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Summary

Promoter-proximal  pausing  is  a  wide-spread  phenomenon  in  metazoans.  RNA

polymerase II is stably paused after transcribing 20-60 nucleotides of a gene and awaits

controlled release.  First  considered a rare phenomenon, this mechanism was recently

recognized as a key regulatory step in controlling transcription for the majority of genes.

The four-subunit negative elongation factor (NELF) is essential for establishing promoter-

proximal  pausing.  Despite years  of  study,  structural  information  is  known only  for  the

NELF-E  RRM  domain  and  is  lacking  for  the  rest  of  the  complex.  A high-resolution

structure of NELF would greatly contribute to understanding the role of NELF in promoter-

proximal pausing and provide an important basis for further research. 

In  this work,  a highly conserved NELF subcomplex consisting of  NELF-A (6-188) and

NELF-C (183-590) was identified, crystallized and its structure solved to 2.8 Å resolution.

Both  subunits  interact  extensively. NELF-C adopts a horse-shoe shaped conformation

including a CTD-interacting domain (CID)-like domain at its C-terminus. The NELF-A C-

terminal region (111-182) stretches across NELF-C. The NELF-A N-terminal region (6-110)

forms a highly conserved domain with structural similarity to the  HIV integrase-binding

domain in human PC4 and SFRS1-interacting protein.

Analysis  of  the  NELF-AC surface  revealed  that  the  exterior  of  the  complex  contains

several  large,  positively  charged  patches.  Fluorescence  anisotropy  experiments

demonstrated that NELF-AC specifically interacts with single stranded nucleic acids in a

strongly  sequence dependent  manner.  Mutation of  the positive patches confirmed the

importance of surface residues in nucleic acid binding. Three previously identified in vivo

NELF-AC phosphorylation  sites  are  located  close  to  the  surface  regions  involved  in

nucleic acid binding and phosphomimetic mutations of these sites effectively decrease

affinity  of  NELF-AC for  nucleic  acids.  NELF activity  is  tightly  regulated by the kinase

positive  transcription  elongation  factor  (P-TEFb).  Treatment  of  NELF-AC with  P-TEFb

revealed two novel phosphorylation sites that have a strong, inhibitory effect on nucleic

acid binding by NELF-AC. Finally, crosslinking of a four-subunit NELF complex coupled

with mass-spectrometry elucidated the architecture of the complete NELF complex and

confirmed  that  the  nucleic  acid  binding  surfaces  identified  in  the  NELF-AC  crystal

structure are accessible in solution.

These results suggest a possible model for NELF action at the molecular level. NELF-AC

contributes to pausing by binding to nascent RNA in a sequence dependent manner to

additionally  stabilize  the  pausing  complex  and  further  enhance  promoter-proximal

pausing.
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 I Introduction

 1 Transcription of genes in eukaryotes

 1.1 DNA-dependent RNA polymerases

To adapt to a changing environment and maintain basic metabolic processes, a cell needs

to transcribe the information contained in its DNA into various types of RNA continuously

and dynamically. In most organisms, production of RNA is performed by DNA-dependent

RNA polymerases,  with the exception of  some viruses  that  use RNA-dependent  RNA

polymerases to synthesize RNA (te Velthuis, 2014). DNA-dependent RNA polymerases

consist of one or more subunits and are tightly regulated by transcription factors (Cramer,

2002a; Thomas and Chiang, 2006). Different than in viruses and organelles, complex RNA

polymerases  composed  of  several  different  subunits  evolved  in  all  living  organisms

(Cramer, 2002b). Bacteria and Archaea contain only one multi-subunit RNA polymerase

consisting of five and twelve subunits, respectively (Werner and Grohmann, 2011).

In eukaryotes, five multi-subunit  RNA polymerases (Pol) I–V produce different kinds of

RNA (Haag and Pikaard, 2011; Werner, 2007). Whereas Pol I transcribes only one gene,

the 45S ribosomal RNA (rRNA),  Pol  II  synthesizes all  pre-messenger  RNAs (mRNA),

micro RNAs (miRNA) and most small nuclear RNAs (snRNA) and Pol III produces many

untranslated RNAs like translator RNAs (tRNA) and 5S rRNA (Roeder and Rutter, 1970;

Thomas and Chiang, 2006). Pol IV and V exist  only in plants and are involved in the

biogenesis of siRNA and heterochromatin formation (Haag and Pikaard, 2011).

Pol I, II and III are composed of 14, 12 and 17 subunits, respectively. Ten subunits are

structurally homologous among all three Pols and represent the conserved core of the

enzyme (Table 1) (Vannini and Cramer, 2012). Pol I and III contain additional subunits not

present in the Pol II core enzyme. Homologs of these unique Pol I and Pol III subunits are

transiently associated with Pol II during transcription and are known as initiation specific

transcription factors (TFs) (Table 1) (Vannini and Cramer, 2012). Permanent association of

homologous Pol II transcription factor homologues to Pol I and III likely results from the

greater transcriptional specialization of Pol I and Pol III. The mechanism of transcription

initiation between Pol  I-III  is  similar  in that  all  are recruited by auxiliary factors to the

correct transcription start site (TSS) (Table 1)  (Vannini and Cramer, 2012). A plethora of

additional proteins regulate Pol II activity in a cell and gene specific manner (Sikorski and
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Buratowski, 2009; Thomas and Chiang, 2006).

Table 1: RNA polymerase subunits and initiation factor homologues in yeast.
Adapted from (Vannini and Cramer, 2012).

Pol I Pol II Pol III

Polymerase Core

A190 Rpb1 C160

A135 Rpb2 C128

AC40 Rpb3 AC40

Rpb5 Rpb5 Rpb5

Rpb6 Rpb6 Rpb6

Rpb8 Rpb8 Rpb8

A12.2 N-ribbon Rpb9 C11 N-ribbon

Rbp10 Rpb10 Rpb10

AC19 Rpb11 AC19

Rbp12 Rpb12 Rpb12

Polymerase Stalk

A14 Rpb4 C17

A43 Rpb7 C25

Pol II transcription factors and homologues in Pol I and Pol III

A49 N-terminal domain Tfg1 (TFIIFα) C37

A34.5 Tfg2 (TFIIFβ) C53

Tfa1 (TFIIEα) C82

A49 C-terminal domain Tfa2 (TFIIEβ) C34

C31

 1.2 Eukaryotic RNA polymerase II

Eukaryotic Pol II is a highly conserved protein complex with a mass greater than 500 kDa

and consists of 12 subunits in S.cerevisiae (Figure 1) (Armache et al., 2005; Cramer et al.,

2001). The yeast Pol II crystal structure (Cramer et al., 2001), initiation complex (Cheung

et al., 2011; Liu et al., 2011; Sainsbury et al., 2015; Sainsbury et al., 2013) and elongation

complex  (Figure  1)  (Gnatt  et  al.,  2001;  Kettenberger  et  al.,  2004) as  well  as  other

functional complexes (Cheung and Cramer, 2011; Kostrewa et al., 2009; Plaschka et al.,

2015;  Sydow et  al.,  2009) have been characterized.  Mammalian Pol  II  has  not  been

crystallized yet, but medium-resultion structures of human Pol II complexes obtained by
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cryo-electron microscopy studies are available  (Bernecky et al.,  2011; He et al., 2013;

Kassube et al., 2013).

