

δn2 Non-trivial refractive index from six-photon scattering, defined in
(4.43).

Eeven
p , Eodd

p Even and odd frequency components of (4.32), defined in (4.46)

Esquare, Esaw Square and Saw-tooth function, defined in (4.47).
θ0 Diffraction angle for a Gaussian pulse, defined in (4.50).
l Diffraction parameter for a Gaussian pulse, defined in (4.51).
w0 Width of the Gaussian pulse in the transverse plane, introduced on

Page 101.



Appendix B

Details for the HE Lagrangian

B.1 Uniqueness of Flows on a Manifold

We want to show that (cf. (2.34) and (2.35))

e−itHX̂eitH = StX̂ . (B.1)

Now both sides of (B.1) define a flow, where a flow on a manifold M is a map

ϕ : R×M →M

such that

ϕ(0, p) = p ,

ϕ(t, φ(s, p)) = ϕ(t+ s, p) .

Suppose we have two flows ϕ1 and ϕ2 and their derivatives at the origin are identical:

d

dt
ϕ1(t, p)

∣∣∣
t=0

=
d

dt
ϕ2(t, p)

∣∣∣
t=0

∀p ∈M .

Then it follows that both flows are identical, ϕ1 ≡ ϕ2.
In order to prove this, we first want to show that every flow ϕ satisfies an ordinary
differential equation of the form

d

dt
ϕ(t, p) = X(ϕ(t, p)) ,

which is not automatic since X could also be dependent on t and p. If we define X
through

X(p) :=
d

dt
ϕ(t, p)|t=0

we have

d

dt
ϕ(t, p) =

d

ds
ϕ(t+ s, p)

∣∣∣
s=0

=
d

ds
ϕ(s, ϕ(t, p))

∣∣∣
s=0

= X(ϕ(t, p)) ,
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which is what we wanted to show. Now we see that for a fixed point p ∈ M , we have
an ordinary differential equation with initial condition ϕ(0, p) = p. Since the differential
equation is completely specified by X, which is the derivative at t = 0, we have shown
that if X1(p) = X2(p) for arbitrary p, then ϕ1 = ϕ2 which follows from the uniqueness
of the solution to ordinary differential equations [CA92]. And since we have (cf. (2.37))

d

dt
ϕ2(t, X̂)

∣∣∣
t=0

= −i[H, X̂] =
d

dt
ϕ1(t, X̂)

∣∣∣
t=0

(B.2)

(B.1) follows.

B.2 Relations Between the Matrix Blocks of St

We want to obtain certain relations of the symplectic flow (2.36) St = e−tΛ where
Λ = Ω−1G. Since Λ is an element of sp(2n), St = e−tΛ is a symplectic matrix where the
defining property of the symplectic group Sp(2n) is leaving the standard skew-symmetric
matrix Ω invariant:

P TΩP = Ω (B.3)

for P ∈ Sp(2n). We will denote the n× n-blocks of St as

St =:

(
St1 St2
St3 St4

)
.

The relation (B.3) gives the following conditions on the blocks Sti :

(St3)TSt1 = (St1)TSt3 ,

(St4)TS2 = (St2)TSt4 ,

(St1)TSt4 − (St3)TSt2 = 1n ,

(St4)TSt1 − (St2)TSt3 = 1n .

The transpose of (B.3) yields the other relations

St1(St2)T = St2(St1)T , (B.4)

St3(St4)T = St4(St3)T ,

St1(St4)T − St2(St3)T = 1n ,

St4(St1)T − St3(St2)T = 1n .

Using these relations one can easily write down the inverse matrix

(St)−1 = S−t =

(
S−t1 S−t2

S−t3 S−t4

)
=

(
(St4)T −(St2)T

(−St3)T (St1)T

)
from which it follows that

S−t1 = (St4)T , S−t2 = −(St2)T , (B.5)

S−t3 = (St3)T , S−t4 = −(St1)T .
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B.3 Proof of R(St) = 1 ∀t

In the derivation of the propagator for an arbitrary Hamiltonian, we were able to derive
the explicit form up to an unknown function R(St) which appears in (2.54). In the
following we will show that R(St) = 1 ∀t by demanding that the solution must satisfy
explicitely the Schrödinger equation.
In terms of R(St) the unitarity condition (2.46) becomes

R(S−t) = R(St)

from which we infer

R(St)R(S−t) = R(St)R(St) = R(1) = 1

and therefore

|R(St)| = 1 .

So R(St) is only a phase. To finally fix this phase, we now require(
d

dt
+ iH

)
ψty(x) = 0 .

The time-derivative of ψty(x) will contribute a term involving a trace as the derivative
of a determinant of one-parameter family of matrices A(t) is given by [Bel97]

d

dt
detA(t) = detA(t) Tr

(
A−1(t)

d

dt
A(t)

)
. (B.6)

Since ψty(x) is a solution to the Schrödinger equation by construction, it is enough to
compare this term to the trace part stemming from iHψty(x) to finally fix R(St).
Therefore, we need

d

dt
St2 =

(
d

dt
St
)

2

= −
(
e−ΛtΛ

)
2

= −
(
StΛ

)
2

and so (
St2
)−1 d

dt
St2 = −(St2)−1(St1Λ2 + St2Λ4)

= −(St2)−1St1Λ2 − Λ4 .

Inserting these relations into (B.6) gives

d

dt
(detSt2)−1/2 =

1

2
(detSt2)−1/2 Tr

[
(St2)−1St1Λ2 + Λ4

]
. (B.7)

Now we look for this expression from iHψty(x). We started with a Hamiltonian (2.20)
such that

H =
1

2
(〈x,G1x〉+ 〈x,G2p〉+ 〈p,G3x〉+ 〈p,G4p〉) .
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Now Λ is defined as Λ = Ω−1G and therefore the components are related by

Λ =

(
Λ1 Λ2

Λ3 Λ4

)
=

(
G3 G4

−G1 −G2

)
.

