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Zusammenfassung

In funktionaler Datenanalyse bestehen die Daten aus Funktionen, die auf stetigen Trägern definiert

sind. In der Praxis werden funktionale Variablen auf diskreten Gittern beobachtet. Regressionsmod-

elle sind ein wichtiges Werkzeug, um den Einfluss von Kovariablen auf eine Zielvariable zu modellieren;

für funktionale Daten stellen sich besondere Herausforderungen. In dieser Arbeit wird eine generische

Modellklasse vorgeschlagen, die Skalar-auf-Funktion, Funktion-auf-Skalar und Funktion-auf-Funktion

Regression enthält. Quantilsregression, generalisierte additive Modelle und generalisierte additive

Modelle für Lage, Skala und Form sind in dieser Modellklasse enthalten indem eine passende Verlust-

funktion minimiert wird. Die additiven Prädiktoren können eine Vielzahl von Kovariableneffekten

enthalten, zum Beispiel lineare und glatte Effekte, sowie Interaktionseffekte von skalaren und funk-

tionalen Kovariablen.

Im ersten Teil der Arbeit werden funktionale lineare Array Modelle eingeführt. Diese können

angewendet werden, wenn die Zielgröße auf einem gemeinsamen Gitter beobachtet wird und die

Kovariablen nicht über den Träger der Zielgröße variieren. Bei Array Modellen wird die Kronecker-

Struktur in der Designmatrix ausgenutzt, um computationale Effizienz zu erzielen. Im zweiten Teil

liegt der Fokus auf Modellen ohne Array-Struktur um Situation abzubilden, in denen die Zielgröße

auf irregulären Gittern beobachtet wird und/oder die Kovariablen über den Träger der Zielgröße

variieren. Das beinhaltet insbesondere Modelle mit funktionalen historischen Effekten. Wenn funk-

tionale Ziel- und Einflussgröße jeweils über das gleiche Zeitintervall beobachtet werden, modelliert ein

funktionaler historischer Effekt eine Beziehung zwischen Ziel- und Einflussgröße, sodass nur vergan-

gene Werte der Einflussgröße die Zielgröße beeinflussen können. In dieser Modellklasse sind Effekte

mit generelleren Integrationsgrenzen möglich, beispielsweise Effekte mit einem fixen Zeitfenster oder

zeitlicher Verzögerung. Im dritten Teil wird die Modellklasse auf generalisierte additive Modelle

für Lage, Skala und Form erweitert. Bei diesen können alle Verteilungsparameter der konditionalen

Verteilung der Zielgröße von Kovariableneffekten abhängen. Indem jeder Verteilungsparameter über

eine Link-Funktion mit einem linearen Prädiktor in Beziehung gesetzt wird, kann die konditionale

Verteilung der Zielgröße sehr flexibel modelliert werden.

Für alle Teile der Dissertation wird die Schätzung mit komponentenweisen Gradienten-Boosting

durchgeführt. Boosting ist eine Ensemble-Methode, die eine Strategie von Aufteilen und Beherrschen

verfolgt, um ein erwartetes Verlustkriterium zu optimieren. Das stellt eine große Flexibilität für die

Regressionsmodelle zur Verfügung, da zum Beispiel Minimieren der Check-Funktion Quantilsregres-

sion und Minimieren der negativen log-likelihood generalisierte additive Modelle und generalisierte

additive Modelle für Lage, Skala und Form liefert. Der Schätzer wird entlang des steilsten Gradienten-

abstiegs aktualisiert. Das Modell wird durch einfache (penalisierte) Regressionsmodelle dargestellt,

die sogenannten Basis-Lerner, die einzeln an den negativen Gradienten angepasst werden. In je-

dem Schritt wird nur der am besten vorhersagende Basis-Lerner ausgewählt. Komponentenweises

Boosting erlaubt es, hochdimensionale Daten zu fitten und beinhaltet automatische, datengesteuerte

Variablenselektion. Um Boosting für funktionale Daten anzupassen, wird der Verlust über den Träger

der Zielgröße integriert und spezielle Basis-Lerner für funktionale Effekte implementiert. Um die An-
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wendbarkeit von funktionalen Regressionsmodellen zu fördern, wird eine umfassende Implementation

der Methoden im R Paket FDboost zur Verfügung gestellt.

Die Flexibilität der Modellklasse wird von mehreren Anwendungen aus verschiedenen Bereichen

beleuchtet. Einige Möglichkeiten von funktionalen linearen Array Modellen werden mit Daten zur

Aushärtung von Harz in der Autoproduktion, Brennwerten von fossilen Brennstoffen und kanadischen

Klimadaten verdeutlicht. Diese erfordern Skalar-auf-Funktion, Funktion-auf-Skalar und Funktion-

auf-Funktion Regression. Die methodischen Entwicklungen für nicht-Array Modelle sind durch eine

biotechnologische Anwendung zu Fermentationsprozessen motiviert. Dort soll eine wichtige Prozess-

variable mit einem historischen funktionalen Modell modelliert werden. Die motivierende Anwendung

für die funktionalen generalisierten additiven Modelle für Lage, Skala und Form ist eine Zeitreihe von

Aktienrenditen, bei der Erwartungswert und Standardabweichung abhängig von skalaren und funk-

tionalen Kovariablen modelliert werden.



Summary

In functional data analysis, the data consist of functions that are defined on a continuous domain. In

practice, functional variables are observed on some discrete grid. Regression models are important

tools to capture the impact of explanatory variables on the response and are challenging in the case

of functional data. In this thesis, a generic framework is proposed that includes scalar-on-function,

function-on-scalar and function-on-function regression models. Within this framework, quantile re-

gression models, generalized additive models and generalized additive models for location, scale and

shape can be derived by optimizing the corresponding loss functions. The additive predictors can

contain a variety of covariate effects, for example linear, smooth and interaction effects of scalar and

functional covariates.

In the first part, the functional linear array model is introduced. This model is suited for responses

observed on a common grid and covariates that do not vary over the domain of the response. Array

models achieve computational efficiency by taking advantage of the Kronecker product in the design

matrix. In the second part, the focus is on models without array structure, which are capable to

capture situations with responses observed on irregular grids and/or time-varying covariates. This

includes in particular models with historical functional effects. For situations, in which the functional

response and covariate are both observed over the same time domain, a historical functional effect

induces an association between response and covariate such that only past values of the covariate

influence the current value of the response. In this model class, effects with more general integration

limits, like lag and lead effects, can be specified. In the third part, the framework is extended to

generalized additive models for location, scale and shape where all parameters of the conditional

response distribution can depend on covariate effects. The conditional response distribution can be

modeled very flexibly by relating each distribution parameter with a link function to a linear predictor.

For all parts, estimation is conducted by a component-wise gradient boosting algorithm. Boost-

ing is an ensemble method that pursues a divide-and-conquer strategy for optimizing an expected

loss criterion. This provides great flexibility for the regression models. For example, minimizing

the check function yields quantile regression and minimizing the negative log-likelihood generalized

additive models for location, scale and shape. The estimator is updated iteratively to minimize the

loss criterion along the steepest gradient descent. The model is represented as a sum of simple (pe-

nalized) regression models, the so called base-learners, that separately fit the negative gradient in

each step where only the best-fitting base-learner is updated. Component-wise boosting allows for

high-dimensional data settings and for automatic, data-driven variable selection. To adapt boost-

ing for regression with functional data, the loss is integrated over the domain of the response and

base-learners suited to functional effects are implemented. To enhance the availability of functional

regression models for practitioners, a comprehensive implementation of the methods is provided in

the R add-on package FDboost.

The flexibility of the regression framework is highlighted by several applications from different

fields. Some features of the functional linear array model are illustrated using data on curing resin for

car production, heat values of fossil fuels and Canadian climate data. These require function-on-scalar,
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scalar-on-function and function-on-function regression models, respectively. The methodological de-

velopments for non-array models are motivated by biotechnological data on fermentations, modeling

a key process variable by a historical functional model. The motivating application for functional

generalized additive models for location, scale and shape is a time series on stock returns where

expectation and standard deviation are modeled depending on scalar and functional covariates.
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Chapter 1

Introduction

1.1 Functional data analysis

Functional data analysis (FDA, see, e.g., Ramsay and Silverman, 2005) deals with the analysis and

theory of variables that have a functional nature. This means that the observation units are functions

instead of scalars or vectors. The analysis of functional data is becoming increasingly important as

technological advances generate more and more such data in fields like medicine, biology, linguistics,

ecology and finance (see Ullah and Finch, 2013, for an overview on applications). Depending on the

dimension, functional data consist of curves, surfaces or images. The domain of the functions can be,

for instance, time, space, wavelength or a combination of those for functions in higher dimensions.

Examples for functional data are growth curves, blood markers recorded over time, spectroscopic

measurements recorded over a span of wavelengths, reach trajectories and brain scans. Functional

variables are theoretically infinite-dimensional as they live in function space. In practice, however, the

functions are only recorded at a finite number of discrete grid points, which yields vector observations.

One reason that a variable may be considered a functional variable is that, at least theoretically, it

could be measured on arbitrary fine grids. This leads to the decision to treat each vector of observation

points as a structured object, i.e., as functional variable, and not just as single observation points.

Consequently the functional variable can be represented by a functional model (e.g., Cuevas, 2014).

Typically, the true underlying functions are assumed to be smooth. This allows the analysis of function

characteristics, e.g., slope and curvature. The analysis of functional data requires the combination of

information within and between functions in a smart way.

The fundamental ideas of FDA were laid out in Ramsay and Silverman (2005, first edition

published in 1997) including smoothing and registration of functional data, functional principal

components (FPCs), functional analysis of derivatives as well as functional linear regression models.

Ramsay and Silverman (2005) focus on independent and identically distributed (iid) samples of

curves that are measured on dense, common grids. In recent years, several books on different

aspects of FDA appeared. Ferraty and Vieu (2006) elaborate nonparametric methods for functional

data focusing on prediction and classification. They highlight methods for dependent functional



2 1. Introduction

data and treat asymptotics. Horváth and Kokoszka (2012) cover inference for dependent and

independent functional data. A more theoretical overview is given in Hsing and Eubank (2015),

who also comment on methods for functional data that are not observed on dense, common grids.

For recent review articles on FDA, see Cuevas (2014); Wang et al. (2016); Goia and Vieu (2016)

and for a focus on dependent functional data, Kokoszka (2012). Ullah and Finch (2013) give a

systematic review of applications of FDA. The collections by Ferraty (2011) and Ferraty and Romain

(2011) contain chapters from various researchers in the field giving an idea of the many facets of FDA.

Most work in the area focuses on situations in which the functional variables are real-valued

curves. In this case, the sample of a functional variable Y (t), with t ∈ T and T a closed interval

on R, consists of i = 1, . . . , N curves yi(tig) observed at grid points (ti1, . . . , tiGi)
>. The functional

variable could be, for example, growth curves of N individuals measured over a certain time

interval T at several time-points. A common assumption is that the observed curves are realizations

of a stochastic process in a Hilbert space, for example, the space of square integrable real functions

on the interval T , L2(T ), with inner product 〈x, y〉 =
∫
T x(t)y(t) dt.

The sampling scheme, i.e., the number and regularity of grid points at which the functions are

observed, is an important property of a functional data sample, as it influences the possible analysis

methods and their properties. A rough differentiation between dense and sparse functional data can

be made, where ’dense’ refers to data observed on a dense grid whereas ’sparse’ refers to data observed

on sparse and often irregular grids. One potential definition of ’dense grid’ can be based on the con-

vergence rate of the estimated mean function; for a thorough discussion, see Zhang and Wang (2016).

Typical examples for densely observed functional data are automatically recorded measurements, like

spectroscopic data. Sparse and irregular grids are often encountered in longitudinal data, such as

measurements of blood markers in patients over a period of time with irregular follow-ups. Irregular

grids can also occur when the functional variable is observed with missing values.

The functions are usually observed with measurement error. Assuming additive errors, we observe

proxies ỹi(tig) = yi(tig) + εitig that are the sum of the true functional variable yi(tig) and errors εitig .

The errors εitig are often assumed to be white noise that is independent within and across functions.

Depending on the data situation, various tools for estimating the true underlying functions from the

observed values have been developed. The denoising normally implies some kind of smoothing. A

common approach is to use a basis representation of the functional data. This has the additional

advantage of dimension reduction, as it projects the data into the space spanned by the basis func-

tions. A popular choice for the basis are the first few FPCs of the functional variable (e.g., Ramsay

and Silverman, 2005; Yao et al., 2005a), (penalized) splines, wavelets or Fourier bases. Alternative

smoothing procedures are local smoothing methods, for example, by using kernel functions (Ferraty

and Vieu, 2006; Zhang and Chen, 2007). Another issue is the registration or alignment of curves to

compensate for phase variation, i.e., variation in t direction (horizontal), as most methods are tailored

to detect variation in the amplitudes (vertical), i.e., variation in y direction (cf., Ramsay and Li, 1998;

Marron et al., 2014).
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Regarding mean and variance of a one-dimensional functional variable Y (t) in L2(T ), the mean

function µ(t) = E(Y (t)) is a curve and the covariance function is a surface. The estimation of

mean and variance becomes more difficult for sparse functional data, for data observed with (large)

measurement error and for dependent functional data. Again, many estimation methods exist; see,

e.g., Wang et al. (2016) for an overview. In order to define the median or quantiles of a functional

variable, it is necessary to define an order statistic for functional data. One possibility is to use

so-called depth functions, which measure how deep an observed function lies within a sample of

functions. This provides a center-outward ordering of the observed functions (e.g., López-Pintado

and Romo, 2009). The depth-median is defined to be the deepest function.

In the FDA literature, functional counterparts for many statistical tools from multivariate statis-

tics can be found. These include functional principal component analysis (FPCA), regression, classi-

fication, and clustering methods; see Shang (2014) for a review on FPCA, Morris (2015) on functional

regression and Jacques and Preda (2014) on functional clustering. As this thesis focuses on regres-

sion models for functional data, a short introduction to functional regression models is given in the

subsequent section (Section 1.2).

1.2 Functional regression models in a nutshell

In recent years, a variety of regression methods for functional data have been developed and dis-

cussed. In principle, one can distinguish between methods for functional response and/or functional

covariates resulting in scalar-on-function, function-on-scalar and function-on-function regression. For

a recent review article on regression methods with functional data, see Morris (2015).

Scalar-on-function regression. The scalar-on-function model was introduced by Ramsay and

Dalzell (1991) as the linear functional model

yi = β0 +

∫
S
xi(s)β(s) ds+ εi, (1.1)

with continuous response yi, i = 1, . . . , N , functional covariate xi(s), s ∈ S, intercept β0, functional

coefficient β(s) and errors εi
iid∼ N(0, σ2). Divers generalizations and extensions of model (1.1)

allow, for example, for different response distributions, non-linearity of the functional effect and

further covariate effects. For response distributions from the exponential family, generalized linear

models (GLMs, Nelder and Wedderburn, 1972) with linear effects of functional covariates (e.g., Marx

and Eilers, 1999; Ramsay and Silverman, 2005; Müller and Stadtmüller, 2005; Goldsmith et al.,

2011; Gertheiss et al., 2013) have been proposed. To abandon linearity, functional counterparts

of generalized additive models (GAMs, Hastie and Tibshirani, 1986) have been introduced, which

model non-linear effects of functional covariates (e.g., James and Silverman, 2005; McLean et al.,

2014). A distribution-free approach for continuous responses is quantile regression (Koenker, 2005).

Quantile regression with functional covariates has been discussed by Ferraty et al. (2005); Cardot
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et al. (2005) and Chen and Müller (2012a). An important difference between the models is the choice

of the basis representation for the functional covariate and/or for the functional coefficient. The

basis representation can be combined with additional regularization by a penalty. Typical choices for

the basis functions are FPCs, (penalized) splines or wavelets. Other issues are denoising the observed

functional covariates and dealing with irregularly or sparsely observed functional covariates. These

issues can be addressed, for example, by FPCA. Moreover, the models can be estimated by multiple

fitting algorithms. Mostly, (penalized) maximum likelihood approaches are used. A systematic

comparison between FPC based and functional partial least squares regression for scalar-on-function

regression can be found in Febrero-Bande et al. (2015). Ferraty et al. (2005, 2007) adopt a different

approach based on nonparametric, kernel methods to estimate scalar-on-function regression models.

These models can be used for prediction but do not provide interpretable coefficient terms.

Function-on-scalar regression. A linear regression model with functional response yi(t), i = 1, . . . , N ,

t ∈ T , and scalar covariates xij , j = 1, . . . , J , is

yi(t) = β0(t) +

J∑
j=1

xijβj(t) + εi(t), (1.2)

where βj(t) is the functional coefficient that gives the effect of the jth covariate on the response

at point t and εi(t) are error curves. The errors are often assumed to be iid, mean zero Gaussian

processes with a specified auto-covariance to model the within-function covariance along t. It is

common to split the error curves into a smooth curve-specific random effect ei(t) and white noise

residual errors εit ∼ N(0, σ2) such that εi(t) = ei(t) + εit. If all covariates are factor variables, model

(1.2) can be seen as a model for functional analysis of variance (FANOVA, see Zhang, 2013, for an

overview). Multiple approaches have been proposed to model the conditional mean of a functional

response in the setting of independent (e.g., Reiss et al., 2010) and dependent data (e.g., Morris

and Carroll, 2006; Baladandayuthapani et al., 2008; Di et al., 2009; Greven et al., 2010; Chen and

Müller, 2012b; Cederbaum et al., 2016). Again, the methods differ in basis expansion, regularization

and fitting methods. For functional response regression, modeling of within-curve correlation is an

important issue. Most methods include rather strict assumptions on the within-curve correlation

structure and are only suitable for functional responses observed on a fine common grid.

Function-on-function regression. For functional response yi(t) and functional covariate xi(s),

Ramsay and Dalzell (1991) introduced the linear functional model

yi(t) = β0(t) +

∫
S
xi(s)β(s, t) ds+ εi(t), (1.3)

where β(s, t) is a functional coefficient surface and εi(t) are error curves. This model combines the

concepts of functional response and functional covariate regression models. Extensions concerning

the response distribution, non-linearity of the effect and the inclusion of further covariate effects have
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been discussed. Various basis expansions, regularization techniques and estimation methods have

been proposed, see, e.g., Yao et al. (2005b) and Wu and Müller (2011) for FPC based methods for

sparsely observed responses and Antoch et al. (2010) for a spline based method. For a non-linear effect

of the functional covariate, see Müller and Yao (2008). Ferraty et al. (2012) consider a nonparametric

kernel approach.

Concerning the support of the coefficient surface β(s, t) in model (1.3), constrained versions with

integration limits depending on the current point t exist, yielding

yi(t) = β0(t) +

∫ u(t)

l(t)
xi(s)β(s, t) ds+ εi(t). (1.4)

If the functional response and the functional covariate are both observed on the same domain

T = [T1, T2], the limiting case [l(t), u(t)] = [t, t] corresponds to the concurrent effect xi(t)β(t)

(Ramsay and Silverman, 2005, Chap. 14), which is a special case of a varying-coefficient model

(Hastie and Tibshirani, 1993). For integration limits [l(t), u(t)] = [T1, t], the coefficient surface is

defined on the lower triangle and only past and concurrent values of xi(s) can influence yi(t), yielding

the historical functional linear model (Malfait and Ramsay, 2003; Harezlak et al., 2007). Historical

functional effects are especially suited when the functional response and the functional covariate

are both observed over the same time interval, as then the response is only influenced by covariate

observations up to the current time-point of the response.

Flexible frameworks for functional regression models. Regression models for functional response

and many covariate effects including functional terms, have been proposed in a mixed models

framework (Ivanescu et al., 2015; Scheipl et al., 2015, 2016) and in a Bayesian context (Morris

and Carroll, 2006; Meyer et al., 2015). These general frameworks include function-on-scalar and

function-on-function regression models. They greatly expand the flexibility of models (1.2), (1.3)

and (1.4) by allowing for response distributions from the exponential family and for many covariate

effects including linear and non-linear effects of scalar and functional variables as well as interaction

effects. A comparison between these frameworks and the framework based on boosting that is

proposed in this thesis is given in Section 2.5.

In this thesis, a general framework for functional regression models is proposed in which the

estimation is conducted by a component-wise gradient boosting algorithm. This complements

existing estimation methods for functional regression models.

1.3 Short introduction to boosting

Boosting was originally a black box machine learning algorithm for supervised learning and has

been developed to fit interpretable statistical models; see, e.g., Mayr et al. (2014a) for a review on the

history of boosting. A theoretical question led to the development of the first boosting algorithm. The
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question was whether it is possible to construct a strong learner that is an almost perfect classification

rule from a set of weak learners, which are only slightly better than random guessing. As an answer,

Freund and Schapire (1996, 1997) developed the first successful boosting algorithm, called ‘AdaBoost’

for adaptive boosting, which is suited for binary classification. The performance of weak learners,

which are later called ’base-learners’ in the boosting context, can be iteratively improved and combined

(i.e. boosted) to create a strong learner. Schapire and Freund (2012) explain the underlying idea of

boosting as “forming a very smart committee of grossly incompetent but carefully selected members.”

Variants of AdaBoost have been discussed in the machine learning community (e.g., Schapire, 2003)

and in statistics (e.g., Breiman, 1999; Friedman, 2001; Bühlmann and Hothorn, 2007; Mayr et al.,

2014b). Boosting has been shown to be competitive in comparison with other classification algorithms

in many applications (e.g., Breiman, 1998; Bauer and Kohavi, 1999).

Breiman (1998, 1999) showed that AdaBoost can be seen as a steepest gradient descent algorithm

in function space. Friedman et al. (2000) and Friedman (2001) linked boosting to statistical modeling,

interpreting it as a method for function estimation. This laid the basis for the use of boosting

outside of the classification context, e.g., for (generalized) regression (Ridgeway, 1999; Friedman,

2001; Bühlmann and Yu, 2003; Tutz and Binder, 2006), survival analysis (Hothorn et al., 2006;

Binder and Schumacher, 2008; Möst and Hothorn, 2015) and density estimation (Ridgeway, 2002;

Hothorn et al., 2013). More recently, boosting algorithms to fit regression models beyond the mean

were developed. Examples include boosting quantile and expectile regression models (Fenske et al.,

2011; Sobotka and Kneib, 2012, respectively), boosting generalized additive models for location scale

and shape (GAMLSS, Mayr et al., 2012) and boosting conditional transformation models (Hothorn

et al., 2013).

The possible covariate effects are determined by the specified base-learners. Simple (penalized)

regression models as well as trees and tree stumps are commonly used. In the context of statistical

boosting for regression models, linear and smooth base-learners can be specified, resulting in linear

and additive models respectively.

We use a gradient boosting algorithm for statistical modeling (Friedman, 2001), where the base-

learners are simple (penalized) regression models and the optimum is searched along the steepest

gradient descent. We use a component-wise gradient boosting algorithm (see, e.g., Bühlmann and

Hothorn, 2007) that iteratively fits the negative gradient of the loss to each base-learner separately

and only updates the best-fitting base-learner in each step. Thus, models for high-dimensional data

settings with more covariates than observations can be estimated and variable selection is done in-

herently as base-learners that are never selected for the update are excluded from the model.

1.4 Scope of this work

This thesis proposes a general framework for functional regression models estimated by a component-

wise gradient boosting algorithm. The modeling framework has a modular setup allowing the combi-

nation of various choices for the model components:
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1. The characteristic of the conditional response distribution that is modeled: for example, the

mean (composed with a link function), the median, a quantile, an expectile and other distribu-

tion parameters can be modeled by minimizing an adequate loss function.

2. The specification of possible covariate effects in base-learners: for example, linear and smooth

effects of scalar covariates, linear effects of functional covariates, interaction effects and group-

specific effects. Various basis functions for the smooth effects are possible, e.g., P-splines (Eilers

and Marx, 1996) and FPC basis functions.

The estimation by gradient boosting enables most of this flexibility. The desired features of the

conditional response distribution are modeled by minimizing the corresponding loss function. Models

with more covariate effects than observations are feasible as the component-wise algorithm runs

through the base-learners one by one and only updates the best performing base-learner in each

step. This provides the variable selection property as base-learners never selected for the update

are excluded from the model. Regression models beyond the mean are of growing interest (see, e.g.,

Kneib, 2013). In this context, GAMLSS (Rigby and Stasinopoulos, 2005) allow modeling not only

the mean but, more generally, all distribution parameters of the conditional response distribution

depending on covariate effects. Referring to the fact that in GAMLSS all distribution parameters are

modeled, Klein et al. (2015) call such models ’distributional regression’. Other pathways for regression

beyond the mean are quantile (Koenker and Bassett, 1978; Koenker, 2005) and expectile (Newey and

Powell, 1987; Schnabel and Eilers, 2009) regression. We transfer models for scalar response to models

for functional response by computing the loss as a function over the domain of the response and

integrating this loss function over the domain of the response.

Neither the estimation of functional regression models in high-dimensional data situations (’small

p large N ’) nor variable selection are widely addressed in functional regression models (Morris, 2015).

Here, high-dimensional data and variable selection are meant on the level of many covariates, not

within a single functional variable. Thus, ’high-dimensional’ refers to situations where the number of

covariates exceeds the number of cases. In FDA, the term ’high-dimensional’ is sometimes also used

to refer to a functional variable, for which the number of grid points on which it is observed is higher

than the number of observed functions. With the term ’variable selection’, we refer to the selection

of relevant variables and not to the selection of relevant regions of a single functional covariate, as is

the case in James et al. (2009) and Tutz and Gertheiss (2010).

We discuss several variants of the generic model, which are each suited to certain data sit-

uations and modeling requirements. Within each chapter, one or more data applications are

analyzed giving examples of possible models. The theoretical framework is accompanied by

freely available software, in order to make the methods readily available for users. All methods are

implemented in the R (R Core Team, 2015) add-on package FDboost (Brockhaus and Rügamer, 2016).

Chapter 2 introduces the generic additive regression model and shows how the models dis-

cussed in Chapters 3 to 5 can be embedded in one common framework. Furthermore, the differences

between the models and the use-cases of each are briefly described. We shortly introduce the
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component-wise gradient boosting algorithm that is used for fitting and compare our framework with

existing frameworks for functional regression.

In Chapter 3, the functional linear array model (FLAM) is introduced, which is based on the

linear array model that was developed by Currie et al. (2006). The FLAM is tailored to functional

responses that are observed as a matrix and covariate effects that can be split into a covariate-part

varying over the i = 1, . . . , N cases and a time-part, varying over the g = 1, . . . , G grid points in T
at which the response is observed. The functional response can be represented as a matrix if it is

observed on a common grid where each row corresponds to one trajectory and each column to one

grid point. Scalar responses are treated as the limiting case, in which each response is observed on

exactly one grid point. This representation as an array model saves computing time and memory,

especially for big data sets. As covariate effects, linear and smooth effects of scalar variables, as

well as linear functional effects and interaction effects are possible. In the flexibility of covariate

effects, our framework is inspired by the framework proposed by Scheipl et al. (2015). The modeled

characteristic of the conditional response distribution can be chosen flexibly. The models include

mean, median and quantile regression. For estimation the corresponding loss criterion is minimized.

For optimization, we adapt the component-wise gradient boosting algorithm of Hothorn et al. (2013)

for functional data. The FLAM is applied to three data examples, for the three types of functional

regression: function-on-scalar, scalar-on-function and function-on-function regression.

We discuss models that are not based on array models in Chapter 4. An important use-case

for non-array models is models with historical functional effects, for which the current value of the

functional response can only be influenced by past and concurrent observations of the functional

covariate. The work in Chapter 4 is motivated by a biotechnological application on fermentations.

With the goal of monitoring new fermentations, a key process parameter, which is expensive and

time-consuming to measure, should be modeled using process variables that can be easily measured

in real time. In this application, the functional response is observed on irregular grids and a model

with historical functional effects is required as only past and concurrent values of the functional

covariates can be used to predict the functional response. Like in FLAMs, the modeled feature of the

conditional response distribution can be chosen flexibly. Additionally, the models discussed in this

chapter can be applied for functional response observed on curve-specific grids. Furthermore, it is

possible to specify effects of covariates that vary across the domain of the response. The estimation

is conducted by a component-wise gradient boosting algorithm.

Chapter 5 covers the combination of scalar-on-function regression with GAMLSS, which al-

lows modeling all distribution parameters of the conditional response distribution simultaneously.

For fitting, we consider a penalized maximum likelihood-based approach and component-wise

gradient boosting. We incorporate functional linear effects into algorithms that have been developed

to estimate GAMLSS with scalar variables. We use the algorithms of Rigby and Stasinopoulos (2005)

and Mayr et al. (2012) that are based on backfitting and boosting, respectively. As a third possibility,
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we consider the maximum likelihood-based approach of Wood et al. (2015), which allows for scalar

response and functional linear effects but only contains some GAMLSS response distributions. In

the application, location scale models with scalar and functional covariates are estimated to model

the mean and the variance of stock returns.

Chapter 6 gives an overview on the R package FDboost (Brockhaus and Rügamer, 2016). It

can be read as a tutorial for how to use FDboost to estimate functional regression models. We

comment on base-learners (covariate effects), loss functions (modeled characteristic of the conditional

response disquisition), model tuning and the display of results.

The thesis concludes with a discussion which contains a summary and an outlook on possible

future research directions (Chapter 7).

1.5 Contributing manuscripts

Parts of this thesis are published in peer reviewed journals, in conference proceedings, as technical

reports or in vignettes accompanying the R add-on package FDboost. All manuscripts have been

written in cooperation with my supervisor Sonja Greven and with colleagues from statistics and

other related fields. Below, an outline of all chapters is given listing the relevant manuscripts.

Information about the contributions of all authors is given at the beginning of each chapter.

Chapter 2 was prepared for the thesis, but references at various points to Brockhaus et al.

(2015b, 2016b) and Brockhaus et al. (2016a).

Chapter 3 on the functional linear array model is based on

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2015): The functional linear

array model. Statistical Modelling, 15(3), 279–300.

Chapter 4 on models with functional historical effects is based on

Brockhaus, S., Melcher, M., Leisch, F., and Greven, S. (2016): Boosting flexible func-

tional regression models with a high number of functional historical effects. Statistics and

Computing, accepted, DOI: http://dx.doi.org/10.1007/s11222-016-9662-1.

Chapter 5 on GAMLSS models in scalar-on-function regression is based on

Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2016): Signal regression mod-

els for location, scale and shape with an application to stock returns. arXiv preprint,

arXiv:1605.04281.

Chapter 6 was prepared for the thesis. It contains some material from the manual of the R package

FDboost.

http://dx.doi.org/10.1007/s11222-016-9662-1
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The contributing papers are cited at the beginning of each chapter, but to enhance the read-

ability of the thesis, further repeated citations of the contributing papers are avoided despite the

textual matches.

1.6 Software

All analyses in this thesis have been performed using the R system of statistical computing (R Core

Team, 2015). In the following, we shortly list the R add-on packages that were most important for

this thesis. More information on the used software, including R and R package versions, is given at

the beginning of each chapter. All software and all implementations are open-source and therefore

free to be used by anyone.

Estimation by component-wise gradient boosting was performed using the R package FDboost

(Brockhaus and Rügamer, 2016), which is based on mboost (Hothorn et al., 2016). For mean re-

gression with functional response, functional additive mixed models (FAMMs, Scheipl et al., 2015)

implemented in the R package refund (Huang et al., 2016) were used in Chapters 3 and 4. In Chap-

ter 5, the R packages mgcv (Wood, 2016), gamlss (Stasinopoulos et al., 2016) and gamlss.add (Rigby

and Stasinopoulos, 2015) were used to fit scalar-on-function GAMLSS. For boosting GAMLSS we use

the R package gamboostLSS (Hofner et al., 2015b).



Chapter 2

Generic framework for functional

regression

In this chapter, the generic framework for regression with functional data is introduced. The models

discussed in Chapters 3 to 5 can all be embedded in this framework. We will give an overview on

possible covariate effects (Section 2.2). In the generic model, different features of the conditional

response distribution can be modeled; see Section 2.3 for the corresponding transformation and loss

functions. The estimation is conducted by component-wise gradient boosting (Section 2.4). The

chapter concludes with a comparison of our framework with other general frameworks for functional

regression models in Section 2.5.

2.1 Generic model

First, we introduce some notation. We assume that the response Y for given covariates X follows a

conditional distribution FY |X , where X can contain fixed and random variables. (Y,X) takes values

in Y × X . For functional response, let Y be a suitable space, such as the space of square integrable

functions L2(T , µ), with T being a real-valued interval and µ the Lebesgue measure. The domain

of the functional response is denoted by T = [T1, T2], with T1, T2 ∈ R and T1 < T2. For scalar

response, the interval T is a single point T = [T1, T1] and µ is the Dirac measure. Let X be a product

space of suitable spaces for the covariates. For functional covariates, we use the space of square

integrable functions L2(S, µ), with S being a real-valued interval. Each functional covariate can have

a specific domain. For scalar covariates, we use the space of the real numbers R. The realizations

from (Y,X) are denoted by (yi, xi), for i = 1, . . . , N cases. The N response curves are observed at

curve-specific grid points (ti1, . . . , tiGi)
>, tig ∈ T , yielding in total n =

∑N
i=1Gi observation points.

For responses observed on a common grid, we denote the grid points by (t1, . . . , tG)> and the number

of observations is in this case n = NG. For a functional covariate Xj(s), with domain S, we assume

that the observations xij(sr), i = 1, . . . , N , are made on a common grid (s1, . . . , sR)>. The grid points

and the domain can vary between different functional covariates. We omit this possible dependency
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on j for domain and grid points for better readability. Generally, indexing over i refers to the ith

observed case; for the covariates, indexing over j refers to one of the covariates.

As generic model, we define the following structured additive regression model (Chapter 3 and 4):

ξ(Y |X = x) = h(x) =
J∑
j=1

hj(x), (2.1)

where ξ is a transformation function that specifies the characteristic of the conditional response

distribution to be modeled, h(x) is the linear predictor and hj(x) are the effects summing up to h(x).

All effects hj(x) are real-valued functions on T and can depend on one or several covariates in x.

For quantile regression (Koenker, 2005), the transformation function is the corresponding quantile

function. For a generalized linear model (GLM, Nelder and Wedderburn, 1972), the transformation

function ξ is the composition of the expectation E and the link function g, ξ = g ◦ E. Note that

model (2.1) can be written as ξ(Y |X = x)(t) = h(x)(t) =
∑J

j=1 hj(x)(t), such that the dependency

on t becomes clear. In Chapters 3 and 4, we discuss models with such transformation functions that

model one characteristic of the response distribution.

To represent a generalized additive model for location, scale and shape (GAMLSS, Rigby and

Stasinopoulos, 2005), the model consists of several linear predictors to model Q distribution param-

eters simultaneously. In this case, the transformation function ξ is a vector of Q functions to model

the Q distribution parameters by parameter-specific linear predictors. Writing the model with vector

valued transformation function, the generic model is given by

ξ(q)(Y |X = x) = h(q)(x) =

J(q)∑
j=1

h
(q)
j (x), q = 1, . . . , Q, (2.2)

where ξ(q) is the transformation function yielding the qth distribution parameter and h(q)(x) is the

corresponding linear predictor with partial effects h
(q)
j (x). For instance, assuming the normal distribu-

tion, the modeled distribution parameters can be the expectation and the variance composed with link

functions. Then the transformation functions are (ξ1, ξ2)> = (g(1) ◦ E, g(2) ◦Var)> = (E, log ◦Var)>,

if g(1) is the identity and g(2) the logarithm. The GAMLSS with scalar response and functional co-

variates is discussed in Chapter 5. In the following, we omit the possible dependency on q to enhance

readability.

2.2 Covariate effects

Each effect hj(x) in the linear predictor is specified by a basis representation:

hj(x)(t) = bjY (x, t)>θj , j = 1, . . . , J, (2.3)
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where bjY (x, t) is a vector of basis evaluations and θj is the corresponding coefficient vector that has

to be estimated. Regularization is achieved by a Ridge-type penalty with a quadratic penalty term

θ>j PjY θj , where PjY is a suitable penalty matrix depending on one or more smoothing parameters.

Equation (2.3) gives a very general representation. In practice, we represent effects (2.3) using

the row tensor product � of two marginal bases bj : X × T → RKj and bY : T → RKY (cf., Scheipl

et al., 2015):

hj(xi)(tig) =
(
bj(xi, tig)

> � bY (tig)
>)θj , (2.4)

with coefficient vector θj ∈ RKjKY . The first marginal basis, bj(xi, tig), models the effect in covariate

and t direction; the second marginal basis, bY (tig), models the effect in t direction. Equation (2.4)

represents one row of the design matrix for the jth effect. The corresponding n×KjKY design matrix

BjY contains rows bjY (xi, tig)
> for i = 1, . . . , N and g = 1, . . . , Gi for each i. It can be computed as

row tensor product from the two marginal design matrices Bj and BY . The marginal design matrix

Bj is a n×Kj matrix, which has rows bj(xi, tig)
>, with i = 1, . . . , N and g = 1, . . . , Gi for each i.

The marginal design matrix in t direction is the n×KY matrix BY , containing rows bY (tig)
>, with

i = 1, . . . , N and g = 1, . . . , Gi. The row tensor product � of the two marginal design matrices yields

the n×KjKY design matrix BjY ,

BjY = Bj �BY =
(
Bj ⊗ 1>KY

)
·
(
1>Kj
⊗BY

)
, (2.5)

where ⊗ is the Kronecker product, · denotes entry-wise multiplication, which is also called Hadamard

product, and 1K is the K-dimensional vector of ones. The row tensor product is a row-wise Kronecker

product: for all rows, i = 1, . . . , n, all elements of the ith row of matrix Bj are multiplied with all

elements of the ith row of matrix BY . In Chapter 4, the covariate effects are represented using the

row tensor product.

If the design matrix can be represented as Kronecker product of two marginal design matrices, it

is possible to use the framework of linear array models that was developed by Currie et al. (2006).

In order to use the Kronecker product, it is necessary that the basis can be split into two marginal

parts such that one part only depends on xi, i = 1, . . . , N , and the other part only depends on tg,

g = 1, . . . , G. For the covariate-part, we use the N ×Kj marginal design matrix Dj , which contains

rows b(xi)
>, i = 1, . . . , N . Note that, in contrast to the specification in (2.4), the basis in covariate

direction b(xi)
> is independent of t. The G × KY marginal design matrix DY has rows b(tg)

>,

g = 1, . . . , G and is, thus, independent of i. This independence of i is only possible if all response

curves are observed on common grid points (t1, . . . , tG)>. The name ’array model’ refers to the fact

that the response can be represented as an array: The functional response is a two-dimensional array

with cases i, i = 1, . . . , N , in rows and grid points tg, g = 1, . . . , G, in columns. Using these two

marginal design matrices, the design matrix can be computed as the Kronecker product

BjY = Dj ⊗DY = (Dj ⊗ 1G)� (1N ⊗DY ) = Bj �BY . (2.6)
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The second equality in (2.6) shows how the Kronecker product of the marginal design matrices

Dj and DY can be computed as row tensor product, if the entries of Dj and DY are repeated

appropriately. Thus, the representation of the design matrix as Kronecker product (2.6) is a special

case of the representation as row tensor product (2.5). We denote a model with effects that can be

computed as the Kronecker product of two marginal design matrices as functional linear array model

(FLAM). Such models are discussed in Chapter 3. Representing the effects in the array structure

has computational advantages as it saves computing time and memory usage during estimation.

For regularization, the same penalty matrix P jY can be used for effects represented as row

tensor product basis (2.5) and for effects represented as Kronecker product basis (2.6). A suitable

penalty matrix can be constructed as (Wood, 2006, Sec. 4.1.8)

P jY = λj(P j ⊗ IKY
) + λY (IKj ⊗ P Y ), (2.7)

where P j ∈ RKj×Kj is an appropriate penalty matrix for the marginal basis bj , P Y ∈ RKY ×KY

is an appropriate penalty matrix for the marginal basis bY and λj , λY ≥ 0 are the corresponding

smoothing parameters.

To give an idea of possible effects hj(x)(t), Table 2.1 lists effects that are currently implemented in

the FDboost package (Brockhaus and Rügamer, 2016). All effects mentioned in Table 2.1 are varying

over t. Removing the dependency of the effects in t, the effects can also be fitted as constant in t.

The upper part of the table contains linear, smooth and interaction effects for scalar covariates. The

middle part of the table gives possible effects of functional covariates and interaction effects between

scalar and functional covariates. The lowest part of the table shows some group-specific effects. If

the response is observed on a common grid, the last column ’array structure’ indicates whether the

design matrix for the effect can be computed as the Kronecker product of two marginal bases or not.

Note that for irregularly observed response this is conceptually impossible.

Depending on the chosen effects hj(x)(t), additional constraints are necessary to obtain an iden-

tifiable model. For models including a smooth intercept β0(t), all effects hj(x)(t) that contain a

smooth intercept as a special case are not identifiable Scheipl et al. (2015). In Table 2.1, effects

containing a smooth intercept as special case are all effects of scalar covariates, i.e., zβ(t), f(z, t),

z1z2β(t), z1f(z2, t), f(z1, z2, t), βg(t), zβg(t) and ei(t). Consider a model with smooth intercept

and such an effect, ξ(Yi(t)) = β0(t) + hj(xi)(t), and define the mean effect at each point t as

h̄j(x)(t) = EX(hj(X)(t)). This model can be parametrized in different ways:

ξ(Yi(t)) = β0(t) + hj(xi)(t)

=
[
β0(t) + h̄j(x)(t)

]
+
[
hj(xi)(t)− h̄j(x)(t)

]
= β̃0(t) + h̃j(x)(t).