Ten subunits invariantly constitute the core enzyme. Subunits Rbp 4 and Rpb 7 form the

peripheral ‘stalk’ subcomplex (Figure 1) that is required for transcription initiation and can

dissociate from the core enzyme in yeast (Edwards et al., 1991).

Pol II  comprises a ‘central cleft’ that encompasses the DNA template and harbors the

highly conserved ‘bridge helix’ – the active site – at its base (Figure 1)  (Cramer et al.,

2001; Weinzierl, 2011). The cleft is defined by the two largest subunits Rbp1 and Rpb2

and confined by three distinctive domains called ‘clamp’, ‘lobe’ and ‘protrusion’.  Newly

synthesized RNA exits the cleft through a RNA exit-tunnel located between the active site

and  the  clamp  and  resurfaces  near  the  clamp  (Figure  1)  (Andrecka  et  al.,  2008;

Kettenberger et al., 2004).

The clamp (Figure 1) is a highly conserved structural feature of Pol II. The mobile clamp

adopts  an  ‘open’ conformation  in  the  ten-subunit  complex  (Cramer  et  al.,  2001) and

switches to a ‘closed’ conformation after Pol II binds DNA encircling the template (Gnatt et

al., 2001). The closed conformation is stabilized by Rpb4/7  (Armache et al., 2003). The

3

Adapted from (Martinez-Rucobo et al., 2011).  Both perspectives are related by a 90° turn around
the vertical  axis.  Parts of  Pol  II  domains interacting with Spt4/5 (clamp coiled coil)  or  in close
proximity (protrusion and lobe) are colored. Rpb4/7 and the bridge helix are labeled for orientation.
The arrow indicates the direction of movement of  transcribing Pol II.  Pol II, Spt4 and Spt5 are
coloured in grey, yellow and green, respectively. DNA and RNA are blue and red, respectively.

Figure 1: Model of eukaryotic Pol II-DSIF elongation complex.
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inner  side  of  the  clamp  interacts  with  DNA  (Gnatt  et  al.,  2001),  the  outer  side  with

interchanging accessory factors during the transcription cycle (Grohmann et al., 2011) like

TFIIE (Chen et al., 2007), Spt4/5 (Klein et al., 2011; Martinez-Rucobo et al., 2011) or the

human hepatitis virus delta antigen (HDAg) (Yamaguchi et al., 2007).

The C-terminal repeat domain (CTD) of Rbp1 is unique to Pol II. The CTD serves as a

binding platform for RNA modifying enzymes positioned close to the RNA exit tunnel and

coordinates RNA synthesis  and co-transcriptional  processing  (Martinez-Rucobo  et  al.,

2015; Munoz et al., 2010; Perales and Bentley, 2009; Proudfoot et al., 2002). The CTD is

also important to recruit transcription regulation factors (Napolitano et al., 2014; Proudfoot

et  al.,  2002).  The  CTD  consists  of  a  repetitive  heptapeptide  sequence  (consensus

sequence  Y1S2P3T4S5P6S7)  that  is  variably  phosphorylated  during  the  course  of  the

transcription  cycle  (Heidemann  et  al.,  2013).  The  dynamic  phosphorylation  pattern  is

thought to be the molecular basis for the recruitment of different factors at various stages

of the transcription process (Buratowski, 2009).

 2 The transcription cycle of RNA polymerase II

Transcription of eukaryotic genes by Pol II is divided into three highly regulated steps:

(I)  initiation,  (II)  elongation  and  (III)  termination  (Figure  2)  (Hahn  and  Young,  2011;

Nechaev and Adelman, 2011). The elongation step can be subdivided in early elongation

IIa and productive elongation IIb, respectively.

4

Figure 2: The transcription cycle of eukaryotic RNA polymerase II.
Adapted from: (Nechaev and Adelman, 2011).



 I Introduction

Prior  to  initiation  the  pre-initiation  complex  (PIC)  consisting  of  general  transcription

initiation factors (Table 2) and Pol II assembles at the promoter DNA and creates a short

region of single stranded (ss) DNA – the transcription bubble – where transcription can

take place (He et al., 2013; Muhlbacher et al., 2014; Sainsbury et al., 2015). A minimum of

five general transcription factors (GTFs) are necessary to recruit Pol II to the promoter and

start transcription (Table 2) (Sikorski, Buratowski 2009, Thomas and Chiang 2006). Aided

by the non-essential factor TFIIA (Thomas and Chiang, 2006) the TATA-binding protein

(TBP) subunit of the multi-protein complex TFIID recognizes the AT-rich promoter TATA-

box sequence and upon binding bends the DNA by 90° (Kim et al., 1993; Tsai and Sigler,

2000). TBP is also important for activating TATA-less genes and initiation of Pol I and Pol

III  (Sadowski  et  al.,  1993;  White and Jackson,  1992).  TFIIB stabilizes  the TFIID-DNA

complex and recruits a Pol II – TFIIF complex to the promoter site (Bushnell et al., 2004;

Kostrewa  et  al.,  2009;  Orphanides  et  al.,  1996;  Sainsbury  et  al.,  2013).  Consecutive

binding of TFIIE and TFIIH completes PIC assembly (Forget et al., 2004; Watanabe et al.,

2003).

Transcription  initiation  starts  with  unwinding  DNA and  promoter  melting  stimulated by

TFIIE and TFIIH resulting in  a transcription bubble with a 15 nt  single stranded DNA

(Holstege et al., 1996; Kim et al., 2000). When single stranded DNA is available in the

active site of the open promoter complex, incorporation of the first nucleotides can begin. 