There are two trace-terms in H. The first one is

i

2
〈p,G3x〉 =

1

2
TrG3 +

i

2
〈G3x, p〉

=
1

2
TrG2 +

i

2
〈G3x, p〉

= −1

2
Tr Λ4 +

i

2
〈G3x, p〉 ,

where we used [xi, pj ] = iδij and that G as a metric is symmetric and therefore G2 = G3.
The second term stems from 〈p, p〉, therefore we need the spatial derivatives of ϕty(x):

∂

∂xj
exp

[
− i

2
〈y, St4(St2)−1y〉 − i

2
〈x, (St2)−1St1x〉+ i〈(St2)−1y, x〉

]
= exp

[ ](
− i
(
(St2)−1St1x

)
+ i
(
(St2)−1y

) )
j
.

The second derivative is then given by

∂2

∂xjxk
exp

[
− i

2
〈y, St4(St2)−1y〉 − i

2
〈x, (St2)−1St1x〉+ i〈(St2)−1y, x〉

]
= − exp

[ ][( (
(St2)−1St1x

)
−
(
(St2)−1y

) )
k

( (
(St2)−1St1x

)
−
(
(St2)−1y

) )
j

+ i
(
(St2)−1St1

)
jk

]
and so

i

2
〈p,G4p〉 =

i

2
exp

[ ]
〈
(
(St2)−1St1x

)
−
(
(St2)−1y

)
, G4

(
(St2)−1St1x

)
−
(
(St2)−1y

)
〉

− 1

2
Tr
(
G4(St2)−1St1

)
=
i

2
exp

[ ]
〈
(
(St2)−1St1x

)
−
(
(St2)−1y

)
,Λ2

(
(St2)−1St1x

)
)−

(
(St2)−1y

)
〉

− 1

2
Tr
(
Λ2(St2)−1St1

)
. (B.8)

Using the cyclicity of the trace, it follows from (B.8) and (B.7) that R(St) is independent
of t and therefore

R(St) = 1 ∀t .

B.4 Symplectic Flow for Constant Electromagnetic Fields

To derive the Heisenberg-Euler Lagrangian as a special case of the propagator for arbi-
trary Hamiltonians, we need the blocks of the symplectic flow St = e−tΛ where Λ = Ω−1G
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is given by (see (2.57))

Λ = Ω−1G =

 0 14

−14 0

F̃ T g−1F̃ F̃ T g−1

g−1F̃ g−1


=

 g−1F̃ g−1

−F̃ T g−1F̃ −F̃ T g−1


=

 g−1F̃ g−1

F̃ g−1F̃ F̃ g−1

 ,

where F̃ := e
2F . To calculate the symplectic flow (2.36), we observe

Λ2 = 2

 (g−1F̃ )2 (g−1F̃ )g−1

F̃ (g−1F )2 (F̃ g−1)2


and in general we have

Λn = 2n−1

 (g−1F̃ )n (g−1F̃ )n−1g

F̃ (g−1F̃ )n (F̃ g−1)n

 .

Therefore:

St = exp (−tΛ) =

1 0

0 1

+
∞∑
n=1

(−t)n
n!

2n−1

 (g−1F̃ )n (g−1F̃ )n−1g−1

F̃ (g−1F̃ )n (F̃ g−1)n


with

St1 = 1 +
1

2

∞∑
n=1

(−2t)n

n!
(g−1F̃ )n

=
1

2

(
1 +

∞∑
n=0

(−2t)n

n!
(g−1F̃ )n

)

=
1

2

(
1 + exp

(
−2tg−1F̃

))
= exp

(
−tg−1F̃

)
cosh

(
g−1F̃

)
,

St2 =
1

2

∞∑
n=1

(−2t)n

n!
(g−1F̃ )n−1g−1

=
1

2

( ∞∑
n=1

(−2t)n

n!
(g−1F )n

)
F̃−1

=
1

2

(
exp
(
−2tg−1F̃

)
− 1
)
F̃−1

= − exp
(
−tg−1F̃

)
sinh

(
tg−1F̃

)
F̃−1 (B.9)



120 B. Details for the HE Lagrangian

and by observing that

F̃ ((g−1F̃ )n−1g−1)F̃ = F̃ (g−1F̃ )n ,

F̃ ((g−1F̃ )n)F̃−1 = (F̃ g−1)n

one finds

St3 = F̃St2F̃ ,

St4 = F̃St1F̃
−1 .

So we know from (B.9) we know that

St2 = − sinh
(
g−1F̃ t

)
exp
(
−g−1F̃ t

)
F̃−1 .

Therefore, the inverse is given by

(St2)−1 = −F̃ exp
(
g−1F̃ t

)
sinh

(
g−1F̃ t

)−1

= −F̃ (sinh
(
g−1F̃ t

)
+ cosh

(
g−1F̃ t

)
) sinh

(
g−1F̃ t

)−1

= −F̃
(

1 + coth
(
g−1F̃ t

))
. (B.10)

To calculate the propagator, we need the following matrix products:

St4(St2)−1 = −F̃ cosh
(
g−1F̃ t

)
exp
(
−g−1F̃ t

)
F̃−1F̃ exp

(
g−1F̃

)
sinh

(
g−1F̃ t

)−1

= −F̃ coth
(
g−1F̃ t

)
,

(St2)−1St1 = −F̃ exp
(
g−1F̃ t

)
sinh

(
g−1F̃ t

)−1
cosh

(
g−1F̃ t

)
exp
(
−g−1F̃ t

)
= −F̃ coth

(
g−1F̃ t

)
.

