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und gemeinsame Aktivitäten neben der Arbeit.

... meinen Freunden und meiner Familie für deren uneingeschränkte Unterstützung. In
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Zusammenfassung

Durch die steigende Verfügbarkeit großer Datenmengen wird es zunehmend wichtiger,

die zugrundeliegenden Strukturen in den Daten aufzudecken. Die vorliegende Arbeit

beschäftigt sich mit der Erfassung latenter Strukturen in kategorialen Daten. In Regres-

sionsmodellen fungieren kategoriale Variablen entweder als abhängige oder als Teil der un-

abhängigen Variablen. Je nach Konstellation sind unterschiedliche Strategien notwendig,

um die zugrundeliegenden Strukturen zu erfassen. Der erste Teil dieser Arbeit widmet

sich Regressionsmodellen mit einer überproportional großen Zahl an Parametern. Genauer

werden Modelle mit kategorialen Einflussgrößen und einer großen Anzahl an Kategorien

betrachtet. Außerdem werden Modelle für Messwiederholungen mit festen Effekten unter-

sucht. Von Interesse ist hierbei, zu identifizieren, welche
”
latente Gruppen“ von Kategorien

bzw. Beobachtungseinheiten denselben Effekt auf die abhängige Variable aufweisen. Zur

Identifizierung dieser Gruppen wird ein neuartiger Ansatz vorgestellt, der auf rekursiver

Partitionierung basiert. Im Gegensatz zu konkurrierenden Methoden, die bestimmte Penal-

isierungsterme verwenden, ist die vorgeschlagene Methodik auch auf sehr hochdimensionale

Probleme anwendbar. Der zweite Teil dieser Arbeit beschäftigt sich mit Item-Response

Modellen, das heißt mit Regressionsmodellen zur Messung
”
latenter Fähigkeiten“ von Per-

sonen. Die Item-Response-Theorie verwendet Indikatoren, wie die Antworten von Personen

auf bestimmte Testitems, um auf deren Fähigkeit zu schließen. Ein Phänomen, dessen man

sich in psychologischen Tests bewusst sein sollte, ist das sogenannte Differential Item Func-

tioning (DIF). DIF tritt auf, falls die Schwierigkeit eines Items für Personen mit derselben

Fähigkeit von deren Charakteristika, wie Geschlecht oder Herkunft, abhängt. Ein auf rekur-

siver Partitionierung basierendes Verfahren wird vorgeschlagen, das eine simultane Bestim-

mung der von DIF betroffenen Items im Bezug auf eine beliebige Anzahl an Kovariablen

ermöglicht. Einer der Vorteile gegenüber klassischen Ansätzen ist, dass die vorgeschlagene

Methodik diejenigen Regionen im Kovariablenraum indentifiziert, die DIF verursachen,

ohne, dass diese vorher definiert werden müssen. Desweiteren wird eine Erweiterung für

ungleichmäßiges DIF entwickelt. Der letzte Teil der Arbeit befasst sich mit Regressions-

modellen für Bewertungsskalen, die häufig in der Verhaltensforschung Anwendung finden.

Hierbei kann Heterogenität unter den Befragten durch
”
latente Antwortstile“ zu verzer-

rten Schätzungen und irreführenden Interpretationen der beobachteten Antworten führen.

Die vorliegenden Analysen beschränken sich auf Skalen mit symmetrischen Antwortkat-

egorien und einem spezifischen Antwortstil, nämlich der Tendenz zur mittleren oder ex-

tremen Kategorien. Eine stärkere oder schwächere Konzentration in der Mitte kann in

ordinalen Regressionmodellen auch als Dispersionsabweichung interpretiert werden. Die

Stärke der vorgeschlagenen Modellen ist, dass sie in das Framework der generalisierten lin-

earen Modelle eingebettet werden können und somit Inferenztechnicken und asymptotische

Ergebnisse für diese Klasse von Modellen zur Verfügung stehen. Darüber hinaus wird ein

Visualisierungstool entwickelt, das die Interpretation der Effekte leicht zugänglich macht.





Summary

With the growing availability of huge amounts of data it is increasingly important to uncover

the underlying data generating structures. The present work focusses on the detection of

latent structures for categorical data, which have been treated less intensely in the literature.

In regression models categorical variables are either the responses or part of the covariates.

Alternative strategies have to be used to detect the underlying structures. The first part of

this thesis is dedicated to regression models with an excessive number of parameters. More

concrete, we consider models with various categorical covariates and a potentially large

number of categories. In addition, it is investigated how fixed effects models can be used to

model the heterogeneity in longitudinal and cross-sectional data. One interesting aspect is

to identify the categories or units that have to be distinguished with respect to their effect

on the response. The objective is to detect “latent groups” that share the same effects

on the response variable. A novel approach to the clustering of categorical predictors or

fixed effects is introduced, which is based on recursive partitioning techniques. In contrast

to competing methods that use specific penalties the proposed algorithm also works in

high-dimensional settings. The second part of this thesis deals with item response models,

which can be considered as regression models that aim at measuring “latent abilities” of

persons. In item response theory one uses indicators such as the answers of persons to

a collection of items to infer on the underlying abilities. When developing psychometric

tests one has to be aware of the phenomenon of Differential Item Functioning (DIF). An

item response model is affected by DIF if the difficulty of an item among equally able

persons depends on characteristics of the persons, such as the membership to a racial or

ethnic subgroup. A general tree-based method is proposed that simultaneously detects the

items and subgroups of persons that carry DIF including a set of variables on different

scales. Compared to classical approaches a main advantage is that the proposed method

automatically identifies regions of the covariate space that are responsible for DIF and do

not have to be prespecified. In addition, extensions to the detection of non-uniform DIF

are developed. The last part of the thesis addresses regression models for rating scale data

that are frequently used in behavioural research. Heterogeneity among respondents caused

by “latent response styles” can lead to biased estimates and can affect the conclusion drawn

from the observed ratings. The focus is on symmetric response categories and a specific

form of response style, namely the tendency to the middle or extreme categories. In ordinal

regression models a stronger or weaker concentration in the middle can also be interpreted

as varying dispersion. The strength of the proposed models is that they can be embedded

into the framework of generalized linear models and therefore inference techniques and

asymptotic results for this class of models are available. In addition, a visualization tool is

developed that makes the interpretation of effects easy accessible.
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1. Introduction

A huge amount of data is collected in many areas of applied science for statistical analyses.

The main cause is the development of computer technology and the accompanying pos-

sibilities of data processing. In many applications regression models are used to describe

the relation between a dependent variable of interest (called response) and several explana-

tory variables (called predictors). If many variables are available on different scales, for

example, a mixture of continuous and categorical variables, one has to carefully select the

variables that are incorporated in the analysis. In particular one has to decide in which

form they are included in the model. Categorical variables that can be ordered or unordered

are typically difficult to handle, as they require specific coding. Moreover, it is often the

case that variables are not directly observable or that the true underlying data generating

structure is only captured implicitly by observed variables. These variables or structures

are called “latent”. The present thesis deals with modelling strategies for the detection of

the following latent structures in categorical variables:

• Latent groups comprising categories of categorical predictors or measurement units

that share the same effect on the response (subject in Chapter 2 and 3).

• Latent traits that are measured in psychometric modelling, where the answers to a

set of items are used to infer on the underlying abilities (subject in Chapter 4 and 5).

• Latent response styles that affect the response behavior and therefore the conclusions

drawn from the observed ratings in behavioral research (subject in Chapter 6 and 7).

In each case tailored regression models have to be used to detect the underlying latent

structures. All proposed approaches in this thesis are based on generalized linear models, see

McCullagh and Nelder (1989). In the following some basic concepts are shortly introduced

on which the proposed methods are built on.

Categorical Predictors

In regression models categorical variables require special attention. Unlike continuous vari-

ables they have to be appropriately recoded into several variables. For a categorical variable

x ∈ {1, . . . ,m} the most popular way is to define m−1 dummy variables x̃j, where x̃j = 1 if
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x = j, and x̃j = 0 otherwise. Thereby, each category is compared to a predefined reference

and the regression coefficients are interpreted accordingly. An overview on this topic is

found in Tutz (2012).

The incorporation of categorical variables inevitably leads to a huge number of parameters

in the linear predictor which calls for regularization techniques. Classical approaches are

group or fused lasso type penalties, see Tibshirani et al. (2005), Yuan and Lin (2006)

and Bondell and Reich (2009). The objective of the use of such penalties for categorical

predictors is the exclusion of the predictor from the model or the grouping of categories

with the same impact on the response. The main drawback of existing approaches is that

they are computationally expensive and become infeasible for a large number of categories.

To overcome these problems in Chapter 2 of this thesis a novel approach for regularized

modelling of categorical predictors based on recursive partitioning techniques is carefully

developed and compared to its competitors.

Categorical Responses

In the simplest case one has a binary response coding two categories y ∈ {0, 1}. The most

popular regression model for binary responses is the logistic regression model (in short logit

model) that links the conditional expectation of the response to the linear predictor by the

logistic distribution function, so

log

(
P (y = 1|x)

1− P (y = 1|x)
)

= x�β,

where η = x�β is the linear predictor composed of explanatory variables x and corre-

sponding coefficients β. A main advantage of the model is the easy interpretation of effects

by odds ratios. Alternative link functions, which will not be considered in this thesis, are

the probit or complementary log-log link. An introduction on binary regression models is

found in Fahrmeir et al. (2013). In this thesis the logit model is used in various ways. In

particular, in Chapter 4 and 5 it is employed to develop extended models for item response

data.

The most popular model for the analysis of item response data is the Rasch model (Rasch,

1960). Let the response be given by Ypi, which indicates if respondent p, p = 1, . . . , P ,

solved item i, i = 1, . . . , I, correctly or not. Then the Rasch model is given by

log

(
P (Ypi = 1|θp, βi)

1− P (Ypi = 1|θp, βi)

)
= θp − βi,

where θp denotes the ability of respondent p and βi denotes the difficulty of item i. The

model simply represents a binary logit model. Therefore, by the choice of appropriate
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assumptions the model can be embedded into the framework of generalized linear models.

A basic introduction into the Rasch model is found in Strobl (2012).

More general one has a response Y ∈ {1, . . . , k} with k categories. A classical approach is

the multinomial logit model. The model is locally a binary logit model specifying the odds

between category r, r = 1, . . . , k− 1, and a predefined reference. If the response is ordinal,

i.e., the categories have a natural order, it is advisable to use models that explicitly make

use of this information. An useful choice is the cumulative logit model that specifies the

cumulative probabilities P (Y ≤ r) = P (Y = 1)+ . . .+P (Y = r) by the logistic distribution

function. A representation of the model is

log

(
P (Y ≤ r|x)
P (Y > r|x)

)
= ηr = θr + x�βr, r = 1, . . . , k − 1,

where θr denote category-specific threshold parameters and βr are category-specific regres-

sion coefficients. One drawback of the model is that the model requires the ordering of

predictors η1 ≤ . . . ≤ ηk−1 and therefore constraints on the parameters are needed. An al-

ternative is the adjacent categories logit model that specifies the odds of adjacent categories

r + 1 and r as

log

(
P (Y = r + 1|x)
P (Y = r|x)

)
= ηr = θr + x�βr, r = 1, . . . , k − 1.

A common assumption that is made to result in a parsimonious parameterization in both

models is β1 = . . . = βk−1. For further details see Agresti (2009) or Tutz (2012). In this

thesis both models for ordinal responses, the cumulative and the adjacent categories model,

are used in various ways. In particular, in Chapter 6 and 7 they are employed to develop

extended models for rating scale data.

Recursive Partitioning

An alternative to linear or additive regression models are recursive partitioning techniques,

also known as trees. A main advantage of trees is that interactions in particular of higher

order can easily be modelled by successive splitting of the predictor space. The concept goes

back to automatic interaction detection (AID) introduced by Morgan and Sonquist (1963).

In general tree-based methods may be divided into two groups - methods that use binary

splits and methods that yield trees with multiway splits. Examples for the latter are the

C4.5 (Quinlan, 1993) algorithm, the successor and refinement of ID3 (Quinlan, 1986), and

CHAID (Kass, 1980). Multiway splits offer the advantage that a variable is rarely used for

splitting several times and therefore does not appear more than once in the tree. However

binary trees are usually preferred because a multiway split, for example in an ordinal
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variable, can also be achieved by successive binary splitting. The most popular approaches

are classification and regression trees (CARTs) proposed by Breiman et al. (1984). For an

introduction into the basic concepts see Hastie et al. (2009) and Tutz (2012).

In each step of the tree construction a node A, that is a subset of the predictor space, is

split into a left node A1 and a right node A2 corresponding to disjoint subsets of A. Each

split is determined by one variable and one corresponding split-point that has to be chosen

appropriately. After several splits the terminal nodes describe a partition of the predictor

space. The tree yields an interpretable structure of the relation between the predictors and

the response. In each terminal node the predicted outcome is a constant that depends on

the scale of the response. For a continuous response it is simply the mean in the respective

region.

The construction of the split also depends on the scale of the variable. For a continuous or

ordinal variable x and chosen split-point c, the partition {A1, A2} has the form

A1 = A ∩ {x ≤ c}, A2 = A ∩ {x > c}.

For a categorical variable without ordering x ∈ {1, . . . , K}, the partition has the form

A1 = A ∩ S1, A2 = A ∩ S2,

where S1 and S2 are disjoint, non-empty subsets S1 ⊂ {1, . . . , K} and its complement

S2 = {1, . . . , K} \ S1. There are 2K−1 − 1 possible pairs S1, S2 that have to be considered

when searching for the optimal split.

For the selection of splits several criteria have been proposed. A classical way is to use

impurity measures as the Gini index or the entropy and to select the split that maximally

decreases the impurity of the tree. An alternative that is used in this thesis are test-

based splits. In each iteration one yields a model for the conditional mean E(y|x) that is
associated with the current tree structure. The model assumes that the response is constant

within already built subsets. To select the best split one evaluates the improvement of the

model fit by use of a measure for the goodness-of-fit. A common choice is to use the

difference in deviances

d = D(MA)−D(MA1,A2),

where D(MA), D(MA1,A2) denote the deviances of the models with and without the split,

and to select the split for which d is maximal.

Finally one has to determine the size of the tree. One strategy is to grow a very large tree

and to prune it to an adequate size afterwards. A second strategy, which is used in this

thesis, is to stop growing the tree if a certain splitting criterion is no longer met. Thus,
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Figure 1.1.: Exemplary item characteristic curves for an item with uniform (left) and non-uniform
(right) DIF with regard to two groups.

the tree size is determined beforehand by early stopping. Applied stopping criteria are

explained in more detail in the respective chapters.

In Chapter 2 to 5 of this thesis tree-based splits are used to extend generalized linear

models. The adaptation to specific problems result in models with higher flexibility. It is

important to note that in the proposed approaches there is one main difference to the fitting

of common trees. Tree-based splits are embedded into the linear or additive predictor of

regression models. Thus, they are only part of the whole model. To ensure valid estimates

of all parameters all data are used in each fitting step. In contrast, common trees condition

on previous splits and only use the data of already built subsets of the predictor space to

determine the next split.

Differential Item Functioning

Intelligence and other achievement tests aim at measuring latent abilities or traits of per-

sons. As they are not directly observable the answers on a collection of items are used

to infer on the underlying ability of the person. To draw valid conclusions it is necessary

to design the tests very carefully. In particular test items should not be unfair, that is,

should not favour specific groups. If the probability to answer an item correctly is different

among persons with the same latent ability, it is referred to item bias or differential item

functioning (DIF). For a detailed introduction to DIF, see Holland and Wainer (1993) or

Osterlind and Everson (2009). DIF is often caused by certain characteristics of the persons,

such as the membership to a racial or ethnic subgroup. In the previous literature this topic

has been dealt with extensively. An overview on existing methods is given in Millsap and

Everson (1993). In current research several approaches have been proposed, for example

by Strobl et al. (2015), Tutz and Schauberger (2015) and Magis et al. (2015).
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In general DIF may be divided into two main types - uniform and non-uniform DIF. Uniform

DIF is present, if the differences of the probability to answer an item correctly between

different groups does not depend on the ability of the persons. If non-uniform DIF is

present, the differences differ across persons depending on their ability level. A visualization

of the probabilities to answer an item correctly as a function of the ability of a person is

shown in Figure 1.1. The left panel shows the so-called item characteristic curves for two

groups with uniform DIF. In this example the item is more difficult for all persons in group

2. In contrast, in the right panel the two groups show non-uniform DIF. It can be seen, that

one obtains crossing item response curves. For persons with low ability the item is easier

for group 2 than for group 1 and vice versa for persons with higher ability level. In Chapter

4 and 5 of this thesis regression models that capture uniform as well as non-uniform DIF

in a very flexible way are developed and compared to their competitors.

Guideline through the Thesis

This thesis can be divided into three main parts, which are dedicated to the detection of

latent structures in different forms. Each part is contained of two chapters.

Chapter 2 and Chapter 3 deal with regression models containing an excessive number

of parameters, which calls for structured modelling approaches. In many applications one

has a variety of potential explanatory variables, in particular several categorical predictors

on an ordinal or nominal scale. In both forms the simple use of dummy variables for each

category will cause estimation problems and probably will not reflect the true impact of the

predictors on the response. To gain interpretability one wants to exclude non-influential

variables and wants to know which categories have to be distinguished. The focus is on the

detection of latent groups of categories that share the same effect on the response.

In Chapter 2 a novel approach for the clustering of categories in regression models using

tree-based splits is proposed. Previous methods for the fusion of categorical predictors pro-

posed by Gertheiss and Tutz (2009) and Gertheiss and Tutz (2010) are based on penalized

maximum likelihood estimation. An overview on this topic was recently given by Tutz and

Gertheiss (2016). The main problem of these approaches is that they are not applicable for

a large number of categories due to the computational effort. In addition, simulations show

that the proposed tree-based approach yields much better results in terms of its cluster-

ing performance. In Chapter 2 several applications and further comparisons to competing

approaches underline the usefulness and the applicability of the proposed method.

In Chapter 3 the tree-structured modelling approach developed in Chapter 2 is adapted

to models for repeated measurements. In longitudinal or cross-sectional studies the het-

erogeneity of measurement units has to be taken into account. A classical solution that is
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widely used to model unobserved heterogeneity is the random effects model. Despite its

popularity the random effects model often causes problems because strong assumption are

made on the generation of the observed data. A more flexible alternative, which is proposed

in Chapter 3, is the fixed effects model. In fixed effects models heterogeneity is captured by

own parameters for each measurement unit defining appropriate dummy variables. Obvi-

ously this can be seen as a special case of categorical predictors. For example unit-specific

intercepts can be treated as the parameters of a nominal variable. Again the huge number

of parameters raises the questions of computational feasibility and interpretability of the

model. Furthermore, the assumption that all measurement units behave different is quite

strong. In repeated measurements one wants to know if heterogeneity is present at all,

and if it is, to identify latent groups of measurement units that share the same effect on

the response. The proposed method is illustrated in several applications and in extensive

simulations including the comparison to competing methods.

In Chapter 4 and Chapter 5 a novel method for the detection of differential item func-

tioning based on recursive partitioning is proposed. Classical testing approaches for the

identification of items that carry DIF are restricted to the comparison of two or few sub-

groups that have to be pre-specified. In particular in the case of continuous covariates it

might be challenging to determine the relevant groups that should be investigated. An al-

ternative approach that is also based on recursive partitioning and is able to handle several

covariates was recently proposed by Strobl et al. (2015). The main drawback of the method

is that it detects the subsets of the predictor space that carry DIF but does not automat-

ically detect the items that are responsible. The methods proposed here combine the two

desirable criteria. By recursive partitioning on the item level one achieves a simultaneous

detection of DIF items and corresponding subgroups that do not have to be pre-specified.

The most popular model of the item response theory (IRT) is the Rasch model (Rasch,

1960), introduced before. It assumes that the probability to answer an item correctly is

determined by exactly two parameters - the ability of the person and the difficulty of the

item. Due to the simple form of the model it can only capture uniform DIF. The method

of recursive partitioning on the item level, called item focussed trees, is developed for the

Rasch model in Chapter 4. The advantages towards competing methods and the good

performance are demonstrated in several simulations and two applications.

An alternative non-IRT approach to the detection of DIF was proposed by Swaminathan

and Rogers (1990) and extended by Magis et al. (2011) and Magis et al. (2015). The main

idea is to use the test score, i.e. the number of solved items, and the group membership

of the persons as predictors of a logistic regression model that models the probability of

solving an item correctly. The structure of the model allows to investigate uniform as

well as non-uniform DIF. In Chapter 5 the logistic regression model is incorporated into
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the framework of item focussed trees. In particular the investigations on non-uniform DIF

show the potential of the method.

Chapter 6 and Chapter 7 are dedicated to ordinal regression models used in behavioural

research. In many studies rating scales are employed to investigate attitudes or performance

of the participants. When evaluating the observed ratings one should always be aware of

specific response styles. Observed ratings caused by a certain response pattern that is inde-

pendent of the content of the response may lead to wrong conclusions. This thesis focusses

on extreme response styles, that is the tendency to the middle or extreme categories.

In Chapter 6 the adjacent categories model is extended by the introduction of an additional

parameter that determines the response style. The additional response style parameter can

be specified as a function of explanatory variables. The proposed method is quite different

from alternative IRT based approaches in which latent traits are used and multiple items

are necessary. The strength of the model is that it simultaneously accounts for content-

related and response style effects. By embedding the proposed model into the framework

of (multivariate) generalized linear models established estimation and inference tools can

be used. Simulations illustrate that biased estimates of the content-related effects can be

avoided by accounting for the response style. In addition, a visualization tool is developed

that makes the interpretation of effects easily accessible. Several applications demonstrate

its applicability.

A strong tendency to the middle or extreme categories can also be seen as varying disper-

sion. In many applications a lack-of-fit is caused by an insufficient modelling of dispersion

effects. In Chapter 7 the cumulative regression model is extended by an additional term

that determines the dispersion. The design is very similar to the model in Chapter 6. How-

ever, the parameters are interpreted as location and dispersion effect. In simulations and

applications the proposed model shows a very similar performance to an alternative model

that was introduced by McCullagh (1980). Embedding the model into the framework of

generalized linear models allows to use asymptotic results that have been developed for this

class of models. Moreover, selected examples show that the extended cumulative model

with dispersion effects is an parsimonious alternative to cumulative models with a huge

number of category-specific parameters.

Apart from some cross-references, each chapter is self-contained including an own introduc-

tion to the relevant topics and can therefore be read separately.

Contributing Manuscripts

Parts of this thesis have been published as articles in peer reviewed journals, in proceedings

of scientific conferences, as preprints on arXiv hosted by Cornell University or as technical
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report at the Department of Statistics of the Ludwig-Maximilians-Universiät München. In

the following, chapter by chapter all contributing manuscripts are listed and the contribu-

tions of the respective authors are described.

• Chapter 2:

Tutz and Berger (2015b): Tree-Structured Modelling of Categorical Predictors in

Regression, Cornell University Library, arXiv: 1504.04700.

The project was set up by Gerhard Tutz and developed jointly by Gerhard Tutz und

Moritz Berger. Moritz Berger implemented the method and conducted the simulations

and real data analyses. The manuscript was written in close collaboration by both

authors.

The Chapter is a modified version of Tutz and Berger (2015b). The manuscript was

extended by the simulations in Section 2.6.1 and by Section 2.8 which introduces

further-reaching concepts. Some parts were rewritten and the notation was slightly

changed. In addition, the application in Section 2.7.1 differs from the original one.

Appendix A contains some supplementary material.

• Chapter 3:

Berger and Tutz (2015c): Tree-Structured Clustering in Fixed Effects Models, Cornell

University Library, arXiv: 1512.05169.

Gerhard Tutz initiated the use of tree-based methods in fixed effects models. Moritz

Berger was responsible for the implementation of the method and the simulation

studies as well as the applications on real data. The manuscript was mainly written

by Moritz Berger in close collaboration with Gerhard Tutz.

The original manuscript was extended by further considerations in Section 3.4, by the

application in Section 3.7.1 and Section 3.8, which deals with group-specific slopes.

Apart from these sections and minor modifications, Chapter 3 together with Appendix

B and Berger and Tutz (2015c) match.

• Chapter 4:

Tutz and Berger (2015a): Item focussed Trees for the Identification of Items in Differ-

ential Item Functioning, Psychometrika, published online, doi: 10.1007/s11336-015-

9488-3.

Chapter 4 was set up by Gerhard Tutz who conceptualized the theoretical framework.

Moritz Berger implemented the method and the corresponding R package DIFtree.

He also evaluated the simulation studies and real data examples. The manuscript was

written in close collaboration by both authors.

The original manuscript was complemented by simulations in Section 4.4.3 and Section

4.4.4 and extended by Section 4.6, which deals with ordinal item responses. Apart
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from these sections and minor modifications, Chapter 4 and Tutz and Berger (2015a)

match.

• Chapter 5:

Berger and Tutz (2015a): Detection of Uniform and Non-Uniform Differential Item

Functioning by Item Focussed Trees, Cornell University Library, arXiv: 1511.07178.

The project was jointly developed by the two authors. Moritz Berger implemented

the method and conducted the simulations and applications on real data. He mainly

wrote the manuscript in close collaboration with Gerhard Tutz.

The chapter is a revised version of Berger and Tutz (2015a). The manuscript was

extended by several simulations in Chapter 5.5 and Chapter 5.6.5. Moreover, some

parts were rewritten and further considerations were added. Appendix C contains

additional simulation results.

• Chapter 6:

Tutz and Berger (2016a): Response Styles in Rating Scales - Simultaneous Mod-

elling of Content-Related Effects and the Tendency to Middle or Extreme Categories,

Journal of Educational and Behavioral Statistics 41(3), 239-268.

The project was initiated by Gerhard Tutz who developed the theoretical framework

and investigated the literature. Moritz Berger was responsible for the implementa-

tion of the method and the evaluation of numerical experiments as well as real data

examples. The manuscript was mainly written by Gerhard Tutz with contributions

of Moritz Berger.

The original manuscript was complemented by simulations in Section 6.3.1 and ex-

tended by Section 6.8, which introduces further-reaching concepts. Apart from these

sections and some minor modifications, Chapter 6 together with Appendix D and

Tutz and Berger (2016a) match. Preliminary work on the project can be found in the

proceedings of the IWSM 2015 (Berger and Tutz, 2015b).

• Chapter 7:

Tutz and Berger (2016b): Seperating Location and Dispersion in Ordinal Regression

Models, Ludwig-Maximilians-Universität München, Department of Statistics, Techni-

cal Report 190.

Chapter 7 was mainly drafted by Gerhard Tutz with contributions of Moritz Berger.

Moritz Berger conducted several simulation studies and applications on real data. He

contributed substantially to the presentation of the results.

Apart from some modifications, particularly regarding the notation, and the arrange-

ment of the sections, Chapter 7 and Tutz and Berger (2016b) match.
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Software

All computations were done with the statistical program R (R Core Team, 2016) and addi-

tional packages. The corresponding packages are indicated in the respective chapters and

sections.

The methods and functions implemented for Chapter 2 and Chapter 3 are made available

by the self-implemented R add-on package structree (Berger, 2016b), which will presum-

ably be made publicly accessible via the Comprehensive R Archive Network (CRAN). An

initial version of the package can be downloaded from http://www.statistik.lmu.de/

~mberger/forschung.html. The package imports the two R add-on packages mgcv (Wood,

2011) and penalized (Goeman et al., 2014).

For the methods proposed in Chapter 4 and Chapter 5 the self-implemented R add-on-

package DIFtree (Berger, 2016a) was developed, which can be downloaded from CRAN. It

imports the two R add-on packages penalized (Goeman et al., 2014) and plotrix (Lemon,

2006).

The methods for Chapter 6 and Chapter 7 are implemented by use of the R add-on-package

VGAM (Yee, 2010), which attaches the two base packages splines and stats4. Embedding

the estimation procedure into the framework of VGAM ensures quite fast computation. The

corresponding functions are available upon request. Moreover, for illustration Appendix D

contains parts of the implemented R code.





2. Structured Regression Models for

Categorical Predictors

2.1. Introduction

In most regression problems one has a mixture of explanatory variables. Some are contin-

uous, some are binary and others are categorical on a nominal scale or ordered categorical.

Flexible models with a focus on main effects are generalized additive models (GAMs). In

particular they allow to include continuous variables that have a smooth effect of unspec-

ified functional form. However, the focus on main effects turns into the disadvantage that

higher order interactions are hard to model. Furthermore, generalized additive models can

contain a multitude of parameters.

An alternative tool that is widely used is recursive partitioning also known as trees. The

most popular methods are classification and regression trees (CART), outlined in Breiman

et al. (1984), and the C4.5 algorithm, which was proposed by Quinlan (Quinlan, 1986;

Quinlan, 1993). An introduction into the basic concepts is found in Hastie et al. (2009),

an overview on recursive partitioning in the health sciences was given by Zhang and Singer

(1999) and an introduction including random forests with applications in psychology by

Strobl et al. (2009).

One big advantage of trees is that they automatically find interactions. The concept of

interactions is at the core of trees, which have its roots in automatic interaction detection

(AID), proposed by Morgan and Sonquist (1963). But the focus on interactions can also turn

into a disadvantage because common trees do not allow for a linear or smooth component

in the predictor. Below the root node most nodes represent interactions. Thus potentially

linear or additive effects of covariates are rarely detected. This is in contrast to generalized

additive models, which take main effects much more serious.

This chapter is a modified version of Tutz and Berger (2015b). For more information on the personal
contributions of the authors and textual matches, see page 9.
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One application we will consider are the Munich rent standard data, which were also anal-

ysed in Gertheiss and Tutz (2010). The data set consists of 2053 households with the

response variable being monthly rent per square meter in Euro. Available predictors are

the urban district (nominal factor), the year of construction, the number of rooms, the

quality of residential area (ordinal factors), the floor space (metric) and five additional

binary variables. Conventional trees treat all these explanatory variables in a similar way.

They split the predictor space by use of one variable into two regions. Within the regions

the response is fitted as a constant. If in the first step a continuous explanatory variable

is selected, for example floor space, in the next step typically interactions with floor space

are fitted, more concise, interactions with the two selected regions of floor space. In the

next steps all fits refer to higher order interactions. Therefore, trees have a strong tendency

to fit interactions and neglect the main effects. The relevance of explanatory variables is

found a posteriori by defining importance measures, which in random forests in some form

reflect how often a variable has been selected, see, for example, Ishwaran (2007), Sandri

and Zuccolotto (2008) and Strobl et al. (2008). In contrast, if in generalized additive mod-

els binary and categorical variables are included by use of a linear predictor one obtains

estimates of parameters that reflect the importance of the variables directly.

The tree-structured approach proposed in the present chapter combines the advantages

of generalized additive models and trees. The method uses trees in part of the variables

but allows to include others as parametric or smooth components in the model. Similar

approaches have been considered for longitudinal data, see, for example, Sela and Simonoff

(2012) and Bürgin and Ritschard (2015). Our focus is on categorical predictors with many

categories as, for example, the urban district in the rent data (25 districts). In particular

categorical predictors are difficult to handle because for each category one parameter is

needed. Thus simple parametric models tend to become unstable which calls for regularized

estimates. Categorical predictors or factors come in two forms, unordered or ordered. In

both forms one wants to know if the predictor has an impact, and, if it has, which categories

have to be distinguished. The latter problem means that one wants to find clusters of

categories (or factor levels) that share the same expected response. In the nominal case

all possible partitions of the set of categories are candidates, whereas in the ordered case

clusters are formed by fusion of adjacent categories. The proposed method uses trees to

find the clusters of factor levels. Thus trees are used for the categorical variables while the

other variables are included in the classical form of linear or smooth effects.

Fusion of categories to obtain clusters of categories within a regression model has been

mainly investigated by penalization methods, see Bondell and Reich (2009), Gertheiss and

Tutz (2009) and Gertheiss and Tutz (2010). However, in contrast to the tree-structured

approach, these penalization techniques are restricted to a small number of categories.

Penalization methods and tree-type methods that are related or alternatives to the present

approach are considered in a separate section (Section 2.5). In Section 2.2 we introduce
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a tree-structured model for categorical predictors, in Section 2.3 the fitting procedure is

presented. Section 2.4 deals with standard errors and the stability of clusters. Results

of simulation studies are given in Section 2.6 and in Section 2.7 we consider two further

applications. Finally, in Section 2.8 further extensions of the proposed approach are shortly

introduced.

2.2. Structured Predictors

As in generalized linear models (GLMs) let the mean response μ = E(y|x) be linked to the

explanatory variables in the form

μ = h(η) or g(μ) = η,

where h(·) is the response function and g(·) = h−1(·) is the link function. As in GLMs we

also assume that the distribution of y|x follows a simple exponential family (McCullagh

and Nelder, 1989). While GLMs always assume that the predictor is linear we assume that

the predictor is composed of two components, a tree component and a linear or additive

component. For data (yi,xi, zi), i = 1, . . . , n, the predictor of the model with a linear

component has the form

ηi = tr(zi) + xT
i β, (2.1)

where tr(zi) is the tree component of the predictor and xT
i β is the familiar linear term.

Thus, one distinguishes between two groups of explanatory variables, namely z, which are

determined by a tree, and x, which have a linear effect on the response. In extended

versions we consider the additive predictor

ηi = tr(zi) +

p∑
j=1

f(j)(xij), (2.2)

where the f(1)(·), . . . , f(p)(·) are unspecified functions and p is the number of x-variables.

Then one obtains a tree-structured model with additive components.

We will focus on the case where the z-variables are categorical. When a tree is built,

successively a node A, that is a subset of the predictor space, is split into subsets with the

split determined by only one variable. For a nominal categorical variable z ∈ {1, . . . , K},
the partition has the form A ∩ S, A ∩ S̄, where S is a non-empty subset S ⊂ {1, . . . , K}
and S̄ = {1, . . . , K} \ S is the complement. Thus, after several splits the predictor tr(zi)

represents a clustering of the categories {1, . . . , K}, and the tree term can be represented

by

tr(zi) = α1I(zi ∈ S1) + · · ·+ αmI(zi ∈ Sm).
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S1, . . . , Sm is a partition of {1, . . . , K}, and I(·) denotes the indicator function with I(a) = 1

if a is true, I(a) = 0 otherwise.

For an ordinal categorical variable z ∈ {1, . . . , K} the partition into two subsets has the

form A ∩ {z ≤ c}, A ∩ {z > c}, based on the threshold c on variable z. Thus during

the building of a tree clusters of adjacent categories are formed. The tree term has the

same form as before but with the subsets that represent the clusters having the form

Sk = {ak−1, . . . , ak}, ak−1 < ak.

In the case of more than one categorical predictor the tree-structured model proposed here

forms clusters only for one variable. Then, with q predictors in z the tree component has

the form

tr(zi) = tr(zi1) + · · ·+ tr(ziq),

where tr(zr) is the tree for the r-th variable, that means it represents clusters of the r-th

variable with the cluster form determined by the scale level of the corresponding variable.

A traditional tree hardly finds clusters for single components. It typically produces clusters

that combine several variables, in particular, mixing nominal and ordinal predictors.

Clustering by trees is a forward selection strategy. But one should be aware that the all

subsets strategies fail even in cases of a moderate number of categories. Already in the case

of only one predictor one has to consider all subsets S1, . . . , Sm and fit the corresponding

model with predictor ηi = α1I(zi ∈ S1)+ · · ·+αmI(zi ∈ Sm)+xT
i β. This is computational

feasible only for a very small number of categories. For more than one variable one has to

consider all possible combinations, which is bound to fail.

2.3. Tree-Structured Clustering

For simplicity we start with only one categorical predictor. The model for the general case

is introduced in a later section.

2.3.1. Trees with Clusters in a Single Predictor

Let us first consider one ordinal (or metric) variable z. Then one split in a tree that includes

a linear predictor is found by fitting the model with predictor

ηi = αlI(zi ≤ c) + αrI(zi > c) + xT
i β,

where I(·) again denotes the indicator function. By use of the split-point c the model splits

the predictor space into two regions, z ≤ c and z > c. In the left node, for all z ≤ c, one
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specifies the response level αl, in the right node, for all z > c, one specifies the level αr. It

should be emphasized that in x no intercept is included. An equivalent representation of

the predictor is

ηi = β0 + αI(zi > c) + xT
i β.

with the transformation of parameters given by β0 = αl and α = αr−αl. The latter form of

the predictor is more convenient since it contains an intercept as common regression models

do and only one step function has to be specified.

When growing trees one has to specify the possible split-points. Let in the following C

denote the set of possible splits c. For a metric predictor, in principle all possible thresholds

c can be used, but it suffices to use as candidates all the distinct observations available for

the predictor. Therefore, C contains the distinct values of the observed predictor. For

ordinal predictors z ∈ {1, . . . , K} the set C = {c1, . . . , cK} is simply {1, . . . , K}.
The basic algorithm that we are using for an ordinal variable is the following.

Tree-Structured Clustering - Single Ordered Predictor

S tep 1 (Initialization)

(a) Estimation: Fit the candidate GLMs with predictors

ηi = β0 + αkI(zi > ck) + xT
i β, k = 1, . . . , K

(b) Selection

Select the model that has the best fit. Let c∗k1 denote the best split.

S tep 2 (Iteration)

For � = 1, 2, . . . ,

(a) Estimation: Fit the candidate models with predictors

ηi = β0 +
�∑

s=1

αksI(zi > c∗ks) + αkI(zi > ck) + xT
i β,

for all values ck ∈ C \ {c∗k1 , . . . , c∗k�}
(b) Selection

Select the model that has the best fit yielding the split-point c∗k�+1
.
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The algorithm uses two steps, fitting of candidate models and selection of the best model.

In GLM-type models it is quite natural to measure the fit by the deviance. Thus, one

selects the model that has the smallest deviance. The criterion is equivalent to minimizing

the entropy, which has been used as a splitting criterion already in the early days of tree

construction (Breiman et al., 1984).

The algorithm yields a sequence of fitted split-points c∗k1 , c
∗
k2
, . . . from C and the correspond-

ing parameter estimates α̂k1 , α̂k2 , . . . from the last fitting step. Typically the selection of

split-points is stopped before all possible splits are included (for stopping criteria see below)

and one obtains the subset of selected splits C∗ = {c∗k1 . . . , c∗km−1
}, where m denotes the

number of selected clusters. Since the fitted functions are step functions one obtains a par-

titioning into clusters of adjacent categories. For ordered categories the thresholds are given

by C = {1, . . . , K} and one obtains the clustering after ordering the selected thresholds

such that c(k1) < c(k2) < . . . by {1, . . . , c(k1)}, {c(k1) + 1, . . . , c(k2)}, . . . , {c(km−1) + 1, . . . , K}.
If in the initialization step the maximal value from the set of considered split-points, C, is

selected, the algorithm stops immediately because in the iteration steps always the same

model would be found. Then, α̂1 = 0 and no split-point is selected. Thus, the variable is

not included.

Although the method generates trees the methodology differs from the fitting of common

trees if a parametric term is present. In common trees without a parametric term partition-

ing of the predictor space is equivalent to splitting the set of observed data accordingly. In

the next split only the data from the corresponding subspace are used. For example, when

a split yields the partition {z ≤ c}, {z > c}, in the next split only the data from {z ≤ c} (or

{z > c}) are used to obtain the next split. This is different for the tree-structured model.

In all of the fitting steps all data are used. This ensures that one obtains valid estimates

of the parametric component together with the splitting rule.

The method explicitly does not use off-sets. When fitting within the iteration steps the

previously fitted models serve only to specify the split-points that are included in the

current fit. But no estimates from the previous steps are kept. This is in contrast to Yu

et al. (2010), where off-sets are used.

Stopping Criterion

When building a tree it is advisable to stop after an appropriately chosen number of steps.

There are several strategies to select the number of splits. One strategy that has been

used since the introduction of trees is to grow large trees and prune them afterwards,

see Breiman et al. (1984) or Ripley (1996), Chapter 7. Alternative strategies based on

conditional inference procedures were given by Hothorn et al. (2006).
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We use as one strategy k-fold cross-validation. That means the data set is split into k

subsets. The tree is grown on k − 1 of these subsets, which is considered the learning

sample, and then the tree is evaluated on the left-out sub sample. Since we are working

within the GLM framework a natural candidate for the evaluation criterion is the predictive

deviance. The number of splits that showed the best performance in terms of the predictive

deviance is chosen in the final tree fitted for the whole data set.

An alternative is to use a stopping criterion based on p-values, a procedure that is strongly

related to the conditional inference procedure proposed by Hothorn et al. (2006). In each

step of the fitting procedure one obtains a p-value for the parameter that determines the

splitting. In our notation, in the �-th split one tests the null hypotheses H0 : α� = 0

yielding the p-value p� for the selected split. Typically the sequence of p-values p1, p2, . . .

is increasing. A simple criterion is to stop if the p-values are larger than a pre-specified

threshold α. However, one should adapt for multiple testing errors because in each split

several hypotheses are tested. A simple strategy is to use the Bonferroni procedure and

stop if p� > α/(K − (�− 1)) because in the �-th split K − (�− 1) number of parameters are

tested. Then, in each step the overall error rate is under control. As test statistic one can

use the Wald statistic or the likelihood ratio statistic. Although the Wald statistic is easier

to compute, we prefer the likelihood ratio statistic because it corresponds to the selection

criterion, which selects the model with minimal deviance.

Nominal Predictor

For a nominal predictor z ∈ {1, . . . , K} splitting is much harder because one has to consider

all possible partitions that contain two subsets. That means one has 2K−1 − 1 candidates

for splitting. For large K the number of candidates is excessive. But it has been shown that

for regular trees it is not necessary to consider all possible partitions. One simply orders

the predictor categories by increasing mean of the outcome and then splits the predictor as

if it were an ordered predictor. It has been shown that this gives the optimal split in terms

of various split measures, see Breiman et al. (1984) and Ripley (1996) for binary outcomes

and Fisher (1958) for quantitative outcomes and the remarks of Hastie et al. (2009).

2.3.2. Trees with Clusters in More than One Predictor

If several predictors are included in the tree component the algorithm also selects among

the available variables. Let Cr denote the possible splits in variable zr and Kr denote the

number of values in Cr. The basic form of the algorithm is the following.
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Tree-Structured Clustering - Several Ordered Predictors

S tep 1 (Initialization)

(a) Estimation: Fit the candidate GLMs with predictors

ηi = β0 + αrkI(zir > crk) + xT
i β, r = 1, . . . , q, k = 1, . . . , Kr

(b) Selection

Select the model that has the best fit. Let c∗r1,k1 denote the best split, which is

found for variable zr1 . That means that c∗r1,k1 is from the set of possible splits

for zr1 .

S tep 2 (Iteration)

For � = 1, 2, . . . ,

(a) Estimation: Fit the candidate models with predictors

ηi = β0 +
�∑

s=1

αrs,ksI(zirs > c∗rs,ks) + αrkI(zir > crk) + xT
i β,

for all r and all values crk ∈ Cr that have not been selected in previous steps.

(b) Selection

Select the model that has the best fit yielding the new split-point c∗r�+1,k�+1
that

is found for variable zr�+1
.

In the sequence of selected split-points c∗r1,k1 , c
∗
r2,k2

, . . . and corresponding estimates

α̂r1,k1 , α̂r2,k2 , . . . the first index refers to the variable and the second to the split for this

variable. The selected splits for the r-th variable can be collected in C∗
r , which comprises

all splits c∗r�,k�for which r� = r holds.
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Figure 2.1.: Results for the ordinal predictor year of construction for the analysis of the Munich
rent standard data. Upper panel: resulting tree for year of construction, lower panel: paths of
coefficients against all splits.

2.3.3. Trees for Rent Data

In the Munich rent data one has one nominal predictor (urban district), three ordinal

predictors (year of construction in decades, number of rooms, quality of residential area),

one metric variable (floor space) and five binary variables. In the additive part we model

the effect of the metric predictor by cubic regression splines and include the binary variables
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Table 2.1.: Estimated coefficients, stability measures of the tree component and 95% confidence
intervals of the linear term for the analysis of the Munich rent standard data.

Predictor Cluster Coefficient Stabilty

Urban district 7,11,14,16,22,23,24 -1.525 0.431
6,8,10,15,17,19,20,21,25 -1.005 0.421

9,13 -0.647 0.506
2,4,5,12,18 -0.368 0.511

1,3 0.000 0.552

Year of construction 1910 0.000 1.000
1920s,1930s,1940s -1.098 0.730

1950s -0.365 1.000
1960s 0.030 1.000
1970s 0.267 1.000
1980s 1.115 1.000

1990s,2000s 1.622 0.927

Number of rooms 1,2,3 0.000 0.642
4,5,6 -0.327 0.865

Quality of residential area fair 0.000 1.000
good 0.356 1.000

excellent 1.436 1.000

Predictor Coefficient 95% confidence interval

Hot water supply (no) -1.987 [-2.513,-1.372]
Central heating (no) -1.355 [-1.820,-0.947]
Tiled bathroom (no) -0.543 [-0.786,-0.318]
Supplementary equiment in bathroom (yes) 0.511 [0.199,0.807]
Well equipped kitchen (yes) 1.198 [0.839,1.579]

in a linear form. The fusion of categories obtained by the tree is illustrated for the predictor

year of construction. Figure 2.1 shows the resulting tree and the coefficient paths over the

splits for the predictor year of construction. The upper panel shows the successive splits

against the number of splits in this predictor. The lower panel shows the coefficients plotted

against the splits in all of the predictors. It is seen, in particular from the first steps, that

estimates can change when other variables are included. But after about 14 splits the

estimates are very stable. Since the maximal number of splits is 40 the estimates after 40

splits represent the fit of a generalized additive model. When p-values with significance

level 0.05 are used as splitting criterion one obtains seven clusters marked by the dashed

lines in both panels. The rent per square meter seems to be the same, for example, for

houses built between the 1920s and 1940s and for houses built in the 1990s and 2000s. The

gap between the high rent cluster and the middle clusters is larger than the gap between the
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Figure 2.2.: Map of Munich indicating the estimated clusters for variable urban district of the
Munich rent standard data. The algorithm detects five groups of districts that share the same
effect, respectively. The darker the shade the lower the estimated coefficient.

middle clusters and the low rent clusters. The estimated values are given in Table 2.1. The

table also shows the clusters for the other variables in the tree component, the estimates

of the linear part as well as stability measures that are explained later. It should be noted

that no predictor has been completely excluded from the model.

The size of clusters found by the algorithm vary in a wide range. For variable urban district

(reference 1: inner city around Marienplatz) one obtains five clusters, where the smallest

clusters {1, 3} and {9, 13} consist of only two categories, but the biggest cluster contains

nine categories. A graphical illustration of the resulting partition is given in Figure 2.2.

The map was created by R package R2BayesX (Umlauf et al., 2015; Belitz et al., 2015). A

darker shade corresponds to a lower estimated coefficient. It can be seen that rents are

most expensive around the city center and therefore estimated coefficients for the other

clusters are all negative (darker shades). There are several outskirts that build the cluster

with the lowest rents. A detailed overview of all districts is given in Appendix A on page

205, where the numbers correspond to the labels in Table 2.1.
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Figure 2.3.: Resulting function of the smooth estimation of predictor floor space of the Munich
rent standard data in the additive part of the tree.

Since it is not to be expected that the rent per square meter depends linearly on the

floor space it is fitted as a smooth function. For the estimation we use penalized cubic

regression splines, penalized by the integrated squared second derivative penalty (Eilers

and Marx, 1996). We chose a modest number of ten basis functions. For computation we

used the R package mgcv (Wood, 2011). When fitting a smooth function one has to specify

a smoothing parameter, which in our procedure is selected new in each iteration step. The

resulting function, pictured in Figure 2.3, is monotonically decreasing, which means that

the net rent per square meter decreases with growing floor space. The function decreases

strongly until a floor space of about 50 and is rather flat for a greater floor space, but it is

definitely not linear.

2.4. Standard Errors and Stability of Clusters

The tree-structured model is an extension of GLMs and GAMs. While in standard GLMs

approximate standard errors for the parameters are obtained from asymptotic theory, for

semiparametric models as considered here an alternative way to obtain standard errors has

to be used. One way is to use bootstrap procedures as described in Efron and Tibshirani

(1994). By repeated fitting on sub samples that have been obtained by drawing with

replacement one can compute approximate standard errors. But when computing standard

errors one has to distinguish between the two parts of the model, the parametric and the
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Figure 2.4.: Estimated step functions and resulting 95% confidence intervals for the ordinal predic-
tor year of construction for the analysis of the Munich rent standard data based on 1000 bootstrap
samples.

tree part. For the parametric part, which means for the parameter β, standard procedures

to compute the standard deviations and confidence intervals over the bootstrap samples

can be used. For the rent data the resulting confidence intervals are given in Table 2.1.