Once  the  newly  synthesized  RNA has  reached  a  length  of  10  nt  transcribing  Pol  II

escapes from the promoter region. The initially unstable transcription process gradually

stabilizes  and after  25  nt  the  early  elongation  phase  begins  (Jonkers  and Lis,  2015;

Margeat et al., 2006; Shandilya and Roberts, 2012). Phosphorylation of the Pol II CTD at

serine 5 is a critical step in the transition from initiation to elongation (Buratowski, 2009).

After promoter escape of Pol II a part of the PIC – TFIIA, -D, -E and -H – remains bound

to the promoter to enhance recruitment of another Pol II molecule and facilitate reinitiation

of transcription (Yudkovsky et al., 2000).

For many metazoan genes, Pol II pauses after transcribing 20-60 nt and remains stably

bound to DNA and RNA  (Kwak and Lis,  2013).  Additional  factors are required before

elongation  is  resumed  (Chiba  et  al.,  2010).  This  process  is  called  promoter-proximal

pausing and will be discussed in more detail later. Once promoter-proximally paused Pol II

is released productive elongation ensues.

During  elongation,  nucleosomes  are  a  major  obstacle  to  transcribing  Pol  II  that  is

overcome by extensive  histone modification and displacement mediated by numerous

chromatin-modifying enzymes (Kulaeva et al., 2013; Saunders et al., 2006). Chromatin of
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activated genes exhibits a distinct pattern of post-translational histone modifications (Li et

al.,  2007;  Shilatifard,  2006).  Methylations H3K27me3 and H3K9me3 as well  as  other

modifications  that  lead  to  silencing  are  removed  during  activation  and  replaced  by

acetylation  of  histones  H3  and  H4,  methylations  H3K36me3  and  H3K79me3,

phosphorylation H3S10P and other modifications. Furthermore mRNA splicing at intron-

exon junctions constitutes a transcription rate-decreasing process (Jonkers and Lis, 2015;

Kwak et al., 2013).

Termination is predominantly mediated through the poly(A)-dependent pathway (Kuehner

et al., 2011). A highly conserved poly(A) signal sequence positioned upstream (AAUAAA)

and  a  G/U-rich  sequence  positioned  immediately  downstream  of  the  genes  3'  end

decelerate  and finally  pause  Pol  II.  Joint  action  of  several  factors  including  cleavage

stimulation  factor  (CstF),  cleavage  and  polyadenylation  specificity  factor  (CPSF)  and

polyadenylate-polymerase (poly(A)-Pol) lead to cleavage of the nascent transcript and 3'

polyadenylation of the transcribed mRNA by addition of 100-200 adenosines (Kuehner et

al., 2011; Nag et al., 2007).

Table 2: General transcription factors in human and their functions.
Adapted from (Thomas and Chiang, 2006).

Factor Subunits Function

TFIIA a 3 Stabilization of TATA-TBP complex

TFIIB 1 TSS selection, recruits pol II/TFIID,
stabilization of TATA-TBP complex

TFIID 15 Core promoter-binding, coactivator, protein kinase,
histone acetyltransferase, TBP is a subunit

TFIIE 2 Recruits TFIIH,
formation of an initiation-compentent pol II,
promoter clearance 

TFIIF 2 Pol II binding to promoter,
recruits TFIIE and -H,
TSS selection and promoter escape

TFIIH 10 Helicase activity, phosphorylate CTD

a non-essential for transcription initiation
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 3 Promoter-proximal pausing

 3.1 Prevalence and relevance

Gene  expression  of  many  metazoan  genes  is  regulated  during  early  elongation  by

promoter-proximal pausing (ppp) (Kwak and Lis, 2013). Elongating Pol II stably pauses at

a position 20-60 bp downstream of the TSS and is released only upon phosphorylation of

Pol II and other factors by the kinase complex positive transcription elongation factor b (P-

TEFb) (Yamaguchi, Shibata, Handa, 2012, Adelman, Lis 2012). It was long thought that

gene expression was primarily regulated during transcription initiation. Recently promoter-

proximal pausing was recognized as a key event in the regulation of many genes during

transcription elongation  (Jonkers and Lis, 2015; Li and Gilmour, 2011; Yamaguchi et al.,

2013).

Promoter-proximal  pausing  was first  discovered by  in  vivo  analysis  of the  Drosophila

melanogaster  heat  shock  genes hsp70  and  hsp26  that  exhibited  Pol  II  accumulation

downstream of the TSS prior to induction  (Giardina et al., 1992; Gilmour and Lis, 1986;

Rasmussen  and  Lis,  1993;  Rougvie  and  Lis,  1988).  The  accumulated  Pol  II  is

transcriptionally engaged as demonstrated by permanganate footprinting and is able to

resume transcription (Core et al., 2008; Rougvie and Lis, 1988). The cleavage factor TFIIS

is prevented from cleaving the RNA transcript (Cheung and Cramer, 2011; Palangat et al.,

2005). Therefore the Pol II is in fact stably paused instead and not terminated. Promoter-

proximally paused Pol II  has also been found and studied in more detail at immediate

early genes like  junB (Aida et al.,  2006),  c-myc (Krumm et al.,  1992; Schneider et al.,

1999) and  c-fos (Fivaz  et  al.,  2000;  Plet  et  al.,  1995).  Subsequent  studies  showed

promoter-proximally  paused  Pol  II  to  be  a  common  phenomenon  that  occurs  at  the

majority of genes in the fruit fly Drosophila melanogaster (Guenther et al., 2007; Muse et

al., 2007) and in human (Core et al., 2008; Gilmour, 2009; Guenther et al., 2007). Similar

phenomena have been described in yeast  (Venters and Pugh, 2009) and the nematode

C.elegans (Baugh et al., 2009). However, no distinct proof for promoter-proximal pausing

has  been  found  in  these  organisms  and  promoter-proximal  pausing  is  considered  a

process  specific  to  higher  metazoa.  A comparable  process  of  transient  polymerase

pausing following transcription initiation has been described in bacteria  (Greive and von

Hippel, 2005; Larson et al., 2014; Vvedenskaya et al., 2014).

Promoter-proximal pausing is important for controlling signal-responsive pathways  (Aida

et  al.,  2006;  Krumm  et  al.,  1992;  Plet  et  al.,  1995),  developmental  processes  in

multicellular organisms (Amleh et al., 2009; Keegan et al., 2002; Zeitlinger et al., 2007),
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cell differentiation and reprogramming (Guenther et al., 2007; Williams et al., 2015), and

expression of genes of the human immunodeficiency virus (HIV) (Natarajan et al., 2013;

Zhang et al., 2007). 