So for the exponential in (2.55) we have

Φt
y(x) = exp

[ i
2

(
〈y, F̃ coth

(
g−1F̃ t

)
y〉+ 〈x, F̃ coth

(
g−1F̃ t

)
x〉

− 2〈F̃ y, x〉 − 2〈F̃ coth
(
g−1F̃ t

)
y, x〉

)]
= exp

[ i
2
〈(y − x), F̃ coth

(
g−1F̃ t

)
(y − x)〉 − i〈x, F̃ y〉

)]
, (B.11)

where we used that F̃ coth
(
g−1F̃ t

)
is symmetric. From (B.11) we infer that Φ(x, x) = 0

since F̃ is antisymmetric.

B.5 det exp
(
−g−1Ft

)
and det

(
e
2F/ sinh

(
e
2g
−1Ft

))
To finally calculate the Heisenberg-Euler Lagrangian, we saw from (2.59) that we need
the two quantities det exp

(
−g−1Ft

)
and det

(
e
2F/ sinh

(
e
2g
−1Ft

))
which we now calculate.

If we define an operator

M t := exp
(
g−1Ft

)
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(
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2F/ sinh

(
e
2g
−1Ft
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it follows that

(M t)T = M−t = (M t)−1

and therefore

(detM t)2 = 1 .

Since M is path-wise connected to the identity and the determinant in continuous in t,
we have

detM t = 1 .

To calculate the object

det sinh
e

2
g−1Ft (B.12)

we need the eigenvalues of

g−1F =


0 Ex Ey Ez
Ex 0 −Bz By
Ey Bz 0 −Bx
Ez −By Bx 0

 . (B.13)

We need the characteristic polynomial which is given by

P (λ) = −λ

 −λ −Bz By
Bz −λ −Bx
−By Bx −λ

− Ex det

Ex −Bz By
Ey −λ −Bx
Ez Bx −λ


+ Ey

Ex −λ By
Ey Bz −Bx
Ez −By −λ

− Ez
Ex −λ −Bz
Ey Bz −λ
Ez −By Bx

 .

The subdeterminants are given by

det

 −λ −Bz By
Bz −λ −Bx
−By Bx −λ


= −λ(λ2 +B2

x) +Bz(−Bzλ−BxBy) +By(BzBx − λBy)
= −λ3 + λ(−B2

x −B2
z −B2

y)

= −λ(λ2 +B2
x +B2

y +B2
z )

= −λ(λ2 + |B|2) ,

det

Ex −Bz By
Ey −λ −Bx
Ez Bx −λ


= Ex(λ2 +B2

x) +Bz(−Eyλ+BxEz) +By(EyBx + λEz)

= λ2Ex + λ(−EyBz + EzBy) + ExB
2
x + EzBxBz + EyBxBy

= λ2Ex + λ(−EyBz + EzBy) +Bx(ExBx + EzBz + EyBy)

= λ2Ex + λ(−EyBz + EzBy) +Bx(E ·B) ,
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det

Ex −λ By
Ey Bz −Bx
Ez −By −λ


= Ex(−λBz −BxBy) + λ(−λEy +BxEz) +By(−EyBy − EzBz)
= −λ2Ey + λ(−ExBz +BxEz)− ExBxBy − EyByBy −ByEzBz
= −λ2Ey + λ(−ExBz +BxEz)−By(E ·B) ,

det

Ex −λ −Bz
Ey Bz −λ
Ez −By Bx


= Ex(BzBx − λBy) + λ(EyBx + λEz)−Bz(−EyBy − EzBz)
= λ2Ez + λ(EyBx − ExBy) +Bz(E ·B) .

Therefore:

P (λ) = λ2(λ2 + |B|2)− Ex(λ2Ex + λ(−EyBz + EzBy) +Bx(E ·B))

+ Ey(−λ2Ey + λ(−ExBz +BxEz)−By(E ·B))

− Ez(λ2Ez + λ(EyBx − ExBy) +Bz(E ·B))

= λ4 + λ2(|B|2 − |E|2) + λ(E ·E ∧B)− (E ·B)2

= λ4 + λ2(|B|2 − |E|2)− (E ·B)2

= λ4 − 2λ2F − G2

and the eigenvalues of g−1F are therefore given by

λF,1 =

√
F −

√
F2 + G2 λF,2 = −λF,1 ,

λF,3 =

√
F +

√
F2 + G2 λF,4 = −λF,3 .

(B.14)

Now we express the eigenvalues using the secular invariants

a = λF,1 =

√√
F2 + G2 + F ,

b = iλF,3 =

√√
F2 + G2 −F .

(B.15)

Therefore,

det g−1F =
∏
i

λF,i = −a2b2

and

detF = det g det g−1F = a2b2 .

Now we diagonalise g−1F with an orthogonal matrix U such that UFU−1 = Λ =
diag(λF,1, λF,2, λF,3, λF,4) is diagonal. Then

det sinh
(e

2
g−1Ft

)
= det

(
U−1 sinh

(e
2

Λt
)
U
)

=
∏
i

sinh
(e

2
λit
)

(B.16)

= − sinh2(
e

2
at) sin2(

e

2
bt) (B.17)

and therefore

det

( e
2F

sinh e
2g
−1Ft

)1/2

= i
e2ab

4 sinh e
2at sin e

2bt
. (B.18)
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B.6 tr exp
(
ie4tσ

µνFµν
)

We want to calculate tr exp
[
it e4σ

µνFµν
]

as it appears in (2.14) and (2.17), so it is useful
to find the eigenvalues of σµνFµν . As the eigenvalues of a matrix squared are only the
eigenvalues squared of the original matrix, we make use the identity

(σF )2 =
1

2
FµνFλκ

{
σµν , σλκ

}
= 2

(
FµνF

µν + iγ5Fµν ?F
µν
)

= −8 (F + iγ5G) ,

where we used [DG00]