For categorical predictors we consider the estimated step functions, which are determined

by sums of the parameter estimates α̂rk. Bootstrap intervals can be given for all estimated

sums α̃rs =
∑s

k=1 α̂rk. Typically some of the parameter estimates α̂rk are zero, but this will

not to be the case in the bootstrap samples. Consequently one obtains confidence intervals
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Figure 2.5.: Estimated step functions and resulting 95% confidence intervals for the nominal
predictor urban district for the analysis of the Munich rent standard data based on 1000 bootstrap
samples.

that do not necessarily have equal length within clusters. The somewhat harder problem

is the case of nominal predictors. Since in bootstrap samples the ordering of the predictor

categories will differ one has to carefully rearrange the parameter estimates to obtain the

confidence intervals for the estimates α̃rs in the original sample.

For illustration we show the bootstrap results for the variables year of construction (Figure

2.4) and urban district (Figure 2.5). The upper panels of the two figures show only the first

100 bootstrap based function estimates. The lower panels show the 95% confidence intervals
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for the single effects for 1000 bootstrap samples. It is seen that for year of construction the

first big cluster, which contains the decades 1920-1940, has varying lengths of confidence

intervals, but all of them do not contain zero. Thus they should be distinguished from the

reference category, which is the first decade, and has fixed value zero. For the nominal

predictor urban district confidence intervals are larger than for the ordinal variable year

of construction. This was to be expected for a nominal variable with many categories.

However, as already suspected from Figure 2.2, it is seen that several big clusters are

definitely less expensive than the district inner city.

Bootstrapping yields confidence intervals for the step functions but does not contain in-

formation about the reliability of cluster identification. Therefore it seems warranted to

supplement the confidence intervals by diagnostic tools that reflect the stability of clusters.

One is a distance matrix obtained from the bootstrap samples. Let B denote the number of

bootstrap samples and nlk denote the number of samples for which category l and k were in

the same cluster. Then a simple similarity measure for categories is slk = nlk/B. If slk = 1

category l and k were in the same cluster in all of the bootstrap samples. The stability of

a cluster is obtained by averaging over all the distances of pairs of categories within the

cluster. Of course, if a cluster contains only one category the similarity measure has the

value 1. It is seen from Table 2.1 that the stability can strongly vary across clusters. For

the nominal variable urban district the clusters show similarity in the range (0.43, 0.55)

whereas for the ordinal variable year of construction one obtains also very large values as

0.73 and 0.93. The latter value refers to the cluster of decades 1990 and 2000 and means

that it was in the same cluster in 93% of the bootstrap samples.

2.5. Related Approaches

In the following the relation of the proposed method to related and alternative approaches is

shortly sketched. Our method aims at the identification of clusters in categorical predictors

in the presence of other, in particular, also continuous variables. Therefore discussion refers

to this objective.

The strongest relation is to approaches that are able to detect clusters in categories by the

definition of appropriate penalty terms and maximization of the corresponding penalized

log-likelihood. Let us for simplicity consider the case of one categorical predictor and several

continuous predictors. Then the corresponding linear predictor of a GLM is given by

ηi = α0 + α1z̃i1 + · · ·+ αK−1z̃i,K−1 + xT
i β,

where z̃j are the dummy variables for the categorical predictor z ∈ {1, . . . , K}. Let the

penalized log-likelihood be given by lp(α,β) = l(α,β) − J(α,β), where l(α,β) denotes
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the log-likelihood of the GLM and J(α,β) is a penalty term. For a categorical predictor a

penalty that enforces clustering of categories of z is given by

J(α,β) = λ
∑
l<k

|αl − αk|.

For λ = 0 one obtains the ML estimate, if λ → ∞ all categories of z are fused to one cluster.

The method has been proposed by Bondell and Reich (2009) for ANOVA-type models and

was adapted to variable selection by Gertheiss and Tutz (2010), Tutz and Gertheiss (2014).

The main problem with this approach is that it becomes computationally infeasible if the

number of categories gets large. This is due to the definition of the penalty term, which

includes all pairwise differences. If the number of categories is 40, the penalty already

contains 780 differences. As the approach by penalized maximum-likelihood estimation

is a competitor to the method proposed here we include it in our simulations in Section

2.6.1. For the comparison we use the R add-on package gvcm.cat (Oelker, 2015). The

implementation is based on a uniform framework proposed by Oelker and Tutz (2015) that

uses an approximation introduced by Fan and Li (2001).

An obvious relation is to classical recursive partitioning as CARTS. The main differences

have already been outlined. The method proposed here allows to include a parametric or

smooth component that accounts for the main effect in a model. Thus, the method allows

to identify clusters of categories within one predictor that have the same effect on the

response. If one fits a classical tree that includes all the variables no clustering is obtained

because the tree fits interactions between all the variables.

As a forward strategy one might suspect a strong relation to boosting concepts. Boost-

ing methods were originally developed in the machine learning community as a means to

improve classification (e.g., Shapire, 1990). Later it was shown that it can be seen as the

fitting of an additive structure by minimizing specific loss functions (see Friedman, 2001;

Friedman et al., 2000; Bühlmann and Yu, 2003). Minimization is obtained iteratively by

utilizing a steepest gradient descent approach. In a forward searching procedure compo-

nents that are potentially relevant are included in the predictor. The potentially relevant

components are fitted by so-called base learners. A simple example is the fitting of a linear

model where a base learner refers to the fitting of one component of the linear predictor,

xiβj. By including one of the components at a time and selection of the component that

maximally improves the fit one obtains the final model. The method proposed here seems

to be very similar. The base learner that is used is one split in a variable, which has the

form αrkI(zir > crk). Selection of the most relevant term is also based on goodness-of-fit.

However, there is one crucial difference between the tree-structured model and boosting,

namely that boosting uses weak learners. A weak learner is somehow vaguely defined as a

refit that only slightly improves the overall fit, but properties of the procedure definitely

depend on the weakness of the learner (Bühlmann and Yu, 2003). In our procedure a weak
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learner would be the inclusion of the best split αrkI(zir > crk), but with a new parameter

value αrk that is only slightly larger than the parameter used in the previous step. Of

course, one could fit categorical predictors by weak learners, or equivalently by boosting,

but the effect would be a smooth fit over categories, because in each boosting step the

parameters are updated only weakly but most of them are selected during the iterations.

Therefore, the procedure fails to obtain the intended clustering of categories.

A further approach that is related to the tree-structured model is model-based partitioning

proposed by Zeileis et al. (2008). The basic concept is to fit a parametric model in every

leaf of a tree, for example, a linear regression model. By fitting a model to subsets that

are defined in the usual way by splitting variables one obtains a partitioned or segmented

parametric model. Within this framework it is possible to detect areas where model fits

differ because the linear models fitted to leafs differ in their parameters. It is a flexible

modelling tool in which all kinds of parametric models can be used. However, as in common

trees the focus is not on main effects but on interaction although in the wider sense that

models differ in different leafs. In particular for categorical predictors, which are considered

here, one obtains different structures when using model-based partitioning in the sense of

Zeileis et al. (2008) or structured regression as proposed here. In model-based partitioning

splits in a categorical predictor are enforced if the parameters of the fitted model differ in

the resulting clusters of categories. After several splits one obtains quite different models

that hold within clusters of categories. In our structured regression clusters of categories are

built by assuming that the effect on the response is the same within clusters and that the

main effects are constant. Thus the focus is on similarity of categories not on dissimilarity

of categories with respect to the models that hold within clusters of categories.

Finally, several modelling strategies were proposed that also use a combination of a para-

metric term and a tree component. One is the partially linear tree-based regression model

developed by Chen et al. (2007). The focus of the paper is on genetic risk factors. The

main difference to the procedure proposed here is the restriction to a linear term and an

alternative algorithm that uses off-sets in the iterative algorithm instead of updating the

linear component. The approach has been extended to account for multivariate outcomes

by Yu et al. (2010). An alternative model is the regression trunk model proposed in Dussel-

dorp and Meulman (2004) and Dusseldorp et al. (2010). The model is designed for metric

response only. In contrast to our approach it uses the same variables in the tree component

and the linear term, which yields hard to interpret effects. Moreover, they use the more

conventional fitting strategy that first grows a large tree and then prunes it. Therefore, the

relevance of predictors in terms of significance should be hard to obtain. A combination

of linear fits and tree-structured component with the focus on diagnostic for linear models

was considered by Su et al. (2009).
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2.6. Simulations

The proposed tree-structured model allows to detect clusters of categories that share the

same effect on the response while letting other variables, in particular metric variables, have

a linear or smooth effect on the response. In order to investigate the performance of the

model we now give the results of several simulations. We first consider data with one cate-

gorical covariate. The main objective here is to compare the proposed model, abbreviated

by TSC, for tree-structured clustering, to the model based on penalized maximum-likelihood

estimation, abbreviated by PENL. For the computations we used the function gvcm.cat()

of R package gvcm.cat (Oelker, 2015) and included adaptive weights in the penalty term.

Subsequently we give detailed results for more complex data with several predictors com-

paring several stopping criteria. All the results are based on 100 repetitions.

Evaluation Criteria

The estimated coefficients are compared to the true parameters by calculating mean squared

errors (MSEs). Therefore we distinguish between the tree-based parameters α and the

parameters β of the linear term. For the r-th categorical predictor the MSE of the α-

parameters is
∑Kr

k=1(α̂rk−αrk)
2/Kr and for the β-parameters it is

∑p
j=1(β̂j −βj)

2/p, where

p denotes the number of covariates in the linear term.

To judge the clustering of the categorical z-variables in the tree component, False Positive

Rates (FPR) and False Negative Rates (FNR) are computed.

• False Positiv: A difference between two estimated parameters αrk which is truly zero

is set to nonzero

• False Negativ: A difference between two estimated parameters αrk which is truly

nonzero is set to zero

In addition the number of clusters respectively the number of splits determined by the

different approaches are of interest.

2.6.1. Comparison to Penalized Estimation

Here we consider data with one categorical variable z. The true number of clusters in each

case is m = 5, so categories 1, . . . , K are split into five partitions S1, . . . , S5. The true

coefficients of the clusters are α = (0, 1, 2, 3, 4)�. The number of categories K varies from

20 to 100. In particular, we focus on the case where the number of categories K is much

higher than the true number of clusters m. The model has an additional linear term x�β,
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Figure 2.6.: Results of the simulation with normal response and one ordinal predictor for the
tree-structured model (light grey) and the penalty approach (dark grey).

where x is N(04,Σ 4)-distributed with variances 1 and covariances 0.3. The true regression

coefficients of the linear term are β = (−0.6, 0.4,−0.8, 1.2)�. In general z has a nominal

structure, but it is also possible to assume that the class labels have an ordinal structure.

In the following investigations we distinguish between these two cases.

In order to gain comparability of the tree-structured model and the penalty approach in

both cases we use 5-fold cross-validation to select the best model.

Normal Response

We start with simulation scenarios where the responses yi, i = 1, . . . , n are normally dis-

tributed with εi ∼ N(0, 1). We consider a balanced design with five observations in each

category, thus the total number of observations is n = K · 5.
Figure 2.6 shows the results for the settings where z is treated as ordinal predictor. Each

panel shows the results for the nine settings with varying K (along the x-axis). For the

tree-structured model (TSC) all the results are given in light grey, for the penalty approach

(PENL) they are given in dark grey. As the penalty approach is computational infeasible

for a very large number of categories, no results are displayed for the settings with K = 90

and K = 100. The mean squared errors of the tree component given in the top left are very
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Figure 2.7.: Results of the simulation with normal response and one nominal predictor for the
tree-structured model (light grey) and the penalty approach (dark grey).

stable across all settings. For a small number of categories (K = 20 and K = 30) the tree-

structured model performs worse, but the results are rather the same for large K. The mean

squared errors of the linear term (top right) decrease with increasing K. The observed values

are very small and nearly the same for the two approaches. However, distinct differences

are seen for the FPR and FNR as well as for the number of clusters. They are pictured in

the lower panel in Figure 2.6, where the bars correspond to the average over all repetitions.

It can be seen that the penalty approach performs very poorly in particular for large K.

One observes false positive rates up to 0.6. For the tree-structured approach they are below

0.2 across all settings. In addition, the tree-structured model on average is able to detect

the true number of clusters even for very large K. Whereas the penalty approach distinctly

overestimates the number of clusters.

The picture changes for the settings where z is treated as nominal predictor, that is without

the pre-assumption that categories are ordered (Figure 2.7). Mean squared errors of the

tree component are larger than in the ordinal case for all settings. This is caused by the

poor clustering performance (lower panel). False positive rates of the tree-structured model

exceed the value 0.5, for the penalty approach one observes even values about 0.8. Again

the penalty approach seriously overestimates the true number of clusters, but also the tree-

structured model now tends to detect a higher number of clusters. It is worth noting that

the mean squared errors of the linear term given in the top right of Figure 2.7 largely remain
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the same as in the ordinal case. Hence the linear part of the model is not affected by the

different assumptions for the scale of the z-variable.

Binary Response

In as second simulation we consider discrete response variables yi ∼ B(1, πi), where πi =

exp(ηi)/(1 + exp(ηi)). The structure of the simulated data sets remains the same, but

in contrast to the simulations with normal response we use a balanced design with 20

observations in each category, giving the total number of observations n = K · 20. The

corresponding results are given in Figure 2.8 and Figure 2.9. It can be seen, that the

previous findings for the simulations with normal response can be confirmed and therefore

the conclusions remain largely the same.

In summary, the two approaches are competitive in terms of their estimation accuracy with

a tendency of stronger variation for the tree-structured model. Concerning the clustering

of categories the tree-structured approach performs much better, especially in the ordinal

case. Obviously the nominal case is much more challenging for both approaches. Moreover,

it is again noteworthy that no estimates are available for the penalty approach if the number

of categories exceeds a certain size.

2.6.2. Evaluation of Stopping Criteria

One of the most important questions when building a tree is the choice of a optimal stopping

criterion. In the previous section we used 5-fold cross-validation and in our applications we

use a stopping criterion based on p-values to determine the best model. Here we consider

a simulation with several covariates to compare different stopping criteria, including those

already used.

We consider the case of 4 ordinal and 4 nominal predictors in the tree component of

the model. For both types of variables we use two predictors with 10 and two pre-

dictors with 5 categories. The true coefficients of the ordinal predictors are α1 =

(0, 1, 1, 2, 2, 3, 3, 4, 4)�, α2 = (0, 0, 0, 0, 2, 2, 2, 2, 2)�, α3 = (1, 1, 2, 2)� and α4 = (0, 0, 0, 0)�.
For the nominal predictor they are α5 = (0, 0.5, 0.5,−0.5,−0.5, 1.5, 1.5,−1.5,−1.5)�,
α6 = (0, 0, 0, 0,−2,−2,−2,−2,−2)�, α7 = (1, 1,−1,−1)� and α8 = (0, 0, 0, 0)�. In both

cases the true numbers of clusters are 5, 2 and 3. The fourth predictor is not influential.

Note that the effect of the first category in each case is set to zero. Altogether there are 52

possible splits in the tree component. The true model contains 14 splits, 7 within the ordi-

nal and 7 within the nominal predictors. We generate data sets with n = 2000 observations

and a normal distributed response with ε ∼ N(0, 1). Our model also has an additional
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Figure 2.8.: Results of the simulation with binomial response and one ordinal predictor for the
tree-structured model (light grey) and the penalty approach (dark grey).
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Figure 2.9.: Results of the simulation with binomial response and one nominal predictor for the
tree-structured model (light grey) and the penalty approach (dark grey).
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Figure 2.10.: Mean squared errors (MSEs) of parameter estimates of ordinal, nominal predictors
and the linear term for the simulation study with several predictors.
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Figure 2.11.: Number of splits of ordinal and nominal predictors in the tree component for the
simulation study with several predictors.

linear term xTβ, where x is N(05,Σ 5)-distributed with variances 1 and covariances 0.3.

The true regression coefficients of the linear term are β = (−2, 1,−1, 3, 2)�.

In our analysis we distinguish between the MSEs for the nominal and the MSEs for the

ordinal predictors respectively as the average over the four predictors. Boxplots of the

MSEs based on 100 simulations are shown in Figure 2.10. We compare six different stopping

criteria: AIC, BIC, 5-fold cross validation, 10-fold cross validation, p-values with significance
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Figure 2.12.: FPR (left boxplots) and FNR (right boxplots) of ordinal and nominal predictors in
the tree component for the simulation study with several predictors.

level α = 0.05 and p-values with α = 0.1. In Figure 2.10 the latter are denoted by p(0.05)

and p(0.1). The smallest median of MSEs for the ordinal predictors as well as for the

nominal predictors were found for the strategy with p-values and common significance level

α = 0.05 (fifth boxplots). MSEs for the linear term are very small and almost identical

over stopping criteria. As already seen in Section 2.6.1 estimation of the linear term of the

tree-structured model shows very good performance and seems to be not strongly linked to

the clustering in the tree component.

Figure 2.11 shows the number of splits in the tree component of the model separately for

the ordinal and the nominal predictors. The horizontal line shows the optimal number of

splits of the underlying data generating model. It is seen that for the ordinal predictors

one obtains nearly perfect results with BIC and p-value α = 0.05. The true number of 7

splits is found in almost all simulations. For the nominal predictors the performance is very

similar over stopping criteria with the exception of AIC, which performs worse than the

other procedures. Since for p-values with α = 0.05 there is no outlier it shows again the

best performance. In summary, the number of splits is very close to the optimal number for

all the procedures showing again that the model is able to find the right number of splits.

Figure 2.12 shows boxplots of TPR and FPR seperatly for the ordinal and nominal pre-

dictors. As for the MSEs we computed the average over the four predictors. Since the

tree-structured model has a weak tendency to overestimate the number of splits (see Fig-

ure 2.11) FNRs are found to be zero in all simulations. With exception of AIC also the

median of the FPRs is zero over stopping criteria. This again illustrates the overall good

performance of the proposed tree-structured approach.
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Table 2.2.: Estimated coefficients, stability measures of the tree component and 95% confidence
intervals of the linear term for the analysis of the household data.

Predictor Cluster Coefficient Stability

Country BE,HB,HH -1.647 0.658
BB,HE,MV,NW,SL,SN,ST,SH,TH -0.425 0.521

BY,BW,NI,RP 0.000 0.637

Number of persons 1 0.000 1.000
2,3,4,5,6,7,8,9,10,11,12 1.424 0.810

Kind of household 3, 8 -1.438 0.990
1, 2, 4, 5, 6, 7 0.000 0.443

Predictor Coefficient 95% confidence interval

net income of all persons 0.580 [0.520,0.650]
PC in household 1.008 [0.899,1.132]
life policy during the year before 0.754 [0.629,0.898]

2.7. Further Applications

In the following the proposed tree-structured model is illustrated in two further applications

and its performance is compared to alternative models.

2.7.1. Car in Household

As second application we consider data from the German socio-economic panel from 2012

carried out by the German institute DIW, which comprises 12322 households. They are

available from http://www.diw.de/de/soep. The response variable we consider is the

binary variable if a car is in the household or not. Independent variables that we include in

our model are the net income of all persons in the household in thousands of Euro (metric),

the country (16 categories), kind of household (nominal factor), number of persons in the

household (ordinal factor), PC in the household (yes/no), life insurance during the year

before (available/not available).

A particularly interesting variable is the country with 16 categories. In a parametric model

it generates 15 parameters. With the approach suggested here the number should reduce

because it aims at identifying clusters of countries that share the same effect.
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Figure 2.13.: Map of Germany indicating the estimated clusters for variable country of the house-
hold data. The algorithm detects three groups of countries that share the same effect, respectively.
The darker the shade the lower the estimated coefficient.

We fit a logistic regression model for the probability of holding a car and use p-values as the

stopping criterion. The tree component of the model includes the nominal factors country,

type of household and the ordinal factor number of persons. The metric variable net income

and the two binary variables are included in the linear term of the model. The maximum

number of splits in this case is 33. The algorithm stops very early and we obtain the model

with four splits as the best model.

The results of the fitted tree-structured model are given in Table 2.2, where the countries are

abbreviated by the official country codes by ISO 3166. A detailed overview of all countries

and the categories of variable kind of household is given in Appendix A on page 206.

Table 2.2 shows in particular estimated coefficients, stability measures for clusters in the

tree component and 95% confidence intervals for the linear term based on 1000 bootstrap

samples. It is seen that the three variables in the linear term all have a significant influence

on the probability of holding a car. The higher the net income, the higher the probability

of holding a car. Also a PC in the household and a life insurance increase the probability.

For the nominal predictor country (reference 1: Bavaria) in the tree component one obtains

only three clusters that show an interesting structure. A graphical visualization of the

resulting partition is given in Figure 2.13. The map of Germany was created by R package
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Figure 2.14.: Coefficient paths for the nominal predictor country for the analysis of the household
data.

R2BayesX (Umlauf et al., 2015; Belitz et al., 2015). A darker shade corresponds to a

lower probability of holding a car. The first cluster, which has the strongest decrease in

probability, is formed by the cities Berlin (BE), Bremen (HB) and Hamburg (HH), which

are not only cities but also countries. Since in German cities public transportation is

easily available and distances are small the necessity of owning a car given fixed income is

reduced. The coefficient −0.647 means that the probability of owning a car decreases by a

factor of 0.2 when compared to the reference cluster with effect zero. Next to Bavaria the

reference cluster also contains Baden-Wuerttemberg and Rhineland-Palatinate in the south

of Germany as well as Lower Saxony. The biggest cluster with nine countries has also a

reduced probability, but the reduction is not as strong as for the countries that are also

cities. As seen from the coefficient paths in Figure 2.14 the big cluster could also divided

into two sub-clusters, but were merged by the chosen stopping criterion. For the variables

number of persons in the household and kind of household one obtains only two clusters,

respectively. It is only distinguished between one person households that show a strongly

increased probability of owning a car and the rest of the households. Compared to other

kinds of households single parents (category 3) are very unlikely to hold a car. Stability

measures in Table 2.2 are very large. For the nominal predictor country the values are

greater than 0.5 and do not vary a lot, so the algorithm forms stable clusters.

Figure 2.15 shows the fitted functions for 100 bootstrap samples and 95% confidence inter-

vals based on 1000 bootstrap samples for the predictor country . It is seen that the chosen

reference Bavaria is the first country in the order of countries and therefore has the highest
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Figure 2.15.: Estimated step functions and resulting 95% confidence intervals for the nominal
predictor country for the analysis of the household data based on 1000 bootstrap samples.

probability of outcome in the data. Only the confidence intervals of the big states Lower

Saxony and Baden-Wuerttemberg als well as of Rhineland-Palatine and Saarland contain

values greater than zero. The effects of the three cities Berlin, Bremen and Hamburg are

significantly different from zero. The bootstrap interval of Bremen is very large due to a

small number of observations.
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Figure 2.16.: Fitted coefficients of the full model (green dashed lines) and estimated 95% confidence
intervals based on 1000 bootstrap samples for the six items of the MSQ data that are included in
the model.

2.7.2. Motivational States Questionnaire

The third application concerns a comprehensive mood questionnaire, the so-called Motiva-

tional States Questionnaire (MSQ). It was developed to study emotions in laboratory and

field settings. The data was collected between 1989 and 1998 at the Personality, Motiva-

tion, and Cognition Laboratory, Northwestern University (see Rafaeli and Revelle, 2006).

The data is part of the R package psych (Revelle, 2013). The original version of the MSQ

included 70 items. Due to a huge number of missing values we use a revised version of 68

items of 1292 participants for our analysis. The response format was a four-point scale that

asks the respondents to indicate their current standing with the following scale: 0 (not at

all), 1 (a little), 2 (moderatly), 3 (very much).

As response variable y we consider the indicator if the participant feels sad or not, generated

from the answers given for the item that asks for being “sad”. The probability of feeling

sad is modeled by a logistic regression model as in the household data. The linear predictor

consists of 67 ordinal predictors. Each predictor has four categories and corresponds to one

item that was asked for in the questionnaire. There are no additional covariates, but the
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example illustrates that the model is able to handle a large number of ordinal predictors in

the tree component.

The fitted coefficients and estimated 95% confidence intervals based on 1000 bootstrap

samples for the predictors that are included in the model are shown in Figure 2.16. It is

seen that only six variables among the 67 available variables were selected. Only the items

that ask for being “blue”, “depressed”, “frustrated”, “lonely”, “unhappy” and “upset” are

considered as being influential. Moreover, there is substantial clustering of the categories

of the predictors. The coefficients of each predictor is a constant for level 1 to 3 reducing

the ordinal predictors to binary predictors that distinguish between category 0 and the rest

only. Bootstrap based confidence intervals are not the same for levels 1 to 3 in each case.

Hence, there are bootstrap samples where the clusters consisting of level 1 to 3 are split

a second time. Only for emotions “blue” and “unhappy” the confidence intervals do not

contain zero. Thus it can be concluded that there are only 2 out of 67 emotions that have

a significant effect on the probability of being sad.

2.7.3. Comparison with Alternative Models

In the previous sections the tree-based model was used to identify clusters in categorical pre-

dictors. Although prediction is not the main objective of the modelling strategy one expects

any appropriate model to also perform well in terms of prediction accuracy. Therefore, we

briefly compare the tree-based model with its main competitors with regard to prediction

accuracy. Since in simulations typically one model, namely the data generating model, is

preferred we consider the performance for the real data sets. The predictive deviance in

both cases was measured by 5-fold cross-validation using 100 repetitions. As competing

models we used the generalized additive model, a plain tree and model based partitioning.

The generalized additive model was estimated by function gam() from package mgcv (Wood,

2011). The plain tree was estimated by use of the function rpart() from package rpart

(Therneau et al., 2014). The complexity parameter ’cp’ determines the minimal reduction

of lack of fit. The optimal parameter was found to be 0.01 in both examples. Model based

partitioning was estimated by the function mob() of package party (Zeileis et al., 2008).

Predictors in the tree component of our model were used for partitioning. Predictors in the

parametric part of our model were passed to models in each leaf. Complexity parameter

’trim’, specifies the trimming in the parameter instability test. The optimal parameter was

found to be 0.05 (rent) and 0.03 (car). Figure 2.17 shows the results for the rent data

and the household data, respectively. It is seen that the tree-based model and GAM have

comparable performance, which was to be expected since the tree-based model is essentially

a GAM but with built-in clustering. The plain tree, with its focus on interaction shows

much worse performance whereas model based partitioning performs poorly in one case and

rather well in the other case.
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Figure 2.17.: Comparison of prediction accuracy of tree-structured clustering with other methods
for the Munich rent standard data (left) and the household data (right).

2.8. Possible Extensions

In this section we will briefly sketch two extensions of the proposed tree-structured model

that aim at improving clustering performance and model fit.

2.8.1. Stability Selection

The results of the simulations in Section 2.6.1 showed a satisfactory performance of the

proposed model, but in particular for nominal predictors it is worth thinking about modi-

fications to improve the fit in terms of clustering. One strategy we consider here is closely

related to the concept of stability selection introduced by Meinshausen and Bühlmann

(2010). Stability selection is a very general approach that can be applied to a broad range

of existing methods. The main objective is to improve structure estimation by aggregation

of estimates obtained by many subsamples. For simplicity of notation we consider the case

of one categorical predictor only. The suggested algorithm that is build on the algorithm

given in Section 2.3 is the following:

1. Fit the model for the whole sample.

2. Determine the number of clusters m from model in step 1.

3. Draw a bootstrap sample or subsample of predefined size, e.g. 	n/2
.

4. Fit the model for the sample drawn in step 3.

5. Keep the determined split-points C∗
s from the model in step 4.
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6. Repeat step 3 to 5 for a predefined number of repetitions s = 1, . . . , S.

7. Compute the selection probability of each split-point.

8. Choose m− 1 split-points with the highest selection probability. Reduce the number

of clusters m, if there are less than m− 1 unequivocal maxima.

9. Refit the model for the whole sample using the split-points determined in step 8.

An initial analysis of the algorithm based on simulated data described in Section 2.6.1

showed slightly improved results, especially for the scenarios with K = 20 and n = 100.

However, further investigations are needed to evaluate the usefulness of this extension.

2.8.2. Incorporation of Interactions

The focus of the proposed tree-structured model is on modelling of main effects of categorical

predictors with many categories. This is in contrast to conventional trees where the terminal

nodes usually correspond to higher order interactions. In an extension of model (2.1) or

(2.2) however it is also possible to take interactions between the categorical predictors

in the tree component into account. To be in line with the hierarchical principle in one

step this means to simultaneously select two splits with regard to two variables and the

corresponding interaction.

In order to preserve clarity we now change some notation. Concretely, for the pair of

variables (j, r) and corresponding split-points (�, k) the first split including an interaction

means to fit the model with predictor:

ηi = β0 + αj�I(zij > cj�) + αrkI(zir > crk) + γj�,rkI(zij > cj�)I(zir > crk) + x�
i β,

where αj�, � = 1, . . . ,m� and αrk, k = 1, . . . ,mr denote the main effects of regions {zij >

cj�} and {zir > crk} and γik,j� denotes the interaction between these two regions with regard

to variables j, r ∈ {1, . . . , q}.

The fitting procedure given in Section 2.3 can easily be adapted to this more general model.

During iteration in each step there are four kinds of models that have to be investigated:

1. Selection of one split in one variable (as before).

2. Selection of two splits in two variables and the corresponding interaction.

3. Selection of an interaction between two splits in two variables that were already

selected in previous steps.
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4. Selection of one split in one variable and the interaction between the selected split

and a split in another variable that was already selected in a previous step.

The degrees of freedom of the likelihood-ratio test in each case depends on the number of

parameters that are involved in the splitting. In each step from all the candidate models

the model is chosen that yields the best fit.

An initial analysis showed that the fitting procedure of the extended model with interac-

tions works quite well. Nevertheless a huge number of interaction effects in the model can

lead to a loss of interpretability. In particular the relation between two variables with sev-

eral interaction effects with regard to different split-points is hard to overlook. Therefore,

further research is needed to evaluate the performance of the model in simulations and the

usefulness in applications.

2.9. Concluding Remarks

The proposed tree-structured approach is a modelling tool that allows to identify clusters

in categorical predictors for nominal and ordinal predictors. In particular when several

predictors with potentially many categories are available it is an efficient tool to reduce

the superfluous complexity of classical parametric models. Simulation results show that

the algorithm works well, in particular compared to the approach by penalized maximum

likelihood estimation.

It should be noted that the tree-structured approach does not yield a tree in the sense

of traditional recursive partitioning, where models are fitted recursively to sub samples

defined by nodes. In the tree-structured model one obtains for each of the categorical

predictors that are used in the tree component a separate tree. The obtained trees show

which categories have to be distinguished given the other predictors are included in the

model.

The results shown in this chapter were obtained by the R package structree (Berger,

2016b) version 1.0.1 that is available upon request and will presumably be made publicly

accessible via CRAN.





3. Modelling Heterogeneity in Fixed

Effects Models

3.1. Introduction

The analysis of longitudinal data and cross-sectional data that come in clusters requires

to take the dependence of observations and the heterogeneity of measurement units into

account. Typically, measurements within units tend to be more similar than measure-

ments between units. If the heterogeneity is ignored poor performance of estimators and

misleading standard errors are to be expected.

The most popular, widely used model to account for unobserved heterogeneity is the random

effects model, see, for example, Verbeke and Molenberghs (2000), Molenberghs and Verbeke

(2005) and McCulloch and Searle (2001). Typically in the random effects model it is

assumed that the random effects follow a normal distribution. This strong assumption

results in an economical model but inference may be sensitive to the specification of the

distribution of random effects, see Heagerty and Kurland (2001), Agresti et al. (2004) and

Litière et al. (2007). Several approaches to weaken the assumption of normally distributed

random effects have been proposed. More flexible distributions are obtained, for example,

by using mixtures of normals as proposed by Chen and Davidian (2002) and Magder and

Zeger (1996). Huang (2009) proposed diagnostic methods for random-effect misspecification

and Claeskens and Hart (2009) proposed tests for the assumption of the normal distribution.

More recently, Lombard́ıa and Sperlich (2012) proposed the class of semi-mixed effects

models, a continuum of models that combine random and fixed effects.

An alternative approach to model heterogeneity uses finite mixtures. In finite mixtures of

generalized linear models it is assumed that the density or mass function of the responses

given the explanatory variables is determined by a finite mixture of components. Each of

This chapter is a modified version of Berger and Tutz (2015c). For more information on the personal
contributions of the authors and textual matches, see page 9.
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the components has its own response distribution and own parameters that determine the

influence of explanatory variables. If only part of the parameters, for example the intercepts,

are allowed to vary over components one obtains a discrete distribution of the heterogeneity

part of the model. Models of that type were considered by Follmann and Lambert (1989)

and Aitkin (1999). Follmann and Lambert (1989) investigated the identifiability of finite

mixtures of binomial regression models and gave sufficient identifiability conditions for mix-

ing of binary and binomial distributions. Grün and Leisch (2008b) considered identifiability

for mixtures of multinomial logit models.

Finite mixture models replace the assumption of a fixed continuous distribution of random

effects by the assumption of a discrete distribution. One may see this as an alternative

and flexible specification of the heterogeneity component only. However, by assuming a

discrete distribution of the intercepts instead of a continuous distribution as in random

effects models one also implicitly assumes that there are clusters of units that share the

same effect. In some applications it is definitely of interest to identify these units. We will

consider an example in which the units are schools and one wants to know which schools

are similar in their performance with regard to the education of students.

Here we consider an alternative to finite mixture models with the same objectives, that are

use of a flexible discrete distribution and identification of units that share the same effect.

However, the starting point is different. We use a fixed effects model in which each unit

has its own parameter. An advantage is that no structural assumptions on the unit-specific

effects have to be made. Clusters of parameters and therefore units with the same effect

are found by tree methodology. The method proposed in the present chapter is related to

the tree-based approach developed in Chapter 2. In the following it is adapted to a model

including fixed effects for repeated measurements.

Classical recursive partitioning techniques or trees were first introduced by Morgan and

Sonquist (1963). Very popular methods are classification and regression trees (CART) by

Breiman et al. (1984) and C4.5 by Quinlan (1986) and Quinlan (1993). A newer version

of recursive partitioning based on conditional inference was proposed by Hothorn et al.

(2006). An overview on recursive partitioning in health science was given by Zhang and

Singer (1999) and with a focus on psychometrics by Strobl et al. (2009). An easily accessible

introduction into the basic concepts is found in Hastie et al. (2009).

The tree methodology used here differs from these approaches. In CART and other classical

approaches the whole covariate space is recursively partitioned into subspaces. In order

to obtain a partitioning in the intercepts (or slopes) only, one has to apply a different

form of trees. It has to be designed in a way that the subspaces are built for specific

effects only, for example the intercepts, while other parameters that represent common

effects of explanatory variables are not partitioned into subspaces. Our main focus is on

the clustering of intercepts, however, we will also refer to the case of unit-specific slopes.
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One big advantage using recursive partitioning techniques is the computational efficiency.

The proposed tree-structured model especially enables the evaluation of high-dimensional

data. Alternative approaches to identify clusters within a fixed effects model framework as

proposed by Tutz and Oelker (2016) fail in high dimensional settings.

This chapter is organized as follows: In Section 3.2 we introduce the tree-structured model

for unit-specific intercepts and in section 3.3 we present an illustrative example. Details

about the fitting procedure are given in Section 3.4. After a short introduction of related

approaches in Section 3.5 we give the results of wider simulation studies (Section 3.6).

Section 3.7 contains further applications. Finally, in Section 3.8 we consider the extension

to models with unit-specific slopes and give a small example.

3.2. Accounting for Heterogeneity in Clustered Data

Consider clustered data given by (yij,xij, zij), i = 1, . . . , n, j = 1, . . . , ni, where yij
denotes the response of measurement j for unit i and two sets of predictive variables

x�
ij = (1, xij1, . . . , xijp) and z�

ij = (1, zij1, . . . , zijq). In longitudinal data the units can,

for example, represent persons that are measured repeatedly. In the following, we consider

alternative methods to account for the potential heterogeneity of units. We start with

methods that use random effects, then consider fixed effects model and finite mixtures.

3.2.1. Random Effects Models

In a generalized linear mixed model (GLMM) the mean response μij = �(yij|bi,xij, zij) is

linked to the explanatory variables by

g(μij) = x�
ijβ + z�

ijbi, (3.1)

where x�
ijβ is a linear term which contains the fixed effect β. The second term z�

ijbi contains

the random effects for covariates zij that are varying across units and g(·) is a known link

function. In a GLMM it is assumed that the distribution of yij|bi,xij, zij follows a simple

exponential family and that the observations yij are conditionally independent. For the

random effects bi, which model the heterogeneity of the units, one typically assumes a

normal distribution bi ∼ N(0,Σ rand).

In a GLMM the distribution of the random effects is used to account for the heterogeneity of

the units and the focus is mainly on the parametric term x�
ijβ. Although the distributional

assumption for the random effects makes the estimation of the model very efficient there

are also some disadvantages. If the assumed distribution is very different from the real
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data generating distribution, inference can be biased. The assumption of a continuous

distribution also does not allow for the same effects of different units. Hence, clustering

of units is not possible. Another crucial point of the GLMM is the assumption that the

random effects bi and the covariates xij are uncorrelated. This assumption can lead to

poor estimation accuracy, see, for example, Grilli and Rampichini (2011). Functions for the

estimation of generalized linear mixed models are provided in the R package lme4 (Bates

et al., 2015), which we will use for the computations in the applications and simulations.

3.2.2. Fixed Effects Models

In contrast to mixed models, fixed effects models model heterogeneity among units by using

one parameter βi for each unit. The mean response μij = �(yij|xij, zij) is linked to the

explanatory variables in the form

g(μij) = ηij = x�
ijβ + z�

ijβi, (3.2)

where xij again is a vector of covariates that have the same effect across all units and zij

contains covariates that have different effects over units. Each measurement unit has his

own parameter vector β�
i = (βi0, . . . , βiq). The specification of one parameter vector per

unit results in a very large number of parameters which can affect estimation accuracy.

Moreover, typically there is not enough information to distinguish between all units. To

cope with these problems one can assume that there are groups of units that share the same

effect on the response. Forming clusters of units leads to a reduced number of parameters

and stable estimates. There are several strategies to identify these clusters, the fixed effects

model with regularization or the finite mixture model (see next sections).

3.2.3. Tree-Structured Clustering

In the approach considered here one assumes that the fixed effects model holds, but not all

the unit-specific parameters are assumed to be different. Clusters (or groups) of measure-

ment units are identified by recursive partitioning methods. We first consider unit-specific

intercepts only. Let us start with the simplest case in which all intercepts are equal, that is,

the linear predictor has the form ηij = x�
ijβ+β0. If there are two clusters the corresponding

linear predictor is given by

ηij = x�
ijβ + β

(k)
i0 , k = 1, 2, (3.3)

where k denotes if the unit is in the first or the second group. A simple test, for example

a likelihood ratio test, for the hypothesis H0 : β
(1)
i0 = β

(2)
i0 can be used to determine if
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the model with two groups is more adequate for the data than the model in which all the

intercepts are equal. By iterative splitting into subsets guided by test statistics one obtains

a clustering of units that have to be distinguished with regard to their intercept.

In general, regression trees can be seen as a representation of a partition of the predictor

space. A tree is built by successively splitting one node A, that is already a subset of the

predictor space, into two subsets A1 and A2 with the split being determined by only one

variable. In a fixed effects model, when specifying specific intercepts for each unit, the

unit number itself can be seen as a nominal categorical variable with n categories. The

partition has the form A ∩ S1, A ∩ S2, where S1 and S2 are disjoint, non-empty subsets

S1 ⊂ {1, . . . , n} and its complement S2 = {1, . . . , n} \ S1. Using this notation another

representation of model (3.3) is given by

ηij = x�
ijβ + β

(1)
i0 I(i ∈ S10) + β

(2)
i0 I(i ∈ S20),

where I(·) denotes the indicator function with I(a) = 1, if a is true and I(a) = 0 otherwise.

After several splits one obtains a clustering of the units {1, . . . , n} and the predictor of the

resulting model can be represented by

ηij = x�
ijβ +

m0∑
k=1

β
(k)
i0 I(i ∈ Sk0), (3.4)

where S10, . . . , Sm00 is a partition of {1, . . . , n} consisting of m0 clusters that have to be

distinguished in terms of their individual intercepts. Model 3.4 can be seen as a special case

of the model proposed in Chapter 2 including only one nominal predictor. In the following

we will use the model abbreviation TSC for tree-structured clustering.

3.2.4. Finite Mixture Models

An alternative approach that also allows to identify clusters of units are finite mixture

models. These were, for example, considered by Follmann and Lambert (1989) and Aitkin

(1999). The general assumption in finite mixtures of generalized regression models is that

the mixture consists of m components where each component follows a parametric distri-

bution of the exponential family of distributions. The density of the mixture can be given

by

f(y|x,β,φ) =
m∑
k=1

πkfk(y|x,βk, φk),

where fk(y|x,βk, φk) denotes the k-th component of the mixture with parameter vector βk

and dispersion parameter φk. For the unknown component weights πk

∑m
k=1 πk = 1 and

πk > 0, k = 1, . . . ,m has to hold.
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Table 3.1.: Summary statistics of the test score of the 56 multiple-choice items and covariate
gender of the illustrative example (CTB data).

Variable Summary statistics

xmin x0.25 xmed x̄ x0.75 xmax

Test score 21 32 34 34.14 37 46

Gender male: 761 female: 739

Here we consider models with components that differ in their intercepts. Within the frame-

work of finite mixtures one specifies for the k−th component of the mixture a model with

predictor η
(k)
ij = β

(k)
i0 + x�

ijβ. For models with normal response the mixture components

are given by N(yij|η(k)ij , σ2), where the variance σ2 is fixed for all components. For models

with a binary response the mixture components are B(yij|n, π(k)
ij ), where π

(k)
ij ∈ (0, 1) and

logit(π
(k)
ij ) = η

(k)
ij . For further details, see Grün and Leisch (2007).

Estimation of the mixture model is usually obtained by the EM-algorithm with the number

of components m being specified beforehand. The optimal number of components is chosen

afterwards, for example by information criteria like AIC or BIC. Grün and Leisch (2008a)

provide the R-package flexmix, which is used for the computations in our applications and

simulations. Regularization and variable selection for mixture models have been considered

by Khalili and Chen (2007) and Städler et al. (2010) but not with the objective of clustering

units with regard to their effects.

3.3. An Illustrative Example

Before giving details how to grow trees and estimate the proposed model (3.4) we want to il-

lustrate the procedure by use of an application. We consider a data set from CTB/McGraw-

Hill, a division of the Data Recognition Corporation (DRC). For a description of the original

data, see De Boeck and Wilson (2004). The data includes results of an achievement test

that measures different objectives and subskills of subjects in mathematics and science. For

our investigation we use the results of 1500 grade 8 students from 35 schools. They had

to respond to 56 multiple-choice items (31 mathematics, 25 science). The response yij is

the overall test score of student j in school i, defined as the number of correctly solved

items. The main objective is to adequately describe the heterogeneity of the 35 schools.

As additional covariate we include the gender of the students (male: 0, female: 1). The
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Figure 3.1.: Paths of coefficients of school-specific intercepts against all splits of the illustrative
example (CTB data). The optimal number of splits is marked by a dashed line.
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Figure 3.2.: Comparison of the estimated distribution of the mixed model and the school-specific
intercepts of tree-structured clustering (CTB data).

summary statistics of the test scores and the covariate gender is given in Table 3.1. By

using the proposed tree-structured approach the model that was obtained has the form

μij = βG ·Gij +

m0∑
k=1

β
(k)
i0 I(i ∈ Sk0), i = 1, . . . , 35,

where Gij ∈ {0, 1} denotes the gender of student j in school i, S10, . . . , Sm00 is a partition

of the 35 schools and β
(k)
i0 , k = 1, . . . ,m0, denote the effects of the corresponding clusters.



54 3. Modelling Heterogeneity in Fixed Effects Models

Table 3.2.: Estimation results of the illustrative example (CTB data) using the classical mixed
model, tree-structured clustering and the finite mixture model.

Predictor LMM TSC FIN
Coefficient 95%-CI Coefficient 95%-CI Coefficient 95%-CI

gender -0.106 [ -0.475, 0.298] -0.088 [ -0.478, 0.313] -0.084 [ -0.473, 0.309]

β0 34.235 [33.964,34.542] — — — —
σ2
rand 0.416 [ 0.394, 1.353] — — — —

School-specific intercept TSC FIN
Cluster Coefficient Cluster Coefficient

βi0 1,16 32.384 1,4,6,7,9,16, 33.508
4,18,19,20,21,22,28 33.434 18,19,20,21,

6,7,9,11,29,30 33.904 22,28,30
3,5,12,14,15,25,26,31,34 34.517 2,3,5,8,10,11,12,13,14, 34.689

2,10,13,17,23,24,32 34.999 15,17,23,24,25,26,27,
8,27,33,35 36.264 29,31,32,33,34,35

The coefficient paths of the school-specific intercepts obtained by tree-structured clustering

are shown in Figure 3.1. The coefficient paths build a tree that successively partitions the

schools in terms of the performance of students. The left end refers to the global intercept

estimated as an average over the 35 schools. On the right end of the coefficient paths all

possible splits have been performed and the estimated coefficients correspond to those of a

simple fixed effects model without clustering. The optimal number of splits that is selected

by the algorithm, is marked by the dashed line. It is seen that estimates change strongly

in the first steps, but after about ten splits the estimates are very stable.

A graphical comparison of the estimated normal distribution of the random effects using a

classical linear mixed model (LMM) and the distribution of the school-specific intercepts of

the tree-structured model (TSC) is shown in Figure 3.2. It illustrates the main advantage

of the tree-structured model. There is no distributional assumption on the school-specific

intercepts, especially no assumption of symmetry. The number of schools in each cluster

are quite different and not symmetric. Clustering of similar schools strongly reduces the

complexity of the fixed effects model and makes interpretation of school-specific differences

very easy. There are two small clusters of schools where the performance in the test consid-

erably deviates upwards or downwards, the differences between the clusters with medium

performance are smaller.

Table 3.2 shows an overview of the estimation results obtained by using the classical linear

mixed model (LMM), the proposed tree-structured model (TSC) and a finite mixture model

(FIN), where only the intercepts are allowed to vary over the components. Confidence

intervals are obtained by using bootstrap procedures, where the model is fitted repeatedly

on sub samples of size n that are obtained by drawing with replacement. The results
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here are obtained by 2000 sub samples. It is seen that all of the methods did not find a

significant effect for covariate gender. The performance of males and females seems not to

differ systematically. The variance obtained by the mixed model is significantly different

from zero, which suggests that heterogeneity of schools is definitely present. The lower

panel in Table 3.2 shows the estimated partition of schools obtained by the tree-structured

model and the finite mixture model. In the latter case, model selection by AIC and BIC

both yield the same result. Tree-structured clustering identifies six clusters of schools until

further splits are no longer significant (for details of the algorithm see Section 3.4). The

finite mixture approach identifies only two clusters of schools. This illustrates the tendency

of the finite mixture approach to find a small number of clusters, which will be investigated

later. For comparison in Table 3.2 the schools that belong to the two clusters found by the

finite mixture model are coloured in black and grey.

3.4. Fitting Procedure

In this section we give details of the algorithm that yields the tree-structured model. Let

us again consider the model with unit-specific intercepts after the first split, which has the

form

ηij = x�
ijβ + β

(1)
i0 I(i ∈ S10) + β

(2)
i0 I(i ∈ S20). (3.5)

When determining the first split for the nominal predictor i ∈ {1, . . . , n} one has to consider
all possible partitions of the two subsets S10 and S20. Altogether there are 2

n−1−1 possible

splits, which can be a very large number. It has been shown in earlier research that it is not

necessary to consider all possible partitions, see Breiman et al. (1984) and Ripley (1996) for

binary outcomes and Fisher (1958) for quantitative outcomes. It is sufficient to order the

predictor categories, here the measurement units, with respect to the means of the response

and to treat the predictor as if the categories were ordered. In a first step, units are ordered

according to their maximum-likelihood estimates, so that β̂(10) ≤ β̂(20) ≤ . . . ≤ β̂(n0). Then

one considers splits of adjacent measurement units to obtain the optimal split. To use this

simplification one starts with an equivalent representation of model (3.5) given by

ηij = x�
ijβ + β0 + αi0I(i > c),

with β
(1)
i0 = β0 and β

(2)
i0 = β0+αi0. The set C of possible thresholds c is from {1, . . . , n−1}.

The fitting procedure considered in the following uses this model as building block. By

iterative splitting of adjacent measurement units the searched-for clustering is obtained.
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Basic Algorithm

The basic algorithm for the model with unit-specific intercept is the following.