The problem arises as h̄j(x)(t) can be shifted between the intercept and the covariate effect. At

the level of the design matrices of the effects, this can be explained by the fact that the columns of
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Table 2.1: Overview of possible covariate effects that can be represented within the framework of functional
regression. The column ’array structure’ indicates whether the design matrix of the effect can be represented
as the Kronecker product of two marginal bases in case of grid data. A similar overview table can be found in
Scheipl et al. (2015).

covariate(s) type of effect hj(x)(t) array

(none) smooth intercept β0(t) yes
scalar covariate z linear effect zβ(t) yes

smooth effect f(z, t) yes
two scalars z1, z2 linear interaction z1z2β(t) yes

functional varying coefficient z1f(z2, t) yes
smooth interaction f(z1, z2, t) yes

functional covariate x(s) linear functional effect
∫
S x(s)β(s, t) ds yes

scalar z and functional x(s) linear interaction z
∫
S x(s)β(s, t) ds yes

smooth interaction
∫
S x(s)β(z, s, t) ds yes

functional covariate x(s), concurrent effect x(t)β(t) no

with S = T = [T1, T2] historical effect
∫ t
T1
x(s)β(s, t) ds no

lag effect, with lag δ > 0
∫ t
t−δ x(s)β(s, t) ds no

lead effect, with lead δ > 0
∫ t−δ
T1

x(s)β(s, t) ds no

effect with t-specific integration
limits [l(t), u(t)]

∫ u(t)
l(t) x(s)β(s, t) ds no

grouping variable g group-specific smooth intercepts βg(t) yes
grouping variable g and scalar z group-specific linear effects zβg(t) yes
curve indicator i curve-specific smooth residuals ei(t) yes

the design matrix BjY are linearly dependent to the columns of the design matrix of the functional

intercept. To obtain identifiable effects, Scheipl et al. (2015) propose to center those effects at each

point t. The centering is achieved by assuming that the expectation over the covariates is zero on T ,

i.e., EX(hj(X)) = 0 for all t. How to enforce those constraints is described in Appendix A.1, which is

based on Scheipl et al. (2015). Other constraints to obtain identifiable models are possible. However,

this sum-to-zero constraint for each point t yields an intuitive interpretation: the intercept can be

interpreted as global mean parameter of ξ and the covariate effects can be interpreted as deviations

from the smooth intercept. For instance, for ξ = E, β0(t) is the global mean and for ξ = median,

β0(t) is the global median.

For effects of functional covariates, a different kind of identifiability problem can arise, when the

columns of one effect BjY are linearly dependent. This can happen when the functional covariate

does not carry enough information to estimate the corresponding coefficient surface βj(s, t). Scheipl

and Greven (2016) discuss these identifiability problems and possible solutions for linear functional

effects with fixed integration limits
∫
S x(s)β(s, t) ds. In Section 4.2.2, we transfer their considerations

to linear functional effects with integration limits depending on t,
∫ u(t)
l(t) x(s)β(s, t) ds. Centering the

functional covariate by subtracting its mean function is unrelated to identifiability and yields the
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same coefficient for the functional effect. We compute the centered functional covariate as x∗i (s) =

xi(s)− x̄(s), with x̄(s) = N−1
∑

i xi(s). Then, a model with a linear functional effect can be specified

for the uncentered and for the centered functional variable. Due to the following transformation, this

only changes the interpretation of the intercept:

ξ(Yi(t)) = β0(t) +

∫
xi(s)β(s, t) ds

= β0(t) +

∫
[x∗i (s) + x̄(s)]β(s, t) ds

=

[
β0(t) +

∫
x̄(s)β(s, t)ds

]
+

∫
x∗i (s)β(s, t) ds

= β∗0(s)(t) +

∫
x∗i (s)β(s, t) ds. (2.8)

In equation (2.8), first, the functional covariate is represented as the centered covariate plus the mean,

Then, the integral is split. The part that is integrated over the mean does not depend on i. Thus,

it can be added to the smooth intercept. Hence, centering the functional covariate implies that the

smooth intercept can be interpreted as the overall mean.

As an example for the concrete construction of a design and a penalty matrix, consider a linear

effect of a scalar covariate zjβj(t). Such an effect is specified as a tensor product basis by setting

bj(x) = (zj) and bY (t) = ΦY (t), where ΦY (t) is a vector of splines evaluated at t, i.e., ΦY (t) =

(Φ1(t), . . . ,ΦKY
(t))> with splines Φk. As the design matrix Bj resulting from bj(x) = (zj) contains

only a single column (z1j , . . . , zNj)
>, the corresponding marginal penalty matrix P j is a scalar.

Setting P j = 0, results in no penalization of the effect in zj . A penalty P j = 1, results in a Ridge-

penalty for the effect in direction of zj shrinking the effect towards zero. The marginal penalty P Y

must be chosen according to the spline basis ΦY (t). For example, when using B-splines for ΦY , P Y

can be chosen as a squared difference matrix. This results in P-splines (Eilers and Marx, 1996) for

the t direction.

As a second example, consider the lag effect
∫ t
t−δ xj(s)βj(s, t) ds. A lag effect is represented by a

row tensor product basis. The integral in the lag effect is approximated by a numerical integration

scheme, as proposed by Scheipl et al. (2015). We transform the observations of the functional covariate

xj(sr) such that they contain the integration limits of the lag effect and the weights for numerical

integration. We set x̃j(sr, t) = I [t− δ ≤ sr ≤ t] ∆(sr)xj(sr), with indicator function I and integration

weights ∆(sr). The marginal basis in x and t is

bj(x, t)
> ≈ [x̃j(s1, t) · · · x̃j(sR, t)] [Φj(s1) · · · Φj(sR)]>

=

[
R∑
r=1

x̃j(sr, t)Φ1(sr) · · ·
R∑
r=1

x̃j(sr, t)ΦKj (sr)

]
,

where Φj(s) = (Φ1(s) · · · ΦKj (s))
> is a vector of evaluated spline functions. The basis over t is again

chosen as bY (t)> = ΦY (t)>. Various types of effects are used in the applications in the Chapters 3
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to 5. More details on the representation of the effects are given in the corresponding sections, as we

think that concrete applications improve the readability of the technical details.

2.3 Transformation and loss functions

The estimation problem for fitting model (2.1) is represented by using an adequate loss function. The

loss is chosen such that the transformation function is the minimizer. The model h is an element

of the set H, where H is the set of all functions from (X × T ) to L2(T , µ). We define the loss

function ρ : (Y × X ) × H → L1(T , µ) and assume that the loss is differentiable with respect to the

second argument. Thus, the loss ρ maps the data and the model to a function over t, which gives

the discrepancy of Y (t) and h(X)(t) at each t ∈ T . Consider, for instance, the absolute error loss,

ρL1 ((Y,X), h) (t) = |Y −h(X)|(t), which yields the median as minimizer. In Table 2.2, more examples

of possible transformation and loss functions are given. To get a linear model (LM), one uses the

Table 2.2: Overview on possible transformation and loss functions.

model transformation function ξ loss function ρ

LM E squared error loss, L2 loss

GLM g ◦ E negative log-likelihood

GAMLSS

 g(1) ◦ ϑ(1)

...

g(Q) ◦ ϑ(Q)

 negative log-likelihood with Q parameters

median regression Q0.5 absolute error loss, L1 loss

quantile regression Qτ check function

squared error loss, also called L2 loss. This is equivalent to modeling the expectation of a normally

distributed response. The L2 loss is equivalent to the negative log-likelihood of the normal distri-

bution depending on the expectation. To obtain a GLM, the negative log-likelihood of the assumed

distribution is the adequate loss function. For GLMs, the transformation function can contain a link

function. Distributions that can be assumed in a GLM include among others the binomial, Poisson,

log-normal and Gamma distribution (Nelder and Wedderburn, 1972). More generally, for a GAMLSS,

cf. equation (2.2), the negative log-likelihood of the assumed response distribution depending on the

Q distribution parameters is used as loss function (Rigby and Stasinopoulos, 2005). GAMLSS in-

clude, for instance, location scale Gaussian models, beta regression models and zero-inflated Poisson

models. We denote a quantile regression model by ξ = Qτ , where Qτ is the τ -quantile of a given
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quantile τ ∈ (0, 1). To estimate a quantile regression model, the corresponding loss function is the

check function (Koenker, 2005):

ρτ (Y, h(X)) =

{
(Y − h(X)) τ, if Y − h(X) ≥ 0

(Y − h(X)) (τ − 1), if Y − h(X) < 0.

For the special case of median regression, which models the 50% quantile Q0.5, the check function is

equivalent to the absolute error loss.

So far, we presented loss functions that yield the loss over the domain of the response. In order to

get a loss for each curve that is a single non-negative number, the loss is integrated over the domain

of the response T . We define the loss ` : (Y × X )×H → [0,∞) by

` ((Y,X), h) =

∫
ρ((Y,X), h) dµ, (2.9)

For functional response, the integral is computed as
∫
T ρ ((Y,X), h) (t) dt, as µ is the Lebesgue measure

in this case. In practice, the integral is approximated by numerical integration. For scalar response,

(2.9) is equivalent to the loss function ρ, as µ is the Dirac measure in this case.

2.4 Estimation by gradient boosting

For estimation, we use a component-wise gradient boosting algorithm; see Section 1.3 for a short

introduction into boosting. Gradient boosting minimizes an expected loss criterion along the steepest

gradient descent and can thus be seen as a method of gradient descent (Breiman, 1998). The perfor-

mance of simple models, in the boosting-context called base-learners, is improved by combining them

iteratively. Component-wise boosting updates in each iteration only the best fitting base-learner.

The best fit is defined as the minimal residual sum of squares between the negative gradient and the

base-learner fit (Bühlmann and Hothorn, 2007). As each base-learner is considered separately for the

model update, it is possible to consider a large number of base-learners as potential covariate effects.

For functional regression models (2.1), each effect hj(x)(t) is represented by a base-learner. We use

for each base-learner a model as defined in (2.3) regularized by a Ridge-type penalty with penalty

matrix (2.7); see Section 2.2 for more information on the practical representation of covariate effects.

The following boosting algorithm is based on the component-wise gradient boosting algorithm of

Bühlmann and Hothorn (2007) and is described in more detail in Section 4.4. This boosting algorithm

is suitable for models that contain one linear predictor. For a GAMLSS, which models more than one

distribution parameter simultaneously, the boosting algorithm of Mayr et al. (2012) can be adapted

for functional regression models; see Section 5.4 for boosting GAMLSS with scalar response and

functional covariates.
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Algorithm: Gradient boosting for functional regression models

Step 1: Define the bases bjY (x, t) and penalties P jY for the j = 1, . . . , J base-learners. Define the

weights w̃ig = wi∆(tig) for all observation points i = 1, . . . , N , g = 1, . . . , Gi, where wi are

resampling weights and ∆(tig) are weights for numerical integration. Initialize the parameters

θ
[0]
j . Select the step-length ν ∈ (0, 1) and the stopping iteration mstop. Set the number of

boosting iterations to zero, m := 0.

Step 2: Compute the negative gradient of the empirical risk

ui(tig) := − ∂

∂h
ρ ((yi, xi), h) (tig)

∣∣∣∣
h=ĥ[m]

,

with ĥ[m](xi)(tig) =
∑J

j=1 bjY (xi, tig)
>θ

[m]
j .

Fit the base-learners for j = 1, . . . , J :

γ̂j = arg min
γ∈RKjKY

N∑
i=1

Gi∑
g=1

w̃ig

{
ui(tig)− bjY (xi, tig)

>γ
}2

+ γ>P jY γ,

with weights w̃ig and penalty matrices P jY .

Select the best fitting base-learner according to a least squares criterion:

j? = arg min
j=1,...,J

N∑
i=1

Gi∑
g=1

w̃ig

{
ui(tig)− bjY (xi, tig)

>γ̂j

}2

Step 3: Update the parameters θ
[m+1]
j? = θ

[m]
j? + νγ̂j? and keep all other parameters fixed, i.e.,

θ
[m+1]
j = θ

[m]
j , for j 6= j?.

Step 4: Unless m = mstop, increase m by one and go back to step 2.

The final model is the sum of the selected base-learners: ξ̂(Yi|Xi = xi) =
∑

j ĥ
[mstop]
j (xi). All coeffi-

cients are initialized as zero, expect for the smooth intercept that is initialized by a smooth offset. For

a fair model selection, the degrees of freedom (df) must be equal for all base-learners (Kneib et al.,

2009; Hofner et al., 2011). Otherwise, the selection of base-learners in the boosting steps is biased

towards more flexible base-learners with higher df as they are more likely to yield larger improvements

of the fit. Equal numbers for the df are achieved by computing adequate smoothing parameters for

the penalty matrices. The number of df that can be given to a base-learner have an upper and a

lower bound. The minimal possible number of df is given by the rank of the null space of the penalty.

The maximal possible number of df is the number of columns of the design matrix. In order to obtain

weak learners, the df are usually chosen rather small (Kneib et al., 2009). The base-learners adapt to

the complexity of the data by the number of boosting iterations (Bühlmann and Yu, 2003). For fixed

small step-length ν, e.g., ν = 0.1, and fixed df, the number of boosting iterations is used as tuning
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parameter (see, e.g., Friedman, 2001). We choose the optimal stopping iteration by resampling meth-

ods such as cross-validation or bootstrapping (see, e.g., Bühlmann and Hothorn, 2007). Generally,

resampling happens on the level of independent observations. For functional response, this implies

that the resampling has to be done on the level of whole curves.

To refine the model selection, stability selection can be used in combination with component-

wise gradient boosting (Hofner et al., 2015a). Stability selection was introduced by Meinshausen

and Bühlmann (2010) and is a procedure to select influential variables with error control. Shah

and Samworth (2013) proposed complementary pairs stability selection which improves the original

selection procedure.

Boosting functional regression models is implemented in the R add-on package FDboost (Brockhaus

and Rügamer, 2016). This package is based on the fitting machine of the R package mboost (Hothorn

et al., 2016). For fitting functional GAMLSS, FDboost relies on the R package gamboostLSS (Hofner

et al., 2015b).

2.5 Comparison with existing frameworks

Using a mixed models representation, Scheipl et al. (2015) propose a functional regression framework

called ’functional additive mixed models’ (FAMMs). Within this framework, linear mixed models

for functional response can be estimated and a great variety of covariate effects are feasible. Scheipl

et al. (2016) generalize this model class to response distributions from the exponential family as well

as from other distribution families like the Negative Binomial, Beta- or t-distribution and call this

new model class ’generalized functional additive mixed models’ (GFAMMs). This framework as well

as the proposed framework based on boosting, directly model the observed data without applying a

basis transformation. Both frameworks are suited for functional data with smooth underlying curves.

The mixed models based framework is implemented in the R add-on package refund (Huang et al.,

2016).

Instead of directly modeling the functional response, a basis representation can be applied prior to

the model fit. Morris and Carroll (2006) and Meyer et al. (2015) developed a Bayesian wavelet-based

functional mixed models (WFMM) methodology. They represent functional variables by wavelets or

by other basis functions such as functional principal components (FPCs). Thus, the data is projected

into the coefficient space of the chosen basis and the regression is conducted within this space. When

using wavelets, this framework is especially suited for spiky functional data. An implementation in

Matlab is available in the software package WFMM (Herrick, 2015). Table 2.3 gives an overview on

the characteristics of the three different frameworks for regression with functional data: the newly

presented framework with array and non-array models estimated by boosting (FDboost), GFAMM

by Scheipl et al. (2015, 2016) and WFMM by Morris and Carroll (2006) and Meyer et al. (2015).

For the modeled feature of the conditional response distribution, the regression framework based

on boosting provides more flexibility than the other two frameworks. In all three regression frame-

works, a variety of covariate effects can be specified; for instance, linear and smooth effects of scalar

covariates as well as linear functional effects. FDboost is the only framework that treats a scalar
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Table 2.3: Overview table for general frameworks for regression with functional data summarizing
some characteristics of FDboost, GFAMM and WFMM.

Characteristic FDboost GFAMM WFMM

LM for functional response yes yes yes
GLM for functional response yes yes no
GAMLSS for functional response yes normal1 no
general loss functions, yes no no

e.g., quantile regression
scalar response yes (yes)2 (distributed lag models)3

missing values yes yes no4

types of covariate effects many many many
built-in variable selection yes no5 no5

high-dimensional data, “N < p” yes no no

inference based on bootstrap mixed models Bayesian methods

computational scalability
for large N good fair fair
for large G good fair good

1 Gaussian location scale model; see the manual of the function pffr() in the R package refund (Huang
et al., 2016).
2 For scalar-on-function regression, see penalized functional regression models by Goldsmith et al. (2011).
3 For distributed lag models, see Malloy et al. (2010).
4 But see Morris et al. (2006) for an imputation scheme in particular cases of missingness.
5 Variable selection based on information criteria possible.

response as a special case of a functional response. However, there exist scalar-on-function regres-

sion models based on mixed models and Bayesian inference; see Goldsmith et al. (2011) and Malloy

et al. (2010), respectively. Boosting can estimate models in high-dimensional data settings, in which

the number of parameters exceeds the number of observations. This is impossible in the other two

frameworks. Using a mixed model or Bayesian framework, inference is a byproduct of model fitting

and confidence intervals as well as p-values can be provided. In the boosting framework, inference

can be based on bootstrapping or permutation tests. Concerning the time and memory consumption,

boosting scales better. Thus, it is better suited for large data sets then the other two methods.

The choice of a modeling framework depends on the data situation. The mixed models based

methods directly provide inference and for small data sets, they can be computed faster. For high-

dimensional data situations, only the component-wise gradient boosting algorithm can be applied.

Furthermore, boosting scales better for large data sets.
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Chapter 3

The functional linear array model

Contributing manuscript

This chapter is based on the following paper:

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2015): The functional linear

array model. Statistical Modelling, 15(3), 279–300.

This is joint work with Fabian Scheipl (Department of Statistics, LMU Munich, Germany), Torsten

Hothorn (Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland)

and Sonja Greven (Department of Statistics, LMU Munich, Germany). Fabian Scheipl had the idea

to use array models for functional response and base the estimation on gradient boosting, as in

Hothorn et al. (2013). The concrete modeling framework was mainly developed by Sarah Brockhaus

in cooperation with Sonja Greven. Torsten Hothorn pushed towards a general modeling framework

and notation style and wrote a first version of the main wrapper function FDboost() for the FDboost

package. Sarah Brockhaus implemented the R package for boosting functional regression models,

FDboost, which is based on the mboost package. Fabian Scheipl advised on R programming in general

and also in particular on the implementation of FDboost. Sarah Brockhaus conducted the simulation

study and performed the data analysis. The manuscript was written by Sarah Brockhaus under the

supervision of the other three authors. All authors were involved in proofreading the manuscript.

Chapter 3 is comprised of Brockhaus et al. (2015b) with the additional Section 3.6.3 (Canadian

weather data), which can be found in the web appendix of the article. For the thesis, the simulation

study and the applications were rerun using more recent software versions. A small simulation that

compares the computation times for boosting a FLAM with and without making use of the array

structure is added in the thesis; see Figure 3.2 in Section 3.5. The other sections of Chapter 3 match

Brockhaus et al. (2015b) except for small changes and additions in the text.

Preliminary work on Chapter 3 can be found in the conference proceedings of IWSM 2014 (29th

International Workshop on Statistical Modelling), see Brockhaus et al. (2014).
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Software

The analyses within this chapter were conducted using R version 3.2.3 (R Core Team, 2015). For

boosting functional regression models, FDboost 0.2-0 (Brockhaus and Rügamer, 2016) with mboost

2.6-0 (Hothorn et al., 2016) was used. Functional regression models based on mixed models were

fitted by the R add-on package refund 0.1-14 (Huang et al., 2016).

3.1 Introduction

Functional data analysis (e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006) aims at analyzing

data where the observation units are functions. Often functional regression models (Ramsay and

Silverman, 2005) are of interest, i.e., models containing a functional response or at least one functional

covariate, resulting in three types of functional regression models: scalar-on-function, function-on-

scalar and function-on-function regression models. We introduce the Functional Linear Array Model

(FLAM), which includes all three model types as special cases and provides a unified model class for

functional regression. Compared to existing work, which typically focused on one of the three cases,

we provide three novel extensions. First, the use of general loss functions allows us to model not

only the conditional mean but also the median, any quantile or any other property of the conditional

distribution representable by a suitable loss function. Most existing work has focused on mean

regression for functional data, but more general loss functions than the squared error loss are in

particular important for robust regression models, using e.g., the absolute error loss or the Huber

loss, and for non-normal functional data. Second, our approach is able to handle a large number of

covariate effects –even more than observations– and model selection. Both, large numbers of variables

and variable selection are largely unaddressed in the functional data context to date. Third, we provide

a common software platform for functional regression which makes use of the array structure of FLAMs

to obtain computational efficiency for estimation via generalized linear array models (Currie et al.,

2006). Although we assume for the FLAM that the functions are intrinsically smooth and measured

on a fine grid, missing values are allowed and make estimation for sparse functional data possible,

albeit at some loss of computational efficiency. In addition to computational efficiency, this unified

and modular platform has the advantage of allowing for and encouraging extensions of the model

class (even though many models of common interest are already implemented) and new model terms

or loss functions will then be instantly available for all models covered by our framework.

A recent overview on functional regression can be found in Morris (2015). Most prior work in

this area has focused on quite narrow classes of models. The proposed models are often restricted

to one functional predictor without consideration of further scalar or functional covariates and mini-

mization of a quadratic loss function. Much work has concentrated on scalar-on-function regression

–also called signal regression– modeling the functional effect linearly as the scalar product of the

functional predictor and a smooth coefficient function, in the context of linear models (e.g., Reiss and

Ogden, 2007; James et al., 2009), generalized linear models (e.g., Marx and Eilers, 1999; Müller and

Stadtmüller, 2005; Wood, 2011; Gertheiss et al., 2013), or quantile regression models (e.g., Cardot
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et al., 2005; Chen and Müller, 2012a). Some approaches model the effect of the functional predictor

without the assumption of linearity (e.g., James and Silverman, 2005; Müller et al., 2013; McLean

et al., 2014; Zhu et al., 2014). A fundamentally different approach is pursued by Ferraty et al. (2005,

2007) who estimate scalar-on-function regression models nonparametrically using kernel methods,

yielding predictions but no interpretable models.

For function-on-scalar regression, which can also be viewed as smooth repeated measures varying-

coefficient models, most approaches model the conditional mean of a functional variable in the setting

of independent (e.g., Reiss et al., 2010) or dependent data (e.g., Morris and Carroll, 2006; Di et al.,

2009; Greven et al., 2010; Chen and Müller, 2012b). Staicu et al. (2012) model conditional quantiles

of a functional variable as depending on the index of the response but not on covariates.

In the context of function-on-function regression, a linear effect of a functional covariate is modeled

using a bivariate coefficient surface (e.g., Ramsay and Dalzell, 1991; Yao et al., 2005b; Ivanescu et al.,

2015). Ferraty et al. (2012) investigate a nonparametric kernel approach and Müller and Yao (2008)

consider a non-linear effect of a functional covariate

Among the most general frameworks for functional regression models are two frameworks that can

deal with functional and scalar responses and the effects of several functional and scalar covariates.

One pursues a Bayesian wavelet based approach for functional regression models; see Malloy et al.

(2010) for scalar responses in a distributed lag model and Morris and Carroll (2006), Zhu et al. (2011),

Meyer et al. (2015) for functional responses. Zhu et al. (2011) develop a robust function-on-scalar

regression model for dependent data as generalization of the model in Morris and Carroll (2006). Zhu

et al. (2011) and Meyer et al. (2015) also discuss possible generalizations to other projections than

wavelets. A second general framework estimates functional regression models based on additive mixed

models. This approach was proposed by Goldsmith et al. (2011) for scalar responses and by Ivanescu

et al. (2015) and Scheipl et al. (2015) for functional responses. Both frameworks allow random

effects, scalar and functional covariates. While our framework incorporates very similar covariate

effect types as these two approaches, it is the first to go beyond modeling the conditional mean and

to be able to deal with a large number of covariates as well as variable selection. In particular, this

means that we can estimate, e.g., quantile or expectile regression models, which is impossible in the

other two approaches focusing on generalized regression models. In addition, we can accommodate

situations with more covariates than observations. Furthermore, the efficient array methods we use for

estimation give a clear computational advantage over Scheipl et al. (2015) for increasing sample size

and number of grid points per function. Another advantage of our general framework is the unified

treatment of scalar and functional response models in both models and software, making it easier

for new users to get familiar with both within one framework, and allowing for simpler extension of

models and accompanying code for both settings simultaneously.

Our implementation of FLAMs is based on a component-wise boosting algorithm. Boosting is an

ensemble method that aims at optimizing a risk function by stepwise updates of the parameters of the

best-fitting effect in each iteration. Every effect is represented using a so called base-learner, which

is a simple model; see for instance Bühlmann and Hothorn (2007) for an introduction to boosting

algorithms in a statistical context. We derive an appropriate loss function for functional responses
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based on existing loss functions for scalar responses. Boosting has some desirable properties. It can

handle many covariates of mixed types including categorical and metric scalar variables and their

interactions in mixed specifications, as for instance linear, smooth and multi-dimensional effects.

Additionally, we implement a base-learner for effects of functional covariates that can be combined

with existing base-learners to form interaction effects of functional and scalar covariates. The

number of covariates can exceed the number of observations and the covariates can be correlated. It

is of large practical importance to note that boosting can also perform variable and model selection.

Little work has been done to date on variable selection in functional regression models. Gertheiss

et al. (2013) pursued variable selection in a scalar-on-function setting. Boosting was used before in

functional data analysis to estimate particular regression models. In a setting with scalar response

and a single functional covariate, boosting was used for classification of a binary response (Krämer,

2006), for prediction of a continuous response based on kernel regression (Ferraty and Vieu, 2009)

and for feature extraction (Tutz and Gertheiss, 2010). In the context of function-on-scalar regression

Sexton and Laake (2012) used boosted regression trees. A drawback of boosting is its lack of formal

inference, which we address by bootstrapping.

In the following, we define the general FLAM and the tensor product basis representation of

the effects (Section 3.2). In order to fit a FLAM, we define a suitable loss for functional data

(Section 3.3). We give details on the estimation using a boosting algorithm in Section 3.4. In

Section 3.5, we present empirical results on simulated data to demonstrate correctness of our

software implementation and provide a comparison with functional additive mixed models (FAMM)

by Scheipl et al. (2015). The section on applications (Section 3.6) is divided into three parts for

the three cases of functional regression models. We analyze data on the viscosity of resin over time

depending on five experimental factors, where the aim is to control the hardening process. In a

function-on-scalar regression model for the viscosity we use median regression incorporating variable

selection. In the second application, spectrography data of fossil fuel samples are used to predict

their calorific values using two spectral measurements (scalar-on-function regression). We use the

well-known Canadian weather data as an example for function-on-function regression and consider

a model for precipitation curves depending on temperature curves and climatic zones, incorporating

smooth spatially correlated residuals. All analyses are fully reproducible as the datasets and the code

of the simulation and the applications are part of the online supplement or the R add-on package

FDboost and R is open-source software. The chapter concludes with a discussion in Section 3.7.

3.2 Model specification

In the following, we consider data (Y,X) taking values in Y ×X , where Y is a suitable space for the

response Y and X is a product space of suitable spaces for the covariates. Let Y be the space of

square integrable functions L2(T , µ). For functional response, the domain T is an interval over the

real numbers, T = [T1, T2], with T1, T2 ∈ R, and µ is the Lebesgue measure. For scalar response,

the set T consists of a single point, T = [T, T ], and µ is the Dirac measure. The spaces in X
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are defined analogously for scalar and functional covariates. We assume that Y given X follows a

conditional distribution FY |X ; the explanatory variables X may be fixed or random. As generic model

we establish the following structured additive regression model:

ξ(Y |X = x) = h(x) =
J∑
j=1

hj(x), (3.1)

where ξ is some transformation function, for instance the expectation, the median or some quantile.

For a generalized linear model, the transformation function corresponds to the expectation composed

with the link function g that connects response and linear predictor, i.e., ξ = g ◦ E. The linear

predictor h is the sum of partial effects hj which implies additivity. Note, however, that a partial

effect hj can depend on more than one covariate allowing, e.g., for interactions. Each effect hj(x) ∈ Y
is a real-valued function. To give an overview of effects hj(x) that can be specified within the proposed

framework, Table 3.1 lists the effects that are currently implemented in the FDboost package. In order

to obtain identifiable models, further constraints on the hj are necessary. For an intercept β0 in the

model, we center all effects hj , that contain an intercept as a special case, by assuming that the

expectation over the covariates is zero on T , i.e. EX(hj(X)) ≡ 0. We describe these constraints and

how to include them in the array framework in Appendix A.1.

Table 3.1: Basic effects that can be fitted within a FLAM. A similar overview table is given in Scheipl et al.
(2015).

covariate(s) type of effect hj(x)(t)

(none) smooth intercept β0(t)
scalar covariate z linear effect zβ(t)

smooth effect f(z, t)
two scalars z1, z2 linear interaction z1z2β(t)

functional varying coefficient z1f(z2, t)
smooth interaction f(z1, z2, t)

functional covariate x(s) linear functional effect
∫
x(s)β(s, t) ds

scalar z and functional x(s) linear interaction z
∫
x(s)β(s, t) ds

smooth interaction
∫
x(s)β(z, s, t) ds

grouping variable g group-specific intercepts βg(t)
grouping variable g and scalar z group-specific linear effects zβg(t)
curve indicator i curve-specific smooth residuals ei(t)

Each effect hj(x) is represented using a tensor product basis

hj(x)(t) =
(
bj(x)> ⊗ bY (t)>

)
θj , (3.2)

where ⊗ is the Kronecker product, bj : X → R
Kj is a vector of basis functions depending on one or

several covariates, bY : T → R
KY is a vector of basis functions over the domain of the response and

θj ∈ RKjKY is a vector of coefficients. In the case of scalar-on-function regression, bY (t) ≡ 1 with
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KY = 1. Regularization of the effects is achieved by a quadratic penalty term. A suitable penalty

matrix for a tensor product basis as in equation (3.2) can be constructed as P jY = λj(P j ⊗ IKY
) +

λY (IKj ⊗ P Y ), where P j ∈ RKj×Kj is an appropriate penalty matrix for the marginal basis bj(xi),

P Y ∈ RKY ×KY is an appropriate penalty matrix for the marginal basis bY (t), and λj , λY ≥ 0 are the

corresponding smoothing parameters (Wood, 2006, Sec. 4.1.8). Other penalty matrices are possible,

e.g., the direct Kronecker product of the two marginal penalties P ∗jY = λjP j⊗P Y (Wood, 2006, Sec.

4.1.8) or the penalty of the sandwich-smoother P ∗∗jY = λjP j⊗B>YBY +λYB
>
j Bj⊗P Y +λjλY P j⊗P Y ,

where Bj and BY are the design matrices of the marginal bases (Xiao et al., 2013). The penalty

term has a quadratic form, resulting in a Ridge-type penalty. The description of bases and suitable

penalty matrices corresponding to the effects hj(x) in Table 3.1 are deferred to Section 3.6, as we

hope that concrete examples improve readability of these technical details. The three examples in

Section 3.6 are chosen in particular such that bases and penalties for most effect types in Table 3.1

are introduced.

As we represent all effects as Kronecker products of two bases and use a Ridge-type penalty, the

model is a special case of a generalized linear array model as introduced by Currie et al. (2006). This

approach in particular avoids rearranging responses and coefficients into vectors, but preserves the

array structure throughout and makes use of the special Kronecker structure in the design matrix to

reduce computations to nested operations in lower dimensions. For instance, it is not necessary to

actually compute and save the NG × KjKY design matrix, where N is the number of observation

units and G is the number of observation points per functional response. Instead we only need to

compute and save the much smaller marginal basis matrices. By defining suitable array-based linear

algebra routines the number of operations required to compute effect estimates and predictions, as

well as the storage requirements, are reduced dramatically, cf. Currie et al. (2006).

3.3 Estimation

The basic idea for the estimation of a FLAM (3.1) is the use of an adequate loss function that

represents the estimation problem. The choice of the loss function depends on the transformation

function ξ and on the conditional distribution of the response. In the following, we present some

possible loss functions to give an idea of the variety of models that can be represented within this

framework. Let ρ : (Y × X ) ×H → L1(T , µ) be a function mapping the data (Y,X) and the model

h to a function in the space of integrable functions L1(T , µ). The model h is an element of the set

H = (L2(T , µ))(X×T ), which is the set of all functions from (X × T ) to L2(T , µ). In other words, ρ

maps the data and the model to a function over the domain of the response which computes a measure

of discrepancy between Y (t) and h(X)(t) for each t ∈ T . For clarity, the argument t is omitted in

the following examples of loss functions. For a continuous Y , a typical choice is the squared error

loss, the so called L2 loss, ρL2 ((Y,X), h) = 1
2(Y −h(X))2. Minimizing the quadratic loss corresponds

to least squares optimization and is equivalent to minimizing the negative log-likelihood of a normal

distribution. Thus minimizing the L2 loss yields the classical linear regression model for conditionally
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normally distributed response and corresponds to the case when the transformation function is the

expectation.

One possibility to obtain a more robust model is to use the absolute loss, also called L1 loss, which

is equivalent to minimizing the negative log-likelihood of the Laplace distribution and is defined

as ρL1 ((Y,X), h) = |Y − h(X)|. The L1 loss is minimized by the conditional median and hence

corresponds to median regression. To obtain quantile regression, i.e. ξ(Y |X) = Qτ (Y |X), where

Qτ (Y |X) is the τ -quantile of Y conditional on X for a given quantile τ ∈ (0, 1), one can use the check

function (Koenker, 2005)

ρτ ((Y,X), h) =

{
(Y − h(X))τ, if Y − h(X) ≥ 0

(Y − h(X))(τ − 1), if Y − h(X) < 0,

which is minimized by the τ -quantile. Modeling quantiles is a distribution-free approach and is often

of interest for skewed and heteroskedastic conditional distributions or in applications where some

extreme quantile is of special interest.

If it is assumed that the conditional distribution of the response is from the exponential family,

the negative log-likelihood is an appropriate loss function. Examples for exponential family distribu-

tions used for generalized linear models (GLMs) include binomial, Poisson, log-normal and Gamma

distributions (Nelder and Wedderburn, 1972).

We define the loss function ` : (Y × X )×H → R that results in a real-valued loss by integrating

the loss function ρ

` ((Y,X), h) =

∫
ρ((Y,X), h) dµ. (3.3)

Remember that µ is the Dirac measure for scalar response and the Lebesgue measure for functional

response. Weight functions can be incorporated by defining dµ(t) = v(t)dt where v(t) > 0 for t ∈ T
and v(t) = 0 for t 6∈ T , e.g., v(t) = I(t ∈ T ), with I the indicator function. Weight functions that

are not constant can be used in the case that a certain area of T is of special interest or variability

varies along T .

3.4 Estimation by gradient boosting

The FLAM (3.1) could be fitted using different approaches, e.g., by penalized likelihood-based meth-

ods or Bayesian methods, replacing penalties with priors. We chose to use boosting as it can easily

deal with both the diversity of possible loss functions of interest as well as with a large number of co-

variates (potentially more than observations) and variable selection. Boosting is an ensemble method

that pursues a divide-and-conquer strategy for optimizing an expected loss criterion. The estimator

is updated step-by-step to minimize the loss criterion ` as defined in (3.3) along the steepest gradient

descent. The model is represented as the sum of simple (penalized) regression models, the so called

base-learners, that fit the negative gradient in each step (Friedman, 2001; Bühlmann and Hothorn,

2007). The base-learners determine the type of possible covariate effects. Their parametrization for
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the FLAM (3.1) was given in equation (3.2). The loss criterion determines which characteristic of the

response variable’s conditional distribution is the goal of optimization. The loss function is assumed

to be differentiable with respect to h. The aim of boosting is to find the solution of the optimization

problem

h∗ = arg min
h

EY,X ` ((Y,X), h) . (3.4)

In practical problems the expectation in (3.4) has to be replaced by the observed mean and the integral

in (3.3) has to be approximated by the weighted sum over the observed points, giving optimization

of the empirical risk. We consider a random sample (Yi, Xi), i = 1, . . . , N , where Yi ∼ FY |Xi
follow

a common distribution and Xi can be fixed or random. We assume that the response Yi is observed

over a common grid (t1, . . . , tG) ∈ T . Then we use the empirical risk for optimization

h∗ = arg min
h

(GN)−1
N∑
i=1

G∑
g=1

wi∆i(tg)ρ ((Yi, Xi), h) (tg),

where wi are weights for the observations and ∆i(tg) are integration weights. The weights wi are

used in resampling methods, e.g., bootstrapping or subsampling, and are set to one for an ordinary

model fit. The integration weights ∆i(tg) are weights of a numerical integration scheme. As a default,

Riemann sums are used. In the case of a missing value Yi′(tg′), the corresponding weight ∆i′(tg′) is

set to zero and the integration weights of adjacent observations ∆i′(tg′−1), ∆i′(tg′+1) are increased

accordingly. If µ includes a weight function, the integration weights are pre-multiplied by v(tg) at

each tg.

We adapt the component-wise gradient boosting algorithm developed by Hothorn et al. (2013) to

estimate conditional transformation models for the case of functional regression models. In detail, we

use the following algorithm to estimate FLAMs (3.1).

Algorithm: Gradient boosting for FLAMs

Step 1: Define the bases bj(x), bY (t), with penalties P jY , for the j = 1, . . . , J base-learners. Define

the weights w̃ig = wi∆i(tg), i = 1, . . . , N , g = 1, . . . , G for the observations. Initialize the

parameters θ
[0]
j for j = 1, . . . , J . Select the step-length ν ∈ (0, 1) and the stopping iteration

mstop. Set the number of boosting iterations to zero, m := 0.

Step 2: Compute the negative gradient of the empirical risk

ui(tg) := − ∂

∂h
ρ((yi, xi), h)(tg)

∣∣∣∣
h=ĥ[m]

,
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with ĥ[m](xi)(tg) =
∑J

j=1

(
bj(xi)

> ⊗ bY (tg)
>)θ[m]

j .

Fit the j = 1, . . . , J base-learners:

γ̂j = arg min
γ∈RKjKY

N∑
i=1

G∑
g=1

w̃ig

{
ui(tg)−

(
bj(xi)

> ⊗ bY (tg)
>
)
γ
}2

+ γ>P jY γ,

with weights w̃ig and penalty matrices P jY .

Select the best base-learner:

j? = arg min
j=1,...,J

N∑
i=1

G∑
g=1

w̃ig

{
ui(tg)−

(
bj(xi)

> ⊗ bY (tg)
>
)
γ̂j

}2
.

Step 3: Update the parameters θ
[m+1]
j? = θ

[m]
j? + νγ̂j? and keep all other parameters fixed, i.e.,

θ
[m+1]
j = θ

[m]
j , for j 6= j?.

Step 4: Unless m = mstop, increase m by one and go back to step 2.

Then the final model is:

ξ̂(Yi|Xi = xi) =

J∑
j=1

ĥ
[mstop]
j (xi),

with ĥ
[mstop]
j (xi)(t) =

(
bj(xi)

> ⊗ bY (t)>
)
θ

[mstop]
j .

To complete the specification of the boosting algorithm, it is necessary to set all parameters

mentioned in step 1. The bases and their corresponding penalty matrices directly correspond to the

chosen partial effects hj(x) in the model, with an overview of possible model terms given in Table 3.1

and various examples of choices for bases and penalties discussed in Section 3.6. Obvious choices are

splines for smooth terms and the observations themselves for linear terms, in each case provided with

adequate penalty matrices. We used a simplified penalty matrix P jY = λj(P j ⊗ IKY
+ IKj ⊗ P Y )

which contains only one smoothing parameter for both directions in our implementation. Additional

simulations (results not shown) indicate that the effect estimates still adapt well to anisotropic effect

surfaces over the course of the boosting iterations. The smoothness parameters λj are chosen such that

the degrees of freedom are the same for all base-learners to ensure a fair model selection. Otherwise

base-learners with higher degrees of freedom are more likely to be chosen (Hofner et al., 2011). The

resulting estimates adapt to the true complexity of the effects by the selection frequency of the base-

learners, which depends on the number of boosting iterations mstop (Bühlmann and Yu, 2003). A

natural choice for all initial values θ
[0]
j is zero. However, the convergence rate of the boosting algorithm

is faster if a suitable offset is chosen for the intercept. For scalar responses, typical choices are mean

or median. For functional responses, we use a smoothed mean or median function as offset.

The number of boosting iterations mstop and the step-length ν are connected, as a smaller step-

length typically requires more boosting iterations. Choosing the step-length sufficiently small (e.g.,

ν = 0.1) and using the number of boosting iterations as tuning parameter has been shown to be a good
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strategy (Friedman, 2001). Stopping early here leads to regularized effect estimates and the number of

boosting iterations mstop can be chosen by resampling methods like cross-validation or bootstrapping.

If bootstrapping is used, the weights wi are drawn from an N -dimensional multinomial distribution

with constant probability parameters pi = N−1, i = 1, . . . , N . Then the out-of-bag (OOB) empirical

risk with weights wOOBi = I(wi = 0) is computed and the stopping iteration yielding the lowest

empirical risk is chosen (Hothorn et al., 2013).

Stability selection (Meinshausen and Bühlmann, 2010) can be used to improve variable selection.

The basic idea is to fix an upper bound for the per-family-error-rate and the expected number of

terms in the model. Then the model is refitted on subsamples of the data and the stability selection

procedure provides a cutoff value for the relative frequency of a base-learner to be selected among

the first model terms across the subsamples. Terms with selection frequencies greater than the cutoff

are retained in the model. In this paper, we use complementary pairs stability selection as proposed

by Shah and Samworth (2013), which improves on the theoretical guarantees of the original proposal

of Meinshausen and Bühlmann (2010) by replacing purely random subsampling of the data with

subsampling consisting of complementary pairs; for each subsample of size bN/2c another subsample

containing the observations not used in that subsample, i.e., the complementary pair, is also used as

a training subsample. The combination of stability selection and component-wise gradient boosting

is discussed in Hofner et al. (2015a).