 3.2 Involved factors and regulation

Three protein complexes are involved in regulating promoter-proximal pausing. The DRB

sensitivity inducing factor (DSIF)  (Wada et al., 1998; Yamaguchi et al., 1999b), P-TEFb

(Cheng and Price,  2007; Chiba et al.,  2010; Price,  2000) and the negative elongation

factor (NELF) (Pagano et al., 2014; Yamaguchi et al., 1999a). All three factors have also

been detected in vivo simultaneously on the gene loci of hsp70 (Andrulis et al., 2000; Lis

et al., 2000; Wu et al., 2003) or  junB (Aida et al., 2006) containing promoter-proximally

paused Pol II.

 3.2.1 DSIF

DSIF is  a heterodimer  composed of  the human Spt4 (13,2 kDa) and Spt5 (121 kDa)

homologs. Spt5 (NusG in bacteria) is the only transcription factor conserved in all three

domains of life (Werner, 2012). The Nus-G N-terminal (NGN) domain of Spt5 together with

Spt4 constitutes the conserved core of the complex in archaea and eukaryotes (Belogurov

et al., 2007; Guo et al., 2008; Martinez-Rucobo et al., 2011; Wenzel et al., 2010; Zhou et

al., 2009a). The Spt4/5 core binds to the highly conserved Pol II clamp coiled coil motif

(Hirtreiter et al., 2010; Martinez-Rucobo et al., 2011) and to lobe and protrusion on the

opposite side of the cleft closing the Pol II cleft (Figure 1)  (Klein et al., 2011; Martinez-

Rucobo et  al.,  2011).  This contacts prevent DNA release from transcribing Pol II  thus

increasing processivity.  Spt5 further contacts the non-template DNA and stabilizes the

transcription bubble  (Artsimovitch and Landick, 2002). In eukaryotes Spt5 possesses a

814 amino acid long C-terminal tail (273-1087) including five  Kyrpides-Ouzounis-Woese

(KOW) domains and an unstructured C-terminal region (CTR) similar to the Pol II CTD

(Kyrpides et al., 1996; Yamaguchi et al., 1999b). The KOW-domains and the CTR serve

as  binding  platform  for  RNA-processing  factors  and  contribute  to  integrating  RNA-

synthesis and -processing (Mayer et al., 2012; Werner, 2012).

Unphosphorylated  DSIF  suppresses  transcription  whereas  P-TEFb-dependent

phosphorylation of the CTR causes a functional reversion  (Yamada et al.,  2006). CTR

phosphorylation is a critical step in recruitment of elongation factors and progression into

productive elongation and is preserved in all eukaryotes  (Chen et al.,  2009; Liu et al.,
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2009; Qiu et al., 2006; Squazzo et al., 2002; Zhou et al., 2009b).

 3.2.2 NELF

NELF is a multi subunit complex that represses transcription elongation (Wu et al., 2003;

Yamaguchi et al., 2002) and is associated with chromatin (Wu et al., 2005). NELF consists

of four subunits NELF-A, -B, -C or its splicing variant -D, and -E. NELF is present in many

metazoans such as human, zebrafish or fruit fly (Narita et al., 2003) but is also observed

in the single celled organism Dictyostelium discoideum (Chang et al., 2012). NELF has

not been found in yeast, the nematode C. elegans or plants (Narita et al., 2003). NELF is

highly conserved with the exception of a few regions of NELF-A, NELF-C and NELF-E

(Figure  3A).  The  four  NELF  subunits  interact  in  a  linear  manner  and  the  peripheral

subunits NELF-A and NELF-E have been functionally characterized (Narita et al., 2003).

The N-terminus  of  NELF-A binds  to  NELF-C (125-188)  and contains  a  region  that  is

known to associate with Pol II  (189-248)  (Narita et  al.,  2003). The NELF-A C-terminal

region is conserved but is presently uncharacterized. The NELF-A•Pol II binding region

exhibits a weak sequence similarity with  HDAg and possibly  interacts  with Pol  II  in  a

similar way like HDAg by binding the Pol II clamp (Figure 3B)  (Yamaguchi et al., 2001;

Yamaguchi et al., 2007). NELF-E contains a structurally characterized RNA recognition

motif (RRM) that binds RNA in a sequence-dependent manner (Figure 3A) (Pagano et al.,

2014; Rao et al., 2006; Rao et al., 2008). Except for the RRM of NELF-E no structural

information for NELF is available.

NELF is essential for the embryogenesis of higher metazoa (Amleh et al., 2009; Wang et

al.,  2010; Williams et al., 2015) and is required for expression of genes of the human

immunodeficiency virus  (Natarajan et al., 2013; Zhang et al., 2007). NELF has not only

been associated with HIV but was also implicated in the etiology of other viral infections

(Palermo et  al.,  2011;  Toth et  al.,  2012),  genetic diseases like the Wolf-Hirschhausen

syndrome which is characterized by multiple malformations  (Kerzendorfer et al.,  2012;

Wright et al., 1999) or multiple types of chancer (Iida et al., 2012; McChesney et al., 2006;

Sun et al., 2008; Ye et al., 2001).
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 3.2.3 P-TEFb

P-TEFb is a heterodimeric cyclin-dependent kinase composed of cyclin-dependent kinase

9  (CDK9)  and  cyclins  T1,  T2,  or  K (Peterlin  and  Price,  2006).  P-TEFb  was  initially

identified as the primary target of a drug,  5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole

(DRB), which prevents Pol II from producing full-length transcripts (Marshall et al., 1996;

Marshall  and  Price,  1992,  1995;  Zhu  et  al.,  1997).  It  was  later  shown  that  P-TEFb

counteracts  promoter-proximal  pausing  and  enables  productive  elongation  by

phosphorylating the Ser-2 sites of the Pol II CTD  (Cheng and Price, 2007), the Spt4/5

CTR (Yamada et al., 2006) and NELF (Fujinaga et al., 2004). P-TEFb also contributes to

establishing  open  chromatin  by  phosphorylating  histones  (O'Brien  et  al.,  2010).