Tree-Structured Clustering – Unit-specific intercept

S tep 1 (Initialization)

(a) Estimation: Fit the candidate GLMs with predictors

ηij = x�
ijβ + β0 + αi0I(i > ci0), ci0 = 1, . . . , n− 1

(b) Selection

Select the model that has the best fit. Let c∗i10 denote the best split.

S tep 2 (Iteration)

For � = 1, 2, . . . ,

(a) Estimation: Fit the candidate models with predictors

ηij = x�
ijβ + β0 +

�∑
s=1

αis0I(i > c∗is0) + αi0I(i > ci0),

for all values ci0 ∈ C \ {c∗i10, . . . , c∗i�0}
(b) Selection

Select the model that has the best fit yielding the split-point c∗i�+10
.

In each selection step of the algorithm one has to identify the best split and during iter-

ations one has to decide when to stop. Common splitting criteria for tree-based methods

are impurity measures that have already been introduced by Breiman et al. (1984). An

alternative is to use a test statistic to evaluate which split most improves the explanatory

power of the predictors. We will draw on the latter concept and use a procedure that is

strongly related to the conditional inference framework proposed by Hothorn et al. (2006).

In each iteration one examines the null hypotheses H0 : αi0 = 0 for all remaining possible

split-points. This can, for example, be tested by a likelihood-ratio test. To determine the

best split we simultaneously consider all test statistics Ti0 from the set of possible splits

ci0 and choose the split-point for which Ti0 had the largest value. For illustration Figure
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Figure 3.3.: Deviances of all the models selected during the fitting procedure of the illustrative
example (CTB data).

3.3 shows the deviances obtained for all models of the illustrative example (Section 3.3).

The value on the left corresponds to the deviance of the model with a global intercept,

the deviance on the right end corresponds to the fixed effects model with an individual

intercept for each school. The deviances strongly decrease in the first steps but after about

10 splits the model fit does not improve considerable any more. In the first step the model

with the best fit is found for split-point 15 (c∗1510). The corresponding test statistic is ob-

tained by building the difference between the first two values given in Figure 3.3, namely

T15,0 = 21903.77 − 21203.07 = 700.7. The test statistics in the following steps can be

computed accordingly.

Stopping Criterion

Since each likelihood ratio test statistic asymptotically follows a chi-squared distribution,

in each step one additionally obtains a p-value associated with the test statistic Ti0 of the

selected split. To determine the optimal number of splits one strategy is to stop if the

p-value exceeds a certain pre-specified threshold. This strategy was already proposed in

Chapter 2. In each step one should take into account the number of possible splits and

adapt for multiple testing errors. Given overall significance level α one simply uses the

Bonferroni procedure and stops if p� > α/(n− (�− 1)) because in the �− th iteration there

are n− (�− 1) possible splits. Thus, the overall error rate is under control.

A second strategy is to check if the heterogeneity of measurement units is already modelled

sufficiently in each step. Before executing one further split one tests the global null hy-

pothesis that the current model completely captures the heterogeneity of the data against

the alternative that the data is more heterogeneous. To decide for the first split one has to
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Figure 3.4.: P -values obtained for the illustrative example (CTB data) using different stopping
criteria. The left panel shows the p-values associated with the selected split, the right panel shows
the p-values when using a global test incorporating all unit-specific parameters of the current
model. The selected number of splits is marked by a dashed line, respectively.

examine the null hypothesis H0 : β10 = β20 = . . . = βn0, which corresponds to the case of no

heterogeneity. The hypothesis is tested by a likelihood-ratio test with significance level α

and n−1 degrees of freedom, because n−1 differences of parameters are tested. Depending

on the significance of this global test the selected split or no splitting is performed. In the

illustrative example the test statistic in the first step is obtained by building the difference

of deviance of the model with global intercept and the deviance of the fixed effects model,

that is T1 = 21903.77−20835.30 = 1068.47 (see Figure 3.3) on 34 degrees of freedom. After

several splits only differences of units within already built clusters are tested. In the �− th

step n − � differences have to be tested because � − 1 splits are already performed. If a

significant effect is found the selected split is performed, otherwise splitting is stopped. We

prefer to use the second strategy in our simulations and applications because this stopping

criterion leads to a clear separation of the selection of splits and the splitting decision.

In particular the splitting decision is only minor influenced by the previously identified

ordering of measurement units.

In detail the p-values for the illustrative example obtained by the two stopping criteria are

given in Figure 3.4. In addition the selected number of splits is marked by dashed lines,

respectively. The left panel shows the p-values that correspond to the test statistics Ti0 of

the selected splits, the right panel shows the p-values that correspond to the test statistics

using the global hypotheses. Based on the first strategy the algorithm detects seven clusters,

whereas according to the second strategy there are only six clusters (as given in Table 3.2).

As was to be expected, in both cases the sequence of p-values is increasing, but with a

considerable flatter slope in the left panel.
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The result of the fitting procedure is a sequence ofm0−1 selected split-points c∗i10, . . . , c
∗
im0−10

and corresponding parameter estimates α̂i10, . . . , α̂im0−10. Ordering of the selected split-

points yields the desired clustering of ordered units {1, . . . , c∗(i10)}, {c∗(i10)+1, . . . , c∗(i20)}, . . .
, {c∗(im0−10)

+ 1, . . . , n}. The corresponding intercepts β
(k)
i0 for each cluster are then given

by

β̂
(k)
i0 = β̂0 +

k−1∑
s=1

α̂(is0), k = 1, . . . ,m0.

During the iterations only the selected split-points but no estimates from previous steps

are kept. All coefficients of the models, including the parameters β of the linear term, are

refitted in each step and the final estimates are those from the last iteration.

3.5. Related Approaches

In the following we will briefly consider alternative methods that account for unobserved

heterogeneity and are related to our tree-structured model. One of the approaches is a

competitor to the method proposed here and will also be included in the simulations.

Clustering of units can also be obtained by penalized maximum likelihood estimation as

proposed more recently by Tutz and Oelker (2016). Let βT
0 = (β10, . . . , βn0) denote the

intercepts of the fixed effects model. An estimation procedure that identifies clusters is

obtained by maximizing the penalized log-likelihood lp(β,β0) = l(β,β0)−λJ(β,β0), where

l(β,β0) denotes the unpenalized log-likelihood, J(β,β0) is a specific penalty term and λ is

a tuning parameter. The penalty term that enforces clustering of unit-specific intercepts is

given by

J(β,β0) =
∑
r>s

|βr0 − βs0|,

where only pairwise differences of the unit-specific intercepts are included. If λ = 0, one

obtains the unpenalized maximum-likelihood estimates and each unit has his own intercept.

If λ → ∞, all units are fused to one cluster with the same intercept. For a comparison we

use the corresponding R-package gvcm.cat proposed by Oelker (2015) in our simulations.

The use of such penalties in ANOVA was already proposed by Bondell and Reich (2008)

and for variable selection by Gertheiss and Tutz (2010) and Tutz and Gertheiss (2014). A

problem with the method is that the penalty contains n(n− 1)/2 differences and therefore

the algorithm becomes extremely demanding for large values of n. It typically fails if the

number of groups is larger than 50 or 60.

The method proposed here should be distinguished from the mixed effects regression trees

(MERT) proposed by Hajjem et al. (2011) and the RE-EM trees, which were independently

proposed by Sela and Simonoff (2012). The basic concept is to combine a linear mixed effects
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model for clustered data and a standard regression tree. The substantial difference is that

the tree is not applied to the random or unit-specific effects of the model but to the fixed

effects term. The predictor of the estimated model has the form ηij = f(xij)+z�
ijbi, where

bi ∼ N(0,Σ rand). It is the function f(xij) that is estimated by a standard regression tree.

The model yields random effects that are node-invariant and therefore does not focus on

the similarity of units but rather on the dissimilarity of observations within units.

An alternative Bayesian approach to model clustered random effects is based on Dirichlet

processes. Dirichlet processes were proposed by Ferguson (1973) and studied, for example,

by Sethuraman (1994) and Hjort et al. (2010). The main advantage of Dirichlet processes

is their cluster property, which allows to flexibly model discrete distributions. Assuming

a Dirichlet process for the distribution of random effects creates ties among the random

effects. The resulting Dirichlet process mixture yields clusters of units. Dirichlet process

priors have been used within the linear mixed model framework by Bush and MacEachern

(1996) and Müller and Rosner (1997). A frequentist approach to linear mixed models with

Dirichlet process mixtures was given by Heinzl and Tutz (2013), a combination of Dirichlet

processes and fusion penalties was considered in Heinzl and Tutz (2014), Heinzl and Tutz

(2016). The approach works for linear models, but extensions to generalized mixed models

seem not available.

3.6. Simulations

In the following we investigate the performance of the proposed tree-structured model and

compare it to competing methods. The focus is on data settings with clusters of units that

share the same effect on the response and where the strict assumptions of the mixed model

do not hold. We are in particular interested in the estimation accuracy and the clustering

performance. We will compare the generalized fixed effects model (GFM), the generalized

mixed model (GMM), the tree-structured model (TSC), the model based on penalized

maximum-likelihood estimation (PENL), the finite mixture model with model selection by

AIC (FINA) and the finite mixture model with model selection by BIC (FINB).

We consider several simulation scenarios where the overall number of observations is 800,

made up of the components n = 200/ni = 4, n = 100/ni = 8, n = 40/ni = 20 or

n = 20/ni = 40. In addition to the unit-specific intercepts we include one continuous

covariate x1 with xij1 ∼ N(0, 1) and one binary covariate x2 with xij2 ∼ B(1, 0.5). Unit-

specific intercepts βi0 are drawn symmetrically from a normal distribution or are drawn

from a chi-square distribution that is skewed. In order to obtain clusters of units, the

intercepts are sorted according to size and divided into balanced groups. The average over

the intercepts of each group is defined as the new unit-specific intercept β
(k)
i0 , k = 1, . . . ,m0.

We consider scenarios withm0 ∈ {5, 10}. Therefore, the true simulated size of clusters varies
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between 2 for the scenarios with n = 20, m0 = 10, and 40 for the settings with n = 200,

m0 = 5.

Correlation between Intercepts and Covariates

An important assumption of the mixed model is that the unit-specific intercepts are in-

dependent from the predictors x. In order to break this assumption we simulate data

with correlations ρ = corr(βi0, xij1) �= 0. For the simulation we use a sequential procedure

adopted from Tutz and Oelker (2016). Consider the case of normal distributed intercepts

βi0. Here, values are first generated by βi0 ∼ N(μb, σ
2
b ) and xij1 ∼ N(0, 1). Afterwards xij1

is transformed according to the bivariate normal distribution of (βi0, xij1) with the corre-

sponding correlation. We consider scenarios with ρ ∈ {0, 0.8}. In the case of chi-squared

distributed intercepts the joint distribution of (βi0, xij1) is not bivariate normal, but we can

use the same transformation for xij1 yielding the same empirical correlations.

Evaluation Criteria

We compare the estimated coefficients to the true parameters by calculating mean

squared errors (MSEs). We distinguish between the MSE of the unit-specific intercepts
1
n

∑n
i=1 (β̂i0 − βi0)

2, referred to as intercepts, and the MSE of the effects of the two covari-

ates 1
2

∑2
d=1 (β̂d − βd)

2, referred to as linear term. Concerning the mixed model, coefficients

β̂i0 are computed as the sum of the estimated posteriori modes and the fixed intercept β̂0.

In addition the number of clusters determined by the different approaches are of interest.

All the presented evaluations are based on 100 replications.

3.6.1. Normal Response

We start with simulation scenarios where the responses yij, i = 1, . . . , n, j = 1, . . . , ni are

normally distributed with εij ∼ N(με = 0, σ2
ε = 32). Here we set β1 = β2 = 2 as the true

parameters of the two covariates. In the first case we consider cluster-specific intercepts that

were generated from the fusion of parameters that follow a standard normal distribution.

It is important to mention that in the above setting the effective number of parameters for

the mixed model heavily depends on the variance σ2
ε of the response and the variance σ2

b

of the random intercepts. Following Ruppert et al. (2003), the effective degrees of freedom

for the random intercepts for a linear random intercept model are

dfb =
(n− 1)ni

ni +
σ2
ε

σ2
b

.
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Figure 3.5.: MSEs of intercepts (upper panel) and the linear term (lower panel) for the settings
with normal response, normal intercepts and ρ = 0.

If σ2
b → 0 or σ2

ε → ∞ the result is a model with only one intercept and if σ2
b → ∞ or

σ2
ε → 0 the result is a model with n intercepts, corresponding to the fixed effects model.

With σ2
ε = 9 and σ2

b = 1 one obtains the effective degrees of freedom 61.2, 46.5, 26.9 and

15.5 depending on the combination of parameters n and ni. Therefore, one is not too close

to the fixed effects model, which allows a fair comparison of the mixed model and the

tree-structured model. In the second case with a skewed distribution for the unit-specific

intercepts we use βi0 ∼ χ2(0.5) with σ2
b/2 = 0.5 degrees of freedom. After centering of the

coefficients one obtains the same empirical values μb = 0 and σ2
b = 1 as in the standard

normal case.
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Figure 3.6.: MSEs of intercepts (upper panel) and the linear term (lower panel) for the settings
with normal response, normal intercepts and ρ = 0.8.

Figure 3.5 shows the boxplots of the MSEs for the eight different settings generated by

normally distributed intercepts and without correlation (ρ = 0). As the approach by

penalized likelihood estimation is computational infeasible for a large number of units n,

no results are displayed for the settings with n = 200 and n = 100. It is seen from the

lower panel that all the approaches nearly show the same performance for the linear term.

However, distinct differences are seen for the intercepts (upper panel). Although there

are clusters of units the mixed model shows good performance for all settings. The fixed

effects model performs poorly, especially for the settings with ni = 4, the finite mixture

model performs poorly for the settings with n = 40 and n = 20. The estimates of the tree-

structured model show better performance than the fixed effects model for smaller values
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Figure 3.7.: Selected number of clusters for the settings with normal response, normal intercepts,
ρ = 0 (upper panel) and ρ = 0.8 (lower panel). The true number of clusters m0 is marked by
dashed lines.

of ni and comparable performance for larger values. The performance is the same as for the

penalty approach if estimates exist. The picture changes in the settings with correlation

ρ = 0.8 between covariate x1 and the unit-specific intercepts (Figure 3.6). For the linear

term (lower panel) the performance of the mixed model and the finite mixture model suffers

strongly. In contrast, the estimation accuracy of the fixed effects model, the tree-structured

model and the penalized likelihood approach is not affected by the correlation. In particular,

the tree-structured model outperforms the penalty approach in all the settings in which the

penalty approach works. The results for the intercepts (upper panel) do not change that
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Figure 3.8.: MSEs of the linear term for the settings with normal response, chi-squared intercepts
and ρ = 0.8.

much but the mixed model and the finite mixture model is now competitive only for small

values of ni.

Boxplots of the selected number of clusters are given in Figure 3.7 for ρ = 0 (upper panel)

and ρ = 0.8 (lower panel). Since the fixed effects model and the mixed model do not

build clusters of units, the given number of clusters for the two approaches is equal to the

number of units. There are only minor differences between the settings with and without

correlation. The number of clusters identified by the tree-structured model is very close

to the true number for the settings with five clusters (m0 = 5) but the true number of

clusters is slightly underestimated in the settings with ten clusters. In contrast, the penalty

approach selects a distinctly higher number of clusters with a strong variation. The finite

mixture model consistently selects only too small number of clusters. On average only

about two clusters are selected by AIC as well as by BIC.

The evaluations of the same settings with cluster-specific intercepts that were generated

by a chi-squared distribution yield very similar results. In particular the performance of

the mixed model seems not to be affected too strongly by the skewed distribution of the

random intercepts. For illustration Figure 3.8 shows the MSEs of the linear term for the

settings with ρ = 0.8. See Appendix B, page 209 for an overview of all results.
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Figure 3.9.: MSEs of intercepts (upper panel) and the linear term (lower panel) for the settings
with binary response, chi-squared intercepts and ρ = 0.8.

3.6.2. Binary Response

In the following we briefly consider discrete response variables yij ∼ B(1, πij), where πij =

exp(ηij)/(1 + exp(ηij)). The structure of the simulated data sets remains the same but

some modifications to the specifications in Section 3.6.1 are necessary. The parameters

of the linear term are set to β1 = β2 = 0.1. For the cluster-specific intercepts we chose

βi0 ∼ N(−0.8, 22) or as skew counterpart βi0 ∼ χ2(2), centered such that μb = −0.8.

Since ni = 4 is a relatively small size when modelling binary responses, we do not consider

the corresponding settings. Furthermore, we omit the estimates of the fixed effects model

because they are very unstable and often do not exist in this case. Accordingly, the order
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Figure 3.10.: Selected number of clusters for the settings with binary response, chi-squared inter-
cepts and ρ = 0.8. The true number of clusters m0 is marked by dashed lines.

of measurement units used in the algorithm of the tree-structured model is not based on

the estimates of the unrestricted model but by adding a small ridge penalty.

In contrast to the settings with normal response, the results for the binary response as a

whole seem to be more affected by a skewed distribution of the intercepts. In the following

we will focus on the settings with chi-squared distributed intercepts and ρ = 0.8, and refer

to Appendix B, pages 210 and 211 for further results. Figure 3.9 shows the MSEs of the

unit-specific intercepts (upper panel) and the linear term (lower panel). Again the mixed

model and the finite mixture model perform poorly with regard to the linear term, but

there are only minor differences for n = 20. Regarding the intercepts the average results

are comparable for all the approaches. It is noticeable that one observes huge outliers for

the finite mixture models, especially with model selection by AIC. It is most conspicuous

for the settings with n = 20, where the boxplots have been truncated.

The corresponding boxplots of the selected number of clusters are given in Figure 3.10.

Here the tree-structured model only detects very few clusters (for m0 = 5 and m0 = 10)

and is almost as restrictive as the finite mixture model. As before the penalty approach

selects a higher number of clusters and has a stronger variation but the selected number of

clusters is closer to the true number of clusters.
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Table 3.3.: Estimation results of the beta blocker data using the classical mixed model, tree-
structured clustering and the finite mixture model.

Predictor GMM TSC FIN
Coefficient 95%-CI Coefficient 95%-CI Coefficient 95%-CI

treatment (yes/no) -0.130 [-0.183,-0.084] -0.131 [-0.184,-0.085] -0.129 [-0.183,-0.084]

β0 -2.326 [-2.413,-2.270] — — — —
σ2
rand 0.236 [ 0.192, 0.357] — — — —

Center-specific intercept TSC FIN
Cluster Coefficient Cluster Coefficient

β0i 13,14,18,19,22 -2.969 13,14,18,19,22 -2.963
1,2,3,4,5,6,8,10,11,21 -2.401 1,2,3,4,5,6,8, -2.379

7,9,17 -1.946 9,10,11,17,21
12,15,16,20 -1.567 7,12,15,16,20 -1.739

0.
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Figure 3.11.: Comparison of the estimated distribution of the mixed model and the center-specific
effects tree-structured clustering (beta blocker data).

3.7. Further Applications

In the following we give the results of two further real data examples with binary response

and compare them to the alternative approaches.

3.7.1. Beta Blocker

As second application we use a dataset that has already been considered by Aitkin (1999),

Grün and Leisch (2008a) and Tutz and Oelker (2016). The data was collected in a 22-center

clinical trial to investigate the effect of beta blockers on the mortality after myocardial
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infarction. In each center patients were divided into a test group (treatment = 1) and a

control group (treatment = −1). The total number of patients is 20290, whereby the number

of patients per center varies strongly over centers. The binary response of interest is if the

patient deceased (yij = 1) or not (yij = 0). It is modelled by a logistic regression model

logit(P (yij = 1)) = ηij. The heterogeneity among the center, more precise the basic risk for

a decease, is captured in the center-specific intercepts and shall be modelled adequately.

The results by the alternative approaches considered here are given in Table 3.3. The table

contains estimated coefficients and 95% confidence intervals obtained by 2000 bootstrap

samples. There is a significant treatment effect. The estimated parameters of all methods

indicate that the probability of a decease decreases for the test group by the factor 0.88. The

variance component of the mixed is small but significantly different from zero. This allows

the conclusion to be drawn that centers do not differ very much but their heterogeneity

can not be neglected. The partitions and corresponding effects of center-specific intercepts

found by the tree-structured model and the finite mixture model are given in the lower

panel of Table 3.3. Regarding the finite mixture model we prefer to use model selection

by BIC as it showed more stable estimates in the simulations with binary response. It

can be seen, that the estimated coefficients for all clusters are negative, as the probability

of staying alive in principle is much higher than the probability of a decease. The finite

mixture model detects three clusters, whereas according to the tree-structured model there

are four clusters of centers that have to be distinguished in terms of their basic risk. It is

noticeable that the cluster with the lowest probability containing five centers is exactly the

same for both methods with very similar estimates.

A comparison of the estimated normal distribution of the mixed model and the center-

specific effects of the tree-structured model is visualized in Figure 3.11. The main advantage

of the tree-structured model compared to a mixed model is again pointed out in the figure.

There is no distributional assumption on the center-specific intercepts, which allows that

the number of centers in each cluster is quite different and not symmetric.

3.7.2. National Survey in Guatemala

In a third application we consider data derived from the National Survey of Maternal and

Child Health in Guatemala in 1987. The data is available from the R-package mlmRev

(Bates et al., 2014) and was also analysed by Rodriguez and Goldman (2001). The data

contains observations of children that were born in the 5-year period before the survey. In

our analysis we include 1211 children living in 45 communities. One observes a minimal

number of 20, a maximal number of 50 and an average number of 26.9 pregnancies per

community. The response yij is a binary outcome with yij = 0 for traditional prenatal care

and yij = 1 for modern prenatal care, for example by doctors or nurses. As in the previous



70 3. Modelling Heterogeneity in Fixed Effects Models

Table 3.4.: Description and distribution of the covariates used for the analysis of the Guatemala
survey.

Variable Description Categories Frequency

ethn Mother’s ethnicity non-indigenous (Ladino) 612
indigenous, not speaking Spanish 286
indigenous, speaking Spanish 313

momEd Mother’s level of education not finished primary 571
finished primary 607
finished secondary 33

husEd Husband’s level of education not finished primary 430
finished primary 598
finished secondary 67
unknown 116

husEmpl Husband’s employment status unskilled 45
professional 120
agricultural, self-employed 420
agricultural, employee 407
skilled service 219

telev Frequency of TV usage never 1034
not daily 52
daily 125

momAge Mother 25 years or older no 583
yes 628

toilet Modern toilet in house no 112
yes 1099

0.
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Estimated Distribution
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Figure 3.12.: Comparison of the estimated distribution of the mixed model and the community-
specific intercepts of tree-structured clustering (Guatemala survey).

example the response is modelled by a logistic regression model. The heterogeneity of

communities is modelled by the alternative approaches considered here. In total there are

733 pregnancies with traditional and 478 observed pregnancies with modern prenatal care.



3.7 Further Applications 71

Table 3.5.: Estimation results of the Guatemala survey using the generalized mixed model, tree-
structured clustering and the finite mixture model.

Predictor GMM TSC FIN
Coefficient 95%-CI Coefficient 95%-CI Coefficient 95%-CI

ethn
not spanish -1.370 [-2.101,-0.774] -1.090 [-2.469,-0.387] -0.995 [-2.280,-0.556]
spanish -0.720 [-1.235,-0.244] -0.434 [-1.425, 0.005] -0.335 [-1.338, 0.011]
momEd
primary 0.645 [ 0.331, 1.048] 0.673 [ 0.298, 1.122] 0.646 [ 0.317, 1.078]
secondary 1.385 [ 0.303, 2.955] 1.405 [ 0.268, 3.046] 1.735 [ 0.364, 2.944]
husEd
primary 0.785 [ 0.445, 1.236] 0.817 [ 0.437, 1.303] 0.843 [ 0.444, 1.301]
secondary 0.194 [-0.809, 1.186] 0.049 [-0.922, 1.286] 0.291 [-0.846, 1.311]
unknown 0.398 [-0.113, 0.951] 0.520 [-0.101, 1.006] 0.428 [-0.106, 0.962]
husEmpl
professional -0.210 [-1.150, 0.670] -0.095 [-1.301, 0.820] -0.408 [-1.336, 0.667]
agricult, self -0.119 [-0.975, 0.721] -0.065 [-1.044, 0.798] -0.266 [-1.065, 0.716]
agricult, empl -0.158 [-1.024, 0.656] -0.100 [-1.092, 0.750] -0.238 [-1.103, 0.723]
skilled -0.199 [-1.079, 0.606] -0.125 [-1.123, 0.661] -0.300 [-1.134, 0.607]
telev
not daily 0.355 [-0.497, 1.292] 0.226 [-0.601, 1.286] 0.241 [-0.548, 1.283]
daily 0.867 [ 0.312, 1.560] 0.928 [ 0.290, 1.570] 0.735 [ 0.307, 1.524]

momAge 0.099 [-0.208, 0.403] 0.061 [-0.241, 0.411] 0.061 [-0.219, 0.401]
toilet -0.869 [-1.833,-0.055] -1.008 [-1.875, 0.092] -0.839 [-1.808,-0.154]

β0 -0.011 [-1.223, 1.166] — — — —
σ2
rand 1.250 [ 1.233, 2.416] — — — —

Community-specific intercept TSC FIN
Cluster Size Coefficient Cluster Size Coefficient

βi0 1 15 -1.286 1 33 -0.696
2 17 -0.214 2 12 1.465
3 13 1.448

The two binary and five categorical explanatory variables that characterize the children’s

mothers and their families are given in Table 3.4.

An overview of the estimated coefficients when using a generalized mixed model (GMM),

tree-structured clustering (TSC) and a finite mixture model (FIN) is given in Table 3.5.

The 95% confidence intervals were obtained by 2000 bootstrap samples. It can be seen from

the results that the age of the mother at the time of the survey as well as the employment

status of the husband do not have a significant effect on the form of prenatal care. The

educational level of the mother as well as of the husband, however, have a strong impact.

For births where the mother at least finished primary or the husband finished primary

modern prenatal care was provided more likely compared to births of parents without any

graduation. Indigenous mothers (speaking and not speaking Spanish) are also more likely

to use traditional prenatal care than non-indigenous mothers. The existence of a modern

toilet in the household does not favour the use of modern prenatal care, whereas it is

preferred by families using the television regularly.
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Table 3.6.: Summary statistics of the mathematics score and the weekly time in hours spent on
math homework (NELS).

Variable Summary statistics

xmin x0.25 xmed x̄ x0.75 xmax

Mathematics score 34.99 42.03 48.64 51.51 60.66 77.20
Homework (HW) 0 1 1 2.02 3 7

A comparison of the estimates obtained by the three methods does not show strong dis-

tinctions and no clear tendency. Differences occur for variable ethnicity (first rows in Table

3.5), for which the two estimates of the mixed model are larger than for TSC and FIN

and for mothers that finished secondary (fourth row) for which the estimate of the finite

mixture model is larger than for TSC and GMM.

The estimated community-specific intercepts obtained by tree-structured clustering and the

finite mixture model are given in the lower panel of Table 3.5. Using the tree-structured

model results in three clusters of communities that differ in terms of their probability to

use modern prenatal care, whereas the finite mixture (selected by BIC) identifies only

two clusters. The detected partitions and the high variance obtained by the mixed model

indicate that heterogeneity of communities is definitely present. Nevertheless, only a few

clusters of communities have to be distinguished. There is a strong similarity between the

third cluster of the tree-structured model (β
(3)
i0 = 1.448) and the second cluster of the finite

mixture model (β
(2)
i0 = 1.465) but as a whole the partition of tree-structured clustering

seems to be more adequate. In Figure 3.12 the estimated distribution of the community-

specific intercepts of the tree-structured model and the estimated normal distribution of

the mixed model are graphically illustrated.

3.8. Extension to Group-Specific Slopes

So far we limited our considerations to the case of a group-specific intercept, where zij = 1.

However, the general fixed effects model (3.2) allows for more than one parameter to be

unit-specific. It is straightforward to extend the tree-structured model to include a covariate

vector zij = (1, zij1, . . . , zijq). Then one obtains a model with predictor

ηij = x�
ijβ +

q∑
r=0

mr∑
k=1

zijrβ
(k)
ir I(i ∈ Skr), (3.6)
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where S1r, . . . , Smrr is a partition of the units {1, . . . , n} with respect to the r-th component

of zij and β
(1)
ir , . . . , β

(mr)
ir are the corresponding parameters of each cluster. Due to individ-

ual splits, the number and form of clusters do not have to be the same for the different

components of zij. The fitting procedure given in Section 3.4 can easily be adapted to

this general model. In each iteration one simply has to determine the best split among all

covariates and all corresponding splits simultaneously. In a first step the order of the units

{1, . . . , n} with respect to single covariates has to be defined. It is not assumed that the

order is the same for each of the covariates. The result is one tree for each covariate that

represents a partition of units. This extended model is simply a special case of the model

proposed in Chapter 2 with several nominal predictors.

Application: National Education Longitudinal Study

As an example we consider data of the National Election Study (NELS) of 1988. For a

detailed description, see Curtin et al. (2002). For our analysis we use a subsample of 260

grade 8 students from 10 schools, with an average number of 26 students per school. The

response yij is the standardized mathematics score of student j in school i, that is measured

between 0 and 100 and thus assumed to be Gaussian. Next to the school itself the weekly

time in hours spent on maths homework (HW) will serve as explanatory variable. The

summary statistics of the response and the covariate are given in Table 3.6. To explain the

mathematics score it is reasonable to assume that the effect of covariate HW differs across

schools. Therefore in our model besides school-specific intercepts we include school-specific

slopes with respect to covariate HW. By using the extended tree-structured approach the

model that was obtained has the form

yij =

m0∑
k=1

β
(k)
i0 I(i ∈ Sk0) +

mHW∑
k=1

HWij β
(k)
i,HW I(i ∈ Sk,HW ), i = 1, . . . , 10,

where S10, . . . , Sm00 denotes the partition of schools regarding their intercepts with effects

β
(k)
i0 and S1,HW , . . . , SmHW ,HW denotes the partition of schools regarding their effect of

the time spent on maths homework with effects β
(k)
i,HW . Figure 3.13 shows the coefficient

paths obtained for the school-specific intercepts of the two components in the model. In

analogy to Figure 3.1 the paths of the school-specific intercepts are given in the left panel.

Furthermore one observes paths of school-specific slopes that are given in the right panel.

As there are 10 schools the maximal number of splits in each tree component is nine,

giving an overall number of 18 splits in the model (displayed on the x-axis). In total the

algorithm performs 11 splits, marked by dashed lines in Figure 3.13, until further splits

are no longer significant. It can be seen that estimates change strongly until stopping.

The final model defines 7 clusters of schools sharing the same intercept, that is the same

average mathematical competence. For the effect of the time spent on maths homework
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Figure 3.13.: Paths of coefficients of school-specific intercepts (left panel) and school specific slopes
of variable HW (right panel) against all splits (NELS). The optimal number of splits is marked
by dashed lines.

Table 3.7.: Estimation results for school-specific intercepts given in the left columns and for school-
specific slopes of variable HW given in the right columns (NELS).

Cluster Coefficient Cluster Coefficient

βi0 4,8 35.433 βi,HW 5 -3.596
9,10 37.917 1,2,6 -2.630
3 38.949 7 1.452
2 48.423 4 5.477
1,6 49.324 8,9,10 6.560
5 52.165 3 7.988
7 58.780

one obtains 6 clusters. The partitions of the two components, in detail given in Table

3.7, are quite different. Regarding the intercepts (left columns) there are three clusters

composed of two schools while the other schools have their individual effect. Regarding the

slopes (right columns) there are two clusters composed of three schools while the others

have their individual effects. It is conspicuous that for cluster {1, 2, 6} and school 5 the

average mathematical competence is comparably high but the estimated effects of HW is

actually negative. Obviously in this schools the weekly time spent on maths homework is

an indicator for students with week performance. The opposite effect is seen for school 3

with an low average mathematical competence but a very large positive effects of HW. Here

the time spent on maths homework has a favorable influence.
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3.9. Concluding Remarks

The proposed tree structured model competes well with the competitors. In particular, it

performs better than the finite mixture approach and has the advantage that the number of

units is not restricted as in the penalty approach. The applications were chosen to illustrate

the potential of the method to find clusters that share the same effect on the response. The

potential of the method to yield better estimates when the heterogeneity and explanatory

variables are correlated is demonstrated in the simulations.

The results shown in this chapter were obtained by the R-package structree (Berger,

2016b) version 1.0.1 that is available upon request and will presumably be made publicly

accessible via CRAN.





4. Identification of Differential Item

Functioning in Rasch Models

4.1. Introduction

Differential item functioning (DIF) is a well known problem in item response theory. It oc-

curs if the probability of a correct response among equally able persons differs in subgroups,

for example, if the difficulty of an item depends on the membership to a racial, ethnic or

gender subgroup. Then the performance of a group can be lower because these items are

related to specific knowledge that is less present in this group. The effect is measurement

bias and possibly discrimination, see, for example, Millsap and Everson (1993), Zumbo

(1999). Various forms of differential item functioning have been considered in the litera-

ture, see, for example, Holland and Wainer (1993); Osterlind and Everson (2009); Rogers

(2005). In particular Magis et al. (2010) gave an excellent overview of the existing DIF

detection methods.

The traditional approach to identify items that carry DIF is based on test statistics. For

each item a test is performed that shows if the item has different difficulties in subgroups

that have to be defined by the experimenter. Test statistics have been proposed by Thissen

et al. (1993), Lord (1980), Holland and Thayer (1988), Kim et al. (1995) and Raju (1988).

Mixed model approaches were proposed by Van den Noortgate and De Boeck (2005) and

Bayesian approaches have been developed by Soares et al. (2009).

The classical testing approach with a focus on sub groups is not without problems. First,

when testing it is assumed that all other items are free of DIF, which is an assumption that

typically does not hold, see also Magis et al. (2010). Second, the proposed tests are limited

to the consideration of few subgroups. Typically one considers just two subgroups with one

group being fixed as the reference group. That means if one suspects item difficulties to

This chapter is a modified version of Tutz and Berger (2015a). For more information on the personal
contributions of the authors and textual matches, see page 9.
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depend on age one has to know the age groups before testing. Thus age has to be split into

two or more intervals without knowing which ones are relevant. Moreover, the approaches

are restricted to subgroups. Therefore, it is hard to investigate the dependence on more

than one possibly DIF inducing variable.

More recently, several methods have been proposed to cope with these problems. Tutz

and Schauberger (2015) proposed an explicit model for differential item functioning that

includes a set of variables, containing metric as well as categorical components, as potential

candidates for inducing DIF. The abundance of parameters in the model is handled by

using penalization techniques. An alternative regularization method that uses the logistic

regression approach to DIF detection was proposed by Magis et al. (2015). A further

approach that is also able to handle several groups and continuous variables was proposed

by Strobl et al. (2015). It avoids the comparison of pre-specified focal and reference group

by using recursive partitioning techniques, also known as trees. The proposed recursive

partitioning scheme automatically identifies the subgroups of subjects exhibiting DIF.

The method proposed in this chapter also uses recursive partitioning techniques, but in a

different form than Strobl et al. (2015). Strobl et al. (2015) recursively partition the covari-

ate space to identify regions of the covariate space in which DIF occurs. In the investigated

regions a parametric latent trait model that includes covariates is fitted. Regions are sus-

pected to be relevant if the parameter estimates in the regions differ strongly. Therefore,

regions in the covariate space are identified that show different difficulties. A disadvantage

of the method is that it detects regions of the covariate space that are linked to DIF but

does not automatically detect the items that are responsible. In contrast, the recursive

partitioning method proposed here focusses on the detection of the items that are respon-

sible for DIF. Recursive partitioning is used on the item level not on the global level, which

treats all items simultaneously, as in the method proposed by Strobl et al. (2015). The

item focussed approach allows to detect the items that carry DIF but keeps the advantage

that no pre-specified subgroups are needed.

In Section 4.2 we introduce the new method and present an illustrative example, in Section

4.3 we give a detailed description of the fitting procedure. Results of wider simulation

studies with comparisons to competing methods are given in Section 4.4. In Section 4.5 we

consider another application. Finally, in Section 4.6 we consider an extension to ordinal

item responses.

4.2. Item Focussed Recursive Partitioning

We will consider differential item functioning for the Rasch model. Therefore we start with

the introduction of some notation.
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4.2.1. Differential Item Functioning for the Rasch Model

In the binary Rasch model the probability for a person to score on an item is determined

by a parameter for the latent ability of the person and a parameter for the item difficulty.

In the case of P persons and I items, the Rasch model is given by

P (Ypi = 1) =
exp(θp − βi)

1 + exp(θp − βi)
, p = 1, . . . , P, i = 1, . . . , I, (4.1)

where Ypi represents the response of person p on item i. It is coded by Ypi = 1 if person p

solves item i and Ypi = 0 otherwise. Both, the person parameters, θp, p = 1, . . . , P , and

the item parameters, βi, i = 1, . . . , I, are unknown and have to be estimated.

An alternative form of the model is

log

(
P (Ypi = 1)

P (Ypi = 0)

)
= ηpi = θp − βi, (4.2)

where the predictor ηpi = θp−βi represents the difference between the ability of the person

and the difficulty of the item. As model (4.2) is not identifiable in this general form, a

restriction on the parameters is needed. A common choice that is also used in the following

is θP = 0.

In Rasch models, DIF appears if an item has different difficulties depending on character-

istics of the person that tries to solve the item. The simplest form of DIF is found if item

difficulties differ in a focal and a reference group. If item i is a DIF item the predictor of

the model is given by

ηpi = θp − γ
(j)
i , j = 1, 2, (4.3)

where j = 1 denotes the focal group and j = 2 the reference group. DIF occurs, if

γ
(1)
i �= γ

(2)
i , which can be tested, for example, by likelihood ratio tests. The recursive

partitioning scheme considered in the following uses this simple model, which considers two

subgroups, as building block. By iterative application of the splitting into two subgroups

one obtains a tree for each item. It should be mentioned that we consider uniform DIF in

Rasch models. For more general models as 2PL or 3PL models DIF can be generated in

different ways, for example, by difference in item discrimination.

4.2.2. Recursive Partitioning

Recursive partitioning also known as tree-based modeling has its roots in automatic in-

teraction detection (AID), proposed by Morgan and Sonquist (1963). The most popular

modern version is due to Breiman et al. (1984) and is known by the name classification and



80 4. Identification of Differential Item Functioning in Rasch Models

regression trees, often abbreviated as CART. Alternative approaches are the C4.5 algorithm

(Quinlan, 1986, 1993), or the recursive partioning framework based on conditional inference

proposed by Hothorn et al. (2006). The method is conceptually very simple. By binary

recursive partitioning the feature space is partitioned into a set of rectangles, and on each

rectangle a simple model (for example, a constant) is fitted. An overview with a focus on

psychometrics was given by Strobl et al. (2009).

Regression trees may be seen as a hierarchical way to describe a partition of the predictor

space. The tree represents the partition in a unique way. Each node of the tree corresponds

to a subset of the predictor space. The root is the top node consisting of the whole predictor

space, and the terminal nodes or leaves of the tree correspond to the subregions.

To grow a tree one typically uses the “standard splits“, which means that each partition of

node A into subsets A1, A2 is determined by only one variable. The splits to be considered

depend on the scale of the variable:

For metrically scaled and ordinal variables, the partition into two subsets has the

form

A ∩ {xj ≤ c}, A ∩ {xj > c},
based on the threshold c on variable xj.

For categorical variables without ordering xj ∈ {1, . . . , Kj}, the partition has the

form

A ∩ S, A ∩ S̄,

where S is a non-empty subset S ⊂ {1, . . . , Kj} and S̄ = {1, . . . , Kj} \ S is the

complement.

In the following we will mostly use the split for metrically scaled or ordinal variables to

illustrate how trees are obtained. Let xT
p = (xp1, . . . , xpm) denote a person-specific covariate

vector of length m. For the detection of DIF the first split means one examines for all the

items, all the variables and possible splits of the corresponding variable the Rasch model

with predictor

ηpi = θp − [γ
[1]
il I(xpj ≤ cj) + γ

[1]
ir I(xpj > cj)],

where I(·) denotes the indicator function with I(a) = 1 if a is true and I(a) = 0 otherwise.

The model is just an alternative representation of (4.3), with the focal and reference group

constructed by a split of the j-th variable at split-point cj. The parameter γ
[1]
il denotes

the item difficulty in the left node (xpj ≤ cj) and γ
[1]
ir the item difficulty in the right

node (xpj > cj). One chooses that combination of item, variable and split that has the

smallest p-value when tested for DIF, that is, in the examination of the null hypothesis

H0 : γ
[1]
il − γ

[1]
ir = 0. This selection yields the first split into left and right daughter nodes

corresponding to the regions I(xpj ≤ cj) and I(xpj > cj).
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Further splitting means that one of the nodes, say I(xpj > cj), is further split, for example,

in variable s at cut point cs, yielding the daughters

I(xpj > cj)I(xps ≤ cs) and I(xpj > cj)I(xps > cs),

and the linear predictor

ηpi = θp − [γ
[1]
il I(xpj ≤ cj) + γ

[2]
il I(xpj > cj)I(xps ≤ cs) + γ

[2]
ir I(xpj > cj)I(xps > cs)],

where γ
[2]
il , γ

[2]
ir are the weights on the new split. Then the item difficulty in the region {xpj ≤

cj} is γ
[1]
il but for the region {xpj > cj} one has to distinguish between {xpj > cj, xps ≤ cs}

with item difficulty γ
[2]
il and {xpj > cj, xps > cs} with item difficulty γ

[2]
ir .

The corresponding trees are trees for specific items, namely the items that were selected

to carry DIF. If an item is never selected it is considered as compatible with the Rasch

model.

In the following we use the model abbreviation IFT for item focussed trees.

4.2.3. An Illustrative Example

Before giving the details how to grow trees we want to illustrate the procedure by use of

a data set that has been used previously in the DIF literature (Strobl et al., 2015). We

consider the data of an online quiz testing one’s general knowledge. The test was conducted

by the German news magazin Spiegel in 2009. The whole test consisted of 45 questions

from five different topics, that are politics, history, economy, culture and natural sciences.

A detailed analysis and discussion of the original data set is found in Trepte and Verbeet

(2010).

We use a subset of the data including 1075 university students from Bavaria. To test

for DIF we incorporate the five covariates gender (0: female, 1: male), age, number of

matriculated semester, elite status of the university (0: no, 1: yes) and the frequency of

accessing Spiegel’s online magazine (spon) from 1 (never) to 7 (daily). The distributions of

the five covariates and the test results are displayed in Figure 4.1.

Item Focussed Recursive Partitioning

When using item focussed recursive partitioning 21 of the 45 items show DIF. The result

is not surprising because the questions of the quiz were not chosen very carefully to avoid

DIF. Altogether the algorithm performs 33 splits until further splits are not significant at

significance level α = 0.05 (for details of the test see Section 4.3). The first ten splits all
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results of the test
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Figure 4.1.: Graphical representation of the results of the general knowledge test (upper left) and
the distribution of the five covariates in the analyzed data.

refer to the covariate gender, so the strongest effects were found for the difference between

males and females. No significant splits were found for the variable elite. The difficulties

of the items seem not to depend on the elite status of the university. The three items with

the strongest effects, which were found in the first iterations of the algorithm, were the

following:

19: Who is this? - Picture of Dieter Zetsche, CEO of Mercedes-Benz

43: Which kind of bird is this? - Blackbird

40: What is also termed Trisomy 21? - Down syndrome

The resulting trees for these items 19, 43 and 40 are shown in Figure 4.2. For each item

one can see how the difficulty of the item depends on the characteristic of certain variables.

The estimated item difficulties are given in each leaf of the trees, which represent the

identified subgroups. For example, in item 19 (recognition of Dieter Zetsche as CEO of

Mercedes Benz) the difficulty for females (gender=0) is 2.665 while for males (gender=1)

it is distinguished between students who frequently read Spiegel online (spon=7) with an

item difficulty of 0.126 and a much larger item difficulty of 1.155 for students who read

it less regularly (spon ≤ 6). The other two items show DIF only for gender. Both items
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Item 19 (Zetsche)

2.665

1.155 0.126

2

4 5

●

gender=0 gender=1

●

spon<=6 spon=7

Item 43 (Blackbird)

−2.392 −1.105

2 3

●

gender=0 gender=1

Item 40 (Down syndrome)

−2.935 −1.52

2 3

●

gender=0 gender=1

Figure 4.2.: Trees for Items 19, 43 and 40 of the general knowledge test. The item difficulties are
given for each subgroup represented by the leaves of the trees.

concerning the recognition of birds and knowledge of genetic diseases are easier to solve for

females. It is also seen that item 19 is much harder to solve than the other two items.

Another quite interesting tree structure is received for item 6 of the test (see Figure 4.3).

The corresponding question asks to identify the Prime Minister of Bavaria, Horst Seehofer.

For all students who read the online magazine very regular (spon>5) the question is very

easy. By contrast the question is more difficult for students who do not read Spiegel online

very often (spon ≤ 5), in particular if they are female (gender=0) and comparably young

(age ≤ 21).

The strength of the approach is that one sees for each item which variables generate DIF.

The tree structure also yields an ordering of the relevance of the variables with the first

split being the most relevant. By recursive splitting of regions trees are always devices to

detect interactions. For example, in item 19 a relevant interaction effect is that of gender

and frequency of reading Spiegel online. Moreover, trees automatically detect the groups
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Item 6 (Seehofer)

0.282 −0.629

−0.87

−1.397

6 7

5

3

●

spon<=5 spon>5

●

gender=0 gender=1

●

age<=21 age>21

Figure 4.3.: Tree for Item 6 of the general knowledge test. The item difficulties are given in each
leaf of the tree.

that have to be distinguished. It is not necessary to define the focus and the reference

group beforehand.

Rasch Trees

To illustrate the difference between the alternative approach to use trees we analyse in

the following the same data set by using the Rasch tree concept of Strobl et al. (2015).

The corresponding tree is given in Figure 4.4. The significance level used for the tests for

parameter instability was the same as for our item focussed trees, α = 0.05.

The basic concept of conventional Rasch trees is to search for the split in the explanatory

variables that shows the strongest differences in all of the item difficulties. In this applica-

tion one obtains a tree with splits in two variables, gender and spon. These variables are

found to induce DIF and one finds four groups that differ in terms of item difficulty. In

each leaf of the corresponding tree the estimated difficulties are shown. The crucial point

is that the resulting tree is one tree for all of the items. It does not identify the items that

are responsible for the split and therefore for DIF. Consequently, from Figure 4.4 it is hard

to identify those items that are affected by DIF and those that are not. Moreover, there

is no criterion provided to identify the responsible items. In contrast, the item focussed

approach shows which items are responsible. It is seen from Figure 4.2 that both variables,

gender and spon, are also found for items 19, 34 and 40 but in a more differentiated way.

In addition, Figure 4.3 shows that also item 6 is a DIF item that is also specific for age.
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Figure 4.4.: Result of the analysis of the general knowledge test by a Rasch tree.

The example illustrates one specific difference between the two approaches namely the

obtained results. The conventional tree in Figure 4.4 shows that gender and spon induce

DIF but it is not yet clear which items are concerned. The item focussed tree approach

identifies the items and yields a specific tree for each item. For item 19 the splits use also

gender and spon (see Figure 4.2), but for females it seems not necessary to split further.

For items 43 and 40 (see Figure 4.2) only gender seems relevant. For item 6 also age is

found to induce DIF and the strongest variable, which is split first, is spon, not gender.

Therefore, instead of assuming splits to be the same for the whole set of items one obtains

specific splits for each item. The resulting small trees show how covariates determine DIF

items and the visualization as trees makes it easily accessible.

Logistic Regression

For comparison we also consider the logistic regression method that was proposed by Swami-

nathan and Rogers (1990) and, more recently, extended by Magis et al. (2015). The basic
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concept is to fit a logistic model for answering an item correctly given the test score and

the group membership. The model has the form

log

(
P (Ypi = 1|Sp, g)

P (Ypi = 0|Sp, g)

)
= β0i + Spβi + γig,

where g denotes the group, Sp is the test score of person p and γig are the group-specific

parameters. Of course, if one considers G groups, one of the parameters γi1, . . . , γiG has

to be set to zero. For example, by setting γi1 = 0 the first group is implicitly chosen

as the reference group. If one has only two groups there is only one parameter for each

item. Following Magis et al. (2015), the parameters β0i can be seen as the counterparts

of the item difficulties and the parameters βi as the counterparts of item discrimination

parameters. The parameters of interest, however, are the parameters γi1, . . . , γiG. If one of

them is unequal zero the item is supposed to show DIF. Therefore, DIF can be diagnosed

by testing, for example, by using a likelihood ratio test, whether the null hypothesis H0:

γi1 = · · · = γiG = 0 holds.