3.5 Simulation study

The aim of the simulation study is to demonstrate correctness of our software implementation in

the R add-on package FDboost. Details on the construction of the base-learner for a functional

covariate are given later in Section 3.6.2. Boosting for scalar responses and covariates is well tested

and extensive simulation studies have already been conducted for the R add-on package mboost

on which our implementation is based (e.g., Bühlmann and Hothorn, 2007; Schmid and Hothorn,

2008a; Fenske et al., 2011). To keep the simulation section short, we use a function-on-function

setting which covers the functional response and the functional covariate setting–both new in

our framework–at the same time. To allow comparison with a benchmark we simulate a mean

regression model, i.e. ξ = E, with a moderate number of covariates and no need for variable

selection. We can then use functional additive mixed models (FAMM) proposed by Scheipl et al.

(2015) and implemented in the R add-on package refund as a benchmark. Scheipl et al. (2015)

demonstrated in the function-on-scalar setting that the FAMM approach is better suited to

smooth functional data–as we assume–than the Bayesian wavelet based approach by Morris and

Carroll (2006). The effect of the functional covariates in both approaches is specified using the

default settings, which means that a tensor product of cubic regression splines is used in FAMM

and cubic P-splines are used in the boosting algorithm. For the boosting algorithm of the FLAM,

the optimal mstop is determined by 10-fold bootstrap over curves and the maximal mstop is set to 2000.
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Simulation setup and goodness of fit measure. We consider a model with functional response

and two functional covariates. The true model is

Yi(t) = β0(t) +

∫
x1i(s)β1(s, t) ds+

∫
x2i(s)β2(s, t) ds+ εit,

with s, t ∈ [0, 1]. The functional covariates are simulated using a sum of five natural cubic B-splines

with random coefficients from a uniform distribution U [−3, 3]. The smooth global intercept is β0(t) =

cos(3πt2) + 2, the coefficient function β1(s, t) is a bimodal surface β1(s, t) = φ(s, .2, .3)φ(t, .2, .3) +

φ(s, .6, .3)φ(t, .8, .25), where φ(·, µ, σ) is the density of the normal distribution with mean µ and

standard deviation σ, and the coefficient function β2(s, t) is unimodal with β2(s, t) = 1.5 sin(πt +

0.3) sin(πs). The errors are normally distributed with εit ∼ N(0, σ2
ε), where σ2

ε depends on the signal-

to-noise ratio. In Appendix B.1 a figure of the true coefficient functions and responses together with

the estimates by FAMM and FLAM is given for an exemplary setting. We consider all combinations

of the following parameter settings:

1. Total number of observations N ∈ {100, 500}.

2. Number of grid points G ∈ {30, 100}; the same number of grid points is used for response and

functional covariates.

3. Signal-to-noise ratio SNRε ∈ {1, 2}, where SNRε is the ratio of the standard deviation of the

linear predictor and the standard deviation of the residuals.

We run ten replications per combination of parameter settings, which results in narrow interquartile

ranges of the performance measures and thus seems sufficient. As a measure of the goodness of

estimation the relative integrated mean squared error (reliMSE) is used:

reliMSE(Y (t)) =

∑N
i=1

∫ (
ηi(t)− Ŷi(t)

)2
dt∑N

i=1

∫ (
ηi(t)− Ȳ

)2
dt

where ηi(t) is the true value of the response without noise, Ŷi(t) is the predicted value and

Ȳ = N−1
∑

i

∫
ηi(t) dt is the global mean of the response. Thus, the mean squared error (MSE)

is standardized with respect to the global variability of the response. The reliMSE is calculated

analogously for the coefficient surface β(s, t):

reliMSE(β(s, t)) =

∫∫ (
β(s, t)− β̂(s, t)

)2
dsdt∫∫ (

β(s, t)− β̄
)2
dsdt

where β(s, t) is the true coefficient surface, β̂(s, t) is its estimate and β̄ =
∫∫

β(s, t) dsdt is the overall

mean of the true surface. Thus the MSE is standardized by a measure of the global variability of

the coefficient surface. The reliMSE is defined analogously for the univariate coefficient function β0(t).
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Simulation results. A graphical analysis of results (Figure 3.1) shows that the accuracy of es-

timates for the functional effects as well as the prediction of the response using boosting is quite

similar to that obtained when estimating the models with FAMM. The reliMSE depends mainly on
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Figure 3.1: Simulation results for FLAMs and FAMMs. The upper left panel shows the reliMSE for the
prediction of the response, the upper right panel the reliMSE for the smooth intercept and the two lower
panels show the reliMSE for the two functional effects for all combinations of sample size N , number of grid
points G and signal-to-noise ratio SNRε.

the signal-to-noise ratio SNRε and the number of observation points per curve G. As expected, the

estimates and predictions are better for higher signal-to-noise ratio, more observations per curve

and a higher number of observed curves. The estimates of β2(s, t) are generally better than the

estimates of β1(s, t), which can be explained by the more complex bimodal shape of the latter. As

the reliMSE is similar for FAMM and FLAM, showing no preference for one of the two methods, one

can assume that the new boosting algorithm is up to the standard of the benchmark, for those cases

where the benchmark is applicable, while considerably extending the class of possible models. The

computation time of the models in all the considered settings and for both algorithms ranges from
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some seconds up to 10 minutes. For more details on the computation times, see Appendix B.2.

Computation times for array versus non-array models. To illustrate the gain in computation

time when using array models, we boost the same models once as array models and once in long

format, explicitly computing the Kronecker product in the design matrix. To do this, we use

the same true model as above with N ∈ {50, 100, 500}, G ∈ {30, 100} and SNRε fixed at 1. All

computations are conducted on a 64-bit linux platform. We run 1000 boosting iterations per model

fit without optimizing mstop. Figure 3.2 shows the computation times for the same models fitted by

boosting with and without array structure. For settings with few cases and few observations per

G: 30 G: 100
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Figure 3.2: Computation time for boosting FLAMs. Plotted is the computation time of boosting using the
array structure in a FLAM and without using the array structure fitting the model in long format (long).

response curve, for example, N = 50 and G = 30, the gain in computation time is pretty small. For

settings with more observations, the use of array models considerably reduces the computation time.

Furthermore, the computation time scales better for array models for growing N and G.

3.6 Applications

In this section, we present analyses for the three types of functional regression models, scalar-on-

function and function-on-scalar and function-on-function regression, giving exemplary choices of

transformation functions ξ and base-learners for hj(x)(t) to illustrate some possibilities of the generic

model (3.1). In addition to base-learners for scalar and functional covariates and their interactions,

the three examples require robust (median) regression, variable selection and the handling of missing

values and spatially correlated functional residuals.
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3.6.1 Function-on-scalar regression: viscosity over time

In the fabrication of cars, casting is an important production technology. For this process, the curing

of the material, in our example resin, in the mold is crucial. To determine factors that affect curing,

the viscosity of the resin is measured over time in an experiment varying five binary factors (Wolfgang

Raffelt, Technical University of Munich, Institute for Carbon Composites). The ideal viscosity-curve

should have low values in the beginning and then increase quickly. This corresponds to low viscosity

during filling of the mold and a rapid hardening. Three temperatures, namely temperature of resin

(T A), temperature of curing agent (T B), temperature of tools (T C), and two factors of the mixing

process, namely rotational speed and mass flow, were investigated to determine their effect on the

hardening of the resin. Following a fractional factorial design, 16 factor combinations were tested

with 4 replications per experimental setting. Due to technical reasons the measuring method of the

rheometer has to be changed in a certain range of viscosity. As the time-point for the change of

measuring method is at 109 seconds for some curves and at 129 seconds for others, there are missing

values in those curves with the earlier change point due to the smaller frequency for the second method.

After the change of method some curves show large amounts of measurement error. In Figure 3.3

the observed viscosity curves are plotted on a log-scale in micropascal (mPas). For the modeling,
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Figure 3.3: Viscosity over time and estimated coefficient functions. On the left hand side the viscosity measures
are plotted over time with temperature of tools (T C) and temperature of resin (T A) color-coded. On the
right hand side the coefficient functions are plotted.

main effects and interactions of first order for the five experimental factors are of interest, resulting

in 15 potential effects. The estimates should be robust because of the apparent measurement error

problems in some curves. All in all it is necessary to estimate a robust (median) regression model,

incorporating model selection and accommodating missing values. A FLAM can deal with all of these
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problems: Median regression is obtained by using the absolute loss, variable selection is achieved by

stability selection, and missing values are dealt with by setting the corresponding weights to zero.

In a first step a smooth intercept, all main effects and all interaction terms of first order are

included in the model as smooth effects over time. To estimate such a model we need a base-learner

for an effect of the form xβ(t), where x is a dummy variable for a factor or an interaction and β(t) is

the smooth coefficient function over time. Such an effect is obtained by setting bj(x)> = (1 x) and

bY (t) = ΦY (t), where ΦY (t) is a vector of cubic B-splines evaluated at t. The smooth intercept is

represented by setting b1(x)> = (1). In order to get more stable estimates and reduce the necessary

number of boosting iterations, we include an intercept term in each base-learner. After fitting the

model, the intercept-part is subtracted from each coefficient function and added to the global intercept.

The penalty matrix P j for the linear term in the dummy variable is 0 so that the linear term is

unpenalized. The penalty matrix P Y is D>D with second order difference matrix D, yielding P-

splines for the time-varying effects (Eilers and Marx, 1996).

The optimal stopping iteration is determined by 10-fold bootstrapping over curves. In the re-

sulting model, all main effects and most of the interaction effects are selected. Most base-learners

contribute very small effects to the prediction of the viscosity and are selected quite rarely. To obtain

a parsimonious model only containing important effects we conduct complementary pairs stability se-

lection (Shah and Samworth, 2013). We set the per-family-error-rate to 2 and the expected number of

terms in the model to 5. For the 16 possible base-learners, this results in a cutoff value of 0.63. Using

a total of 100 subsamples, the effects for temperature of tools (T A), temperature of resin (T C) and

their interaction are selected into the model. When using more restrictive parameters in the stability

selection, e.g., smaller per-family-error-rate, the main effects are selected very reliably, the interaction

term is often not selected, but nevertheless has a quite high selection probability compared to the

other model terms. We thus keep these three effects in the model, yielding

median (log(visi(t))|T Ai,T Ci) = β0(t) + T AiβA(t) + T CiβC(t) + T ACiβAC(t),

where visi(t) is the viscosity of observation i at time t, T Ai and T Ci are the temperatures of

resin and of tools, respectively, each coded as -1 for the lower and 1 for the higher temperature.

The interaction T ACi is 1 if both temperatures are in the higher category and -1 otherwise. The

estimated coefficients for this model are shown in Figure 3.3 on the right hand side.

Temperature of tools (T C) has a very strong influence. For higher temperature of tools, the resin

has lower viscosity in the beginning, but from about 40 seconds onwards it is curing faster. For the

temperature of the resin (T A), the effect is similar but much smaller, i.e., the resin cures faster for

higher temperatures. If both temperatures are in the higher category the viscosity curves have the

desired shape (low in the beginning and rapid increase). The other factors seem to have no or only

a very small influence on the curing process. This is good news for the production process, as these

parameters do not have to be controlled precisely.
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3.6.2 Scalar-on-function regression: spectral data of fossil fuels

In this application, the aim is to predict the heat value of fossil fuels using spectral data (Fuchs

et al., 2015, Siemens AG). The dataset was obtained in a laboratory and contains the heat value in

megajoule (MJ), percentage of humidity and two spectra types with different wavelength ranges for

129 fossil fuel samples. One spectrum is ultraviolet-visible (UV-VIS), measured at 1335 wavelengths,

in the range of 250.4 to 878.4 nanometer (nm), the other a near infrared spectrum (NIR), measured

at 2307 wavelengths, in the range of 800.4 to 2779.0nm. The observation points along the wavelength

are non-equidistant for both spectra, with larger distances for higher wavelengths.

The aim is to predict the heat value using information obtainable as measurements in a power

plant, i.e., using only the spectral data. To use more information, we compute the derivatives of

both spectra as further functional covariates. As the humidity cannot be measured automatically in

a power plant, it should not be used directly for the prediction of the heat value. But it is possible

to predict the humidity using the spectral data and then to use predicted humidity as additional

variable. To predict the humidity we use a scalar-on-function regression model with both spectra

and both derivatives as covariates. For this dataset, the humidity can be predicted quite accurately,

with the relative mean squared error (relMSE) determined by 50-fold bootstrap being about 10%.

Through the predicted humidity the information contained in the spectra is used in a non-linear way

for the model of the heat value. Figure 3.4 shows a histogram of the heat value (top left panel),

whose distribution is skewed towards higher values. The scatterplot of heat value against predicted

humidity (Figure 3.4 top right) shows that low heat values all occur for rather low humidity values,

but for the low humidity values there are high heat values as well.

For this application, we want to estimate a scalar-on-function regression model that predicts the

heat values as precisely as possible. Two spectra, their derivatives, and the predicted humidity are

available as predictors and can be used to specify models with different covariate effects. The most

complex model contains the functional effects of the two spectra and their derivatives, the effect of

the predicted humidity and the interaction effects of the predicted humidity with the four functional

variables. The functional variables are denoted by xki, k = 1, . . . , 4, and the predicted humidity by

zi, i = 1, . . . , 129. Then we can write the model as

E(Yi|xi, zi) = β0 +

4∑
k=1

∫
xki(sk)βk(sk) dsk + f(zi) +

4∑
k=1

∫
xki(sk)αk(sk, zi) dsk, (3.5)

where Yi are the heat values, βk(sk) are the coefficients of the main functional effects, sk are the

respective wavelengths, f(zi) is the smooth effect of the predicted humidity and αk(sk, zi) are the

interaction effects of the functional covariates with the predicted humidity. For the model fit, we

standardize the domain of the two spectra to [0,1].

To estimate the full model (3.5), linear effects of functional variables, a smooth effect of a scalar

variable and interactions between them are needed. The effect of a functional covariate x(s) over

the domain s ∈ S is modeled as
∫
S x(s)β(s) ds. The integral can be approximated numerically as a

weighted sum over (s1, . . . , sR)>, the grid of observation points in S, by using adequate integration
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Figure 3.4: Spectral data of fossil fuels. The coloring of all plots is according to the heat value in MJ, with
red meaning low heat value and yellow meaning high heat value. The histogram at the top left can be used
as a legend. The scatter plot at the top right shows the heat value depending on the predicted humidity. The
lower panel shows the UV-VIS and the NIR spectra colored according to the heat value.

weights ∆(s), yielding
∫
S x(s)β(s) ds ≈

∑R
r=1 ∆(sr)x(sr)β(sr) (Wood, 2011). Then we compute the

basis as

bj(x(s))> = [x̃(s1) · · · x̃(sR)]

 Φj(s1)>

...

Φj(sR)>

 , (3.6)

where x̃(s) = ∆(s)x(s) is the original observation multiplied with its integration weight and Φj(s) is a

vector of B-splines evaluated at s. The penalty matrix P j is a squared difference matrix. The smooth

effect f(zi) of the scalar covariate upon a scalar response is a standard problem and is estimated by

P-splines, i.e. bj(z) = Φj(z) with difference penalty P j . An interaction term between a functional
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and a scalar variable can be computed as a row tensor product basis of the basis for the functional

covariate and the basis for the scalar covariate yielding

bj(x(s), z)> = bj1(x(s))> � bj2(z)>,

with bj1 defined as in (3.6) and the bj2(z) defined like bj(z) above. The row tensor product � is

a tensor product on rows. The penalty matrix P j for the interaction can be computed from the

marginal penalties as described for (3.2). As there is a scalar response, the basis bY (t) over the

domain of the response is 1.

In order to assess the predictive power of the models, we use 50-fold bootstrap and evaluate the

MSE as well as the relative MSE (relMSE), which is defined as

relMSEo =

∑
i∈Io(Yi − Ŷi)2∑
i∈Io(Yi − Ȳ )2

, o = 1, . . . , 50,

where Io is the index set of the out-of-bag sample for bootstrap fold o, i.e., the validation sample,

and Ȳ is the mean of the response in the learning sample. The MSE corresponds to the numerator,

MSEo =
∑

i∈Io(Yi − Ŷi)2. The optimal stopping iteration is determined at the minimal mean MSE

over all bootstrap samples.

The predictive power of model (3.5) (full model) is compared to the smaller models with all main

effects ((d)spec H2O), with all functional effects ((d)spec), with both spectra (spec) and with the NIR

spectra (NIR). The relMSE and the MSE for these models are plotted in Figure 3.5. The NIR model
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Figure 3.5: Predictive power of models for the heat value of fossil fuels. MSE and relMSE for models with
different effects: the model with all effects (full), with all the main effects ((d)spec H2O), the effects of both
spectra and their derivatives ((d)spec), the effects of both spectra (spec) and the effects of the NIR spectrum
(NIR).

is worse than the other models. As the model with both spectra has MSE and relMSE values close to
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those of the more complex models, we keep that model. The relMSE values of around 10% indicate

adequate prediction of the heat values. The coefficient estimates (Figure 3.6) on the entire dataset

(long-dashed blue lines) are plotted together with the estimates calculated on the 50 bootstrap folds

(gray lines), the mean coefficient function over the bootstrap samples (black lines) and point-wise 5%

and 95% values over the estimated coefficient functions on the bootstrap samples (dashed red lines).

The estimates are quite stable having a similar form and size over the bootstrap samples. High values
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Figure 3.6: Estimated coefficient functions for the model on fossil fuels. Coefficient estimates for the effects
β̂j(sj), j ∈ {1, 2}, of the two spectra. The gray lines show the estimates in the 50 bootstrap folds, the black
line gives the mean estimated coefficient over the bootstrap folds, the dashed red lines point-wise 5% and 95%
values; the long-dashed blue lines give the estimated coefficients for the model on the whole dataset.

of the UV-VIS spectrum for the lowest wavelengths and low values for scaled wavelengths of about

0.1 to 0.3 are associated with higher heat values. A higher spectrum in the lower wavelengths of the

NIR spectrum (approximately 0.1 to 0.3) as well as in the area of 0.7 to 0.9 in the scaled wavelength

are associated with a higher heat value. For the highest wavelengths and the wavelength between 0.4

and 0.6 on the scaled wavelength, the effect is negative; i.e., higher values in the spectrum in those

ranges imply lower heat values.

3.6.3 Function-on-function regression: Canadian weather data

The Canadian weather data is a well known functional data example (Ramsay and Silverman, 2005).

The data contains monthly temperature and precipitation at 35 different locations in Canada averaged

over 1960 to 1994, see Figure 3.7. The weather stations are assigned to four climatic zones (Atlantic,

Pacific, Continental, Arctic) and for each weather station the latitude and the longitude are given. The

goal is to look at the association between precipitation and temperature curves, taking into account

the climatic zones and the locations of the weather stations. As the precipitation and temperature

curves are averaged over several years they are no time series but typical profiles and models relating
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Figure 3.7: Canadian weather data. Monthly average temperature and log-precipitation at 35 locations in
Canada. Regions are coded by colors and different line types.

precipitation to temperature thus do not have the problem of the future influencing the past. For the

same reason, values in the end and the beginning of a year should be similar.

We use this example to compare the results obtained by boosting with those of the FAMM method

(Scheipl et al., 2015). In the online appendix, Scheipl et al. (2015) use the logarithm of precipitation

as response variable and fit amongst others a model with smooth effects of the four climatic zones,

functional effect of temperature and smooth spatially correlated residuals:

E(Yi(t)|rgi, tempi, i) = I(rgi = k)βk(t) +

∫
tempi(s)β(s, t) ds+ ei(t),

where Yi(t) is the log-precipitation over month t = 1, . . . , 12, I is the indicator function, rgi is the

region of the ith station, βk(t) are the smooth effects per region, tempi(s) is the centered temperature

over the month s = 1, . . . , 12, so that N−1
∑

i tempi(s) = 0 ∀s, β(s, t) is the coefficient surface and

ei(t) are smooth spatially correlated residual curves. This model for a functional response thus

depends on a scalar and a functional covariate and includes smooth spatially correlated residuals in

addition to allowing for error terms εit = Yi(t)− E(Yi(t)|xi) uncorrelated along T .

To set up effects in the model with functional response we use formula (3.2). The basis over the

domain of the response bY (t) is a cyclic P-spline basis in all effects to achieve similarity between the

coefficient estimates for January and December. For the effect in the functional covariate temperature,

we set up the basis bj(x(s)) analogously to equation (3.6). We use a cyclic B-spline basis over time

combined with the functional observations and their integration weights plus a squared difference

matrix as penalty. The region-specific smooth effects and the smooth residuals are linear effects

in the covariates–dummies for the regions and for each curve, respectively–of the form xβ(t). As

the intercept is included in the region-specific effect, the base-learner is bj(x)> = (x), with x being
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a dummy vector of length 4. For the smooth residuals ei(t), we enforce the default sum-to-zero-

constraint at each t, cf. Section 3.2. For the region specific effect, we use a Ridge-penalty by setting

the penalty to the four-dimensional identity matrix P j = I4. The spatial correlation of the residual

curves is accommodated by using the inverse of a spatial correlation matrix as penalty matrix P j .

Following Scheipl et al. (2015), we use a Matérn correlation matrix with smoothness parameter 0.5

and range 310 kilometers, which implies a rather strong correlation.

The optimal stopping iteration for 25-fold bootstrapping over curves is so small that the base-

learner for smooth residual curves is not selected (mstop=30). If the optimal stopping iteration is

determined by leaving-one-curve-out cross-validation, it can be seen that for three weather stations

the out-of-bag prediction is quite bad and getting worse for higher mstop, causing the optimum of the

mean to be very small. Those three stations are Pr. Ruppert (14), Kamploos (15) and Resolute (34)

(numbers in brackets correspond to numbers in Figure 3.9). When looking at the median over the

squared errors the optimal stopping iteration is much higher (mstop=205) so that the base-learner

for the smooth residuals is selected into the model. As the effects for region and temperature are

very similar irrespective of the number of boosting iterations, we limit the representation of results

to the model with mstop=205, as it includes all effects. Figure 3.8 shows the estimated coefficients for

the regions and the effect of temperature on log-precipitation. In general the precipitation is lowest

in spring and highest in summer. An exception is the Pacific region where the highest precipitation

values are measured in winter. Stations in the Atlantic region have the highest precipitations during

the whole year. In the Continental region differences between the seasons are most pronounced. The

effect of temperature on log-precipitation changes over the year. Higher temperatures in spring and

summer are associated with lower precipitation over the whole year whereas higher temperatures in

autumn and winter are associated with higher precipitation values. The association of temperature

and precipitation is stronger in the winter than in the summer. Figure 3.9 shows the smooth residual

curves. They vary in the range of -0.4 to 0.4. The most extreme smooth residuals are estimated for the

Pacific region, where precipitation is relatively variable on a small spatial scale indicating additional

unmeasured covariates besides the regional and spatial effects. The uncorrelated error terms εit are

quiet small compared to the smooth residual curves ei(t). Comparing the results obtained by FAMM

(Scheipl et al., 2015) and boosting, the estimates for the effects of region and temperature are very

similar. The estimated spatially correlated smooth residuals are similar in part but different for some

stations.

3.7 Discussion

In this chapter, we introduced Functional Linear Array Models (FLAMs), a generic model class for

functional data measured on a common grid with potential missings. The response can be scalar or

functional. The FLAM has a modular structure: the transformation function allows to choose which

feature of the conditional distribution of the response to model and the additive predictor allows the

specification of a variety of covariate effects. We take advantage of the Kronecker product structure

of the design matrix to achieve computational efficiency using linear array models. The optimization
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Figure 3.8: Estimated coefficient functions for the Canadian weather data. The estimated coefficients for the
four climatic regions are plotted with color-coded regions (left panel). The coefficient function for the functional
effect of temperature is colored in red for positive values and in blue for negative values (right panel).

problem in (3.4) could be solved by a variety of algorithms. We decided to use a boosting approach

for estimation as it is well suited to the modular structure of the model class. New base-learners

can easily be implemented to adapt the modeling framework even further if new kinds of covariate

effects are needed in a given problem at hand, as shown by the interaction effect between a scalar

and a functional covariate in the spectral data example or the smooth spatially correlated residuals

in the model for the Canadian weather data. Our current implementation includes base-learners for

quite a number of common effects of scalar, functional and grouping variables and their interactions.

Another attractive feature of boosting is its capability to deal with many covariate effects and to

facilitate variable selection, as illustrated with the viscosity data.

Considering other general frameworks for functional regression, the mixed model based approach

by Scheipl et al. (2015) and the Bayesian wavelet based approach by Meyer et al. (2015) (and earlier

work by each group), some advantages and drawbacks of FLAMs become visible. Our boosting

framework is more flexible in allowing to model more general features of the response than the mean

and handling the case of a large number of potential covariates. The modular framework easily allows

the extension of the model class by specifying new covariate effects or loss functions. For the case of

mean regression, these other two approaches naturally allow for inference as a by-product of the mixed

models/Bayesian modeling framework. We handle the lack of formal inference using the bootstrap as

illustrated with the spectral data.

We are considering several future extensions to our framework. It is straightforward to implement

further base-learners for additional covariate effects. One possibility would be a non-linear functional

effect
∫
S f(X(s), s) ds, with f a smooth unknown function (e.g., Müller et al., 2013; McLean et al.,

2014), where the basis and penalty specification of McLean et al. (2014) could be directly translated
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Figure 3.9: Estimated residuals for the Canadian weather data. The estimated smooth spatially correlated
residual curves ei(t) (lines) and the uncorrelated error terms εit (circles) are plotted with regions color-coded.
The locations of the weather stations are given in the map at the bottom.
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to a new base-learner. Another is to use a different set of basis functions in the estimation of linear

functional effects. For instance, one could use the eigenfunctions of the estimated covariance function

as basis functions for bY (t), as is commonly done in the context of functional principal component

analysis (e.g., Scheipl et al., 2015).

Another interesting direction is to use boosting for functional regression models that cannot be

written as linear array models. This would allow for responses observed on irregular grids and for

functional effects whose integration limits depend on the current observation point of the response.

For instance, if functional response and covariate are observed over time, the historical functional

linear model (Malfait and Ramsay, 2003; Harezlak et al., 2007) ξ(Y (t)|X = x) =
∫ t
t−δ x(s)β(s, t) ds,

can be of interest, where only lagged past values of the functional covariate are used to model the

current value of the response. This extension to non-array models that allows for functional historical

effects is discussed in the next chapter.
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mboost 2.4-2 (Hothorn et al., 2016) were used. Functional regression models based on mixed models

were fitted by the R add-on package refund 0.1-12 (Huang et al., 2016). For data preprocessing, the

package robfilter 4.0 was used (Fried et al., 2012); see Appendix C.3.

4.1 Introduction

Functional data consist of a sample of functions observed on a finite grid in some continuous domain

(Ramsay and Silverman, 2005). The analysis of functional data, for instance, by regression models,

has become more and more important as technical advances increasingly generate such data (e.g.,

Morris, 2015). We develop a general framework for functional regression models where the functional

responses can be observed on curve-specific grids and the covariates can vary over the domain of the

response. This includes the case where functional response and functional covariates are observed

over the same time interval. In this case the response at a given time-point is usually thought to be

influenced only by covariate observations up to this current time-point. This model is called historical

functional model as only the history (and not the future) of the covariate influences the current value of

the response; see Malfait and Ramsay (2003), Harezlak et al. (2007) and Gervini (2015) for historical

functional models with a single functional covariate. It is also possible to restrict the functional

historical effect to a certain lag in the past (e.g., Kim et al., 2011). For the limiting case of lag zero,

a concurrent effect is obtained, where the response is only influenced by the concurrent value of the

covariate (Ramsay and Silverman, 2005). The concurrent model can be seen as a varying-coefficient

model (Hastie and Tibshirani, 1993), where the effect varies over time.

The motivation for the development of flexible regression models including many historical and

concurrent functional effects comes from a biotechnological dataset consisting of 25 Escherichia coli

bacterial fermentations for the production of a model protein (Melcher et al., 2015). A major draw-

back of such bioprocesses is the inaccessibility of key process parameters such as the cell dry mass

(CDM), which have to be determined offline in cost- and labor-intensive measurements. On the other

hand, various physical process variables (e.g., pressure, base- or O2-consumption) can be measured

easily without significant costs and additional chemical information is obtained online via fluorescence

spectroscopy and mass spectrometry. Based on these sensor signals a prediction of the CDM would

be desirable to allow for an online monitoring of the process (Striedner and Bayer, 2013). As during

a fermentation only observations up to the current time-point can be used, historical and concurrent

models using the online measured variables as covariates to predict the CDM are of interest. The po-

tentially large number of variables (p > n setting) is a great challenge and makes it impossible to use

existing methods for historical models. Additionally, this makes variable selection highly important,

which is widely unaddressed in regression with functional response.

In our approach, estimation is conducted by a component-wise gradient boosting algorithm (e.g.,

Bühlmann and Hothorn, 2007), which allows to fit models with many effects, including more pa-

rameters than observations, and automatically does model selection. Versatile effects of scalar and

functional covariates can be specified, in particular functional effects with integration limits depending

on the current time of the response. Boosting can fit models for different features of the conditional
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response distribution by optimizing the corresponding loss functions, yielding, e.g., quantile regression

or (generalized) mean regression models.

In Chapter 3, we introduced a general framework for functional regression, which could deal with

a high number of covariates and variable selection by using boosting for estimation. However, the

estimation framework is based on the array models by Currie et al. (2006), and thus the covariates

need to be constant over the domain of the response and the functional responses have to be observed

on equal grids. Both of these requirements are not fulfilled for the functional historical model applied

to a functional response with curve-specific grids, such as in our application. To overcome these

restrictions and motivated by models with functional historical effects, we introduce in this chapter

a general framework for functional response regression without relying on arrays. In addition to

functional historical effects, this allows the inclusion of, e.g., (smooth) effects of scalar covariates,

linear effects of functional covariates and different interaction terms.

The only existing model class allowing for a functional response with curve-specific grids and such

a variety of covariate effects, including functional historical effects, was introduced by Ivanescu et al.

(2015) and Scheipl et al. (2015) as functional additive mixed models (FAMMs). Using a mixed models

representation, mean regression models with a moderate number of effects are feasible. The models

are restricted to the conditional mean of the response and require more observations than coefficients

to be estimable. In practice, the number of covariate effects is noticeably limited by memory and

computation time. In particular, the high number of functional covariates in our application (more

than observations) could not be handled by the FAMM framework.

This chapter is organized as follows: First, the functional regression model with many historical

effects is presented (Section 4.2). We introduce two new parameterizations of the functional historical

effect and discuss identifiability. In Section 4.3, we discuss several extensions, leading to a more

general framework for additive functional models that allows for a large number of different and

flexible covariate effects and thus is considerably extending the model in Section 4.2. The estimation

of the models by a component-wise gradient boosting algorithm is explained in Section 4.4. For an

empirical evaluation of our methods, we conduct a simulation study (Section 4.5). We use historical

and concurrent models to analyze the fermentation dataset (Section 4.6). The chapter concludes with

a discussion in Section 4.7. Additional information on identifiability checks for functional historical

effects are given in Appendix A.2. More details on the simulation and the application can be found

in Appendix C.

4.2 The functional regression model with many historical effects

We assume that we observe realizations from (Y,X) taking values in Y ×X , where Y given X follows

a conditional distribution FY |X and X can be random or fixed. Let Y be a suitable space for the

functional responses such as the space of square integrable functions L2(T , µ), with T being a real-

valued interval and µ the Lebesgue measure. We set T = [T1, T2], with T1, T2 ∈ R and T1 < T2. Let X
be the product space of J L2(S, µ) spaces, with S = T , as response and covariates have to be measured

on a common domain for historical effects to be meaningful. In practice, we observe data (yi, xi),
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i = 1 . . . , N , that are assumed to come from the above model. Each of the N response trajectories

is observed at curve-specific points (ti1, . . . , tiGi)
>, tig ∈ T , resulting in n =

∑
iGi observed points

in total. If the functional response is observed on one common grid, we denote it by (t1, . . . , tG)>.

For each functional covariate xj(s), we assume that it is observed on a common grid (s1, . . . , sR)>,

sr ∈ S. The grid points can vary between the different functional covariates, but we omit this possible

dependency on j for better readability. Generally, we use upper case for random variables and lower

case for realizations. For the covariates, indexing over i refers to the observed case i and indexing

over j to one of the J covariates. Consider the functional model for the expectation of the response

with J historical effects

E(Y (t)|X = x) =
J∑
j=1

∫ t

T1

xj(s)βj(s, t) ds, (4.1)

where βj(s, t) is the coefficient surface of the covariate xj with triangular support. For J = 1, such

models were considered by Malfait and Ramsay (2003), Harezlak et al. (2007) and Gervini (2015).

The integration limits can be generalized to∫ u(t)

l(t)
xj(s)βj(s, t) ds, (4.2)

where l(t) and u(t) depend on the current time-point t of the response and l(t) ≤ u(t) for all t ∈ T . A

common specification for a more general historical effect is l(t) = max(T1, t− δ) for a fixed lag δ > 0

and u(t) = t (Malfait and Ramsay, 2003; Harezlak et al., 2007). For δ ≥ |T |, with |T | = T2 − T1,

the special case of (4.1) is obtained, with integration limits {T1, t}, indicating that the whole past of

the covariate can influence the response, and with the coefficient function β(s, t) being non-zero on

the triangle with s ≤ t. For δ < |T |, only values of xj(s) within the lag δ can influence the response

and the coefficient function βj(s, t) is defined on a trapezoidal area with max(T1, t − δ) ≤ s ≤ t. In

the special case of fixed integration limits l(u) = T1 and u(t) = T2, one obtains the standard linear

function-on-function effect, which we will call unconstrained functional effect in the following (e.g.,

Morris, 2015). In our framework it is possible to consider hybrid models combining possibly many

historical, concurrent and unconstrained functional effects with effects of scalar variables, see also

Section 4.3. The only framework allowing for general integration limits as in (4.2) and hybrid models

is the FAMM framework by Scheipl et al. (2015), which is limited to a moderate number of covariate

effects.

Following Scheipl et al. (2015), the integral in the historical effect can be approximated by a

numerical integration scheme as
∑R

r=1 x̃j(sr, t)βj(sr, t). Here, the transformed observations x̃j(sr, t)

are defined as

x̃j(sr, t) = I [l(t) ≤ sr ≤ u(t)] ∆(sr)xj(sr),

with integration weights ∆(s) and indicator function I. The coefficient function βj(s, t) is represented

using spline basis functions Φk(s), k = 1, . . . ,Kj , in s- and Φl(t), l = 1, . . . ,KY , in t-direction.
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Assuming that the coefficient function βj(s, t) lies in the span of the basis functions Φk(s)Φl(t), we

represent the historical effect (4.2) as:

∫ l(t)

u(t)
xj(s)βj(s, t) ds =

∫ l(t)

u(t)
xj(s)

Kj∑
k=1

KY∑
l=1

Φk(s)Φl(t)θj,kl ds

≈
R∑
r=1

x̃j(sr, t)

Kj∑
k=1

KY∑
l=1

Φk(sr)Φl(t)θj,kl,

(4.3)

with coefficient vector θj = (θj,11, . . . , θj,KjKY
)>. We regularize effect (4.3) using a quadratic penalty

term, θ>j P jY θj , with penalty matrix (Wood, 2006, Sec. 4.1.8)

P jY = λj(P j ⊗ IKY
) + λY (IKj ⊗ P Y ), (4.4)

where P j ∈ RKj×Kj and P Y ∈ RKY ×KY are appropriate penalty matrices for the bases Φk(s) and

Φl(t), and λj , λY ≥ 0 are smoothing parameters.

4.2.1 Alternative parameterizations of the functional historical effect

In the functional historical effect, the length of the integration interval is changing with t. The

idea of considering reparameterizations is to compensate for the differing length of the integration

interval. Although equivalent in theory, the different parameterizations yield different model fits in

practice because of the smoothing penalties. Following ideas that Gellar et al. (2014) developed for

scalar-on-function regression with functional covariates having variable domains, we introduce two

variants of reparameterizations for the functional historical effect in (4.2). The first quite intuitive

parameterization is to divide the historical effect by the length of the integration interval:

1

u(t)− l(t)

∫ u(t)

l(t)
xj(s)β̆j(s, t) ds. (4.5)

For the limiting case u(t)−l(t) ↓ 0, we use the fundamental theorem of calculus, limt↓0(1/t)
∫ t

0f(s) ds =

f(0), and thus set (4.5) to xj(u(t))β̆j(u(t), t) for u(t) − l(t) ↓ 0. With this standardization, a con-

stant coefficient function results in a constant effect if the functional variable is constant. The

standardized coefficient function β̆j(s, t) can be converted into the historical effect using β̆j(s, t) ≈
{u(t)− l(t)}βj(s, t) for u(t) > l(t).

The second approach is to standardize the time interval [l(t), u(t)] to [0, 1] by computing a new

time variable v = s−l(t)
u(t)−l(t) for each t, inducing the transformed functional variable x́(v) and coefficient

function β́(v, t) ≈ [u(t)− l(t)]β(s, t). Consequently, the reparameterized effect can be written as∫ 1

0
x́j(v)β́j(v, t) dv. (4.6)
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The limiting case u(t)− l(t) ↓ 0 is treated analogously to above. Because of the common domain [0, 1]

of the transformed covariate x́j(v), the domain of the coefficient function β́j(v, t) is rectangular. For

the special case of [l(t), u(t)] = [0, t], this parameterization yields v = s/t and thus the coefficient is

β́j(s/t, t) ≈ t β(s, t).

4.2.2 Identifiability of the functional historical effect

Identifiability is a model property meaning that no two distinct parameter values θ give the same

distribution of Y , where Y comes from a given model depending on θ. Here, θ corresponds to θj
under the assumption that βj(s, t) lies in the span of basis functions Φk(s)Φl(t), cf. equation (4.3).

Considering for each t the restriction of the functional variable Xj(s) to the integration interval

[l(t), u(t)], {Xj(s)|s ∈ [l(t), u(t)]}, we denote the covariance operator of that restricted functional

variable by KXj (t). In theory, the coefficient function βj(s, t) of a historical effect is identifiable up

to the addition of functions β∗j (s, t) that lie in the null space of KXj (t) for each t. That means for

such β∗j (s, t) that ∫ u(t)

l(t)
Xj(s)βj(s, t) ds =

∫ u(t)

l(t)
Xj(s){βj(s, t) + β∗j (s, t)} ds

for all t. Thus, βj(s, t) is identifiable if the null space of KXj (t) is trivial for all t. This is well known

for the unconstrained functional effect with fixed integration limits, see, e.g., Scheipl and Greven

(2016).

In the present regression context, it is practically more relevant to ask whether for a given set of

observed covariates two distinct parameters θ can give the same conditional distribution for the

vector of responses. Moreover, as we have finite sample finite grid data, it is important to ask

whether for a given set of observed covariates on their given grid, two distinct parameters θ can give

the same conditional distribution for the vector of responses on their given grids. For a given set of

covariate observations xj(s), the coefficient vector θj in (4.3) that defines βj(s, t) is identifiable if the

design matrix for effect j has full rank. For functional historical effects, this requirement reduces to

having a full rank design matrix in the functional covariate, defined in (4.10), for all t. Numeric rank

deficiency of a matrix can be detected by its condition number κ, which is computed as the ratio

between its highest and lowest eigenvalue. A high condition number (we use κ > 106) is evidence for

numeric rank deficiency. We compute the condition number for submatrices of the marginal design

matrix for each t; see Appendix A.2.1 for details on the design matrices and Appendix A.2.2 for the

computation of the condition numbers.

In the case of a rank deficient design matrix we can still get a unique coefficient under the additional

assumption that the coefficient function is smooth in a certain sense. The idea is that a parameter

vector θj which results in the smoothest surface βj(s, t) is chosen as the most plausible representative

from among all the parameter vectors yielding identical linear predictor values. This assumption is

encoded in a suitable smoothness penalty, similar to a Bayesian prior. Uniqueness of the representative

and consequently of the estimate is ensured for the unconstrained functional effect if the penalty

matrix in s direction P j , defined as in (4.4), and the functional covariate do not have a null space
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overlap (Scheipl and Greven, 2016), which is defined as the amount of overlap between the span

of the two null spaces. To measure null space overlap more adequately for a historical effect, we

introduce a new measure for the maximal null space overlap between successive submatrices of the

functional covariate and the penalty matrix; see Appendix A.2.3 for details. Null space overlap

between functional observations and penalty can be avoided by using a penalty matrix with full rank.

In order to maintain the smoothing properties of the penalty, Scheipl and Greven (2016) propose

as one option to use a penalty adding a small amount of shrinkage for vectors not penalized by the

original penalty (Marra and Wood, 2011) resulting in a full rank penalty.

4.3 Extension to the general model

We now discuss several extensions of model (4.1) to (4.3) allowing for (a) more general features of the

conditional response distribution to be modeled than the mean and for (b) a range of flexible effects

of scalar and functional covariates in addition to the historical effects so far considered. We again

assume that we observe realizations from (Y,X) taking values in Y × X as for model (4.1), with the

generalization that the covariates can be scalar or functional with differing domains, and thus X is

a product space of the real numbers R for scalar covariates and L2(Sj , µ) for functional covariates,

with real intervals Sj . Similarly to model (3.1) in Chapter 3, the following additive regression model

serves as generic model:

ξ(Y |X = x) = h(x) =
J∑
j=1

hj(x), (4.7)

where ξ is a transformation function choosing the feature of the conditional distribution to be modeled,

such as the expectation or some quantile. A generalized linear model (Nelder and Wedderburn, 1972)

can be represented using the composition of expectation and link function as the transformation

function. The linear predictor h(x) is the sum of partial effects hj(x). Each partial effect hj(x) is

a real-valued function over T and typically depends on one covariate xj in x, but more generally it

can depend on a subset of covariates to form interaction effects. In Table 2.1, an overview of possible

partial effects is given, including, e.g., linear or smooth effects of scalar covariates, group-specific

effects, and interactions between scalar and functional covariates. In contrast to representation (3.2)

in Chapter 3, each effect hj(x) is defined using the general basis representation

hj(x)(t) = bjY (x, t)>θj , j = 1, . . . , J, (4.8)

where bjY (x, t) is a vector of basis evaluations and θj is the corresponding vector of coefficients.