1

2

{
σµν , σλκ

}
= δµλδνκ − δµκδνλ + iεµνλκγ5 (B.19)

and γ5 := iγ0γ1γ2γ3 with (γ5)2 = 1. Since (γ5)2 = 1, its eigenvalues are given by ±1.
Let X± be the eigenvectors of γ5, then we have

(σF )2X = −8 (F + iγ5G)X = −8 (F ± iG)X±

and therefore the eigenvalues are given by −8(F ± iG) and since the eigenvalues of a
matrix squared are simply the eigenvalues squared, the eigenvalues of (σF ) are given
by λi = ±

√
−8(F ± iG) with i = 1, 2, 3, 4. For later convenience, we express these

eigenvalues by the secular invariants:

λi = ±
√
−8(F ± iG) = ±

√
−4(a± ib)2 = ∓2i(a± ib) . (B.20)

The trace evaluates then to

tr eit e
4
σF =

∑
i

ei
e
4
tλi = 4 cosh

(e
2
at
)

cos
(e

2
bt
)
. (B.21)
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Appendix C

Maxwell and Wave Equations in
Polarisable Vacuum

C.1 Nonlinear Maxwell Equations from an Interaction La-
grangian Lint(F ,G)

In the following we show that an interaction Lagrangian Lint(F ,G) for pure photon-
photon scattering leads to contributions to Maxwell equations that can be interpreted
as polarisation P and magnetisation M similar to a nonlinear medium.
We start with a general Lagrangian (where we do not specify the kinetic term for the
fermions):

L = Lmatter + LMaxwell + Lint + Lcur (C.1)

with

LMaxwell = − 1

16π
FµνF

µν ,

Lint = Lint(F ,G)

Lcur = −AµJµmatter .

The Euler-Lagrange equations with respect to the gauge field are given by

∂µ
∂L

∂(∂µAν)
− ∂L
∂Aν

= 0 .

Therefore:

− 1

4π
∂µF

µν − ∂µ
(
∂Lint

∂F Fµν +
∂Lint

∂G ?Fµν
)

+ Jνmatter = 0 (C.2)

and we note in the case of Lint = 0 this yields Maxwell equations in vacuum

∂µF
µν = 4πJµmatter .

If one sets ν = 0 in (C.2), one obtains

1

4π
∂iF

i0 + ∂i

(
∂Lint

∂F F i0 +
∂Lint

∂G ?F i0
)

= J0
matter
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or written in E- and B-fields:

1

4π
∂iE

i + ∂i

(
∂Lint

∂F Ei +
∂Lint

∂G Bi

)
= ρmatter . (C.3)

We observe (
∂Lint

∂F E +
∂Lint

∂G B

)
=
∂Lint

∂E

such that (C.3) is given by

∇ ·E = 4πρmatter − 4π∇ · ∂Lint

∂E

and a comparison with (1.2) suggests the identification

P :=
∂Lint

∂E
.

Now we take the spatial components ν = j of (C.2):

1

4π

(
∂tF

0j + ∂iF
ij
)

+ ∂t

(
∂Lint

∂F F 0j +
∂Lint

∂G ?F 0j

)
+ ∂i

(
∂Lint

∂F F ij +
∂Lint

∂G ?F ij
)

= J jmatter

which translates into

(−∂tE +∇∧B) = 4πJmatter + 4π(∂tP +∇∧M) ,

where we defined

M =
∂Lint

∂B
.

We thereby observed that

∂i

(
∂Lint

∂F F ij +
∂Lint

∂G ?F ij
)

= ∂i

(
∂Lint

∂F εjikBk − ∂Lint

∂G εjikEk
)

can be written as

∂i

(
∂Lint

∂F F ij +
∂Lint

∂G ?F ij
)

= −(∇∧M)j ,

where we used

∂Lint

∂F B− ∂Lint

∂G E = −∂Lint

∂B
.

C.2 Wave Equation with Source Terms

In the following we will derive the wave equation for the magnetic field B and electric
field E. We start with the Maxwell equations

∇∧B− ∂tE = 4πJmatter + 4πJ[E,B] , (C.4)

∇∧E + ∂tB = 0 , (C.5)

∇ ·D = 4πρmatter , (C.6)

∇ ·B = 0 , (C.7)
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where we defined

J[E,B] := (∂tP +∇∧M) .

To derive the wave equation for B, we take the curl of (C.4) and obtain

∂2
t B−∆B = 4π∇∧ Jmatter + 4π∇∧ J[E,B] ,

where we used

∇∧ (∇∧B) = ∇(∇ ·B)−∆B

together with (C.5) and (C.7).
For the wave equation for E we take the curl of (C.5) and obtain

∇(∇ ·E)−∆E + ∂2
t E + 4π∂tJ[E,B] + 4π∂tJmatter = 0

where we used (C.4). Now we know from (C.6) that

∇ ·E = 4πρmatter − 4π∇ ·P

and therefore

∂2
t E−∆E = T[E,B]− 4π∇ρmatter

with the field-dependent source

T[E,B] := −4π(∂2
t P +∇∧ ∂tM−∇(∇ ·P))

and we note that J[E,B] and T[E,B] are related via

T[E,B] = −4π∂tJ[E,B] + 4π∇(∇ ·P) .

C.3 Covariant Maxwell Equations with Coefficients Ci

In the previous section we considered a general Lagrangian (C.1) of the form

L = Lmatter + LMaxwell + Lint + Lcur .