The basic concept can also be used for continuous or a mix of categorical and continuous

variables. Then one considers the logistic model

log

(
P (Ypi = 1|Sp,xp)

P (Ypi = 0|Sp,xp)

)
= β0i + Spβi + x�

p γi,

where xp is a vector of explanatory variables that might induce DIF. It should be noted

that group membership is just a special case; with reference group 1 one uses the vector of

explanatory variables xT
p = (xp2, . . . , xpG), where xpg = 1 if person p is from group g and

0 otherwise. The corresponding vector of parameters is γT
i = (γi2, . . . , γiG). In the general

case, DIF diagnosis uses a test for the pair of hypotheses

H0 : γi = 0 H1 : γi �= 0,

where 0 is the vector in which all components are zero. Hypotheses are tested separately

for each item with significance level α.

The logistic model approach to DIF detection is not without problems. The test scores are

used as a proxy for the ability of a person. However, test scores as the number of solved

items are sufficient statistics for ability parameters only if the Rasch model holds, that is, if

no DIF is present (see also Magis et al., 2015). Nevertheless, it provides a general method

to investigate DIF. Therefore, we will use the method in simulations and in the present

illustration.

Table 4.1 compares the logistic model (Logistic) and item focussed trees (IFT). It shows

only items that were found to be DIF items by one of the methods. The order of the items



4.3 Fitting Trees 87

Table 4.1.: Comparison of detected DIF items of the general knowledge test using logistic regression
and item focussed recursive partitioning.

item lr statistic p-value Logistic IFT
19 114.5921 0.0000 × ×
28 82.4253 0.0000 × ×
26 81.3029 0.0000 × ×
34 74.2029 0.0000 × ×
40 72.8286 0.0000 × ×
25 61.0688 0.0000 × ×
43 55.1655 0.0000 × ×
36 54.1240 0.0000 × ×
24 49.4813 0.0002 × ×
33 49.2615 0.0002 × ×
45 48.0907 0.0002 × ×
13 46.8115 0.0004 ×
8 43.8113 0.0010 × ×
12 43.6708 0.0010 × ×
5 40.0507 0.0032 × ×
27 40.0141 0.0033 ×
35 39.1269 0.0043 ×
41 35.5084 0.0121 ×
9 34.6475 0.0154 × ×
1 33.6944 0.0200 ×
37 30.6730 0.0438 ×
22 30.1479 0.0499 × ×
44 28.9102 0.0674 ×
6 28.2181 0.0793 ×
42 24.4983 0.1777 ×
23 23.9883 0.1966 ×
39 13.4830 0.8130 ×

reflects the p-values of the likelihood ratio test when investigating DIF by use of the logistic

model approach. There is a strong overlap; 16 items were found to be DIF items in both

methods, 6 items showed DIF when using the logistic approach but not when using item

focussed trees, 5 items showed DIF when using item focussed trees but not when using the

logistic approach.

4.3. Fitting Trees

In this section we give the details of the algorithm that yields item focussed trees. In

particular we show how trees are grown and when to stop.
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4.3.1. The Basic Algorithm

In all tree-based methods one has to decide in particular how to split and how to determine

the size of the trees. Split criteria that are in common use are splitting by impurity measures

like the Gini-based impurity or the entropy and test-based splits. The latter use a test

statistic to evaluate which split is the strongest to explain the impact of predictors. Already

Breiman et al. (1984) considered very general families of impurity measures including the

entropy, which is strongly related to test-based split when the deviance is used as test

statistic, see, for example, Ciampi et al. (1987) and Clark and Pregibon (1992). As far as

tree size is concerned, in early recursive partitioning approaches the final tree is typically

obtained by growing large trees and then prune them to an adequate size, for details

see Breiman et al. (1984) or Ripley (1996), Chapter 7. Alternative methods are based

on maximally selected statistics. The basic idea is to consider the distribution of the

selection process. When a split-point is selected based on a test statistic Ti for possible

split-point i, one investigates the distribution of Tmax = maxi=1,...,mTi. The p-value of

the distribution of Tmax provides a measure for the relevance of a predictor that does not

depend on the number of split-points since the number has been taken into account, see

Hothorn and Lausen (2003), Shih (2004), Shih and Tsai (2004), Strobl et al. (2007). A

unified framework for recursive partitioning that embeds tree-structured regression models

into a well-defined theory of conditional inference procedures was proposed by Hothorn

et al. (2006). The splitting is stopped when the global null hypothesis of independence

between the response and any of the predictors cannot be rejected at a pre-specified nominal

significance level α. The method explicitly accounts for the involved multiple test problem.

By separating variable selection and the splitting procedure one arrives at an unbiased

recursive partitioning scheme that also avoids the selection bias toward predictors with

many possible splits or missing values. We will draw on the concept of conditional inference

procedures in our approach to select splits.

Let us consider again the construction of the first split. One examines for all the items,

all the variables and possible splits of the corresponding variable the Rasch model with

predictor

ηpi = θp − [γilI(xpj ≤ cj) + γirI(xpj > cj)].

The test for DIF at split-point cj corresponds to the null hypothesis H0 : γil−γir = 0. If H0

holds for all split-points the item shows no DIF since γil = γir holds for all split-points. Let

Tjcj denote the corresponding test statistic, for example, the log-likelihood test statistic. To

obtain a test for variable j one has to consider simultaneously all the test statistics Tjcj with

cj from the set of possible splits. We will use the maximal value statistic Tj = maxcj Tjcj ,

which is composed from the strongly correlated test statistics. To obtain a decision on the

null hypothesis controlling for a given significance level a permutation test is used. That

means the distribution of Tj is determined by using random permutations of variable j
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that break the relation of the covariate and the response. More concrete, one permutes the

values of variable j in the data matrix and computes the corresponding value of the test

statistic. By computing the values of the test statistic for a large number of permutations

one obtains an approximation of the distribution under the null hypothesis that variable j

has no effect and an corresponding p-value. In our applications and simulations we used

1000 permutations.

Given overall significance level α the significance level for the permutation test that tests

splits in one variable is chosen by α/m, where m denotes the number of covariates that are

available. For the item and variable with the largest value of Tj the permutation test is

carried out. If no significant effect is found no splitting is performed. Otherwise for this

combination the split-point is chosen for which Tjcj had the smallest p-value. Since variable

selection is separated from the splitting decision one could also use alternative criteria for

the selection of splits. If variable, item and split-point are selected the model is fitted for

this selection yielding estimates θ̂p, γ̂il, γ̂ir.

For illustration we use again the example from Section 4.2.3. The largest test statistic over

all items and variables occurred for item 19 and gender. The corresponding value of the

test was Tgender = 85.5. For comparison, the values of the other variables for item 19 were

Tage = 9.2, Tsemester = 3.8, Telite = 0.9 and Tspon = 48.86. The permutation test for the

combination item 19 and gender was highly significant with an p-value close to zero and

distinctly smaller than 0.05/5=0.01. Therefore, one has a significant split and the first split

is for gender in item 19. Since for gender there is only one possible split, one has not to

investigate which split is the best.

In later steps of the growing of a tree the basic procedure is the same, one searches for the

statistic with the maximal value trying all combinations of items and variables. For the

items that have not yet been split the search is the same as before, but for items that already

have been split one starts from already selected splits. Let the already built node for item

i be characterized by Si = {(cij1 , ai1), . . . , (cijB , aiB)}, where cijb is the threshold in variable

jb and aib ∈ {0, 1} encodes if one is below or above the threshold. The corresponding node

is

nodei(xp) =
B∏
b=1

I(xpjb > cijb)
aib(1− I(xpjb > cijb))

1−aib ,

where B denotes the total number of branches. When considering splits of this node one

examines for all variables j and all possible splits the Rasch model with item difficulties

γilnodei(xp)I(xpj ≤ cj) + γirnodei(xp)I(xpj > cj),

where cj is a split-point for variable j. The corresponding null hypothesis isH0 : γil−γir = 0,

which is tested by test statistic Tjcj . Again one first investigates if variable j has an effect
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by using a permutation test for Tj = maxcj Tjcj with significance level α/m, for the node

and variable with the largest value of Tj. If a significant effect is found one determines the

best split and fits the corresponding model for this split-point. It should be noted that in

the fitting step all other parameters of the model, including the person parameters θp, are

refitted.

In the illustrative example several other items were split in the next steps, in the eleventh

step again item 19 was selected in the second node (gender = 1), which was already built

in the first split. The maximal test statistic was Tspon = 29.5, the others for this node

were Tage = 4.4, Tsemester = 2.3 and Telite = 0.9. Covariate gender can not be considered

anymore and therefore the local significance level in the already built node has to be adapted

to 0.05/4. The corresponding p-value was 0.001. The selected split, which had the smallest

p-value for the likelihood ratio statistic for spon in item 19 (given gender = 1), was obtained

for the sixth split (spon ≤ 6; spon = 7).

The procedure stops if no test for the combination of item and variable (given the root

or and already identified node) is significant any more. In the illustrative example the

algorithm terminates after 33 splits in 21 items. The largest maximal value statistic in the

34-th step was 10.62, but not significant on level 0.01. Item 19 was selected for the last

time in the eleventh step.

If no combination of item and variable is significant any more the tree for an item i that

has been split is defined by terminal nodes Si1, . . . , SiLi
and the predictor of the model can

be represented by

ηpi = θp − tri(xp) = θp −
Li∑
�=1

γi� nodei�(xp), (4.4)

where γi1, . . . , γiLi
denote the item difficulties in the terminal nodes. The algorithm ter-

minates if no significant permutation test is obtained anymore. For those items where no

splitting is performed the constant tri(xp) = βi, corresponding to the item parameter of

the simple Rasch model, is fitted.

In the illustrative example the resulting tree for item 19, given in Figure 4.2, is composed

of three terminal nodes including the two covariates gender and spon.

4.3.2. Comments on Type I Error Rates

It seems warranted to briefly discuss the concept of the type I error rate that is behind the

considered procedures. It should especially clarify when to adapt the given significance level

and when not. In DIF detection type I error typically is seen as equivalent to false alarm

rates, see, for example, Magis and De Boeck (2014). If one wants to control for this form

of type I error it suffices to use tests with an significance level α for each item. Then, for
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each non-DIF item the probability of being falsely classified as DIF item is controlled by α.

If one has N non-DIF items one can expect Nα items to be falsely classified as DIF items

yielding a false alarm rate Nα/N = α. This procedure is used by most of the test based

approaches including the item focussed trees proposed here. It is in line with the concept

of controlling the false discovery rate proposed by Benjamini and Hochberg (1995).

A quite different concept of type I error is the familywise error rate, which stimulated

research in multiple testing. The familywise error rate is the probability of falsely rejecting

at least one among all the considered hypotheses when performing multiple hypotheses

tests. In DIF detection it corresponds to the probability that at least one item is falsely

classified as DIF item. The concept is much stronger. If one wants to control the familywise

error rate by a global significance level α one has to use much smaller significance levels

in the single tests. One has to adapt the significance level, for example, by using the

Bonferroni or the Holm procedure (Holm, 1979).

These procedures are used in the proposed item focussed trees when several variables are

available. In order to obtain a significance level α for each item, for fixed item the signif-

icance level of the tests for each variable is chosen as α/m, where m denotes the number

of covariates that might induce DIF. Thus, given that an item has no DIF, in the first

step the significance level for testing one variable is α/m and the probability that the item

shows DIF in the first step in any of the variables (and therefore DIF is diagnosed at all) is

restricted by α. So the probability of a false DIF result is restricted by α because further

tests are performed only if a significant result was found in the first step. The consequence

is that on the item level the familywise error rate is under control, with the family of the

null hypotheses being composed of all the null hypotheses that there is no DIF in single

variables (for fixed item).

4.4. Simulations

In this section we investigate the performance of the fitting procedure in terms of the ability

to detect items that show DIF and to estimate the item difficulty parameters in each node.

We consider several simulation scenarios where data Ypi, p = 1, . . . , P, i = 1, . . . , I were

generated according to the binary Rasch model with DIF in some of the items. All the

presented results are based on 100 replications.

The following components of the model are the same in each simulation scenario:

• P = 500 (number of persons); I = 20 (number of items)

• θp ∼ N(0, 1) (person abilities)
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• βi ∼ N(0, 1) (item difficulties for items without DIF)

If item i is assumed to show DIF the corresponding normal distributed item difficulty is

transformed by step functions. The resulting item difficulties refer to groups of persons

represented by the nodes Si1, . . . , SiLi
.

Strength of DIF

In each simulation scenario we generate data with three different strengths of DIF, strong,

medium and weak. The strength of DIF in one item i can be measured by the variance of

the item parameters Vi = var (
∑

� γi� nodei�), which for fixed nodes is determined by the

parameters γi�. The average of Vi over the items with DIF is used as a measure of the

overall strength of DIF in these items. In all of the simulation scenarios parameters are

specified in such a way that for strong DIF the DIF strength is 0.41, for medium DIF the

strength is 0.23 and for weak DIF it is 0.10.

Mean Squared Errors

We compare the estimated coefficients to the true parameters by calculating mean squared

errors (MSEs). For the person abilities it is 1
P

∑P
p=1(θ̂p − θp)

2 and for the item difficulties

it is 1
P ·I

∑P
p=1

∑I
i=1(t̂ri(xp)− tri(xp))

2, respectively, averaged over all simulations.

Hit Rates

Let each item be characterized by a vector δT
i = (δi1, . . . , δim), with δij = 1 if item i has

DIF in component j and δij = 0 otherwise. An item is a non-DIF item if δT
i = (0, . . . , 0), if

one of the components is 1 it is a DIF item. With indicator function I(·), criteria to judge

the identification of items with DIF are:

• True positive rate on the item level (items correctly identified as DIF items):

TPRI =
1

#{i:δi �=0}
∑

i:δi �=0 I(δ̂i �= 0)

• False positive rate on the item level (non-DIF items incorrectly identified as DIF

items):

FPRI =
1

#{i:δi=0}
∑

i:δi=0 I(δ̂i �= 0)

• True positive rate for the combination of item and variable:

TPRIV = 1
#{i,j:δij �=0}

∑
i,j:δij �=0 I(δ̂ij �= 0)
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• False positive rate for the combination of item and variable:

FPRIV = 1
#{i,j:δij=0}

∑
i,j:δij=0 I(δ̂ij �= 0)

4.4.1. One Single Predictor

In the first simulation scenarios we consider only one predictor x that induces DIF in several

items. In this case also traditional methods to detect DIF can be used.

Comparison with Alternative Methods

We will start with a comparison of the proposed method with other established methods

for the detection of DIF. Most methods are restricted to the comparison of two or more

groups. We consider the Mantel-Haenszel method (MH), the method of logistic regression

(Logistic) and Lord’s χ2-test (Lord). An overview of these methods is given in Magis et al.

(2010) and Magis et al. (2011). For the comparison we use the implementation in the R

add-on package difR (Magis et al., 2013).

For the comparison of two groups we simulate four items with DIF induced by one binary

predictor x ∈ {0, 1}. For the comparison of multiple groups we simulate DIF with respect

to an ordered factor x ∈ {1, . . . , 5}. The definition of differences of item difficulties in these

groups are given in Table 4.2 for both scenarios. The overall strength of DIF in the four

items can be determined by the value of c. Choosing c=1 in the strong setting, c=0.75 in

the medium case and c=0.5 in the weak case leads to the DIF strengths as given above. In

addition, we consider the case without DIF. It corresponds to the value c=0.

The selection performance for both scenarios is given in Table 4.3 for all of the methods. In

the case of item focussed trees (IFT) each permutation test is based on 1000 permutations.

Table 4.3 shows true positive and false positive rates on the item level as the average over

100 simulations, respectively. In the case without DIF only false positive rates are available.

It is seen that the proposed method competes well with the established methods. In the

case of two groups the true positive and false positive rates are very similar for all methods

with the exception of Lord’s method. The latter shows distinctly smaller false positive

rates with a tendency to slightly smaller true positive rates than the other methods. In

the case of five groups the pattern is similar. It can be seen that for weak DIF the true

positive rates are poor for all of the methods, in particular Lord’s method performs very

poorly. However, in this case item focussed trees still shows the best result yielding the true

positive rate 0.61. In the case of no DIF and two groups trees show the same false positive

rates as MH and logistic. For five groups the false positive rates are slightly smaller than

in these methods. As in the other settings Lord’s method yields different values.
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Table 4.2.: True simulated differences of item difficulties for the comparison of two or five groups.

Difference of Difficulty
Scenario Item 1 Item 2 Item 3 Item 4
two groups 1c · I(x = 1) −1c · I(x = 1) 1.5c · I(x = 0) −1.5c · I(x = 0)
five groups 1c · I(x > 2) −1c · I(x > 3) 1.5c · I(x > 4) −1.5c · I(x > 1)

Table 4.3.: True positive and false positive rates on the item level for the comparison of two or
five groups as average over all 100 replications.

Two groups Five groups
Method TPRI FPRI TPRI FPRI

MH

strong 0.9975 0.0463 0.9950 0.0581
medium 0.9800 0.0444 0.9125 0.0588
weak 0.8400 0.0450 0.5300 0.0575
no DIF — 0.0470 — 0.0535

Logistic

strong 0.9975 0.0513 0.9975 0.0656
medium 0.9750 0.0506 0.9225 0.0594
weak 0.8375 0.0488 0.5700 0.0600
no DIF — 0.0475 — 0.0585

Lord

strong 0.9975 0.0325 0.9850 0.0286
medium 0.9650 0.0325 0.8225 0.0268
weak 0.7900 0.0319 0.3925 0.0300
no DIF — 0.0305 — 0.0245

IFT

strong 0.9950 0.0444 0.9900 0.0500
medium 0.9625 0.0438 0.9250 0.0581
weak 0.8100 0.0481 0.6100 0.0538
no DIF — 0.0475 — 0.0485

Continuous Predictor

The previous simulations showed that item focussed trees work quite well in pure detection

of DIF items when compared to established methods. One of the advantages of item

focussed trees is that the method is not limited to the case of a simple comparison of

multiple groups but can also handle a much more complex structure of predictors.

In the following we consider one standard normal distributed predictor x and two items

with DIF. We assume a sigmoidal relation between the value of x and the item difficulty of

item 1 and 2. The linear predictors are given by

ηp1 = θp − β1 + c · arctan(xp) and ηp2 = θp − β2 − c · arctan(xp).



4.4 Simulations 95

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Item 1

x

ite
m

 d
iff

ic
ul

ty

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

4

Item 2

x

ite
m

 d
iff

ic
ul

ty

Figure 4.5.: True item difficulties for item 1 and 2 (bold lines) and estimated item difficulties for
50 replications (dashed lines) of the simulation scenario with one standard normal distributed
predictor and strong DIF.

For item 1 item difficulties are monotonically decreasing, thus for persons with small x item

1 is harder to solve than for persons with a higher value of x. For item 2 item difficulties

are monotonically increasing, thus for persons with a small value of x it is easier to solve

than for persons with a higher value. The data generating process in this scenario is not

determined by step functions but on smooth functions. Therefore the problem is a difficult

one for trees, which rely on step functions. The overall strength of DIF in items 1 and 2

is again determined by a factor c. In order to achieve comparable results we use the same

values of c as in the previous simulations leading to the same DIF strengths of 0.41 (strong),

0.23 (medium), 0.10 (weak) and 0 (no DIF).

Figure 4.5 shows the function of the true underlying item difficulties for item 1 and 2 with

strong DIF and the estimated step functions for 50 randomly chosen replications of the

simulation drawn with dashed lines for x ∈ [−3, 3]. It is seen that the estimated step-

functions in Figure 4.5 capture the underlying structure quite well.

Estimated MSEs of person-parameters θp and item-parameters tri(xp) as well as true posi-

tive and false positive rates on the item level averaged over all simulations are given in Table

4.4. Again all permutation tests are based on 1000 permutations. In the case of one single

predictor x vector δi only has one element, so true positive and false positive rates for the

combination of item and variable correspond to those on the item level. As the method of

logistic regression can also handle continuous covariates we additionally compute the rates

for this approach so that it can be compared to the item focussed trees in terms of DIF

detection.

Similar to the results in Table 4.3 true positive rates in Table 4.4 are very high even in the

case of weak DIF. For item focussed trees false positive rates are all smaller than 0.05 so the

global significance level holds. Logistic regression yields slightly larger true positive rates
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Table 4.4.: Estimated MSEs, true positive rates and false positive rates for the simulation scenario
with one standard normal distributed predictor as average over 100 simulations.

Continuous Predictor
Method MSE persons MSE items TPRI FPRI

IFT

strong 0.4511 0.1585 1.0000 0.0411
medium 0.4378 0.1533 0.9750 0.0439
weak 0.4257 0.1439 0.7550 0.0439
no DIF 0.4346 0.1278 — 0.0440

Logistic

strong — — 1.0000 0.0556
medium — — 0.9900 0.0572
weak — — 0.8800 0.0567
no DIF — — — 0.0545

Item 1

0.188 −0.611

−1.697

4 5

3

●

x1<=0.39 x1>0.39

●

x1<=−0.77 x1>−0.77

Item 2

−0.291 0.662

1.733

4 5

3

●

x1<=0.51 x1>0.51

●

x1<=−0.91 x1>−0.91

Figure 4.6.: Trees for item 1 and 2 for one estimation of the simulation with one standard normal
distributed predictor and strong DIF. Estimated item difficulties are given in each leaf of the trees.

but also larger false positive rates. As was to be expected MSEs of person parameters and

item parameters slightly grow with increasing strength of DIF (for item focussed trees).

For item focussed trees single estimation results can also be visualized as tree. Figure 4.6

shows the resulting trees for item 1 and 2 for one exemplary replication of the simulation

with strong DIF. The estimated item difficulties are given in each leaf of the trees. In

this example two splits are performed for both items. Because of small differences of item

difficulties at the borders the algorithm does not perform more splits. A tree with 2 splits or

3 leafs corresponds to a estimated function with 2 steps. The corresponding step functions

are marked by dashed lines in Figure 4.5.

The simulation scenario shows that the proposed method is not only able to find relevant

DIF items but also to detect complex, especially not linear, structures of DIF. Also in terms

of estimation accuracy the algorithm performs quite well.
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Table 4.5.: True simulated differences of item difficulties for the three simulation scenarios with
four predictors.

Difference of Difficulty
Item Scenario 4 Scenario 5 Scenario 6
1 1c · I(x1 = 1) 1c · I(x2 > 0.1) 0.75c · I(x1 = 1) + 0.75c · I(x2 > 0.1)
2 −1c · I(x1 = 1) −1c · I(x2 > 0.1) −0.75c · I(x1 = 1)− 0.75c · I(x2 > 0.1)
3 1.5c · I(x3 = 1) 1.5c · I(x4 > −0.1) 0.8c · I(x3 = 1) + 0.8c · I(x4 > −0.1)
4 −1.5c · I(x3 = 1) −1.5c · I(x4 > −0.1) −0.8c · I(x3 = 1)− 0.8c · I(x4 > −0.1)

4.4.2. Several Predictors

In the following simulations we consider data with four predictors x1, . . . , x4 that potentially

induce DIF in 4 out of 20 items. The distributions of the four predictors are

x1, x3 ∼ B(1, 0.5) and x2, x4 ∼ N(0, 1).

We consider three simulation scenarios with different structures of DIF with respect to

items 1, 2, 3 and 4. Differences of item difficulties are defined as given in Table 4.5. In

scenario 4 DIF occurs in the binary components x1 and x3, in scenario 5 DIF occurs in

the continous components x2 and x4 and in scenario 6 it is a more complex structure with

DIF in a combination of binary and normal distributed variables. The overall strength of

DIF in the four items again depends on the value of c. To obtain strong, medium and weak

DIF, c is chosen in the same way as in the previous scenarios.

Figure 4.7 shows one exemplary estimation result of item 3 for each scenario with strong

DIF where the true underlying tree structure is detected. The estimated item difficuties

are given in each leaf of the trees. The true item parameters for item 3 of the two groups

in scenario 4 and 5 are −0.68 and 0.82. In scenario 6 they are −0.68, 0.12 and 0.92. As

for all other simulations estimated values are close to the true ones. True and estimated

split-points of scenario 5 and 6 regarding to the standard normal variable x4 do not differ

very much for the exemplary trees in Figure 4.7. Due to the data generating process they

are necessarily not exactly the same. For the binary variable x3 there is only one possible

split.

An overview of the simulation results based on 100 replications is given in Table 4.6. MSEs

of person-parameters θp and item-parameters tri(xp), true positive and false positive rates

on the item level as well as for the combination of items and variables are summarized for

the three scenarios and each strength of DIF. All permutation tests are again based on 1000

permutations. To account for the four covariates in the model the local significance level

for one test is 0.05/4. If one item is first split in one of the binary components x1 or x3,
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Figure 4.7.: Exemplary estimation results of simulation scenarios 4, 5 and 6 with four predictors
and strong DIF. Estimated item difficulties are given in each leaf of the trees.

the local significance level for splits in further nodes has to be adapted as there is no more

possible split with regard to x1 or x3. Consequently it is 0.05/3 in both built nodes. Again

we compare with the logistic regression approach as far as DIF detection is concerned.

It is seen that for item focussed trees MSEs of person parameters tend to grow with increas-

ing strength of DIF but are quite stable over all simulations. Hence estimation accuracy is

not affected too much by variable and DIF structure. MSEs of item parameters are about

the same as in Table 4.4 but do not differ systematically. True positive rates on the item

level are very high for medium and strong DIF for each of the three scenarios. Detection of

relevant DIF inducing items works well in these settings. In the weak settings only about

half of the items with DIF are identified. In scenario 6 DIF is affected by two variables.

Here true positive rates for the combination of item and variables are smaller than for sce-

nario 4 and 5. Even for strong DIF the hit rate for item and variable is only about 0.70.

However, it is worth noting that in settings 4 and 5 the hit rates for the combination of

item and variable are well comparable to the hit rates for items indicating that the identifi-



4.4 Simulations 99

Table 4.6.: Simulation results for simulation scenarios 4, 5 und 6 with four predictors as the average
over 100 simulations.

MSE true positive false positive
Scenario Method persons items TPRI TPRIV FPRI FPRIV

4

strong 0.4253 0.1336 0.9825 0.9825 0.0269 0.0096
IFT medium 0.4069 0.1260 0.8450 0.8425 0.0270 0.0089

weak 0.4056 0.1272 0.4975 0.4900 0.0263 0.0077
strong — — 0.9975 — 0.0619 —

Logistic medium — — 0.9350 — 0.0581 —
weak — — 0.6975 — 0.0569 —

5

strong 0.4176 0.1583 0.9625 0.9625 0.0275 0.0087
IFT medium 0.4111 0.1474 0.8375 0.8350 0.0313 0.0084

weak 0.4174 0.1649 0.5300 0.5275 0.0263 0.0064
strong — — 0.9450 — 0.0575 —

Logistic medium — — 0.8075 — 0.0575 —
weak — — 0.4675 — 0.0563 —

6

strong 0.4207 0.1516 0.9975 0.7025 0.0269 0.0088
IFT medium 0.4153 0.1392 0.8750 0.5425 0.0275 0.0083

weak 0.4086 0.1422 0.4375 0.2363 0.0312 0.0080
strong — — 1.0000 — 0.0581 —

Logistic medium — — 0.9775 — 0.0563 —
weak — — 0.6450 — 0.0569 —

cation of the variable that induces DIF works. False positive rates are very small across all

simulations, in particular the global significance level holds. At most one item without DIF

is misleadingly identified as DIF item or one split with regard to a variable that was not

inducing DIF is executed during estimation. The logistic regression method yields larger

true positive rates than the tree in scenario 4 and 6 but smaller values in scenario 5. In all

settings false positive rates are distinctly larger for the logistic regression method.

4.4.3. Comparison with Penalization and Boosting

In current research alternative approaches to detect DIF based on the binary Rasch model

(4.2) have been proposed that also allow to include a set of variables as potential candidates

for DIF. The general (linear) DIF model proposed by Tutz and Schauberger (2015) has the

form

log

(
P (Ypi = 1|xp)

P (Ypi = 0|xp)

)
= ηpi = θp − (βi + x�

p γi), (4.5)

where xp is the vector of explanatory variables of person p. The item parameters βi are

replaced by βi+x�
p γi. DIF is present in item i if the item-specific parameter vector γi �= 0.

Because of the huge number of parameters maximum likelihood estimates will be rather
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Table 4.7.: Estimated MSEs, true positive rates and false positive rates for the simulation scenario
1 and 3 as average over 100 simulations.

Scenario Method MSE persons MSE items TPRI FPRI

1

strong 0.4040 0.1055 0.9950 0.0444
IFT medium 0.3954 0.1040 0.9625 0.0438

weak 0.4068 0.1147 0.8100 0.0481
strong 0.4046 0.0862 0.9925 0.0369

PenL medium 0.3899 0.0881 0.9425 0.0244
weak 0.3790 0.0828 0.4450 0.0100
strong 0.4050 0.1036 0.9950 0.0288

Boost medium 0.3957 0.1021 0.9675 0.0262
weak 0.4029 0.1153 0.7875 0.0275

3

strong 0.4511 0.1585 1.0000 0.0411
IFT medium 0.4378 0.1533 0.9750 0.0439

weak 0.4257 0.1439 0.7550 0.0439
strong 0.4141 0.1079 0.9950 0.0150

PenL medium 0.4101 0.0933 0.8700 0.0156
weak 0.3979 0.1175 0.3000 0.0006
strong 0.4518 0.1434 1.0000 0.0367

Boost medium 0.4306 0.1211 0.9900 0.0394
weak 0.4243 0.1206 0.8450 0.0367

unstable or will even not exist. To solve this problem Tutz and Schauberger (2015) propose

a penalization method using a group lasso type penalty, that was introduced by Yuan and

Lin (2006). A quite different alternative proposed by Schauberger and Tutz (2015) is to

use boosting techniques, that have been developed in statistics by Friedman et al. (2000).

As the two approaches are competing methods of our proposed item focussed trees we

include them in our simulations. For the computations we used the corresponding R add-

on packages DIFlasso (Schauberger, 2014) and DIFboost (Schauberger, 2015). Although

all the methods can handle more complex settings we prefer to compare their performance

in the rather simple scenarios with one binary predictor (Scenario 1) and one continuous

predictor (Scenario 3), considered in Section 4.4.1 before.

Table 4.7 shows the mean squared errors of person parameters and item parameters as well

as the true positive und false positive rates on the item level for IFT, the penalty approach

(PenL) and the boosting approach (Boost). Apart from the TPR and FPR of setting 1 the

results for IFT are the same as in Table 4.3 and 4.4 but for the sake of completeness they

are given again. It can be seen that the penalty approach yields the lowest MSEs across

all settings. In particular the MSEs of item-parameters are considerably smaller compared

to item focussed trees and the boosting approach. Furthermore, in scenario 3 the penalty

and the boosting approach both outperform item focussed trees in terms of MSEs of the

item parameters. This is not surprising as the data in scenario 3 is simulated in accordance
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Figure 4.8.: Exemplary Rasch tree for the scenario with six DIF items determined by gender (first
6 items) and age (item 6).

with continuous DIF effects. In terms of DIF detection all methods show very good overall

performance for medium and strong DIF. Even in the settings with weak DIF item focussed

trees and the boosting approach yield TPR larger than 0.75. Whereas the penalty approach

performs very poor in the settings with weak DIF, where the average true positive rates are

only 0.445 and 0.300. The false positive rates for the penalty and the boosting approach

are distinctly smaller than for item focussed trees across all settings. Both alternatives are

even more conservative than the tree-based approach.

4.4.4. Specific Scenarios

In the final simulations we will consider two specific scenarios to point out some important

features of the proposed item focussed trees compared to alternative approaches that were

already discussed previously in this chapter.

Comparison to Rasch Trees

In the first scenario we aim at demonstrating the difference between the Rasch tree of

Strobl et al. (2015) and item focussed trees. As in all previous simulations, we consider 500

persons and 20 items with θp ∼ N(0, 1) and βi ∼ N(0, 1) for non-DIF items. DIF items are

generated by two variables, one binary with x1 ∈ {0, 1} called gender and one continuous
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Figure 4.9.: Exemplary trees obtained by the item focussed tree approach for the scenario with
six DIF items determined by gender (first 6 items) and age (item 6).

with x2 ∈ [20, 40] called age. The first six items are DIF items, in items 1, 2, 3, 4, 5 DIF

is induced by gender, in item 6 DIF is induced by gender and age. For the first five items

DIF is determined by the step functions 1 · I(x1 = 1), for item 6 we use the step functions,

1 · I(x1 = 1) and 2 · I(x1 = 1 & x2 > 30). The scenario is designed such that all DIF items

share one DIF inducing variable but for one item DIF depends also on a second variable.

It is interesting to see if the DIF items are correctly identified together with the variables

that induce DIF. Therefore we fitted both methods on 100 replications. By construction in

the classical Rasch trees items are not identified but variables are. In all of the replications

gender was used in the splitting procedure yielding a hit rate of 1 for gender, however, in

only 16 of the 100 replications age was used in the splitting procedure yielding a hit rate of

0.16 for age. A typical tree is shown in Figure 4.8. It shows a split in variable gender but

not in age. Moreover, it is hard to see which items carry DIF.

In contrast item focussed trees show which items induce DIF. Overall the true positive rate

on the item level was 0.963, the false positive rate 0.030. The hit rate for DIF in item 6 was

1, the hit rate for DIF in gender was 1 and the hit rate for DIF in age 0.97. In 92 of the

100 replications item 6 was split in gender and age, in 5 replications a split in age occurred

for another item. Therefore, the item focussed tree approach was well able to detect that

in one of the items DIF was induced by both variables gender and age whereas the classical

Rasch tree in 84 of the 100 replications used only a split in gender because this variable is

stronger in the sense that it induces DIF in several items.

Figure 4.9 shows an example of the trees obtained by item focussed trees. It shows a split

in variable gender for items 1, 3, 4, 5 and a split in both variables for item 6. The chosen

example is not perfect since there is no split in item 2.
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Comparison to Mantel Haenszel

An important advantage of the proposed item focussed trees is that it is able to handle a set

of covariates and to identify the relevant regions in which DIF occurs by recursive splitting.

Especially in the case of continuous covariates one is not restricted to the comparison of

two or several subgroups defined by pre-specified split-points. The algorithm automatically

determines the best model by searching over the grid of possible split-points. Nevertheless,

in some situations the search for DIF might be costly compared to alternative approaches

with prior hypotheses.

We simulate data with 200 persons, 10 items one of them with DIF and one continuous

covariate x ∈ [18, 70], for example like age. Let us consider the hypothesis that DIF is in

groups [18, 30), [30, 70) and distinguish between two cases. In the first case (referred to as

Scenario 1) DIF is indeed in the intervals [18, 30), [30, 70). Hence DIF is simulated by the

step functions c · I(x ≥ 30), where c ∈ [0, 2] determines the strength of DIF. In the second

case (referred to as Scenario 2) the hypothesis is wrong and DIF is actually in intervals

[18, 40), [40, 70), generated accordingly.

Figure 4.10 shows the true positive rates for item focussed trees (solid lines) and the Mantel-

Haenszel (MH) procedure (dashed lines) as a function of the DIF strength c for scenario 1

in the left panel and scenario 2 in the right panel. When using MH the prior hypothesis,

which is wrong in scenario 2, is tested in both cases. It can be seen from the left panel that

if one has actually DIF in the groups that are tested the power of MH is larger than for

IFT. The difference between the two approaches can be seen as the cost of searching for

DIF. However, if the assumption is wrong (right panel) the power of MH is worse and IFT

shows superior power. This result also holds for other fixed hypotheses methods.

Thus, if one cannot trust the prior hypothesis, that is, the grouping into intervals, IFT seem

preferable. If one is only interested in predefined groups or knows that it can only occur in

these groups the knowledge might also be used within the IFT framework. Then one tests

two groups, and, as has been shown in Section 4.4.1, the performance of the competing

procedures is comparable.

4.5. Further Application

As second application we consider data from the Intelligence-Structure-Test 2000 R (I-

S-T 2000 R; source of supply is Testzentrale Göttingen, Herbert-Quandt-Str. 4, 37081

Göttingen, Tel. (0049-551) 999-50-999, www.testzentrale.de), developed by Amthauer et al.

(2001); Beauducel et al. (2010). The test is a fundamentally revised version of its prede-

cessors I-S-T 70 (Amthauer et al., 1973) and I-S-T 2000 (Amthauer et al., 1999). The
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Figure 4.10.: True positive rates as a function of DIF strength c for item focussed trees (solid
lines) and the Mantel-Haenszel procedure (dashed lines). In scenario 1 DIF is in intervals
[18, 30), [30, 70), in scenario 2 DIF is in intervals [18, 40), [40, 70).

present study was carried out by the Department of Education of the Ludwig-Maximilians

University in Munich and has been anaylysed before by (Bühner et al., 2006). The test

was conducted at the Phillips University in Marburg. For our analysis we use data from

273 students from 40 different subject areas. The I-S-T 2000 R consists of 9 modules with

20 items each. The first module (items 1 to 20) is about the completion of sentences and

asks for sentences where one word is missing. There are five possible solutions for each

sentence. The respondent is asked to choose the word that completes the sentences cor-

rectly. Further details on the I-S-T 2000 R and its predecessors can be found, for example,

in Schmidt-Atzert et al. (1995) and Schmidt-Atzert (2000).

To test for DIF in these items we incorporate the covariates gender (male: 0, female: 1)

and age. The distribution of the two covariates and the test result for items 1 to 20 are

displayed in Figure 4.11. There are 97 male and 176 female students with age ranging

from 18 to 39. The student with the worst result had only 5 correct answers, whereas six

students answer all 20 tasks of module 1 correctly.

Using item focussed trees results in only 3 of 20 items showing DIF. The algorithm executed

only four splits before stopping (α = 0.05). All permutation tests were based on 1000

permutations. Both covariates gender and age are at least once used for splitting and

therefore both covariates are included in the model.
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Figure 4.11.: Graphical representation of the results of the first module (items 1 to 20) of the
I-S-T 2000 R (left) and the distribution of the two covariates in the analyzed data.

The three items that were identified as DIF items are the following (correct answers are

marked in bold):

9: Fathers are ...? (more) experienced than their sons.

a) always b) usually c) much d) less e) fundamentally

11: Every river has ...?

a) fishes b) bridges c) ships d) gradients e) rapids

15: A watch always needs (a) ...?

a) battery b) case c) numbers d) energy e) hands

The resulting trees for items 9, 11 and 15 are shown in Figure 4.12. Items 9 and 11 show DIF

only for gender. The estimated item difficulties show that item 9, which relates to social

relations, is easier for females (gender=1) and item 11, which relates to natural sciences,

is easier for males (gender=0). Item 15, which relates to technics, is very difficult for all

students who are comparably old (age > 29) while for younger students (age ≤ 29) it is

distinguished between males with an item difficulty of −0.626 and females with a larger

item difficulty of 0.456.

The item difficulty of item 15 for students older than 29 given in Figure 4.12 is 11.137. This

corresponds to probability 1 for solving the item. In fact no student in the sample, who
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Figure 4.12.: Trees for Items 9, 11 and 15 in the subtest sentence completion (IST 2000 R,
Amthauer et al., 2001). Estimated item difficulties are given in each leaf of the trees.

was older than 29, answered item 15 correctly. Thus, when searching for the optimal split,

the split regarding age and threshold 29 is obviously the best choice. Splitting in this case

leads to a pure node with all responses having value 0. A maximum likelihood estimate for

the item difficulty in this node does not exist as it tends to infinity. In order to guarantee

the existence of all estimates we added a small ridge penalty on the item parameters that

ensures that an estimate exists.

4.6. Extension to Ordinal Item Responses

So far we considered an extension of the binary Rasch model, that is, we focussed on

dichotomous responses. In psychological tests that contain dichotomous items it is only

distinguished if the respondent solved the item correctly or not. However in behavioural

research polytomous items are often used to measure performance, personality or attitudes.

An example are symmetric response categories on a rating scale from strongly disagree,

moderatly disagree, . . .,moderatly agree, strongly agree. While several methods are available



4.6 Extension to Ordinal Item Responses 107

for dichotomous responses (considered in the previous sections) the ordinal case has not

been given very much attention so far. An extension for the method of Strobl et al. (2015)

to polytomous items was more recently proposed by El-Komboz et al. (2014). A prominent

model that is often used to model ordinal item responses is the partial credit model (PCM)

proposed by Masters (1982). We will now introduce an extension of the proposed item

focussed trees to detect DIF for ordinal item response by use of the PCM. In order to

preserve clarity we now change some notation.

4.6.1. The Partial Credit Model

In the following we consider I items with ordered categories and P persons. For simplicity

we assume that the number of categories is equal across items. Let Ypi ∈ {0, 1, . . . , k},
p = 1, . . . , P , i = 1, . . . , I denote the ordinal response of person p on item i, than the PCM

assumes for the probabilities

P (Ypi = r) =
exp(

∑r
l=1 θp − δil)∑k

s=0 exp(
∑s

l=1 θp − δil)
, r = 1, . . . , k,

where θp is the person parameter and (δi1, . . . , δik) are the item parameters of item i. For

notational convenience the definition of the model uses implicitly
∑0

k=1 θp − δik = 0. With

this convention an alternative form of the model is

P (Ypi = r) =
exp(rθp −

∑r
k=1 δik)∑k

s=0 exp(
∑s

k=1 θp − δik)
.

The link to the binary Rasch model (4.1) becomes obvious if one considers responses in

adjacent categories. Given response categories r and r − 1, the representation

log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= θp − δir, r = 1, . . . , k, (4.6)

shows that the model is locally a binary Rasch model with person parameter θp and item

difficulty δir.

4.6.2. Item-Focussed Trees for the PCM

In representation (4.6) the linear predictor for person p and the r-th threshold of item i is

given by ηpir = θp−δir. As before in item focussed trees the predictor is successively modified

by allowing different predictors, or more precisely differences in parts of the predictor, in

different regions of the covariate space.
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For a more concise description, let xT
p = (xp1, . . . , xpm) again denote a vector of measure-

ments on person p. Starting from the root, the first split means to examine for all the

items, all the variables and possible splits the PCM with predictors

ηpir = θp − [γ
[1]
ir,1I(xpj ≤ cj) + γ

[1]
ir,2I(xpj > cj)], r = 1, . . . , k, (4.7)

where r now is the threshold and the left and right node are denoted by indices 1 and 2. That

means that item i shows DIF generated by the j-th variable xpj at split-point cj. The item

has parameters γ
[1]
i1,1, . . . , γ

[1]
ik,1 for the region {xpj ≤ cj} and parameters γ

[1]
i1,2, . . . , γ

[1]
ik,2 for the

region {xpj > cj}. With predictor (4.7) one explicitly models the non-homogeneous case,

which means that all the parameters in both nodes can vary freely without any restrictions.

An interesting alternative might be the homogeneous case, where it is assumed that all

thresholds for item i are shifted by an item-specific constant γi. Thus for region {xpj ≤ cj}
the estimated item parameters after the first split are δi1 + γi, . . . , δik + γi.

Further splitting of model (4.7) means that one of the nodes, for example the left node

I(xpj ≤ cj), is further split in variable s, yielding a new partition into left and right node

and the PCM with predictor

ηpir = θp − [γ
[2]
ir,1I(xpj ≤ cj)I(xps ≤ cs) + γ

[2]
ir,2I(xpj ≤ cj)I(xps > cs) + γ

[1]
ir,2I(xpj > cj)],

where cs is a new split-point for variable xps and γ
[2]
i1,1, . . . , γ

[2]
ik,1, γ

[2]
i1,2, . . . , γ

[2]
ik,2 are the weights

on the new split.

4.6.3. Fitting Procedure for the PCM

Estimates of the partial credit model can easily be obtained by embedding the model into

the framework of multivariate generalized linear models (GLM). Let the data be given

by (Ypi,xp), p = 1, . . . , P, i = 1, . . . , I. For the item responses one assumes a multi-

nomial distribution Ypi|xp ∼ M(1,πpi), where π�
pi = (πpi1, . . . , πpik) with components

πpir = P (Ypi = r|xp). The link function of the GLM can be derived from representation

(4.6) and has the form

g(πpir) = log

(
P (Ypi = r)

P (Ypi = r − 1)

)
= (1(P−1)

p )�θ − (1(k)
r )�δi,

where θ� = (θ1, . . . , θP−1), δ
�
i = (δi1, . . . , δik) and 1(k)

r denotes the unit vector of length k

with a 1 in component r. As in the dichotomous case, it is required to set θP = 0 to ensure

the identifiability of the model. The whole parameter vector of the model is than given by

(θ�, δ�
1 , . . . , δ

�
I ).
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Using this representation of the PCM the proposed item focussed trees can straightforward

be adapted to the ordinal case. The algorithm described in Section 4.3.1 remains largely

the same. The only difference is the basic model (GLM) that is estimated during iteration.

For the implementation one can make use of the R-package VGAM (Yee, 2010; Yee, 2014),

which allows to estimate so-called vector generalized additive models.

4.7. Concluding Remarks

Item focussed recursive partitioning is a modelling tool that allows for simultaneaous de-

tection of items and variables that are responsible for DIF. In particular when several

covariates on different scales are available as potentially DIF inducing variables it is an

efficient and flexible tool for DIF investigations. Simulation results show that the proposed

fitting procedure works quite well in terms of selection performance as well as in terms of

estimation accuracy.

Since the proposed item focussed trees, in short IFT, are also based on recursive partitioning

as the Rasch trees of Strobl et al. (2015), abbreviated by RT, it seems worth summarizing

similarities and differences of the two approaches. Both methods are test based. They use

test statistics to identify split-points in the variable space that are linked to DIF. The main

differences are

• RT splits the variable space so that the fitted models in subspaces are maximally

different. IFT searches for the best splits in single items.

• Consequently, in each subspace RT yields a set of estimated item parameters that

characterize the item difficulties in the subspace. Typically the estimated difficulties

for all items differ over subspaces. Therefore, all items show (estimated) DIF. Which

ones are really to be considered as DIF items has to be decided by a separate decision

rule (which still has to be found).

• In contrast IFT identifies the items for which a split is warranted (based on test

statistics). Thus the recursive partitioning method itself identifies the DIF items.

• The differences in the partitioning scheme has consequences for the algorithm. While

RT simply fits separately within subspaces by using the observations within the cor-

responding subspaces, IFT fitting uses always all the observations. In IFT the model

itself accounts for the different functioning in subspaces. Therefore the algorithms

differ distinctly and use different test statistics.

Let us finally discuss potential extensions to the 2PL and 3PL models. In the more general

3PL model the predictor has the form ηpi = δi + αi(θp − βi) with the additional chance

parameter δi and the item discrimination parameter αi. In this model DIF could be induced
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by differences in item difficulty parameter or the item discrimination parameter (ignoring

the possibility that also the chance parameter could be modified by explanatory variables).

An extended version of item focussed trees should be able to detect both forms of DIF.

The first can be modelled, as before, by replacing the item difficulty βi by γilI(xpj ≤
cj) + γirI(xpj > cj), the latter by replacing the item discrimination αi by γ̃ilI(xpj ≤ cj) +

γ̃irI(xpj > cj). However, fitting of the corresponding model cannot be embedded into the

framework of generalized linear models. One has to design specific software that is able to

fit such models, for example, by integrating out the person parameters to obtain marginal

estimates. In addition, one needs test statistics that compare the model without splits and

the model with splits to obtain appropriate summary tests for the necessity to split on the

ability or discrimination level and a criterion to select the appropriate split. In summary,

the concept may be extended to more general models, but since estimation and testing is

much more difficult serious research is necessary to accomplish the task. This is certainly

an interesting topic for future research.

The results shown in this chapter were obtained by the R-package DIFtree (Berger, 2016a)

version 1.1.0 that is available on CRAN.



5. Detecting Uniform and Non-Uniform

DIF by Logistic Regression

5.1. Introduction

In recent years differential item functioning (DIF) and DIF identification methods have been

areas of intensive current research. Differential item functioning occurs if the probability

of a correct response among persons with the same value of their underlying trait differs

in subgroups, for example, if the difficulty of an item depends on the membership to a

racial, ethnic or gender subgroup. If a test contains DIF items it may be unfair, that is,

favor specific groups. When developing and using tests that measure latent abilities one

should be aware of the phenomenon of DIF. Ideally tests should not contain suspicious

items. If this cannot be obtained one should at least know which items are DIF items

and by which covariates DIF is generated. For more details on DIF, measurement bias

and possibly discrimination, see, for example, Holland and Wainer (1993), Osterlind and

Everson (2009), Rogers (2005), Millsap and Everson (1993) and Zumbo (1999).