Conversely,  inhibition  of  P-TEFb  activity  almost  completely  blocks  Pol  II  transcription

elongation  (Henriques et al.,  2013; Jonkers et al.,  2014). Crystal structures of  P-TEFb

alone and in complex with drugs and small peptides are available to provide a mechanistic

basis for its role in transcription (Baumli et al., 2012; Baumli et al., 2008; Schulze-Gahmen

et al., 2014; Schulze-Gahmen et al., 2013; Tahirov et al., 2010). P-TEFb is essential for

10

(A)  Conservation  of  human  NELF  subunits  relative  to  Drosophila  NELF.  NELF-A region  with
sequence similarity to HDAg (Figure 3B) and NELF-E RRM are indicated. Adapted from (Wu et al.,
2005).
(B) Sequence alignment between human (H.s.) NELF-A HDAg-like region and HDAg (P0C6L3).
Identical and conserved residues are colored in green and yellow, respectively. The alignment is
based on (Yamaguchi et al., 2001) and was generated with CluwtalW (Larkin et al., 2007).

Figure 3: Conservation of NELF subunits
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the replication of the human immunodeficieny virus (He et al., 2010; Sobhian et al., 2010).

 3.3 Mechanism and regulation of promoter-proximal pausing

Association of  DSIF and NELF with elongating Pol  II  is  sufficient  to  induce promoter-

proximal pausing  (Missra and Gilmour,  2010; Narita et al.,  2003; Renner et  al.,  2001;

Yamaguchi  et  al.,  1999b). NELF requires a preformed Pol  II-DSIF complex for  stable

binding. The position of Pol II pausing on the gene is a function of the rate of transcription

elongation  and  NELF  binding  efficiency  (Li  et  al.,  2013), which  is  influenced  by

competition with the transcription factor TFIIF (Renner et al., 2001). NELF and DSIF bind

to the elongation complex once nascent RNA is longer than 18 nt and emerges from Pol II

surface (Andrecka et al., 2008; Missra and Gilmour, 2010). Despite a strong association of

the NELF-E RRM with RNA (Pagano et al., 2014; Rao et al., 2008), it was reported that

DSIF, but not NELF contacts nascent RNA (Missra and Gilmour, 2010). Several models

how  promoter-proximal  pausing  is  established  have  been  suggested (Kwak  and  Lis,

2013).

The  kinetic  model  (Figure  4A)  posits  that the  sequence  dependent  rate  of  Pol  II

transcription competes with the efficiency of pausing factor recruitment to thereby affect

extent and location of pausing (Bai et al., 2004; Li et al., 2013; Nechaev et al., 2010). So

far no common cis-element at human pausing sites has been discovered, albeit promoters

with paused Pol II share some characteristics: the respective promoters are CpG rich, lack

a TATA box and contain Pol II CTD Ser-5 but not Ser-2 phosphorylations  (Core et al.,

2008; Kininis et al., 2009; Mavrich et al., 2008). Furthermore, the +1 nucleosome is shifted

downstream at promoters containing paused Pol II and histones carry a unique H3K4 and

H3K27 methylation (Bernstein et al., 2006; Schones et al., 2008).

The nucleosome barrier model (Figure 4B) assumes the first nucleosome after the TSS to

prevent  elongating  Pol  II  from proceeding  further  into  the gene.  Indeed nucleosomes

contribute  to  promoter-proximal  pausing  (Gilchrist  et  al.,  2010;  Gilchrist  et  al.,  2008;

Jimeno-Gonzalez et al., 2015) but are not necessary to pause Pol II. For example the

highly paused Drosophila melanogaster hsp70 gene contains a 5' nucleosome free region

(Fuda et al., 2009; Gilchrist et al., 2010; Yamaguchi et al., 1999a).

The  interaction  model  (Figure  4C)  relies  on  sequence  specific  interaction  between

pausing factors and DNA/RNA as observed in bacteria  (Wang et al., 1997). Indeed, the

NELF-E RRM binds to RNA in a sequence dependent manner (Pagano et al., 2014) and

thereby may contribute to promoter-proximal pausing (Yamaguchi et al., 2002).
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In  some  cases  estrogen-dependent  recruitment  of  NELF  or  sequence-dependent

recruitment of DSIF to specific sites is pivotal for setting up promoter-proximal pausing

(Aiyar et al., 2004; Amir-Zilberstein et al., 2007).

Phosphorylation of NELF, DSIF and Pol II CTD by P-TEFb is critical for pause release

(Figure 5) and promoter-proximal pausing is mainly regulated by spatiotemporal regulation

of P-TEFb catalytic activity (Chiba et al., 2010; Peterlin and Price, 2006; Yamaguchi et al.,

2013).

P-TEFb is recruited to specific genomic target sites by sequence specific factors such as

the heat shock factor (hsf) (Lis et al., 2000) or the bromodomain-containing protein Brd4

(Hargreaves  et  al.,  2009;  Jang  et  al.,  2005).  Brd4  binds  to  acetylated  histones  and

represents a prevalent mechanism how P-TEFb is recruited to active genes (Hargreaves

et al., 2009; Yang et al., 2005). P-TEFb is also recruited by NF-κB (Barboric et al., 2001;

Luecke  and  Yamamoto,  2005),  the  viral  transactivator  Tat  (Price,  2000)  and  others

(Gargano et al., 2007; Oven et al., 2007).

The equilibrium between  the  active  and the  inactive  state  of  P-TEFb is  regulated  by

association with the small nuclear ribonucleic protein (snRNP) 7SK snRNP consisting of

7SK snRNA and the proteins HEXIM, LARP7 and MEPCE (Figure 5) (Chen et al., 2008;

Jeronimo et al., 2007; Markert et al., 2008; Peterlin and Price, 2006; Yik et al., 2003). P-

TEFb release from this inhibitory complex is controlled by various factors in response to

external stimuli  (Chen et al.,  2004; Li  et al.,  2005), such as the direct interaction with

transcriptional  coactivators  like  Brd4  or  the  HIV-1  Tat  protein  (Barboric  et  al.,  2007;

Krueger et al., 2010; Sedore et al., 2007; Tahirov et al., 2010; Yang et al., 2005).

12

Figure 4: Models of possible mechanisms of promoter-proximal pausing. 
Adapted from  (Kwak and Lis,  2013).  Possible mechanisms that  impede Pol  II  elongation and
induce pausing.
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 3.4 Physiological significance of promoter-proximal pausing

Several biological functions of promoter-proximal pausing have been discussed (Adelman

and Lis, 2012; Chiba et al., 2010).

In addition to the highly regulated process of  transcription initiation,  promoter-proximal

pausing  provides  another  potential  for  the  regulation  and  synchronous  activation  of

genetic activity (Boettiger and Levine, 2009). Promoter-proximal pausing enables the cell

to perform transcription more flexible and elaborate.