Since we do not consider any massive particles in this thesis, we set Lmatter = Lcur = 0.
In the following we will derive the Maxwell equations for a general Lagrangian L =
LMaxwell + Lint(a, b), which is equivalent to L = LMaxwell + Lint(F ,G) as we have the
relations

a =
(√
F2 + G2 + F

)1/2
, (C.8)

b =
(√
F2 + G2 −F

)1/2
, (C.9)

ab = G , (C.10)

a2 − b2 = 2F . (C.11)
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In the following we only consider the contributions from Lint and install the free prop-
agation from LMaxwell in the final result. Before we proceed, we need the following
definitions and identities:

r2 := a2 + b2 = 2
√
F2 + G2 , (C.12)

2F + r2 = 2a2 , (C.13)

2F − r2 = − 2b2 , (C.14)

F + r2 = 1
2(3a2 + b2) , (C.15)

∂F
∂(∂µAν)

= −Fµν , (C.16)

∂G
∂(∂µAν)

= − ?Fµν . (C.17)

For the Euler-Lagrange equations we need

∂Lint

∂(∂µAν)
=
∂Lint

∂a

∂a

∂(∂µAν)
+
∂Lint

∂b

∂b

∂(∂µAν)

=
∂Lint

∂a

( ∂a
∂G

∂G
∂(∂µAν)

+
∂a

∂F
∂F

∂(∂µAν)

)
+
∂Lint

∂b

( ∂b
∂G

∂G
∂(∂µAν)

+
∂b

∂F
∂F

∂(∂µAν)

)
= − ∂Lint

∂a

( ∂a
∂G ?F

µν +
∂a

∂F F
µν
)

− ∂Lint

∂b

( ∂b
∂G ?F

µν +
∂b

∂F F
µν
)

= −
(
∂Lint

∂a

∂a

∂G +
∂Lint

∂b

∂b

∂G

)
?Fµν

−
(
∂Lint

∂a

∂a

∂F +
∂Lint

∂b

∂b

∂F

)
Fµν ,

where we used (C.16) and (C.17) in the third equality. We note that a derivative acts
only on the expression directly on the right and we write brackets when it acts on
products of functions. The equations of motion are given by

∂µ
∂Lint

∂(∂µAν)
= − ∂µ

[(
∂Lint

∂a

∂a

∂G +
∂Lint

∂b

∂b

∂G

)
?Fµν

]
− ∂µ

[(
∂Lint

∂a

∂a

∂F +
∂Lint

∂b

∂b

∂F

)
Fµν

]
= − ?Fµν∂µ

(
∂Lint

∂a

∂a

∂G +
∂Lint

∂b

∂b

∂G

)
− Fµν∂µ

(
∂Lint

∂a

∂a

∂F +
∂Lint

∂b

∂b

∂F

)
−
(
∂Lint

∂a

∂a

∂F +
∂Lint

∂b

∂b

∂F

)
∂µF

µν ,

(C.18)

where we used the Bianchi-Identity ∂µ?F
µν = 0. We proceed by calculating the quantities

∂a

∂G ,
∂a

∂F ,
∂b

∂F ,
∂b

∂G
and the derivatives

∂µ
∂a

∂G , ∂µ
∂a

∂F , ∂µ
∂b

∂F , ∂µ
∂b

∂G , ∂µ
∂Lint

∂a
, ∂µ

∂Lint

∂b
.
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∂a

∂G =
∂

∂G (
√
F2 + G2 + F)1/2

=
1

2a

∂

∂G
√
F2 + G2

=
1

2a

G√
F2 +G2

=
b

r2
,

(C.19)

where we used (C.10) and (C.12) in the last step.

∂b

∂G =
∂

∂G (
√
F2 + G2 −F)1/2

=
b

r2
.

(C.20)

Similarly, we obtain

∂a

∂F =
∂

∂F (
√
F2 + G2 + F)1/2

=
1

2a

∂

∂F (
√
F2 + G2 + F)

=
1

2a

(2F
r2

+ 1
)

=
1

2ar2

(
2F + r2)

=
a

r2
,

(C.21)

where we used (C.13) in the last step.

∂b

∂F =
∂

∂F (
√
F2 + G2 −F)1/2

=
1

2b

∂

∂F (
√
F2 + G2 −F)

=
1

2b

(2F
r2
− 1
)

=
1

2br2

(
2F − r2)

= − b

r2
.

(C.22)

The last equality follows from (C.14). To obtain the derivates, we first calculate some
useful quantities:

∂µa =
∂a

∂G ∂µG +
∂a

∂F ∂µG

=
1

r2
(b∂µG + a∂µF) ,

(C.23)

which follows from (C.19) and (C.21).

∂µb =
∂b

∂G ∂µG +
∂b

∂F ∂µG

=
1

r2
(a∂µG − b∂µF) ,

(C.24)
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where (C.20) and (C.22) were used in the last step. Furthermore, we need:

∂µr = ∂µ
(

1
2(3a2 + b2)−F

)1/2
=

1

2r
(3a∂µa+ b∂µb− ∂µF)

, (C.25)

where the first equality is from (C.15). With these formulas we can now easily calculate
the derivatives:

∂µ
∂a

∂G = ∂µ

(
b

r2

)
=

1

r2
∂µb−

2b

r3
∂µr

=
1

r2
∂µb−

b

r4
(3a∂µa+ b∂µb− ∂µF)

=
1

r4

[
(r2 − b2)∂µb− 3ab∂µa− b∂µF

]
=

1

r6

[
a2(a∂µG − b∂µF)− 3ab(b∂µG + a∂µF)− br2∂µF

]
=

1

r6

[
a(a2 − 3b2)∂µG + b(b2 − 3a2)∂µF

]
,

∂µ
∂a

∂F = ∂µ

( a
r2

)
=

1

r2
∂µa−

2a

r3
∂µr

=
1

r2
∂µa−

a

r4
[3a∂µa+ b∂µb− ∂µF ]

=
1

r4

[
(r2 − 3a2)∂µa− ab∂µb+ a∂µF

]
=

1

r6

[
(b2 − 2a2)(b∂µG + a∂µF)− ab(a∂µG − b∂µF) + ar2∂µF

]
=

1

r6

[
b(b2 − 3a2)∂µG + a(3b2 − a2)∂µF

]
,

∂µ
∂b

∂G = ∂µ

(
b

r2

)
=

1

r6

[
a(a2 − 3b2)∂µG + b(b2 − 3a2)∂µF

]
and

∂µ
∂b

∂F = −∂µ
∂a

∂G =
1

r6

[
a(3b2 − a2)∂µG + b(3a2 − b2)∂µF

]
.