Depending on the effects hj , additional constraints on the effects are necessary to obtain an identifiable

model; see Appendix A for a discussion. As in Scheipl et al. (2015), the effects are represented using
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the row tensor product � of two marginal bases bj : X × T → RKj and bY : T → RKY with a

coefficient vector θj ∈ RKjKY :

hj(x)(t) =
(
bj(x, t)

> � bY (t)>
)
θj . (4.9)

The row tensor product � of two marginal design matrices, Bj ∈ Rn×Kj with rows bj(xij , tig)
> and

BY ∈ Rn×KY with rows bY (tig)
>, is defined as n×KjKY matrix Bj�BY = (Bj⊗1>KY

) ·(1>Kj
⊗BY ),

where ⊗ is the Kronecker product, · denotes entry-wise multiplication, also called Hadamard product,

and 1K denotes the K-dimensional vector of ones. Regularization is achieved by a Ridge-type penalty

and the quadratic penalty term is constructed as in equation (4.4), with marginal penalty matrices

P j and P Y suitable for bj(x, t) and bY (t) respectively.

Representation (4.9) is a special case of (4.8) but more general than the functional linear array

model (FLAM), introduced in Chapter 3. The FLAM corresponds to the special case where the

design matrix has the form of a Kronecker product Bj �BY = (Dj ⊗1G)� (1N ⊗DY ) = Dj ⊗DY .

The Kronecker product in particular requires that the basis can be split into two marginal parts with

the part DY independent of i for all response curves, which is fulfilled if the response curves are

observed on one common grid (t1, . . . , tG)>, and the part Dj for the covariate independent of t. The

latter requirement is not fulfilled for historical effects, where integration limits depend on t and the

covariate basis bj(x, t) thus changes with t.

Compared to FAMMs (Scheipl et al., 2015), where historical effects and responses observed on

unequal grids are possible but only the conditional expectation can be modeled, our framework allows

for more general transformation functions ξ. The number of effects that can be estimated is limited

in FAMMs due to the likelihood-based estimation and would not accommodate p > n settings as in

our application, whereas our framework gives the possibility to specify models with a large number

of effects.

The functional historical model (4.1) to (4.3) is a special case of the more general framework (4.7)

by letting ξ = E and taking the marginal basis over the functional covariate xj(s) to be

bj(x, t)
> ≈ [x̃j(s1, t) · · · x̃j(sR, t)] [Φj(s1) · · · Φj(sR)]>

=

[
R∑
r=1

x̃j(sr, t)Φ1(sr) · · ·
R∑
r=1

x̃j(sr, t)ΦKj (sr)

]
,

(4.10)

where Φj(s)
> = [Φ1(s) · · · ΦKj (s)] and x̃j(sr, t) as defined in (4.3). The basis over the index of the

response t is bY (t)> = ΦY (t)> = [Φ1(t) · · · ΦKY
(t)].

Embedding the functional historical model into the general framework (4.7) allows several flexible

extensions of model (4.1) to (4.3) depending on the requirements of the given application. Possibil-

ities include the combination of different historical, concurrent and unconstrained effects of several

functional covariates, interactions with or linear/smooth effects of scalar covariates, and/or different

features of the conditional response distribution to be modeled such as median regression for more

robustness in the presence of outlying values.
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4.4 Estimation by gradient boosting

We use a component-wise gradient boosting algorithm to estimate the functional regression model

in (4.7); see, e.g., Bühlmann and Hothorn (2007) for an introduction to boosting from a statistical

point of view. The idea of boosting is to enhance the performance of simple models, the so-called

base-learners, by combining them. Gradient boosting is a gradient descent algorithm minimizing the

empirical risk with respect to the linear predictor h. In component-wise boosting, in each step only

the best fitting base-learner as an approximation to the negative gradient is selected for the model

update. As only one base-learner is used at a time, a large number of base-learners can be considered.

Usually, the boosting algorithm is stopped before convergence, so-called early stopping, to obtain

regularized effect estimates. In our setting, the base-learners are the penalized models for the effects

hj as defined in equation (4.9) with penalty (4.4). For a model containing J historical effects, each of

the j = 1, . . . , J base-learners represents one historical effect and thus corresponds to one candidate

covariate.

We define a suitable loss for functional responses in the following. Let ρ : (Y × X ) × H →
L1(T , µ), where H is the set of all functions from (X × T ) to L2(T , µ), be a loss function, which is

differentiable with respect to the second argument. The loss ρ could, e.g., be the squared error loss

ρL2 ((Y,X), h) (t) = 1
2(Y −h(X))2(t), which yields the expectation as population minimizer. The loss

of a whole trajectory ` : (Y × X )×H → [0,∞) is defined as

` ((Y,X), h) =

∫
T
ρ ((Y,X), h) (t) dt.

Boosting aims at minimizing the expected loss, the so-called risk

h∗ = arg min
h

E ` ((Y,X), h) .

In practice, the expectation is approximated by the mean over observed data (yi, xi), i = 1, . . . , N ,

and the integral by a numerical integration scheme. Thus, boosting optimizes the empirical risk

h∗ = arg min
h

N∑
i=1

Gi∑
g=1

wi∆(tig)ρ ((yi, xi), h) (tig),

where wi are sampling weights for whole trajectories and ∆(t) are weights of a numerical integration

scheme. The weights wi can be used to weight the observations in the model fit or in resampling

methods.

The boosting algorithm is similar to the one used in Chapter 3. The essential difference is the

abandonment of the array structure, which allows for response trajectories observed on unequal grids

and covariates that vary over the domain of the response. Both features are necessary for the data

and model (4.1) considered in our application. In detail, the used boosting algorithm is as follows.
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Algorithm: Gradient boosting for functional regression models

Step 1: Define the bases bjY (x, t) and penalties P jY for the j = 1, . . . , J base-learners. Define

the weights w̃ig = wi∆(tig), for the observations i = 1, . . . , N , g = 1, . . . , Gi. Initialize the

parameters θ
[0]
j . Select the step-length ν ∈ (0, 1) and the stopping iteration mstop. Set m := 0.

Step 2: Compute the negative gradient of the empirical risk

ui(tig) := − ∂

∂h
ρ ((yi, xi), h) (tig)

∣∣∣∣
h=ĥ[m]

,

with ĥ[m](xi)(tig) =
∑J

j=1 bjY (xi, tig)
>θ

[m]
j .

Fit the base-learners for j = 1, . . . , J :

γ̂j = arg min
γ∈RKjKY

N∑
i=1

Gi∑
g=1

w̃ig

{
ui(tig)− bjY (xi, tig)

>γ
}2

+ γ>P jY γ,

with weights w̃ig and penalty matrices P jY .

Select the best fitting base-learner according to a least squares criterion:

j? = arg min
j=1,...,J

N∑
i=1

Gi∑
g=1

w̃ig

{
ui(tig)− bjY (xi, tig)

>γ̂j

}2

Step 3: Update the parameters θ
[m+1]
j? = θ

[m]
j? + νγ̂j? and keep all other parameters fixed, i.e.,

θ
[m+1]
j = θ

[m]
j , for j 6= j?.

Step 4: Unless m = mstop, increase m by one and go back to step 2.

The final model is ξ̂(Yi|Xi = xi) =
∑

j ĥ
[mstop]
j (xi). As offset in iteration 0 a smoothed mean or

median function is used for the smooth intercept. The other parameters θ
[0]
j are set to zero. In order

to get a fair selection of base-learners, it is important that all base-learners have the same degrees

of freedom (Hofner et al., 2011). This is achieved by choosing adequate smoothing parameters for

the penalty matrices P jY . In practice, we use the row tensor product representation (4.9) with

only one smoothing parameter per effect for both directions, simplifying the penalty in (4.4) to

P jY = λj(P j ⊗ IKY
+ IKj ⊗ P Y ). Following Hofner et al. (2011), the degrees of freedom are

computed as df := trace(2Sj − S>j Sj), with hat matrix Sj = BjY

(
B>jYBjY + P jY

)−1
B>jY and

design matrix BjY = Bj � BY , as this definition is suitable when comparing two smooth terms

regarding the residual sum of squares (Buja et al., 1989). For fixed smoothing parameters λj and

fixed small step-length ν (usually ν = 0.1), the smoothness or complexity of the model terms is

controlled by the number of boosting iterations mstop (Friedman, 2001). Typically, the degrees of

freedom are chosen rather small. The smooth terms adapt to the complexity of the data by the
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number of boosting iterations (Bühlmann and Yu, 2003). The optimal mstop is chosen by resampling

methods like cross-validation or bootstrap (see, e.g., Bühlmann and Hothorn, 2007). This can be

included in the algorithm by using the weights wi, which induces sampling on the level of curves.

To refine the model selection we use stability selection (Meinshausen and Bühlmann, 2010), which

is a method for selecting influential effects. Random samples of size bN/2c are drawn from the data

and in each subsample the model is fitted. We use complementary pairs stability selection (Shah

and Samworth, 2013), which improves the original procedure by resampling in complementary pairs

of mutually exclusive subsets of observations. Over the samples the relative frequency π̂j of being

selected among the first q base-learners is computed for each base-learner j = 1, . . . , J . The relative

frequencies π̂j are compared to a threshold πthr and all effects that are selected more frequently than

πthr are kept in the model. The parameters q and πthr are chosen such that an upper bound for the

per-family-error-rate (PFER) is kept, assuming that the selection procedure is not worse than random

guessing and that an exchangeability condition for the selection of noise variables holds. Intuitively,

the second assumption means that all noise variables are equally likely to be selected, see Meinshausen

and Bühlmann (2010) for details. Without those two assumptions Shah and Samworth (2013) derived

that the error bound holds for the expected number of “low selection probability variables”, when

the low selection probability corresponds to q/J , which is the average proportion of selected variables

per subsampling fold. For details on stability selection in the context of component-wise gradient

boosting, see Hofner et al. (2015a).

The boosting algorithm for functional regression models is implemented in the R add-on package

FDboost, which is based on the mboost package.

4.5 Simulation study

The simulation study is focused on the identifiability of the functional historical effects. We simulate

difficult settings, partially with rank deficient design matrix, to test the limits of the considered

models in very challenging settings. The motivation is that some of the bioprocess covariates in our

application exhibit low-rank behavior such as near linear increases. In order to have a competing

algorithm, we simulate a mean regression model with two functional historical effects. In this special

case–the transformation function ξ is the expectation and the model contains only a moderate

number of parameters–FAMMs (Scheipl et al., 2015) can be used to estimate model (4.7) using the

R package refund.

Basic model. As basic model we consider a functional historical model with two effects,

Yi(t) = β0(t) +
2∑
j=1

∫ t

T1

xij(s)βj(s, t) ds+ εit,

with s, t ∈ [1, 16], normally distributed errors, εit ∼ N(0, σ2
ε), with the variance σ2

ε depending on the

signal-to-noise ratio. The signal-to-noise ratio is the ratio between the standard deviations of the
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linear predictor and the errors and is fixed at two. We generate data with N = 30 observation units,

22 irregularly spaced observations per response trajectory, and 100 observation points per functional

covariate. To vary the data generating mechanism, we use all combinations of the following settings:

1. Data generating processes for the functional covariates (see Figure C.1 in Appendix C.1 for

examples):

Covariates that are simulated using k ∈ {5, 10} cubic B-splines on equidistant knots as ba-

sis functions. The splines are weighted with random coefficients from a uniform distribution

U [−3, 3].

bsplines-k use k splines

local-k use k splines that are sampled out of 5k splines, resulting in trajectories with local

information

end-k use k splines that are sampled out of the last 3k splines using a total of 10k splines,

resulting in trajectories that have information in the end but are constant equal to zero at

the beginning

Covariates that are straight lines.

lines-0 parallel lines with random intercept ∼ N(−2, 1) and fixed slope 0.3

lines-1 lines with intercept 0 and random slope ∼ N(0, 0.1)

lines-2 lines with independent random intercept ∼ N(−2, 1) and random slope ∼ N(0, 0.1)

Note that some of these scenarios are meant to be very challenging as the end settings contain

no information at the beginning of the time interval from which to estimate the βj surface there,

and the lines settings contain at most two-dimensional information from which to estimate these

at least theoretically infinite-dimensional surfaces.

2. Number of nuisance variables that have no influence on the response, nuisance ∈ {0, 8}.

3. Random coefficient functions βj(s, t) are drawn using a tensor product of five marginal cubic

P-splines (Eilers and Marx, 1996) with random coefficients penalized by a first or second order

difference penalty matrix, dβ ∈ {1, 2}; see Appendix C.1 for details. The functional intercept

β0(t) is 1 + 2
√
t.

For each combination of the data generating process, we run 20 replications.

Estimation. For fitting, we use Kj = KY = 9 cubic B-splines on equally spaced knots and

vary the following settings:

1. Estimation algorithm: FAMM or boosting (FDboost).

2. Order of the difference penalty matrix for the marginal bases, d ∈ {1, 2}.
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3. Standard difference penalty for each marginal basis (ps), i.e., P-splines (Eilers and Marx, 1996),

or full rank shrinkage penalty (pss, Marra and Wood, 2011).

For boosting, the optimal stopping iteration is determined by 10-fold bootstrap in the range of 1 to

2000 iterations. The step-length is fixed at 0.1. For each base-learner, the degrees of freedom are

set to five. Examples for coefficient functions and estimates by boosting and FAMM are given in

Appendix C.1, Figures C.2 and C.3.

Simulation results. In order to make estimation errors comparable over different settings, we

use the relative integrated mean squared errors (reliMSE) for the response and the coefficient surface,

reliMSE(Y ) =

∑N
i=1

∫ (
ηi(t)− Ŷi(t)

)2
dt∑N

i=1

∫ (
ηi(t)− Ȳ

)2
dt

and reliMSE(β) =

∫∫ (
β(s, t)− β̂(s, t)

)2
ds dt∫∫

β(s, t)2 ds dt
,

where ηi(t) is the true value of the response and Ȳ = N−1
∑

i

∫
ηi(t) dt is the overall mean of the

response. By construction the expectation of the coefficient surfaces is zero. The set-up of the simu-

lation study is inspired by Scheipl and Greven (2016), especially the generation of random coefficient

surfaces and the computation of the relative errors.

The prediction of the response is very good over all settings with a maximal relative estimation

error of 0.03 (not shown). We focus on the results obtained by boosting in the settings without

nuisance variables. In Figure 4.1 the reliMSE(β1) is plotted in boxplots grouped by the measures of

identifiability checks, the condition number κ1 and the maximal null space overlap; see Section 4.2.2

and Appendix A.2 for details on identifiability. All estimations are conducted using the standard

difference penalty (ps). If the condition number κ1 is smaller than 106, the null space overlap between

functional covariate and penalty matrix must be < 1 for t = T2, and usually the maximal null space

overlap < 1 as well. A setting is marked to be problematic if κ1 ≥ 106 and even more problematic if

additionally the null space overlap ≥ 1.

For easier interpretation, the 0.1-line is marked in Figure 4.1, as a reliMSE(β) of less than 0.1

usually means that the estimated coefficient surface preserves most features of the true surface. The

data generating process has a strong correlation with the diagnostic measures in a way that some

settings are always marked as problematic. In the considered settings there is problematic null space

overlap for both end-settings for d = 1, 2 and for lines-0 and lines-1 with d = 2. Thus, the problem

of null space overlap can be addressed in most cases by using first order difference penalties. It can

be seen that relative errors > 1 occur almost exclusively in the case that both diagnostic measures

are alarming. For κ1 < 106, one sees that the fit is generally good with most values of reliMSE(β1)

smaller than 0.1. For the rank deficient settings (κ1 ≥ 106), the settings without null space overlap

have clearly smaller relative errors than the settings with null space overlap. For the data setting

bsplines-5, the reliMSE(β1) is small as well, even though the design matrix is rank deficient in that

case.
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Figure 4.1: Simulation results for estimating models with functional historical effects. Boxplots of the reliMSE
for the functional effect β1(s, t) for settings with random coefficient functions generated with first order differ-
ence penalty (dβ = 1) and estimation by boosting using standard difference penalties of first or second order
ps-1, ps-2. On the left, the settings bsplines-10, local-5 and local-10 with full rank marginal design matrix
indicated by κ1 < 106 are plotted; on the right, the settings with rank deficiency. The maximal null space
overlap is displayed on the x-axis categorized to < 1 and ≥ 1. The different settings for the data generating
process of the functional variables x1(s) are given in colors. Note that all values are displayed on a logarithmic
scale.

Results on the comparison of different penalty matrices can be found in Figure C.4 in Ap-

pendix C.2. For first order difference penalty matrices, the use of a shrinkage penalty makes almost

no difference for the estimation. For second order difference penalty, the high relative errors in set-

tings with null space overlap can be reduced considerably by using the full rank shrinkage penalty. A

comparison between FAMM and FDboost can be found in Figure C.5 in Appendix C.2. Generally,

the two algorithms yield similar relative errors for the settings without nuisance variables. In the

settings with eight nuisance variables it is impossible to fit the models using FAMMs, as there are

more parameters than observations. For the estimation with boosting on the other hand, the model

can be fitted without difficulty and the relative errors for the influential variables increase only slightly

compared to the no nuisance variable case. In the boosted models, nuisance variables are included

as well, but with small estimated coefficient functions. Using stability selection in addition, the two

influential variables are virtually always selected, and only rarely a nuisance variable is selected, more

details can be found in Appendix C.2. We compare the computation times of FAMM and FDboost

for the setting without nuisance variables on a 64-bit linux platform. FAMM takes about fifteen

seconds on one core and FDboost takes about eight seconds on ten cores, on which the bootstrapping

to find mstop is parallelized. In the setting with eight nuisance variables, the model fit by boosting

including bootstrapping for mstop and stability selection takes about two minutes on ten cores. See

Figure C.6 in Appendix C.2 for more details on the computation times. Settings using more general

transformation functions than the expectation, e.g., the median, are not considered in the present

simulation study for lack of a competing estimation algorithm. To summarize, in the considered

settings the prediction of the response works well and the accuracy of the estimation of the coefficient

surfaces strongly depends on the data generating process. However, the diagnostic measures for iden-
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tifiability work well in flagging problematic settings where high relative errors occur. In settings with

rank deficient design matrix the estimation is still reasonably good if no null space overlap occurs.

Our proposed approach yields similar results to the competitor FAMM in settings where FAMM can

be applied and still yields good results in settings with more parameters than observations, where

FAMM cannot be used.

4.6 Application in bioprocess monitoring

The aim of this study is the monitoring of the cell dry mass (CDM, measured in g) during a biotech-

nological fermentation for the production of a model protein. Traditionally the CDM is determined

offline (i.e., by taking and analyzing a sample in the laboratory) according to a time-consuming

multi-step protocol, which prevents an early fault diagnosis in the process. Consequently, an online

prediction of the CDM based on easily accessible physical and/or chemical process variables or sensor

signals would be desirable. The dataset at hand is derived from 18 fermentations performed within

a full factorial design with factors temperature (two levels), growth rate (three levels) and induction

strength (three levels). Furthermore, a historical dataset with four fermentations and three duplicates

is available, yielding N = 25 fermentations in total. The CDM was determined on an approximately

hourly basis resulting in about 480 irregularly spaced observations in total. As time variable we use

the estimated number of generations of the Escherichia coli bacteria. Prediction of the CDM shall be

based on three types of online sensor signals serving as explanatory variables:

Process Data (PD): a set of 7 variables providing physical information on the process: air flow,

head pressure, dissolved O2, CO2 and O2 in the exhaust gas, feed and base consumption.

BioView R© Data (BV): a set of 120 variables containing fluorescence intensities I (λex, λem) mea-

sured for a pair of excitation/emission wavelengths (λex, λem) with λex ranging from 270 to

550 nm and λem from 310 to 590 nm. Additionally, 30 variables of type I (exnd, λem) or

I (λex, emnd) provide information on the scattering properties of the medium by using a neutral

density (nd) filter either in excitation- or in emission-mode (Melcher et al., 2015).

PTR-MS Data (PTR): a set of 22 variables with the cumulative amount and formation (or con-

sumption) rates measured for 11 mass numbers (substances) by proton-transfer-reaction mass

spectrometry (Luchner et al., 2012).

Only BV variables are used that have a correlation of at most 0.95 with other BV variables, leaving

32 BV variables in the analysis, see Melcher et al. (2015) for details. The data preprocessing for

the online measured covariates covers smoothing, time alignment, centering and scaling, resulting in

covariates with 202 observations per curve, details can be found in Appendix C.3. In Figure 4.2, the

response variable CDM is plotted. In each plot the same two fermentations are highlighted, namely

SOD42 in red and SOD62 in turquoise, using the same labels for the fermentations as Melcher et al.

(2015).
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Figure 4.2: Data on fermentation processes. Plot of the response variable CDM versus the generation time.

Model specification. Since the PD variables are routinely measured they can be used without

extra cost in all models. To measure the BV and the PTR variables additional instruments are

necessary and hence it is of practical interest to check for the added benefit of those variables for

the prediction of the outcome. We fit models using the PD, the PD-BV or the PD-PTR variables as

covariates. The used historical model is

E(Yi(t)|xi) = β0(t) +

J∑
j=1

∫ t

T1

xij(s)βj(s, t) ds, (4.11)

where E is the expectation (boosting could alternatively fit the median or some quantile), Yi(t) is

the response at generation t, t ∈ [1.2, 16.4], for fermentation i, i = 1, . . . , 25, xi is the vector of all

covariates, xij(s) is the observation of functional covariate j for fermentation i at generation s and

βj(s, t) is the coefficient surface of covariate j with triangular support. Additionally, we fit a stan-

dardized historical model, see equation (4.5), where each functional historical effect is standardized

by the length of the integration interval:

E(Yi(t)|xi) = β̆0(t) +
J∑
j=1

1

t− T1

∫ t

T1

xij(s)β̆j(s, t) ds. (4.12)

As in our application the range of the response is growing over time, see Figure 4.2, it seems more

adequate to use the historical effects without standardization, equation (4.11). In this model a

constant coefficient surface and a constant covariate induce a partial effect that is growing or falling
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linearly, as the length of the integration interval is increasing. To investigate the benefit of using the

history of the covariates, we also fit the concurrent model

E(Yi(t)|xi) = β0(t) +

J∑
j=1

xij(t)βj(t), (4.13)

where βj(t) is the concurrent effect of the jth covariate on the response. In the historical models the

effects are represented by using Kj = KY = 8 cubic B-splines as marginal bases in s and t direction

(see Section 4.2, equation (4.3)). For the concurrent effect, the marginal basis is bj(x, t)
> = x(t)

and we use the same bY (t) as for the historical effects. For all base-learners, we specify five degrees

of freedom, inducing different values for λj . As in the simulation study results were most stable

for first order difference penalties, we use squared first order difference matrices as marginal penalties.

Tuning parameters and goodness of prediction. The same methods are used to determine the

optimal stopping iteration in the boosting algorithm and to assess the predictive power of the

models. We search the optimal mstop in the values {1, 2, . . . , 2000} for fixed step-size ν = 0.1. To

find the optimal stopping iteration we use leaving-one-curve-out-cross-validation (CCV). That means

the model is fitted using all curves but one and the left out curve is used as evaluation data. The

prediction for the left-out curve yi(t) is denoted by ŷ
(−i)
i (t). To take into account the functional

character of the data, we integrate the loss per trajectory and standardize it with the length of the

trajectories,

funMeanLoss =
1

N

N∑
i=1

1

|T |

∫
T
ρ
(
yi, ŷ

(−i)
i

)
(t) dt.

As loss function we use the squared error loss ρL2(y, ŷ) = (y − ŷ)2, which yields the functional mean

squared error (funMSE). For easier interpretation, we use the root mean squared error (funRMSE),

defined as
√

funMSE.

Variable selection. As many covariates are available, variable selection is crucial. The result-

ing model using CCV often contains many variables, but some base-learners contribute only small

effects to the prediction of the outcome and are selected quite rarely. To obtain more parsimonious

models only containing important effects, we conduct complementary pairs stability selection (Shah

and Samworth, 2013), see Section 4.4. We set the threshold πthr = 0.9 and the PFER to < 0.1 · J ,

for J base-learners in the model, this induces q to be 3, 19 and 14 in the models with intercept

plus the 7 PD variables, 39 PD-BV variables and 29 PD-PTR variables, respectively. The PFER is

controlled under the assumptions that the variable selection of boosting works better than random

guessing and that the selection of noise variables is exchangeable. Both assumptions are difficult to

check in practice. Without relying on those assumptions the complementary pairs stability selection

controls the expected number of low selection probability variables. As the major interest lies in

finding a good prediction model and we use stability selection mainly for ordering the variables, we
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are not primarily concerned with maintaining error rates. We use 100 subsamples in total, i.e., 50

complementary pairs. Table 4.1 gives for each set of covariates the ordered first five variables most

often selected for the historical model (4.11). The table for the first twenty variables can be found in

Table C.1 in Appendix C.3. Thus, for the model with the PD or the PD-PTR variables no variables

Table 4.1: Results of stability selection for the historical model. The first five variables in the order as selected
by stability selection using the historical model (4.11) for the three different sets of covariates. The relative
selection frequencies π̂j among the first q variables is given in parentheses (in %). For the PTR variables, ’r’
means the rate of the substance and ’c’ the cumulative amount.

PD (π̂j) PD-BV (π̂j) PD-PTR (π̂j)

base consumption (81) em590.ex550 (99) dissolved O2 (88)
head pressure (74) intercept (97) indole r (86)
dissolved O2 (62) em330.exnd (92) acetaldehyde c (80)

air flow (41) feed consumption (90) CO2 in exhaust gas (76)
CO2 in exhaust gas (21) dissolved O2 (89) methanthiole r (73)

are selected. In the model with the PD-BV variables the effects of em590.ex550, em330.exnd, feed

consumption and the intercept are in the stable set. Looking at the identifiability check measures,

the condition number is greater than 106 for most variables indicating rank deficiency, but the null

space overlap between penalty and functional covariate is smaller than one for all variables. This

means that the effects are identified using the smoothness assumption implied by the penalty.

Historical model with stability selection. Figure 4.3 depicts the results of the model based on

the PD-BV variables. The three selected variables are among those having rank deficient design

matrix and no null space overlap with the penalty. This means that the effects are identified

using the smoothness assumption implied by the penalty. For em590.ex550 and feed consumption,

all centered functional observations start in zero, inducing identifiability for t = T1 only by the

smoothness assumption, as the covariates do not carry information in that point. As a measure

for uncertainty we compute point-wise quantiles of the estimated coefficient surfaces in a 100-fold

bootstrap. The estimated surfaces for feed consumption are very different over the folds, whereas

for the two spectroscopic variables they are estimated with similar structures over the folds,

cf. Figure C.7 in Appendix C.3. The optimal stopping iteration is 2000, but the mean squared

errors for the different evaluation curves are quite flat from about 1000 boosting iteration onwards

and the model hardly changes. As an example we interpret the estimated coefficient surface of

em330.exnd. Because of the estimated negative coefficient surface for low s, smaller observations

for em330.exnd in the beginning are connected to higher values of CDM subsequently and higher

observations in the beginning are connected to lower values of CDM later on. This effect is strongest

for time-points of the response at around generation 13. Fixing a certain value of t one can interpret

the coefficient function over s. For example, for t = 8, recent values of em330.exnd have a strong posi-

tive association with CDM but this effect decreases for smaller values of s and even becomes negative.



4.6 Application in bioprocess monitoring 65

5 10 15

−
1

0
1

2
3

em590.ex550

generation
5 10 15

−
3

−
2

−
1

0
1

2
3

em330.exnd

generation
5 10 15

−
0.

2
−

0.
1

0.
0

0.
1

feed consumption

generation

2 4 6 8 10 12 14 16

2
4

6
8

10
14

em590.ex550

generation

ge
ne

ra
tio

n_
s

 −100  −80 
 −60  −40  −20 

 0 

 0 

 0 

 20 

2 4 6 8 10 12 14 16

2
4

6
8

10
14

em330.exnd

generation

ge
ne

ra
tio

n_
s

 −25  −20 
 −15 

 −15 

 −10 
 −5 

 −5 

 0 

 0 

 5 

 5 

 10 

 10 

 15 

 20 

2 4 6 8 10 12 14 16

2
4

6
8

10
14

feed consumption

generation

ge
ne

ra
tio

n_
s

 −200 

 −150  −100 

 −100 

 −50 

 −50 

 0 

 0 

 50 

 50 

 100 

 150 

 2
00

 

5 10 15

−
40

0
20

40
60

em590.ex550

generation
5 10 15

−
15

0
−

50
0

50
10

0

em330.exnd

generation
5 10 15

−
10

0
10

20
30

feed consumption

generation

Figure 4.3: Estimated effects for the functional historical model on the fermentation data. The functional
covariates xj(s) (top panel), the estimated coefficient surfaces β̂j(s, t) (middle panel) and the partial effects∫ t
T1
xj(s)β̂j(s, t) ds (bottom panel) are depicted for the historical model using the PD-BV variables selected by

stability selection. The selected variables are feed consumption, em330.exnd and em590.ex550 (columns from
left to right). The estimated coefficient functions are colored in red for positive, blue for negative and white
for zero effects. Note that the scale in each plot is different. The index s of the covariates is denoted by
’generation s’ and the index t of the response by ’generation’.
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Optimal prediction model. As the prior interest lies in prediction, we estimate historical (4.11),

standardized historical (4.12) and concurrent models (4.13) with zero to twenty effects to compare

the prediction errors. To keep the computational cost manageable, we use for each model type

the sequence of effects that is established by stability selection. While the control of the PFER

is lost with this procedure, it still seems a reasonable method to get parsimonious models that

predict the response as well as possible. In Figure 4.4 the cross-validated RMSE is shown as a

function of the number of covariates for all covariate settings. The models with zero effects are pure
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Figure 4.4: Predictive power of functional models for the fermentation data. Prediction error (RMSE) for each
model type–historical, standardized and concurrent model (from left to right)–and covariate set (PD, PD-BV
and PD-PTR) as a function of the number of variables in the model computed over CCV.

intercept models. They have slightly different RMSE values between different sets of covariates as

for some fermentations the BV or the PTR variables are not available and as a consequence those

fermentations could not be used in the according models. Generally, the RMSE gets smaller with a

growing number of covariates. For both historical models and the concurrent model, the use of the

BV or the PTR variables improves the prediction considerably compared to the models using only

the PD variables. For all model types, using the PD-BV variables results in the lowest values of

RMSE. For the concurrent model, the superiority of the models using the PD-BV variables is more

pronounced than for the historical models. Thus we conclude that the BV in combination with the

PD variables contain enough information at the concurrent time-point to get good if not optimal

prediction results. If only the PD variables are available, it is more beneficial to use information

from the past as is done in the historical models.

The lowest RMSE values that are reported by Melcher et al. (2015) for CDM are 14.4 using

random forest, 4.7 using neural networks combined with random forest and 12.7 using partial least

squares. In all those models, concurrent PD and BV variables are used. Compared to this our lowest

RMSE values of 8.7 for the historical, 9.5 for the standardized historical and 10.9 for the concurrent

model are able to compete. We obtain similar predictive performance in our models with using linear,

interpretable effects, compared to the black box method of neural networks optimizing prediction.

Our approach also allows to check the added use of historical compared to concurrent information.
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4.7 Discussion

In this chapter, we focus on regression models with a large number of functional historical effects,

which are function-on-function effects where the support of the coefficient surface is constrained to a

certain area. The implementation is such that arbitrary lower and upper integration limits {l(t), u(t)}
can be specified as functions of t for a functional response Y (t). In particular, historical effects with

integration limits {T1, t} and lag models with integration limits {t−δ, t} can be fitted. The introduced

reparameterizations of historical effects, accounting for the differing length of the integration interval,

can be useful for applications in which the response has a similar range over time. Additionally,

hybrid models combining different kinds of effects can be estimated. In our application, for example,

we fitted a hybrid model with concurrent effects of the BV and historical effects of the PD variables

(results not shown).

In contrast to black-box prediction algorithms, such as neural networks, our models provide inter-

pretable results as illustrated by the estimated coefficient functions in the historical model for CDM

while in many cases being competitive in terms of prediction. We obtained the best prediction models

for CDM using the process and the spectroscopic variables (PD-BV) as historical or concurrent ef-

fects. If only the process data (PD) are used, the historical models yield considerably lower prediction

errors than the concurrent models.

We embed the historical models in a more general framework for boosting functional regression

models that (a) allows to model not only the conditional mean of the response but also other features

of the conditional distribution for (b) functional responses observed on equal or unequal grids, (c)

includes the possibility to specify many different effects, in particular functional historical effects, (d)

can estimate models with a great number of covariate effects, and (e) inherently does variable selection.

We understand our framework as a toolbox for functional regression that easily allows to estimate

models under different assumptions or with differing effects. For example, it is straightforward to use

the robust absolute error loss instead of the squared error loss, replacing mean by median regression.

In the R add-on package FDboost, we provide a comprehensive implementation that should lower the

hurdle for practitioners to use functional regression models.

The methods can be applied to other fields collecting functional data, e.g., financial or clinical

data. The framework for functional historical models could be extended into several directions. For

some applications, it may be of interest to develop a method that identifies important regions in

each coefficient surface within the fitting procedure and sets the remaining surface to zero; see Tutz

and Gertheiss (2010) for feature extraction with boosting for scalar-on-function regression. It may

also be of interest to extend the linear functional historical effect to non-linear effects, cf. Scheipl

et al. (2015), which might further improve predictive performance in some cases. Such a model would

require larger sample sizes than in our case study and careful investigation of identifiability.
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Chapter 5

Signal regression models for location,

scale and shape
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Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2016): Signal regression mod-

els for location, scale and shape with an application to stock returns. arXiv preprint,
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combine their work, resulting in the combination of boosting GAMLSS (Mayr et al., 2012) and

boosting functional regression models. The idea became a project when Andreas Fuest added the

application to a time series of stock returns, in which the focus lies on modeling the variance of the
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the models that were used for the data analysis and wrote the part of the application section explain-

ing the dataset (beginning of Section 5.8). Sarah Brockhaus performed all analysis, including the
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the understanding of boosting GAMLSS and the implementation in the R package gamboostLSS. The

methodological developments to include functional effects into GAMLSS were conducted by Sarah
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revision of the paper. All coauthors gave feedback on the manuscript.

A short, early version of Chapter 5 can be found in the conference proceedings of IWSM 2015 (30th

International Workshop on Statistical Modelling), see Brockhaus et al. (2015a).
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Software

The analyses in this chapter were conducted by R version 3.2.3 (R Core Team, 2015). For boosting

functional regression models, the R packages FDboost 0.0-16 (Brockhaus and Rügamer, 2016), mboost

2.5-0 (Hothorn et al., 2016) and gamboostLSS 1.2-0 (Hofner et al., 2015b) were used. For penalized

maximum likelihood-based estimation of GAMLSS with functional covariates, we used the packages

gamlss 4.3-8 (Stasinopoulos et al., 2016), gamlss.add 4.3-4 (Rigby and Stasinopoulos, 2015) and mgcv

1.8-11 (Wood, 2016).

5.1 Introduction

The field of functional data analysis (Ramsay and Silverman, 2005) deals with the special data

situation where the observation units are curves. The functions have continuous support, e.g., time,

wavelength or space. One typically assumes that the true underlying functions are smooth and

theoretically the functions could be measured on arbitrarily fine grids, even though in practice the

functions are measured at a finite number of discrete points. Due to technical progress, more and more

data sets containing functional variables are available. Regression methods for functional data are of

increasing interest and have been developed for functional responses and/or functional covariates; see

Morris (2015) for a recent review on regression methods with functional data.

In this chapter, we consider a case study on returns for the stocks of Commerzbank from November

2008 to December 2010 (Fuest and Mittnik, 2015). The primary interest lies in predicting the variances

of the stock returns whereas the modeling of the expectation is only of secondary interest, as it is a

well-known empirical fact that the latter is hardly predictable. In contrast, the conditional variance is

typically time-varying and strongly serially correlated (see, e.g., Cont, 2001). Apart from the returns,

however, our data set includes rich information on the market participants’ offers and requests as

potential predictors, which we use as covariates in the form of liquidity curves. Consequently, we

want to fit a regression model for the expectation and the variance of a scalar response using several

functional and scalar covariates.

So far, most publications dealing with scalar-on-function regression have focused on modeling the

conditional expectation. The linear functional model was introduced by Ramsay and Dalzell (1991)

yi = β0 +

∫
S
xi(s)β(s) + εi, (5.1)

with continuous response yi, i = 1, . . . , N , functional covariate xi(s), s ∈ S, with S a closed interval

in R, intercept β0, functional coefficient β(s) and errors εi
iid∼ N(0, σ2). Many extensions of this model

have been proposed, concerning the response distribution, non-linearity of the effect and inclusion

of further covariate effects. For non-normal responses, generalized linear models (GLMs, Nelder and

Wedderburn, 1972) with linear effects of functional covariates (e.g., Marx and Eilers, 1999; Ramsay

and Silverman, 2005; Müller and Stadtmüller, 2005; Goldsmith et al., 2011) and generalized additive

models (GAMs, Hastie and Tibshirani, 1986) with non-linear effects of functional covariates (e.g.,
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James and Silverman, 2005; McLean et al., 2014) have been discussed. As distribution-free approach

quantile regression (Koenker, 2005) with functional covariates has been considered, see, e.g., Ferraty

et al. (2005); Cardot et al. (2005); Chen and Müller (2012a). The most important differences between

those models are the choice of the basis representation for the functional covariate and/or the func-

tional coefficient, and the choice of the fitting algorithm. Common choices for the bases are functional

principal components and splines. The estimation is mostly done by (penalized) maximum likelihood

approaches. However, functional regression models that model simultaneously several parameters of

the conditional response distribution have not been considered. This can be overcome in the frame-

work of generalized additive models for location, scale and shape (GAMLSS), introduced by Rigby

and Stasinopoulos (2005), where all distribution parameters can be modeled depending on covariates.

For estimation, Newton-Raphson or Fisher-Scoring is used to maximize the (penalized) likelihood.

Mayr et al. (2012) estimate GAMLSS in high-dimensional data settings by a component-wise gradient

boosting algorithm. Klein et al. (2015) discuss Bayesian inference for GAMLSS and denominate the

model as structured additive distributional regression, as the modeled distribution parameters are not

necessarily location, scale and shape but rather determine those characteristics indirectly. Inference

is based on a Markov chain Monte Carlo simulation algorithm with distribution-specific iteratively

weighted least squares approximations for the full conditionals. For each of these three approaches,

complex parametric distributions like the (inverse) Gaussian, Weibull or Negative Binomial distribu-

tion can be assumed for the response variable. None of these three papers discusses the incorporation

of functional covariates into GAMLSS.

Wood et al. (2015) propose an estimation framework for smooth models with (non-)exponential

families, including certain GAMLSS as special case. In the current implementation three response

distributions for GAMLSS–a normal location scale, a two-stage zero-inflated Poisson and a multino-

mial logistic model–are available. The focus lies on stable smoothing parameter estimation and model

selection. Already in an earlier paper, Wood (2011) discusses how to incorporate linear functional

effects into GAMs using spline expansions of β(s) and Wood et al. (2015) includes an example of a

model with ordered categorical response and one functional covariate. The functional model terms

can be included in the mentioned GAMLSS within the implementation in R package mgcv, using

R software for statistical computing. Thus, scalar-on-function models for normal location scale, two-

stage zero-inflated Poisson and multinomial logistic models are available in the implementation, but

have not been discussed so far.

In this chapter, we discuss the extension of scalar-on-function regression models in the spirit of

GAMLSS and denominate these models as signal regression models for location, scale and shape. We

address practically important points like identifiability and model choice and compare different esti-

mation methods. The signal regression terms are specified as in Wood (2011) and in Chapter 3. The

second allows in addition to linear functional effects as in (5.1) interaction terms zi
∫
S xij(s)βj(s) ds

or
∫
S xij(s)βj(s, zi) ds between scalar zi and functional xij(s) covariates. The functional coefficients

βj(s) can be expanded in a spline basis, such as P-splines (Eilers and Marx, 1996), or in the ba-

sis spanned by the functional principal components (FPCs, see, e.g., Ramsay and Silverman, 2005,

chap. 8) of the functional covariate. Representing the functional covariate and coefficient in FPCs,
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the scores of the FPCs are used like scalar covariates; see Section 5.3.1 where we will compare and

discuss different choices of basis functions. We propose and compare two fundamentally different

estimation approaches, based on gradient boosting (Mayr et al., 2012) and (penalized) maximum

likelihood (Rigby and Stasinopoulos, 2005; Wood et al., 2015). No estimation method is generally

superior, as each is suited to particular situations, as will be discussed in this chapter. Boosting

allows for high-dimensional data settings with more covariate effects than observations and variable

selection, but does not provide direct statistical inference. The maximum likelihood approaches imply

the usual machinery of statistical inference but are not applicable in high-dimensional data settings.

The combination of scalar-on-function regression and GAMLSS is motivated by the application

on stock returns but covers a much broader range of response distributions and functional effects.

The stock returns are a continuous real-valued response and we will use normal and t location scale

models. We model the linear functional effects for the liquidity curves using P-splines or FPC bases.

The remainder of the chapter is structured as follows: in Section 5.2 we formulate the GAMLSS

including functional effects. In Section 5.3 we give details on possible covariate effect terms, focusing

on effects of functional variables. In Section 5.4 the gradient boosting approach is presented. In

Section 5.5 we present estimation by penalized maximum likelihood, commenting on the gamlss-

algorithms by Rigby and Stasinopoulos (2005, 2014) and the smooth regression models by Wood

et al. (2015). A comparison between the estimation methods highlighting pros and cons is given in

Section 5.6. In Section 5.7 we comment on criteria for model choice. Section 5.8 shows the analysis

of the log-return data assuming a normal or t-distribution for the response and using functional

liquidity curves as covariates. In Section 5.9 we present results of two simulation studies–the first is

closely related to the application; the second systematically compares the three discussed estimation

algorithms. We conclude in Section 5.10 with a short discussion and an outlook on future research.