A variety of methods to detect DIF has been proposed, for a more recent overview see

Magis et al. (2010). One can in particular distinguish between item response theory (IRT)

modelling approaches and test score methods (Magis et al., 2015). The former assume that

an IRT model holds in each group. Tests as Lord‘s test or likelihood ratio tests are used

to detect differences of item parameters between groups. IRT approaches have been used,

among others, by Lord (1980), Raju (1988) and Holland and Wainer (1993). Test score

methods use a matching variable as, for example, Mantel-Haenzel test procedures (Holland

and Thayer, 1988) or logistic regression modelling (Swaminathan and Rogers, 1990). We

will use the logistic regression framework since it also allows to investigate non-uniform

DIF. Uniform DIF is present if the (scaled) differences in the probabilities of solving an

item of subjects from different groups but with the same ability level do not depend on the

This chapter is a modified version of Berger and Tutz (2015a). For more information on the personal
contributions of the authors and textual matches, see page 10.
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common ability level. In non-uniform DIF scenarios the differences are not constant across

ability levels and crossing item response curves may occur.

More recently IRT based DIF modelling has been extended to allow for continuous variables

that induce DIF (compare also Chapter 4). The corresponding latent trait models contain

many parameters since each item comes with an own vector of parameters. Therefore

maximum likelihood estimates are bound to fail. Tutz and Schauberger (2015) used a

penalty approach to regularize parameter estimation whereas Schauberger and Tutz (2015)

used boosting techniques. A non-IRT modelling approach with regularization by penalties

has been proposed by Magis et al. (2015).

This chapter focusses on score based methods. A recursive partitioning (tree based) method

is proposed that allows to identify the items that carry DIF together with the variables that

induce DIF. The variables can represent groups as in classical DIF detection techniques

but can also include continuous variables like age. A strength of the method is that for

continuous variables it is not necessary to define a priori the intervals that are relevant, the

method itself generates the intervals that are linked to DIF. The resulting tree visualizes

in a simple way the structure of DIF in an item showing which variables and interactions

of variables generate DIF. The method is related to the recursive partitioning method

proposed in Chapter 4. The basic concepts remain the same but are adapted to the logistic

regression approach for DIF detection.

The method should be distinguished from the Rasch trees proposed by Strobl et al. (2015).

One difference between the methods is that Rasch trees are IRT based methods designed

for uniform DIF only. However, also for the detection of uniform DIF there are strong

differences between the methods. By using tree methodology the Rasch tree method also

does not need pre-specified subgroups and can handle continuous variables. Rasch trees

recursively partition the covariate space to identify regions of the covariate space in which

DIF occurs by fitting separate item response models in these regions. Regions are suspected

to be relevant if the parameter estimates in the regions differ strongly. Therefore, regions

in the covariate space are identified that show different difficulties but the method does not

flag items that are responsible. In contrast, the recursive partitioning method proposed here

focusses on the detection of the items that are responsible for DIF. Recursive partitioning

is used on the item level not on the global level, which treats all items simultaneously and

therefore does not show which item is responsible for the occurrence of DIF. Chapter 4

already provides a more detailed discussion of the different ways of using tree methodology

and illustrate the difference in applications and simulations.

In Section 5.2 we introduce the item focussed tree approach based on the logistic regression

model for uniform DIF and in Section 5.3 we present an illustrative example. A detailed

description of the fitting procedure is given in Section 5.4. In Section 5.5 we consider the
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results of various simulations. Models for the extension to non-uniform DIF are considered

in Section 5.6. Finally, Section 5.7 contains two applications on real data.

5.2. Logistic Regression Approaches to DIF

In this section basic logistic regression approaches to the detection of uniform DIF are

described and the alternative tree based method is introduced.

5.2.1. Linear Logistic Regression Approaches to DIF

The basic test score based method to detect uniform DIF was proposed by Swaminathan

and Rogers (1990). The method was already shortly sketched in Section 4.2.3. It can be

seen as a starting point of the method proposed here.

Let Ypi ∈ {0, 1}, p = 1, . . . , P , i = 1, . . . , I denote the response when person p tries to

solve item i. Swaminathan and Rogers (1990) proposed to model the probability of solving

an item as a function of the group membership and the test score by fitting the logistic

regression model

log

(
P (Ypi = 1|Sp, g)

P (Ypi = 0|Sp, g)

)
= ηpi = β0i + Spβi + γig, (5.1)

where g denotes the group, Sp is the test score of person p, β0i is the intercept, βi is the

slope of item i and γig are the group-specific parameters. In this model the parameters

β01, . . . , β0I represent the item difficulties and the parameters β1, . . . , βI correspond to dis-

crimination parameters. Within this framework the test scores are considered as proxies

for the abilities of persons. For the detection of DIF the most interesting parameters are

the group-specific parameters γi1, . . . , γiG, where G denotes the number of groups. They

represent the differential item functioning. In the simplest case of two groups, a reference

group and a focal group, one chooses γi1 = 0 for the reference group. Thus, for example,

with groups defined by gender with female as the reference group one has

β0i + γi,male for males and β0i for females. (5.2)

If γi,male �= 0 one has DIF in item i generated by gender. The original framework for two

groups was proposed by Swaminathan and Rogers (1990), the extension to multiple groups

was considered by Magis et al. (2011). In the multiple group case one of the G groups, for

example the first group, has to be chosen as reference group by setting γi1 = 0.

DIF detection within the logistic regression framework typically uses likelihood ratio statis-

tics that test the null hypothesis H0 : γi1 = · · · = γiG = 0. If the hypothesis is rejected item
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i is considered as DIF item. Each item is tested separately at significance level α with the

degrees of freedom equal to G− 1, depending on the number of groups.

The basic concept can be simply extended to include continuous (and categorical) variables

that might induce DIF. Let x�
p = (xp1, . . . , xpm) be a vector of person-specific explanatory

variables of length m. An extension of model (5.1) for uniform DIF has the form

log

(
P (Ypi = 1|Sp,xp)

P (Ypi = 0|Sp,xp)

)
= ηpi = β0i + Spβi + x�

p γi. (5.3)

The new intercept parameters in model (5.3) are β0i + x�
p γi and they differ according to

the characteristics of the person xp. The comparison of multiple groups is just a special

case. Setting the first group as reference one defines the vector of explanatory variables

x�
p = (xp2, . . . , xpG), where xpg = 1 if person p is from group g and 0 otherwise. The

corresponding vector of parameters for one item i is γ�
i = (γi2, . . . , γiG). Uniform DIF is

present in this item if γi �= 0. To investigate DIF one uses a global test for the whole

parameter vector, H0 : γi = 0. The alternative hypothesis is that at least one of the

parameters are unequal to zero. The hypotheses are tested separately for each item at

significance level α. Due to the design of the tests the approach identifies the items that

carry DIF but does not contain any information about the components of xp that are

responsible for DIF. Although being a straightforward extension of the fixed groups DIF

model (5.1) the extension (5.3) seems not to have been investigated so far.

We will refer to the multiple groups model (5.1) as the classical logistic regression modelling

approach and to model (5.3) as the extended approach. It should be mentioned that the

extended approach (including continuous or categorical covariates) is already implicitly

contained in the approach proposed by Magis et al. (2011). The approach of Magis et al.

(2015) provides an extra layer of complexity with penalization on the DIF parameters. The

main contribution in this chapter, which is outlined in the following sections, is that the

linear part of the basic model is replaced by tree structured fitting.

5.2.2. A Tree Representation of DIF

DIF detection based on the logistic regression model as described in the previous section

has some limitations and drawbacks. If one uses the traditional version with G groups

DIF can be induced only by group membership. A continuous variable like age has to

be divided into intervals to obtain groups without knowing which intervals are important.

The extended version with a linear predictor is restricted by the assumption that the DIF

effect is linear. Moreover, the tests that are used to identify items that carry DIF do not

show which variables are responsible for DIF, at least not in a simple way. The proposed

recursive partitioning method avoids the problem that reference and focal groups have to be
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specified a priori. By recursive splitting the method itself identifies the groups that induce

DIF if they are present.

The general concept of recursive partitioning has its roots in automatic interaction detec-

tion. The most popular modern version is due to Breiman et al. (1984) and is known by

the name classification and regression trees, or CART. An alternative approach is the re-

cursive partitioning framework based on conditional inference proposed by Hothorn et al.

(2006). The basic method is conceptually very simple. By binary recursive partitioning the

feature space is partitioned into a set of rectangles, and on each rectangle a simple model

(for example, a constant) is fitted. An easily accessible introduction into basic concepts

is found in Hastie et al. (2009), an overview with a focus on psychometrics was given by

Strobl et al. (2009). It should be noted that the method proposed here is based on the same

idea but there is one crucial difference. When fitting a model we do not fit two separate

models within the rectangles obtained by partitioning. We fit one closed model and only

the intercept is partitioned into rectangles. This yields item focussed trees in contrast to

global trees as used by conventional Rasch trees.

Building a tree means to successively find a partition of the predictor space, where each node

represents a subset of the predictor space. The terminal nodes of the tree build a disjoint

partition of the predictor space and correspond to the relevant subregions of interest. When

growing a tree one typically splits one node A into two subsets A1 and A2. The split is

determined by exactly one variable and the construction of the split depends on the scale of

the variable. In the following considerations we will focus on metrically scaled and ordinal

variables. In this case the partition into two subsets has the form

A1 = A ∩ {xj ≤ c} and A2 = A ∩ {xj > c},

with regard to threshold c on variable xj. Given the covariates xp one can account for

uniform DIF by building a partition of the respondents with differing intercepts. The first

split with regard to the j-th variable and corresponding split-point cj means to fit the model

with predictor

ηpi = Spβi + [γ
[1]
il I(xpj ≤ cj) + γ

[1]
ir I(xpj > cj)], (5.4)

where I(·) denotes the indicator function with I(a) = 1 if a is true and I(a) = 0 otherwise.

The parameter γ
[1]
il denotes the intercept in the left node (xpj ≤ cj) and γ

[1]
ir the intercept in

the right node (xpj > cj). For example one split with regard to the binary covariate gender

yields the intercepts

γ
[1]
il = γi,male for males and γ

[1]
ir = γi,female for females.

This parametrization is an equivalent representation of (5.2). The main difference is that the

two subgroups of interest are not predefined but determined by a split in variable j at split-
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point cj. To determine the first split one examines all the null hypotheses H0 : γ
[1]
il = γ

[1]
ir . If

H0 cannot be rejected for any combination of variable and split-point the item is considered

to be free of DIF. In the proposed algorithm likelihood ratio tests are used to examine the

null hypotheses. In the very first step one chooses the combination of item, variable and

split-point with the smallest p-value of the corresponding test. If a significant effect is found

the first split into left and right node is carried out for the selected item. In Section 5.4 the

splitting criterion is described in more detail.

One further split, for example in the right node (xpj > cj), with regard to the s-th variable at

split-point cs yields the two daughter nodes I(xpj > cj)I(xps ≤ cs) and I(xpj > cj)I(xps >

cs). The new nodes are both defined by the product of two indicator functions. In general

each node can be represented by a product of several indicator functions, namely

node(xp) =
B∏
b=1

I(xpjb > cjb)
abI(xpjb ≤ cjb)

1−ab ,

where B is the total number of indicator functions or branches, cjb is the selected split-point

in variable jb and ab ∈ {0, 1} indicates which of the indicator functions, below or above the

threshold, is involved. The resulting predictor of the model for item i after several splits

with terminal nodes � = 1, . . . , Li is than given by

ηpi = Spβi +

Li∑
�=1

γi� nodei�(xp) = Spβi + tri(xp), (5.5)

where tri(xp) is the tree component containing subgroup-specific intercepts represented by

the terminal nodes nodei�(xp). The proposed algorithm yields an individual tree for each

item that was selected to carry DIF. If an item is never chosen for splitting it is assumed

to be free of DIF, and the fitted ”tree” is a constant tri(xp) = β0i.

We use the model abbreviation IFT for item focussed trees based on the logistic regression

framework.

5.3. An Illustrative Example

The procedure is now first illustrated by the use of artificial data. We consider data Ypi, p =

1, . . . , 800, i = 1, . . . , 20, that are generated by a two-parameter model (2PL) with DIF.

The basic 2PL model has the form

P (Ypi = 1|θp, bi, ai) = exp (ai(θp − bi))

1 + exp (ai(θp − bi))
,
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Figure 5.1.: Estimated trees of item 1 and 2 for the illustrative example. Estimated coefficients
γi� are given in each leaf of the trees.

where θp denotes the person ability, bi the item difficulty and ai the item discrimination.

We first generate person parameters θp and item difficulties bi from a standard normal

distribution and item discriminations ai from a uniform distribution. However, instead of

generating data from the 2PL model we assume that the difficulties of two of the 20 items

depend on covariates in a complex pattern.

In detail, we consider three covariates, two binary variables x1, x2 ∼ B(1, 0.5) and one

standard normal distributed variable x3 ∼ N(0, 1). In item 1 DIF is induced by x1 and

x3 and the modified value of the difficulty is determined by the step functions b1,mod =

b1 + 0.8 · I(x3 > 0) + 0.8 · I ({x3 > 0} ∩ {x1 = 0}), in item 2 DIF is induced by x2 and x3

and we use the step functions b2,mod = b2 + 0.8 · I(x3 > 0) + 0.8 · I ({x3 > 0} ∩ {x2 = 0}),
which represents an interaction between variables x2 and x3. In order to evaluate the fitting

procedure 100 data sets were generated.

Figure 5.1 shows one exemplary estimation result of the two items with DIF (item 1 and

2) when fitting IFT. The estimation in this example is quite perfect because the true

underlying tree structure is detected for both items and no further item is falsely identified

as DIF item. It can be seen from the trees that there are three groups represented by

three terminal nodes, respectively. For item 1 it is distinguished between {x3 ≤ 0.01} and

{x3 > 0.01}, and within this group between {x1 = 0} and {x1 = 1}. The corresponding

intercepts γ̂1� and γ̂2�, � = 1, . . . , 3, of the estimated model (5.5) are given in each leaf of

the trees. According to model (5.5), the probability to solve the item correctly increases

with increasing intercepts. From the estimates in Figure 5.1 one can derive that item 1

is most difficult for region {x3 > 0.01} ∩ {x1 = 0} and item 2 is most difficult for

{x3 > 0.01} ∩ {x2 = 0}. These results are exactly in line with the true simulated effects.

In the simulations in Section 5.5 this artificial data is, inter alia, again considered in more

detail.
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5.4. Fitting Procedure

In this section we give details about the fitting procedure for our proposed item focussed

trees to investigate uniform DIF. The basic concepts are the same as for item focussed trees

in the Rasch model proposed in Chapter 4.

5.4.1. Concepts

When building trees for single items in each step one has to identify the best split due to

an optimality criterion and decide if there is a relevance to perform the split or not. The

second determines when to stop and therefore at the same time determines the size of the

trees.

Since the approach is based on logistic regression models it is quite natural to use test based

splits. In each step of the fitting procedure one obtains p-values for the two parameters that

are involved in the splitting. In our previous notation one examines all the null hypotheses

H0 : γil = γir for each combination of item, variable and split-point. One simply selects the

combination as the optimal one that has the smallest p-value. As test statistic we use the

likelihood ratio (LR) test statistic. Computing the LR test statistic requires to estimate

both models, the full model and the restricted model under H0. We nevertheless prefer

the LR statistic because it corresponds to select the model with minimal deviance. This

criterion on the other hand is equivalent to minimizing the entropy, which belongs to the

family of impurity measures that were already introduced as splitting criteria by Breiman

et al. (1984).

In order to decide if the split should be performed or not we use a concept based on

maximally selected statistics. The idea is to perform a test that investigates the null

hypotheses of independence of the response and one of the covariates at the global variable

level. For one fixed item i and variable j one simultaneously considers all LR test statistics

Tjcj , where cj are from the set of possible split-points, and computes the maximal value

statistic Tj = maxcjTjcj . The p-value that can be obtained by the distribution of Tj provides

a measure for the relevance of variable j. The result is not influenced by the number of

split-points, since it has already taken into account, see Hothorn and Lausen (2003), Shih

(2004), Shih and Tsai (2004), Strobl et al. (2007). As the distribution of Tj in general

is unknown we use a permutation test to obtain a decision on the null hypotheses. The

distribution of Tj is determined by computing the maximal value statistics based on random

permutations of variable j. A random permutation of variable j breaks the relation of the

covariate and the response in the original data. By computing the maximal value statistics

for a large number of permutations one obtains an approximation of the distribution under

the null hypotheses and an corresponding p-value. All computations in the present chapter



5.4 Fitting Procedure 119

are based on 1000 permutations. Given overall significance level α the local significance

level of one permutation test for fixed item and variable is chosen as α/m. Using this

adaption the probability for each item without DIF of being falsely classified as DIF item

is controlled by α. As usual in DIF detection one controls for the type I error that is also

known as false alarm rate. However, on the item level one should adapt for multiple testing.

Choosing α/m ensures that the probability of falsely identifying at least one variable as

responsible for DIF is controlled by α.

It should be noted that in general the number of permutations should depend on the number

of covariates m. In our simulations and applications the maximal number of covariates is 3.

Therefore, with a sample of 1000 permutations the p-values are determined with sufficient

accuracy. From our experience it is recommended to use at least 200 permutations for

settings with one covariate and to increase the number of permutations by 200 per covariate.

Thus, a lower bound for settings with 3 covariates are 600 permutations.

5.4.2. The Basic Algorithm

The basic algorithm for uniform DIF is the following.

Basic Algorithm - Uniform DIF

S tep 1 (Initialization)

Set counter ν = 1

(a) Estimation

For all items i = 1, . . . , I, fit all the candidate logistic models with predictor

ηpi =Spβi + γi1I(xpj ≤ cijk) + γi2I(xpj > cijk),

j = 1, . . . ,m, k = 1, . . . , Kj.

(b) Selection

Select the model that has the best fit. Let ci1,j1,k1 denote the best split, which

is found for item i1 and variable xj1 .

(c) Splitting decision

Select the item and variable with the largest value of Tj. Carry out permuta-

tion test for this combination with significance level α/m. If significant, fit the

selected model yielding estimates β̂i, γ̂i1,1, γ̂i1,2 and nodes nodei1,1, nodei1,2, set

ν = 2. If not, stop, no DIF detected.
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S tep 2 (Iteration)

(a) Estimation:

For all items i = 1, . . . , I and already built nodes � = 1, . . . , Liν , fit all the

candidate logistic models with new intercepts

γi,Liν+1nodei�I(xpj ≤ cijk) + γi,Liν+2nodei�I(xpj > cijk)

for all j and remaining, possible split-points cijk.

(b) Selection

Select the model that has the best fit yielding the split-point ciν ,jν ,kν , which is

found for item iν in node nodeiν ,�ν and variable xjν .

(c) Splitting decision

Select the node and variable with the largest value of Tj. Carry out permutation

test for this combination with significance level α/m. If significant, fit the se-

lected model yielding the additional estimates γ̂iν ,Liν ,ν+1, γ̂iν ,Liν ,ν+2, set ν = ν+1.

If not, stop.

5.5. Simulations

In the following we consider data Ypi, p = 1, . . . , P, i = 1, . . . , I that are generated accord-

ing to the two-parameter model (2PL), which is a dichotomous IRT model of the form

P (Ypi = 1|θp, ai, bi) = exp (ai(θp − bi))

1 + exp (ai(θp − bi))
, (5.6)

where θp are the person abilities, bi are the item difficulties and ai are the item discrimination

parameters.

We consider several simulation scenarios where in a first step the person parameters θp and

the item difficulties bi are independently drawn from a standard normal distribution and

the item discrimination parameters ai are uniformly distributed, ai ∼ U(0, 1). If an item i is

assumed to show uniform DIF the corresponding parameter bi is subsequently transformed

by specific step functions in each scenario. A detailed description is given in the respective

section.

In each simulation scenario we vary the number of persons, P ∈ {400, 800}, the number

of items, I ∈ {20, 40}, and the percentage of DIF items, which is 0%, 10% or 20%. In
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the cases with DIF we additionally consider three different strengths of DIF, given for each

scenario in the respective section. In total this results in 28 different settings (4 without

DIF and 24 with DIF), respectively. In each setting 100 data sets were generated. During

estimation each permutation test is based on 1000 permutations.

In order to evaluate the performance of the proposed tree based model (5.5) we compute

true positive rates (TPR), also named hit rates, and false positive rates (FPR), which

correspond to the Type I error rates if no DIF is present. We distinguish between TPR

and FPR on the item level and for the combination of item and variable. Let each item be

characterized by a vector δT
i = (δi1, . . . , δim), where m denotes the number of covariates,

with δij = 1 if item i has DIF in variable j and δij = 0 otherwise. An item is a non-DIF

item if δT
i = (0, . . . , 0), if one of the components is 1 it is a DIF item. With indicator

function I(·), the criteria to judge the identification of items with DIF are:

• True positive rate on the item level:

TPRI =
1

#{i:δi �=0}
∑

i:δi �=0 I(δ̂i �= 0)

• False positive rate on the item level:

FPRI =
1

#{i:δi=0}
∑

i:δi=0 I(δ̂i �= 0)

• True positive rate for the combination of item and variable:

TPRIV = 1
#{i,j:δij �=0}

∑
i,j:δij �=0 I(δ̂ij �= 0)

• False positive rate for the combination of item and variable:

FPRIV = 1
#{i,j:δij=0}

∑
i,j:δij=0 I(δ̂ij �= 0).

The methods that are considered in the simulations are

• Logistic, which denotes the classical regression method proposed by Swaminathan

and Rogers (1990) and Magis et al. (2011). If the predictor is a vector with possibly

continuous variables it denotes the extended logistic model.

• IFT for item focussed trees based on the logistic model, which describes the recursive

partitioning method proposed here.
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Figure 5.2.: Item Characteristic Curves of item 1 and item 2 for one setting in the simulation with
one binary predictor.

5.5.1. One Binary Predictor

First we consider data with two or more groups defined by one covariate. The main objective

here is to compare the proposed IFT approach to the classical Logistic approach, which is

well established for the comparison of multiple groups. Later we give detailed results of the

proposed IFT considering more complex data constellations with several predictors.

We start with one binary covariate x ∈ {0, 1}. In this simple case the investigations reduce

to the comparison of two groups. Uniform DIF is present if the item difficulties bi differ

between the two groups. The difference is simulated by bi,mod = bi + c · I(x = 0) for one

half of the DIF items and bi,mod = bi + c · I(x = 1) for the other half of the DIF items. The

strength of DIF is determined by the constant c ∈ {0.4, 0.8, 1.6}. A difference in difficulties

of 0.4 is very small, whereas a difference of 1.6 between the two groups is quite large. DIF

is generated symmetrically because one half of DIF items favour the first group (x = 1) and

the other DIF items favour the second group (x = 0). For illustration Figure 5.2 shows the

Item Characteristic Curves (ICC) of the two items with DIF for the setting with P = 800,

I = 20, 10% DIF items and c = 1.6. From the probabilities it can be seen that item 1 is

more difficult for x = 0 and item 2 is more difficult for x = 1. The item locations (value of θp
with probability 0.5) differ between the two groups but the item discriminations (steepness

at the item location) are the same for both groups.

For the comparison of the results we use Receiver Operating Characteristic (ROC) curves,

which have also been used by Magis et al. (2015) and Schauberger and Tutz (2015), to

evaluate the performance of DIF detection methods. True positive rates and false positive
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Table 5.1.: Average FPR on the item level at significance level α = 0.05 for the four settings
without DIF in the simulation with one binary predictor.

FPRI I=20 I=40
P=400 P=800 P=400 P=800

IFT 0.050 0.051 0.049 0.050
Logistic 0.052 0.048 0.051 0.050

rates on the item level were computed for increasing significance level α ∈ ]0, 1[ . The

corresponding ROC curve is then obtained by plotting (FPRI , TPRI) as a function of α.

Figure 5.3 shows the ROC curves for six out of 24 settings with DIF as the average over

100 repetitions, respectively. The upper panels show the settings with P = 400, I = 40,

20% DIF and varying DIF strength c = 1.6 (solid line), c = 0.8 (dashed line) and c = 0.4

(dotted line). The lower panels show settings with the same DIF strength c = 0.8 and

P = 800, I = 20, 20% DIF (solid line), P = 800, I = 20, 10% DIF (dashed line) and

P = 400, I = 40, 10% DIF (dotted line). The resulting curves for IFT are given in the

left panel and the resulting curves for the classical Logistic method are given in the right

panel. From Figure 5.3 it can be seen that the DIF strength (value of c) and the sample

size P have a strong effect on the detection performance, whereas the percentage of DIF

items does not have a strong impact.

Although the global performance varies over the different settings, there are only minor

differences between the two methods as far as their performance is concerned. All settings

we considered, not only the one presented in Figure 5.3, showed nearly no differences

between the two methods. A tabular display of the average TPR and FPR at significance

level α = 0.05 for all settings with DIF are given in Appendix C on page 214. This

result is not really surprising. After one split in to the binary predictor x the obtained

model (5.5) for one item is exactly the same as model (5.3), which is used for testing when

using the classical Logistic approach. In this case the only remaining difference is the use

of different test statistics to obtain a decision. Nevertheless, the classical and the new

approach obviously show the same performance. This is important because the tree based

approach, which can also be used in more complex settings with many variables, can also

be used in the case of two groups without loss of efficiency.

The construction of ROC curves is an efficient tool but is informative only if DIF is present.

Therefore, we separately consider the case without DIF. The average false positive rates

with significance level α = 0.05 for the four settings without DIF are given in Table 5.1.

The absence of DIF is a baseline situation to check a possible inflation of false positive

rates. According to the obtained results this is not the case. The IFT approach (approxi-
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Figure 5.3.: Average ROC curves for six settings in the simulation with one binary predictor. The
upper panel shows the curves for three settings with fixed components and varying DIF strength
(different line types), the lower panel shows the curves for three settings with the same DIF
strength.

mately) holds the significance level as does the classical Logistic approach. Again, the two

approaches nearly yield the same results.

5.5.2. One Ordered Predictor

Here we consider an ordered factor x ∈ {1, . . . , 6}. The difference in item difficulties is

simulated by bi,mod = bi+ c · I(x > 3) for one half of DIF items and bi,mod = bi+ c · I(x ≤ 3)

for the other half of DIF items. Hence there are only two groups that show a true difference,

respectively. All the other specifications remain the same as in the previous section 5.5.1.

The ROC curves of the six selected examples are given in Figure 5.4. The chosen settings

are the same as in Figure 5.3. The left panel now refers to the settings with varying DIF
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Figure 5.4.: Average ROC curves for six settings in the simulation with one ordered predictor. The
left panel shows the curves for three settings with fixed components and varying DIF strength
(different line types), the right panel shows the curves for three settings with the same DIF
strength.

strength and fixed I, P and percentage of DIF items. The right panel refers to the three

settings with constant DIF strength.

In contrast to the comparison of two groups, now there are visible differences between the

performances of the two methods. The ROC curves show that IFT (black lines) outperforms

the classical Logistic (grey lines) across the whole range of α. The ROC curves of the new

approach are everywhere above the ROC curves of the classical approach. These findings

are consistent throughout all settings. The differences are strongest for the settings with

medium DIF (c = 0.8). An overview of the average TPR and FPR at significance level

α = 0.05 for all settings with DIF are given in Appendix C on page 215.

The reason for the better performance of IFT is that it is able to use the ordering of the

categories. Since DIF is linked to the ordinal scale of the factor a method that is able to

exploit the ordering should perform better than the classical method that just distinguishes

between the groups. It is noteworthy that in Figure 5.4 the performance of the settings

with a large number of persons and medium DIF strength (solid and dashed line in the

right panel) is fairly similar to the performance with a small number of persons and strong

DIF (solid line in the left panel). This underlines that an increase of sample size strongly

contributes to improve the detection performance.
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Table 5.2.: Average FPR at significance level α = 0.05 for the four settings without DIF in the
simulation with three covariates.

I=20 I=40
P=400 P=800 P=400 P=800

IFT
FPRI 0.027 0.021 0.024 0.022
FPRIV 0.009 0.007 0.008 0.007

5.5.3. Several Predictors

In the following simulations we consider three covariates, two binary variables x1, x2 ∼
B(1, 0.5) and one standard normal distributed variable x3 ∼ N(0, 1). Since IFT allows

to determine the variables that are responsible for DIF, true positive and false positive

rates for the combination of item and variable can be computed. In the following all the

presented results are based on computations with significance level α = 0.05. To account

for the three covariates in the model the local significance level for one permutation test is

0.05/3.

Before simulating items with DIF we first investigate the baseline situation without DIF.

The average false positive rates for the four settings (varying number of persons and items)

without DIF are given in Table 5.2. It is seen that IFT yields small false positive rates.

The procedure is somewhat conservative and does not fully use the specified significance

level. On average only one item is misleadingly identified as DIF item. False positive rates

for the combination of item and variable are much smaller. With 40 items the value 0.008

means that only one split with regard to a variable that was not inducing DIF was falsely

executed during estimation.

DIF in the First Variable

In the settings with DIF, first DIF is simulated as in the simulation with one binary predictor

only (Section 5.5.1). If DIF is present, the item difficulties bi differ between the two groups

defined by the binary covariate x1. Hence the underlying true model is defined by one split

in x1. Boxplots of true positive and false positive rates of the 24 settings with DIF are given

in Figure 5.5. The results on the item level are in light grey and are given on the left of each

panel, the results for the combination of item and variable are in dark grey and are given on

the right of each panel. In addition, the significance level α = 0.05 is marked as a reference

by dashed lines. It is seen from Figure 5.5 that IFT shows good overall performance

for medium and strong DIF if the number of persons is large. For small DIF effects the

number of persons definitely has to be large. True positive rates are high in the settings with



5.5 Simulations 127

●●

●

●●●●●●●●●

●

●●●●●●●

●

0.
0

0.
4

0.
8

Item Item and Variable

●●

●●

0.
0

0.
4

0.
8

Item Item and Variable

●●●●●●●●●●●●●●

●

●●●●●

●●

●●

●●●

●●●●●●●●●●●

●●●●●●●●●●

0.
0

0.
4

0.
8

Item Item and Variable

●●

●

●

●●●●

●

●●

●

●●●●●●●

0.
0

0.
4

0.
8

Item Item and Variable

●

●●●●●●●●●●●●●●●

●

●●●●●●●

●
●

0.
0

0.
4

0.
8

Item Item and Variable

●

●

●

●

●

0.
0

0.
4

0.
8

Item Item and Variable

●

●●

●●

●●

0.
0

0.
4

0.
8

Item Item and Variable

●●

●

●

●

●

●●

●●●

●●●●●●●●

0.
0

0.
4

0.
8

Item Item and Variable

●

●

●●

●

●

●●●●●

●●

●●

●●

●

●

●●

●

●

●●

●●

●●

●
●
●●

0.
0

0.
4

0.
8

Item Item and Variable

●●

●
●

0.
0

0.
4

0.
8

Item Item and Variable

●●

●●

●

●●

●●

0.
0

0.
4

0.
8

Item Item and Variable

●●●●●●●●

●●●●●●

●●●●●●●

●●●●●●●●●●●

0.
0

0.
4

0.
8

Item Item and Variable

I=20 I=40
P=400 P=800 P=400 P=800

c=0.4

c=0.8

c=1.6

TPR/FPR10% DIF

●●●●●●●●●●●●●

●

●●●● ●●●●●●●●●●

●

0.
0

0.
4

0.
8

Item Item and Variable

●●●●

●

●●●●

●
●
●●

0.
0

0.
4

0.
8

Item Item and Variable

●●●

●●

●

0.
0

0.
4

0.
8

Item Item and Variable

●

●●●●

●

●

●

●●●●●

●●●●

●

●

●●

●

●●●●●●●●

0.
0

0.
4

0.
8

Item Item and Variable

●

●
●

0.
0

0.
4

0.
8

Item Item and Variable

●●●

●●●●

0.
0

0.
4

0.
8

Item Item and Variable

●●●●●

●

0.
0

0.
4

0.
8

Item Item and Variable

●●

●

●●●●

●

●

●

0.
0

0.
4

0.
8

Item Item and Variable

●

●

●●●

●

●

●●●●●●

●●●

●●

●

●

●●●●●●●

●

●

●

●

●

●

●

●

●●●

●

●

●●●●●●

●●●

●●

●

●●●

●●●●

●

●

●●

●
●

0.
0

0.
4

0.
8

Item Item and Variable

●●●
●

0.
0

0.
4

0.
8

Item Item and Variable

●●

●●●●●

●●●

●

0.
0

0.
4

0.
8

Item Item and Variable

●

●●●●●●●●●

●●

●

●

●●●●●●

0.
0

0.
4

0.
8

Item Item and Variable

I=20 I=40
P=400 P=800 P=400 P=800

c=0.4

c=0.8

c=1.6

TPR/FPR20% DIF

Figure 5.5.: Boxplots of TPR and FPR at significance level α = 0.05 (marked by dashed lines) in
the simulation with three covariates and DIF in x1. Results on item level are given in light grey,
results for the combination of item and variable are given in dark grey.



128 5. Detecting Uniform and Non-Uniform DIF by Logistic Regression

P = 800 and c = 1.6. Here a clear separation between DIF and non-DIF items is seen. For

the setting in the lower left of Figure 5.5 with P = 400, I = 40, 20% DIF items and c = 1.6

one observes a TPR of 0.5 in 68 of the 100 data sets and therefore the box reduces to one

value. In the settings with small DIF (c = 0.4) and a small number of persons (P = 400)

the method is hardly able to detect the corresponding items, however, as is seen from Figure

5.4 also alternative methods show poor performance if DIF is weak. False positive rates are

very small throughout all settings, in particular the global significance level holds (with a

tendency of the method to be conservative). It is noteworthy that the true positive rates

for the combination of item and variable in all settings are very similar to the true positive

rates for items. Therefore, IFT is able to simultaneously identify the items and variables

that are responsible for DIF. Similar pictures resulted if the covariates x1, x2 and x3 were

correlated with medium sized correlation ρ = 0.6. In analogy to Figure 5.5 the results for

the simulations with correlation are shown in Appendix C in Figure C.1 on page 216. It

should be noted that in classical approaches for fixed groups the simultaneous detection

of DIF item and responsible variable is not investigated. If one considers more than one

categorical variable, for example, gender and race, typically DIF induced by gender and

race are investigated separately with significance levels fixed to the same value separately

for the two investigations. However it should be mentioned that in the extended Logistic

model one could also investigate the effect of both variables by including both variables,

and possibly an interaction term, in the linear predictor.

DIF in Two Covariates

In the following we consider again the complex DIF structure considered in the illustrative

example and use two DIF items. In item 1 DIF is induced by x1 and x3 and determined

by the step functions b1,mod = b1 + c · I(x3 > 0) + c · I ({x3 > 0} ∩ {x1 = 0}), in item

2 DIF is induced by x2 and x3 and we use the step functions b2,mod = b2 + c · I(x3 >

0)+c ·I ({x3 > 0} ∩ {x2 = 0}). The strength of DIF again is determined by the additional

parameter c ∈ {0.4, 0.8, 1.6}. By choosing these values for c the differences between the

individual groups remain the same as in the previous simulations.

In the same way as in Figure 5.5, the true positive rates and false positive rates of the

twelve settings (with varying I, P and c) based on 100 replications are given in Figure 5.6.

The true positive rates on the item level (given in light grey) are very high for all settings

with c = 0.8 and c = 1.6. Especially for the settings with P = 800 the selection of items is

quite perfect. However, for small DIF (c = 0.4, first row) the detection of responsible items

remains quite challenging. It is also seen that the hit rates for the combination of item and

variable (given in dark grey) are not so much smaller than the hit rates for items. Since

here DIF is generated by two variables IFT cannot detect both variables in all the cases.

However, the small false positive rates show that the procedure does not tend to perform
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Figure 5.6.: Boxplots of TPR and FPR at significance level α = 0.05 (marked by dashed lines) in
the simulation with three covariates and DIF in two items and two covariates. Results on item
level are given in light grey, results for the combination of item and variable are given in dark
grey.

splits with regard to variables that are not responsible for DIF. If a significant effect is

found the corresponding split is always in the right variable.

5.6. Investigation of Non-Uniform DIF

A strength of the logistic framework for DIF detection proposed by Swaminathan and

Rogers (1990) is that it can be extended to detect non-uniform DIF. We first consider the

classical and extended approach and then item focussed trees.
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5.6.1. Logistic Regression for Non-Uniform DIF

Let us again first consider the comparison of multiple groups. To account for non-uniform

DIF model (5.1) has to be extended by group-specific slopes and has the form

ηpi = β0i + Spβi + γig + Spαig, (5.7)

where αig are the additional group-specific slopes. The first group is chosen as reference

group by setting γi1 = αi1 = 0, see, for example, Magis et al. (2011). The model can be

extended to account for non-uniform DIF that is generated by a vector of covariates in a

similar way as for uniform DIF. Then one uses the model

ηpi = β0i + Spβi + x�
p γi + Spx

�
p αi, (5.8)

which contains an interaction between the person characteristics xp and the test score Sp.

The new slope parameters in model (5.8) are contained in Sp(βi + x�
p αi). Model (5.8)

reduces to the logistic model used in Section 5.2.2 if αi = 0. Thus uniform DIF is present if

γi �= 0 given αi = 0. However, the item shows non-uniform DIF if αi �= 0 whether γi = 0

or not.

5.6.2. Logistic Regression Trees for Non-Uniform DIF

When using item focussed trees, non-uniform DIF means that splits are not only admissible

in the variables xp1, . . . , xpm, but also in the interaction terms Spxp1, . . . , Spxpm. A (first)

split with regard to the interaction between the test score and the j-th variable yields the

model with predictor

ηpi = β0i + Sp [α
[1]
il I(xpj ≤ cj) + α

[1]
ir I(xpj > cj)],

where the parameter α
[1]
il denotes the slope in the left node (xpj ≤ cj) and α

[1]
ir denotes the

slope in the right node (xpj > cj).

5.6.3. Test Strategies

In the literature different strategies were proposed how to test for the significance of DIF

by means of model (5.7), see, for example, Zumbo (1999) and Magis et al. (2011). We will

use similar strategies when testing for DIF in the extended logistic regression model (5.8)

and the tree-based approach.
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Testing for DIF

The first strategy is to test for both types of DIF effects simultaneously. The corresponding

null hypothesis given model (5.7) is H0 : γi2 = . . . = γiG = αi2 = . . . = αiG = 0. For model

(5.8) the corresponding null hypothesis is given by H0 : γi = αi = 0. That means DIF is

investigated by using a global test for the whole parameter vector (γi,αi). DIF is considered

as being present (in any form) if the test rejects the null hypothesis, meaning that at least

one of the parameters γij, αij, j = 1, . . . ,m, differs from zero.

For item focussed trees the equivalent is that at least one split is performed in one of

the components. When selecting the optimal split in each step of the algorithm, one has

to consider all combinations of item, variable, split-point and component with regard to

intercept and slope. The final model consists of one or two separate trees, one referring to

the intercept and one referring to the slope. In general the trees will be different but can

also have the same structure. The resulting tree is given by

ηpi = tri(xp) + tri(Sp,xp), (5.9)

where tri(xp) is the tree component containing subgroup-specific intercepts and tri(Sp,xp)

is the tree component containing subgroup-specific slopes. In contrast to the tree in model

(5.5) for uniform DIF now one has two possible trees. If there is only a significant effect

in one of the two components a constant tri(xp) = β0i or tri(Sp,xp) = Spβi is fitted in the

other component.

In comparison to the classical and extended Logistic method, the tree-based model has two

advantages:

• The obtained tree(s) distinguish between items with uniform and non-uniform DIF.

The trees themselves show which form of DIF is present. Thus both types of DIF can

be detected simultaneously within one fitting procedure.

• The obtained tree(s) identify the variables that induce uniform and/or non-uniform

DIF. In particular, both types of DIF can be caused by different variables.

Testing for Non-Uniform DIF

A second strategy is to explicitly test for non-uniform DIF. Using the extended Logistic

model (5.8) one investigates the null hypothesis H0 : αi = 0 for each item. Non-uniform

DIF is considered as being present if the hypothesis is rejected, meaning that at least one

parameter αij differs from zero.
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Table 5.3.: Modified values of item discrimination and item difficulty parameters in the illustrative
example with non-uniform DIF.

Item Non-Uniform DIF Item Uniform DIF

1 a1,mod = a1 + 0.6 · I(x1 = 1) 3 b3,mod = b3 + 0.8 · I(x1 = 1)
2 a2,mod = a2 + 0.6 · I(x2 = 0) 4 b4,mod = b4 + 0.8 · I(x2 = 0)

For item focussed trees the detection of non-uniform DIF means that a significant split

in the slope component is found. Consequently, during estimation only the models with

simultaneous splits in the intercepts and the slopes are considered as potential candidates.

Therefore, one split in item i with regard to variable j corresponds to the model with

predictor

ηpi = [γ
[1]
il I(xpj ≤ cj) + γ

[1]
ir I(xpj > cj)] + Sp [α

[1]
il I(xpj ≤ cj) + α

[1]
ir I(xpj > cj)], (5.10)

which contains two intercepts (γ
[1]
il , γ

[1]
ir ) and two slopes (α

[1]
il , α

[1]
ir ) with respect to the same

subgroups. To select the optimal split and to determine the splitting decision one compares

the likelihoods of model (5.4) and (5.10). The procedure is continued in each step of the

algorithm, considering all combinations of item, variable and split-point.

If non-uniform DIF is present, the final model consists of two trees containing subgroup-

specific intercepts and subgroup specific slopes that are determined by the same splits.

For the different strategies we will use the same terminology as Magis et al. (2011) in his

investigation of the case in which DIF is induced by multiple groups:

• UDIF means testing for uniform DIF, H0 : γi = 0, given model (5.3) within the

logistic regression approach. For trees it refers to testing the corresponding splits.

• DIF means simultaneous tests for uniform and non-uniform DIF, H0 : γi = αi = 0,

given model (5.8) for logistic regression. For trees it refers to testing the corresponding

splits for both types of DIF.

• NUDIF means tests for non-uniform DIF, H0 : αi = 0, given model (5.8) for logistic

regression. For trees it refers to testing the corresponding splits.

5.6.4. Illustrative Example

As in section 5.3 we consider data Ypi, p = 1, . . . , 800, i = 1, . . . , 20, that are generated

by a 2PL-model with DIF. As before the item discrimination parameters ai are first drawn
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Figure 5.7.: Item Characteristic Curves of item 1 and item 2 for the the illustrative example with
non-uniform DIF.

from a uniform distribution. However, in order to simulate non-uniform DIF we do not

generate data from the 2PL-model but assume that the item discrimination parameters

depend on covariates. The same strategy for generating non-uniform DIF was also used by

Rogers and Swaminathan (1993), Narayanan and Swaminathan (1996) or Jodoin and Gierl

(2001).

Again, we consider 100 data sets with three covariates, two binary variables x1, x2 ∼
B(1, 0.5) and one standard normal distributed variable x3 ∼ N(0, 1). We simulate data

where two of the 20 items show non-uniform DIF and two of the 20 items only show uniform

DIF. The modified values of the discrimination and difficulty parameters are determined by

step function given in Table 5.3. In item 1 and 3 DIF is induced by x1 and in item 2 and

4 DIF is induced by x2. Hence, in all four cases two groups have to be distinguished. The

resulting ICC of the two items with non-uniform DIF (item 1 and 2) are given in Figure

5.7 separately for the two groups. It can be seen from the curves that the item locations

are equal for both groups but the item discriminations (as it was simulated) differ between

the groups. When fitting IFT the non-uniform DIF structure is detected correctly if there

is one split in the slope component of the model of item 1 in x1 and item 2 in x2.

DIF

Figure 5.8 shows one exemplary estimation result obtained by IFT when testing for both

types of DIF simultaneously. In this example items 1, 2, 3, and 4 are correctly identified

as DIF items. All items are split once yielding trees with two terminal nodes, respectively.
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Item 1, slope

0.205 0.328
2 3

●

x1=0 x1=1

Item 2, slope

0.298 0.214
2 3

●

x2=0 x2=1

Item 3, intercept

−2.394 −2.897
2 3

●

x1=0 x1=1

Item 4, intercept

−3.828 −2.932
2 3

●

x2=0 x2=1

Figure 5.8.: Estimated trees for the illustrative example with non-uniform DIF, testing for both
types of DIF. Estimated coefficients αi� (upper) and γi� (lower) are given in each leaf of the trees.

Items 1 and 2 (upper panel) are split with regard to the slopes indicating non-uniform

DIF. In item 1 the (simulated) item discrimination is higher for {x1 = 1}, yielding a

higher slope for the corresponding subgroup (α̂1,x1=1 = 0.328). Whereas, in item 2 the

item discrimination is larger for {x2 = 0}, which results in a larger slope for this subgroup

(α̂2,x2=0 = 0.298). In items 3 and 4 (lower panel) one split is performed with regard to

the intercepts indicating uniform DIF. The results are also in line with the true simulated

effects. The model provides an identification of DIF items together with the responsible

covariates and a classification by type of DIF.

Non-Uniform DIF

When using IFT, which explicitly tests for non-uniform DIF, only items 1 and 2, that were

simulated as non-uniform DIF items, are detected. The corresponding trees are given in

Figure 5.9. The subgroup-specific slopes (left panel) are defined by the same splits as in the

DIF framework considered previously. Due to the construction of the model the estimated

coefficients αi1, αi2, i = 1, 2, however, differ slightly. If splits are significant the same splits

are performed in the intercepts yielding trees with subgroup-specific intercepts. Since they

are not of main interest they are displayed a little smaller (right panel of Figure 5.9).

5.6.5. Simulations

In the following we briefly illustrate the properties of the models for the DIF and NUDIF

framework by means of a small simulation. The structure of the simulated datasets we
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Item 1, slope
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Figure 5.9.: Estimated trees for the illustrative example with non-uniform DIF, testing for non-
uniform DIF. Estimated coefficients αi� (left) and γi� (right) are given in each leaf of the trees.

consider here is the same as in section 5.5. We limit the discussion to the comparison of

two groups defined by one binary covariate x ∈ {0, 1}. According to model (5.6) non-

uniform DIF is present if the item discriminations ai differ between the two groups. The

difference in item discriminations is simulated by the equation ai,mod = ai + c · I(x = 0) for

one half of DIF items and by the equation ai,mod = ai+c ·I(x = 1) for the other half of DIF

items, with constant c ∈ {0.3, 0.6}. From our experience the values 0.3 and 0.6 represent

medium DIF effect sizes. Boxplots of true positive and false positive rates on the item level

for the setting with P = 800, I = 20 and 20% DIF obtained by IFT (left of each panel)

and the classical Logistic model (right of each panel) are given in Figure 5.10. The results

when testing for both types of DIF are shown in the left panel and the results when testing

for non-uniform DIF are shown in the right panel. Within the DIF framework the classical

Logistic model outperforms the proposed tree-based approach. The average hit rate in the

setting with c = 0.6 (lower left) is 0.66 for Logistic but only 0.43 for IFT. This was to be

expected because the test on the whole parameter vector (γi, αi) obviously has a stronger

power than the tests on single splits. However, in the NUDIF framework the two methods

almost yield the same results. The average hit rate in the settings with c = 0.6 (lower

right) for both models is 0.44. Due to the construction of the models the main difference

in the case of two groups is the use of different test statistics to obtain a decision. As we

already illustrated for uniform DIF, our proposed item focussed trees approach can also be

used to detect non-uniform DIF without loss of efficiency. The findings presented here can

be confirmed by the results of all other settings considered in our simulation. For details

a tabular display of the average TPR and FPR for all settings with non-uniform DIF are

given in Appendix C on page 217.
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Figure 5.10.: Boxplots of TPR and FPR for the simulation with non-uniform DIF and one binary
predictor (P = 800, I = 20, 20% DIF), testing for both types of DIF (left) and testing for
non-uniform DIF (right).

Table 5.4.: Summary statistics of the test score of the second module (items 21 to 40) of the I-S-T
2000 R and the two considered covariates.

Variable Summary statistics

xmin x0.25 xmed x̄ x0.75 xmax

Test score 6 12 14 13.87 16 19
Age 18 20 22 22.88 24 39

Gender male: 97 female: 176

5.7. Empirical Applications

Finally we will illustrate and compare the proposed approaches on real data examples.

5.7.1. I-S-T 2000 R

We use data from the Intelligence-Structure-Test 2000 R (I-S-T 2000 R; source of supply is

Testzentrale Göttingen, Herbert-Quandt-Str. 4, 37081 Göttingen, Tel. (0049-551) 999-50-

999, www.testzentrale.de). The test was developed by Amthauer et al. (2001); Beauducel
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Table 5.5.: Comparison of detected DIF items of the second module of the I-S-T 2000 R using
IFT and the extended Logistic approach for uniform and non-uniform DIF.