Promoter-proximal pausing has first been observed at immediate-early genes which are

capable of rapid induction upon specific signals  (Aida et al., 2006; Krumm et al., 1992;

Rougvie  and  Lis,  1990).  PIC-assembly  at  the  promoter  site  is  a  relatively  slow and

complex multi-step process requiring a plethora of general and specific factors (Thomas

and Chiang, 2006). Conversely, once P-TEFb has been activated release of paused Pol II

is a fast process. It is hence speculated that promoter-proximal pausing circumvents the

time-consuming  assembly  of  the  transcription  machinery  and  facilitates  a  dynamic

regulation of genes that need to be activated quickly like heat shock factors (Andrulis et

al., 2000; Wu et al., 2003).

To prevent nascent pre-mRNA from fast degradation by exonucleases (Hsu and Stevens,
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Figure  5:  Overview  of  the  early transcription  phase  and the  factors  involved  in  initiation  and
promoter-proximal pausing. 
Blue circles indicate P-TEFb-mediated phosphorylation that are requisite for pause-release. Before
Pol-II  commences  stable  elongation,  phosphorylated  NELF  dissociates  and  elongation  factors
Paf1C and Tat-SF1 associate with Pol II.
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1993) the 5'  end is modified by the cap-binding complex (CBC) with a 5' guanylyl cap

(Gonatopoulos-Pournatzis  and  Cowling,  2014;  Hocine  et  al.,  2010;  Shuman,  2001).

Capping is coupled to transcription and occurs during the early elongation phase when

RNA reaches a length of 20-30 nt  (Martinez-Rucobo et al., 2015; Perales and Bentley,

2009; Yue et al., 1997). The CBC recruits elongation factors and during translation the cap

is  important  for  recognition  of  the mRNA by ribosomes  (Gonatopoulos-Pournatzis  and

Cowling,  2014;  Tarun  and Sachs,  1996).  The CBC was shown to  stimulate the  early

elongation phase (Kim et al., 2004), conversely NELF, DSIF and P-TEFb were observed

to interact with and regulate the CBC (Mandal et al., 2004; Narita et al., 2007; St Amour et

al., 2012; Wen and Shatkin, 1999). This links two important events in early elongation,

promoter-proximal  pausing  and  capping.  Thus  promoter-proximal  pausing  could  also

function as a checkpoint to ensure only correctly capped mRNA is fully transcribed.

The DNA sequence in promoter regions can affect their association with nucleosomes

(Gilchrist et al., 2010; Gilchrist et al., 2008; Iyer and Struhl, 1995; Kaplan et al., 2009;

Valouev et al., 2011). Nucleosome formation in the promoter region is often a feature of

highly regulated genes whereas promoters of housekeeping genes are free of chromatin

(Gilchrist et al., 2010). In promoter regions occupied by nucleosomes, promoter-proximal

pausing contributes to creating a nucleosome free region (NFR) keeping the promoter

permissive for binding of the transcription machinery and regulatory factors  (Gilchrist et

al.,  2010).  Indeed  promoter-proximal  pausing  causes  a  downstream  shift  of  the  +1

nucleosome (Schones et al., 2008). In contrast depletion of NELF results in a loss of the

NFR and a decrease of transcription rate at many genes (Gilchrist et al., 2008).

 4 Significance of NELF for the treatment of HIV infections

After entering a cell the HI virus reversely transcribes its RNA-genome and inserts the

generated DNA into the nuclear genome of the host cell. For viral replication, the DNA

again needs to be transcribed into RNA (Klimas et al., 2008). Transcription of HIV genes

starts at the long terminal repeat (LTR) region where the cellular transcription machinery

and  co-activators  are  recruited  (Rohr  et  al.,  2003).  Similar  to  many  cellular  genes,

elongation of Pol II is paused during the early elongation phase  (Ott et al., 2011). The

highly conserved sequence of the transactivation response element (TAR) is located at

the 5' end of the nascent viral transcript and forms a double-stranded stem loop. NELF-E

binds to the stem loop with high affinity and represses elongation  (Pagano et al., 2014;

Zhang et al., 2007). Consequently the transcription of viral genes remains inefficient and

14
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the HIV protein Tat is required to release this block. Tat-mediated recruitment of P-TEFb to

the pausing site results in resumption of productive elongation (Karn and Stoltzfus, 2012;

Ott et al., 2011; Zhou and Yik, 2006). Tat binds the TAR stem-loop displacing NELF and P-

TEFb phosphorylates the pausing complex as described above (Ott et al., 2011). The Tat

protein itself is encoded by the transcribed RNA, which triggers a positive feedback loop.

If Tat is mutated or Pol II pausing release is prevented by any other means, transcription

of HIV RNA continues to be unproductive, preventing HIV-1 replication and causing latent

infection. A latent viral infection poses a major problem to therapeutic eradication of a HIV

infection due to the absence of viral activity that can be targeted by drugs (Siliciano and

Greene, 2011). For that reason promoter-proximal pausing is also of medical relevance.

 5 Aims and scope

Although NELF is central to promoter-proximal pausing and involved in the regulation of

various important developmental and physiological processes in multicellular organisms,

no structural information is known except for the NELF-E RRM. NELF-E can bind to RNA;

however, it is unclear what molecular mechanism NELF uses to induce promoter-proximal

pausing. The origin and evolution of NELF is also unclear. In contrast to DSIF, which is

central  to  transcription  in  all  living  cells,  NELF  is  only  present  in  some  eukaryotes.

Sequence  alignments  have  identified  homologs  in  metazoans and a  subset  of  single

celled eukaryotes but not in yeast or plants.

High-resolution structures of  conserved regions of  the NELF complex or  of  the entire

complex would  provide new insights  into its  function,  overall  architecture,  and role  in

promoter-proximal pausing. Discovery of structural homologs could support the search for

the evolutionary origin of NELF.

The primary goal of this thesis was to crystallize the NELF complex and solve its stucture

in molecular detail. To this end the NELF complex had to be expressed, purified in high

quality and characterized  in vitro. Flexible regions had to be identified and truncated in

order to obtain stable and compact constructs likely to crystallize. An optimized NELF-AC

complex could finally be crystallized and the structure was solved with 2.8 Å resolution.

Once a high-resolution structure was obtained it  had to be analyzed biochemically  to

asses its function in promoter-proximal pausing. Bioinformatic analysis of  the structure

model revealed large positive patches across the surface. Using protein-ligand binding

assays  the  interaction  partner  was  identified  to  be  single  stranded  nucleic  acids.  To

identify surface residues involved in protein-nucleic acid interaction and its regulation a
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series of mutant proteins had to be generated and characterized. From this studies, a

nucleic acid binding face on NELF-AC previously unknown was discovered.