In the Appendix D, we give details on the implementation of the methods in R including example

code for a small simulated dataset. Further results of the application and the simulation study as

well as reproducible code are given in Appendix D.

5.2 Generic model

We observe data-pairs from (Y,X) assuming that Y given X follows a conditional distribution FY |X
and X can be fixed or random. Let the response Y ∈ R and scalar covariates in R and functional

covariates in L2(S), where L2 is the space of square integrable functions on the real interval S =

[S1, S2], with S1 < S2 ∈ R. If there are several functional covariates, they can have differing domains.

One functional covariate is denoted by Xj(s), with s ∈ S. We denote the observed data by (yi, xi),

i = 1, . . . , N , and an observed functional covariate by xij(s), with observation points s ∈ (s1, . . . , sR)>,

sr ∈ S, which are equal for the i = 1, . . . , N observed trajectories. In general, random variables
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are denoted by upper and realizations by lower case. To represent a GAMLSS for Q distribution

parameters (Rigby and Stasinopoulos, 2005), the additive regression model has the general form

g(q)(ϑ(q)) = ξ(q)(Y |X = x) = h(q)(x) =
J(q)∑
j=1

h
(q)
j (x), q = 1, . . . , Q, (5.2)

where ϑ(q) is the qth distribution parameter of the response distribution and g(q) is the corresponding

link function relating the distribution parameter to its linear predictor h(q)(x). Equivalently, we use

a transformation function ξ(q), which is the composition of the function yielding the qth parameter

of the conditional response distribution and the link function g(q). To represent a GLM the model

contains only one equation, Q = 1, for the expectation, ϑ(1) = µ, and the transformation function is

the composition of the expectation E and the link function g(1), i.e. ξ(1) = g(1) ◦ E. More generally,

each function in the vector of transformation functions is the composition of a parameter function

and a link function. For example, for normally distributed response, the transformation functions

can be the expectation composed with the identity link, ξ(1) = E, and the variance composed with

the log link, ξ(2) = log ◦V. The framework allows for many different response distributions, including,

e.g., the (inverse) normal, t-, and gamma distribution. See Rigby and Stasinopoulos (2005) for an

extensive list of response distributions.

The linear predictor for the qth parameter, h(q), is the additive composition of covariate effects

h
(q)
j . Each effect h

(q)
j (x) can depend on one covariate for simple effects or on a subset of covariates in x

to form interaction effects. Linear, non-linear and interaction effects of scalar covariates are possible

in the GAMLSS proposed by Rigby and Stasinopoulos (2005), Mayr et al. (2012), Klein et al. (2015)

and Wood et al. (2015). The latter allows additionally for linear functional effects, but is in the

current implementation restricted to three distribution families (considering only GAMLSS models).

We extend the existing models by allowing for linear functional effects and interaction terms between

scalar and functional covariates for general response distributions. Table 5.1 gives an overview on

possible covariate effects.

Table 5.1: Overview of possible covariate effects that can be specified in the linear predictors.

covariate(s) type of effect h
(q)
j (x)

(none) intercept β0

scalar variable z1 linear effect z1β
smooth effect f(z1)

plus scalar z2 linear interaction z1z2β
smooth interaction f(z1, z2)

grouping variable g group-specific smooth intercept βg
plus scalar z group-specific linear effect zβg

functional variable x(s) linear functional effect
∫
S x(s)β(s) ds

plus scalar z linear interaction z
∫
S x(s)β(s) ds

smooth interaction
∫
S x(s)β(z, s) ds
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In the following section, we discuss the setup for the effects, with a special emphasis on effects of

functional covariates.

5.3 Specification of effects

We represent smooth effects by basis expansions, representing each partial effect, h
(q)
j (x), as linear

term

h
(q)
j (x) = b

(q)
j (x)>θ

(q)
j , (5.3)

where b
(q)
j : X → RK

(q)
j , with X being the space of the covariates X, is a vector of basis evaluations

depending on one or several covariates and θ
(q)
j is the vector of basis coefficients that is to be estimated.

The effects are regularized by a quadratic penalty term,

θ
(q)>
j P

(q)
j (λ)θ

(q)
j , (5.4)

which for most covariate effects is taken as P
(q)
j (λ) = λ

(q)
j P

(q)
j , with fixed penalty matrix P

(q)
j

and smoothing parameter λ
(q)
j ≥ 0 from the vector of all smoothing parameters λ. Thus, the

design matrix for each effect contains rows of basis evaluations b
(q)
j (xi)

>, i = 1, . . . , N , and the

corresponding coefficients are regularized using the penalty matrix P
(q)
j (λ). For better readability,

we skip the superscript (q) in the following description of covariate effects.

For the effects of scalar covariates, we refer to Rigby and Stasinopoulos (2005), Mayr et al.

(2012) and Wood et al. (2015), where even more effects of scalar variables than those listed in

Table 5.1 are described. The specification of effects of functional covariates is discussed in the

following two subsections.

5.3.1 Signal regression terms

Let a functional covariate xj(s) with domain S be observed on a grid (s1, . . . , sR)>. For a linear

functional effect
∫
S xj(s)βj(s) ds, also called signal regression term, the integral is approximated

using weights ∆(s) from a numerical integration scheme (Wood, 2011) giving

bj(xj(s))
> = [x̃j(s1) · · · x̃j(sR)] [Φj(s1) · · · Φj(sR)]>

=

[
R∑
r=1

x̃j(sr)Φ1(sr) · · ·
R∑
r=1

x̃j(sr)ΦKj (sr)

]
,

(5.5)

where x̃j(s) = ∆(s)xj(s) and Φj(s) is a vector of basis functions Φk(s), k = 1, . . . ,Kj , evaluated at s.

The penalty matrix P j is chosen as matching to the basis functions Φj , e.g., a squared difference

matrix for B-splines (Eilers and Marx, 1996).
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To model a linear interaction between a scalar covariate z and a functional covariate,

z
∫
S xj(s)βj(s) ds, the basis in (5.5) is multiplied by z. For a smooth interaction

∫
S xj(s)βj(z, s) ds,

we use (Scheipl et al., 2015, and Chapter 3)

bj(xj(s), z)
> = bj1(xj(s))

> � bj2(z)>, (5.6)

where � is the row tensor product, bj1(xj(s)) is defined as in (5.5) and bj2(z) = Φj(z) are spline basis

evaluations of the scalar covariate z. A suitable penalty matrix for such an effect can be constructed

as (Wood, 2006, Sec. 4.1.8)

P j(λ) = λj1
(
P j1 ⊗ IKj2

)
+ λj2

(
IKj1 ⊗ P j2

)
, (5.7)

where P j1 ∈ RKj1×Kj1 , and P j2 ∈ RKj2×Kj2 are appropriate penalty matrices for the marginal bases

bj1(xj(s)) and bj2(z), and λj1, λj2 ≥ 0 are smoothing parameters.

5.3.2 Choice of basis functions and identifiability

Spline bases. Assuming the coefficient function βj(s) to be smooth, the basis functions Φj for the

functional linear effect (5.5) can be chosen, for instance, as B-splines, natural splines or thin plate

regression splines. Depending on the chosen spline basis a suitable penalty matrix has to be selected.

According to the penalty different smoothness assumptions are implied. For example, using P-splines

(Eilers and Marx, 1996), i.e., B-splines with a squared difference matrix as penalty, it is possible to

penalize deviations from the constant line or the straight line using first or second order differences

in the penalty.

Spline based methods require functional observations on dense grids and thus, for sparse

grids they have to be imputed in a preprocessing step (see, e.g., Goldsmith et al., 2011). The

implementations in mgcv and FDboost require functional observations on one common grid.

Functional principal component basis. In functional data analysis, functional principal compo-

nent analysis (FPCA, see, e.g., Ramsay and Silverman, 2005) is a common tool for dimension

reduction, and also widely used in functional regression analysis to represent the functional covariates

and/or the functional coefficients (cf., Morris, 2015). Let Xj(s) be a zero-mean square-integrable

stochastic process and ek(s) the eigenfunctions of the auto-covariance of Xj(s), with the respective

decreasing eigenvalues ζ1 ≥ ζ2 ≥ · · · ≥ 0. Then {ek(s), k ∈ N} form an orthonormal basis for the

L2(S) and the Karhunen-Loève theorem states that

Xij(s) =
∞∑
k=1

Zikek(s),

where Zik are uncorrelated random variables with mean zero and variance ζk. This means that

functional observations xij(s) can be represented as weighted sums of (estimated) eigenfunctions.
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The eigenfunctions represent the main modes of variation of the functional variable and are also

called functional principal components (FPCs). In practice, the sum is truncated at a certain number

of basis functions. For a fixed number of basis functions, the eigenfunctions are the set of orthonormal

basis functions that best approximate the functional observations (see, e.g., Ramsay and Silverman,

2005). Representing both the functional covariate and the functional coefficient by the eigenfunction

basis truncated at Kj ,

∫
S
xij(s)βj(s) ds ≈

Kj∑
k,l=1

∫
S
zikek(s)el(s)θl ds =

Kj∑
k=1

zikθk, (5.8)

follows from the orthonormality of ek(s). This approach thus corresponds to a regression onto the

estimated first Kj FPC scores zik and interaction effects with other scalar covariates can be specified

straightforwardly. Regularization is usually achieved by using only the first few eigenfunctions

explaining a fixed proportion of total variability (cf., Morris, 2015), for example 99%. Additionally,

a penalty matrix can be used for regularization. The penalty P j = diag(1/ζ1, . . . , 1/ζKj ) assumes

decreasing and P j = diag(1, . . . , 1) equal importance of the eigenfunctions. If the functional covariate

is observed on irregular or sparse grids, it is advantageous to use an FPC basis as it can be estimated

directly from the data even in this case (Yao et al., 2005a). Statistical inference is usually done

conditional on the eigendecomposition and thus neglects the variability induced by the estimation of

the eigenfunctions and FPC scores (Goldsmith et al., 2013).

Implicit assumptions and identifiability. Using an FPC basis, βj(s) is assumed to lie in the

space spanned by the first Kj eigenfunctions and the estimation depends on the choice of the discrete

tuning parameter Kj . For the spline representation, βj(s) is assumed to be smooth and to lie within

the space spanned by the spline basis. In practice, those assumptions are hard to check. If almost all

variation of the functional covariate can be explained by the first few eigenfunctions, the covariate

carries only little information. In this case, identifiability problems can occur for a spline-based

approach (Scheipl and Greven, 2016) and the estimation of βj(s) might be dominated by the

smoothness assumption. When using an FPCA basis, the estimation is dominated by the assumption

that βj(s) lies in the span of the first Kj eigenfunctions, with the estimate highly sensitive to the

quality of the estimates of ek(s) as well as to the choice of Kj . Higher-order eigenfunctions are

usually relatively wiggly and the shape of β̂j(s) can thus change strongly when increasing Kj (see,

e.g., Crainiceanu et al., 2009).

5.4 Estimation by gradient boosting

In this section we discuss the estimation of GAMLSS by a gradient boosting algorithm as introduced

by Mayr et al. (2012) and implemented in the R package gamboostLSS. We expand the algorithms by

effects (5.5) and (5.6) for functional covariates that are available in the FDboost package.
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Gradient boosting is a machine learning algorithm that aims at minimizing an expected loss

criterion along the steepest gradient descent (Friedman, 2001). The model is represented as the sum

of simple (penalized) regression models, which are called base-learners. In our case the base-learners

are the models for the effects h
(q)
j (x), as defined by (5.3) and (5.4). We use a component-wise gradient

boosting algorithm (see, e.g., Bühlmann and Hothorn, 2007), that iteratively fits each base-learner

to the negative gradient of the loss and only updates the best-fitting base-learner per step. Thus,

models for high-dimensional data settings with more covariates than observations can be estimated

and variable selection is done inherently, as base-learners that are never selected for the update are

excluded from the model.

Boosting minimizes the expected loss

ĥ = arg min
h

E ρ (Y,h(X)) ,

where h(X) = (h(1)(X), . . . , h(Q)(X))> and ρ : R×RQ → [0,∞) is the loss function. In practice, for

observed data (yi, xi), i = 1, . . . , N , the theoretical expectation is approximated by the sample mean,

yielding optimization of the empirical risk,

ĥ = arg min
h

1

N

N∑
i=1

wi ρ (yi,h(xi)) , (5.9)

where wi are sampling weights that can be used in resampling methods like cross-validation or boot-

strapping. To estimate a GAMLSS via boosting, the negative log-likelihood of the response distribu-

tion is used as loss function (Mayr et al., 2012), i.e., ρ (yi,h(xi)) = −l(ϑi, yi), with the log-likelihood l

depending on the vector of distribution parameters ϑi = (ϑ
(1)
i , . . . , ϑ

(Q)
i )>, with ϑ

(q)
i = g(q)−1(h(q)(xi)),

and the response yi. We expand the framework that Mayr et al. (2012) developed for boosting

GAMLSS by base-learners for signal regression terms, cf. equation (5.5), and interaction terms be-

tween scalar and functional covariates, cf. equation (5.6). In detail, the following boosting algorithm

is used:

Algorithm: Gradient boosting for GAMLSS with functional covariates

Step 1: Define the bases b
(q)
j (x, t), their penalties P

(q)
j (λ), j = 1, . . . , J (q), q = 1, . . . , Q, and the

weights wi, i = 1, . . . , N . Select a vector of step-lengths (ν(1), . . . , ν(Q))>, with ν(q) ∈ (0, 1), and

a vector of stopping iterations (m
(1)
stop, . . . ,m

(Q)
stop)>. Initialize the coefficients θ

(q)[0]
j .

Set the number of boosting iterations to zero, m = 0.

Step 2: (Iterations over the parameters of the response distribution, q = 1, . . . , Q)

(a) Set q = 1.



78 5. Signal regression models for location, scale and shape

(b) If m > m
(q)
stop go to step 2(g);

otherwise, compute the negative partial gradient of the empirical risk by plugging in the

current estimates ĥ
[m]

=
(
ĥ(1)[m], . . . , ĥ(Q)[m]

)>
, with ĥ(q)[m](xi) =

∑
j b

(q)
j (xi)θ

(q)[m]
j , as

u
(q)
i = − ∂

∂h(q)
ρ (yi,h(xi))

∣∣∣∣
h(xi)=ĥ

[m]
(xi)

.

(c) Fit the base-learners contained in h(q) for j = 1, . . . , J (q) to u
(q)
i :

γ̂j = arg min
γ∈RKj

N∑
i=1

wi

{
u

(q)
i − b

(q)
j (xi)

>γ
}2

+ γ>P
(q)
j (λ)γ,

with weights wi and penalty matrices P
(q)
j (λ).

(d) Select the best fitting base-learner, defined by the least squares criterion:

j? = arg min
j=1,...,J(q)

N∑
i=1

wi

{
u

(q)
i − b

(q)
j (xi)

>γ̂j

}2
.

(e) Update the corresponding coefficients of h(q)[m] to θ
(q)[m]
j? = θ

(q)[m]
j? + ν(q)γ̂j? .

(f) Set θ
(q)[m+1]
j = θ

(q)[m]
j , j = 1, . . . , J (q).

(g) Unless q = Q, increase q by one and go back to step 2(b).

Step 3: Unless m ≥ m(q)
stop for all q, increase m by one and go back to step 2.

Each component of the final model is a linear combination of base-learner fits ξ̂(q)(Yi|Xi = xi) =∑
j ĥ

(q)[m
(q)
stop]

j (xi). In order to get a fair model selection, we specify equal and rather low degrees

of freedom for all base-learners by using adequate values for the smoothing parameters λ
(q)
j (Kneib

et al., 2009; Hofner et al., 2011). Using additionally a small fixed number for the step-length, e.g.,

ν(q) = 0.1, for all q, the model complexity is controlled by the number of boosting iterations for

each distribution parameter. That means that the numbers of boosting iterations are used as the

only tuning parameters. The vector of stopping iterations is determined by resampling methods

like cross-validation or bootstrapping using the weights wi for the observations. Mayr et al. (2012)

distinguish between one-dimensional early stopping, that is m
(q)
stop ≡ mstop for q = 1 . . . , Q, and

multi-dimensional early stopping where the stopping iterations m
(q)
stop differ for q = 1 . . . , Q. Multi-

dimensional early stopping increases the computational effort, as the optimal stopping iterations are

searched on a Q-dimensional grid. In the following, we will use multi-dimensional early stopping as it

allows for different model complexities for each distribution parameter. Stopping the algorithm early

achieves shrinkage of the parameter effects and variable selection, as in each step only the best fitting

base-learner is updated.
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For low-dimensional data settings, i.e., “N > p”, and unpenalized estimation, the solution of the

boosting algorithm converges to the same solution as maximum likelihood estimation if the number of

boosting iterations goes to infinity for all distribution parameters. This can be shown using gradient

descent arguments (Rosset et al., 2004; Mayr et al., 2012).

5.5 Estimation based on penalized maximum likelihood

We review two estimation approaches that can be used to estimate GAMLSS by maximizing the

penalized likelihood. In contrast to component-wise boosting, where each effect is modeled in a

separate base-learner, for penalized likelihood estimation all effects of the linear predictors are es-

timated together using one likelihood. We first introduce some notation for this purpose. The

model coefficients θ
(q)
j , j = 1, . . . , J (q), for the qth distribution parameter are concatenated to the

vector θ(q), which are concatenated to the vector θ containing the model parameters of all linear

predictors. Analogously, the penalty matrix of all coefficients of the qth distribution parameter is

P (q)(λ) = blockdiag([P
(q)
j (λ)]j=1,...,J(q)), and the penalty matrix for the model coefficients of all lin-

ear predictors is P (λ) = blockdiag([P (q)(λ)]q=1,...,Q). The generalized inverse of the penalty matrix

is denoted by P (λ)−. We call the vector of all smoothing parameters λ = (λ
(1)
1 , . . . , λ

(Q)

J(Q))
>. For

fixed smoothing parameters λ, the model coefficients θ are estimated by maximizing the penalized

log-likelihood (see, e.g., Rigby and Stasinopoulos, 2005; Wood et al., 2015)

lp(θ) = l(ϑ, y)− 1

2
θ>P (λ)θ, (5.10)

where l(ϑ, y) =
∑N

i=1 log f(yi, ϑ
(1)
i , . . . , ϑ

(Q)
i ) is the log-likelihood of the data given the distribution

parameters and the distribution parameters ϑ depend on the model coefficients θ.

Generally, there are two different approaches to find the optimal smoothing parameters λ. The

first approach is to minimize a model prediction error, for example, a generalized Akaike information

criterion (GAIC) or a generalized cross-validation criterion (GCV). The second approach is to use

the random effects formulation, where the smoothness penalties can be seen as induced by improper

Gaussian priors on the model parameters θ, as θ ∼ N(0, P (λ)−). The smoothing parameters λ can

then be estimated by maximizing the marginal likelihood with respect to the smoothing parameters.

The marginal likelihood is obtained by integrating the model parameters θ out of the joint density of

the data and the model parameters (Patterson and Thompson, 1971; Wood et al., 2015),

Vr(λ) =

∫
exp [l(ϑ, y)] fλ(θ) dθ, (5.11)

where fλ(θ) is the density of the Gaussian prior N(0,P (λ)−). For the normal distribution, maximiz-

ing this marginal likelihood is equivalent to maximizing the restricted likelihood (REML). A common

approach for maximization is to approximate the integral by Laplace approximation, resulting in the

Laplace approximate marginal likelihood (LAML).
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5.5.1 The gamlss algorithm using backfitting

Rigby and Stasinopoulos (2005) first introduced the model class GAMLSS and proposed several

variants of a backfitting algorithm for estimation. They provide an implementation for many different

response distributions, which at the moment lacks the possibility to specify effects of functional

covariates. However, the implementation in R package gamlss allows to specify linear functional

effects (5.5) as proposed by Wood (2011) using the gamlss.add package to incorporate smooth terms

of the mgcv package.

In the fitting algorithm, iterative updates of the smoothing parameters λ and the model coeffi-

cients θ are computed. Estimation of the smoothing parameters λ is done by maximizing the marginal

likelihood or minimizing a model prediction error, e.g., GAIC or GCV, over λ; see Appendix A of their

paper for details. For fixed current smoothing parameters λ, the model coefficients θ are estimated

using one of two gamlss-algorithms, which are both based on Newton-Raphson or Fisher scoring

within a backfitting algorithm. Essentially, the algorithms cycle over all distribution parameters ϑ(q),

q = 1, . . . , Q, fitting the model coefficients of each distribution parameter in turn by backfitting con-

ditionally on the other currently fitted distribution parameters. The first gamlss-algorithm is the

RS-algorithm which is based on Rigby and Stasinopoulos (1996) using first and second derivatives

of the penalized log-likelihood with respect to the distribution parameters ϑ and is suitable for dis-

tributions with information orthogonal parameters, i.e. the cross-derivatives of the log-likelihood are

zero. This is the case, e.g., for the negative binomial, the (inverse) Gaussian and the gamma distri-

bution. The second gamlss-algorithm is the CG-algorithm which is a generalization of the algorithm

introduced by Cole and Green (1992) and uses first, second and cross-derivatives of the penalized

log-likelihood with respect to the distribution parameters ϑ. The CG-algorithm is computationally

more expensive than the RS-algorithm; see Appendix B of Rigby and Stasinopoulos (2005) for details

on both algorithms.

More recently, Rigby and Stasinopoulos (2014) proposed a method to estimate the smoothing

parameters λ within the RS- or CG-algorithm using the random effects formulation of penalized

smoothing. This so called local maximum likelihood estimation is computationally much faster than

the previous methods to compute optimal values for λ.

5.5.2 Laplace Approximate Marginal Likelihood with nested optimization

Wood et al. (2015) developed a general framework for regression with (non-)exponential family dis-

tributions, where GAMLSS are contained as a special case. The current implementation supports a

Gaussian location scale, a two-stage zero-inflated Poisson model and a multinomial logistic model.

Note that in the Gaussian location scale model the inverse standard deviation is modeled. Here it is

straightforward to use the linear functional effects proposed by Wood (2011) for modeling functional

covariates as both methods are implemented in R package mgcv.

The smoothing parameters λ and the model coefficients θ are optimized in a nested optimization

approach, with an outer Newton optimization to find λ as maximum of the marginal likelihood (5.11)

and with an inner optimization algorithm to find θ as maximum of the penalized log-likelihood (5.10).
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The integral in the marginal likelihood (5.11) is approximated by Laplace approximation resulting in

the LAML

V(λ) = lp(θ̂) +
1

2
log |P (λ)|+ −

1

2
log |H|+ Mp

2
log(2π),

where lp(θ̂) is the penalized log-likelihood at the maximizer θ̂, H is the negative Hessian of the penal-

ized log-likelihood, | · |+ denotes a generalized determinant (product of the non-zero eigenvalues) and

Mp is the number of zero-eigenvalues of P (λ). For details on the algorithm and stable computations

of the necessary components, especially the (generalized) determinant computations, see Wood et al.

(2015).

For model selection, a corrected AIC is derived by using an adequate approximation of the effective

degrees of freedom in the penalized model. Moreover, it is possible to use the term selection penalties

proposed by Marra and Wood (2011) to do model selection for smooth effects as part of the smoothing

parameter estimation.

5.6 Comparison of estimation methods

In Table 5.2 an overview on the characteristics of the three proposed estimation methods is given,

summarizing properties of the gradient boosting algorithm (Mayr et al., 2012), cf. Section 5.4, and

the two likelihood-based approaches, gamlss (Rigby and Stasinopoulos, 2005, 2014) and mgcv (Wood

et al., 2015), cf. Section 5.5.

For the response distribution, the gamlss and the boosting approach provide the same flexibility,

whereas the mgcv approach currently only has the possibility to specify three different distributions.

Regarding the modeling of functional covariates, the boosting approach is the most flexible, as it

allows to specify interaction effects between scalar and functional covariates. All three methods allow

for a large variety of covariate effects of scalar covariates, including, for example, smooth, spatial and

interaction terms. Using boosting, it is possible to estimate models in high-dimensional data settings

with many covariates, where maximum likelihood methods are infeasible. Using maximum likelihood-

based methods, inference is a byproduct of the mixed model framework, providing confidence intervals

and p-values. In the boosting context, inference can be based on bootstrapping or permutation tests

(Mayr et al., 2015). Comparing the computational speed, gamlss and mgcv are considerably faster

than boosting for small data settings, as boosting requires resampling to determine the optimal

number of boosting iterations. For many observations and especially for many covariate effects,

boosting scales better than the likelihood-based methods, as it fits each base-learner separately.

5.7 Model choice and diagnostics

In practical applications of GAMLSS one is faced with several decisions on model selection concerning

not only the choice of the response distribution but also the choice of the relevant covariates for each

distribution parameter. We will shortly discuss normalized quantile residuals (Dunn and Smyth,

1996) and global deviance (GD). These tools are particularly suited to different model selection tasks.
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Table 5.2: Comparison table for characteristics of the three proposed estimation methods for GAMLSS
with functional covariates: component-wise gradient boosting, penalized maximum likelihood-based
GAMLSS-algorithm using backfitting (gamlss) and using LAML (mgcv).

characteristic boosting gamlss mgcv

response distributions many many three1

effects of scalar covariates many many many
effects of functional covariates linear and linear2 linear2

interaction
types of spline bases P-splines many3 many3

built-in variable selection yes no4 no4

high-dimensional data, “N < p” yes no no
inference based on bootstrap mixed models/ mixed models/

empirical Bayes empirical Bayes
computational speed

for large N , p good poor fair
for small N , p fair fair good

1 Gaussian location scale, two-stage zero-inflated Poisson and multinomial logistic model.
2 Built-in implementation only for functional covariates with observation grids that imply integration weights
one, e.g., (s1, . . . , sR)> = (1, . . . , R)>; use x̃(s) = ∆(s)x(s) to estimate coefficient functions for covariates
observed on curve-specific or unevenly spaced grids.
3 E.g., P-splines, thin plate splines and adaptive smoothers.
4 Variable selection, e.g., based on information criteria possible.

Quantile residuals can be used as a graphical tool to check the data fit under a certain response

distribution. The GD can be used to measure how closely the model fits the data. Rigby and

Stasinopoulos (2005) and Wood et al. (2015) both discuss a generalized Akaike information criterion

(GAIC) which penalizes the effective degrees of freedom of the model and can be used to compare

non-nested and semi-parametric models. For the boosting approach, no reliable estimates for the

degrees of freedom are available. The GAIC and other information criteria are only comparable for

models that are estimated by the same estimation method and thus will not be used in the following.

Quantile residuals. Quantile residuals can be used to check the adequacy of the model and es-

pecially of the assumed response distribution. For continuous responses, quantile residuals are

defined as r̂i = Φ−1(vi), where Φ−1 is the inverse distribution function of the standard normal

distribution, and vi = F (yi|ϑ̂i). Here F is the distribution function of the assumed response distri-

bution and ϑ̂i are the predicted distribution parameters (ϑ̂
(1)
i , . . . , ϑ̂

(Q)
i )> for the ith observation.

For discrete integer valued responses, normalized randomized quantile residuals can be used (Dunn

and Smyth, 1996). In the special case of the normal distribution, the computation of the quantile

residuals can be simplified to r̂i = (yi − µ̂i)/σ̂i. If the distribution function F (·|ϑ̂i) that is predicted

by the model is close to the true distribution, the quantile residuals follow approximately a standard

normal distribution. This can be checked in quantile-quantile plots (QQ-plots).
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Global deviance. The fitted global deviance (GD) is defined as GD = −2l(ϑ̂, y), with

l(ϑ̂, y) =
∑

i l(ϑ̂i, yi), and measures how closely the model fits the data. Mayr et al. (2012)

propose to use the empirical risk for model evaluation which for GAMLSS is the negative log-

likelihood, −l(ϑ̂, y), and therefore is equivalent to the GD. To avoid over-fitting, we compute the

GD on test-data that were not used for the model fit. Thus, the GD can be used to compare models

fitted under different distributional assumptions, by different algorithms and using different linear

predictors.

5.8 Application to financial returns of the Commerzbank stock

In this section, we apply our model to the motivating time series of daily stock returns for Com-

merzbank shares as recorded by the XETRA electronic trading system of the German stock exchange.

The log-returns are defined as yi = log(pi1/pi0) ≈ (pi1−pi0)/pi0, where pi0 is the price at opening and

pi1 is the price at closing of day i. We use data from November 2008 to December 2010 (N = 527).

In addition to the price of the shares, our data also provide information about supply and demand,

i.e., the liquidity of the stock, over a trading day. The role of liquidity within the price formation is

a question of major interest in finance and economics (Amihud, 2002; Amihud et al., 2013).

Traditionally, stock returns have been modeled by pure autoregressive specifications which already

capture their major stylized facts: While being weakly serially correlated, their conditional variance is

strongly serially dependent. Moreover, the unconditional distribution is fat-tailed. The autoregressive

conditional heteroskedasticity (ARCH) model of Engle (1982) captures all these features. It is defined

as

yi = σiεi, with εi
iid∼ N(0, 1),

σ2
i = β0 +

p∑
j=1

βjy
2
i−j ,

where β0 > 0, βj ≥ 0, j = 1, . . . , p, and i is the time index. Hence, the distribution of yi con-

ditional on the p lagged returns is given by a normal distribution with mean zero and variance

β0 +
∑p

j=1 βjy
2
i−j , and the model is called (linear) ARCH(p). In the following, we avoid the aforemen-

tioned nonnegativity-constraints on βj by using a log-link. Additionally allowing for p1 autoregressive

(AR) effects in the conditional mean, we arrive at

yi ∼ N

α0 +

p1∑
j=1

αjyi−j , exp

β0 +

p2∑
j=1

βjy
2
i−j

 , (5.12)

which can be viewed as a generalized linear model for location and scale, with Gaussian response

distribution, identity link for the expectation and log-link for the variance.

At each point in time during a given trading day, the XETRA system records all outstanding limit

orders, i.e., offers and requests to sell or buy a certain number of shares at a specified price which
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are not immediately executed against a suitable order of the opposite market side. By construction,

prices of these offers (requests) are above (below) the current price, the mid-price, which is defined

as the mean of the best (i.e., lowest) offer and the best (i.e., highest) request. Our data set contains

for each trading day and both market sides the mean number of shares or volumes at a distance of

0, . . . , 200 Cents to the current market price. The mean over the trading day is computed based on

snapshots of the order book taken every 5 minutes during the trading hours (9am to 5:30pm). From

this information, functional measures of liquidity can be constructed (Härdle et al., 2012; Fuest and

Mittnik, 2015). Cumulating the volumes along the price axis–with increasing (decreasing) price on

the supply (demand) side–, one obtains non-decreasing curves: the cumulative volume in the market

as functions of the relative price. The relative price is standardized to s ∈ [0, 1]. See Figure 5.1 for

descriptive plots of the data.
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Figure 5.1: Descriptive plots of the data on stock returns. The open-to-close returns on the mid-quote for the
stocks of Commerzbank from November 2008 to December 2010 (left), the averaged cumulative liquidity curves
for the offered (middle) and requested (right) number of shares. The vertical line in the left plot indicates the
split into training and test data.

The cumulative volume curves can be viewed as measures of liquidity: Liquidity is high if the curves

are steep, and it is low if they are flat. However, the curves are nonlinear in general.

5.8.1 Model choice

The functional regression approach put forth in this chapter enables us to estimate the impact of

functional liquidity on the stock returns’ conditional location and scale parameters in a very general

way. We consider the normal and the t-distribution as possible response distributions in the GAMLSS

and use the methods highlighted in Section 5.7 to select models. For the model fit, we use the first

90% of the time series as training data, and keep the remaining 10% as test data to evaluate the

model fits computing the GD out-of-bag.
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Assuming normally distributed response, we specify the following model for the returns yi depend-

ing on lagged response variables and the two functional liquidities xi,ask and xi,bid, with i = 1, . . . , N :

yi|yi−1, . . . , yi−max(p1,p2), xi,ask, xi,bid ∼ N(µi, σ
2
i ),

µi = h(µ)(xi) = α0 +
∑

j∈{ask,bid}

∫
xij(s)αj(s) ds+

p1∑
j=1

αjyi−j ,

log σi = h(σ)(xi) = β0 +
∑

j∈{ask,bid}

∫
xij(s)βj(s) ds+

p2∑
j=1

βj log y2
i−j .

(5.13)

We use p1 = p2 = 10 lagged variables for the expectation and the standard deviation leaving us with

N = 527 − 10 = 517 observations. To obtain coefficients for the variance instead of the standard

deviation, the corresponding model equation is multiplied with two, as log σ2
i = 2 log σi. In R package

mgcv the parameterization of the model is slightly different from (5.13), as the scale parameter is

the inverse standard deviation τi = 1/σi which is modeled using log(1/τi − ε) as link function, where

ε is a small positive constant is used to prevent that the standard deviation tends to zero. We use

ε = 0.01. Reformulating the mgcv parameterization yields log(σi − ε) = h(σ)(xi) and thus a very

similar interpretation for all coefficients.

Model (5.13) nests the purely autoregressive location scale specification in equation (5.12) that is

common in the econometric literature. Results for the autoregressive parameters suggest that returns

exhibit only a very weak serial dependence, which is in line with the findings typically reported in the

literature. For the variance equation, the overwhelming majority of empirical studies uses the GARCH

(generalized ARCH) model of Bollerslev (1986) which includes just one lagged squared return, but

additionally σ2
i−1 as latent covariate and is called GARCH(1,1). As σ2

i−1 cannot be observed, this

approach is not nested in our model class. However, it can be shown that GARCH(1,1) can be

represented as an ARCH(∞) process with a certain decay of the autoregressive parameters. As the

boosting algorithm employed in our approach implicitly selects relevant covariates, we do not have

to impose such a restrictive structural assumption. Instead, we allow for a generous number of lags

(10 lags), finding that only the first few (around 5 lags, cf. Figure 5.3) are non-zero.

As a more heavy-tailed alternative to the normal distribution we specify a three parameter Stu-

dent’s t-distribution, Y ∼ t(µ, σ, df), with location parameter µ, scale parameter σ and degrees of

freedom df (Lange et al., 1989). This implies E(Y ) = µ, for df > 1, and sd(Y ) = σ
√

df/(df− 2), for

df > 2. We specify the linear predictors for the parameters µ and σ as in model (5.13) and model df

as constant.

The scalar effects of the lagged responses are estimated as linear effects without penalty. The

effects of the functional covariates xij(s) are specified as in (5.5) using 20 cubic B-splines with first

order difference penalty matrices, resulting in P-splines (Eilers and Marx, 1996) for αj(s), βj(s).

Alternatively we use the FPC basis functions to represent the functional covariates and functional

coefficients, yielding a regression onto the scores as in equation (5.8). We choose the first 3 FPCs as

those explain 99% of the variability in the bid- and the ask-curves.
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For the estimation by boosting, we use 100-fold block-wise bootstrapping (Carlstein, 1986) with

block length 20 to find the optimal stopping iterations. We search on a two-dimensional grid, allowing

different numbers of boosting iterations for the distribution parameters. As the third distribution

parameter of the t-distribution, df, is modeled as constant, we only use a two-dimensional grid,

setting the number of iterations for df to the maximum value of the grid. For the normal distribution,

the step-lengths are fixed at (0.1, 0.01)>, for the t-distribution at (0.1, 0.01, 0.1)>, as the boosting

algorithm was found to run more stably with smaller step-lengths for variance parameters. For

the likelihood-based estimation methods, we use the same design and penalty matrices, but the

smoothing parameters λ are estimated by a REML or LAML criterion.

Quantile residuals. As the QQ-plots look similar for all three estimation methods we here

only show them for one method. In Figure 5.2 the QQ-plots of the quantile residuals for the models

assuming normally and t-distributed response fitted by gamlss are given. As covariates the lagged

response values or the lagged response values and the liquidity curves are used. The QQ-plots

sc

●

●

●

●●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●
●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●●
●

●

●●

●●

●●

●
●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●●

●
●

●

●
●

●
●

●
●●

●

●●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●●●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●●

●
●●

●

●●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

sc+fun

●

●

●
●

●

●●●●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●●
●●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●
●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●

●
●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●●

●
●●

●

●●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

−4 −2 0 2 4

−
4

−
2

0
2

4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 5.2: Model choice for the application on stock returns. QQ-plots of the quantile residuals in the
GAMLSS with scalar variables (sc, top row) or with scalar and functional variables (sc+fun, bottom row)
fitted by P-splines; assuming normally distributed response (left column) or Students t-distribution for the
response (right column) for models estimated by the gamlss algorithm. The diagonal is marked by a gray line.

indicate that all models fit the data reasonably well for residuals in [−2, 2]. More extreme residuals
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are better captured by the t- than by the normal distribution. The QQ-plot for the normal model

with lagged response values as covariates is s-shaped indicating that the sample quantiles are heavier

tailed than the true quantiles. For the model using in addition the liquidity curves, the normal

distribution seems to be adequate. Thus, it seems that the functional covariates can better explain

the extreme values such that the heavy tails of the t-distribution are not necessary.

As we analyze time series data we check the squared residuals for serial correlation by looking at

the estimated autocorrelation function (ACF); see Appendix D.2, Figure D.1. For lags greater one,

the autocorrelation is close to zero.

Comparison by global deviance. We compare the GD, standardized by the number of observa-

tions in the test data, Ntest, for models fitted with the three estimation methods and assuming

normally or t-distributed response, see Table 5.3. To check for the benefit of using the functional

liquidity curves as covariates, we compute models using only the lagged response values for compar-

ison. We compute the GD on the last 10% of the time series using two different procedures. We

do one-step predictions, refitting the model on the data up to the time-point i − 1 and predict the

distribution parameters ϑ̂i using this model. Alternatively we do the predictions using the model

on the first 90% of the data. The GD of the models fitted by mgcv and gamlss is very similar and

Table 5.3: Results for the application on stock returns. Goodness of the model fit measured by the general
deviance (GD) of the models assuming normal or t-distribution; estimated by boosting, gamlss and mgcv;
using the lagged response values as covariates (sc), or the lagged response values and the functional liquidity
curves (sc+fun). The functional terms are estimated using P-splines (P) or an FPCA-basis (FPCA). The GD
is computed on refitted models up to the day that should be predicted (one-step) or on the model using the
first 90% of the data.

GD/Ntest (one-step) GD/Ntest

sc sc+fun sc sc+fun
distribution estimation - P FPCA - P FPCA

normal boosting 3.24 3.16 3.10 3.30 3.27 3.19
gamlss 3.20 2.98 3.09 3.26 3.15 3.19
mgcv 3.20 2.97 3.09 3.26 3.14 3.19

t boosting 3.46 3.39 3.35 3.06 3.11 3.08
gamlss 3.09 2.95 3.06 3.15 3.11 3.16

mostly smaller than that for the models fitted by boosting. For the GD computed on the models

for the first 90% of the data, the models assuming t-distribution outperform those with normal

distribution and there is no or not much additional advantage of the models using the functional

covariates in addition to the scalar lagged covariate effects. Using the functional liquidity terms in

addition to the lagged scalar covariates improves the one-step GD and to a smaller extent the GD,

especially for models assuming normally distributed response. The models using P-splines for the

functional effects have smaller GD than those using FPCA when fitted with mgcv or gamlss.
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5.8.2 Results

The fitted coefficients for the models assuming normal or t-distribution are quite similar. We show the

estimated coefficients for the normal location scale model with functional liquidity effects estimated

using P-splines, and refer to Appendix D.2 for further results. For the corresponding model assuming

t-distributed response, the predicted df are exp(γ̂0) ≈ 8.2, with 95% confidence interval [5.0, 13.3]

for gamlss and exp(γ̂0) ≈ 3.8 with 95% bootstrap confidence interval [3.3, 7.7] for boosting. The

estimated coefficients for the normal location scale model (5.13) fitted by boosting and by mgcv can

be seen in Figure 5.3. As the estimates by gamlss and mgcv are very similar we only show the results

for one of the likelihood-based methods. The parameter estimates of the autoregressive parts in both

the expectation and standard deviation equation imply stationary dynamics, that means the time

series induced by the lagged scalar effects are stationary. For boosting, the estimated coefficients on
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Figure 5.3: Estimated Gaussian location scale model for the stock returns. Estimated coefficients for µi (top
panel) and σi (bottom panel) in the GAMLSS with the two liquidities as functional covariates and p1 = p2 = 10

lag variables. For the intercept of the standard deviation, we plot β̂0−1 to better fit the intercept into the range
of the lag effects. The boosting estimates on the 100 block-bootstrap samples are plotted as partly transparent
lines or circles and the point-wise 2.5, 50, and 97.5% quantiles as dashed orange lines. The boosting estimates
are plotted as solid orange line. The estimates of mgcv with point-wise 95% confidence bands are plotted in
dark blue. The zero-line is marked with a light-blue line.

the 100 bootstrap samples are depicted together with point-wise 2.5, 50, and 97.5% quantiles. For the
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mgcv-approach, the estimated coefficient functions are given with point-wise 95% confidence intervals.

The estimated coefficients for the standard deviation are quite similar. Regarding the effects on the

expectation, the size and smoothness of the estimated coefficients obtained by mgcv and by boosting

differs considerably, as the coefficients obtained by boosting are shrunken towards zero.

In a simulation study, see Section 5.9 and Appendix D.3, we observe that depending on how much

information the functional covariates contain, the functional coefficients can be estimated with more

or less accuracy. The functional covariates in this application contain relatively little information

as in an FPCA more than 99% of the variance can be explained by the first three FPCs and the

explained variance per principal component is strongly decreasing.

When using only a small number of basis functions in the specification of the functional effects

in mgcv (e.g., Kj = 10 instead of 20) and using the shrinkage penalty of Marra and Wood (2011),

mgcv yields similar estimates like boosting (with Kj = 10 or 20); see Figure D.2 in Appendix D.2.

When the number of boosting iterations is increased, the boosting-estimates become similar to those

obtained by mgcv (not shown). Thus, the different results are mainly due to the different selection

and estimation of hyper-parameters that imply different choices for the effective degrees of freedom

for the smooth effects.