Additionally, we need

∂µ
∂Lint

∂a
=
∂2Lint

∂a2
∂µa+

∂Lint

∂a∂b
∂µb

=
1

r2
[Laa(b∂µG + a∂µF) + Lab(a∂µG − b∂µF)]

=
1

r2
[(bLaa + aLab)∂µG + (aLaa − bLab)∂µF ] ,

where

Lab :=
∂2Lint

∂a∂b

and the other quantities are defined in an analogous way. For the derivative of ∂Lint/∂b
we have

∂µ
∂Lint

∂b
=
∂2Lint

∂b2
∂µb+

∂Lint

∂a∂b
∂µa

=
1

r2
[Lbb(a∂µG − b∂µF) + Lab(b∂µG + a∂µF)]

=
1

r2
[(aLbb + bLab)∂µG + (aLab − bLbb)∂µF ] .
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So we can finally calculate the quantities in (C.18). Let us begin with

(
∂Lint

∂a

∂a

∂F +
∂Lint

∂b

∂b

∂F

)
=
aLa − bLb

r2
=: −4C1 ,

where

C1 := −aLa − bLb
4r2

.

∂µ

(
∂Lint

∂a

∂a

∂F +
∂Lint

∂b

∂b

∂F

)
= ∂µ

∂Lint

∂a

∂a

∂F +
∂Lint

∂a
∂µ
∂a

∂F + ∂µ
∂Lint

∂b

∂b

∂F +
∂Lint

∂b
∂µ

∂b

∂F

=
1

r4

[
(abLaa + a2Lab)∂µG + (a2Laa − abLab)∂µF

]
+

1

r6
La
[
b(b2 − 3a2)∂µG + a(3b2 − a2)∂µF

]
− 1

r4

[
(abLbb + b2Lab)∂µG + (abLab − b2Lbb)∂µF

]
+

1

r6
Lb
[
a(3b2 − a2)∂µG + b(3a2 − b2)∂µF

]
=

1

r6

[
a(3b2 − a2)La + b((3a2 − b2)Lb

+ r2(a2Laa − 2abLab + b2Lbb)
]
∂µF

+
1

r6

[
b(b2 − 3a2)La + a(3b2 − a2)Lb

+ r2(abLaa + (a2 − b2)Lab − abLbb)
]
∂µG

= 4C2 ∂µF + 4C4 ∂µG
= −C2 ∂µ(FαβF

αβ)− C4 ∂µ(?FαβF
αβ) ,

where we defined

C2 :=
1

4r6

[
a(3b2 − a2)La + b((3a2 − b2)Lb
+ r2(a2Laa − 2abLab + b2Lbb)

]
,

C4 :=
1

4r6

[
b(b2 − 3a2)La + a(3b2 − a2)Lb

+ r2(abLaa + (a2 − b2)Lab − abLbb
]
.
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We further obtain

∂µ

(
∂Lint

∂a

∂a

∂G +
∂Lint

∂b

∂b

∂G

)
= ∂µ

∂Lint

∂a

∂a

∂G +
∂Lint

∂a
∂µ
∂a

∂G + ∂µ
∂Lint

∂b

∂b

∂G +
∂Lint

∂b
∂µ
∂b

∂G

=
1

r4

[
(b2Laa + abLab)∂µG + (abLaa − b2Lab)∂µF

]
1

r6
La
[
a(a2 − 3b2)∂µG + b(b2 − 3a2)∂µF

]
1

r4

[
(a2Lbb + abLab)∂µG + (a2Lab − abLbb)∂µF

]
1

r6
Lb
[
b(b2 − 3a2)∂µG + a(3b2 − a2)∂µF

]
=

1

r6

[
a(a2 − 3b2)La + b(b2 − 3a2)Lb

+ r2(b2Laa + 2abLab + a2Lbb)
]
∂µG

+
1

r6

[
b(b2 − 3a2)La + a(3b2 − a2)Lb

+ r2(abLaa + (a2 − b2)Lab − abLbb
]
∂µF

= 4C3 ∂µG + 4C4 ∂µF
= −C3 ∂µ(?FαβF

αβ)− C4 ∂µ(FαβF
αβ) ,

where

C3 :=
1

4r6

[
a(a2 − 3b2)La + b(b2 − 3a2)Lb
+ r2(b2Laa + 2abLab + a2Lbb)

]
.

Using these expressions, we can write the equations of motion as

4π∂µ
∂LMaxwell

∂(∂µAν)
+ 4π∂µ

∂Lint

∂(∂µAν)
= 0

which yields

(−1 + 4πC1) ∂µF
µν + 4πC2 F

µν∂µ(FαβF
αβ)

+ 4π C3 ?F
µν∂µ(?FαβF

αβ) + 4π C4

[
?Fµν∂µ(FαβF

αβ) + Fµν∂µ(?FαβF
αβ)
]

= 0 (C.26)

or, equivalently,

∂µF
µν = 4π

(
(C1 ∂µF

µν + C2 F
µν∂µ(FαβF

αβ)

+ C3 ?F
µν∂µ(?FαβF

αβ) + C4

[
?Fµν∂µ(FαβF

αβ) + Fµν∂µ(?FαβF
αβ)
])

= 0 . (C.27)

For a general scalar ϕ we have the identities

∂µF
µi = (−∂tE +∇∧B)i ,

Fµi∂µϕ = (−E ∂tϕ−B ∧∇ϕ)i ,

?Fµi∂µϕ = (−B ∂tϕ+ E ∧∇ϕ)i ,

so we can express the dynamical equations of (C.27) in E and B-fields:

(∇∧B− ∂tE) = 4πJ[E,B] ,
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where

J[E,B] := C1(∂tE−∇ ∧B) + C2(E ∂t(FαβF
αβ) + B ∧∇(FαβF

αβ))

+ C3(B ∂t(?FαβF
αβ)−E ∧∇(?FαβF

αβ))

+ C4(B ∂t(FαβF
αβ)−E ∧∇(FαβF

αβ) + E ∂t(?FαβF
αβ)

+ B ∧∇(?FαβF
αβ)) .