Item focussed Trees Extended Logistic
Item UDIF DIF NUDIF UDIF DIF NUDIF

First × × (u) × ×
Second × × (u) × ×
Third × × (non) × ×
Fourth ×
Fifth ×

et al. (2010) and is a revised version of its predecessors I-S-T 70 (Amthauer et al., 1973)

and I-S-T 2000 (Amthauer et al., 1999). The available study was conducted at the Phillips

University in Marburg (Bühner et al., 2006). There were 273 participants from 40 different

subject areas. The first module of the test was already analyzed in an application in Chapter

4. The second module contains 20 items (items 21 to 40) in which analogies play the major

role. There are three predefined terms with a certain relation between the first two. This

relationship needs to be recognized to find the fourth term. From five possible answers the

respondent is asked to choose the term that relates to the third term as the second term

relates to the first term. One example is

dark:bright = wet:?

a) rain b) day c) moist d) wind e) dry.

Therefore, one has to select that alternative that relates to wet as bright relates to dark.

For the investigation of DIF in these items we incorporate the covariates gender (male: 0,

female: 1) and age. The summary statistics of the resulting test scores of items 21 to 40

and the two covariates are given in Table 5.4.

When using IFT for uniform DIF 3 out of 20 items show DIF. The algorithm performs only

three splits before stopping and, therefore, each item is split only once. All permutation

tests were based on 1000 permutations at local significance level 0.05/2.

The estimated trees for three items detected as DIF items are given in Figure 5.11. It is

seen that both covariates gender and age seem to induce DIF because both are used for

splitting at least once. The second and third item show DIF induced by gender, whereas

the first item shows DIF induced by age. According to the estimated coefficients the second

item is easier for females (gender=1), the third item is easier for males (gender=0) and the

first item is easier for all students who are rather young (age≤23).
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First Item

−3.79 −4.774
2 3

●

age<=23 age>23

Second Item

−6.68 −5.677
2 3

●

gender=0 gender=1

Third Item

−3.778 −5.221
2 3

●

gender=0 gender=1

Figure 5.11.: Trees of the three detected DIF items of the second module of the I-S-T 2000 R
using the model for uniform DIF. Estimated intercepts γil are given in each leaf of the trees.

An overview of the detected DIF items obtained by the six strategies discussed in this

chapter is given in Table 5.5. When using IFT which tests for both types of DIF, one

obtains very similar results. As in the UDIF framework the first, second and third item

are also identified as DIF items with the same variables that induce DIF. The estimated

models for the first and second item are even identical. A difference occurs for the third

item, where the split in gender is not performed in the intercept but in the slope component.

The model gives the estimated intercept β0,Third = −4.993. The resulting tree of slopes αil

is given in Figure 5.12. The estimated coefficients again mean that the item favours males

(gender=0) but the difference slightly increases for participants with a higher test score.

Interestingly, the splits in the intercept (UDIF, Figure 5.11) and in the slope (DIF, Figure

5.12) result in very similar estimated probabilities. As a consequence it is not surprising

that the third item is not detected by the model within the NUDIF framework.

The evaluation of the data set by the extended Logistic model (5.3) for uniform DIF yields

five DIF items (fourth column in Table 5.5). Based on the results in the simulations, it

seems that the fourth and fifth item might be falsely identified as items with uniform DIF.

Concerning the identification of items, the results within the DIF and NUDIF framework

are equal to those of IFT. However, when testing non-uniform DIF for the third item one

obtains the p-value 0.052 indicating an almost significant effect. Table 5.6 shows an detailed

overview of the estimated DIF effect sizes when using the two approaches for uniform DIF.

For IFT (left columns) the given values correspond to the (norm of the) differences of the

estimated values in the nodes of the trees in Figure 5.11. For the third item one observes

the difference 1.443 which is quite large. The extended Logistic approach does not explicitly

provide information about the variables that are responsible for DIF but the estimates and

corresponding standard errors given in Table 5.6 indicate which ones might be relevant.

It is noteworthy that in summary the test seems not to be strongly affected by DIF. From

the 20 items that use analogies only three are suspect of DIF and the effects are not overly

strong. This was to be expected of a carefully designed test.
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Third Item, slope

0.574 0.448
2 3

●

gender=0 gender=1

Figure 5.12.: Tree of the third detected DIF item of the second module of the I-S-T 2000 R using
the model for both types of DIF. Estimated slopes αil are given in each leaf of the trees.

Table 5.6.: Overview on estimated effect sizes of the second module of the I-S-T 2000 R using IFT
and the extended Logistic approach for uniform DIF. For IFT the differences of the effects in the
nodes are given, for the Logistic approach the estimates and standard errors are given.

Item focussed Trees Extended Logistic
Item Age Gender Age Gender

First 0.984 × -0.943 (0.152) -0.026 (0.154)
Second × 1.002 0.091 (0.165) 0.507 (0.174)
Third × 1.443 0.485 (0.212) -0.583 (0.225)
Fourth × × 0.175 (0.200) -0.455 (0.237)
Fifth × × 0.088 (0.133) 0.367 (0.138)

5.7.2. CTB Science Data

In a second application we consider a data set from CTB-McGraw Hill, which was already

analyzed in the illustrative example in Chapter 3. For a description of the original data, see

also De Boeck and Wilson (2004). The data includes the results of 1500 grade 8 students

from 35 schools. The students had to respond to 76 items, measuring different objectives

and subskills related to mathematics and science. For the present investigation we restrict

to the 25 multiple-choice items from subject area science.

To test for DIF in these items we incorporate the three covariates gender (male: 0, female:

1), type of the school (1: catholic, 2: private, 3: public) and size of the school (number of

students in hundreds). The summary statistics of the test scores for the 25 items and the

three covariates are given in Table 5.7.

When fitting IFT for uniform DIF 14 of 25 items are identified as DIF items. Altogether

the algorithm performs 27 splits until further splits are no longer significant. With three

covariates, each permutation test is performed at local significance level 0.05/3. The p-value

in the 28-th iteration was 0.02 and thus not significant on level 0.016. All splits refer to
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Table 5.7.: Summary statistics of the test score of the 25 multiple-choice items from subject area
science of the CTB data and the three considered covariates.

Variable Summary statistics

xmin x0.25 xmed x̄ x0.75 xmax

Test score 7 14 16 16.01 18 23
Size 100 500 900 868.3 1300 1600

Type catholic: 105 private: 84 public: 1311
Gender male: 761 female: 739

Item 10

−1.384

−2.153 −1.728

2

4 5

●

size<=400 size>400

●

size<=900 size>900

Item 21

−1.317 −2.262
2 3

●

type<=2 type=3

Item 25

−3.444

−2.592 −2.07

−2.844

2

6 7

5

●

type=1 type>1

●

size<=1000 size>1000

●

size<=500 size>500

Figure 5.13.: Trees of items 10, 21 and 25 of the CTB data using the model for uniform DIF.
Estimated intercepts γil are given in each leaf of the trees.

covariates type and size, whereas no significant splits were found for variable gender. There

does not seem to be any difference between males and females.

The trees for three selected items are given in Figure 5.13. In item 10 DIF is induced by size

and one has to distinguish between three subgroups. The item is easiest for students in small

schools (size≤400) but most difficult for students in medium-sized schools (400<size≤900).
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Table 5.8.: Comparison of detected DIF items of the CTB data using IFT and the extended
Logistic approach for uniform and non-uniform DIF.

Item focussed Trees Extended Logistic
Item UDIF DIF NUDIF UDIF DIF NUDIF

21 × × (non) × × × ×
3 × × (u) × ×
4 × × (u) × ×
8 × × (u) × ×
9 × × (u) × ×
14 × × (non) × ×
16 × × (non) × ×
25 × × (u) × ×
11 × × ×
13 × × ×
19 × × (u) ×
5 × × (u)
10 × × (u)
24 × ×
1 ×
6 ×
15 ×
17 ×

Item 21 is easier for students in a catholic or private school (type≤2) compared to students

in public schools (type=3). An interesting partition is received for item 25. For all students

in a catholic school (type=1) the question is very difficult. By contrast the question is easier

for all students in a private or public school (type>1), in particular for those in medium-

sized schools (500<size≤1000).

To obtain DIF effect sizes we computed the maximal difference of estimated effects between

any two nodes for each tree. The obtained values vary over a wide range from 0.458 to

2.985. This also confirms that large DIF effects such as 1.6 might occur in real data sets.

An overview of the detected DIF items by the six evaluated models is given in Table 5.8. It

shows only items that were found to be DIF items by at least one of the models. Within the

DIF framework (second column) eleven DIF items are identified. These are the same items

as with the restricted model for uniform DIF discussed above, but without item 6, 15 and

17. Unlike above, there are three items that are classified as non-uniform DIF items by the

more general model. Here, for example in item 21 the split regarding the type of school is

not performed in the intercept but in the slope component. According to the model testing

for non-uniform DIF (third column) the two items 13 and 21 carry non-uniform DIF. In

contrast to item 13, item 21 is also detected within the UDIF and DIF framework.
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The comparison to the extended Logistic approach shows a strong overlap. Within the

UDIF framework (first and fourth column) there is a agreement in nine items. In the DIF

framework this is the case for eight items. However it should again be mentioned, that the

extended Logistic approach within the DIF framework does not distinguish between uniform

and non-uniform DIF. When testing for non-uniform DIF (sixth column) one obtains four

significant results. In contrast to items 1 and 11, items 13 and 21 are also found by IFT.

In total item 21 is the only item that shows DIF according to all six models and four items

are only identified as DIF items by one of the six models.

5.8. Concluding Remarks

The proposed recursive partitioning approach, in short IFT, is an extension of the basic

logistic regression model for the detection of uniform and non-uniform DIF. In contrast

to the classical approach, IFT allows to incorporate several covariates on different scales,

including ordinal and continuous covariates, that potentially induce DIF. The method leads

to simultaneous selection of items and (interactions of) variables that cause DIF. The

result typically is a small tree for each DIF item and therefore the DIF structure is easy

accessible.

The results of the simulations including uniform as well as non-uniform DIF show that IFT

has the same performance than the classical approach in the simple case of two groups

but also works quite well in more complex settings with various covariates. Neverthless, it

should be noted that in the latter case the method is conservative and does not exploit the

significance level fully. The applications demonstrate the flexibility and interpretability of

IFT, also compared to the extended Logistic model that tests DIF by a vector of covariates.

In particular, within the framework that tests for both types of DIF the obtained trees show

which type of DIF is present.

The results shown in this chapter were obtained by the R-package DIFtree (Berger, 2016a)

version 2.0.1 that is available on CRAN.



6. Modelling of Extreme Response

Styles in Rating Scales

6.1. Introduction

In behavioral research rating scales have been used for a long time to investigate attitudes

and behaviors. However, observed ratings may not represent the true opinion, in particular

response styles may affect the response behavior, see, for example Messick (1991), Baum-

gartner and Steenkamp (2001). An extensive overview on response styles in survey research

was given more recently by Van Vaerenbergh and Thomas (2013). A response style can

be considered as a consistent pattern of responses that is independent of the content of a

response (Johnson, 2003).

In this chapter we consider symmetric response categories of the form strongly disagree,

moderately disagree,..., moderately agree, strongly agree and focus on response styles that

are characterized by a disproportionate tendency to middle categories or to extreme cat-

egories, that is, the highest and lowest response categories. The preference to extreme

categories is often called extreme response style and has been a topic of research for some

time. Its counterpart, the tendency to choose middle categories has been investigated, for

example, by Baumgartner and Steenkamp (2001).

In many studies the presence of response styles has been found. Response styles can dif-

fer, for example, across nations (Clarke, 2000; Van Herk et al., 2004), ethnicity (Marin

et al., 1992) or educational level (Meisenberg and Williams, 2008). In particular, in the

psychometric literature extreme response styles have been discussed within the framework

of item response models. Bolt and Johnson (2009) and Bolt and Newton (2011) considered

a multi-trait model, which is a version of the nominal response model proposed by Bock

This chapter is a modified version of Tutz and Berger (2016a). Inital considerations can be found in
Berger and Tutz (2015b). For more information on the personal contributions of the authors and textual
matches, see page 10.
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(1972). Johnson (2003) considered a cumulative type model for extreme response styles.

Eid and Rauber (2000) considered a mixture of partial credit models that is able to detect

response styles. More recently tree type approaches have been proposed. They typically

assume a nested structure where first a decision about the direction of the response and

then about the strength is obtained. Models of this type have been proposed by Suh and

Bolt (2010), De Boeck and Partchev (2012), Thissen-Roe and Thissen (2013), Jeon and

De Boeck (2015), Böckenholt (2012), Khorramdel and von Davier (2014) and Plieninger

and Meiser (2014).

In contrast to research in item response theory, where the focus is on the modelling of

individual differences in terms of latent traits based on answers to several items without

accounting for explanatory variables, in this chapter we aim at investigating the influence

of explanatory variables on the content related choice and the response style for one item.

The strength of the model is that it simultaneously accounts for both effects. It allows

• to investigate content related effects that are undisturbed by the response style for a

single item,

• to investigate the response style undisturbed by content related effects,

• to use covariates to disentangle content and style,

• to avoid biased estimates of the content related effects, which are the parameters of

interest in most studies.

Approaches to simultaneous modelling of content related effects and response styles seem to

be scarce. Most approaches rely on the calculation of specific indices that can be corrected

by regression techniques, see, for example Baumgartner and Steenkamp (2001). An excep-

tion are the latent class approaches considered, for example, by Moors (2004), Kankaraš

and Moors (2009), Moors (2010) and Van Rosmalen et al. (2010). Latent class models are

a strong tool but specific software is necessary and the existence of latent classes is always a

strong assumption and interpretation has to rely on their existence. The crucial difference

between these latent variable approaches and the proposed adjacent categories model is

that the response style is not perceived as an individual trait, but exists solely in relation

to the covariates. The model does not need the additional assumptions that accompany

latent variable modelling.

The proposed modelling of response styles generated by covariates for one item uses a

concept of the response style that differs from the usual concept. In the psychometric

literature a response style typically is considered as a tendency in how a rating scale is used

across items yielding a consistent pattern of responses that is independent of the content

of a response (Johnson, 2003). When using this concept multiple items are a necessity. In

our approach the tendency to extreme or middle categories is separated from the content
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related effects by using the symmetry of the response categories and letting covariates

determine the tendency to specific categories. Nevertheless, since the model provides an

explicit modelling of a tendency to extreme or middle categories the term response style

seems also appropriate within our modelling framework.

In Section 6.2 the basic model is introduced. An illustrative example is given and a vi-

sualization tool is developed. In Section 6.3 the effects of parameters are discussed and

the potential bias of estimates is investigated. Section 6.4 is devoted to inference, tools for

the estimation of parameters are provided in Section 6.5. In Section 6.6 further applica-

tions that illustrate the method are given. In Section 6.7 we consider possible extensions

and compare the approach to alternatives proposed, in particular, in item response the-

ory. Finally, Section 6.8 introduces further extensions of the approach to the partial credit

model.

6.2. An Extended Rating Scale Model

Let Yi ∈ {1, . . . , k}, i = 1, . . . , n denote the observed responses on a rating scale. Categories

1, . . . , k represent graded agree-disagree attitudes with a natural symmetry like strongly

disagree, moderately disagree,..., moderately agree, strongly agree. If the number of response

categories is odd there is a neutral middle category, if k is even there is none and the

respondent is forced to exhibit at least a weak form of agreement or disagreement. Let

xi denote a vector of explanatory variables that is observed together with the response Yi.

Several models that link the explanatory variables to the ordinal response are available.

Common model classes are the cumulative models, the sequential and adjacent categories

models, see, for example, Agresti (2009) and Tutz (2012). We will focus on the adjacent

categories model, which has the advantage that no constraints on the parameters are needed.

Moreover, a specific version of the model is widely used in item response modelling. The

partial credit model (Masters, 1982), which was already introduced in Chapter 4, uses the

adjacent logit link to model item difficulties but does not include explanatory variables. In

the following we first consider the basic model and then the extensions that account for

response styles.

6.2.1. Adjacent Categories Model

The model proposed here is an extension of the adjacent categories model. The basic form

of the model with logit link is given by

log

(
πi,r+1

πir

)
= θr + xT

i β, r = 1, . . . , k − 1,
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where πir = P (Yi = r|xi) denotes the conditional probability of response category r. The

model assumes that the adjacent categories logits log(πi,r+1/πir) are determined by an in-

tercept θr, which is specific for the adjacent categories, and a linear effect of the explanatory

variables, xT
i β. The ordering of the categories is modelled implicitly by assuming that the

weight parameter does not depend on r. If one lets the parameter depend on the category

one obtains the classical multinomial logit model, which does not exploit the ordering of

the categories (Agresti, 2009).

The interpretation of the parameters of the model is seen best when the parameters are

given as functions of probabilities. For covariate vector xT = (x1, . . . , xp) and corresponding

parameter vector βT = (β1, . . . , βp) it may be derived that the parameter of the j-th

covariate is determined by

eβj =
πr+1(xj + 1)/πr(xj + 1)

πr+1(xj)/πr(xj)
, (6.1)

where πr(xj) denotes the probability of response category r for the vector of explanatory

variables with the j-th covariate having value xj and πr(xj+1) is the probability of response

category r if the j-th covariate is increased by one unit to xj + 1. All other variables are

fixed. Thus, eβj is the odds ratio that compares the odds for categories r + 1 and r when

the j-th covariate is increased by one unit.

6.2.2. Accounting for Response Styles

For simplicity let us first consider the case of three response categories, k = 3. Then the

model is given by the two equations that specify log(πi2/πi1) and log(πi3/πi2). The extended

model proposed here contains the additional parameter δi and has the form

log

(
πi2

πi1

)
= θ1 + xT

i β + δi, log

(
πi3

πi2

)
= θ2 + xT

i β − δi.

The parameter δi specifies the response style. If δi → ∞ one obtains πi2 → 1, which means

a strong tendency to the middle category. If δi → −∞ one obtains πi2 → 0, which means a

strong tendency to the response categories 1 and 3 corresponding to the extreme response

style. It is important that the response style is separated from the preference represented

by the linear term xT
i β. While xT

i β represents the content-related effect, δi represents the

response style towards the middle category or away from it.

The effect of the additional parameter is illustrated in Figure 6.1 for a univariate explanatory

variable with β = 1. It is seen that a person with δi = 2 has a stronger tendency to choose

the middle category than a person with δi = 0 whereas a person with δi = −2 hardly
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Figure 6.1.: Response functions for several values of δi.

uses the middle category. Although the numeric values change the shapes of the response

functions for categories 1 and 3 are very similar for all values of δi.

The strength of the model is that the parameter δi can be specified as a function of explana-

tory variables. Let zi be an additional vector of variables, which are assumed to determine

the response style. The zi can be different from xi but can also be the same. With δi = zT
i γ

one obtains the model

log

(
πi2

πi1

)
= θ1 + xT

i β + zT
i γ, log

(
πi3

πi2

)
= θ2 + xT

i β − zT
i γ.

The model has some interesting properties. From

log

(
πi3

πi1

)
= θ1 + θ2 + 2xT

i β

one sees that the log odds for the categories that actually represent agreement and dis-

agreement are not affected by the term that determines the response style. On the other

hand

log

(
πi2/πi1

πi3/πi2

)
= θ1 − θ2 + 2zT

i γ

shows that specific odds ratios do not depend on the content-related term.
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It is noteworthy that the parameters of the content-related term are the same as in the

simple adjacent categories model. This may be seen from simple derivation of the parame-

ters for the simple adjacent categories model. For three response categories an even more

intuitive form than (6.1) is given by

e2βj =
π3(xj + 1)/π1(xj + 1)

π3(xj)/π1(xj)
,

which shows the explicit dependence on the categories that refer to agreement or disagree-

ment. For the parameters of the response style effects one obtains

e2γj =
π2(zj + 1)/π1(zj + 1)

π3(zj + 1)/π2(zj + 1)
/
π2(zj)/π1(zj)

π3(zj)/π2(zj)
.

The explicit form of the parameters also ensures that the model is identifiable.

The General Model for k Response Categories

In the general case one has to distinguish between an odd and even number of response

categories. For k odd let m = [k/2] + 1 denote the middle category. Then the rating scale

model that accounts for the tendency to the middle or extreme categories has the form

log

(
πi,r+1

πir

)
= θr + xT

i β + zT
i γ, r = 1, . . . ,m− 1,

log

(
πi,r+1

πir

)
= θr + xT

i β − zT
i γ, r = m, . . . , k − 1.

(6.2)

The term θr + xT
i β represents the usual effects of covariates xi in an adjacent categories

model. If xT
i β is large higher categories are preferred, if it is small low categories are

chosen.

Positive values of the term δi = zT
i γ increase the probabilities of higher categories for

r = 1, . . . ,m − 1 but decrease them for r = m, . . . , k − 1. Thus δi determines if middle

categories or extreme categories are preferred. The effect is also seen when considering

extreme values of δi. For δi = zT
i γ → ∞ one obtains πim → 1 and therefore a tendency to

the middle category while δi → −∞ entails πi2, . . . , πi,k−1 → 0 and therefore a preference

of the extreme categories.

It should be noted that the modeling approach differs from alternative perspectives on

response styles. In the literature response styles are often defined as preferring the outer

or the midpoint categories across many unrelated or weakly related items. In our model a

negative value of the response style parameter indicating extreme response style captures
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not only a preference for the extremes ”strongly agree” compared to the adjacent category

”agree” but also a preference for ”agree” compared to ”somewhat agree”. The response

style γ-parameter thus picks up not only the tendency to select the extremes, but a general

tendency to prefer more extreme categories given the substantive stand of the respondent.

For k even the model has a slightly different form. Let in this case m = k/2 denote the

split between agreement and disagreement categories. Then the proposed model has the

form

log

(
πi,r+1

πir

)
= θr + xT

i β + zT
i γ, r = 1, . . . ,m− 1,

log

(
πi,m+1

πim

)
= θm + xT

i β,

log

(
πi,r+1

πir

)
= θr + xT

i β − zT
i γ, r = m+ 1, . . . , k − 1.

(6.3)

The effect of the term δi = zT
i γ is the same as in the case where k is odd. Large values

indicate a tendency to the extreme response style, small values a tendency to the middle.

For simplicity we will use the abbreviation RSRS for the model (k odd or even) for Rating

Scale model accounting for Response Styles. Before discussing the effects in detail we first

consider an application.

An Illustrative Example

Although estimation methods have not yet been given we consider an application to

illustrate the effects obtained by using the extended model. We consider data from

the Survey on Household Income and Wealth (SHIW) by the Bank of Italy that

have been used before by Gambacorta and Iannario (2013). They are available from

http://www.bancaditalia.it/statistiche/indcamp. The response is the happiness index in-

dicating the overall life well-being measured on a Likert Scale from 1 (very unhappy) to 10

(very happy). As explanatory variables we consider: gender (0: male, 1: female), the mar-

ital status (single, married, separated, widowed), the place of living (north, south, center),

the general degree of confidence in other people from 1 (low) to 10 (high), the atmosphere

the interview took place in (1 to 10), the citizenship and the age in decades. The respon-

dents were also asked about their assessment if the household income is sufficient to see the

family through to the end of the month rated from 1 (with great difficulty) to 5 (very easily).

The analysis is based on a subset with 3816 respondents of the SHIW of 2010. Variable age

was centered around 60 and variable confidence around 5. We fitted a simple adjacent cat-

egories model with all of the covariates and the extended version that accounts for response

styles where all the variables are allowed to have content-related and response style effects.

For the variables age and confidence we also included quadratic and cubic terms because
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Table 6.1.: Parameter estimates and standard errors for the illustrative example (SHIW study).

Covariates Extended Adjacent
Adjacent

estimate se estimate se

Content-related effects Gender -0.0302 0.0155 -0.0292 0.0154
(x-variables) Married 0.0256 0.0240 0.0475 0.0223

Separated 0.0291 0.0373 0.0200 0.0325
Widow 0.0116 0.0338 0.0170 0.0292
Center 0.1666 0.0192 0.1887 0.0195
South 0.0169 0.0172 0.0170 0.0166
Incomesufficient 0.0100 0.0060 0.0153 0.0059
Atmosphere 0.0162 0.0054 0.0173 0.0047
Citizenforeign -0.0413 0.0414 -0.0545 0.0373
Confidence 0.0035 0.0072 0.0029 0.0070
Confidence2 -0.0084 0.0011 -0.0082 0.0011
Confidence3 0.0008 0.0004 0.0011 0.0004
Age -0.0123 0.0086 -0.0160 0.0088
Age2 -0.0041 0.0031 -0.0029 0.0028
Age3 0.0010 0.0013 0.0015 0.0013

Response style effects Gender 0.0034 0.0317
(z-variables) Married -0.4208 0.0477

Separated 0.0067 0.0701
Widow 0.1063 0.0642
Center -0.0385 0.0387
South 0.1336 0.0350
Incomesufficient -0.0908 0.0124
Atmosphere -0.1079 0.0106
Citizenforeign 0.3206 0.0806
Confidence 0.0073 0.0146
Confidence2 -0.0228 0.0024
Confidence3 0.0006 0.0010
Age 0.0003 0.0182
Age2 -0.0259 0.0062
Age3 0.0078 0.0028

tests showed that the effects are different from zero. First of all, it is interesting if the style

related effects are needed in the model. The likelihood ratio test for the null hypothesis

H0 : γ = 0 has the χ2-value 1,101.11 on 15 degrees of freedom. Therefore, style effects are

definitely present. The estimated effects and standard errors for both models are given in

Table 6.1. It is seen that the estimates as well as the standard errors of the content-related

effects differ for the adjacent categories model and its extended version. In some cases the

estimates are larger in other cases smaller if one ignores the response style (see also Section

6.3). As far as the effects on the response style are concerned it is seen that gender had
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no effect on the response style but, for example, sufficiency of income, age and confidence

had effects on the response style that can not be ignored. The weight -0.09 on sufficiency

of income with very small standard error indicates that confidence in the sufficiency of in-

come increases the tendency to choose extreme categories. Instead of discussing the various

effects in detail in the next sections visualization tools are developed.

Visualization of Effects

The extended model contains more parameters than a simple rating scale model. In par-

ticular, when various explanatory variables are included it is hard to keep track of all the

relevant effects. Therefore we provide some visualization tools to investigate the effect

strength. We explicitly consider the case of an odd number of response categories,model

(6.2), and start with the visualization of linear effects. It is immediately seen that the odds

of adjacent categories have the form

πi,r+1

πir

= eθr(eβ1)xi1 . . . (eβp)xip(eγ1)zi1 . . . (eγq)ziq , r = 1, . . . ,m− 1,

πi,r+1

πir

= eθr(eβ1)xi1 . . . (eβp)xip(e−γ1)zi1 . . . (e−γq)ziq , r = m, . . . , k − 1,

where the explanatory variables for content-related effects have length p and the response

style effects length q. Thus, if the j-th x−variable increases by one unit the multiplicative

effect on the odds between adjacent categories is given by eβj .

If the j-th z−variable increases by one unit the multiplicative effect on the odds between

adjacent categories depends on the category. It is eγj for categories smaller than m and

e−γj for the higher categories. If the x and z-variables are the same the effects are seen by

plotting the tuple (eγj , eβj). If a covariate is present only as an x- or z-variable one of the

components in the tuple is 1.

For the SHIW study we show the effects of the marital status, gender and the area of living

in Figure 6.2. In the figure pointwise confidence intervals are included. We use stars with

the horizontal and vertical lengths corresponding to the 95% confidence intervals of eγj and

eβj , respectively. It is seen from the left panel that there is no difference between men

and women in the response style (eγj close to one), but women tend to choose lower scales

of happiness (eβj around 0.97). For the variable marital status we chose ”single” as the

reference category obtaining the value (eγj , eβj) = (1, 1). It is seen that all others have higher

happiness scores, although especially the effect of the category ”widow” is not significantly

different from the category ”single”. As far as the response styles are concerned, separated

and widowed persons showed a tendency to the middle whereas married people give a more

distinct response when compared to the reference category ”single”. From the right panel

it is seen that people living in the center of Italy have significantly higher happiness scores
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Figure 6.2.: Visualization of estimated effects for the illustrative example (SHIW study) including
pointwise confidence intervals.

than people living in the south or the reference category ”north”. The difference in the

preference of the response styles between categories ”center” and ”north” can be neglected

but there is a significant difference between categories ”south” and ”north”. People living

in the south tend to choose less extreme response categories. It should be noted that the

confidence intervals we show do not include the correlation between estimates to obtain a

more easily accessible visualization. Moreover, correlations tend to be small (see Section

6.3).

Visualization of Non-Linear Effects

In the illustrative example the explanatory variables confidence and age contain in addition

to linear terms quadratic and cubic terms. Then it is not sensible to plot the effects of

parameters separately. One can understand the effects as functions of the corresponding

explanatory variables. For example, the content-related effect of confidence is a polynomial

containing cubic terms given by term fC
c (conf) = confβC

c,1+conf2βC
c,2+conf3βC

c,3 (C indicating

content) and the response style effect is given by fR
c (conf) = confβR

c,1+conf2βR
c,2+conf3βR

c,3 (R

indicating response style). Omitting for simplicity the linear effects of the other covariates

one has the model

πi,r+1

πir

= eθr(ef
C
c (conf))(ef

C
a (age))(ef

R
c (conf)(ef

R
a (age)), r = 1, . . . ,m− 1,

πi,r+1

πir

= eθr(ef
C
c (conf))(ef

C
a (age))(e−fR

c (conf)(e−fR
a (age)), r = m, . . . , k − 1,

where fC
a (age), f

R
a (age) represent the content and response style related effects of the vari-

able age.
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Figure 6.3.: Non-linear effects of content and response style of confidence and age for the illustrative
example (SHIW study). The upper panels show the content, the lower panels the response style
effects.

Parameters in polynomial terms are hard to interpret but one can plot the corresponding

non-linear effects. Figure 6.3 shows the effects of content (first row) and response style

(second row). In the figures we used the same scale in order to reveal the strength of the

impact of the covariates. It is seen that with increasing confidence up to about value 5

the happiness increases and above 5 slightly decreases. For the response style one gets a

distinctly quadratic effect. The tendency to extreme categories (negative values of fR
a (age))

is very strong for high and low values of confidence, and zero for middle categories of

confidence. The content effect of age is not significant. Instead of omitting it we show the

estimated curve, which is an almost horizontal line close to zero. Concerning the response

style, it is seen that younger people have a tendency to extreme response styles, the effect

vanished at age 50. It is close to zero for all values greater than 50.

As an alternative to these conventional plots for non-linear effects we propose to visualize

them in a similar way as for linear effects by using axes that correspond to effects of response

style and effects of content. The corresponding plot is obtained for the covariate confidence

by plotting (ef
R
c (conf), ef

C
c (conf)) as a function of confidence (10 points). However, instead

of one point as in the visualization of linear effects one obtains a curve in two dimensions
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Figure 6.4.: Curves of non-linear effects for confidence (left) and age (right) for the illustrative
example (SHIW study).

representing the multiplicative effects on the proportion of the probabilities of adjacent

categories concerning content and response style related effects. Figure 6.4 shows the plots

for the variables confidence and age. They show how both effects evolve with increasing

value of the corresponding covariate. Again we use the same scale for both effects. The

curves for confidence show the initial increase and subsequent weak decrease of happiness

with the turning point at about 5. In particular for values of confidence between 5 and

10 the variation on the y-axis represents that the variation of the happiness score is weak.

Much stronger variation is found for the response styles (x-axis). The tendency to extreme

categories weakens with increasing confidence and then gets stronger with the same turning

point at 5. The curve for age shows that the effect on happiness is weak with hardly any

variation on the y-axis. However, the effect on the response style is rather strong. The

tendency to use extreme categories found for 30 years of age diminishes strongly up to

about 50 years of age and then hardly changes. The visualization by curves is useful for

polynomial terms but can also be used for alternative smooth functions as considered briefly

in Section 6.7.

6.3. Effects in the RSRS Model

One of the strengths of the extended RSRS model is that the content-related effects are

separated from the tendency to middle or extreme categories. We will investigate the

separation for the case k odd, for k even the separation works in a similar way.
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Figure 6.5.: Estimates for several values of β, γ and samples sizes. The explanatory variable follows
a standard normal distribution, the true values are given in grey.

Let the model be given by (6.2) and again m = [k/2]+1 denote the middle category. Then

one may derive that the parameters of the x-variables are determined by

e2rβj =
πm+r(xj + 1)/πm−r(xj + 1)

πm+r(xj)/πm−r(xj)
, r = 1, . . . ,m− 1, (6.4)

where πr(xj) again denotes the probability of response category r for the vector of explana-

tory variables with the j-th covariate having value xj and πr(xj + 1) is the probability

of response category r if the j-th covariate is increased by one unit to xj + 1. All other

covariate are fixed. The representation (6.4) compares the probabilities for the categories

m + r and m − r, that means categories with equal distance to the middle category. For

k = 7 and therefore m = 4 it compares the probabilities of categories 5 and 3, 6 and 2

as well as 7 and 1. Thus it shows the effect of the explanatory variable in a symmetric

way, namely how strong is the preference of, for example, category 5 compared to 3 if the

explanatory variable increases by one unit.

It is essential that the parameter βj does not depend on the term zT
i γ, even if xi = zi. That

means also in the simple adjacent categories model, where zT
i γ = 0, the parameters βj are
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given by (6.4). Therefore the content-related effects in the model are distinctly separated

from the tendency to middle or extreme categories.

For the parameters that determine the response style one obtains

γj = 1/(2r)

(
log

πm(zj + 1)/πm−r(zj + 1)

πm+r(zj + 1)/πm(zj + 1)
− log

πm(zj)/πm−r(zj)

πm+r(zj)/πm(zj)

)
, r = 1, . . . ,m− 1,

where in a similar way as before πr(zj) denotes the probability of response category r for

the vector of explanatory variables with j-th covariate zj and πr(zj + 1) is the probability

of response category r if the j-th covariate is increased by one unit to zj + 1. All other

covariate are fixed. The parameter γj depends only on response probabilities of categories

m, m + r and m − r for different values of zj. It represents how the concentration of the

probability mass is increased in the middle if zj is increased by one unit. In the same way

as βj is separated from zT
i γ the parameter γj is separated from the term xT

i β, signaling

the separation of the weights on x-variables and z-variables. One effect of the separation of

the effects is that estimates of γj, βj if xj = zj typically show weak correlation. For an illus-

tration see Figure 6.5 where the estimates (1000 replications) of one normally distributed

explanatory variable with x = z are shown for various parameters β, γ and increasing sam-

ple size n. However, the separation of effects does not mean that the response style can be

ignored when estimating the content-related effects of variables (see next section).

6.3.1. Accuracy of Estimates if the Response Style is Ignored

If one is not aware of response styles one fits a regression model that contains only the

effect of explanatory variables on the response. In the following it is demonstrated that

this procedure can result in strongly biased estimates and poor accuracy of the estimates

of β, which are the parameters of interest in most studies.

One Continuous Predictor

For simplicity we first consider the case of only one explanatory variable, which follows

a standard normal distribution. Figure 6.6 shows the mean squared errors (MSEs), the

variances and the bias of the ML estimate of β if one fits a simple adjacent categories

model, which ignores the presence of differing response styles, and if one fits the extended

model that accounts for the response style. The data generating model is the extended

model with 7 categories for varying values of γ and θr = 0, β = 1. The upper panels

show the case where x = z, therefore one is estimating the content related effect of an

explanatory variable that also has an effect on the response style. It is seen that the MSEs

for both models is about the same for very small values of γ. For large absolute values of



6.3 Effects in the RSRS Model 157

MSE

γ

−
0.

05
0.

05
0.

15
0.

25

−2 −1.2 −0.3 0.6 1.4 2

with
without

VAR

γ

−
0.

05
0.

05
0.

15

−2 −1.2 −0.3 0.6 1.4 2

with
without

BIAS

γ

−
0.

4
−

0.
2

0.
0

0.
2

−2 −1.2 −0.3 0.6 1.4 2

with
without

θr = 0; k=7, β = 1, n = 200; x=z

MSE

γ

−
0.

05
0.

05
0.

15
0.

25

−2 −1.2 −0.3 0.6 1.4 2

with
without

VAR

γ

−
0.

05
0.

05
0.

15

−2 −1.2 −0.3 0.6 1.4 2

with
without

BIAS

γ

−
0.

4
−

0.
2

0.
0

0.
2

−2 −1.2 −0.3 0.6 1.4 2

with
without

θr = 0; k=7, β = 1, n = 200; x,z i.i.d.

Figure 6.6.: MSEs, variances and bias as a function of γ for the simulation with one predictor; in
the upper panel one has x = z, in the lower panel x and z differ and are independent. Dashed
(red) lines indicate the model without accounting for the response style, solid (black) lines indicate
the model with response style effects.

γ the MSE is much larger if the response style is ignored. The poor performance is mainly

caused by the bias. One obtains strongly biased estimates even for moderate values of γ

that underestimate the size of the effect. The effect is shown for the true value β = 1. The

same strength of the bias is found if β = −1, but then the parameter β is overestimated

instead of underestimated. The tendency is the same, one sees attenuation of the effects,

in extreme cases if γ = 2 the absolute value of the estimate, |β̂|, is almost the half of the

true value |β|.

One might suspect that the bias is so strong because the variable has two effects, one on

the preference and one on the response style. Therefore, we also investigated the case with

a predictor ηr = θr + xβ + zγ, where x, z are independently normally distributed variables.

The lower panel of Figure 6.6 shows the resulting curves. It is seen that one obtains biased

estimates also if a variable that is independent of x generates varying response styles but

is ignored. Therefore one ignores heterogeneity of response styles in the population.

In Figure 6.6 the effect is always attenuation of effects, a familiar phenomenon which also

occurs in random effects models if heterogeneity is ignored, see, for example Tutz (2012),

Chapter 14. However, in the case of ignored response styles in some cases one can also see
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Figure 6.7.: MSEs, variances and bias as a function of γ for the simulation with one predictor and
desccending thresholds; in the upper panel one has x = z, in the lower panel x and z differ and
are independent. Dashed (red) lines indicate the model without accounting for the response style,
solid (black) lines indicate the model with response style effects.

stronger effects. In Figure 6.7 MSEs, variances and bias are shown for the same models as in

Figure 6.6, but now the thresholds have been changed to θ1 = 0, θ2 = −0.4, θ3 = −0.8, . . . .

For these descending thresholds higher categories are preferred for all of the values of the

explanatory variables. It is seen that the bias is again negative for all values of γ if x and

z are uncorrelated (lower panel) but one obtains overestimation of the true value of β = 1

in the case where x = z if γ is positive (upper panel). Therefore, if there is a tendency to

higher categories and the effect β is positive, and one ignores the tendency to select middle

categories (γ positive), this is interpreted by the model without response style effect as a

stronger β. The consequence is that larger values of β are obtained, the estimated effect

tends to be larger than the true effect. For illustration of the effects we considered values

of γ from a wide range. Although large values of γ might occur, in the real data sets we

considered |γ| was not beyond 1. An indicator of potential non-negligible bias might be

strong differences in estimates for the model with response style and the model without

response style.
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Several Predictors

Further investigations show that the same effects are also found if more than just two

variables are included in the model. Therefore, we consider data with 7 categories, four

x-variables, x = (x1, x2, x3, x4)
�, that are standard normal distributed without correlation

and an one-dimensional z-variable. The true coefficients are β = (1, 0.5,−0.4, 0.3)�. In the

first case we set z = x1, which means that the first x-variable has a content related effect as

well as a response style effect. In the second case z is independently drawn from a standard

normal distribution. As before, thresholds θr are either all set to zero or descending from

zero. The corresponding results of MSEs, variances and bias for varying values of γ are

shown in Figure 6.8. It is seen that the previous findings for the simulations with normal

response can be confirmed and therefore the conclusions remain largely the same.

6.3.2. Effect of Sample Sizes

It has been demonstrated that biased estimates can be avoided by accounting for the

response style when estimating the content-related effects. A quite different question is

which observations contribute to the estimation accuracy when differing response styles are

present and accounted for in the model. Intuitively accuracy of estimates will be weaker

if many respondents prefer the middle category because then there is a tendency that less

information about β is available. The effect can be illustrated by looking at the effect of β

in the simple case of three response categories and a simple binary predictor x representing,

for example, gender. As already shown in Section 6.2 the true effect is given by

e2β =
π3(f)/π1(f)

π3(m)/π1(m)
,

where πr(f), πr(m) denote the probability of an response in category r for females and

males, respectively. If in one of the two populations there is a strong tendency to the

middle category the relative frequencies corresponding to π3(·)/π1(·) will be estimated very

unstable because only few observations will be observed in categories 1 and 3. Consequently,

the accuracy of β̂ will suffer.

To demonstrate the effect we show simulation results. We consider a binary predictor

x ∈ {0, 1}, effect strengths β = 1 and γ = 1. Figure 6.9 shows the MSEs for a range of

sample sizes, where n0 denotes the sample size of population x = 0 and n1 the sample size

of population x = 1. In the left panel the thresholds were θ1 = θ2 = 0 yielding probability

vectors (0.33, 0.33, 0.33) for x = 0 and (0.06, 0.468, 0.468) for x = 1. Therefore, in the

population x = 1 the proportion π3(x = 1)/π1(x = 1) is rather extreme and unstable

to estimate. It is seen from Figure 6.9 that increasing the number of observations in the
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Figure 6.8.: MSEs, variances and bias as a function of γ for the simulations with several predictors;
the upper panel corresponds to the setting with θr = 0, the lower panel to the setting with
descending thresholds. In the upper rows one has x1 = z, in the lower rows x1 and z differ and
are independent, resp.
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Figure 6.9.: MSE as a function of the sample sizes n0, n1 for sub populations x = 0, x = 1, resp.

population x = 0 does improve estimation accuracy only very little while increasing the

number of observations in the population x = 1 improves the estimation accuracy very

strongly. In the right panel of Figure 6.9 the thresholds are θ1 = −2, θ2 = 0 yielding

probability vectors (0.787, 0.106, 0.106) for x = 0 and (0.33, 0.33, 0.33) for x = 1. Now the

proportion π3(x = 0)/π1(x = 0) is rather extreme and unstable to estimate. As is seen

from the right panel increasing the number of observations in the population x = 0 strongly

improves the estimates while increasing the number of observations in the population x = 1

hardly matters.

Thus, if extreme proportions occur in one population, which can be induced by response

styles, estimation accuracy profits from the increase in these populations. The effect can

not be exploited in a first investigation, but if one has a pilot study, which gives first results

on the probabilities to expect, it can be used to stratify the sample in future studies to

improve the accuracy of estimates.

6.4. Estimation of Parameters and Inference

Estimation and testing of the model is simplified by embedding the model into the

framework of (multivariate) generalized linear models (GLMs). Let the data be given

by (yi,xi, zi), i = 1, . . . , n. Given xi, zi, one assumes a multinomial distribution, yi ∼
M(1,πi), where πT

i = (πi1, . . . , πik) with components πik = P (Yi = r|xi, zi). It is straight-

forward to show that the extended model can be given in the form

g(πi) = Xiδ, (6.5)
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whereXi is a design matrix composed of the values xi, zi. δ is the total vector of parameters

containing the parameters θ1, . . . , θk−1,β,γ and g(·) is a vector-valued link function g =

(g1, . . . , gk−1) : �
k−1 → �

k−1 given by

gr(π1, . . . , πk−1) = log(
πr+1

πr

), r = 1, . . . , k − 1.

An equivalent form of the link between explanatory variables and response is

πi = h(Xiδ), (6.6)

where h = (h1, . . . , hk−1) = g−1 is the so-called response function. Equations (6.5) and (6.6)

represent the structural assumption of a multivariate GLM. Maximum likelihood estimates

and inference for multivariate GLMs is extensively discussed in Fahrmeir and Tutz (2001)

and Tutz (2012). For example, one can use likelihood ratio tests, score tests or Wald tests

to test linear hypotheses of the form H0 : Cδ = ξ against H1 : Cδ �= ξ, where C is a fixed

matrix of full rank and ξ is a fixed vector.

An interesting aspect is the covariance of estimates which is asymptotically given by the

expected information or Fisher matrix, F (δ) = E
(−∂l/∂δ∂δT

)
, which has the form

F (δ) =
N∑
i=1

XT
i Wi(δ)Xi.

The blocks Wi(δ) of the weight matrix are given by Wi(δ) = (∂g(πi)
∂πT Σ i(δ)

∂g(πi)
∂π

)−1. If

the the two sets of explanatory variables are the same, that is xi = zi one can see from

the model equations (6.2) and (6.3) that the column that codes the variable xj and the

column that codes the corresponding z-variable are orthogonal. Therefore, the estimates

of the effects βj and γj are asymptotically uncorrelated. The effects become orthogonal,

really separating the content-related effect and the response style effect.

6.5. Implementation and Available Programs

The model can be estimated and evaluated by use of the the flexible R package VGAM (Yee,

2010; Yee, 2014), which has also be used in estimation and testing of our applications.

Function vglm() allows to estimate so-called vector generalized linear models (Yee and

Wild, 1996). The extended RSRS model can be seen as a special case of this general family

of models. One has to use the family function acat(reverse=FALSE), which specifies the

link function that corresponds to the adjacent categories model in the ordering considered

here. The argument parallel=FALSE∼1 ensures that only intercepts are category-specific.
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When using the function one has to distinguish between x- and z-variables. The x-variables

are not category-specific whereas the z-variables represent a special case of category-specific

covariates for which only the sign differs for categories below and above the middle category.

For category-specific covariates one takes advantage of the argument xij. One just has to

specify the design matrices by including the z-variables in the specific form of models (6.2)

and (6.3) and estimation of the extended model by vglm() is obtained. An R function

that automatically generates the design matrix and estimates the model is available upon

request. Embedding the estimation procedure into the framework of VGAM also has the

advantage of quite fast computation. For more details see Appendix D.

6.6. Further Applications

Finally, we give the results of two further real data examples, which illustrate the applica-

bility of the RSRS model.

6.6.1. Healthcare

As a second application we use data from the ALLBUS, the general social survey of

social science carried out by the German institute GESIS. They are available from

http://www.gesis.org/allbus. For our analysis we consider data from 2012 consisting of

2899 persons. The response is the confidence in the health care system measured on a

scale from 1 (no confidence at all) to 7 (excessive confidence). Explanatory variables that

we include in our model are: gender (0: male, 1: female), income in thousands of Euro,

age in decades and the medical condition of the person on a scale from 1 (very good) to

5 (bad). Again we estimated a simple adjacent categories model and the extended model

where all covariates were allowed to have content-related and response style effect. In a

second step we refitted the model including only the covariates with a significant effect in

each part. The estimated coefficients and the corresponding standard errors are given in

Table 6.2. Concerning variable selection covariate gender and income are excluded from

the x-variables and covariate age is excluded from the z-variables. The likelihood ratio test

statistic for the global hypothesis H0 : γ = 0 is 44.6 on 8 degrees of freedom. Thus, response

style effects should not be neglected. The ordinal predictor medical condition with refer-

ence “very good“ has significant content-related effects as well as significant response-style

effects. Figure 6.10 shows the tuple (eγ̂j , eβ̂j) of the extended model including pointwise

confidence intervals represented by stars. The estimated coefficients show that the confi-

dence in the health care system decreases with deteriorating medical condition. In addition

there is a significant tendency to choose extreme categories for persons with a bad medical
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Table 6.2.: Parameter estimates and standard errors for the healthcare data.

Covariates Extended Adjacent
Adjacent

estimate se estimate se

Content-related effects Age 0.0694 0.0168 0.0702 0.0168
(x-variables) Age2 0.0206 0.0043 0.0225 0.0044

Age3 -0.0052 0.0024 -0.0055 0.0022

Good -0.0073 0.0472 -0.0416 0.0414
Mostly Good -0.1621 0.0479 -0.1499 0.0446
Partly Good -0.2663 0.0548 -0.2491 0.0543
Bad -0.3011 0.0718 -0.2834 0.0788

Response style effects Gender 0.1380 0.0434
(z-variables) Income 0.0733 0.0238

Income2 -0.0071 0.0030
Income3 0.0001 0.0001

Good 0.1263 0.0676
Mostly Good -0.0356 0.0685
Partly Good -0.1602 0.0822
Bad -0.3140 0.1172

condition. For females compared to males there is a significant tendency to middle cate-

gories. The explanatory variables income and age contain also quadratic and cubic terms.

Figure 6.11 shows the estimated non-linear effects of content (first row) and response style

(second row). The covariate income has no significant effect on the confidence. However,

with increasing income there is an increasing tendency to middle categories. The effect

is not far from being linear but the quadratic and cubic term are significant. Concerning

age, the confidence in the health care system decreases up to age 40 and increases between

40 and 80. The decrease after 80 should not be over-interpreted since it is based on few

observations. There seems to be no effect of age on the response style (given the other

covariates). We do not show the two-dimensional curves for this example because they are

not informative.