The effect size depends on the underlying modeling assumptions and we will only interpret the

direction of the effects (positive or negative), as those are estimated stably. These directions of the

effects remain, even when fitting the models using FPCA-basis functions, although the shape of the

functional effects changes, as the effects are assumed to lie in the space spanned by the FPCA-

basis functions. This implies for this application that all functional effects start almost in zero

(cf. Figure D.3).

Looking at the estimated functional coefficients in Figure 5.3, the absolute values of the estimated

coefficient functions are generally higher for small s, which is sensible, as the bid and ask curves for

small s describe the liquidity close to the mid-price. For the effects on the expectation, the estimates

of α̂ask(s) are positive and α̂bid(s) are negative near the mid-price. Thus, higher liquidity of the ask

side and lower liquidity of the bid side tend to be associated with an increase of the expected returns.

The lagged response values seem to have no influence on the expectation, as α̂j is virtually always

zero for the boosting estimation, and close to zero for the mgcv-estimation with confidence bands

containing zero. Looking at the model for the standard deviation, the estimated coefficient functions

for ask, β̂ask(s), are mostly negative. This means that higher liquidity leads to lower variances, and

lower liquidity leads to higher variances. The estimated coefficients for the bid curves, β̂bid(s), are

quite close to zero. The lagged squared response values seem to have an influence for close time-points,

as many β̂j are greater zero for the first five lags.

5.9 Simulation studies

In the following, we present a simulation study using the observed functional covariates of the appli-

cation and coefficient functions resembling the estimated ones. Then we comment on the results of a

more general simulation study comparing the estimation methods systematically in different settings.
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5.9.1 Simulation study for the application on stock returns

To check the obtained results in the application we conduct a small simulation study using the

functional covariates from the real data set to simulate response values using coefficients that are

similar to the estimated ones. Then we fit the normal location scale model in the same way as described

above and compare the estimated coefficients with the true coefficients that were used for simulating

the response, see Figure 5.4. The results of mgcv and gamlss are again very similar. Generally
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Figure 5.4: Estimated Gaussian location scale model for the simulation based on the covariates of the stock
returns data. Estimated coefficients for µi (top panel) and σi (bottom panel) in the GAMLSS with the two
liquidities as functional covariates and p1 = p2 = 10 lag variables for simulated response observations. The true
underlying coefficients are plotted as green lines. For the intercept of the standard deviation, we plot β̂0 − 1
to better fit the intercept into the range of the lag effects. The boosting estimates on the 100 block-bootstrap
samples are plotted as partly transparent lines or circles and the point-wise 2.5, 50, and 97.5% quantiles as
dashed orange lines. The boosting estimates are plotted as solid orange line. The estimates of mgcv with
point-wise 95% confidence bands are plotted in dark blue. The zero-line is marked with a light-blue line.

the functional coefficients capture the form of the true coefficients, but they are shrunken towards

zero for both estimation methods, with boosting shrinking more strongly. Especially the very high

coefficient function for small relative price for the bid liquidity is underestimated, as the functional

observations contain only very little information for small s due to all curves starting almost in zero.

This illustrates that in this particular case of little information content in the functional covariates,

while the model is still (just) identifiable, the smoothness assumption encoded in the penalties and
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the early stopping, which leads to a shrinkage effect, still strongly influences the estimates. The

strength of this effect differs between the two estimation approaches, but is in the same direction.

For our application, this implies that the true effects might be underestimated, but that the sign of

the effects should be interpretable as we assumed.

5.9.2 General simulation study

The aim of the simulation study is to check and compare the model fits of the different implementa-

tions systematically. Mayr et al. (2012) conduct a simulation study for boosting GAMLSS with scalar

covariates. In Wood et al. (2015) the performance of mgcv and gamlss is compared for some settings

with scalar covariates. We thus focus on the estimation of effects of functional covariates. For the

generation of functional covariates, we use different processes resulting in functional covariates con-

taining different amounts of information. Comparing the estimates of the functional effects over those

settings shows that the data generating process of the functional covariates strongly influences the

estimation accuracy of the functional effects. This has already been discussed in Scheipl and Greven

(2016) for mean models. On the other hand we vary the complexity of the functional coefficients from

zero-coefficients over almost linear to u-shaped coefficient functions and functions with a steep bend.

With growing complexity of the coefficient functions the estimates tend to get worse. Generally one

can observe in the normal location scale model that the coefficient estimates for the expectation are

better than those for the standard deviation.

In the simulation study the most difficult data setting, i.e. the one with the least information

in the covariates, best reflects the data situation in the application on stock returns. In this case

the coefficient estimates often underestimate the absolute value of the coefficients. For less patho-

logical data situations, the estimates are usually close to the true functions and all three estimation

approaches yield very similar estimates and predictions. See Appendix D.3 for details on the data

generation and the results of this simulation study.

5.10 Discussion

In this chapter, we discuss the extension of scalar-on-function regression to GAMLSS. The flexibility

of the approach allows to model many different response distributions with parameter-specific lin-

ear predictors, containing effects of functional and scalar covariates. The two proposed estimation

methods based on boosting and on penalized likelihood are beneficial in different data settings. The

component-wise gradient boosting algorithm can be used in high-dimensional data settings and for

large data sets. The likelihood-based methods provide inference based on mixed models and can be

computed faster for small data sets.

We believe that the combination of scalar-on-function regression and GAMLSS is an important

extension to functional regression models with many possible applications in different fields. In par-

ticular, scalar-on-function models for zero-inflated or over-dispersed count data as well as bounded

continuous response distributions can be fitted within the GAMLSS framework. In contrast to quan-
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tile regression models with functional covariates (e.g., Ferraty et al., 2005; Cardot et al., 2005; Chen

and Müller, 2012a) GAMLSS provide coherent interpretable models for all distribution parameters,

prevent quantile crossing and allow for simultaneous inference at the price of assuming a particular

response distribution.

In future research, we will consider GAMLSS for functional responses with scalar and/or functional

covariates, with the aim of extending the flexible functional additive mixed model framework of Scheipl

et al. (2015) and Chapters 3 and 4, estimated by penalized likelihood and boosting, respectively, to

simultaneous models for several response distribution parameters.
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Chapter 6

On the practical use of the R package

FDboost

Software

For this chapter, the analyses were conducted in R version 3.2.3 (R Core Team, 2015). We used

FDboost 0.2-0 (Brockhaus and Rügamer, 2016), mboost 2.6-0 (Hothorn et al., 2016) and gamboostLSS

1.2-1 (Hofner et al., 2015b). The Canadian weather data were taken from R package fda 2.4.4 (Ramsay

et al., 2014).

6.1 Introduction

The aim of functional data analysis (FDA) is to analyze data that has a functional nature. The

field was popularized by Ramsay and Silverman (2005). Due to technical advances more and more

functional data are observed. Such data can be found in many scientific fields like demography, biology,

medicine, meteorology and economics (see, e.g., Ullah and Finch, 2013). We deal with functional data

that are curves observed over an interval on R. Examples for such data are growth curves over time

or spectrometric measurements over a spectrum of wavelengths. Regression models are a versatile

tool for data analysis and various models have been proposed for regression with functional variables;

see Morris (2015) for a recent review of functional regression models. One can distinguish between

three different types of functional regression models depending on where functional variables enter the

model: scalar-on-function regression means regression with scalar response and functional covariates;

function-on-scalar regression denotes models with functional response and scalar covariates; and the

term function-on-function regression is used when both response and covariates are functional. We

propose a generic framework for regression with functional response and/or functional covariates

(see Chapters 2, 3 and 4). In this framework, many types of covariate effects are possible including

linear and non-linear effects of scalar covariates as well as linear effects of functional covariates and

interaction effects. Furthermore, it is possible to combine all those effects within one model. The

modeled feature of the conditional response distribution can be chosen flexibly. The framework
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includes linear models (LMs), generalized linear models (GLMs), as well as quantile and expectile

regression. Furthermore, generalized additive models for location, scale and shape (GAMLSS, Rigby

and Stasinopoulos, 2005) can be fitted. GAMLSS can model all distribution parameters of the

conditional response distribution simultaneously depending on covariates. In Chapter 5 we discuss

GAMLSS with scalar response and functional covariates.

For fitting, a suitable loss function whose population minimizer corresponds to the modeled charac-

teristic of the response is defined and optimized. For mean regression, for instance, the corresponding

loss is the squared error loss. We conduct the fitting by a component-wise gradient boosting algo-

rithm (Bühlmann and Hothorn, 2007). Boosting improves the model fit by iteratively combining

simple models and can be seen as a method for gradient descent. Boosting can estimate models in

high-dimensional data settings and inherently does variable selection.

Flexible regression models for functional response have been proposed in a mixed models frame-

work (Ivanescu et al., 2015; Scheipl et al., 2016) and in a Bayesian context (Meyer et al., 2015). They

allow for a variety of covariate effects including functional terms. But for the modeled feature of the

conditional response distribution, they are restricted to mean regression.

In this chapter, we present the R package FDboost, which is designed to fit a great variety of func-

tional regression models by boosting. FDboost builds on the mboost package for statistical boosting.

Thus, in the back-end we rely on a well-tested and efficient implementation. FDboost provides a com-

prehensive implementation of the most important methods for boosting functional regression models.

In particular, this package makes it possible to conveniently fit models with functional response. Var-

ious base-learners that model effects of functional covariates are implemented. Furthermore, FDboost

contains functions for tuning models and displaying results, which are suited to regression with func-

tional variables. We illustrate the practical use of FDboost by fitting various models to the Canadian

weather data (Ramsay and Silverman, 2005). As the data are publicly available in the R package fda

the analyses are fully reproducible.

The remainder of the chapter is structured as follows: We shortly review the generic functional

regression model (Section 6.2) and the boosting algorithm that is used for model fitting (Section 6.3).

Then, we introduce the Canadian weather data, which we use as case study throughout this chapter

(Section 6.4). In Section 6.5, we give details on the infrastructure of FDboost. We discuss the model

setup including the modeled characteristic of the response distribution and possible covariate effects.

Then we give details on model tuning and how to extract and display the results. The chapter

concludes with a discussion in Section 6.6.

6.2 The generic functional regression model

First, we introduce some notation. We denote the functional response by Y (t), where t is the eval-

uation point at which the function is observed. We assume that t ∈ T , where T is a real-valued

interval [T1, T2]. For scalar response, we set T1 = T2, such that we only have one single observation

point. The covariate set X can contain both scalar and functional variables. We denote scalar co-

variates by Z and functional covariates by X(s), with s ∈ S = [S1, S2] and S1, S2 ∈ R. We assume
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to observe data (yi(t), xi), for i = 1, . . . , N cases. The response can be observed on one common

grid or on curve-specific grids. For responses observed on one common grid, we write yi(tg), with

tg ∈ (t1, . . . , tG)>. For curve-specific evaluation points, the observations are denoted by yi(tig), with

tig ∈ (ti1, . . . , tiGi)
>.

For functional response Y (t) and covariates X, the generic model defined in (2.1) can be written

explicitly as a function of t:

ξ(Y |X = x)(t) = h(x)(t) =
J∑
j=1

hj(x)(t), (6.1)

where ξ is the transformation function, h(x)(t) is the linear predictor and hj(x)(t) are the covariate

effects. The transformation function determines which characteristic of the response distribution is

modeled. It can be, for instance, the expectation, the median or a quantile. The transformation

function can be a composed function, e.g., composing the expectation with a link function to form a

GLM. Each effect hj(x)(t) can depend on one or several covariates in x. Possible effects include linear

and non-linear effects of scalar covariates as well as linear effects of functional covariates. Moreover,

group-specific effects and interaction effects between scalar and functional variables are possible. The

effects hj(x)(t) are linearized by using a basis representation:

hj(x)(t) = bjY (x, t)>θj , j = 1, . . . , J, (6.2)

where the basis bjY (x, t) ∈ RKjY depends on covariates x and the observation-point of the response t.

θj ∈ RKjY is the corresponding coefficient vector that has to be estimated. We represent effect (6.2)

by the row tensor product � of two marginal bases (Scheipl et al., 2015, Chapter 4):

hj(xi)(tig) =
(
bj(xi, tig)

> � bY (tig)
>)θj , (6.3)

where bj(xi, tig) ∈ RKj and bY (tig) ∈ RKY , such that KjY = KjKY . For many covariate effects, the

first basis simplifies to bj(xi) as it only depends on xi and not on tig. If the first basis only depends on

the covariates xi and the second basis only depends on the observation point tg, we use the following

representation (Chapter 3)

hj(xi)(ti) =
(
bj(xi)

> ⊗ bY (tg)
>)θj , (6.4)

that computes the design matrix as the Kronecker product ⊗ of the two marginal bases. Note that

this representation is only possible for responses observed on one common grid, as otherwise bY (tg)

depends on the curve-specific grid points tig. If the effect can be represented as in (6.4) it fits into

the framework of linear array models (Currie et al., 2006). The representation as an array model has

computational advantages as it saves time and memory. In Chapter 3 array models are discussed in

the context of functional regression. For more details on the representation of effects as a row tensor

product basis and as a Kronecker product basis, we refer to Section 2.2.
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The effects (6.3) and (6.4) are regularized by a Ridge-type penalty term θ>j P jY θj . The penalty

matrix can be constructed as (Wood, 2006, Sec. 4.1.8)

P jY = λj(P j ⊗ IKY
) + λY (IKj ⊗ P Y ), (6.5)

where P j is a suitable penalty for bj and P Y is a suitable penalty for bY . The non-negative smoothing

parameters λj and λY determine the degree of smoothing in each direction. The anisotropic penalty

in (6.5) can be simplified to an isotropic penalty depending on only one smoothing parameter λj ≥ 0:

P jY = λj(P j ⊗ IKY
+ IKj ⊗ P Y ). (6.6)

In this simplified penalty only one instead of two smoothing parameters has to be estimated. If the

marginal penalty P j = 0 in penalty (6.6) one gets a penalty that only penalizes the marginal basis

in t direction:

P jY = λj(IKj ⊗ P Y ). (6.7)

6.3 Gradient boosting

Boosting originates in machine learning and aims at combining many weak learners to form a single

strong learner for classification (e.g., Friedman et al., 2000; Schapire and Freund, 2012). Weak learners

are only weakly correlated to the response and thus only slightly better than random guessing. A

strong learner, on the other hand, is highly correlated with the response and predicts very well. In

the boosting context, the weak learners are called base-learners. Boosting was originally designed for

binary classification problems as was extended in various directions (Mayr et al., 2014b). Nowadays

it is also used to estimate statistical models (Mayr et al., 2014a). Gradient boosting minimizes the

expected loss via steepest gradient descent in a step-wise procedure. In each boosting step, each

base-learner is fitted separately to the negative gradient and only the best fitting base-learner is

selected for the model update; hence the term ’component-wise’. For the selected base-learner, only

a small proportion of the fit is added to the current linear predictor. This proportion is controlled

by the step-length ν. A typical choice is ν = 0.1 (e.g., Bühlmann and Hothorn, 2007). Usually the

algorithm is stopped before convergence. Stopping early leads to regularized effect estimates and

variable selection as base-learners that are never chosen for the update are excluded from the model.

Furthermore, the regularization leads to more stable predictions. The optimal stopping iteration

can be determined by resampling methods like cross-validation, sub-sampling or bootstrapping. For

each fold, the empirical out-of-bag risk is computed and the stopping iteration that yields the lowest

empirical risk is chosen. As resampling must be conducted on the level of independent observations,

the resampling must be done on the level of curves for functional response.

In order to obtain a fair selection of base-learners, the same degrees of freedom (df) should be

specified for each base-learner. It is recommended to use a rather small number of df for all base-

learners to work with weak learners (Kneib et al., 2009; Hofner et al., 2011). The number of df that
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can be specified for a base-learner are bounded: the maximal number of df is the number of columns

of the design matrix. For rank-deficient penalties, the minimal possible number of df is the rank of

the null space of the penalty. Consider P-splines (Eilers and Marx, 1996) as an example. For dth

order difference penalty, the (d − 1)th order polynomial remains without penalization. Thus, for a

P-spline base-learner with dth order difference penalty, the minimal possible df is d− 1.

To adapt boosting to functional response, we compute the loss at each point t and integrate

it over the domain of the response T (Chapter 3). To obtain identifiable models, it is necessary

to implement base-learners with identifiability constraints that are suited for functional response.

Furthermore, base-learners to model the effects of functional covariates are needed.

6.4 Case study: Canadian weather data

We use the Canadian weather data (Ramsay and Silverman, 2005), which are publicly available in the

R package fda. The data contain the precipitation and temperature curves for 35 Canadian weather

stations averaged per day for the years 1960 to 1994. As the data is averaged over the course of several

years, we model cyclic effects over the course of the year that assume smoothness between January

1 and December 31. We will use the common logarithm of the precipitation as response variable.

As potential covariates, we consider the averaged yearly precipitation curves and the climatic zones

(factor with four categories: Arctic, Atlantic, Continental and Pacific). In Chapter 3.6.3, we use the

Canadian weather data on a monthly instead of daily basis.

Case study: Canadian weather data

We load the dataset into the working directory and create a list that contains all data that we need
for the model fit: the average daily log-precipitation and the average daily temperature at the 35
weather stations (35 × 365 matrices); the mean yearly log-precipitation, the region and the place
of each weather station (vectors of length 35); the time-variable giving the evaluation points of the
functional response (day, vector of length 365) and the variable giving the evaluation points of the
functional covariate temperature (day s, vector of length 365). We center the functional covariate
’temperature’ at each evaluation point. That means we center the temperature per day.

## load the data

data("CanadianWeather", package = "fda")

## use the data on a daily basis

canada <- with(CanadianWeather,

list(temp = t(dailyAv[ , , "Temperature.C"]), ## temperature

l10precip = t(dailyAv[ , , "log10precip"]), ## log-precipitation

## mean yearly log-precipitation

l10precip_mean = log10(colMeans(dailyAv[ , , "Precipitation.mm"])),

region = factor(region),

place = factor(place),

day = 1:365, ## corresponds to t
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day_s = 1:365)) ## corresponds to s

## center the temperature curves per day

canada$tempRaw <- canada$temp

canada$temp <- scale(canada$temp, scale = FALSE)

rownames(canada$temp) <- NULL ## delete the row names

For a descriptive plot of the data on a monthly basis, see Figure 3.7. �

The case study is continued (ctd.) during this chapter to illustrate model fitting, parameter

tuning and display of results using the package FDboost. The end of a paragraph that is part of the

case study is marked by a black diamond �.

6.5 The package FDboost

Fitting functional regression models via boosting is implemented in the R package FDboost. The pack-
age uses the fitting algorithm and other infrastructure from the R package mboost. All base-learners
and distribution families that are implemented in mboost can be used within FDboost. Furthermore,
many naming conventions and methods in FDboost are implemented in analogy to mboost. Thus,
we recommend users of FDboost to first familiarize themselves with mboost. A tutorial for mboost
can be found in Hofner et al. (2014). The main fitting function to estimate models (6.1) is called
FDboost(). The interface of FDboost() is as follows:1

FDboost(formula, timeformula, id = NULL,

numInt = "equal", data, offset = NULL, ...)

The set-up of the covariate effects follows (6.3) and (6.4) by separating the effects into two marginal

parts. The marginal effects bj , j = 1, . . . , J , are represented in the formula as y ∼ base-learner 1 +

base-learner 2 + . . . + base-learner J . The marginal effect bY is represented in the timeformula,

which has the form ∼ base-learner for t. Internally, the base-learners specified in formula are

combined with the base-learner specified in timeformula. When it is possible, the representation

using the Kronecker product (6.4) of the two marginal effects is used. Otherwise, the row tensor

product (6.3) representation is used. The penalty matrix is constructed as in 6.6. Per default, the

response is expected to be a matrix. In this case id = NULL. For a response observed on curve-specific

grids, id specifies for each observed value to which curve it belongs; see Section 6.5.1 below for details.

The data is provided in the data argument as a data.frame or a list. The object specified in data has

to contain the response, its evaluation points and all covariates. The functional covariates must be

represented as <number of curves> by <number of evaluation points> matrices and their evaluation

points have to be part of the data object. Via argument numInt, the numerical integration scheme

for computing the integral over the loss is provided. Per default, numInt = "equal", and thus all

1Note that for the presentation of functions we restrict ourselves to the most important function arguments. For the
full list of arguments, we refer to the corresponding manuals.
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integration weights are set to one; for numInt = "Riemann" Riemann sums are used. Per default a

smooth offset varying over t is computed prior to the model fit. For offset = "scalar", a scalar

offset is computed. This corresponds to one global offset for all t. For more details and the full list

of arguments, see the manual of FDboost().

In the dots-argument ’...’, further arguments passed to mboost() and mboost fit() can be speci-

fied; see the manual of mboost() for details. An important argument is family which determines the

loss- and link-function for the model that is to be fitted. The default is family = Gaussian(), which

corresponds to mean regression. Thus, the squared error loss is optimized and as link function the

identity is used. Via the argument control the number of boosting iterations and the step-length ν

of the boosting algorithm can be specified.

6.5.1 Specification of functional and scalar response

If a functional variable is observed on one common grid, its observations can be represented by a

matrix. In FDboost, such functional variables have to be supplied as <number of curves> by <number

of evaluation points> matrices. That is, a functional response yi(tg), with i = 1, . . . , N curves and

g = 1, . . . , G evaluation points, is stored in a N ×G matrix with cases in rows and evaluation points

in columns. This corresponds to a data representation in wide format. The t variable must be given

as vector (t1, . . . , tG)>.

For the functional response, curve-specific observation grids are possible; that means that the

ith response curve is observed at evaluation points (tig, . . . , tiGi) that are specific for curve i. In

this case, the response is supplied as the vector (y1(t11), . . . , yN (tNGN
))>. This vector has length

n =
∑N

i=1Gi. The t variable contains all evaluation points (t11, . . . , tNGN
)>. The argument id

contains the information which observation belongs to which response curve by a vector (1, . . . , N)>.

The argument id must be supplied as a left-sided formula id = ∼ idvariable. For responses observed

on curve-specific grids, three pieces of information must be supplied: the values of the response, the

evaluation points and the number of the curve to which the observation belongs. This corresponds

to a data representation in long format.

A scalar response is supplied as vector (y1, . . . , yN ). The timeformula, which is used to expand

the effects along the domain of the response, is set to NULL for scalar response.

Case study (ctd.): Canadian weather data

In the following, we give an example for a model fit with the response in wide format and with
response in long format. We fit an intercept model by a formula y ∼ 1 and a timeformula of the
form ∼ bbs(t). As the precipitation is averaged over several years, the precipitation is expected to
be similar for January 1 and December 31. We thus fit a cyclic effect over t.

library(FDboost) ## load package

## fit intercept model with response matrix, i.e. response observed on a common grid

m0 <- FDboost(l10precip ~ 1,
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timeformula = ~ bbs(day, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

offset = "scalar", data = canada)

To fit a model with response in long format, we first have to bring the data into the corresponding
format. The dataset canada l contains the response in long format. In the dataset canada i, 30% of
the observations are set to missing inducing curve-specific grids of evaluation points.

## response in long-format with potentially curve-specific grids

canada_l <- canada

canada_l$l10precip <- as.vector(t(canada$l10precip)) ## long vector for response

canada_l$id <- rep(1:35, each = 365) ## number of curve i

canada_l$day <- rep(1:365, times = 35) ## evaluation points t

## induce missing values such that the response is observed on curve-specific grids

set.seed(123)

n <- length(canada_l$day)

missing <- sample(1:n, size = 0.3 * n) ## 30% missing

canada_i <- canada_l

canada_i$l10precip <- canada_l$l10precip[!1:n %in% missing]

canada_i$id <- canada_l$id[! 1:n %in% missing]

canada_i$day <- canada_l$day[! 1:n %in% missing]

## fit intercept model for response in long format

m0_l <- FDboost(l10precip ~ 1,

timeformula = ~ bbs(day, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

id = ~ id, offset = "scalar", data = canada_l) ## or use canada_i

As scalar response, we use the logarithm of the mean annual precipitation.

## fit intercept model for scalar response

m0 <- FDboost(l10precip_mean ~ 1, timeformula = NULL, offset = "scalar", data = canada)

For scalar response, the pure intercept model corresponds to computing the mean of the response. �

6.5.2 Potential covariate effects: base-learners

The effects in covariate direction are specified in the formula argument. The effect in t direction is

specified in timeformula. FDboost() combines the base-learners specified in formula with the base-

learner specified in timeformula. The effects are represented as Kronecker product of two marginal

bases, see Chapter 3, or as row tensor product, see Scheipl et al. (2015) and Chapter 4. For a

detailed comparison between the row tensor and the Kronecker product representation, we refer to

Chapter 2. However, for the practical use of FDboost(), the user does not need to worry whether the

effect is computed as row tensor product or as Kronecker product of two marginal bases, as FDboost()

automatically uses the appropriate operator.
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Effects in the formula that are combined with the timeformula

Many covariate effects can be separated into two marginal bases, such that the first basis only depends

on covariates and the second basis only depends on t. In the array framework, see (6.4), all effects are

represented as Kronecker product of two marginal bases. The bases in covariate direction bj(x) are

specified in formula. The effect in t is specified in timeformula. For array models, FDboost() connects

the effects of formula and timeformula by the operator %O%, yielding base-learner 1 %O% base-learner

t + . . . + base-learner J %O% base-learner t. The operator %O% uses the array framework (Currie

et al., 2006) to efficiently implement such effects in boosting (Hothorn et al., 2013). If it is impossible

to use the array framework, as, e.g., the response is observed on curve-specific grids, the design

matrix is computed as row tensor product basis (6.3). The row tensor product of two marginal bases

is implemented in the operator %X%. When the marginal base-learners are supplied with df, %O% and

%X% use the isotropic penalty (6.6). For further details on these operators and operators with other

penalty matrices, we refer to Appendix E.2.

We start with base-learners for the timeformula. Basically, it is possible to use each base-learner

that is suitable to model the effect of a continuous variable. For a linear effect in t, the base-learner

bols() can be used. Usually, the effects are assumed to be smooth along t. In this case, the base-

learner bbs() can be used, which represents the smooth effect by penalized regression splines. More

specifically, P-splines are used (Eilers and Marx, 1996; Schmid and Hothorn, 2008a). Thus, bbs() sets

up B-splines for the design matrix and a squared difference matrix as penalty. For effects that must

fulfill certain constraints, for example, monotonicity, the base-learner bmono() is available (Hofner

et al., 2016).

Potential base-learners to be used in formula can be seen in Table 6.1. In this table exemplary

linear predictors that can be represented within the array framework are listed in the left column.

In the right column, the corresponding call to formula is given. The call to timeformula is set to ∼
bbs(t) to model all effects smooth in t.

A smooth functional intercept is specified by 1. The intercept is represented by a linear effect

of a variable ONEx, which is constantly 1. The formula, which is internally used for the intercept,

is bols(ONEx, intercept = FALSE, df = 1), yielding a linear effect of the one-variable. This base-

learner is combined with the timeformula by a Kronecker operator with anisotropic penalty %A0%,

which does not penalize in the direction of the one-variable. In total, the intercept is represented

by the base-learner bols(ONEx, intercept = FALSE, df = 1) %A0% bbs(t). For offset = NULL, the

model contains a smooth offset β∗0(t). The smooth offset is computed prior to the model fit as

smoothed population minimizer of the loss. For mean regression, the smooth offset is the smoothed

mean over t. The specification offset = "scalar" yields a global offset β∗0 . If the model contains a

smooth offset, the resulting intercept for the model is β0(t) = β∗0(t)+ β̃0(t), where β̃0(t) is the smooth

intercept resulting from the specified 1 in the formula.

The upper part of Table 6.1 gives examples for linear predictors with scalar covariates. A linear

effect of s scalar covariate is specified using the base-learner bolsc(). This base-learner works for

metric and for factor variables. A smooth effect of a metric covariate is obtained by the base-learner
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Table 6.1: Linear predictors that can be represented within the array framework. Thus, the specified effects in
formula are combined with timeformula by the Kronecker product ⊗.

linear predictor hj(x)(t) =∑
j hj(x)(t)

call in formula to specify bj(x) that is combined with bY (t)
specified in timeformula = ∼ bbs(t)

β0(t) y ∼ 1

β0(t) + z1β1(t) y ∼ 1 + bolsc(z1)

β0(t) + f1(z1, t) y ∼ 1 + bbsc(z1)

β0(t) + z1β1(t) + z2β2(t) + z1z2β3(t) y ∼ 1 + bolsc(z1) + bolsc(z2) + bols(z1) %Xc% bols(z2)

β0(t)+z1β1(t)+f2(z2, t)+z1f3(z2, t) y ∼ 1 + bolsc(z1) + bbsc(z2) + bols(z1) %Xc% bbs(z2)

β0(t) + f1(z1, t) + f2(z2, t) +
f3(z1, z2, t)

y ∼ 1 + bbsc(z1) + bbsc(z2) + bbs(z1) %Xc% bbs(z2)

β0(t) +
∫
x(s)β1(s, t) ds y ∼ 1 + bsignal(x, s = s)

y ∼ 1 + bfpc(x, s = s)

β0(t) + zβ1(t) +
∫
x(s)β2(s, t) ds +

z
∫
x(s)β3(s, t) ds

y ∼ 1 + bolsc(z) + bsignal(x, s = s) + bsignal(x, s =

s) %X% bolsc(z)

β0(t) + zβ1(t) + z
∫
x(s)β4(s, t) ds y ∼ 1 + bolsc(z) + bsignal(x, s = s) %X% bols(z,

contrasts.arg = "contr.dummy")

bbsc(). The base-learners bolsc() and bbsc() are similar to the base-learners bols() and bbs() from

the mboost package. In contrast to the base-learners from mboost they enforce sum-to-zero constraints

to ensure identifiability for models with functional response. The ’c’ at the end of the names of the

base-learners refers to ’constrained’. The point is that the effects z1β1(t) and f1(z1, t) contain a

smooth intercept as special case and without constraints the model would not be identifiable. More

generally, for all effects hj(x)(t) that contain a smooth intercept β0(t) as special case, we use the

constraint
∑N

i=1 hj(xij , t) = 0 for all t (Scheipl et al., 2015). The constraint is enforced by a basis

transformation of the design and penalty matrix. In particular, it is sufficient to apply the constraint

on the covariate-part of the design and penalty matrix. Thus, it is not necessary to change the basis

in t direction. See Appendix A.1 for technical details on how to enforce this sum-to-zero constraint.

The constraint implies that effects varying over t can be interpreted as deviations from the smooth

intercept.

The lower part of Table 6.1 gives examples for linear predictors with functional covariates. Using

bsignal(), the linear effect β(s, t) in s direction is represented by a P-spline basis. Using bfpc(), the

linear effect β(s, t) in s direction and the functional covariate x(s) are represented by the estimated

functional principal components (FPCs, Ramsay and Silverman, 2005, Chap. 8 and 9) of the functional

covariate; see Appendix E.1 for technical details on the representation of functional effects. There are

two possibilities how to specify a model with an interaction term between a scalar and a functional

covariate; see the last two lines of Table 6.1. The interaction term can be specified as centered around

the main effect of the functional covariate. In this case, the main effect of the functional covariate

has to be included in the model. If the interaction term is not centered around the main effect of

the functional covariate, this main effect should not be included in the model. The main effect of the
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scalar covariate is, per construction, not part of the interaction effect and thus has to be part of the

model formula in both possible specifications.

For effects that are constant along t on can enclose the corresponding base-learner in the formula

by c(). For instance, to get an effect f(z1) instead of f(z1, t), one sets c(bbs(t)) in the formula.
Alternatively, different expansions along t are possible by doing the expansion for effects in t
direction by hand. For instance, bbsc(z1) %O% bbs(t) + bbsc(z2) %O% bmono(t) + bbsc(z3) %O%

bols(ONEtime, intercept = FALSE), yields for z1 an effect that is smooth in t, f1(z1, t), for z2 an
effect that is monotone in t, f2(z2, t), with f2 being monotone in the second argument, and for z3 an
effect that is constant in t when ONEtime is defined as a vector of ones.

The interfaces of bolsc() and bbsc() are similar to bols() and bbs(), respectively. The in-
terface of bsignal() is as follows:

bsignal(x, s, knots = 10, degree = 3, differences = 1,

df = 4, lambda = NULL, check.ident = FALSE)

In the arguments x and s, the name of the functional covariate and the name of its domain are

specified. knots gives the number of inner knots for the P-spline basis, degree the degree of the B-

splines and differences the order of the differences that are used for the penalty. Thus, per default,

14 cubic P-splines with first order difference penalty are used. The argument df specifies the number

of df for the effect and lambda the smoothing parameter. Thus, only one of those two arguments

should be supplied. For check.ident = TRUE, the identifiability checks that were proposed by Scheipl

and Greven (2016) for functional linear effects are run.

Case study (ctd.): Canadian weather data

For the log-precipitation Yi(t), t ∈ {1, . . . , 365}, i = 1, . . . , 35, we fit the model

E(Yi(t)|regioni, tempi) = β0(t) + I(regioni = k)βk(t) +

∫
tempi(s)β(s, t) ds, (6.8)

with ’region’ having levels Arctic, Atlantic, Continental and Pacific and centered temperature curves
’temp’, with

∑N
i=1 tempi(s) = 0 for all s, s ∈ {1, . . . , 365}. The linear effect of the factor variable

region is specified using the bolsc() base-learner. Thus, this effect is coded such that it sums up
to zero for each day, i.e.,

∑N
i=1 I(regioni = k)βk(t) = 0 for all t. For the linear functional effect of

temperature, we use the base-learner bsignal(). As the temperature curves are centered for each s, it
holds that

∑N
i=1

∫
tempi(s)β(s, t) ds = 0 for all t. For all effects over the year, we use cyclic P-splines.

mod <- FDboost(l10precip ~ 1 + bolsc(region, df = 4) +

bsignal(temp, s = day_s, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

timeformula = ~ bbs(day, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

offset = "scalar", data = canada)

The model specification with response in long format would be the same, expect that one has to add

the arguemnt id = ∼ id and one has to use the data in long format by setting data = canada l. �
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Table 6.2: Linear predictors that contain effects that cannot be separated into an effect in covariate direction
and an effect in t direction. These effects in formula are not expanded by the timeformula.

linear predictor hj(x)(t) =∑
j hj(x)(t)

call in formula

β0(t) + x(t)β(t) y ∼ 1 + bconcurrent(x, s = s, time = t)

β0(t) +
∫ t
T1
x(s)β(s, t) ds y ∼ 1 + bhist(x, s = s, time = t)

β0(t) +
∫ t
t−δ x(s)β(s, t) ds y ∼ 1 + bhist(x, s = s, time = t, limits = limitsLag)1

β0(t) +
∫ t−δ
T1

x(s)β(s, t) ds y ∼ 1 + bhist(x, s = s, time = t, limits =

limitsLead)1∫ u(t)
l(t) x(s)β(s, t) ds y ∼ 1 + bhist(x, s = s, time = t, limits = mylimits)1

β0(t) + zβ1(t) +
∫ t
T1
x(s)β2(s, t) ds+

z
∫ t
T1
x(s)β3(s, t) ds

y ∼ 1 + bolsc(z) + bhist(x, s = s, time = t) +

bhistx(x) %X% bolsc(z)2

β0(t) + zβ1(t) + z
∫ t
T1
x(s)β2(s, t) ds y ∼ 1 + bolsc(z) + bhistx(x) %X% bols(z, contrasts.arg

= "contr.dummy")2

1 These general limit functions are not defined in FDboost. We give examples for such functions in this paragraph.
2 In bhistx(), the variable x has to be of class hmatrix.

Effects in the formula containing the effect in covariate and t direction

If the covariate changes with t, the effect cannot be separated into a marginal basis depending only
on covariates and a marginal basis depending only on t. Examples for such effects are historical
and concurrent functional effects, as discussed in Chapter 4. In Table 6.2 we give an overview of
possible linear predictors containing such effects. The concurrent effect β(t)x(t) is only meaningful
if the functional response and the functional covariate are observed over the same domain. The
base-learner bconcurrent() expands the smooth concurrent effect in P-splines. The historical effect∫ t
T1
x(s)β(s, t) ds uses only covariate information up to the current observation point of the response.

The base-learner bhist() expands the coefficient surface β(s, t) in s and in t direction using P-splines.
In Appendix E.1, details on the representation of functional effects are given. Most arguments of
bhist() are equivalent to those of bsignal(). bhist() has the additional argument time to specify
the observation points of the response. Via the argument limits in bhist() the user can specify
integration limits depending on t. Per default a historical effect with limits s ≤ t is used. Other
integration limits can be specified by using a function with arguments s and t that returns TRUE for
combinations of s and t that lie within the integration interval and FALSE otherwise. In the following,
we give examples for functions that can be used for limits:

## historical effect; corresponds to default limits = "s<=t"

limitsHist <- function(s, t) {

s <= t

}

## lag effect with lag delta = 5

limitsLag <- function(s, t, delta = 5) {

s >= t - delta & s <= t

}
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## lead effect with lead delta = 5

limitsLead <- function(s, t, delta = 5) {

s <= t - delta

}

The base-learner bhistx() is especially suited to form interaction effects with other base-learners. It

requires the data to be supplied as an object of type hmatrix; see the manual of bhistx() for the

necessary setup.

Case study (ctd.): Canadian weather data

We fit the following model for the log-precipitation with a concurrent effect of temperature:

E(Yi(t)|tempi) = β0(t) + tempi(t)β(t)

A concurrent effect is obtained by the base-learner bconcurrent(), which is not expanded by the
base-learner in timeformula. In this model, timeformula is only used to expand the smooth intercept.

mod_con <- FDboost(l10precip ~ 1 +

bconcurrent(temp, s = day_s, time = day , df = 8,

cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

timeformula = ~ bbs(day, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

offset = "scalar", data = canada)

Models with concurrent effects can be seen as varying-coefficient models (Hastie and Tibshirani,

1993), where the effect varies over t. �

It is possible to combine effects listed in Table 6.1 and Table 6.2 to form more complex mod-

els. In particular, base-learners with and without array structure can be combined within one model.

As in component-wise boosting each base-learner is evaluated separately, the array structure of the

Kronecker product base-learners can still be exploited in such hybrid models.

Base-learners for scalar response

A scalar response can be seen as special case of a functional response with only one time-point.

Thus, it can be represented as FLAM with basis 1 in time-direction; set timeformula = ∼ bols(1)

or timeformula = NULL for scalar response. In the first call, a Ridge-penalty in t direction is used;

see Chapter 3 for details. With the second call, the scalar response is fitted as scalar response, like

in the function mboost() in package mboost. The advantage of using FDboost() for scalar response is

that base-learners for functional covariates and their associated methods like plot() and coef() are

available.
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Case study (ctd.): Canadian weather data

To illustrate the model fit for a scalar response, we use the logarithm of the overall mean of the annual

precipitation as response. We fit region-specific effects and a linear functional effect of the centered

temperature:

E(Yi|regioni, tempi) = β0 + I(regioni = k)βk +

∫
tempi(s)β(s) ds.

Using bolsc() models the region effect such that it sums to zero, i.e.,
∑N

i=1 I(regioni = k)βk = 0. As
we have scalar response, the timeformula is set to NULL.

mod_scalar <- FDboost(l10precip_mean ~ 1 + bolsc(region, df = 2) +

bsignal(temp, s = day_s, df = 2,

cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

timeformula = NULL, data = canada)

Note that for the region effect, the base-learner bols() could be used. This base-learner would default

to treatment contrasts (reference category coding) instead of the sum contrasts used in bolsc(). The

argument contrasts.arg allows to specify the encoding of the factor variable in bols(). �

6.5.3 Transformation and loss functions: families

The modeled characteristic of the conditional response distribution is specified by the transformation

function ξ, cf. model (6.1). The transformation function also contains the link function. For estima-

tion, a suitable loss function whose population minimizer corresponds to the modeled characteristic

of the response distribution is defined and optimized. The absolute error loss (L1 loss), for instance,

implies median regression. The package mboost supplies the infrastructure for models with scalar

response. For regression with functional response in FDboost() the loss is computed at each point t

and is integrated over the domain of the response T . The numerical integration scheme is determined

by the argument numInt, which defaults to "equal". This means that all integration weights are set to

one. Choosing numInt = "Riemann" yields Riemann sums for the numerical integration of the loss. In

analogy to mboost(), in FDboost() the regression type is specified by the family argument. The family

argument expects an object of class Family, which implements the respective loss function with the

corresponding negative gradient and link function. The default is family = Gaussian() which yields

L2 boosting. This means that the expected squared error loss is minimized. This is equivalent to

maximizing the log-likelihood of the normal distribution. Table 6.3 lists some loss functions currently

implemented in mboost. Hofner et al. (2014) give a more exhaustive table. They also give an example

on how to implement new families via the function Family(). Type ?Family for more details on all

families. All families that are implemented in the mboost package can be used within FDboost().