This can be re-arranged to

J[E,B] =
[
C1 (∂tE−∇ ∧B) + (C2E + C4B) ∂t(FαβF

αβ)

+ (C2B− C4E) ∧∇(FαβF
αβ)

+ (C4B− C3E) ∧∇(Fαβ ?F
αβ)

+ (C3B + C4E) ∂t(Fαβ ?F
αβ)
]
.
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Appendix D

Green’s Function for the Wave
Equation in (1 + 1) Dimensions

This section is based on [Mah02].
The defining equation for the Green’s function of the wave equation in (1+1) dimensions
is (

∂2

∂t2
− ∂2

∂z2

)
G(z, t) = δ(t)δ(z) . (D.1)

Now we introduce the Fourier representation of the δ-distribution and of the Green’s
function G(z, t):

δ(z) =
1

2π

∫ ∞
−∞

dk eikz (D.2)

G(z, t) =
1

2π

∫ ∞
−∞

dk G̃(k, t) eikz (D.3)

where

G̃(k, t) = FT[G(z, t)](k, t) =

∫ ∞
−∞

dz G(z, t) e−ikz.

Inserting (D.2) and (D.3) in (D.1) yields

1

2π

(
∂2

∂t2
− ∂2

∂z2

)∫ ∞
−∞

dk G̃(k, t) eikz =
1

2π

∫ ∞
−∞

dk eikz ,

which leads to the equation (
∂2

∂t2
+ k2

)
G̃(k, t) = δ(t) . (D.4)

The homogenous part of (D.4) is just the differential equation for a harmonic oscillator.
So we make the ansatz G̃1(k, t) := G̃1(ω, t) = C1 cos(ωt) with the dispersion relation
ω = k and a constant C1. To solve the inhomogeneous equation, we use the

”
variation

of the constant“ [AWH12] and make the ansatz

G̃1(ω, t) = C1(t) cosωt . (D.5)
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The second time derivative of G̃ is therefore given by

∂2

∂t2
G̃(ω, t) = C̈1(t) cosωt− 2ωĊ1(t) sinωt− ω2C1(t) sinωt .

So we obtain(
∂2

∂t2
+ ω2

)
G̃1(ω, t) = C̈1(t) cosωt− 2ωĊ1(t) sinωt− ω2C1(t) cosωt+ ω2 cosωt

= C̈1(t) cosωt− 2ωĊ1(t) sinωt

= −ωĊ1(t) sinωt ,

where the last equality follows from integration by parts of one time derivative since the
equations always have to be understood applied to some test-functions:

C̈1(t) cosωt = ωĊ1(t) sinωt+ boundary terms .

The boundary terms vanish since we assume the solution to vanish at infinity. So we are
left with the equation

Ċ1(t) sinωt = −δ(t)
ω
. (D.6)

This suggests the ansatz C1(t) = − θ(t)
ω , where θ(t) is the Heaviside step function with

∂
∂tθ(t) = δ(t) and we obtain

δ(t) sinωt = −δ(t)
ω

. (D.7)

But if we multiply (D.7) by an arbitrary test function f(t) and integrate over t, we
obtain

−
∫ ∞
−∞

dt f(t)
δ(t)

ω
sinωt = −

∫ ∞
−∞

dtf(t)
δ(t)

ω

Using one of the defining properties of the δ-distribution, namely
∫∞
−∞ dt f(t)δ(t) = f(0),

we obtain the contradiction

f(0) sin 0 = f(0),

and conclude that G1(ω, t) = − θ(t)
ω cosωt is not a valid solution to (D.4) and as a

consequence, C1(t) = 0.
A second ansatz for the solution to (D.4) is given by G̃2(k, t) := G̃2(ω, t) = C2 sin(ωt),
which yields (

∂2

∂t2
+ ω2

)
G̃2(ω, t) = C̈2(t) sinωt+ 2ωĊ2(t) cosωt

= ωĊ2(t) cosωt

= δ(t) ,

where we again integrated by parts from the first to the second line. The ansatz C2(t) =
θ(t)
ω yields ∫ ∞

−∞
dt f(t)

δ(t)

ω
cosωt =

∫ ∞
−∞

dtf(t)
δ(t)

ω
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from which we obtain, again after multiplying with a test function f(t) and integration
over t,

f(0) cos 0 = f(0) .