The third goal of this thesis was to describe the architecture of the holo-NELF complex.

For this purpose a purification protocol for the complete four-subunit NELF complex had to

be  established.  Testing  different  combinations  of  subunits  in  co-expression  enabled

purification  of  holo-NELF in good yield and quality.  The architecture was resolved by

crosslinking the complex and identification of the crosslinks by mass-spectrometry. Holo-

NELF was observed to form a linear complex as reported previously (Narita et al., 2003)

with both nucleic acid binding sites solvent accessible and located at opposite ends of the

complex.

Based on the information obtained during this thesis it was possible to propose a new

model how NELF contributes to establish promoter-proximal pausing and postulate that

NELF acts partially by binding nascent RNA via its NELF-A subunit close to the RNA-exit

tunnel.

In this study the first unique high-resolution structure of a NELF subcomplex could be

solved and a novel function be assigned. Thus all proteins involved in promoter-proximal

pausing are now structurally characterized to a substantial extent, providing the basis for

investigation of its mechanism on a molecular level.
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 II Materials and Methods

 1 Materials

 1.1 Bacterial strains

Table 3: Bacterial strains used in this study

Strain genotype Resistance Source

E. coli XL-1 

Blue

rec1A; endA1, gyrA96; thi-1; hsdR17; supE44; 

elA1; lac[F’proAB lacIqZDM 15 tn10(Tetr)]

Tetracycline Stratagene

E. coli BL21 

(DE3)RIL

B; F-; ompT; hsdS(rB- mB-); dcm+; Tetr; gal 

λ(DE3); endA; Hte [argU, ileY, leuW, Camr] 

Chloramphenicol Stratagene

 1.2 Plasmids, synthetic genes and oligonucleotides

 1.2.1 Plasmids

Table 4: Vectors used for this study

ID vector Insert tag a Comment

DP 1 pET28a NELF-A N-His b

DP 2 pOPIN-M NELF-B N-His-MBP b

DP 3 pET21b NELF-C b

DP 4 pOPIN-F NELF-E N-His c

DP 5 pET28a NELF-A6-188 N-His

DP 6 pET21b NELF-C36-590

DP 7 pET21b NELF-C183-590

DP 8 pET28a NELF-A - IRES - NELF-C N-His (at 

NELF-A)

DP 9 pET28a NELF-A6-188 - IRES - NELF-C36-590 N-His (at 

NELF-A)

DP 10 pET28a NELF-A mut R65Q, R66Q (6-188) N-His d

DP 11 pET28a NELF-A mut K146M, K161M, K168M, R175Q (6-

188)

N-His d

DP 12 pET28a NELF-A mut R65Q, R66Q, K146M, K161M, 

K168M, R175Q (6-188)

N-His d

DP 13 pET21b NELF-C mut R291Q, R315Q (183-590) d

DP 14 pET21b NELF-C mut K371M, K372M, K374M (183-590) d

DP 15 pET21b NELF-C mut K384M, K388M (183-590) d

DP 16 pET21b NELF-C mut R419Q, R506Q (183-590) d
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ID vector Insert tag a Comment

DP 17 pET21b NELF-C mut R291Q, R315Q, K384M, K388M, 

R419Q, R506Q (183-590)

d

DP 18 pET21b NELF-C mut K371M, K372M, K374M, K384M, 

K388M, R419Q, R506Q (183-590)

d

DP 19 pET21b NELF-C mut K371M, K372M, K374M, R291Q, 

R315Q, K384M, K388M, R419Q, R506Q (183-590)

d

DP 20 pET28a NELF-A mut T157D (6-188) N-His d 

DP 21 pET28a NELF-A mut T173D (6-188) N-His d

DP 22 pET21b NELF-C mut T285D (183-590) d

DP 23 pET21b NELF-C mut Y289E (183-590) d

DP 24 pET21b NELF-C mut T318D (183-590)

DP 25 pET21b NELF-C 36-183 d 

DP 26 pANY NELF-A fl e

DP 27 pANY NELF-B fl e

DP 28 pANY NELF-C fl e

DP 29 pET21b f

DP 30 pET28a f

DP 31 pOPIN-F

DP 32 pOPIN-M

DP 33 pET28a NELF-A6-182 N-His g

DP 34 pET28a NELF-A6-193 N-His g

DP 35 pET28a NELF-A6-202 N-His g

DP 36 pET28a NELF-A9-188 N-His g

DP 37 pET28a NELF-A20-188 N-His g

DP 38 pET28a NELF-A29-188 N-His g

DP 39 pET28a NELF-A36-188 N-His g

DP 40 pET21b NELF-C36-559 g

DP 41 pET21b NELF-C36-568 g

DP 42 pET21b NELF-C36-573 g

DP 43 pET21b NELF-C36-585 g

DP 44 pET21b NELF-C30-590 g

DP 45 pET21b NELF-C52-590 g

DP 46 pET21b NELF-C55-590 g

DP 47 pET21b NELF-C57-590 g

DP 48 pET28a NELF-A mut E111A, E112A, Q113A (6-188) g

DP 49 pET21b NELF-C mut E138A, E139A, E141A (36-590) g

DP 50 pET21b NELF-C mut Q270A, E271A, K272A (36-590) g
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ID vector Insert tag a Comment

DP 51 pET21b NELF-C mut E138A, E139A, E141A, K371A, 

K372A, K374A (36-590)

g

DP 52 pET21b NELF-C mut Q270A, E271A, K272A, K371A, 

K372A, K374A (36-590)

g

DP 53 pET21b NELF-C mut E138A, E139A, E141A, Q270A, 

E271A, K272A, K371A, K372A, K374A (36-590)

g

a N-"tag" indicates N-terminally attached tag

b synthetic gene, codon optimized for E. coli

c natural sequence from H. sapiens cDNA

d Protein used for fluorescence anisotropy experiments

e Template for molecular cloning

f Vector backbone for molecular cloning

g Protein used for crystallization experiments

 1.2.2 Primers

Table 5: Primers used in this study

ID Name Sequence 5' to 3'