For continuous response, several model types are possible (Bühlmann and Hothorn, 2007):

L2 boosting yields mean regression; a more robust alternative is median regression, which optimizes

the absolute error loss; the Huber loss is a combination of L1 and L2 loss (Huber, 1964); quantile
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Table 6.3: Overview of some families that are implemented in mboost. −lF denotes the negative
log-likelihood of the distribution F .

response type regression type loss call

continuous response mean regression L2 loss Gaussian()1

median regression L1 loss Laplace()1

quantile regression check function QuantReg()2

expectile regression asymmetric L2 ExpectReg()3

robust regression Huber loss Huber()1

non-negative response gamma regression −lgamma GammaReg()

binary response logistic regression −lBernoulli Binomial()1

AdaBoost classification exponential loss AdaExp()1

count response Poisson model −lPoisson Poisson()1

neg. binomial model −lneg. binomial NBinomial()4

ordinal response proportional odds model −lproportional odds model ProppOdds()5

categorical response multinomial model −lmultinomial Multinomial()6

1 See Bühlmann and Hothorn (2007) for details on boosting binary classification and regression models.
2 See Fenske et al. (2011) for details on boosting quantile regression.
3 See Sobotka and Kneib (2012) for details on boosting expectile regression.
4 See Schmid et al. (2010) for details on boosting with multi-dimensional linear predictors, including negative
binomial models.
5 See Schmid et al. (2011) for details about boosting proportional odds models.
6 It is necessary to represent the multinomial logit model as linear array models, see the corresponding help
page in mboost. Thus, is not possible to specify multinomial models with functional response.

regression (Koenker, 2005) can be used to model a certain quantile of the conditional response distri-

bution; and expectile regression (Newey and Powell, 1987) for modeling an expectile. For non-negative

continuous response, models assuming the gamma distribution can be specified. Binary response can

be modeled in a GLM framework as logit model or following the first boosting algorithm ’AdaBoost’

(Friedman, 2001) by minimizing the exponential loss. Count data can be modeled assuming the Pois-

son or the negative binomial distribution (Schmid et al., 2010). For ordinal response, a proportional

odds model can be fitted (Schmid et al., 2011). For categorical response, the multinomial logit model

is available. The multinomial logit model can only be applied for scalar and not for functional re-

sponse. For survival models, boosting Cox proportional hazard models and accelerated failure time

models have been introduced (Schmid and Hothorn, 2008b).

Case study (ctd.): Canadian weather data

So far, we fitted a model for the conditional mean of the response. As a more robust alternative, we
consider median regression by setting family = QuantReg(tau = 0.5):

mod_med <- FDboost(l10precip ~ 1 + bolsc(region, df = 4, contrasts.arg = "contr.dummy") +

bsignal(temp, s = day_s, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),

timeformula = ~ bbs(day, cyclic = TRUE, boundary.knots = c(0.5, 365.5)),
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offset = "scalar", data = canada, family = QuantReg(tau = 0.5))

For median regression, the smooth intercept is the estimated median at each day and the effects are
deviations from the median. �

For GAMLSS models, FDboost builds on the package gamboostLSS, in which families to fit
GAMLSS are implemented. The families in gamboostLSS need to model at least two distribution
parameters–with only one distribution parameter it is a mboost family. For an overview of currently
implemented response distributions for GAMLSS, we refer the user to Hofner et al. (2015c). In
FDboost, the function FDboostLSS() implements fitting of GAMLSS models with functional data.
The interface of FDboostLSS() is:

FDboostLSS(formula, timeformula, id = NULL, data, weights = NULL, ...)

Here, in formula a named list of formulas is supplied. Each list entry in the formula specifies the

potential covariate effects for one of the distribution parameters. Instead of the argument family, the

argument families is used to specify the assumed response distribution with its modeled distribution

parameters. For instance, families = GaussianLSS() yields a Gaussian location scale model. The

model object that is fitted by FDboostLSS() is a list of FDboost model objects. Currently, it is not

possible to automatically fit a smooth offset within FDboostLSS(). All integration weights for the loss

function are set to one, such that all response values are treated as equally important in FDboostLSS().

Case study (ctd.): Canadian weather data

We fit a Gaussian location scale model for the daily log-precipitation Yi(t):

Yi(t) ∼ N(µi(t), σ
2
i (t)),

µi(t) = β0(t) + I(regioni = k)βk(t) +

∫
tempi(s)β(s, t) ds,

log σi(t) = α0(t) + I(regioni = k)αk(t).

The mean is modeled depending on the region and the average temperature curve. The standard
deviation is modeled using a log-link as varying over the year with a region-specific effect. The
formula has to be specified as a list of two formulas with names mu and sigma for mean and standard
deviation of the normal distribution.

library(gamboostLSS)

## Gaussian location scale model

mod_ls <- FDboostLSS(list(mu = l10precip ~ 1 + bolsc(region, df = 4) +

bsignal(temp, s = day_s, cyclic = TRUE,

boundary.knots = c(0.5, 365.5), df = 4),

sigma = l10precip ~ 1 + bolsc(region, df = 4)),

timeformula = ~ bbs(day, cyclic = TRUE,

boundary.knots = c(0.5, 365.5), df = 3),



6.5 The package FDboost 109

data = canada, families = GaussianLSS())

## print mean model

mod_ls$mu

## print model for standard deviation

mod_ls$sigma

Note that the effects in the formulas for mu and for sigma are all expanded by timeformula. �

6.5.4 Model tuning and early stopping

Boosting iteratively selects base-learners to update the linear predictor. Fixing the base-learners and

the step-length, the model complexity is controlled by the number of boosting iterations. With more

boosting iterations the model gets more complex. To ensure a fair selection of base-learners, it is

important to specify equal df for each base-learner. If not, selection is biased towards more flexible

base-learners with higher df as they are more likely to yield larger improvements of the fit in each

iteration, see Hofner et al. (2011) for details. Each base-learner has an argument df that allows to

fix the df prior to the model fit. In FDboost() care has to be taken as some base-learners in the

formula are expanded by the base-learner in timeformula, but other are not. All base-learners listed

in Table 6.1 are expanded by timeformula. The base-learners given in Table 6.2 contain the effect in

covariate and in t direction and are not expanded by the timeformula. For the row tensor product

or the Kronecker product of two base-learners, the df for the combined base-learner is computed as

product of the two marginally specified df. For instance, formula = y ∼ bbsc(z, df = 3) + bhist(x,

s = s, df = 12) and timeformula = ∼ bbs(t, df = 4) implies 3 ∗ 4 = 12 df for the first combined

base-learner and 12 df for the second base-learner. The call extract(object, "df") displays the df

for each base-learner in a FDboost object.

The step-length ν is chosen sufficiently small from the interval (0, 1), e.g., as ν = 0.1, which is also

the default. For smaller step-length, more boosting iterations are required and vice versa (Friedman,

2001). Note that the default number of boosting iterations is 100. This is arbitrary and in most

cases not adequate. The number of boosting iterations and the step-length of the algorithm can be

specified in the argument control. This argument must be supplied as a call to boost control(). For

example, control = boost control(mstop = 50, nu = 0.2) implies 50 boosting iterations and step-

length ν = 0.2.

We choose the optimal number of boosting iterations by resampling methods like cross-validation

or bootstrapping. In the package FDboost, three different functions for estimating the optimal stop-

ping iteration by resampling exist. Depending on the specified model, some parameters are computed

from the data prior to the model fit: for functional response, per default a smooth functional offset

β∗0(t) is computed (for offset = NULL in FDboost()); for linear and smooth effects of scalar variables

computed by bolsc() and bbsc() transformation matrices Zj for the sum-to-zero constraints are

computed. The resampling functions differ in what is recomputed in each resampling fold. Thus,

they also differ in computational efficiency.
The function cvrisk.FDboost() directly calls cvrisk.mboost() from the mboost package, which is

very efficient. For all folds in cvrisk.FDboost(), the smooth functional offset and the transformation
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matrices for the sum-to-zero constraints from the model fitted on all data are used. Thus, these pa-
rameters are treated as fixed and the uncertainty induced by their estimation is not considered in the
resampling. Per default only the out-of-bag risk is returned. The function validateFDboost() recom-
putes the smooth offset in each fold. Next to the out-of-bag risk, validateFDboost() also returns the
estimated coefficients for all folds. These estimated coefficients can be used to access the variability of
the estimates. But due to the extra computations, validateFDboost() is much more time and mem-
ory consuming than cvrisk.FDboost(). The function applyFolds() recomputes the smooth offset and
the transformation matrices and only returns the out-of-bag risk. Thus, it is computationally more
efficient than validateFDboost(). For scalar response, the function cvrisk.FDboost() can be used
and the other two functions yield the same optimal stopping iteration. For functional response, the
resampling methods are equal if no smooth offset and no base-learner implying an identifiability con-
straint is used (bolsc() and bbsc()). For these cases, we recommend to use the function applyFolds()

to determine the optimal number of boosting iterations. The interface of applyFolds() is:

applyFolds(object,

folds = cv(rep(1, length(unique(object$id))), type = "bootstrap"),

grid = 1:mstop(object))

In the argument object, the fitted model object is specified. grid defines the grid on which the optimal
stopping iteration is searched. Via argument folds the resampling folds are defined by suitable
weights. Per default, 25-fold bootstrap is used. The functions validateFDboost() and applyFolds()

expect resampling weights that are defined on the level of curves. That means, the folds must contain
weights wi, i = 1, . . . , N . The function cvrisk.FDboost() expects resampling weights on the level of
single observations, i.e., weights w̃ig, i = 1, . . . , N , g = 1, . . . , Gi. To set up the resampling folds, the
function cv() from package mboost can be used, which has the interface:

cv(weights, type = c("bootstrap", "kfold", "subsampling"),

B = ifelse(type == "kfold", 10, 25))

The argument weights is used to specify the weights of the original model. Via argument type

the resampling scheme is defined: ”bootstrap” for bootstrapping, ”kfold” for cross-validation and

”subsampling” means resampling in each fold half of the observations. The number of folds is set

by B. Per default, 10 folds are used for cross-validation and 25 folds for bootstrapping and subsampling.

Case study (ctd.): Canadian weather data

We search the optimal stopping iteration for model (6.8) by a 10-fold bootstrap.

## create folds for 10-fold bootstrap: one weight for each curve

set.seed(123)

folds_bs <- cv(weights = rep(1, mod$ydim[1]), type = "bootstrap", B = 10)

## compute out-of-bag risk on the 10 folds for 1 to 200 boosting iterations

cvr <- applyFolds(mod, folds = folds_bs, grid = 1:200)

## compute out-of-bag risk and coefficient estimates on folds
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cvr2 <- validateFDboost(mod, folds = folds_bs, grid = 1:200)

## weights per observation point

folds_bs_long <- folds_bs[rep(1:nrow(folds_bs), times = mod$ydim[2]), ]

attr(folds_bs_long, "type") <- "10-fold bootstrap"

## compute out-of-bag risk on the 10 folds for 1 to 200 boosting iterations

cvr3 <- cvrisk(mod, folds = folds_bs_long, grid = 1:200)

The estimated out-of-bag risks are slightly different, as in applyFolds() the matrix for the identifia-

bility constraint in bolsc() is recomputed in each fold and in validateFDboost() and cvrisk() the

transformation matrix is used as computed on the whole dataset. �

The variable selection can be refined using stability selection (Meinshausen and Bühlmann,

2010). Stability selection is a procedure to select influential variables while controlling false discovery

rates and maximal model complexity. For component-wise gradient boosting, it is implemented in

mboost in the function stabsel() (Hofner et al., 2015a). For functional response, care has to be

taken to do the resampling on the level of curves.

6.5.5 Methods to extract and display results

Methods to extract and display results of the fitted models and of the resampling procedures have been

implemented. The resampling results of applyFolds() and cvrisk() have class cvrisk. The resampling

results of validateFDboost() are of the class validateFDboost. For all resampling objects, the method

mstop() extracts the estimated optimal number of boosting iterations. plot() generates a plot of

the estimated out-of-bag risk per stopping iteration in each fold. With this plot, the convergence

behavior can be graphically examined. If the resampling is conducted by validateFDboost(), the

function plotPredCoef() can be used to plot the coefficient estimates of all folds.

Case study (ctd.): Canadian weather data

We generate a plot that displays for each fold the estimated out-of-bag risk per stopping iteration;
see Figure 6.1. The estimated optimal number of stopping iterations is accessed by mstop(). For the
validateFDboost() object, we plot the coefficients estimated in each bootstrap folds; see Figure 6.2
for the bootstrapped coefficient estimates of the variable region.

#### plot for each fold the estimated out-of-bag risk per stopping iteration

par(mfrow = c(1,3))

plot(cvr); legend("topright", lty=2, paste(mstop(cvr)))

plot(cvr2)

plot(cvr3); legend("topright", lty=2, paste(mstop(cvr3)))

#### access the estimated optimal stopping iteration

mstop(cvr)

mstop(cvr2)
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Figure 6.1: Bootstrapped out-of-bag risk for the model for the Canadian weather data. For each fold, the
out-of-bag risk is displayed as a gray line. The mean out-of-bag risk is marked by a black line. The optimal
number of boosting iterations is marked by dashed vertical lines.

mstop(cvr3)

#### plot the estimated coefficients per fold for the validateFDboost object

#### more meaningful for higher number of folds, e.g., B = 100

## bootstrapped coefficient estimates for region

par(mfrow = c(2,2))

plotPredCoef(cvr2, terms = FALSE, lty = 1, which = 2)

## bootstrapped coefficient estimates for temperature (not shown)

par(mfrow = c(2,2))

plotPredCoef(cvr2, terms = FALSE, which = 3)

The effect of region is estimated quite similar in all bootstrap folds, cf. Figure 6.2. �

Fitted FDboost objects inherit from the class mboost. Thus, all methods available for mboost

objects can also be applied to models fitted by FDboost(). The design and penalty matrices that

are constructed by the base-learners can be extracted by the extract() function. For example,

extract(object, which = 1) returns the design matrix of the first base-learner and extract(object,

which = 1, what = "penalty") the corresponding penalty matrix. The number of boosting iterations

for a FDboost object can be changed using the subset operator; e.g., object[50] sets the number

of boosting iterations for object to 50. The subset operator directly changes object, and hence

no assignment is necessary. One can access the estimated coefficients by the coef() function.

For smooth effects, coef() returns the smooth estimated effects evaluated on a regular grid. The

spline-coefficients of smooth effects can be obtained by object$coef(). The estimated effects are

graphically displayed by plot(). The coefficient plots can be customized by various arguments. For

example, coefficient surfaces can be displayed as image plots, setting pers = TRUE, or as perspective

plots, setting pers = FALSE. To plot only some of the base-learners, the argument which can be

used. For instance, plot(object, which = c(1,3)) plots the estimated effects of the first and the
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Figure 6.2: Bootstrapped coefficient estimates for the region effect in the model for the Canadian weather data.
For each fold, the estimated coefficient is displayed as a gray line. The point-wise 50% quantile is marked by
a solid black line. The point-wise 5 and 95% quantiles are marked by dashed red lines.

third base-learner. The fitted values and predictions for new data can be obtained by the methods

fitted() and predict(), respectively.

Case study (ctd.): Canadian weather data

In order to continue working with the optimal model, we set the number of boosting iterations to the
estimated optimal value.

mod[mstop(cvr)] ## directly changes mod!

Then, we use plot() to display the estimated effects. Per default, plot() only displays effects of
base-learners that were selected at least once for the model update; see Figure 6.3 for the resulting
plots (legend in middle plot added by hand).
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par(mfrow = c(1,3))

plot(mod, plwd = 2, ask = FALSE, n2 = 20, ylab = "") ## plot effects of selected base-learners
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Figure 6.3: Coefficient estimates of the Canadian weather data model with optimal number of boosting itera-
tions. The smooth intercept (left), the region-specific effects (middle) and the effect of temperature (right) are
given. The regions are color-coded. The variable t is denoted by ’day’; the variable s is denoted by ’day s’.

Overall, the precipitation is highest in summer and autumn. In the Atlantic region, the precipitation

is higher around the whole year. In the Arctic region, it is somewhat lower than average. In the

Pacific region, the precipitation is more balanced over the year with higher than average precipitation

in winter and lower in summer. In the Continental region, the precipitation varies more strongly

over the year. The association between temperature and log-precipitation changes over the year.

Higher temperatures in summer are associated with lower precipitation values. Higher temperatures

in winter are associated with higher precipitation over the whole year. �

6.6 Discussion

The R add-on package FDboost provides a comprehensive implementation to fit functional regression

models by gradient boosting. The implementation allows to fit regression models with scalar or

functional response depending on many covariate effects. The framework includes mean, median and

quantile regression models as well as GAMLSS. Various covariate effects are implemented including

linear and smooth effects of scalar covariates, linear effects of functional covariates and interaction

effects. The linear functional effects can have integration limits depending on t to form, for example,

historical or lag effects. Whenever possible, the effects are represented such that they fit into the

structure of linear array models (Currie et al., 2006) to increase computational efficiency. Component-

wise gradient boosting allows to fit models in high-dimensional data situations and performs data-

driven variable selection. FDboost builds on the well tested and modular implementation of mboost.

This facilitates the implementation of further base-learners to fit new covariate effects and new families

to model other characteristics of the conditional response distribution.



Chapter 7

Discussion

In this concluding chapter an overall summary is given that highlights the main developments of the

thesis. For a more thorough discussion of the modeling aspects treated in the Chapters 3, 4 and 5,

we refer to the discussion within the corresponding chapter. Additionally, starting points for future

research directions are discussed.

7.1 Concluding summary

Regression models for functional data are versatile tools, which can be used in applications from

many scientific fields. Moreover, these models are becoming increasingly important as technological

advances make functional data more common. In this thesis, a generic framework for regression

with functional data is developed, with the estimation conducted by boosting. The idea for widely

applicable functional regression models with many covariate effects is based on Scheipl et al. (2015).

We adapt the component-wise gradient boosting algorithm of Bühlmann and Hothorn (2007) and

Hothorn et al. (2013) for functional response and implement new base-learners for functional co-

variates. The benefits of using a component-wise gradient boosting algorithm to estimate functional

regression models are (a) the possibility for modeling one of multiple characteristics of the conditional

response distribution, including the expectation, quantiles and expectiles, as well as the possibility

to model several distribution parameters simultaneously in a GAMLSS framework, (b) the feasibility

of estimation in high-dimensional data settings, even with more covariates than observations, (c) the

regularization of effect estimates that leads to shrinkage in the estimation and more stable predictions,

(d) data-driven variable selection and (e) the availability of an efficient implementation. Furthermore,

the modular structure of the modeling framework and its implementation invites further extensions.

One limitation is that boosting–in contrast to Bayesian or maximum likelihood-based estimation

frameworks–does not directly provide inference such as p-values or confidence intervals. The problem

is that shrinkage of the estimated effects makes the construction of confidence intervals and signif-

icance tests difficult. The lack of formal inference can be addressed by methods like bootstrapping

and permutation tests. For example, the uncertainty of the estimated coefficients can be accessed by
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non-parametric bootstrap. In order to select relevant variables, it is possible to use stability selection

(Meinshausen and Bühlmann, 2010) in combination with boosting.

Various aspects of the general modeling framework are examined in more detail. In particular,

we discuss:

• the general modeling framework, into which all considered models can be embedded (Chapter 2).

• the functional linear array model (FLAM) for functional response observed on one common grid

and covariates that do not vary over the domain of the response (Chapter 3).

• models for functional response observed on irregular grids and/or covariates that vary over the

domain of the response, as in models with functional historical effects (Chapter 4).

• the combination of scalar-on-function regression and GAMLSS (generalized additive models for

location scale and shape) for modeling several parameters of the conditional response distribu-

tion simultaneously (Chapter 5).

• the implementation of the proposed framework in the R package FDboost (Chapter 6).

As a starting point, we define a structured additive regression model that represents the generic

framework in Chapter 2. All models that are discussed within this thesis can be embedded within

this generic modeling framework.

In Chapter 3, functional regression models for responses that are observed on one common grid

are represented as linear array models (Currie et al., 2006). The common observation grid makes

it possible to store the response in a matrix. Because this is a two-dimensional array, array models

can be used. We call this type of model a functional linear array model (FLAM). Taking advan-

tage of the Kronecker product in the design matrix makes array framework computationally efficient.

The FLAM is applied in three settings: to model the viscosity of resin over time depending on

experimental conditions (function-on-scalar); to predict the heat value of fossil fuels using spectral

measurements (scalar-on-function); and to relate the average yearly precipitation curve to the aver-

age yearly temperature curve, the climatic zone and the location of the weather station in Canada

(function-on-function).

Motivated by a biotechnological data set on fermentation processes, we consider models that do

not rely on the array structure (Chapter 4). This allows for more flexible model specifications at the

expense of loosing computational efficiency. In particular, models for irregularly observed functional

responses and effects of covariates that vary along the domain of the response are feasible. The aim

is to predict a key process parameter of the fermentation process that is too time-consuming to be

determined during new fermentations by easily accessible process variables that can be measured in

real time. To this end, we use a functional regression model with many historical effects.

To further increase the flexibility of the modeling framework, we then combine scalar-on-function

regression and GAMLSS (Chapter 5). For this model, we also discuss estimation by penalized max-

imum likelihood methods based on Rigby and Stasinopoulos (2005) and Wood et al. (2015). We
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simultaneously model expectation and variance of a time-series on stock returns depending on func-

tional liquidity measures.

A comprehensive implementation of the methods is provided in the R package FDboost (Brockhaus

and Rügamer, 2016), which relies on the fitting machine of the mboost package (Hothorn et al., 2016).

The thesis contains a short tutorial on how to use the software for fitting functional regression models,

discussing model set-up and model choice (Chapter 6).

7.2 Outlook

To extend the proposed functional regression framework two main directions can be followed. It is

possible to apply other loss functions yielding models for other features of the conditional response

distribution or to implement new base-learners for novel covariate effects.

Extensions through new loss functions and corresponding transformation functions. As briefly

touched upon in Brockhaus et al. (2015a) it is possible to combine regression models for functional

response and GAMLSS. This is done by integrating the loss function, which for GAMLSS is the

negative log-likelihood, along the domain of the response. Because of the smoothness assumption

along the domain of the response, the conditional response distribution is estimated to be similar for

close observation points. However, covariance along the domain of the response cannot be captured

by the model. Almond Stöcker (Department of Statistics, LMU Munich) deals within his master

thesis with the combination of functional response regression and GAMLSS (ongoing work).

Another idea is to extend functional regression models by combining them with conditional trans-

formation models (CTMs, Hothorn et al., 2013). CTMs model the whole conditional response distri-

bution depending on covariates in a semi-parametric way. Instead of assuming a specific distribution,

a CTM directly models the conditional distribution function, which implies all characteristics of the

distribution including moments and quantiles. The use of CTMs for scalar response and functional

covariates is straightforward. An estimation of CTMs by gradient boosting is implemented in the

R package ctm (Hothorn, 2013). This package can be used in combination with base-learners for

functional covariates in the FDboost package. CTMs for functional response can be achieved by

integrating the loss along the domain of the response. This only models the conditional response

distribution at each point of the domain of the response.

To obtain loss functions suitable for functional response, so far, we compute the loss at each

observation point and integrate over the domain of the response. Instead of integrating a loss function

that is suited for scalar response, it is possible to think of loss functions especially suited to functional

data. One idea is to construct loss functions from functional depth functions, e.g., using the band

depth of López-Pintado and Romo (2009). In this setting, a loss function could be constructed as the

relative frequency of discordant pairs.

Another direction for future research is regression models for functional response that has higher

dimension; for instance, image regression (Crainiceanu et al., 2012; Zipunnikov et al., 2014).
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Extensions through new base-learners. It is possible to construct base-learners for further interaction

effects. Including next to the main effects an interaction effect for two scalar covariates, care has

to be taken to ensure identifiability of the model terms. Consider two factor variables, z1 and z2,

with main effects, I(z1 = k)αk(t) and I(z2 = l)βl(t), and interaction effect I(z1 = k)I(z2 = l)γkl(t).

Identifiability of such effects can be obtained by using suitable sum-to-zero constrains at each point

of the domain of the functional response. For the main effects, identifiability is ensured by centering

the effects around the functional intercept, see Appendix A.1. The interaction effect has to be

centered around the functional intercept as well as the two main effects; this is enforced by additional

constraints. Moreover, interaction effects between scalar and functional covariates are possible,

for instance, group-specific functional historical effects, I(z = k)
∫ u(t)
l(t) x(s)γk(s, t) ds. When also

including the main effects, I(z = k)αk(t) and
∫ u(t)
l(t) x(s)β(s, t) ds, in the model, similar identifiability

constraints are necessary. In this context, it can also be of interest to allow for anisotropic penalty

matrices that use more than one smoothing parameter. For example, different amounts of smoothing

can be specified for the two covariates in an interaction term. Rügamer et al. (2016) thoroughly

discusses such interaction effects with one or two factor variables and functional covariate for

modeling the relation between EEG (electroencephalography) and EMG (electromyography) signals

under various experimental conditions. In scalar-on-function regression, an interaction effect between

two functional covariates can be specified as
∫∫

x1(s1)x2(s2)β(s1, s2) ds1ds2 (Fuchs et al., 2015;

Usset et al., 2016). Such effects conceptually fit into the array framework and could be extended to

functional response regression.

Another interesting direction for future research is to develop base-learners for functional effects

that select relevant regions of the functional covariates. This can be achieved by coefficient functions

for which only relevant parts are estimated to be unequal zero and the other parts are set to zero.

James et al. (2009) and Tutz and Gertheiss (2010) consider such sparse effects for a linear effect

of a functional covariate on a scalar response. In future work, such effects might be included in

our framework or even extended to effect surfaces of linear effects in function-on-function regression

models. In the context of functional historical effects or lag effects a potentially plausible assumption

is that the effect gets smaller for bigger lag. This can be encoded by imposing a penalty towards

zero for the maximal used lag; see Obermeier et al. (2014) for an approach using such a penalty in

a distributed lag model. For a functional historical effect,
∫ t
T1
x(s)β(s, t) ds, the penalty towards zero

would have to be at the edge of the coefficient surface with minimal s and maximal t such that the

effect gets smaller for bigger differences between the observation point s of the covariate and the

observation point t of the response.

Additionally, the available basis functions could be extended to other basis functions than P-

splines and FPCs. For example, using a thin plate regression spline basis (Wood, 2003) could be

beneficial for the estimation of coefficient surfaces that do not have rectangular support, which is the

case for functional historical effects.

Leaving the linearity assumption, it is possible to consider a non-linear functional effect∫
S f(x(s), s) ds, where f is a smooth unknown function to be estimated from the data (Müller et al.,
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2013; McLean et al., 2014). The basis and penalty specification of McLean et al. (2014) could be

directly translated to a new base-learner. For functional response and covariate both observed on

the same domain, Kim et al. (2016) propose a non-linear concurrent effect f(x(t), t), with smooth

unknown function f , which could also be translated to a new base-learner.

Another interesting extension would be to include base-learners for higher-dimensional functional

variables like images; see Goldsmith et al. (2014) for scalar-on-image regression.

Overall, functional regression models are a wide field with many challenges. I hope that this

thesis is a contribution towards flexible and widely applicable regression models for functional data.
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Appendix A

Identifiability

Appendix A.1 is based on Web Appendix A of the following paper:

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2015): The functional linear

array model. Statistical Modelling, 15(3), 279–300.

Appendix A.2 is based on Web Appendix A of the following paper:

Brockhaus, S., Melcher, M., Leisch, F., and Greven, S. (2016): Boosting flexible func-

tional regression models with a high number of functional historical effects. Statistics and

Computing, accepted, DOI: http://dx.doi.org/10.1007/s11222-016-9662-1.

We consider identifiability for functional responses and for functional covariates. In the case of func-

tional response (see Section A.1), identifiability can be ensured by suitable sum-to-zero constraints.

This works similar to choosing dummy or effect coding of factor variables in a simple linear model

where the chosen constraints ensure an identifiable model and determine the interpretation of the

intercept and of the covariate effects. Transferring this to functional responses Y (t), the constraints

are enforced at each point t (Scheipl et al., 2015). For functional covariates (see Section A.2), a

different kind of identifiability problem can arise. If a functional covariate does not carry enough

information, it can happen that the model given the covariate is not identifiable. Scheipl and Greven

(2016) discuss this identifiability issue and possible solutions for linear functional effects with fixed

integration limits. In Chapter 4, we transfer this to functional effects with t-specific integration limits.

A.1 Functional response: identifiability constraints for FLAMs

Consider a model ξ(Yi(t)) = β0(t) +hj(xi)(t), with smooth intercept β0(t) and an effect hj(x)(t) that

contains an intercept β0(t) as special case. For the effects in Table 2.1, this is the case for the smooth

http://dx.doi.org/10.1007/s11222-016-9662-1
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effect f(z, t) and smooth interaction f(z1, z2, t), the group-specific intercept bg(t) and smooth residual

ei(t). The problem is that such a model is not identifiable as

ξ(Yi(t)) = β0(t) + hj(xi)(t)

=
[
β0(t) + h̄j(x)(t)

]
+
[
hj(xi)(t)− h̄j(x)(t)

]
= β̃0(t) + h̃j(x)(t),

yields the same fit with a different parametrization for h̄j(x)(t) = EX(hj(X)(t)), or replacing the

expectation by the mean for concrete data, for h̄j(x)(t) = N−1
∑

i hj(xi)(t). Scheipl et al. (2015)

pointed out that standard sum-to-zero constraints
∑

i,t hj(xi)(t) = 0 are not suitable for regression

models with functional response. A suitable constraint is that the mean effect of each covariate should

be zero in each point t:

N−1
∑

i
hj(xi)(t) = 0 ∀t.

We now show how to embed this constraint within the array framework of the FLAM. We define B as

the NG×KYKj design matrix with rows
(
bj(xi)

> ⊗ bY (tg)
>) defined as in equation (3.2). B is the

tensor product of the two marginal design matrices B = Bj ⊗BY , with Bj having bj(xi)
> as rows

and BY having bY (tg)
> as rows. In this notation the response would be concatenated to a 1 ×NG

vector (Y1(t1), . . . , YN (tG))>. Then the sum-to-zero constraint over t can be represented as a linear

constraint on the coefficient vector by enforcing Cθ = 0, with C = (1>N ⊗ IG)B, where 1N is the

vector of length N containing ones and IG is the G-dimensional identity matrix. Wood (2006, sec.

1.8.1) implements linear constraints by rewriting the model in terms of KY (Kj − 1) unconstrained

parameters through a change of basis for the design matrix B. For this, the full QR decomposition

of C> is needed:

C> = [Q : Z]

[
R

0

]
= QR,

where [Q : Z] forms a KYKj×KYKj orthonormal matrix and R is a G×G upper triangular matrix.

The transformed design matrix is obtained by the multiplication of the original design matrix with

the transformation matrix Z yielding BZ.

To apply this method for implementing a linear constraint in a FLAM, it is necessary to do the

transformation on the marginal design matrices BY and Bj . Therefore we rewrite C> depending on

the marginal bases as C> = ((1>N⊗IG)(Bj⊗BY ))> = (B>j 1N )⊗B>Y and use the QR decompositions

of B>j 1N and B>Y whose components are indexed by j and Y respectively:

C> =

(
[Qj : Zj ]

[
Rj

0

])
⊗

(
[QY : ZY ]

[
RY

0

])

= ([Qj : Zj ]⊗ [QY : ZY ])

([
Rj

0

]
⊗

[
RY

0

])
= [Q : Z]

[
R

0

]
.
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Thus we can calculate the transformation matrix Z as Z = (Zj ⊗ [QY : ZY ]) and we obtain the

transformed design matrix as

BZ = (Bj ⊗BY )(Zj ⊗ [QY : ZY ]) = (BjZj)⊗ (BY [QY : ZY ]).

As multiplication by the orthonormal matrix [QY : ZY ] only rotates the basis, this rotation can

be omitted. Thus only the transformation by Zj is necessary and it suffices to compute the QR

decomposition of B>j 1N ∈ R
Kj×1. It is not necessary to compute the QR decomposition of the

complete design matrix B or even to construct B explicitly. A basis transformation of the design

matrix, BjZj , involves that the penalty matrix P j has to be transformed accordingly to Z>j P jZj .

Please note that while unrelated to identifiability, centering the covariates by subtracting their

mean (function) can in some cases additionally lend itself to nice interpretations of the intercept as

the overall mean.

A.2 Functional covariates: identifiability of historical effects

A.2.1 Marginal design matrices

Consider a regular design where the N responses Y = [yi(tg)] i=1,...,N
g=1,...,G

and the functional covariate

Xj = [xij(sr)] i=1,...,N
r=1,...,R

are both observed on a common grid with G and R observation points respec-

tively. For simplicity of notation, we use a model with one functional effect. The unconstrained and

the constrained functional model can be represented using a row tensor product, see equation (4.9),

ξ(vec( Y
N×G

)) ≈

([{
H
NG×R

· (Xj
N×R

∆
R×R

⊗ 1G
G×1

)

}
Φs

R×Kj

]
�

[
1N
N×1

⊗ Φt
G×KY

])
θ

KjKY ×1

(A.1)

= (Bj �BY )θ, (A.2)

where vec(Y ) is the vectorization of the response matrix, Φs and Φt are basis matrices of Kj and

KY basis functions evaluated in (s1, . . . , sR) and (t1, . . . , tG) respectively, ∆ is a diagonal matrix of

integration weights ∆(sr), H is a matrix of zeros and ones to implement the integration limits as

functions in t and θ is the vector of coefficients. Note, that the marginal design matrices Bj and

BY are defined by equation (A.2).

Unconstrained functional effect. The unconstrained functional effect corresponds to the special

case with integration limits {T1, T2} and is achieved in model (A.1) by setting all entries of H to one.

Thus, H can be omitted, eliminating the dependency of Bj on t. In that case the mixed product

rule (Brewer, 1978) gives the equality (Xj∆ ⊗ 1G)Φs = (Xj∆Φs) ⊗ 1G. Setting Dj = Xj∆Φs

and DY = Φt, the design matrix is the Kronecker product of those two marginal design matrices,

(Dj ⊗ 1G) � (1N ⊗DY ) = Dj ⊗DY . The matrix Dj is the marginal design matrix in direction of

the covariate for the unconstrained functional effect.
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Constrained functional effect. To represent a constrained functional effect using model (A.1),

the matrix H contains zeros and ones implementing the desired integration limits and is defined as

H = [hig,r] ig=11,...,NG
r=1,...,R

, with hig,r = I (l(tg) ≤ sr ≤ u(tg)). The marginal design matrices can then be

written as

Bj =

[
R∑
r=1

hig,rxij(sr)∆(sr)Φk(sr)

]
ig=11,...,NG
k=1,...,Kj

= [(Bj)ig,k] ig=11,...,NG
k=1,...,Kj

and

BY = [Φl(tg)] ig=11,...,NG
l=1,...,KY

corresponding to equation (A.1). The marginal design matrices can easily be adjusted for the case

where the response is observed on curve-specific grids (ti1, . . . , tiGi)
>. As one common observation grid

for all response curves simplifies the notation considerably and the generalization to curve-specific

grids is technical, we focus on the first case. The necessary adaptions for curve-specific grids are

treated in Subsection A.2.4.

A.2.2 Checking for rank deficiency of the design matrix

Unconstrained functional effect. As proposed by Scheipl and Greven (2016), we check whether

the marginal design matrix Dj is rank deficient to find cases where the coefficient surface for

unconstrained effects is not identifiable. As a measure for numeric rank deficiency the condition

number κ is used, with κj = κ
(
D>j Dj

)
= νj ,max/νj ,min, where νj ,max and νj ,min are the maximal

and the minimal eigenvalue of D>j Dj . As a cut-off 106 is used, where a high condition number is

associated with numeric rank deficiency.

Constrained functional effect. For constrained functional effects with general integration limits

{l(t), u(t)}, for each point t only part of the covariate information is used. Thus, each submatrix

of Bj for t has to be of full rank to get identifiable coefficients. Those submatrices are defined as

Bj(tg) = [(Bj)ig,k] ig∈M1(tg)

k∈M2(tg)

for each observation point tg, where M1(tg) = {ig : ig = 1g, . . . , Ng}

is the corresponding set of row indices and M2(tg) = {k :
∑

ig∈M1(tg) hig,rΦk(sr) 6= 0} is the set of

column indices of columns which are not completely zero in the selected rows by construction of the

integration limits and the local basis functions. Thus, each submatrix Bj(tg) has N rows and the

number of columns depends on the window [l(tg), u(tg)] and the used spline basis. As a measure for

numeric rank deficiency for submatrices of Bj we compute the condition number κj(tg) depending

on observation points tg, as

κj(tg) = κ
(
Bj(tg)

>Bj(tg)
)
. (A.3)

Functional historical effect. We elaborate the special case of the historical effect with integration

limits {T1, t}, which we use in our application. For this effect, the whole range of the covariate is
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used at t = T2 and the integral collapses to the concurrent effect for t = T1. By checking Dj for rank

deficiency we check for identifiability of the coefficient surface at t = T2. This check implies a check

for all t, for which the integration interval does not have length zero, as rank deficiency of Bj(tg) for

a certain tg with l(tg) < u(tg) implies rank deficiency of Dj . At t = T1, the historical effect collapses

to a concurrent effect xij(T1)β(T1, T1). Focusing on t = T1, we only get identifiability problems at

this point, if the functional covariate xij(T1) has constantly the same observed value for all i at the

first observation point T1, as β(s, T1) is the scalar β(T1, T1) and not a function.

A.2.3 Effect of the penalty in the case of a rank deficient design matrix

In case of numeric rank deficiency, we check for uniqueness of the coefficient under additional smooth-

ness assumptions. For that, it is necessary to measure the null space overlap between the penalty

matrix P j in s direction and the functional covariate. Adapting a measure for the distance of the span

of two matrices, which was introduced by Larsson and Villani (2001), Scheipl and Greven (2016) de-

fine a measure
⋂
LV for the amount of overlap between the span of two matricesA ∈ Rn×a, B ∈ Rn×b,

n > a, b as ⋂
LV

(A,B) = trace
(
V >BV AV

>
AV B

)
,

where the matrix V Z contains the left singular vectors of the matrix Z ∈ {A,B}. This implies that

V Z is orthogonal and spans the same column space as Z. If A, B are both of full column rank,

the overlap is given equivalently by trace (PAPB), where P Z is the projection matrix onto the span

of Z. This holds as the projection matrix onto the span of a rank r matrix Z can be computed

as P Z = V Z(r)V Z(r)>, where V Z(r) are the first r columns of V Z . For the special case that

both spaces are one-dimensional, the overlap equals the squared cosine of the angle between the two

vectors. This can be easily seen as the scalar product between two vectors of length one equals the

cosine of the angle between them. The overlap measure thus is a generalization of this quantity, with

values greater one corresponding to cases where the spans of the two matrices contain an at least

one-dimensional equal subspace, and values close to one meaning that two subspaces can be found

with small angle between them.

Unconstrained functional effect. To check for the degree of overlap between the spans of the

null spaces of the squared marginal design matrix D>j Dj and the penalty P j in s direction, Scheipl

and Greven (2016) propose to use⋂
Xj⊥P⊥

=
⋂

LV

(
(X>j )⊥, ∆ΦsP j⊥

)
, (A.4)

where Z⊥ is the orthonormal complement of Z. Overlap measures
⋂
Xj⊥P⊥ ≥ 1 indicate problematic

settings, as in this case there is an at least one-dimensional subspace which is contained in both null

spaces (Scheipl and Greven, 2016).
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Constrained functional effect. For the constrained functional effect with integration limits

{l(t), u(t)}, we introduce a measure for the null space overlap of submatrices of Xj with P j ,

as in a constrained effect only part of the observations in Xj are used at each point tg, namely

Xj(tg) = [(xij(sr))i,r] i=1,...,N
r∈M(tg)

, with M(tg) = {r : l(tg) ≤ sr ≤ u(tg)}. Accordingly, submatrices

of ∆ and Φs are defined as ∆(tg) = diag([∆(sr)]r∈M(tg)) and Φs(tg) = [(Φk(sr))r,k] r∈M(tg)
k=1,...,Kj

. The

sequential overlap is defined as a function in tg,⋂
Xj⊥P⊥

(tg) =
⋂

LV

(
(Xj(tg)

>)⊥, ∆(tg)Φs(tg)P j⊥

)
, (A.5)

and is especially suited for historical models with general integration limits. To get a single number

for the overlap, we use the maximal overlap over the index t as this corresponds to the worst case,

maxtg

(⋂
Xj⊥P⊥(tg)

)
. If the whole covariate is used for at least one point t, the maximal sequential

overlap indicates a null space overlap at least as often as the original overlap measure (A.4).

A.2.4 Responses with curve-specific grids

If the response is observed on curve-specific grids (ti1, . . . , tiGi)
>, it is not reasonable to use each ob-

servation point to check for identifiability, as there are possibly very few observations per observation

point tig. As a pragmatic solution a new grid (t̃1, . . . , t̃Ḡ)> of length Ḡ = N−1
∑

iGi is defined by the

quantiles of all grid points to get a similar distribution as for the original observation points tig in T .

Then Bj(t̃g) = [(Bj)ig,k] ig∈M1(t̃g)

k∈M2(t̃g)

is defined by M1(t̃g) = {ig : tig ∈ [t̃g, t̃g+1]}, g = 1, . . . , Ḡ − 1, and

M2 as stated above. The condition number κj(t̃g) and the sequential null space overlap
⋂
Xj⊥P⊥(t̃g)

for curve-specific observation grids are defined analogously to (A.3) and (A.5) respectively.



Appendix B

Details on the simulation study for

FLAM models

This part of the appendix is based on the web appendix of the following paper:

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2015): The functional linear

array model. Statistical Modelling, 15(3), 279–300.

B.1 Examples for data generation and model fit

Figure B.1 shows the true coefficient functions and simulated responses for a setting with N = 100

observations, G = 30 grid points per trajectory and a signal-to-noise ratio of two. Furthermore, the

estimates and predictions of FAMM and boosting are depicted. Both estimation approaches yield

similar results. Figure B.2 is equivalent to Figure B.1 with the difference that the signal-to-noise

ratio is one. It can be seen that in this case the estimated coefficient functions and the predictions

are worse.

B.2 Computation times

All computations are conducted on a 64-bit linux platform. The computation time of the models in

all the considered settings and for both algorithms ranges from some seconds up to 10 minutes, see

Figure B.3. For the FLAM, we parallelized the 10-fold bootstrap on 10 cores. For each model fit,

the optimal mstop is searched on a grid up to a maximum of 2000 iterations. For the relatively small

data situations considered in the simulation (small samples size, few observations per curve, only two

effects), FAMM is faster, but FLAM scales better for a growing number of observations and more

covariates. FLAM is faster than FAMM for the setting with N = 500 and G = 100, see Figure B.3.
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Figure B.1: Data example of simulation for FLAMs. Simulated data and estimates with number of observations
N = 100, number of grid-points G = 30 and signal-to-noise ratio SNRε = 2. True coefficients and responses
are depicted in the left column. Estimated coefficients, predictions and residuals obtained by FAMM and by
boosting are given in the middle and right column. The upper three rows show the true coefficient functions
and their estimates. The forth row shows true and predicted responses for ten observations, the lowest panel
the response with errors and the residuals for the same observations.
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Figure B.2: Data example of simulation for FLAMs. Simulated data and estimates with number of observations
N = 100, number of grid-points G = 30 and signal-to-noise ratio SNRε = 1. True coefficients and responses
are depicted in the left column. Estimated coefficients, predictions and residuals obtained by FAMM and by
boosting are given in the middle and right column. The upper three rows show the true coefficient functions
and their estimates. The forth row shows true and predicted responses for ten observations, the lowest panel
the response with errors and the residuals for the same observations.
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Figure B.3: Computation time of FAMM and FLAM. The boxplots show the computation times for all com-
binations of sample size N , number of grid points G and signal-to-noise ratio SNRε for estimation by FAMM
and boosting.