6.6.2. Motivation of Students

As a third example we consider data from a student questionnaire. It has been evaluated

what effect the expectation of students for getting an appropriate job has on their moti-

vation. The response is the effect on motivation on a scale from 1 (often negative) to 5
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Figure 6.10.: Visualization of estimated effects of covariate medical condition for the healthcare
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166 6. Modelling of Extreme Response Styles in Rating Scales

Table 6.3.: Data from a student questionaire.

Effect on motivation
Subject Often Sometimes None or Sometimes Often
Area negative negative mixed positive positive

Psychology 9 26 53 8 6
Physics 8 22 100 20 6
Teaching 26 20 35 0 4

(often positive) with intermediate values ”sometimes negative/positive” and no effect. For

our analysis we use data from 343 students from the subject areas psychology, physics and

teaching serving as explanatory variable. The data is given in Table 6.3. Overall there is a

strong preference for the middle categories, which is characteristic for this sort of question.

The comparison of the simple adjacent categories model and the extended model yields the

likelihood ratio test statistic 6.14 on 2 degrees of freedom. Thus, response style effects again

should not be neglected. The estimated coefficients for both models are given in Table 6.4,

a visualization of the effects of the extended model including pointwise confidence intervals

is shown in Figure 6.12, where subject “teaching“ was chosen as reference category.

The estimates in the content-related part of the model show that students of psychology

and physics see more positive effects on their motivation than students of the teaching

profession. In fact job prospects for students of the teaching profession are poor nowadays.

The estimated response style effects show a significant tendency to middle categories for

students of physics as compared to students of the teaching profession.

A comparison of the content-related effects in Table 6.4 for the simple and the extended

model shows that the estimates of the simple model are considerably larger. Thus one

observes a positive bias in the estimated β-coefficients of the x-variables when ignoring

response-style effects. One reason for the positive bias is the peculiar distribution of the

data. Table 6.3 shows that most observations are in the middle category (none or mixed) and

at the same time there is a general shift to the left or to low categories. Therefore, ignoring

the tendency to the middle category leads to an overestimation of the β-coefficients.

6.7. Extensions and Comparison with Alternative

Approaches

In the following we shortly sketch possible extensions of the proposed modelling approach.

The first concerns the handling of non-linear effects. If one has continuous covariates
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Table 6.4.: Parameter estimates and standard errors for the student questionaire.

Covariates Extended Adjacent
Adjacent

estimate se estimate se

Content-related effects Psychology 0.4462 0.1867 0.6338 0.1688
(x-variables) Physics 0.6616 0.1821 0.8798 0.1633

Response style effects Psychology 0.2147 0.2308
(z-variables) Physics 0.5259 0.2226
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Figure 6.12.: Visualization of estimated effects of covariate subject area for the student question-
aire.

one can replace the linear term xTβ by an additive term fC
1 (x1) + · · · + fC

p (xp) and the

linear term zTγ by fR
1 (z1) + · · · + fR

q (zq), where fC
j (·), fR

j (·) are unspecified functions.

In the illustrative example we already considered the effects as functions but they were

restricted to be polynomials. Within the more general framework of additive modelling the

functions can be considered as unknown without being specified as polynomials. Typically

the unknown functions are approximated by an expansion in basis functions. For example,

one assumes fC
j (x) =

∑M
r=1 βjrφjr(x), where φjr are fixed basis functions, for example,

Gaussian kernels or B-splines. The latter has been propagated, in particular, by Eilers

and Marx (1996). Then one estimates the parameters βjr, which can be estimated in the

usual way because the influential term is linear in the parameters. One option is to use few

basis functions, for example, four to six and estimation will still be stable. A more flexible
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approach is to use many basis functions, say 40, but use penalization techniques that still

allow to estimate the larger number of parameters. When the basis functions are chosen as

B-splines one obtains the so-called penalized splines (P-splines), for details see Eilers and

Marx (1996). By adapting these smoothing methods to the current problem the modelling

of response styles can be extended to include additive terms in the tradition of generalized

additive models (Hastie and Tibshirani, 1986). We do not consider the approach in detail

because it involves more advanced penalization techniques, which might detract from the

main contents in this chapter.

There are several modelling approaches to response styles that have been proposed, in par-

ticular in item response theory. A traditional way to account for differences in the use

of rating scales are mixture models. For example, Eid and Rauber (2000) investigated

measurement invariance in organizational surveys by using the polytomous mixed Rasch

model. The basic assumption is that the whole population can be subdivided into dis-

junctive latent classes yielding parameters that are linked to the classes. Typically one

fits models with two or three classes obtaining class-specific parameters that have to be

interpreted. As Eid and Rauber (2000) demonstrated when fitting a model with two latent

classes the classes might represent different response styles. The main difference to the

approach propagated here is that response styles are not explicitly modelled. The resulting

classes can represent extreme response styles or a tendency to the middle categories but do

not have to. It might occur that no specific pattern referring to response styles is found

for the latent classes. Although finite mixture models are an interesting approach to model

heterogeneity, in particular the number of latent classes is not so easy to determine, and

if one fits a model with more classes one might obtain quite different estimates and there-

fore different interpretations. Similar problems are found for the class of multidimensional

extensions of response models that account for response styles as considered, for example,

by Bolt and Johnson (2009). By including further latent traits in the predictor one obtains

multidimensional models. The additional traits can represent response styles. Again the

difference is that response styles are not explicitly searched for. Of course one might see

this as an advantage. However, there is again some arbitrariness concerning the number of

latent traits and the interpretation. The arbitrariness is augmented if the estimates have

to be rotated (see for example, Bolt and Johnson, 2009), to obtain a simple interpretation.

If one suspects different response styles we find it more attractive to model them explicitly.

If one accounts for them by construction one can see if they are present or not. In the next

section we introduce possible extensions of the proposed model to item response data.

More explicit modelling of response styles is found in tree type models as considered, for

example, by Thissen-Roe and Thissen (2013) and more recently by Jeon and De Boeck

(2015). The models assume a sequential decision model. In a first stage it is distinguished

between a positive and a negative response, in subsequent steps the strength of the response

is determined. Models of this type can be seen more general as nested models (Suh and Bolt,
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2010). For ordinal responses with covariates they have been used earlier by Tutz (1989).

The models are similar in spirit to the approach proposed here, they model response styles

by parameters and have to distinguish between odd and even number of categories. The

main differences are in the sequential decision procedure and the parameterization. In step

models one assumes 1PL or 2PL models for the separate steps. In the approach considered

here there is no sequential mechanism assumed and the parameters are embedded into an

adjacent categories model.

Finally, we want to mention approaches to validate the interpretation of response style.

In the case of several items this may be done by either selecting two item subsets that

are weakly or unrelated (Moors, 2003; Moors, 2004) or use many items (Johnson, 2003;

Van Herk et al., 2004) that are unrelated (Baumgartner and Steenkamp, 2001; Clarke, 2001;

Weijters et al., 2010). This allows researchers to be certain that a persistent tendency across

unrelated items can be ascribed to style (unrelated to item content). In our approach only

one item is used to detect response styles but the model is constructed in a way to pick up

the response style linked to the particular question that is asked.

6.8. Response Styles for Several Items

The model considered here by construction disentangles the effects of response style and

content for one item. However, the basic concept to include a subject-specific term (added

for response categories r = 1, . . . ,m−1 and subtracted for categories r = m, . . . , k−1 if k is

odd) can also be used when one wants to model the response style for more than one item.

A common choice to model ordinal item response data is the partial credit model (PCM)

proposed by Masters (1982). We will now introduce possible extensions of the proposed

RSRS model for several items by use of the PCM. For simplicity we assume that the number

of categories is equal across items.

Let Ypi ∈ {1, . . . , k}, p = 1, . . . , P , i = 1, . . . , I denote the ordinal response of person p on

item i, than the PCM assumes for the probabilities of adjacent categories

log

(
P (Ypi = r + 1)

P (Ypi = r)

)
= ηpir = θp − δir, r = 1, . . . , k − 1, (6.7)

where θp is the person parameter and (δi1, . . . , δik) are the item parameters of item i.

Representation (6.7) shows that the model is locally (given response categories r − 1 and

r) a binary Rasch model with person parameters θp and item difficulty δir.
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For an odd number of categories k with middle category m = [k/2]+ 1 an extended partial

credit model that accounts for response styles has the form

ηpir = θp + γp − δir = θp − (δir − γp), r = 1, . . . ,m− 1,

ηpir = θp − γp − δir = θp − (δir + γp), r = m, . . . , k − 1,
(6.8)

where the additional person-specific parameter γp determines the response style. The ex-

tension is also straightforward for an even number of categories. The parameter γp can

be seen as a shifting of thresholds. If γp is positive one has a shifting of the thresholds

δir to the left for the disagreement categories yielding the new threshold δir − γp and a

shifting to the right for the agreement categories yielding the new thresholds δir + γp. The

effect is that categories in the middle have higher probabilities of being chosen, which is

the same as in model (6.2). If γp is negative one has the reverse effect. For γp → −∞ the

whole probability mass is in the categories 1 and k. In the same way as in model (6.2) and

(6.3) the additional parameter γp can be specified as a function of explanatory variables.

If one uses the linear term γp = z�
p α the proposed estimation procedure in Section 6.4 can

directly be used. Than one obtains estimates for the item difficulties, the person abilities

and the additional response style parameters.

An alternative strategy that is certainly more attractive is to model the heterogeneity of

persons by including an own subject-specific response style parameter. In order to reduce

the number of parameters one can use random effects, that is one assumes that the response

style parameters are drawn from a normal distribution γp ∼ N(0, σ2
γ). If the focus is on

valid estimates of the item parameters δir one can also use a distribution for the ability

parameters θp. Then one assumes a two-dimensional distribution N(0,Σ ), with variances

σ2
θ , σ

2
γ and a covariance σθγ . However, for the maximization of the corresponding marginal

likelihood specific estimation procedures are needed and have to be developed.

Another quite interesting generalisation is to let the response style depend on the item. In

many applications the assumption that it is the same for all items might be rather strong.

However, if the response style depends on items one gets an inflation of parameters that call

for regularization techniques or other novel estimation techniques. In summary, extended

partial credit models are certainly worth investigating but the investigation of the possible

models and the development of appropriate estimation tools need further research that is

beyond the scope of the present work.

6.9. Concluding Remarks

A model is proposed that simultaneously accounts for content-related effects and response

styles that have a tendency to middle or extreme categories. Thus content related effects
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can be studied without being influenced by the presence of specific response styles and vice

versa. In traditional ways to investigate extreme response styles, for example, by computing

an index for extreme response styles as the relative number of scores given on the extreme

categories as used among others by Bachman and O’Malley (1984) and Van Herk et al.

(2004) it is not known how the content-related effects are linked to the index. This is

avoided by simultaneous modelling.

A particular strength of the approach is that it provides an easy to use tool and may avoid

biased estimates. Of course it can not solve all the problems connected to rating scales.

For example, it does not address problems linked to the number of response categories and

response category labels (Weijters et al., 2010) or the tendency to show greater acquiescence

(Baumgartner and Steenkamp, 2001) but can ameliorate some of the effects that come with

specific response styles. Since researchers should ”do whatever they can to control for

response styles” (Van Vaerenbergh and Thomas, 2013) an easy to use tool should also be

used.





7. Varying Dispersion in Cumulative

Regression Models

7.1. Introduction

Since the seminal paper of McCullagh (1980) ordinal regression models have been widely

applied in various fields of research, see, for example, Liu and Agresti (2005) and Agresti

(2009). An important class of ordinal regression models is the class of cumulative models.

The most prominent example is the proportional odds model, which will be considered

exemplarily in the following before considering general cumulative models.

Let Yi ∈ {1, . . . , k}, i = 1, . . . , n denote the response and xi a vector of explanatory vari-

ables. Then the basic form of the proportional odds model is given by

log

(
P (Yi ≤ r|xi)

P (Yi > r|xi)

)
= θr + xT

i β, r = 1, . . . , k − 1, (7.1)

where βT = (β1, . . . , βp). An attractive feature of the model is the simple interpretation

of parameters, which results from the proportional odds property. This property is seen

from considering two sets of explanatory variables x, x̃ and the corresponding cumulative

odds γ(r|x) = P (Y ≤ r|x)/P (Y > r|x) and γ(r|x̃) = P (Y ≤ r|x̃)/P (Y > r|x̃). Simple

derivation shows that the proportion of the cumulative odds for the two sets of variables is

given by
γ(r|x)
γ(r|x̃) = exp((x− x̃)Tβ),

and therefore does not depend on the category r. Consequently, the interpretation of

parameters does not depend on the category. More concise, exp(βj) represents the factor

This chapter is a modified version of Tutz and Berger (2016b). For more information on the personal
contributions of the authors and textual matches, see page 10.
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Table 7.1.: Quality of right eye vision in men and women.

Vision Quality
Highest (1) 2 3 Lowest (4)

Men 1053 782 893 514
Women 1976 2256 2456 789

by which all the cumulative odds P (Y ≤ r|x)/P (Y > r|x) change if variable xj increases

by one unit.

The simple interpretation gets lost in an extended version of the model in which parameters

are category-specific. That means the predictor ηir = θr + xT
i β in model (7.1) is replaced

by ηir = θr + xT
i βr. The corresponding partial proportional odds model frequently shows a

better fit to the data but interpretation of parameters is more difficult. Moreover, severe

restrictions are postulated. While the simple proportional odds model only postulates the

ordering of the intercepts θ1 ≤ · · · ≤ θk−1 the extended version postulates θ1 + xT
i β1 ≤

· · · ≤ θk−1 + xT
i βk−1 for all values xi, which can severely restrict the possible values of

explanatory variables. Therefore, often simple Fisher scoring does not work and estimation

of parameters fails. For special link functions the cumulative model is equivalent to the

sequential model, which allows to avoid the ordering of thresholds, see Tutz (1991) and,

more recently Peyhardi et al. (2015). The class of partial proportional odds models has

been investigated in particular by Brant (1990), Peterson and Harrell (1990) and Bender

and Grouven (1998), graphical checks were proposed by Kim (2003) and Liu et al. (2009).

Despite its disadvantages the partial proportional odds model is often used if the fit of the

proportional odds model is unsatisfactory. However, the lack-of-fit can also be caused by

an insufficient modelling of dispersion effects. This chapter focussed on the modelling of

varying dispersion in ordinal regression. The proposed model is related to the extended

adjacent categories model developed in Chapter 6 to account for response styles.

For illustration let us consider a simple example that has already been used by McCullagh

(1980). Table 7.1 shows Stuart’s (1953) quality of right eye vision data for men and women.

From the data it is obvious that women are more concentrated in the middle categories

while men have relatively high proportions in the extreme categories. By construction the

proportional odds model and other cumulative models without dispersion effects are not

able to capture the different variability of subpopulations.

Ignoring dispersion effects is less severe in linear models. Varying dispersion, which for

linear models is called heteroscedasticity, affects the precision of least squares estimates

but they are still unbiased. However, ordinal regression models are non-linear models. For

this class of models biased estimates are to be expected if dispersion is not modelled. In
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general, the modelling of variability is much harder than the modelling of the mean of the

response. For ordinal responses an additional difficulty is that one can not use the variance

of a univariate response because the response is multinomial and therefore multivariate.

Although categories are ordered treating it as an univariate response would mean to ignore

the scale level.

Here a model is proposed that models dispersion by including special effects in the linear

predictor, which yields a model that can be estimated within the generalized linear model

framework. The estimation procedure is strongly related to the one applied in Chapter 6.

In Section 7.2 the model is introduced and an illustrative application is given. Tools for

the estimation parameters and inference are provided in Section 7.3. Section 7.4 contains a

detailed application. In Section 7.5 the model is compared to the location-scale model and

consequences of ignored dispersion effects are briefly considered. After the consideration

of non-symmetric responses in Section 7.6, in Section 7.7 alternative strategies to model

ordinal response data by including category-specific effects are discussed and compared in

further applications.

7.2. Separating Location and Dispersion

In this section we briefly show how cumulative ordinal models, which include the pro-

portional odds model, and the extended location-scale model can be motivated from an

underlying metric response model. Then we consider the model with shifted thresholds,

which handles dispersion in a quite different way.

7.2.1. Cumulative Type Models for Ordinal Responses

Cumulative type models like the proportional odds model can be motivated by latent vari-

ables. The basic assumption is that the observed categories represent a coarser (categorical)

version of an underlying (continuous) regression model. Let Ỹi be an underlying latent vari-

able that follows a regression model:

Ỹi = −xT
i β + εi,

where εi is a noise variable with continuous distribution function F . Furthermore, let the

link between the observable categories and the latent variable be given by

Yi = r ⇔ θr−1 < Ỹi ≤ θr,

where −∞ = θ0 < θ1 < · · · < θk = ∞ are thresholds on the latent scale.
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One obtains immediately

P (Yi ≤ r|xi) = P (−xT
i β + εi ≤ θr) = P (εi ≤ θr + xT

i β) = F (θr + xT
i β).

The model is essentially a univariate response model since it is assumed that a univariate

response Ỹi is in the background. The response Yi is just a coarser version of Ỹi where the

thresholds θr determine the preference for categories and the covariates produce a shifting

on the latent scale. If F (·) is chosen as the logistic distribution function one obtains the

proportional odds model (7.1).

A model that accounts for additional dispersion is obtained by assuming for the latent

variable Ỹi = −xT
i β + τxi

εi, where τxi
is the variance of the underlying regression model,

which may depend on xi. The corresponding cumulative model with dispersion, also called

location-scale model, is given by

P (Yi ≤ r|xi) = F

(
γ0r + xT

i β

τxi

)
, r = 1, . . . , k − 1, (7.2)

see McCullagh (1980). In cases where the concentration in response categories varies across

populations, the model is more appropriate than the simple cumulative model. The simple

cumulative model is based on the underlying continuous regression model Ỹi = −xT
i β+ εi,

where the distribution of εi does not depend on xi. Thus the model assumes that with

varying xi the probability mass is merely shifted on the latent scale, therefore xT
i β is often

called the location effect. If the probability mass is more concentrated in one population

and spread out in other populations, the simple cumulative model is unable to model the

varying dispersion. The inclusion of a variance that varies over populations can capture

this effect. Since the model includes a shifting and a dispersion or scaling effect it is often

called a location-scale model.

One has to find appropriate ways to link the dispersion parameter to covariates. For

example, one can use τxi
= exp(xi

Tγ), which makes τxi
positive. However, the model is

highly non-linear and one is no longer within the framework of (multivariate) generalized

linear models. Special software is needed to fit the model. For example, Cox (1995) used

non-linear regression programs available in SAS. For further investigation of the model see

also Nair (1987) and Hamada and Wu (1990).

7.2.2. Modeling Dispersion by Shifted Thresholds

In the following an alternative way to account for varying dispersion is proposed. Let us

consider first the case with an even number of response categories k. Then m = [k/2] splits

the response categories into equally sized sets {1, . . . ,m} and {m+1, . . . , k}. Moreover, it is
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assumed that the ordered categories refer to a symmetric response, for example by categories

of agreement as strongly disagree, moderately disagree,..., moderately agree, strongly agree.

Let zi be an additional vector of explanatory variables, which can be identical to xi but

does not have to.

Let now the thresholds in the proportional odds model be determined by

θr = β0r − zT
i α, r = 1, . . . ,m− 1,

θm = β0m,

θr = β0r + zT
i α, r = m+ 1, . . . , k − 1.

That means the center threshold θm remains fixed, but lower and upper thresholds are

shifted by δi = zT
i α. If δi is positive the intervals defined by thresholds are widened,

indicating weaker dispersion, if δi is negative the intervals are shrunk, indicating stronger

dispersion. With πi(r) = P (Yi ≤ r|xi, zi) the model has the form

πi(r) = F (β0r + xT
i β − zT

i α), r = 1, . . . ,m− 1,

πi(m) = F (β0m + xT
i β),

πi(r) = F (β0r + xT
i β + zT

i α), r = m+ 1, . . . , k − 1.

Since it is composed of a location component and a shifting of thresholds it is called the

location-shift model. It is easily derived that P (Yi = m|xi, zi) + P (Yi = m + 1|xi, zi) =

F (β0,m+1 + xT
i β + δi) − F (β0,m−1 + xT

i β − δi). Therefore if δi → ∞ one obtains P (Yi =

m|xi, zi)+P (Yi = m+1|xi, zi) → 1, which means a tendency toward the middle categories

and therefore weak dispersion. In contrast, strong dispersion (δi → −∞) means a tendency

towards the extreme categories, which can also be interpreted as extreme response style

(compare Chapter 6).

The effect of the additional term δ = zTα is illustrated in Figure 7.1 for a response with

k = 8 categories and a binary covariate x ∈ {−1, 1} with β = 1. We set x = z and chose

θ1 = −3, θ2 = −2, . . . , θ6 = 2, θ7 = 3. Figure 7.1 shows the distribution of probabilities

without dispersion (α = 0) and with dispersion effects α = 0.4 and α = −0.4. It is seen

that for α = 0.4 the distribution is more concentrated in the middle if x = 1 and stronger

dispersed if x = −1 when compared to the baseline distribution (first row). For α = −0.4

one sees the reverse effect, stronger dispersion if x = 1 and more concentration in the middle

if x = −1.
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Figure 7.1.: Probability distribution of a response with eight categories for several values of α.

Effects and Interpretation of Parameters

Let first x and z be distinct. It is easily derived that then the proportional odds assumption

still holds for the x-variables With γ(r|x, z) = P (Y ≤ r|x, z)/P (Y > r|x, z) denoting the

cumulative odds for category r one obtains for two sets of explanatory variables x, x̃

log

(
γ(r|x, z)
γ(r|x̃, z)

)
= (x− x̃)Tβ.

Therefore the proportion of cumulative odds γ(r|x, z) and γ(r|x̃, z) are the same for all

categories r. A consequence is that the parameter βj from the vector βT = (β1, . . . , βp) is

given by

eβj =
γ(r|(x1, . . . , xj + 1, . . . , xp), z)

γ(r|(x1, . . . , xj, . . . , xp), z)
. (7.3)

That means, if xj increases by one unit the cumulative odds for each category change by

the factor eβj . For eβj > 1 the increase of variable xj favors low response categories. Thus

the main advantage of the proportional odds model, namely, the simple interpretation of

parameters, is kept.
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For the z-variables the interpretation is different. One obtains for two sets of explanatory

variables z, z̃

log

(
γ(r|x, z)
γ(x, z̃)

)
=

{
−(z − z̃)Tα, r ∈ {1, . . . ,m− 1}
(z − z̃)Tα, r ∈ {m+ 1, . . . , k − 1}.

Thus for αj from the vector αT = (α1, . . . , αq) one obtains

e−αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))

γ(r|x, (z1, . . . , zj, . . . , zq)) , r ∈ {1, . . . ,m− 1},

eαj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq)

γ(r|x, (z1, . . . , zj, . . . , zq)) , r ∈ {m+ 1, . . . , k − 1}.

That means, if zj increases by one unit the cumulative odds for categories r < m change by

the factor e−αj and for categories r > m by the factor eαj . For αj > 0 the increase of variable

zj decreases the cumulative odds for categories r < m and increases the cumulative odds for

categories r > m, which means that the response probabilities for extreme categories get

smaller. The effect is not a shifting of the probability mass of the response but a stronger

concentration in the middle.

If x = z the interpretation of parameters is similar. For simplicity we consider an one

dimensional x. It is immediately seen that

eβ =
γ(m|x+ 1)

γ(m|x) .

Thus eβ represents the odds ratio for categories smaller or equal m if x increases by one

unit. It corresponds to the parameter in a binary logit model that distinguishes between

categories {1, . . . ,m} and {m+ 1, . . . , k}. For the other cumulative odds one obtains

γ(r|x+ 1)

γ(r|x) =

{
eβe−α, r ∈ {1, . . . ,m− 1}
eβeα, r ∈ {m+ 1, . . . , k − 1}. (7.4)

Thus e−α and eα modify as factors the basic preference for categories from {1, . . . ,m} or

{m + 1, . . . , k}. For symmetric categories as considered here one obtains a more intuitive

form by using for large categories the complementary odds defined by γ̃(r|x) = P (Y ≥
r|x)/P (Y < r|x), which give the odds for categories larger or equal r. They are linked

to the usual cumulative odds by γ̃(r|x)−1 = γ(r − 1|x). One obtains for categories r ∈
{m+ 1, . . . , k}

γ̃(r|x+ 1)

γ̃(r|x) = e−βe−α, r ∈ {m+ 1, . . . , k − 1}.
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Thus the scaling factor that modifies the basic preference is again e−α. If one considers, for

example, only the extreme categories one has

γ(1|x+ 1)

γ(1|x) = eβe−α and
γ̃(k|x+ 1)

γ̃(k|x) = e−βe−α.

Thus the modification of the odds for category 1 as compared to all other categories and

the odds for category k as compared to all other categories (the complementary cumulative

odds) are both modified by the factor e−α, which means for α > 0 that both are shrunk by

the factor e−α.

The parameter α itself is given by

e−2α =
γ(s|x+ 1)/γ(s|x)
γ(r|x+ 1)/γ(r|x) =

γ(s|x+ 1)γ̃(r|x+ 1)

γ(s|x)γ̃(r|x)

for any s < m, r > m. The product γ(s|x)γ̃(r|x) is a measure for the concentration of the

probabilities in extreme categories. It is large if the probabilities of extreme categories are

large. Therefore, e−2α represents the change of the concentration in extreme categories if x

increases by one unit.

Eye Vision Example

Let us consider the simple quality of eye vision example from Table 7.1. The fitted values of

the simple proportional odds model and for the location-shift model with dispersion effect

are shown in Table 7.2. It is seen that in both models the location effect (β̂ = −0.038 and

β̂ = 0.042) is rather weak and not significant at the 0.05 level. In contrast the dispersion

parameter in the model with dispersion α̂ = 0.353 can definitely not be neglected. The

deviance of the proportional odds model is 128.39 on 2 df but reduces to 5.896 on 1 df for

the model with location and dispersion effect. The estimated shrinkage factor is e−α̂ = 0.70,

which means that for females the odds for the extreme categories 1 and 4 are shrunk by

the factor 0.70 when compared to males.

Model for an Odd Number of Response Categories

Let now categories refer to a symmetric response with categories of agreement as strongly

disagree, moderately disagree,..., moderately agree, strongly agree but with a neutral cat-

egory in the middle. Then the number of categories k is an odd number. The model
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Table 7.2.: Parameter estimates, standard errors and z-values for the eye vision data.

Covariate Proportional Odds Model Location-Shift Model
estimate se z value estimate se z value

Intercept1 -0.905 0.034 -26.613 -0.721 0.037 -19.397
Intercept2 0.293 0.033 8.911 0.236 0.033 7.104
Intercept3 2.005 0.039 50.398 1.710 0.045 37.563
gender-location -0.038 0.038 -1.003 0.042 0.038 1.109
gender-dispersion 0.353 0.031 11.348

with a dispersion component has the same basic structure but now one parameterizes for

m = [k/2] + 1, which denotes the middle category,

θr = β0r − zT
i α, r = 1, . . . ,m− 1,

θr = β0r + zT
i α, r = m, . . . , k − 1.

The interpretation is similar as in the case with an even number of response categories. For

eβj one obtains the same interpretation, that is, (7.3) is still the same. Also for the scaling

parameters one obtains the same values, but they hold for different response categories.

One obtains

e−αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))

γ(r|x, (z1, . . . , zj, . . . , zq)) , r ∈ {1, . . . ,m− 1},

eαj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq)

γ(r|x, (z1, . . . , zj, . . . , zq)) , r ∈ {m, . . . , k − 1}.

The same holds for (7.4), which is still valid but for accordingly modified categories.

7.2.3. Shifting of Thresholds with Scaling

In the models considered in the previous sections the thresholds have been shifted away

from the middle by the value δi = zT
i α. The effect is a widening of the middle category if

k is odd and of the two categories in the middle if k is even. However, the other categories

have not been widened. Alternatively one can understand dispersion as a widening of all

the categories by using scale values for the widening of the intervals between two thresholds.

Let us consider again the case k even and m = [k/2].
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Let the thresholds be determined more generally by

θr = β0r − srz
T
i α, r = 1, . . . ,m− 1,

θm = β0m,

θr = β0r + srz
T
i α, r = m+ 1, . . . , k − 1.

where sr are scale values that reflect the distance between categories r and m. A simple

choice is s1 = . . . = sk−1 = 1, which yields the model used in the previous section.

A particularly attractive choice of scales is obtained by shifting of the thresholds propor-

tional to the distance from the middle threshold. Then one uses sr = m−r for r = 1, . . . ,m

and sr = r −m for r = m+ 1, . . . , k − 1 to obtain the model

πi(r) = F (β0r + xT
i β − (m− r)zT

i α), r = 1, . . . ,m,

πi(r) = F (β0r + xT
i β + (r −m)zT

i α), r = m+ 1, . . . , k − 1.
(7.5)

The effect is that the intervals between all thresholds are widened by the value δi = zT
i α.

In the case of four response categories the model with scaling is equivalent to the basic

model without scaling. However, for more than four categories the models differ. We will

refer to the model (7.5) as the model with scaling.

The interpretation of parameters is similar to the interpretation of parameters in the basic

model. If x and z are distinct (7.3) still holds, which means, if xj increases by one unit

the cumulative odds for each category change by the factor eβj . For the α-parameters one

obtains

e−(m−r)αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))

γ(r|x, (z1, . . . , zj, . . . , zq)) , r ∈ {1, . . . ,m},

e(r−m)αj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq)

γ(r|x, (z1, . . . , zj, . . . , zq)) , r ∈ {m+ 1, . . . , k − 1}.

For adjacent categories holds

eαj =
γ(r|x, (z1, . . . , zj + 1, . . . , zq))/γ(r|x, (z1, . . . , zj, . . . , zq))

γ(r − 1|x, (z1, . . . , zj + 1, . . . , zq))/γ(r − 1|x, (z1, . . . , zj, . . . , zq)) .

In the case x = z, one obtains now

γ(r|x+ 1)

γ(r|x) =

{
eβe−(m−r)α, r ∈ {1, . . . ,m}
eβe(r−m)α, r ∈ {m+ 1, . . . , k − 1}.
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In particular for middle category m one obtains again

eβ =
γ(m|x+ 1)

γ(m|x) .

For positive α the value e−(m−r)α is smaller than 1, which means it is a shrinkage factor

for categories r < m. The value e(r−m)α is greater than 1 and therefore increases the odds

ratios for large r.

For the case k odd widening of the intervals between thresholds by a fixed value is more

difficult. Let again m = [k/2] + 1 denote the the middle category. The widening of the

intervals by the value δi = zT
i α is obtained by

θr = β0r − [(m− r − 1) + 1/2]zT
i α, r = 1, . . . ,m− 1,

θr = β0r + [(r −m) + 1/2]zT
i α, r = m, . . . , k − 1.

Again, for x and z distinct (7.3) holds and the interpretation of the β parameters are the

same.

7.3. Inference and Computation of Estimates

The strength of the proposed modelling of dispersion effects is that the resulting models

can be embedded within the framework of multivariate generalized linear models (GLMs).

That means they have the form

g(πi) = Xiβ or πi = h(Xiβ),

where πT
i = (πi1, . . . , πik) is the vector the of response probabilities with components πir =

P (Yi = r|xi), Xi is a design matrix constructed from the predictors xi and zi, β is the total

parameter vector, g = (g1, . . . , gk−1) : �k−1 → �
k−1 is a vector-valued link function and

h(·) = g(·)−1 is the response function. The components of the vector Xiβ are the linear

predictors (ηi1, . . . , ηi,k−1). For details of the representation as a multivariate GLMs see

Fahrmeir and Tutz (2001), Tutz (2012). Thus the whole machinery of multivariate GLMs,

including algorithms, can be used to obtain estimates and standard errors. Also testing of

effects, analysis of residuals and goodness-of-fit tests developed for GLMs can be used.

In a very similar way as for the model in Chapter 6, estimates can be obtained by using

the R package VGAM (Yee, 2010; Yee, 2014). The function vglm() allows to estimate various

multivariate GLMs (Yee and Wild, 1996). By appropriate specification of the design matrix

the proposed location-shift model with dispersion effects can be fitted by using vglm().

A proportional odds model as considered here can by specified by the family function
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cumulative(reverse=FALSE, parallel=FALSE∼1), where the second argument ensures

that only the thresholds are category-specific. In the location-shift model the z-variables

can be seen as a special case of category-specific covariates that differ according to a constant

factor (depending on the number of response categories and the type of shifting). For

the specification of category-specific covariates argument xij can be used when calling

vglm(). Estimates can easily be obtained after building the design matrix that includes

the z-variables in the specific form. An R function that automatically generates the design

matrix and estimates the model is available upon request.

7.4. Application: Confidence in the Federal Government

We consider data from the general social survey of social science, in short ALLBUS, a

study by the German institute GESIS. The data is available from http://www.gesis.org/

allbus. Our analysis is based on a subset containing 2935 respondents of the ALLBUS in

2012. On the basis of this data set the confidence in the healthcare system was already

analyzed in an application in Chapter 6. For the present investigation the response is the

confidence in the federal government measured on a symmetric scale from 1 (no confidence

at all/excessive distrust) to 7 (excessive confidence). As explanatory variables we consider

the gender (0: male, 1: female), the income in thousands of Euros, the age in decades

(centered at 50) with a linear and a quadratic term and the self reported interest in politics

from 1 (very strong interest) to 5 (no interest at all). For modelling we chose category

“no“ as reference. The deviance of the location-shift model (without scaling) is 10, 179.51.

For the model with scaled shifting of thresholds one obtains a remarkably smaller value

of 10, 140.91. Hence we will present results for the model with scaling. The likelihood

ratio test statistic for the null hypotheses H0 : α = 0 is 54.5 on 8 degrees of freedom and

therefore dispersion should definitely be taken into account.

The estimated coefficients and corresponding standard errors of the simple proportional

odds model and the location-shift model with scaling are given in Table 7.3. It is seen

that for both models the location effects of all four covariates should be included in the

model. The location-shift model typically yields estimates that are closer to zero. Among

the dispersion effects only the variables gender and political interest obtain large z-values

and seem to be needed in the model.

To simplify the interpretation of effects, Figure 7.2 shows the tupel (eα̂, eβ̂) for the linear

effects of the model with dispersion. The first value, eα̂, represents the multiplicative dis-

persion effect on the odds. For values larger than one one has larger dispersion, for values

smaller than one one has smaller dispersion than in the simple proportional odds model.

The second value, eβ̂, represents the multiplicative location effect on the odds obtained

by the shifting of the underlying continuous response model. For values larger than one



7.4 Application: Confidence in the Federal Government 185

Table 7.3.: Parameter estimates, standard errors and z-values for the government data.

Covariate Proportional Odds Model Location-Shift Model
estimate se z value estimate se z value

location effects Gender -0.157 0.068 -2.303 -0.138 0.069 -1.991
Income -0.076 0.021 -3.510 -0.076 0.025 -3.040
Age 0.076 0.019 4.009 0.079 0.019 4.127
Age2 -0.079 0.010 -7.680 -0.079 0.010 -7.703

Little -0.874 0.124 -7.071 -0.693 0.130 -5.311
Medium -1.129 0.114 -9.889 -0.960 0.121 -7.939
Strong -1.267 0.129 -9.843 -1.098 0.135 -8.143
Very Strong -0.892 0.148 -6.030 -0.745 0.154 -4.842

dispersion effects Gender 0.189 0.040 4.699
Income 0.013 0.013 1.024
Age -0.020 0.011 -1.776
Age2 0.005 0.006 0.872

Little 0.265 0.067 3.948
Medium 0.255 0.060 4.226
Strong 0.321 0.071 4.488
Very Strong 0.075 0.074 1.007

1.00 1.05 1.10 1.15 1.20 1.25 1.30

0.
80

0.
85

0.
90

0.
95

1.
00

●
Income

●

Gender
(female)

exp(α)

ex
p(

β
)

1.0 1.1 1.2 1.3 1.4 1.5 1.6

0.
4

0.
6

0.
8

1.
0

●
Very Strong

●
Strong

●
Medium

●
Little

exp(α)

ex
p(

β
)

●No

Figure 7.2.: Visualization of estimated effects for the government data including pointwise confi-
dence intervals.

small response categories are favored, for values smaller than one large response categories

are favored. The coefficients for gender and income are shown in the left panel, the coeffi-

cients for political interest are visualized in the right panel. In Figure 7.2 we also included

pointwise 95% confidence intervals that are represented by stars where the horizontal and
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Figure 7.3.: Non-linear location (left) and dispersion (right) effects for covariate age for the gov-
ernment data.

vertical lengths corresponds to the confidence intervals of eα̂ and eβ̂, respectively. From

the left panel it can be seen that females tend to choose higher response categories and

therefore show a higher confidence in the government than males. At the same time they

show smaller dispersion than males, responses are more concentrated in the middle. The

confidence also increases with increasing income. However, the dispersion effect is very close

to one and can be neglected. The right panel shows that the confidence is higher among all

respondents that had at least some political interest. Furthermore, respondents that did

not choose one of the extremes (“no“ or “very strong interest“) show reduced dispersion.

This could be interpreted as a response style, as considered in Chapter 6. People who tend

to choose middle categories have the same tendency in all questions.

For non-linear effects as the effect of age, star plots as in Figure 7.2 are not useful. Therefore,

in Figure 7.3 the fitted non-linear location (left) and dispersion (right) effects of the variable

age, denoted by floc(age) and fdis(age), are given as a function of age. The dispersion

effect is not significant, nevertheless, for illustration we show the corresponding curve. The

location curve in the left panel shows that confidence is weakest at about 55 years of age

but is definitely stronger for younger and older persons.

7.5. Comparison of Models and Consequences of Ignored

Dispersion

Varying dispersion can be modelled by the proposed location-shift model but also by the

location-scale model (7.2). In the location-shift model the dispersion is modelled by an

explicit shifting of the thresholds which is determined by the parameter α. In the location-

scale model the dispersion is generated by the variance τx = exp(xTγ) of the underlying con-

tinuous regression model. The effect, determined by the parameter γ, is now multiplicative

on the thresholds since the predictor has the form ηr = γ0r exp(−xTγ) + xTβ exp(−xTγ).
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Figure 7.4.: Parameter estimates and deviances of model fits for sub samples of size n = 200 from
the eye vision data.

Moreover, the dispersion also modifies the location term. Although the models are not

equivalent in applications we found the differences in terms of goodness-of-fit can be rather

small.

For illustration we first consider the eye vision data example. We draw sub samples of

size n = 200 from the data set and computed the location effect, the dispersion effect

and the deviances of the location-scale (abbreviated by loc-scale) and the location-shift

(abbreviated by loc-shift) model. As it is seen from Figure 7.4 the estimates and deviances

of the two models show strong correlation. In particular the deviances of the two models

are very close. Therefore, in cases with almost no location effect the models yield similar

estimates and goodness-of-fit measures.

Since in the eye vision data example the data generating model is not known, we illustrate

the fitting in a small simulation study in which the data generating models are known.

We consider two binary covariates with βT = (0.5, 0.5), k = 5 response categories and

thresholds θr ∈ {−2, . . . , 2}. First data are generated by the location-scale model with

varying strength of dispersion in the first variable. Then the location-scale and the location-

shift model are fitted. The first row of Figure 7.5 shows the resulting deviances. In order to

match the strength of dispersion we computed the parameter α of the location-shift model

that shows approximately the same dispersion as the corresponding parameter γ of the

location-scale model. The relation between these two parameters is non-linear, large values

of α correspond to small values of γ. Then data were generated by the location-shift model

and again both models are fitted. The resulting deviances are shown in the second row of

Figure 7.5. It is seen that the deviances of the two models are quite close with just slightly

better fits of the data generating model. If, however, the dispersion is ignored and a simple

proportional odds model (abbreviated by no disp) is fitted, the fit suffers strongly.
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Figure 7.5.: Deviances of model fits for data generated by the location-scale model (first row) and
data generated by the corresponding location-shift model (second row).
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Figure 7.6.: Estimates of the location parameter β1 for data generated by the location-scale model
(first row) and data generated by the corresponding location-shift model (second row).

If strong variation is present the omission of corresponding effects might not only yield large

deviances but also reduce the accuracy of the estimates of the location effect. This effect is

illustrated by using the same data generating model as before but now with a focus on the

estimation of the first parameter. Figure 7.6 shows the estimates of the location effect β1.
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In the first row the location-scale model was the data generating model, in the second row

the location-shift model. It is seen that there is no bias if no dispersion effect is present.

However, with increasing dispersion the estimates are biased.

In both models we used β1 = 0.5. However, one should be aware that the parameters

cannot compared directly since they represent different effects in the two models. In the

location-scale model the predictor has the form ηr = γ0r/ exp(x
Tγ) + xTβ/ exp(xTγ). In

particular, the dispersion is also included in the location term. For a simple binary predictor

x ∈ {0, 1}, the location term is xTβ/ exp(xTγ) = xβ/ exp(xγ), which for x = 1 takes the

value β/ exp(γ). Thus, if one ignores the possible variation and fits a model that does not

account for it one estimates the parameter β/ exp(γ) instead of β. Therefore, if γ is positive

one can expect a bias towards zero, if γ is negative, one will overestimate the strength of

the location effect. This effect is seen from the first row of Figure 7.6. The bias can be

severe if γ is large, for example, if γ = 1.5, estimates are very close to zero, which is not

surprising since β/ exp(γ) = 0.5/4.48 = 0.11. In the location-shift model the tendency of

the bias is different. As is seen from the second row small values of α (stronger dispersion)

yield stronger location effects. For positive values of α the estimated effects are weaker

(α = 0.8), for large values of α (α > 2), however, even the sign of the effect changes. The

effects are similar if one considers negative values of β1 (not shown). Overall, it is seen that

ignoring dispersion effects may yield strongly biased estimates.

7.6. Non-Symmetric Responses

In the previous section we considered symmetric responses, which often occur in survey data

if the extent of the agreement to a statement is evaluated. However, also non-symmetric

responses may show dispersion that varies over sub populations.

7.6.1. Modelling Varying Dispersion in Non-Symmetric Responses

The dispersion modelled so far means varying variability centered at a middle category,

which is quite natural for a symmetric response. For non-symmetric responses one may

pick a category m and model the variability with a centering between m and m + 1 as in

model (7.5).

For distinct variables x and z the interpretation of the parameters is the same as in model

(7.5) because the derivation of the parameters does not depend on the chosen m. Thus

one has several models depending on the chosen category m. The goodness-of-fit of the

model measured by the deviance can be used to select a model. It turned out that the



190 7. Varying Dispersion in Cumulative Regression Models

estimated location effect β depends very weakly on the choice of m whereas the values of

the dispersion effects α do depend on m.

However, the case x = z is different. Then it does not matter which category m is chosen,

all models (7.5) with any fixed m are equivalent. The only difference is in the interpretation

of parameters. The equivalence is seen by transforming the parameters. Let β
(m)
r0 ,β(m) and

α(m) denote the parameters of the model (7.5) for fixed category m. It can be shown that

for two values m and l

β
(m)
r0 = β

(l)
r0 , r = 1, . . . , k − 1, α(m) = α(l), β(m) = β + (m− l)α(l).

That means, the intercepts and the dispersion parameters α do not depend on the choice

of m. The only parameters that depend on the choice of m are the β parameters, and

the transformation uses the α parameters. To obtain the interpretation as dispersion

parameters again a middle category is a good choice because one obtains

γ(r|x+ 1)

γ(r|x) =

{
eβe−(m−r)α, r ∈ {1, . . . ,m}
eβe(r−m)α, r ∈ {m+ 1, . . . , k − 1},

and in particular

eβ =
γ(m|x+ 1)

γ(m|x) .

That means eβ refers to the increase of x by one unit for the fixed category m and α is

determined by

e−α =
γ(r|x+ 1)/γ(r|x)

γ(r + 1|x+ 1)/γ(r + 1|x) .

7.6.2. Application: Knee Injuries

As an application we consider data from a clinical trial (n = 127) that investigates the effect

of a therapy on the recovery of knee injuries. The response is the pain during movement

measured on a scale from 1 (no pain) to 5 (severe pain), for more details see Tutz (2012).

We model the treatment effect (1: therapy, 0: placebo) and the effect of the covariate age

in years with a linear and a quadratic effect.

The estimated coefficients and corresponding standard errors for the simple proportional

odds model and the location-shift model with scaled shifting of thresholds and m = 3 are

given in Table 7.4. For the simple proportional odds model the deviance is 362.9 on 501

degrees of freedom and for the models with location and dispersion effects the deviance is

356.3 on 498 degrees of freedom. There are significant location effects for treatment and the

linear and the quadratic effect of age. Concerning the dispersion part only the treatment



7.7 Partial Proportional Odds Models versus the Modelling of Dispersion 191

Table 7.4.: Parameter estimates and standard errors and z-values for knee injury data.

Covariate Proportional Odds Model Loc-Shift Model (m=3)
estimate se z value estimate se z value

Intercept1 2.541 1.940 1.309 3.980 2.250 1.769
Intercept2 3.803 1.957 1.943 3.564 2.011 1.773
Intercept3 4.809 1.971 2.440 3.059 2.598 1.177
Intercept4 6.823 2.016 3.385 3.729 3.669 1.017

location effects Treatment 0.938 0.331 2.834 1.309 0.372 3.513
Age -0.372 0.129 -2.871 -0.345 0.149 -2.312
Age2 0.006 0.002 3.006 0.006 0.002 2.437

dispersion effects Treatment 0.636 0.254 2.508
Age 0.032 0.094 0.343
Age2 -0.001 0.002 -0.194

effect with estimate α̂treat = 0.636 seems to be relevant. The inclusion of dispersion effects

yields a stronger location effect of the variable treatment.

7.7. Partial Proportional Odds Models versus the

Modelling of Dispersion

If the proportional odds model does not fit the data well, one strategy is to introduce

category-specific parameters, which corresponds to use the partial proportional odds model.

The other option, which is proposed here, is to include dispersion effects. Both modelling

strategies will yield a better fit. In the following we briefly consider these two options.

An interesting case is the modelling of three response categories (k = 3) and x = z.

Then the two predictors of the location shift model are η1 = β01 + xTβ − xTα and η2 =

β02 + xTβ + xTα, which is the same as the reparameterized predictors ηr = β0r + xTβr,

where β1 = β − α and β2 = β + α. Therefore, the location-shift model is equivalent to

the partial proportional odds model. Nevertheless, there are some benefits when using the

location-shift parameterization. If the hypothesis H0 : αj = 0 holds the j-th variable has

global and not category-specific effects. The test result is immediately seen from the z−
or p-value of the corresponding parameter. Within the partial proportional odds model,

one has to test the hypothesis H0 : βj1 = βj2 to investigate if the j-th variable has global

effects, which typically makes refitting of the model under constraints necessary. This is

illustrated in a small example.
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Table 7.5.: Parameter estimates, standard errors and z-values for the retinopathy data.

Covariate Proportional Odds Model Location-Shift Model
estimate se z value estimate se z value

location effects SM -0.254 0.191 -1.328 -0.159 0.198 -0.802
DIAB -0.139 0.013 -10.368 -0.148 0.014 -10.524
GH -0.459 0.074 -6.175 -0.485 0.076 -6.324
BP -0.072 0.013 -5.357 -0.071 0.014 -5.204

dispersion effects SM 0.491 0.235 2.087
DIAB -0.037 0.016 -2.254
GH -0.101 0.092 -1.099
BP -0.007 0.015 -0.465

Covariate Partial Proportional Odds Model
estimate se z value

SM1 -0.405 0.205 -1.972
SM2 0.086 0.254 0.340
DIAB1 -0.129 0.014 -8.889
DIAB2 -0.166 0.018 -9.264
GH1 -0.435 0.080 -5.426
GH2 -0.535 0.097 -5.470
BP1 -0.068 0.014 -4.627
BP2 -0.075 0.017 -4.432

7.7.1. Application: Retinopathy

In a 6-year followup study on diabetes and retinopathy status reported by Bender and

Grouven (1998) the interesting question is how the retinopathy status is associated with

risk factors. The considered risk factor is smoking (SM = 1: smoker, SM = 0: non-

smoker) adjusted for the known risk factors diabetes duration (DIAB) measured in years,

glycosylated hemoglobin (GH), which is measured in percent, and diastolic blood pressure

(BP) measured in mmHg. The response variable retinopathy status has three categories (1:

no retinopathy; 2: nonproliferative retinopathy; 3: advanced retinopathy or blind). The

simple proportional odds model yields deviance 904.14, the model with category-specific

intercepts yields 892.45, the same as the the location-shift model. The difference, 11.69, on

4 df shows that at least some of the parameters should be category-specific. From the fitted

parameters of the location-shift model (Table 7.5) one sees immediately that smoking and

DIAB are susceptible of having category-specific effects but not GH and BP. This is not

seen from the estimates of the category-specific model.