So we see that G̃(ω, t) ≡ G̃2(ω, t) = θ(t)
ω sinωt is the general solution to (D.4). Since we

want to have an expression for G(z, t), we need to take the inverse Fourier transform of
G̃(ω, t):

G(z, t) =
θ(t)

2π

∫ ∞
−∞

dk
sin(kt)

k
e−ikz

=
θ(t)

2π

∫ ∞
−∞

dk

(
sin(kt) cos(kz)

k
− isin(kt) sin(kz)

k

)
=
θ(t)

2π

∫ ∞
−∞

dk
sin(kt) cos(kz)

k
,

where we used e−x = cosx− i sinx from the first to the second line. From second to the
third line, we used the fact that sin(ckt) sin(kz)

k is an odd function of k and therefore the
integration vanishes. Now we use the trigonometric identity

sinx cos y =
1

2
(sin(x− y) + sin(x+ y))

and obtain

G(z, t) =
θ(t)

4π

∫ ∞
−∞

dk

(
sin k(t− z)

k
+

sin k(t+ z)

k

)
. (D.8)

To calculate the integral ∫ ∞
−∞

dk
sinαk

k
,

we proceed by introducing the rectangular function

Rect(z/τ) := θ(z/τ + 1/2)− θ(z/τ − 1/2) ,

which is just a square function of length τ with value 1 for z ∈ (−τ/2, τ/2) and zero
otherwise. We now take the Fourier transform of Rect(z/τ):∫ ∞

∞
dz Rect(z/τ) e−ikz =

∫ τ/2

τ/2
dz e−ikz = 2

sin τk
2

k
. (D.9)

If we set τ = 2α in (D.9), we can write:∫ ∞
−∞

dk
sinαk

k
=

1

2

∫ ∞
−∞

dk

∫ ∞
−∞

dz Rect (z/2α) e−ikz

= α

∫ ∞
−∞

dy Rect(y)

∫ ∞
−∞

dk e−2iαy

= π
α

|α|

∫ ∞
−∞

dy Rect(y)δ(y)

= πsign(α)

From the second to the third equality sign, we made the substitution y = z/2α and
interchanged the order of integrations, from the third to the fourth we used (D.2) and
the relation δ(ky) = δ(y)/|k|. The Green’s function (D.8) therefore reads

G(z, t) =
θ(t)

4
[sign(t− z) + sign(t+ z)] .



138 D. Green’s Function for the Wave Equation in (1 + 1) Dimensions

To further simplify this expression, we use

1

2
[sign(t− x) + sign(t+ x)] = θ(t− |x|)

and arrive at our final formula:

G(z, t) =
θ(t)

2
θ(t− |z|) .



Appendix E

Numerical Method

E.1 Biased Finite Differences

The action of the matrix D on the vector ũ can be encoded in the use of an adaption of
the DSS020 function from [Sch91]:

Dũ =



d−(u1
1)

d−(u1
2)

d+(u1
3)

d+(u1
4)

d−(u2
1)

d−(u2
2)

d+(u2
3)

d+(u2
4)

...


,

where the function d−(ul) is defined as

d−(ul) :=

l = 1 :

q(−25u1 + 48u2 − 36u3 + 16u4 − 3u5)

l = N − 2 :

q(uN−4 − 8uN−3 + 8uN−1 − uN )

l = N − 1 :

q(−uN−4 + 6uN−3 − 18uN−2 + 10uN−1 + 3uN )

l = N :

q(3uN−4 − 16uN−3 + 36uN−2 − 48uN−1 + 25uN )

else :

q(−3ul−1 − 10ul + 18ul+1 − 6ul+2 + ul+3)
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with q = 1/12∆z and d+(ul) as

d+(ul) :=

l = 1 :

q(−25u1 + 48u2 − 36u3 + 16u4 − 3u5)

l = 2 :

q(−3u1 − 10u2 + 18u3 − 6u4 + u5)

l = 3 :

q(u1 − 8u2 + 8u4 − u5)

l = N :

q(3uN−4 − 16uN−3 + 36uN−2 − 48uN−1 + 25uN )

else :

q(−ul−3 + 6ul−2 − 18ul−1 + 10ul + 3ul+1).

E.2 Matrices X and Y

The Maxwell equations in the plane wave setup can be written in matrix form:

(14 + X) ∂tf + (Q + Y) ∂zf = 0, (E.1)

where f = (Ex, Ey, Bx, By)
T , 14 is the identity in four dimensions, Q is an anti-diagonal

matrix with Q = adiag(1,−1,−1, 1) and X = (xij), Y = (yij) are the vacuum pertur-
bation, where the non-zero elements are given by

x11 = 4π (C1 − C2ρ11 − C3ρ33 − 2C4ρ13) ,

x12 = 4π (−C2ρ12 − C3ρ34 − C4(ρ14 + ρ23)) ,

x13 = 4π ((C2 − C3)ρ13 + C4(ρ33 − ρ11)) ,

x14 = 4π (C2ρ14 − C3ρ23 + C4(ρ34 − ρ12)) ,

x21 = 4π (−C2ρ12 − C3ρ34 − C4(ρ14 + ρ23)) ,

x22 = 4π (C1 − C2ρ22 − C3ρ44 − 2C4ρ24) ,

x23 = 4π (C2ρ23 − C3ρ14 + C4(ρ34 − ρ12)) ,

x24 = 4π ((C2 − C3)ρ24 + C4(ρ44 − ρ22)) ,

y11 = 4π (−C2ρ14 + C3ρ23 + C4(ρ12 − ρ34)) ,

y12 = 4π (−(C2 − C3)ρ24 + C4(ρ22 − ρ44)) ,

y13 = 4π (C2ρ34 + C3ρ12 − C4(ρ14 + ρ23)) ,

y14 = 4π (C1 + C2ρ44 + C3ρ22 − 2C4ρ24) ,

y21 = 4π ((C2 − C3)ρ13 + C4(ρ33 − ρ11)) ,

y22 = 4π (C2ρ23 − C3ρ14 + C4(ρ34 − ρ12)) ,

y23 = 4π (−C1 − C2ρ33 − C3ρ11 + 2C4ρ13) ,

y24 = 4π (−C2ρ34 − C3ρ12 + C4(ρ14 + ρ23)) ,

where we define ρij := 4fifj such that e.g. ρ14 = 4ExBy and the Ci are given by (2.72)
and (2.73). .
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Maximilian Imgrund. Die Aufzählung ist dabei nur chronologisch gedacht. Danke für all
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