Appendix C

Details for simulation and application

of the models with historical effects

This part of the appendix is based on the web appendix of the following paper:

Brockhaus, S., Melcher, M., Leisch, F., and Greven, S. (2016): Boosting flexible func-

tional regression models with a high number of functional historical effects. Statistics and

Computing, accepted, DOI: http://dx.doi.org/10.1007/s11222-016-9662-1.

C.1 Data generation in the simulation study

Generation of random coefficient functions. We generate the random coefficient functions βj(s, t) as

linear combinations of cubic P-splines (Eilers and Marx, 1996) with random coefficients. As penalty

first or second order difference matrices are used, dβ ∈ {1, 2}. In detail the coefficient functions are

generated by βj(s, t) = I(s ≤ t)BjΘjB
>
Y , j = 1, 2. Each design matrix Bj and BY contains basis

evaluations of five cubic B-splines. The random coefficients Θj are drawn from a normal distribution,

vec(Θj) ∼ N
(
0, (0.1I + P jY )−1

)
. The penalty matrix P jY is defined as in equation (4.4), where

λj = λY = 1 and the marginal penalty matrices P j , P Y are squared difference matrices of first or

second order, dβ ∈ {1, 2}.

Simulation settings. For the simulated functional covariates, Figure C.1 shows ten simulated

observations per data generating process. As an example for the random coefficients and the

resulting response variables, Figure C.2 presents the true and estimated coefficients for a random

iteration with data generating process bsplines-5 and Figure C.3 for lines-0. The random coefficient

surfaces are generated using first order difference penalties (dβ = 1). The estimation is conducted by

FAMM (center column) and boosting (right column) using a difference penalty of first order (ps-1).

All coefficient estimates are of the right magnitude and are similar in shape to the true surfaces.

http://dx.doi.org/10.1007/s11222-016-9662-1
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Figure C.1: Simulated functional covariates for the simulation study on functional historical effects.

C.2 Further results of the simulation study

Compare different penalties. To compare the effects of the penalty in more detail, Figure C.4 shows

the relative errors depending on the order of the penalty for estimation d ∈ {1, 2}, and the use of

a standard difference penalty ps or of the shrinkage penalty pss for the different data generating

processes. Generally the relative errors are of similar magnitude irrespective of the order for the

penalty in the generation of the random coefficients. In the case of first order difference penalty ma-

trices for estimation, the use of a shrinkage penalty makes almost no difference. For the second order

difference penalty, one sees quite big reliMSE(β1) in problematic settings like end-5, end-10, lines-0

and lines-1. In this case the performance can be improved considerably by using the shrinkage penalty.

Comparison between FAMM and FDboost. To compare the performance of FAMM and FD-

boost, Figure C.5 shows the reliMSE(β1) for all different data generating processes with standard



C.2 Further results of the simulation study 135

3
4

5
6

7
8

9

β0(t)

3
4

5
6

7
8

9

FAMM: β̂0(t): reliMSE ≈ 0.05

3
4

5
6

7
8

9

FDboost: β̂0(t): reliMSE ≈ 0.0295

s

0.2
0.4

0.6
0.8

1.0

t

0.2

0.4
0.6
0.8
1.0

1.0

1.5

2.0

β1(s, t)

s

0.2
0.4

0.6
0.8

1.0

t

0.2

0.4
0.6
0.8
1.0

1.0

1.5

2.0

β̂1(s, t): reliMSE ≈ 0.0058

s

0.2
0.4

0.6
0.8

1.0

t

0.2

0.4
0.6
0.8
1.0

1.0

1.5

2.0

β̂1(s, t): reliMSE ≈ 0.0083

s

0.2
0.4

0.6
0.8

1.0

t

0.2

0.4
0.6
0.8
1.0−0.8

−0.6

−0.4

−0.2

β2(s, t)

s

0.2
0.4

0.6
0.8

1.0

t

0.2

0.4
0.6
0.8
1.0−0.8

−0.6

−0.4

−0.2

β̂2(s, t): reliMSE ≈ 0.0414

s

0.2
0.4

0.6
0.8

1.0

t

0.2

0.4
0.6
0.8
1.0−0.8

−0.6

−0.4

−0.2

β̂2(s, t): reliMSE ≈ 0.0391

−
40

−
20

0
20

40
60

E(Yi(t))

●●●●●
●

●●
●

●
●

●
●

●
●

● ● ● ● ● ● ●

●●●●●●●● ●●●● ● ● ● ● ● ●
● ● ● ● ●

●●●●●● ●●●●
●

●
●

●
●

●
●

●
●

● ●
●

●●●●
●●

●●● ● ● ● ● ● ● ● ●
●

●

●
●

●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ●
●

●
●

●

●●●●●●●● ●● ● ● ● ● ● ● ●
●

● ● ●

●●●●●●●●●●●●● ● ● ● ● ● ● ● ●
●●●●●●●●● ●● ● ● ● ● ● ● ●

● ● ● ●

●●●●●●●●●●●● ● ● ● ● ● ● ●
●

●
●

●

●●●●●●● ●●●
● ●

●
●

●
●

●

●
●

●
●

−
40

−
20

0
20

40
60
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Figure C.2: Data example of simulation for functional historical models. The left column shows the true values,
in the middle and the right column the results obtained by FAMM and FDboost are depicted. The first three
rows show the true and estimated coefficient functions, in the forth row expected and predicted response values
are given for 10 observations, and in the fifth row the response is plotted with random errors and the residuals
of the two models are given. The data generating process is bsplines-5, the random coefficients are generated
using a first order difference penalty. For the estimation, a difference penalty of order 1 (ps-1) is used.
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Figure C.3: Data example of simulation for functional historical models. The left column shows the true values,
in the middle and the right column the results obtained by FAMM and FDboost are depicted. The first three
rows show the true and estimated coefficient functions, in the forth row expected and predicted response values
are given for 10 observations, and in the fifth row the response is plotted with random errors and the residuals
of the two models are given. The data generating process is lines-0, the random coefficients are generated using
a first order difference penalty. For the estimation, a difference penalty of order 1 (ps-1) is used.
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Figure C.4: Simulation results comparing different penalties. The reliMSE(β1) for different penalties in the
estimation are given in the panels. The partition is as follows: on the left first order difference penalty d = 1,
on the right second order difference penalty d = 2, upper panel difference penalty ps and lower panel shrinkage
penalty pss. On the x-axis the order of the penalty for the generation of the random coefficients is given for
dβ ∈ {1, 2}. Results are shown for estimation by boosting on a logarithmic scale.

first order difference penalties (ps-1). There are big differences between the data settings. For

covariates that are generated using B-splines over the whole domain, for local data settings and

for lines-2, the relative estimation errors are mostly under 0.1 indicating good estimation of the

coefficient surfaces. For the other settings, with covariates containing less information, the coefficients

are fitted more accurately if the penalty used for the generation of the random coefficient and for

fitting are of the same order. This effect is most pronounced for the end settings. Apart from the

end settings most relative errors are below one. The performance of FAMM and FDboost is similar,

although FDboost outperforms FAMM for the settings lines-0 and lines-1 with dβ = 2. When adding

8 nuisance variables FAMM is no longer able to fit the models. Using boosting, the models can

be fitted without problems using all covariates and the relative errors for the influential variables

increase only slightly, see the bottom row of Figure C.5. When just fitting the models by boosting,

usually some of the nuisance variables enter the models with small coefficient effects.

To check in addition the ability of stability selection to select the influential variables, we use in

a second step stability selection on the settings with nuisance variables. We use 50 complementary

pairs, a threshold of πthr = 0.9 and PFER < 0.1 · J = 1.1 for J = 11 base-learners, inducing q = 5

(see Section 4.4 for an introduction to stability selection). The two influential variables are always

selected, and only rarely is a non-influential variable selected as third variable. Thus, the estimation

errors in the models with stability selection remain almost the same as for the settings without

nuisance variables and are not shown here.

Computation time. In Figure C.6 the computation times of the model fits on a 64-bit linux
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Figure C.5: Simulation results comparing FAMM and boosting. The reliMSE(β1) for all different data settings
fitted with standard first order difference penalty (ps-1) by FAMM and boosting without nuisance variables
(top row) and with eight nuisance variables (bottom row).

platform are plotted. For boosting, the computation time contains the bootstrapping to find the

optimal stopping iteration, the model fit and if applied the stability selection. The computations

for the bootstrap and the stability selection are parallelized on ten cores. For FAMM, the fitting is

done on one core. We compare the settings without nuisance variables with the settings with eight

nuisance variables. It can be seen that the computation time of FAMM and FDboost is comparable

if for the boosting algorithm the bootstrapping to find mstop is parallelized. For the settings with

eight nuisance variables, FDboost still fits reasonably fast, even when applied in combination with

stability selection.

C.3 Data preprocessing and further results for the application to

fermentation processes

The data preprocessing for the online measured covariates covers the subsequent three steps:

1. Smoothing: To eliminate spikes, online data are smoothed using a weighted repeated median

filter (Fried et al., 2012), as in Melcher et al. (2015).

2. Time alignment between on- and offline data: Online data are measured on a much finer

time grid (between every 30 s for PD and 5 min for BV and PTR) compared to the offline CDM
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Figure C.6: Computation time for FAMM and boosting in simulated data. The computation time for FAMM
and boosting with zero or eight extra nuisance variables. In the presence of nuisance variables boosting is used
with and without stability selection. Note that the computations for boosting were performed on ten cores,
whereas for FAMM only one core was used.

measurements. The offline time axis with five intermediate time-points is taken as a reference

time axis for each fermentation.

3. Time alignment between fermentations: As time variable the number of generations of

the bacteria is used. The generation is estimated depending on the feeding time and the growth

rate as exp(feeding time · growth rate), and takes values in the range of 1.2 to 16.4. To use the

data in a functional regression model, the covariates have to be observed on a common grid. To

achieve this, the time variable ’generation’ is rounded to two digits, binned, and then missing

values in the covariates are imputed by linear interpolation.

The estimated overall standard deviation of each functional covariate is used to scale the covariate in

the case that the standard deviation is not smaller than one, to prevent the functional observations

from having very high entries. Then all covariates are centered per time-point. Scaling with the

global standard deviation only changes the coefficient surface by a positive factor. Centering does

not affect the coefficient functions for the functional effects, it only changes the smooth intercept to

be at the center of the data. Thus, the intercept can be interpreted as the typical CDM course. The

centering of all covariates causes the boosting algorithms to converge faster and obtain more stable

results.

Uncertainty of coefficient estimates. In Figure C.7 the 2.5, 25, 50, 75 and 97.5% point-wise

quantiles of the estimated coefficient surfaces for the folds of a 100-fold bootstrap are depicted for

the historical model using the PD-BV variables selected by stability selection. The selected variables

are feed consumption, em330.exnd and em590.ex550, see Figure 4.3 for the plot of the estimated

coefficients on all data. The dataset only contains 20 curves for this model fit. Furthermore boosting
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Table C.1: Results of stability selection for functional historical models. The first 20 variables in the order as
selected by stability selection using the historical model for the three different sets of covariates. The percentage
of selection among the first q variables is given in parentheses. For the PTR variables, ’r’ means the rate of
the substance and ’c’ the cumulative amount.

PD (π̂j) PD-BV (π̂j) PD-PTR (π̂j)

base consumption (81) em590.ex550 (99) dissolved O2 (88)
head pressure (74) intercept (97) indole r (86)
dissolved O2 (62) em330.exnd (92) acetaldehyde c (80)

air flow (41) feed consumption (90) CO2 in exhaust gas (76)
CO2 in exhaust gas (21) dissolved O2 (89) methanthiole r (73)

feed consumption (9) head pressure (87) acetaldehyde r (68)
intercept (6) em530.ex430 (84) dimethyldisulfide r (67)

O2 in exhaust gas (6) em590.ex270 (81) butanone or 3-Buten-1ol c1 (66)
CO2 in exhaust gas (80) feed consumption (65)

O2 in exhaust gas (74) head pressure (62)
base consumption (74) indole c (59)

em350.ex310 (69) methanthiole c (57)
em450.ex410 (68) base consumption (56)

air flow (65) intercept (54)
em410.ex330 (65) butanol c (50)
em390.ex350 (64) isoprene c (44)
em490.ex290 (63) dimethyldisulfide c (42)
em410.ex350 (59) isoprene r (41)
em430.ex390 (59) ethanol c (38)
em590.ex290 (58) butanol r (37)
emnd.ex270 (50) butanone or 3-Buten-1ol r1 (33)

1 For mass M = 73, the substances butanone and 3-Buten-1ol are possible.

induces shrinkage of the coefficients and thus the plotted quantiles can only by interpreted as a

measure of uncertainty for the estimated coefficients, not as point-wise confidence intervals. For feed

consumption, the estimated surfaces greatly differ over the folds and the point-wise median is zero.

For the spectroscopic variables em330.exnd and em590.ex550, the coefficient surfaces are estimated

more consistently over the folds, showing similar structures at the plotted quantiles.
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Figure C.7: Bootstrapped coefficient estimates. The 2.5, 25, 50, 75 and 97.5% point-wise quantiles of the
estimated coefficient surfaces for the folds of a 100-fold bootstrap (rows from top to bottom) are depicted for
the historical model using feed consumption, em330.exnd and em590.ex550 as covariates (columns from left to
right). Red means positive, blue negative and gray zero effects.
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Table C.2: Identifiability measures for the selected variables. As identifiability measures the common logarithm
of the condition number log10 κj and the maximal null space overlap maxtg

⋂
Xj⊥P⊥

(tg) are given for the three
selected functional covariates.

covariate log10 κj maxtg
⋂
Xj⊥P⊥(tg)

em590.ex550 8.56 0.10
em330.exnd 6.24 0.11
feed consumption 8.58 0.11



Appendix D

Implementation of signal GAMLSS

and further details on application and

simulation

This part of the appendix is based on the appendix of the following paper:

Brockhaus, S., Fuest, A., Mayr, A. and Greven, S. (2016): Signal regression mod-

els for location, scale and shape with an application to stock returns. arXiv preprint,

arXiv:1605.04281.

D.1 Details on the implementation of the estimation methods

D.1.1 Used R packages

All computations are performed using R software for statistical computing (R Core Team, 2015).

Boosting for GAMLSS, Section 5.4, is implemented in the R package gamboostLSS (Hofner et al.,

2015b) and base-learners for functional covariates are available in the FDboost package (Brockhaus

and Rügamer, 2016). The gamboostLSS package provides the possibility to use all distribution families

implemented in the gamlss-package (Stasinopoulos et al., 2016).

Estimation of GAMLSS by maximizing the penalized log-likelihood using backfitting, Sec-

tion 5.5.1, is implemented in the R package gamlss (Stasinopoulos et al., 2016). The linear func-

tional effect and many other additive effects are available using the R package gamlss.add (Rigby and

Stasinopoulos, 2015) to incorporate additive effects of the R package mgcv (Wood, 2016) into the

GAMLSS models.

Estimation of GAMLSS by maximizing the penalized log-likelihood using LAML, Section 5.5.2,

is implemented in the R package mgcv (Wood, 2016), which contains linear functional effects and has

many additive terms implemented. Note that in R package mgcv the Gaussian location scale family

models the inverse standard deviation instead of the standard deviation.
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To incorporate functional effects with FPC-basis expansion, any software can be used to estimate

the FPCA. The scores can then be used like scalar covariates in the models. We use the R package

refund (Huang et al., 2016) for the estimation of the FPCA.

D.1.2 Example R code

The application of the three estimation methods–boosting, gamlss and mgcv–in R is demonstrated

on a small simulated example for a Gaussian location scale model with a linear effect of one scalar

and one functional covariate:

########### simulate Gaussian data

library(splines)

n <- 500 ## number of observations

G <- 120 ## number of evaluation points per functional covariate

set.seed(123) ## ensure reproducibility

z <- runif(n) ## scalar covariate

z <- z - mean(z)

s <- seq(0, 1, l = G) ## index of functional covariate

## generate functional covariate

x <- t(replicate(n, drop(bs(s, df = 5, int = TRUE) %*%

runif(5, min = -1, max = 1))))

## center x per observation point

x <- scale(x, center = TRUE, scale = FALSE)

mu <- 2 + 0.5*z + (1/G*x) %*% sin(s*pi)*5 ## true functions for expectation

sigma <- exp(0.5*z - (1/G*x) %*% cos(s*pi)*2) ## and for standard deviation

y <- rnorm(mean = mu, sd = sigma, n = n) ## draw respone y_i ~ N(mu_i, sigma_i)

########### fit by boosting

library(gamboostLSS)

library(FDboost)

## save data as list containing s as well

dat_list <- list(y = y, z = z, x = I(x), s = s)

## model fit by boosting

## bols: linear base-learner for scalar covariates

## bsignal: linear base-learner for functional covariates

m_boost <- FDboostLSS(list(mu = y ~ bols(z, df = 2) +

bsignal(x, s, df = 2, knots = 16),

sigma = y ~ bols(z, df = 2) +

bsignal(x, s, df = 2, knots = 16)),

timeformula = NULL, data = dat_list)

## find optimal number of boosting iterations on a 2D grid in [1, 500]

## using 5-fold bootstrap

grid <- make.grid(c(mu = 500, sigma = 500), length.out = 10)

## takes some time, easy to parallelize on Linux
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cvr <- cvrisk(m_boost, folds = cv(model.weights(m_boost), B = 5),

grid = grid, trace = FALSE)

## use model at optimal stopping iterations

m_boost <- m_boost[mstop(cvr)] ## m_boost[c(253, 126)]

summary(m_boost)

## plot smooth effects of functional covariates

par(mfrow = c(1,2))

plot(m_boost$mu, which = 2, ylim = c(0,5))

lines(s, sin(s*pi)*5, col = 3, lwd = 2)

plot(m_boost$sigma, which = 2, ylim = c(-2.5,2.5))

lines(s, -cos(s*pi)*2, col=3, lwd = 2)

## do a QQ-plot of the quantile residuals

## compute quantile residuals

predmui <- predict(m_boost, parameter = "mu", type = "response")

predsigmai <- predict(m_boost, parameter = "sigma", type = "response")

yi <- m_boost$mu$response

resi_boosting <- (yi - predmui) / predsigmai

#### alternative way to compute the quantile residuals,

#### which also works for non-Gaussian responses

## library(gamlss)

## resi_boosting <- qnorm(pNO(q = yi, mu = predmui, sigma = predsigmai))

qqnorm(resi_boosting, main = "", ylim = c(-4, 4), xlim = c(-4, 4))

abline(0, 1, col = "darkgrey", lwd = 0.6, cex = 0.5)

########### fit by gamlss

library(mgcv)

library(gamlss)

library(gamlss.add)

## multiply functional covariate with integration weights

xInt <- 1/G * x

## sma: matrix containing the evaluation points s in each row

dat <- data.frame(y = y, z = z, x = I(xInt),

sma = I(t(matrix(s, length(s), n))))

## model fit by gamlss

## use ga() from gamlss.add to incorporate smooth effects from mgcv

m_gamlss <- gamlss(y ~ z +

ga( ~ s(sma, by = x, bs = "ps", m = c(2, 1), k = 20)),

sigma.formula = ~ z +

ga( ~ s(sma, by = x, bs = "ps", m = c(2, 1), k = 20)),

data = dat)

summary(m_gamlss)

## plot smooth effects of functional covariates

plot(getSmo(m_gamlss, what = "mu"))

lines(s, sin(s*pi)*5, col = 3, lwd = 2)
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plot(getSmo(m_gamlss, what = "sigma"))

lines(s, -cos(s*pi)*2, col = 3, lwd = 2)

########### fit by mgcv

library(mgcv)

## multiply functional covariate with integration weights

xInt <- 1/G * x

## sma: matrix containing the evaluation points s in each row

dat <- data.frame(y = y, z = z, x = I(xInt),

sma = I(t(matrix(s, length(s), n))))

## model fit by mgcv

## note that gaulss in mgcv models the inverse standard deviation

m_mgcv <- gam(list(y ~ z +

s(sma, by = x, bs = "ps", m = c(2, 1), k = 20),

~ z +

s(sma, by = x, bs = "ps", m = c(2, 1), k = 20)),

data = dat, family = gaulss)

summary(m_mgcv)

## plot smooth effects of functional covariates

plot(m_mgcv, select = 1)

lines(s, sin(s*pi)*5, col = 3, lwd = 2)

plot(m_mgcv, select = 2)

lines(s, -cos(s*pi)*2, col = 3, lwd = 2)

########### fit with FPC-basis for the example of mgcv

library(refund)

## do the FPCA on x; explain 99% of variability

kl_x <- fpca.sc(x, pve = 0.99, argvals = s)

## scores that can be used like scalar covariates

scores <- kl_x$scores

dat <- data.frame(y = y, z = z, scores = scores)

## model fit by mgcv

m_mgcv_fpca <- gam(list(y ~ z + scores,

~ z + scores),

data = dat, family = gaulss)

summary(m_mgcv_fpca)

## plot smooth effects of functional covariates

coefs_scores <- coef(m_mgcv_fpca)[

grepl("scores", names(coef(m_mgcv_fpca)))]

coefs_scores_mu <- coefs_scores[1:kl_x$npc]

coefs_scores_sigma <- coefs_scores[(kl_x$npc+1):length(coefs_scores)]
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plot(s, kl_x$efunctions %*% coefs_scores_mu, type = "l")

lines(s, sin(s*pi)*5, col = 3, lwd = 2)

plot(s, kl_x$efunctions %*% coefs_scores_sigma, type = "l")

lines(s, -cos(s*pi)*2, col = 3, lwd = 2)

D.2 Further results of the application on stock returns

In Figure D.1 the estimated ACF is plotted for the squared residuals of models fitted by gamlss.

In Figure D.2 the estimates for the model assuming a normal location scale model are plotted for
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Figure D.1: Model choice for the application on stock returns. The estimated ACF of the squared quantile
residuals in the GAMLSS with scalar variables (sc, top row) or with scalar and functional variables (sc+fun,
bottom row) assuming normally distributed response (left column) or Students t-distribution for the response
(right column) for models estimated by the gamlss algorithm. The dashed blue line marks the limits for
point-wise 95% tests for the ACF to be zero.

boosting, as in Figure 5.3, and for mgcv the estimates resulting from using the shrinkage-penalty of

Marra and Wood (2011) with Kj = 10 basis functions are given. In Figure D.3 the estimates for the

model assuming a normal location scale model are plotted for boosting and for mgcv using FPC basis

functions to represent both, the functional covariate and the functional coefficient. We use the first

three eigenfunctions as those explain more than 99% of the variability in the bid- and ask-curves. The

confidence intervals are computed conditional on the estimated eigendecomposition. In Figure D.4
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Figure D.2: Results for the Gaussian location scale model for the stock returns. Estimated coefficients for
µi (top panel) and σi (bottom panel) in the GAMLSS with the two liquidities as functional covariates and

p1 = p2 = 10 lag variables. For the intercept of the standard deviation, we plot β̂0 − 1 to better fit the
intercept into the range of the lag effects. The boosting estimates on the 100 block-bootstrap samples are
plotted as partly transparent lines or circles and the point-wise 2.5, 50, and 97.5% quantiles as dashed orange
lines. The boosting estimates are plotted as solid orange line. The estimates of mgcv using ten P-splines with
shrinkage penalty with point-wise 95% confidence bands are plotted in dark blue. The zero-line is marked with
a light-blue line.

the estimates for the model assuming t-distributed response are plotted for boosting and gamlss. The

estimates for µ and σ are very similar to those for a model assuming normal distribution, compare

Figure 5.3 in the paper. The estimated df for gamlss are exp(γ̂0) ≈ 8.2 and for boosting exp(γ̂0) ≈ 3.8.

D.3 Details of the general simulation study

In this simulation study the model fits of the three implementations are compared systematically for

data situations with different complexities, see Section 5.9.2 for a summary of the results.

Data generation. For the simulation study, we consider a model with normally distributed re-
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Figure D.3: Results for the Gaussian location scale model for the stock returns using FPC basis functions.
Estimated coefficients for µi (top panel) and σi (bottom panel) in the GAMLSS with the two liquidities as

functional covariates and p1 = p2 = 10 lag variables. For the intercept of the standard deviation, we plot β̂0−1
to better fit the intercept into the range of the lag effects. The boosting estimates on the 100 block-bootstrap
samples are plotted as partly transparent lines or circles and the point-wise 2.5, 50, and 97.5% quantiles as
dashed orange lines. The boosting estimates are plotted as solid orange line. The estimates of mgcv with
point-wise 95% confidence bands are plotted in dark blue. The zero-line is marked with a light-blue line.

sponse, where the expectation and the standard deviation of the response yi depend on two

functional covariates xi1(s), xi2(s), with s ∈ [0, 1], i = 1, . . . , N , following the model:

yi|xi ∼ N(µi, σ
2
i ),

µi = h(µ)(xi) = α0 +

2∑
j=1

∫
xij(s)αj(s) ds,

log σi = h(σ)(xi) = β0 +

2∑
j=1

∫
xij(s)βj(s) ds.

For some simulation settings, the coefficient functions are completely zero, inducing non-

informativeness of the variable for the corresponding parameter. We draw N = 500 observations

for each combination of the following settings from the normal location scale model:
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Figure D.4: Results for the model assuming the t-distribution for the stock returns. Estimated coefficients for
µi (top), σi (middle) and df (bottom) in the GAMLSS with the two liquidities as functional covariates and

p1 = p2 = 10 lag variables. For the intercept of the standard deviation, we plot β̂0−1 to better fit the intercept
into the range of the lag effects. The boosting estimates on the 100 block-bootstrap samples are plotted as
partly transparent lines or circles and the point-wise 2.5, 50, and 97.5% quantiles as dashed orange lines. The
boosting estimates are plotted as solid orange line. The estimates of gamlss with point-wise 95% confidence
bands are plotted in dark blue. The zero-line is marked with a light-blue line.
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1. Simulate functional covariates xj(s), with 100 equally spaced evaluation points (s1, . . . , s100)>,

using C = 5 basis functions φc(s) =
√

2 sin[π(c− 0.5)s], c = 1, . . . , C, with random coefficients

from a C-dimensional normal with NC (0, diag(ζ1, . . . , ζC)), and

const variances ζc = 1, yielding constant variances.

lin variances ζc = 0.1c, yielding linearly decreasing variances.

exp variances ζc = [π(c − 0.5)]−2, yielding exponentially decreasing variances. Using the

Karhunen-Loève expansion with orthogonal basis functions φc(s), weighted with normally

distributed random variablesNC (0, diag(ζ1, . . . , ζC)), this would yield draws from a Wiener

process for C →∞.

All those settings generate functional variables starting in zero. Additionally, we consider

settings that start in a random point:

rand simulate functional variables as above and add a N(0, ζ0) random variable, with ζ0 = ζ1

for each setting.

The data generation is constructed such that the covariates carry different amounts of infor-

mation. The covariates carry most information in the setting with constant variances, less

for linearly decreasing and least for exponentially deceasing variances (Scheipl and Greven,

2016). The covariates are centered for each evaluation point to induce a mean effect of zero,

i.e.,
∑

i

∫
βj(s)xij(s) ds = 0. Then the covariates are standardized with their global empirical

standard deviation to make the effect size comparable over all settings.

2. The coefficient functions αj(s), βj(s) to model the expectation and the standard deviation are

coef0 completely zero.

coef1 four cubic B-splines with coefficients (2, 1.5,−0.5,−0.5), giving a decreasing curve.

coef2 four cubic B-splines with coefficients (0.5,−1,−1, 1.5), giving a u-shaped curve.

coef3 four cubic B-splines with coefficients (3, 0, 0, 0), giving a curve that is quite high for s = 0

with a steep decrease.

We run 100 replications for each data generation combination. In Figure D.5 ten simulated

observations per data generating process are depicted. The true coefficient functions can be seen in

Figure D.8.

Estimation. For the estimation of the models, we specify normal location scale models and

use one of the three estimation algorithms boosting (Mayr et al., 2012, and Chapter 3), gamlss

(Rigby and Stasinopoulos, 2005, 2014) and mgcv (Wood, 2011; Wood et al., 2015). The smooth

effects are estimated using 20 cubic P-splines with first order difference penalties. For the boosting

algorithm, the step-length ν = (0.1, 0.01)> is fixed and the optimal stopping iterations are searched

on a two-dimensional grid containing values from 1 to 5000. The smoothing parameters λ
(q)
j are
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Figure D.5: Draws from simulated data settings for the functional covariates. top row: start in zero, bottom
row: start with random point; from left to right: functional variables simulated using random coefficients with
constant, linearly decreasing and exponentially decreasing variances.

chosen such that the degrees of freedom are two per base-learner. For the likelihood-based methods,

the smoothing parameters λ
(q)
j are estimated using a REML-criterion.

Simulation results. As test data we generate a dataset with 500 observations to evaluate the

model predictions out-of-bag. To evaluate the goodness of prediction of the model we compute the

quotient of the log-likelihood with predicted distribution parameters and the log-likelihood with the

true parameters: ∑Ntest
i=1 l(ϑ̂i, yi)∑Ntest
i=1 l(ϑi, yi)

,

where the yi are the Ntest = 500 response observations in the test data, ϑ̂i are the predictions of the

distribution parameters given the model and ϑi are the true distribution parameters. To evaluate

the accuracy of the estimation of the coefficient functions, we compute the MSE integrated over the

domain of the functional covariate, e.g., for the coefficient βj

MSE(βj) =

∫ [
βj(s)− β̂j(s)

]2
ds.
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In Figure D.6 the quotient of the log-likelihoods with the predicted and the true parameters is

depicted for the different fitting algorithms, grouped by the complexity of the linear predictors–

constant, linearly or exponentially decreasing variances on the x-axis and the addition of a random

starting value in the bottom row. For the considered settings, all algorithms yield similar values.
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Figure D.6: Simulation results for signal GAMLSS. The quotient of the negative log-likelihoods for the predicted
and the true distribution parameters in the different data settings with constant, linearly and exponentially
decreasing variances for the random coefficients generating the functional covariates on the x-axis and functions
starting in zero or in a random point in rows. The different functional coefficients are given in columns from
coef0 to coef3. The three fitting algorithms are color-coded. The one-line is marked as in this case the likelihood
of the predicted and the true parameters is equal. Note that all values are displayed on a logarithmic scale.

In the case of zero-coefficients, boosting seems to outperform the other two methods. The quotient

generally becomes higher for more complex linear predictors.

In Figure D.7 the MSE of the coefficient functions α1(s) and β1(s) for the expectation and the

standard deviation, are plotted grouped by the true coefficient function, data generating process

and fitting algorithm. The horizontal 0.1-line is marked, as an MSE smaller 0.1 usually means that

the estimated coefficient function is quite similar to the true one. It can be seen that for equal

settings the functional coefficients in the linear predictor of the expectation are fitted with smaller

MSE than those of the standard deviation. Boosting fits better in the case of zero-coefficients, as

it conducts model selection during estimation. For the other settings, the three estimation methods

yield similar results. Generally, the MSE is smaller for less complex coefficient functions. Comparing

the different data generating processes, the MSE is lowest for constant variances and highest for

exponentially decreasing variances, with the linearly decreasing setting in between, as those settings

generate functional variables with decreasing information contained in the functional covariates. The

only exception is the setting with zero-functional coefficients where all data settings have similar MSE.

There is no big difference between the settings with random starting point and zero as starting point,

which means that the estimation is generally not worse for functional covariates that all start in zero.
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The highest MSEs are obtained for the functional coefficient coef3 which is high in the beginning and

then very steep (Figure D.7, far right).

The estimated coefficient functions together with the true coefficient functions are plotted in

Figure D.8 for two data settings: functional covariates with exponentially decreasing variances and

starting point zero (top row) and functional covariates with constant variances and random starting

point. The coefficient functions in the linear predictor of the expectation are estimated more ade-

quately than those of the standard deviation. The estimates are closer to the truth for the more

informative data setting, i.e. they are better for constant than for exponentially decreasing variances.

For the difficult settings, that is decreasing variance in the generation of the functional covariates,

and coef2 or coef3, it can be seen that the coefficient function is sometimes estimated as a constant

line close to or exactly zero.

The functional covariates in the application on stock returns are best reflected by the setting with

exponentially decreasing variances and starting point zero, which is the most difficult data setting.

In this case the absolute value of the coefficients is often underestimated. For settings with more

informative functional covariates, the estimates are mostly close to the true coefficient functions and

the three estimation approaches yield very similar estimates and predictions.
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Figure D.7: Simulation results for signal GAMLSS. MSE of the estimated coefficient functions in the linear
predictor of the expectation (top) and of the standard deviation (bottom) for the different data generating
settings and fitting algorithms. The three fitting algorithms are color-coded. Note that all values are displayed
on a logarithmic scale.
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Figure D.8: True and estimated coefficients in the simulation study for signal GAMLSS. Estimated coefficient
functions in the 100 runs per setting for the three fitting algorithms; functional covariates with exponentially
decreasing variances and starting point zero (top) or constant variances with the addition of a random variable
to get random starting points (bottom); estimates for the expectation (left) and the standard deviation (right).
The true coefficient functions are given as bold dashed lines.



Appendix E

Further details on the R package

FDboost

E.1 Base-learners for functional covariates

The base-learner bsignal() sets up a linear effect of a functional variable
∫
S xj(s)βj(s) ds. We ap-

proximate the integral numerically as a weighted sum using integration weights ∆(s) (Wood, 2011).

Define x̃j(sr) = ∆(sr)xj(sr), r = 1, . . . , R, the basis for the covariate is computed as

bj(x)> ≈ [x̃j(s1) · · · x̃j(sR)] [Φj(s1) · · · Φj(sR)]>

=

[
R∑
r=1

x̃j(sr)Φ1(sr) · · ·
R∑
r=1

x̃j(sr)ΦKj (sr)

]
,

where Φj(sr) is a vector of Kj B-splines evaluated at sr. The corresponding penalty matrix P j is a

squared difference matrix. Thus, the smooth effect in s is represented by P-splines (Eilers and Marx,

1996).

Using the base-learner bfpc() the linear functional effect
∫
S xj(s)βj(s) ds is specified using a FPC

basis. The functional covariate xj(s) and the coefficient βj(s) are both represented in the basis that

is spanned by the functional principal components (FPCs, see, e.g., Ramsay and Silverman, 2005,

Chap. 8 and 9) of xj(s). Let Xj(s) be a zero-mean stochastic process in the L2(S) (i.e., square-

integrable). We have observations xij(s) from this process. We denote the eigenvalues of the auto-

covariance of Xj(s) as ζ1 ≥ ζ2 ≥ · · · ≥ 0 and the corresponding eigenfunctions as ek(s), k ∈ N. The

eigenfunctions {ek(s), k ∈ N} form an orthonormal basis for the L2(S). Using the Karhunen-Loève

theorem, the functional covariate can be represented as weighted sum

Xij(s) =
∞∑
k=1

Zikek(s),
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where Zik are uncorrelated mean zero random variables with variance ζk. In practice, the infinite sum

is truncated at a certain value Kj . Represented the functional covariate and the coefficient function

by this truncated basis, the effect simplifies to

∫
S
xij(s)βj(s) ds ≈

Kj∑
k,l=1

∫
S
zikek(s)el(s)θl ds =

Kj∑
k=1

zikθk,

as the eigenfunctions ek(s) are orthonormal. Thus, this approach is equivalent to using the estimated

first Kj FPC scores zik as linear covariates. The number of eigenfunctions is usually chosen such that

the truncated basis explains a fixed proportion of the total variability of the covariate, for example

99% (cf., Morris, 2015). This truncation achieves regularized effects, as the effect can only lie in the

space spanned by the first Kj eigenfunctions. As penalty P j the identity matrix is used in bfpc().

For scalar response, the base-learners bsignal() and bfpc() yield the effect
∫
S xj(s)βj(s) ds.

Combining them with bbs() over time, they can be used to fit effects for function-on-function

regression
∫
S xj(s)βj(s, t) ds.

The base-learner bhist() allows to specify functional linear effects with integration limits depending

on t,
∫ u(t)
l(t) x(s)β(s, t) ds. Per default, a historical effects with limits [l(t), u(t)] = [T1, t] is fitted. The

integral with its limits is approximated by a numerical integration scheme (Scheipl et al., 2015). We

transform the observations of the functional covariate xj(sr) such that they contain the integration

limits and the weights for numerical integration. We define x̃j(sr, t) = I [l(t) ≤ sr ≤ u(t)] ∆(sr)xj(sr),

with indicator function I and integration weights ∆(sr). The marginal basis in x and t is

bj(x, t)
> ≈ [x̃j(s1, t) · · · x̃j(sR, t)] [Φj(s1) · · · Φj(sR)]>

=

[
R∑
r=1

x̃j(sr, t)Φ1(sr) · · ·
R∑
r=1

x̃j(sr, t)ΦKj (sr)

]
,

where Φj(s) = (Φ1(s) · · · ΦKj (s))
> is a vector of evaluated B-spline functions. The basis over the

index of the response t is bY (t)> = ΦY (t)>, where ΦY (t) is a vector of B-splines. The base-learner

bhist() computes the row tensor product of the two marginal bases, bj(x, t)
>�bY (t)>. The isotropic

penalty (6.6) is used with squared difference matrices as marginal penalties.

For a concurrent effect x(t)β(t), the base-learner bconcurrent() can be used. The smooth effect

in t is expanded by P-splines.

E.2 Implementation of the row tensor product and the Kronecker

product bases

The row tensor product of two base-learners (6.3) is implemented in the operator %X% in R package

mboost (Hothorn et al., 2016). The Kronecker product of two base-learners (6.4) is implemented as
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%O%. When %X% or %O% is called with a specification of df in both marginal base-learners, the df of

the composed effect are computed as the product of the two specified df. Then, only one smoothing

parameter is computed for an isotropic penalty like in (6.6).

Consider, for example, the composed base-learner bols(z1, df = df1) %O% bbs(t, df = df2).

The base-learner bols() specifies a linear effect. The base-learner bbs() specifies a smooth effect

represented by P-splines (Eilers and Marx, 1996). Thus, the composed base-learner yields the effect

z1βj(t), which is linear in z1 and smooth in t. The global df for the composed base-learner are

computed as dfj = df1 * df2. The corresponding smoothing parameter λj is computed by Demmler-

Reinsch orthogonalization (Ruppert et al., 2003, Appendix B.1.1).

The anisotropic penalty (6.5) is obtained if the smoothing parameter is specified in both marginal

base-learners; for instance, as bols(z1, lambda = lambda1) %O% bbs(t, lambda = lambda2). However,

it is hard to control the df in this case such that each base-learner in the model has the same number

of dfs.

In some cases, one only wants to penalize the basis in t direction. For that, the penalty in (6.7) can

be used. Such a penalty is obtained using %A0% or %Xa0%, for the Kronecker and the row tensor product

basis, respectively. When %A0% or %Xa0% are used to form an effect with penalty (6.7), the number of

df in the first base-learner has to be equal to the number of its columns. Consider, bols(z1, df =

1, intercept = FALSE) %A0% bbs(t, df = df2), with a metric variable z1. This specification implies

bj(xi) = xi1 and P j = 0 for the bols() base-learner. The bbs() base-learner sets up a design matrix

of B-spline evaluations in t and a squared difference matrix as penalty matrix.

Linking formula and timeformula in FDboost() to representation (6.3) and (6.4), the J base-

learners in formula correspond to the J marginal bases bj and the base-learners in timeformula

corresponds to the marginal basis bY . If it is possible to represent the effects as Kronecker product,

the base-learners are combined by %O%. Otherwise, the row tensor product %X% is used to combine the

marginal bases.

Consider, for example, formula = Y ∼ b1(x) + b2(x) + ... + bJ(x), and the timeformula =

∼ bY (t). For an array model, this yields formula = Y ∼ b1(x) %O% bY (t) + b2(x) %O% bY (t) +

... + bJ(x) %O% bY (t). In model (6.1), this corresponds to the linear predictor hj(x)(t) =∑
j (bj(x)⊗ bY (t))θj . If formula contains base-learners that are composed of two base-learners by

%O% or %A0%, those effects are not expanded with timeformula, allowing for model specifications with

different effects in t direction.
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Brockhaus, S. and Rügamer, D. (2016). FDboost: Boosting Functional Regression Models. R package

version 0.2-0, Available at http://CRAN.R-project.org/package=FDboost/.

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2014). The functional linear array model

and an application to viscosity curves. In Kneib, T., Sobotka, F., Fahrenholz, J., and Irmer, H.,

editors, Proceedings of the 29th International Workshop on Statistical Modelling, pages 63–68.

Brockhaus, S., Scheipl, F., Hothorn, T., and Greven, S. (2015b). The functional linear array model.

Statistical Modelling, 15(3):279–300.
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Krämer, N. (2006). Boosting for functional data. In Rizzi, A. and Vichi, M., editors, COMPSTAT

2006—Proceedings in Computational Statistics, pages 1121–1128. Physica Verlag, Heidelberg, Ger-

many.

Lange, K. L., Little, R. J. A., and Taylor, J. M. G. (1989). Robust statistical modeling using the

t distribution. Journal of the American Statistical Association, 84(408):881–896.

Larsson, R. and Villani, M. (2001). A distance measure between cointegration spaces. Economics

Letters, 70(1):21–27.
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