The location-shift model also provides a different interpretation of the effects of smoking

and DIAB. In the location-shift model DIAB shows a strong shifting effect and also varying

dispersion. Smoking shows no significant shifting effect, also in the simple proportional
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Table 7.6.: Parameter estimates, standard errors and z-values for the election data.

Covariate Proportional Odds Model Location-Shift Model
estimate se z value estimate se z value

location effects Gender 0.628 0.088 7.137 0.583 0.091 6.391
Age -0.012 0.002 -4.385 -0.013 0.002 -4.425
Age2 0.001 0.001 5.041 0.001 0.001 4.966
College -1.419 0.095 -14.864 -1.466 0.105 -13.954
Home -0.410 0.096 -4.234 -0.432 0.097 -4.415
Length -1.134 0.149 -7.596 -1.212 0.155 -7.796

dispersion effects Gender 0.141 0.072 1.966
Age -0.001 0.002 -0.445
Age2 0.001 0.001 1.788
College 0.108 0.085 1.279
Home 0.176 0.077 2.266
Length 0.217 0.122 1.772

odds model the effect is not significant. In the category-specific model smoking for the first

split into categories 1 and {2, 3} seems to be substantial (z-value −1.972) but not for the

other split into categories {1,2} and 3. Within the location-shift model this is explained by

a different dispersion over response categories for smokers and non-smokers.

7.7.2. Application: Information about Politics

Finally, we consider an application in which the extension to category-specific effects seems

not necessary, however, dispersion effects are present. We use data from the American

National Election Study http://www.electionstudies.org/ containing 1790 respondents

from the study in 2000, see Jackman (2009). The response is on an ordinal rating scale that

represents the general level of information about politics and public affairs from 1 (very

low) to 5 (very high). The obtained level was assessed by the interviewer assigned to each

respondent. Explanatory variables are gender (0: male, 1: female), age (centered at 47),

college degree (College; yes/no), if the respondent or his family owns their home (Home)

and the length of the interview (on a log scale).

When fitting a simple proportional odds model one obtains 4891.198 on 7150 df. To evalu-

ate if effects are really global we fitted a model with category-specific effects. The difference

in deviances between the two models is 24.42 on 18 df. Therefore, one can assume that

no category-specific effects are needed and the simple proportional odds model seems ap-

propriate. However, one might also investigate if there are dispersion effects. We fitted a

location-shift model with only six additional parameters (dispersion effects) to obtain the
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Figure 7.7.: Visualization of estimated effects of the location-shift model for the election data
including pointwise confidence intervals.
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Figure 7.8.: Non-linear location (left) and dispersion (right) effects of the location-shift model for
the election data for covariate age.

deviance 4873.526 on 7144 df. When comparing to the simple proportional odds model

now one obtains a difference in deviances of 17.636 on 6 df, which indicates that dispersion

effects are present. The fitted parameters and corresponding z-values of the location-shift

model, given in Table 7.6, show that the location effects of all variables should be included

in the model. Among the dispersion effects the two variables gender and home seem to be

relevant. From Figure 7.7, which visualizes 95% confidence intervals, it is seen that females

seem to be less informed about politics and show weaker dispersion. Respondents who

own their home also show weaker dispersion but are better informed about politics. Figure

7.8 shows the non-linear effects of the variable age. The location curve (left panel) shows

that the level of information is highest at about 60 and much lower for younger and older

respondents.
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7.8. Concluding Remarks

An alternative model for the explicit inclusion of dispersion effects is proposed. In terms of

goodness-of-fit the model is frequently quite similar to the location-scale model. Neverthe-

less the model has some advantages. It can be embedded into the framework of generalized

linear models and therefore all the inference techniques and asymptotic results that have

been shown to hold for this class of models can be used. The interpretation of param-

eters differs from that of the parameters of the location-scale model. When interpreting

parameters of the location-scale model one typically refers to the underlying latent regres-

sion model. While the proportional odds model without dispersion can also be fitted and

interpreted without referring to the latent model, with dispersion, however, it seems un-

avoidable to refer to the latent model. In contrast, parameters of the location-shift model

can be interpreted straightforward in terms of log-odds.

We also investigated alternative modelling strategies. One may extend simple models with

global effect to more flexible models like the partial proportional odds model or examine if

dispersion effects as in the location-scale or location-shift model are present. The former

strategy may yield models that are much harder to interpret. Some authors argue that

simpler models as the proportional odds model are often to be preferred even if the fit

is not too good because the obtained first-order effects are often informative for overall

summaries that explain the most important dimension of an effect (Agresti, 2009). The

second strategy, investigating if dispersion effects are needed, has the advantage that the

first-order effects concerning the location are kept and summary measures concerning the

location are still available. In addition, if dispersion effects are present estimates of the

location effects will be less biased.





8. Conclusion and Outlook

This thesis is dedicated to regression models for categorical variables that either serve as the

responses or part of the covariates. In each chapter generalized linear models are adapted to

specific problems, which results in tailored solutions with high flexibility. In this concluding

chapter the most important results are summarized and possible further research is briefly

discussed.

Detection of Latent Groups

In the first part of the thesis an approach for the detection of latent groups in regression

models with an excessive number of parameters is discussed. The proposed model is com-

posed of two parts, a tree component and a linear or additive component. In accordance to

Chapter 2 the model containing a linear term and categorical predictors z has the form

ηi = tr(zi) + xT
i β.

For several categorical predictors the tree component tr(zi) is composed of single trees

for each variable. Therefore, the model is designed to find clusters of categories in single

components. Following the notation from Chapter 3 the corresponding model accounting

for heterogeneity in longitudinal or cross-sectional studies can be written as

ηij = xT
ijβ + tr(zij).

Again the model finds clusters of measurement units that share the same effect on the

response by treating each group-specific component in z separately. For models with

group-specific intercepts the tree component tr(zij), zij = 1 consists of one single tree only.

Extensive simulations and various applications demonstrate the potential of the methods.

Main advantages over competing methods are the improved clustering performance and the

computational efficiency.

A more general approach is to define a model with a tree component in the sense of tradi-

tional recursive partitioning as applied in Chapter 4 and Chapter 5. Let now x and z define

two sets of covariates that can be from different scales. Then the general model with predic-

tor η = x�β+ tr(z) can be composed of a familiar tree that is fitted for the z-variables and
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a familiar linear term that is fitted for the x-variables. Although the predictor of the model

is different from those in Chapter 2 and Chapter 3 the same strategies for the selection of

splits and the splitting decision can be applied. By construction the model includes relevant

interactions between the the z-variables and focusses on the main effects of the x-variables.

Therefore, if many covariates are available it might be quite challenging to decide which

ones to include in which part. Consequently, selection strategies to separate covariates with

a linear and smooth effect have to be developed. Similar modelling strategies with a focus

on specific applications have been proposed by Chen et al. (2007) and Yu et al. (2010).

Another quite interesting generalization is to exploit the flexible structure of the predictor

to model varying-coefficient models, see Hastie and Tibshirani (1993). Consider three

continuous covariates x1, x2 and x3. The simplest way to determine the response is to use

a regression model that includes only the main effects of the three variables. However, the

impact of x3 on the response might depend on x1. For example, the effect of x3 might be

different for two groups defined by x1 and a corresponding split-point c1. Then one yields

the model with predictors

ηi = β0 + xi1β1 + xi2β2 + β31xi3I(xi1 ≤ c1) + β32xi3I(xi1 > c1),

where β31 and β32 are the effects of variable x3 for the two groups defined by the so-

called effect modifier x − 1. Furthermore, if the effect of variable x3 in region {x1 ≤ c}
additionally depends on x2, a further split with regard to split-point c2 yields the two

daughters xi3I(xi1 ≤ c1)I(xi2 ≤ c2) and xi3I(xi1 ≤ c1)I(xi2 > c2). The resulting model

is composed of a linear component containing the main effects of x1 and x2, and a tree

component containing different effects of x3. The tree component represents subgroups

defined by x1 and x2 that differ with regard to their linear effect of x3. After several splits,

the predictor of the model can be written as

ηi = β0 + xi1β1 + xi2β2 + trxi1,xi2
(xi3).

At the same time it is also possible that the main effects of x1 or x2 depend on the respective

other variables. Consequently, for each variable that is modified one obtains a single tree.

The algorithm proposed in Chapter 2 can easily be adapted to this kind of models using

the same strategies for the selection of splits and the splitting decision. The algorithm

simultaneously detects the variables that have to be modified and the effect modifiers as well

as corresponding subgroups that are responsible. Moreover, the approach allows to combine

continuous and categorical effect modifiers. For continuous effect modifiers one typically

assumes smooth functions that can be modelled by splines, see, for example Hoover et al.

(1998) and Lu et al. (2008). Regularization methods for the selection of effect modifiers in

varying-coefficients models seem to be scarce, yet. A tree-based solution with the focus on

quality of life research in breast cancer studies was proposed by Su et al. (2011).



199

Modelling of Latent Traits

In the second part of this thesis item focussed trees for the detection of uniform and non-

uniform DIF are considered. The proposed methods simultaneously detect the items and

the corresponding subgroups of persons that are responsible for DIF. Chapter 4 focusses

on the detection of uniform DIF based on the Rasch model. The proposed model that

accounts for DIF has the closed form

ηpi = θp − tri(xp),

when person p and item i are considered. The tree component tri(xp) defines regions of

the covariate space that have to be distinguished with respect to their item difficulty. If an

item is free of DIF, it is compatible with the Rasch model and the constant tri(xp) = βi

is fitted. Various simulations and comparisons to competing methods illustrate the good

performance and the advantages of the proposed method.

As already outlined in Section 4.6, the proposed item focussed trees can straightforward

be extended to polytomous items by use of the PCM. By appropriate specification of the

design matrix the PCM can be embedded into the framework of multivariate generalized

linear models. Estimates can easily be obtained by use of the R-package VGAM (Yee, 2010;

Yee, 2014). Therefore, the basic algorithm described in Section 4.3.1 can be applied in

the same way. As before, the model yields a single tree for each DIF item. In the non-

homogeneous case one obtains a different set of item parameters for each node without any

restrictions on the parameters. This assumption is particularly interesting if one suspects

different response patterns among different groups. In the homogeneous case the difference

in item parameters is determined by a constant shifting. Further research is needed to set

up appropriate software and to investigate the performance, in particular, compared to the

method proposed by El-Komboz et al. (2014).

In Chapter 5 the logistic regression approach proposed by Swaminathan and Rogers (1990)

is extended to detect uniform and non-uniform DIF by item focussed trees. In particular

in the non-uniform DIF case well reasoned estimation strategies are required. The benefits

over traditional approaches are shown in simulations and chosen applications.

The algorithm that yields item focussed trees is mainly characterized by:

• Selection of the best splits by likelihood ratio tests.

• Use of maximal value statistics to determine splitting decisions.

• Use of permutation tests to obtain splitting decisions.
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These well chosen components of the algorithm ensure that the selection of splits is sepa-

rated from the splitting decision and result in an unbiased recursive partitioning scheme as

similarly proposed by Hothorn et al. (2006). However, a disadvantage of the approach is

the time requirement for the computation of the likelihood ratio test statistics and the per-

mutation tests. Alternatively one could use score test statistics, which has the advantage

that only the model under the null hypothesis has to be evaluated. Moreover, permutation

tests could be saved if the distribution of the selection process were known, that is the

asymptotic distributions of the maximal value statistics. These adjustments are certainly

worth investigating in future research.

Finally, the estimation strategy for the Rasch model used in Chapter 4 has to be addressed.

By appropriate definition of the design matrix the Rasch model can be embedded into

the framework of generalized linear models and joint maximum likelihood (JML) estimates

can easily be obtained. This strategy is applied in Chapter 4. As with JML the number

of parameters simultaneously increases with the number of persons, two major problems

arise. First, the estimation of the model is computationally expensive and unstable in

high dimensional settings. Second, for a fixed number of items the estimates for the item

difficulties that are the parameters of interest in most applications are inconsistent for

P → ∞, see, for example, Anderson (1973). Alternative strategies that do not face these

problems are conditional maximum likelihood (CML) estimation and marginal maximum

likelihood (MML) estimation. CML makes use of the property that the test score, i.e. the

number of solved items, is sufficient for the ability of a person. By conditioning on the test

score the person parameters do not occur in the conditional likelihood. MML, on the other

hand, assumes that the person parameters are drawn from a normal distribution N(0, σ2).

The resulting marginal log likelihood can, for example, be solved by numerical integration,

see Hatzinger (1989) for details about the estimation procedures. The use of alternative

estimation strategies certainly improves the existing approach but further research is needed

to incorporate appropriate tools into the framework of item focussed trees.

Detection of Latent Response Styles

In the third part of this thesis ordinal regression models are extended to account for re-

sponses that are characterized by a disproportionate tendency to the middle or the highest

and lowest response categories. A strong tendency to the middle or extreme categories can

be seen as a specific response style or interpreted as varying dispersion. The linear predictor

of two models, the adjacent categories and the cumulative model, are extended by additive

terms z�
i γ or z�

i α that determine the response style or the dispersion . These effects are

caused by the set of variables z. The effects are clearly separated from the content-related

effects that are simultaneously determined by the same or a different set of covariates x.
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The additional effects can be seen as a special case of category-specific covariates. There-

fore, the estimates of the models can be obtained by the use of existing software. The

visualization of effects makes the results of the models easy accessible. This is illustrated

in several applications. Moreover, the benefits of the extended models are demonstrated in

simulations, where strongly biased estimates of the content-related effects are observed if a

present response style is ignored.

The extended adjacent categories model proposed in Chapter 6 can also be used to model

the response style for more than one item (see also Section 6.8). A popular choice, which

was also used for the detection of DIF, is the PCM. Next to the item parameters δir the

extended PCM contains two person-specific parameters, namely, the ability parameter θp
and the response style parameter γp. Again, the response style parameter γp can optionally

be modelled as a function of explanatory variables xp with a linear or non-linear effect on

the response. By appropriate assumptions the extended PCM can be estimated by the

maximization of the joint or the marginal likelihood. The main advantage over previous

approaches for item response data is that the response style is explicitly modelled. In latent

class approaches, for example, it might be quite challenging to determine the number of

classes and to interpret the resulting effects. Further research is needed to develop specific

software and to investigate the performance of the method.

A quite different approach for the modelling of ordinal variables generated by rating scales

are mixture type models introduced by Piccolo (2003). The basic concept of these models

is that the choice of a response category is determined by a mixture of the preference of a

person and the persons indecision. The two components are usually referred to as feeling

and uncertainty. They are both modelled by different distributions that have to be defined

appropriately. Hence the mixture provides high flexibility. For example, in so-called CUB

models the first component is modelled by a binomial distribution and the latter by a

uniform distribution. For an overview on CUB models, see Iannario and Piccolo (2012).

More recently, an extended class of mixtures was proposed by Tutz et al. (2016), where

the preference component is determined by a cumulative or adjacent categories model.

The tendency to the middle or extreme categories can be interpreted as a special form

of uncertainty. Thus, by an appropriate choice for the distribution of the uncertainty

component mixture models should also be able to capture extreme response styles. The

evaluations of these class of models and the comparisons to the proposed methods might

be very interesting and is worth considering in future research.

In summary, this thesis provides a variety of modelling strategies for the the detection of

latent structures with a focus on categorical variables. However, there are still several lim-

itations that require further research and development of the approaches. As the methods

can be used in many areas of application, also further interactions to related subjects should

be investigated in future research.





Appendices





A. Overview on Variables of the

Applications in Chapter 2

Table A.1.: Districts in the city of Munich. The numbers correspond to the labels in Table 2.1.

Number District

1 Altstadt-Lehel (inner city)
2 Ludwigsvorstadt-Isarvorstadt
3 Maxvorstadt
4 Schwabing-West
5 Au-Haidhausen
6 Sendling
7 Sendling-Westpark
8 Schwanthalerhöhe
9 Neuhausen-Nymphenburg
10 Moosach
11 Milbertshofen-Am Hart
12 Schwabing-Freimann
13 Bogenhausen
14 Berg am Laim
15 Trudering-Riem
16 Ramersdorf-Perlach
17 Obergiesing-Fasangarten
18 Untergiesing-Harlaching
19 Thalkirchen-Obersendling-Forstenried-Fürstenried-Solln
20 Hadern
21 Pasing-Obermenzing
22 Aubing-Lochhausen-Langwied
23 Allach-Untermenzing
24 Feldmoching-Hasenbergl
25 Laim
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Table A.2.: German country code listed as in the ISO 3166-2.

Abbreviation Country

BB Brandenburg
BE Berlin
BW Baden-Wuerttemberg
BY Bavaria
HB Bremen
HH Hamburg
HE Hesse
NI Lower Saxony

MV Mecklenburg-Vorpommern
NW North Rhine-Westphalia
RP Rhineland-Palatinate
SL Saarland
SN Saxony
ST Saxony-Anhalt
SH Schleswig-Holstein
TH Thuringia

Table A.3.: Categories of the nominal variable kind of household.

Number Kind of Household

1 Single-Person Household
2 Couple Without Children
3 Single Parent
4 Couple with Children aged ≤ 16
5 Couple With Children aged > 16
6 Couple With Children aged ≤ 16 and > 16
7 Multiple Generation Household
8 Other Combination



B. Tabular Display of Simulation

Results for Chapter 3

In the following we give the results of all settings of the simulations described in Section

3.6. Each table contains the MSEs of the unit-specific intercepts, the MSEs of the linear

term and the selected number of clusters as the average of 100 replications, respectively.
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Table B.1.: Average results for the settings with normal response, normal distributed intercepts
and ρ = 0.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 200 GFM 2.26 2.26 0.04 0.04 200.00 200.00
ni = 4 GMM 0.68 0.71 0.03 0.03 200.00 200.00

TSC 1.56 1.57 0.04 0.04 4.96 5.02
PEL
FINA 1.05 1.10 0.03 0.03 1.89 1.91
FINB 0.99 1.06 0.03 0.03 1.31 1.36

n = 100 GFM 1.14 1.14 0.03 0.03 100.00 100.00
ni = 8 GMM 0.54 0.56 0.03 0.03 100.00 100.00

TSC 0.97 0.99 0.03 0.03 5.28 5.38
PEL
FINA 0.82 0.87 0.03 0.03 2.04 2.10
FINB 0.86 0.91 0.03 0.03 1.67 1.72

n = 40 GFM 0.45 0.45 0.03 0.03 40.00 40.00
ni = 20 GMM 0.31 0.32 0.03 0.03 40.00 40.00

TSC 0.44 0.46 0.03 0.03 5.82 6.00
PEL 0.37 0.38 0.03 0.03 15.00 15.06
FINA 0.53 0.55 0.03 0.03 2.27 2.44
FINB 0.57 0.61 0.03 0.03 1.86 1.98

n = 20 GFM 0.22 0.22 0.03 0.03 20.00 20.00
ni = 40 GMM 0.19 0.19 0.03 0.03 20.00 20.00

TSC 0.23 0.24 0.03 0.03 5.76 6.00
PEL 0.21 0.21 0.03 0.03 9.95 9.99
FINA 0.32 0.34 0.03 0.03 2.45 2.66
FINB 0.39 0.43 0.03 0.03 1.96 2.06

Table B.2.: Average results for the settings with normal response, normal distributed intercepts
and ρ = 0.8.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 200 GFM 2.28 2.28 0.05 0.05 200.00 200.00
ni = 4 GMM 0.88 0.95 0.29 0.32 200.00 200.00

TSC 1.51 1.53 0.08 0.08 4.86 4.95
PEL
FINA 0.95 1.01 0.30 0.34 1.14 1.10
FINB 0.92 0.98 0.30 0.34 1.00 1.00

n = 100 GFM 1.16 1.16 0.04 0.04 100.00 100.00
ni = 8 GMM 0.84 0.91 0.25 0.29 100.00 100.00

TSC 0.96 0.98 0.05 0.06 5.18 5.20
PEL
FINA 0.94 1.00 0.26 0.30 1.25 1.25
FINB 0.92 0.99 0.28 0.31 1.00 1.02

n = 40 GFM 0.48 0.48 0.04 0.04 40.00 40.00
ni = 20 GMM 0.67 0.76 0.19 0.23 40.00 40.00

TSC 0.48 0.50 0.04 0.04 5.82 5.93
PEL 0.39 0.40 0.05 0.06 14.17 14.14
FINA 0.82 0.89 0.21 0.25 1.53 1.51
FINB 0.90 0.99 0.26 0.31 1.11 1.02

n = 20 GFM 0.25 0.25 0.04 0.04 20.00 20.00
ni = 40 GMM 0.46 0.54 0.14 0.17 20.00 20.00

TSC 0.27 0.29 0.05 0.05 5.74 5.97
PEL 0.25 0.26 0.06 0.06 9.59 9.62
FINA 0.62 0.71 0.17 0.21 1.80 1.73
FINB 0.81 0.91 0.25 0.29 1.22 1.16
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Table B.3.: Average results for the settings with normal response, chi-squared distributed inter-
cepts and ρ = 0.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 200 GFM 2.27 2.27 0.04 0.04 200.00 200.00
ni = 4 GMM 0.50 0.59 0.03 0.03 200.00 200.00

TSC 1.52 1.59 0.04 0.04 4.60 4.88
PEL
FINA 0.69 0.77 0.03 0.03 1.49 1.80
FINB 0.63 0.76 0.03 0.03 1.14 1.32

n = 100 GFM 1.10 1.10 0.03 0.03 100.00 100.00
ni = 8 GMM 0.41 0.47 0.02 0.02 100.00 100.00

TSC 0.91 0.95 0.02 0.03 4.77 5.14
PEL
FINA 0.54 0.50 0.02 0.02 1.72 1.90
FINB 0.55 0.55 0.02 0.02 1.28 1.53

n = 40 GFM 0.45 0.45 0.03 0.03 40.00 40.00
ni = 20 GMM 0.26 0.28 0.03 0.03 40.00 40.00

TSC 0.42 0.42 0.03 0.03 4.95 5.15
PEL 0.30 0.29 0.03 0.03 13.17 13.27
FINA 0.26 0.28 0.03 0.03 1.85 2.00
FINB 0.28 0.29 0.03 0.03 1.60 1.68

n = 20 GFM 0.23 0.23 0.03 0.03 20.00 20.00
ni = 40 GMM 0.16 0.16 0.03 0.03 20.00 20.00

TSC 0.22 0.23 0.03 0.03 4.69 4.92
PEL 0.15 0.15 0.03 0.03 7.87 8.23
FINA 0.14 0.18 0.03 0.03 1.88 2.10
FINB 0.15 0.20 0.03 0.03 1.67 1.81

Table B.4.: Average results for the settings with normal response, chi-squared distributed inter-
cepts and ρ = 0.8.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 200 GFM 2.30 2.30 0.05 0.05 200.00 200.00
ni = 4 GMM 0.56 0.73 0.13 0.20 200.00 200.00

TSC 1.51 1.55 0.05 0.06 4.62 4.85
PEL
FINA 0.64 0.82 0.13 0.20 1.18 1.24
FINB 0.60 0.77 0.14 0.21 1.01 1.01

n = 100 GFM 1.12 1.12 0.04 0.04 100.00 100.00
ni = 8 GMM 0.53 0.70 0.12 0.18 100.00 100.00

TSC 0.92 0.95 0.04 0.05 4.72 4.99
PEL
FINA 0.61 0.74 0.12 0.19 1.32 1.33
FINB 0.60 0.77 0.13 0.20 1.01 1.03

n = 40 GFM 0.48 0.48 0.04 0.04 40.00 40.00
ni = 20 GMM 0.44 0.62 0.11 0.17 40.00 40.00

TSC 0.45 0.46 0.05 0.05 4.82 5.12
PEL 0.33 0.32 0.05 0.05 12.85 13.07
FINA 0.45 0.56 0.11 0.15 1.62 1.56
FINB 0.51 0.70 0.13 0.20 1.26 1.20

n = 20 GFM 0.26 0.26 0.04 0.04 20.00 20.00
ni = 40 GMM 0.30 0.44 0.08 0.13 20.00 20.00

TSC 0.26 0.26 0.04 0.04 4.69 4.92
PEL 0.20 0.19 0.04 0.04 8.04 8.21
FINA 0.31 0.44 0.08 0.11 1.74 1.77
FINB 0.38 0.62 0.11 0.17 1.39 1.34
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Table B.5.: Average results for the settings with binary response, normal distributed intercepts
and ρ = 0.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 100 GFM
ni = 8 GMM 0.74 0.88 0.03 0.03 100.00 100.00

TSC 1.06 1.29 0.02 0.02 2.96 2.98
PEL
FINA 2.88 2.39 0.03 0.03 2.98 3.03
FINB 2.11 1.66 0.03 0.02 2.64 2.63

n = 40 GFM
ni = 20 GMM 0.48 0.56 0.02 0.02 40.00 40.00

TSC 0.70 0.87 0.02 0.02 3.32 3.50
PEL 1.23 1.20 0.02 0.02 10.78 14.28
FINA 10.70 5.26 0.02 0.02 3.49 3.52
FINB 9.10 3.93 0.02 0.02 3.00 2.97

n = 20 GFM
ni = 40 GMM 0.71 0.62 0.03 0.03 20.00 20.00

TSC 2.40 2.18 0.03 0.03 3.44 3.84
PEL 1.44 1.15 0.03 0.03 5.70 9.15
FINA 19.94 12.58 0.03 0.03 3.57 3.84
FINB 15.58 8.71 0.03 0.03 3.12 3.21

Table B.6.: Average results for the settings with binary response, normal distributed intercepts
and ρ = 0.8.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 100 GFM
ni = 8 GMM 2.13 2.55 0.48 0.54 100.00 100.00

TSC 1.59 1.93 0.25 0.29 2.46 2.38
PEL
FINA 3.43 3.89 0.46 0.51 2.35 2.26
FINB 2.60 2.95 0.50 0.56 1.93 1.85

n = 40 GFM
ni = 20 GMM 0.92 1.12 0.14 0.15 40.00 40.00

TSC 0.98 1.16 0.11 0.12 3.04 3.13
PEL 1.32 1.26 0.05 0.05 10.42 13.19
FINA 12.51 8.08 0.11 0.14 2.96 2.91
FINB 8.06 5.39 0.16 0.22 2.45 2.29

n = 20 GFM
ni = 40 GMM 0.87 0.84 0.07 0.08 20.00 20.00

TSC 2.67 1.87 0.06 0.07 3.21 3.53
PEL 1.74 1.26 0.05 0.05 5.61 8.91
FINA 22.57 13.19 0.06 0.09 3.34 3.41
FINB 15.15 7.81 0.09 0.14 2.81 2.64
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Table B.7.: Average results for the settings with binary response, chi-squared distributed intercepts
and ρ = 0.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 100 GFM
ni = 8 GMM 0.68 0.92 0.02 0.02 100.00 100.00

TSC 0.91 1.39 0.02 0.02 2.79 2.85
PEL
FINA 1.72 2.30 0.02 0.02 2.74 2.90
FINB 1.42 1.70 0.02 0.02 2.40 2.51

n = 40 GFM
ni = 20 GMM 0.48 0.61 0.02 0.02 40.00 40.00

TSC 0.59 0.82 0.02 0.02 3.01 3.37
PEL 1.60 1.43 0.02 0.02 9.83 12.35
FINA 5.61 6.94 0.02 0.02 3.04 3.34
FINB 4.66 4.47 0.02 0.02 2.74 2.91

n = 20 GFM
ni = 40 GMM 1.61 2.00 0.03 0.03 20.00 20.00

TSC 2.81 2.96 0.03 0.03 2.94 3.56
PEL 1.93 2.04 0.03 0.02 5.75 8.04
FINA 21.18 19.61 0.04 0.03 3.04 3.61
FINB 19.95 16.30 0.03 0.03 2.77 3.06

Table B.8.: Average results for the settings with binary response, chi-squared distributed intercepts
and ρ = 0.8.

MSE - intercepts MSE - linear term Number of Clusters
m0 = 5 m0 = 10 m0 = 5 m0 = 10 m0 = 5 m0 = 10

n = 100 GFM
ni = 8 GMM 1.55 2.30 0.41 0.50 100.00 100.00

TSC 1.28 1.91 0.22 0.30 2.50 2.30
PEL
FINA 4.85 4.37 0.33 0.46 2.48 2.24
FINB 2.68 2.45 0.37 0.50 2.05 1.86

n = 40 GFM
ni = 20 GMM 0.72 1.15 0.13 0.16 40.00 40.00

TSC 0.75 1.15 0.09 0.12 2.80 3.01
PEL 1.72 1.53 0.04 0.05 9.38 11.89
FINA 9.57 6.76 0.09 0.14 2.85 2.84
FINB 7.06 4.68 0.11 0.17 2.50 2.47

n = 20 GFM
ni = 40 GMM 1.66 2.26 0.07 0.07 20.00 20.00

TSC 3.08 2.92 0.06 0.07 2.81 3.33
PEL 2.26 2.34 0.05 0.05 5.59 7.72
FINA 21.87 21.18 0.06 0.08 2.90 3.25
FINB 21.79 16.13 0.07 0.11 2.68 2.68





C. Additional Simulation Results for

Chapter 5

In the following we give additional results of the simulations in Section 5.5 and 5.6.5. For

a detailed description we refer to the respective sections.
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Table C.1.: Average TPR and FPR on the item level at significant level α = 0.05 for the twelve
settings with 10% DIF in the simulation with one binary predictor.

10% DIF, α = 0.05 TPR FPR
IFT Logistic IFT Logistic

c=0.4 I=20 P=400 0.135 0.145 0.049 0.051
P=800 0.415 0.410 0.046 0.047

I=40 P=400 0.240 0.245 0.050 0.050
P=800 0.395 0.400 0.051 0.051

c=0.8 I=20 P=400 0.310 0.310 0.051 0.051
P=800 0.905 0.895 0.047 0.044

I=40 P=400 0.598 0.613 0.049 0.050
P=800 0.745 0.750 0.051 0.051

c=1.6 I=20 P=400 0.595 0.595 0.055 0.053
P=800 1.000 1.000 0.047 0.051

I=40 P=400 0.963 0.965 0.051 0.050
P=800 0.828 0.828 0.051 0.052

Table C.2.: Average TPR and FPR on the item level at significant level α = 0.05 for the twelve
settings with 20% DIF in the simulation with one binary predictor.

10% DIF, α = 0.05 TPR FPR
IFT Logistic IFT Logistic

c=0.4 I=20 P=400 0.177 0.172 0.050 0.049
P=800 0.440 0.448 0.046 0.046

I=40 P=400 0.236 0.240 0.050 0.050
P=800 0.401 0.406 0.049 0.050

c=0.8 I=20 P=400 0.378 0.385 0.048 0.049
P=800 0.930 0.932 0.045 0.045

I=40 P=400 0.588 0.589 0.051 0.050
P=800 0.731 0.731 0.049 0.051

c=1.6 I=20 P=400 0.700 0.698 0.052 0.049
P=800 1.000 1.000 0.042 0.046

I=40 P=400 0.900 0.897 0.049 0.052
P=800 0.792 0.791 0.050 0.050
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Table C.3.: Average TPR and FPR on the item level at significant level α = 0.05 for the twelve
settings with 10% DIF in the simulation with one ordered predictor.

10% DIF, α = 0.05 TPR FPR
IFT Logistic IFT Logistic

c=0.4 I=20 P=400 0.105 0.065 0.052 0.049
P=800 0.185 0.175 0.052 0.047

I=40 P=400 0.147 0.107 0.048 0.052
P=800 0.287 0.200 0.044 0.050

c=0.8 I=20 P=400 0.275 0.165 0.051 0.048
P=800 0.805 0.675 0.053 0.047

I=40 P=400 0.472 0.383 0.050 0.052
P=800 0.720 0.672 0.045 0.051

c=1.6 I=20 P=400 0.560 0.515 0.051 0.048
P=800 1.000 1.000 0.057 0.048

I=40 P=400 0.915 0.877 0.048 0.053
P=800 0.812 0.795 0.044 0.052

Table C.4.: Average TPR and FPR on the item level at significant level α = 0.05 for the twelve
settings with 20% DIF in the simulation with one ordered predictor.

10% DIF, α = 0.05 TPR FPR
IFT Logistic IFT Logistic

c=0.4 I=20 P=400 0.110 0.085 0.052 0.046
P=800 0.352 0.250 0.052 0.051

I=40 P=400 0.166 0.128 0.048 0.054
P=800 0.278 0.184 0.048 0.051

c=0.8 I=20 P=400 0.292 0.240 0.053 0.047
P=800 0.863 0.777 0.051 0.048

I=40 P=400 0.500 0.417 0.047 0.053
P=800 0.704 0.641 0.045 0.052

c=1.6 I=20 P=400 0.618 0.568 0.053 0.046
P=800 1.000 1.000 0.049 0.048

I=40 P=400 0.881 0.843 0.049 0.055
P=800 0.780 0.775 0.047 0.052
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Figure C.1.: Boxplots of TPR and FPR at significance level α = 0.05 (marked by dashed lines) in
the simulation with three covariates, DIF in x1 and correlation between the predictors (ρ = 0.6).
Results on item level are given in light grey, results for the combination of item and variable are
given in dark grey.
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Table C.5.: Average TPR and FPR on the item level at significant level α = 0.05 for the eight
settings with 10% DIF in the simulation with non-uniform DIF and one binary predictor.

10% DIF, α = 0.05 DIF NUDIF
TPR FPR TPR FPR

IFT Logistic IFT Logistic IFT Logistic IFT Logistic

c=0.3 I=20 P=400 0.318 0.385 0.031 0.046 0.200 0.200 0.051 0.048
P=800 0.207 0.292 0.031 0.054 0.125 0.130 0.053 0.047

I=40 P=400 0.151 0.241 0.033 0.052 0.142 0.145 0.049 0.047
P=800 0.196 0.346 0.032 0.053 0.320 0.333 0.044 0.046

c=0.6 I=20 P=400 0.575 0.688 0.032 0.048 0.440 0.440 0.047 0.051
P=800 0.438 0.662 0.032 0.054 0.380 0.380 0.052 0.049

I=40 P=400 0.414 0.615 0.036 0.056 0.307 0.318 0.048 0.048
P=800 0.474 0.845 0.034 0.052 0.647 0.650 0.046 0.049

Table C.6.: Average TPR and FPR on the item level at significant level α = 0.05 for the eight
settings with 20% DIF in the simulation with non-uniform DIF and one binary predictor.

20% DIF, α = 0.05 DIF NUDIF
TPR FPR TPR FPR

IFT Logistic IFT Logistic IFT Logistic IFT Logistic

c=0.3 I=20 P=400 0.318 0.385 0.031 0.046 0.145 0.145 0.047 0.046
P=800 0.207 0.292 0.031 0.054 0.182 0.177 0.048 0.045

I=40 P=400 0.151 0.241 0.033 0.052 0.146 0.156 0.045 0.046
P=800 0.196 0.346 0.032 0.053 0.284 0.284 0.043 0.044

c=0.3 I=20 P=400 0.575 0.688 0.032 0.048 0.340 0.340 0.051 0.049
P=800 0.438 0.662 0.032 0.054 0.440 0.442 0.056 0.051

I=40 P=400 0.414 0.615 0.036 0.056 0.354 0.362 0.044 0.045
P=800 0.474 0.845 0.034 0.052 0.694 0.701 0.046 0.046





D. Supplement Exemplary R Code for

Chapter 6

In the following we show how R code can be used to obtain estimates. For illustration we

use part of the data of the SHIW study (illustrative example in Section 6.2). The model is

estimated by use of the function vglm() of the R package VGAM. Before using vglm the data

(Yi,xi, zi), i = 1, . . . , n have to brought in a specific form.

Response Matrix

The responses Yi have to be given in a data matrix Y in wide format, such that each

observation represents one row and the columns correspond to the response categories. In

the SHIW study the response is the happiness index measured on a Likert scale with ten

categories from 1 (very unhappy) to 10 (very happy). The first 6 observations of the data

matrix Y are given by:

Y[1:6,]

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 0 0 0 0 0 1 0 0 0 0

## [2,] 0 0 0 0 0 1 0 0 0 0

## [3,] 0 0 0 0 0 1 0 0 0 0

## [4,] 0 0 0 0 0 0 0 0 1 0

## [5,] 0 0 0 0 0 0 1 0 0 0

## [6,] 0 0 1 0 0 0 0 0 0 0

Design-Matrices

The explanatory variables xi, zi have also be given as data matrices X and Z, again each

observation represents one row and the columns correspond to the covariates. For the two

covariates gender (0: male, 1: female) and age in decades (centered by 60), which are
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allowed to have content-related and response style effects, the first observations of the data

matrices X and Z are:

X[1:6,]

## Gen Age

## 1 1 2.5

## 2 0 1.1

## 3 0 1.3

## 4 0 2.3

## 5 0 0.3

## 6 1 1.7

Z[1:6,]

## Gen Age

## 1 1 2.5

## 2 0 1.1

## 3 0 1.3

## 4 0 2.3

## 5 0 0.3

## 6 1 1.7

From the data matrices Y,X and Z several important values can be extracted. The number

of observations corresponds to the number of rows of X (n = 3816), the number of cate-

gories corresponds to the number of columns of Y (k = 10), the number of content-related

covariates correspond to the number of columns of X (px = 2) and the the number of

covariates with response style effect correspond to the the number of columns of Z (pz = 2).

In the proposed models (2) and (3) the explanatory variables zi represent a special case

of category-specific covariates for which only the sign differs depending on the response

category. In the case of an odd number of categories with middle categoriem = [k/2]+1 the

sign is positive for categories r = 1, . . . ,m− 1 and negative for categories r = 1, . . . , k − 1.

In the even case with middle category m = k/2 the sign is positive for categories r =

1, . . . ,m − 1, negative for categories r = m + 1, . . . , k − 1 and the variables zi are set to

zero for the middle category m.
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The data matrix Z has to be extended to a data matrix, named Zext, where each observa-

tion represents one row and the columns contain the values of zi for each linear predictor

ηir. The corresponding code is:

Zext <- Z[,rep(1:pz,each=k-1)]

if(k%%2!=0){ # odd number of categories

m <- floor(k/2)+1

for(i in 0:(pz-1)){
Zext[,(m:(k-1))+i*(k-1)] <- -Zext[,(m:(k-1))+i*(k-1)]

}
}

if(k%%2==0){ # even number of categories

m <- k/2

for(i in 0:(pz-1)){
Zext[,((m+1):(k-1))+i*(k-1)] <- -Zext[,((m+1):(k-1))+i*(k-1)]

Zext[,m+i*(k-1)] <- 0

}
}

To improve readability of the model output it is useful to choose informative labels for the

columns of data matrices X,Z and Zext. One might use:

l1 <- paste0(rep(names(Z),each=k-1),"z")

l2 <- rep(1:(k-1),times=pz)

colnames(Zext) <- namesZext <- paste0(l1,l2)

colnames(Z) <- namesZ <- paste0(names(Z),"z")

colnames(X) <- namesX <- paste0(names(X),"x")

In the SHIW study there are ten response categories yielding nine linear predictors ηir, r =

1, . . . , 9. With the two explanatory variables gender and age the extended data matrix

Zext in total consists of 18 columns and nine columns per covariate. Columns 1 to 4

contain positive values, column 5 contains zeros and columns 6 to 9 contain negative values,

respectively. The data matrix Zext (partially) is:

Zext[1:6,]

## Genz1 Genz2 Genz3 Genz4 Genz5 Genz6 Genz7 Genz8 Genz9
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## 1 1 1 1 1 0 -1 -1 -1 -1

## 2 0 0 0 0 0 0 0 0 0

## 3 0 0 0 0 0 0 0 0 0

## 4 0 0 0 0 0 0 0 0 0

## 5 0 0 0 0 0 0 0 0 0

## 6 1 1 1 1 0 -1 -1 -1 -1

## Agez1 Agez2 Agez3 Agez4 Agez5 Agez6 Agez7 Agez8 Agez9

## 1 2.5 2.5 2.5 2.5 0 -2.5 -2.5 -2.5 -2.5

## 2 1.1 1.1 1.1 1.1 0 -1.1 -1.1 -1.1 -1.1

## 3 1.3 1.3 1.3 1.3 0 -1.3 -1.3 -1.3 -1.3

## 4 2.3 2.3 2.3 2.3 0 -2.3 -2.3 -2.3 -2.3

## 5 0.3 0.3 0.3 0.3 0 -0.3 -0.3 -0.3 -0.3

## 6 1.7 1.7 1.7 1.7 0 -1.7 -1.7 -1.7 -1.7

Model Specification

The use of vglm requires the specification of S formulas or lists of S formulas that are

assigned to arguments when the function is called. The construction of the formulas is

based on the labels of the columns of the data matrices that were explicitly set before.

The first formula, called ”formula1”, is the general symbolic description of the model, which

will later be assigned to the argument formula when calling vglm.

f11 <- paste(namesX,collapse="+")

f12 <- paste(namesZ,collapse="+")

formula1 <- formula(paste("Y~",f11,"+",f12))

formula1

## Y ~ Genx + Agex + Genz + Agez

The second formula, called ”formula2”, is a one sided formula containing every term used

by the model (except the response y), which will later be assigned to the argument form2.

f21 <- paste(namesZext,collapse="+")

formula2 <- formula(paste("~",f11,"+",f12,"+",f21))

formula2
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## ~Genx + Agex + Genz + Agez + Genz1 + Genz2 + Genz3 + Genz4 +

## Genz5 + Genz6 + Genz7 + Genz8 + Genz9 + Agez1 + Agez2 + Agez3 +

## Agez4 + Agez5 + Agez6 + Agez7 + Agez8 + Agez9

The third formula, called ”formula3”, is a list of formulas, which will later be assigned to

the argument xij. VGAM handles category-specific covariates by the xij argument. Each

formula corresponds to one covariate, where the right-hand side consists of k − 1 terms

making up a covariate-dependent term. The k − 1 terms must be unique and should be

enumerated in sequential order.

formula3 <- c()

for(i in 0:(pz-1)){
f31 <- paste(namesZext[(1:(k-1))+(k-1)*i],collapse="+")

f32 <- formula(paste(namesZ[i+1],"~",f31))

formula3 <- c(formula3,f32)

}
formula3

## [[1]]

## Genz ~ Genz1 + Genz2 + Genz3 + Genz4 + Genz5 + Genz6 + Genz7 +

## Genz8 + Genz9

##

## [[2]]

## Agez ~ Agez1 + Agez2 + Agez3 + Agez4 + Agez5 + Agez6 + Agez7 +

## Agez8 + Agez9

Estimation with vglm

Package VGAM and additional dependent packages have to be loaded.

require(VGAM)

## Loading required package: VGAM

## Loading required package: stats4

## Loading required package: splines
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The data matrix DM is assigned to argument data when calling vglm. The data matrix

has to contain the columns of every term used by the model or in the formulas (with the

exception of the response matrix Y).

DM <- data.frame(X,Zext,Z)

Now the extended adjacent categories model can be estimated by vglm. In family one

has to choose the adjacent categories family acat(reverse=FALSE), where reverse=FALSE

means that the ratios πi,r+1/πir are modelled. With the argument parallel one defines

if the estimated effects are category-specific or not. The specification parallel=FALSE∼1

ensures that only the intercepts θr, r = 1, . . . , k−1 are category-specific. For a more detailed

description see also Yee (2010). Finally the call of function vglm is:

mod <- vglm(formula=formula1,

family=acat(parallel=FALSE~1,reverse=FALSE),

xij=formula3,

form2=formula2,

data=DM)

The summary of the estimated model is the following. The coefficients (Intercept):1

to (Intercept):9 are the category-specific intercepts, the coefficients Genx and Agex are

the content-related effects and Genz and Agez are the response style effects of the two

covariates.

summary(mod)

##

## Call:

## vglm(formula = formula1, family = acat(parallel = FALSE ~ 1,

## reverse = FALSE), data = DM, form2 = formula2, xij = formula3)

##

## Pearson residuals:

## Min 1Q Median 3Q Max

## loge(P[Y=2]/P[Y=1]) -6.345 0.02261 0.03057 0.07315 1.960

## loge(P[Y=3]/P[Y=2]) -3.917 0.05674 0.07425 0.15630 1.861

## loge(P[Y=4]/P[Y=3]) -2.652 0.10692 0.13512 0.24334 2.554

## loge(P[Y=5]/P[Y=4]) -2.727 -0.63422 0.18816 0.29138 2.588

## loge(P[Y=6]/P[Y=5]) -2.916 -0.56699 0.28447 0.47542 2.095

## loge(P[Y=7]/P[Y=6]) -2.540 -0.49697 0.32373 0.52538 1.558
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## loge(P[Y=8]/P[Y=7]) -1.850 -0.48453 -0.23893 0.75931 1.879

## loge(P[Y=9]/P[Y=8]) -1.123 -0.30230 -0.12834 -0.07773 4.010

## loge(P[Y=10]/P[Y=9]) -2.066 -0.22875 -0.07256 -0.03995 5.229

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept):1 0.446155 0.109053 4.091 4.29e-05 ***

## (Intercept):2 0.404232 0.087237 4.634 3.59e-06 ***

## (Intercept):3 -0.185793 0.080483 -2.308 0.0210 *

## (Intercept):4 0.166246 0.079348 2.095 0.0362 *

## (Intercept):5 0.270726 0.069320 3.905 9.41e-05 ***

## (Intercept):6 0.363964 0.062457 5.827 5.63e-09 ***

## (Intercept):7 0.289437 0.054977 5.265 1.40e-07 ***

## (Intercept):8 -0.969050 0.070319 -13.781 < 2e-16 ***

## (Intercept):9 -0.051585 0.086803 -0.594 0.5523

## Genx -0.036342 0.013789 -2.636 0.0084 **

## Agex -0.001861 0.004385 -0.424 0.6712

## Genz 0.143557 0.026715 5.374 7.72e-08 ***

## Agez 0.062670 0.008546 7.333 2.25e-13 ***

## ---

## Signif. codes:

## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Number of linear predictors: 9

##

## Dispersion Parameter for acat family: 1

##

## Residual deviance: 16609.1 on 34331 degrees of freedom

##

## Log-likelihood: -8304.549 on 34331 degrees of freedom

##

## Number of iterations: 4
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Kankaraš, M. and G. Moors (2009). Measurement equivalence in solidarity attitudes in

europe insights from a multiple-group latent-class factor approach. International Sociol-

ogy 24 (4), 557–579.

Kass, G. (1980). An exploratory technique for investigating large quantities of categorical

data. Applied Statistics 29 (2), 119–127.

Khalili, A. and J. Chen (2007). Variable selection in finite mixture of regression models.

Journal of the American Statistical Association 102 (479), 1025–1038.

Khorramdel, L. and M. von Davier (2014). Measuring response styles across the big five:

A multiscale extension of an approach using multinomial processing trees. Multivariate

Behavioral Research 49 (2), 161–177.

Kim, J.-H. (2003). Assessing practical significance of the proportional odds assumption.

Statistics & probability letters 65 (3), 233–239.

Kim, S.-H., A. S. Cohen, and T.-H. Park (1995). Detection of differential item functioning

in multiple groups. Journal of Educational Measurement 32 (3), 261–276.

Lemon, J. (2006). Plotrix: a package in the red light district of r. R-News 6 (4), 8–12. R

package version 3.6.



234 References

Litière, S., A. Alonso, and G. Molenberghs (2007). Type I and Type II Error Under Random

Effects Misspecification in Generalized Linear Mixed Models. Biometrics 63 (4), 1038–

1044.

Liu, I., B. Mukherjee, T. Suesse, D. Sparrow, and S. K. Park (2009). Graphical diagnostics

to check model misspecification for the proportional odds regression model. Statistics in

medicine 28 (3), 412–429.

Liu, Q. and A. Agresti (2005). The analysis of ordinal categorical data: An overview and

a survey of recent developments. Test 14 (1), 1–73.

Lombard́ıa, M. J. and S. Sperlich (2012). A new class of semi-mixed effects models and its

application in small area estimation. Computational Statistics & Data Analysis 56 (10),

2903–2917.

Lord, F. M. (1980). Applications of item response theory to practical testing problems.

Routledge.

Lu, Y., R. Zhang, and L. Zhu (2008). Penalized spline estimation for varying-coefficient

models. Communications in Statistics - Theory and Methods 37 (14), 2249–2261.

Magder, L. and S. Zeger (1996). A smooth nonparametric estimate of a mixing distribution

using mixtures of gaussians. Journal of the American Statistical Association 91 (435),

1141–1151.

Magis, D., S. Beland, and G. Raiche (2013). difR: Collection of methods to detect dichoto-

mous differential item functioning (DIF) in psychometrics. R package version 4.5.
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