DP54 NELFA_fl_fwd CGCGCGGCAGCCATATGCCTGGTCAACGTCG

DP55 NELFA_fl_rev GGTGGTGGTGCTCGAGTTATTTCAAGACACATTCGTCATTG

G

DP56 shNELF_B_Fwd AAGTTCTGTTTCAGGGCCCGATGTTTGCCGGACTGCAGG

DP57 shNELF_B_Rev ATGGTCTAGAAAGCTTTATTACAGAGGGGCAGGGGC

DP58 NELFC_fl_fwd GGAGATATACATATGGCAGGTGCTGTTCC

DP59 NELFC_fl_rev GCTCGAATTCGGATCCTCAGTTTACCATAATGAAGTTGCTTT

TACAGTGAG

DP60 NELF_E_Fwd AAGTTCTGTTTCAGGGCCCGATGTTGGTGATACCCCCCGG

ACT

DP61 NELF_E_Rev ATGGTCTAGAAAGCTCTAGAAGCCATCCACAAGGTTTTCCT

TGTAG

DP62 NELFA_R6_fwd CGCGCGGCAGCCATATGGAATCTGATACCGGTCTGTGGCT

G

DP63 NELF_A_Q188_rev GGTGGTGGTGCTCGAGTTATTGTTGGGCAGTCTCGGTTG

DP64 NELFC_E36_fwd GGAGATATACATATGGAAGGCGAAGATGATGCCGAG

DP65 NELFC_G183_fwd AGGAGATATACATATGGGATATCAAGG CGAGATCACCTCTG
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ID Name Sequence 5' to 3'

DP66 NELFA_fus_rev TATATCTCCTTCTTAAAGTTAAACAAAATTATTTCAAGACACA

TTCGTCATTGG

DP67 NELFC_fus_fwd TTTGTTTAACTTTAAGAAGGAGATATACCATGGCAGGTGCTG

TTCC

DP68 NELFC_E36_fus_

fwd

TTTGTTTAACTTTAAGAAGGAGATATACCATGGAAGGCGAAG

ATGATGCCGAGGTC

DP69 NELFA_Q188_fus_

rev

GGTATATCTCCTTCTTAAAGTTAAACAAATTATTGTTGGGCA

GTCTCGGTTG

DP70 NELFA_R65R66mut_

fwd

TGGGTACACTGCATCTGCCTCAACAGACTGTGGATGAAATG

AAAGG

DP71 NELFA_R65R66mut_

rev

CCTTTCATTTCATCCACAGTCTGTTGAGGCAGATGCAGTGT

ACCCA

DP72 NELFA_K146M_fwd TGGAATGTCAGTATCTGAACATGAACGCCCTGACTACACTG

GC

DP73 NELFA_K146M_rev GCCAGTGTAGTCAGGGCGTTCATGTTCAGATACTGACATTC

CA

DP74 NELFA_K161M_fwd GTCCTCTGACTCCACCTGTTATGCACTTCCAACTGAAACGT

AA

DP75 NELFA_K161M_rev TTACGTTTCAGTTGGAAGTGCATAACAGGTGGAGTCAGAG

GAC

DP76 NELFA_K168M_fwd AACACTTCCAACTGAAACGTATGCCGAAATCAGCGACACTG

CG

DP77 NELFA_K168M_rev CGCAGTGTCGCTGATTTCGGCATACGTTTCAGTTGGAAGTG

TT

DP78 NELFA_R175Q_fwd AACCGAAATCAGCGACACTGCAAGCCGAGCTGCTGCAAAA

ATC

DP79 NELFA_R175Q_rev GATTTTTGCAGCAGCTCGGCTTGCAGTGTCGCTGATTTCG

GTT

DP80 NELFC_R291Q_fwd GTACAGCCGCTTCTTATCCTCAAGCCTGTCAGGCCCTGGG

AGC

DP81 NELFC_R291Q_rev GCTCCCAGGGCCTGACAGGCTTGAGGATAAGAAGCGGCT

GTAC

DP82 NELFC_K315M_fwd CCGATATTACCGTACTGTTTATGATGTTCACCAGCATGGACC

C

DP83 NELFC_K315M_rev GGGTCCATGCTGGTGAACATCATAAACAGTACGGTAATATC

GG

DP84 KKNKmut_fwd CTAGTGTTGTGGAAACGTGGATGATGAACATGCGTGTGTCT

ATTAACAAAGA
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ID Name Sequence 5' to 3'

DP85 KKNKmut_rev TCTTTGTTAATAGACACACGCATGTTCATCATCCACGTTTCC

ACAACACTAG

DP86 KSTSKmut_fwd CTATTAACAAAGACGAACTGATGTCGACCAGCATGGCAGTG

GAGACTGTCCACAA

DP87 KSTSKmut_rev TTGTGGACAGTCTCCACTGCCATGCTGGTCGACATCAGTTC

GTCTTTGTTAATAG

DP88 NELFC_R419Q_fwd GTACACTGTATCAGTGTATTCAGTTCCCGGTTGTGGCAATG

GG

DP89 NELFC_R419Q_rev CCCATTGCCACAACCGGGAACTGAATACACTGATACAGTGT

AC

DP90 NELFC_R506Q_fwd GTATGGTACACCTGCTGTCTCAGGGTTATGTTCTGCCGGTT

GT

DP91 NELFC_R506Q_ref ACAACCGGCAGAACATAACCCTGAGACAGCAGGTGTACCA

TAC

DP92 NELFA_T157D_fwd CTACACTGGCAGGTCCTCTGGATCCACCTGTTAAACACTTC

CA

DP93 NELFA_T157D_rev TGGAAGTGTTTAACAGGTGGATCCAGAGGACCTGCCAGTG

TAG

DP94 T173Dmut_fwd AACGTAAACCGAAATCAGCGGACCTGCGCGCCGAGCTGCT

GCA

DP95 T173Dmut_rev TGCAGCAGCTCGGCGCGCAGGTCCGCTGATTTCGGTTTAC

GTT

DP96 NELFC_T285D_fwd AGATCACACTGGCTCTGGGTGACGCCGCTTCTTATCCTCGT

GC

DP97 NELFC_T285D_rev GCACGAGGATAAGAAGCGGCGTCACCCAGAGCCAGTGTG

ATCT

DP98 NELFC_Y289E_fwd CTCTGGGTACAGCCGCTTCTGAGCCTCGTGCCTGTCAGGC

CCT

DP99 NELFC_Y289E_rev AGGGCCTGACAGGCACGAGGCTCAGAAGCGGCTGTACCC

AGAG

DP100 NELFC_T285D_

Y289E_fwd

AGATCACACTGGCTCTGGGTGACGCCGCTTCTGAGCCTCG

TGCCTGTCAGGCCCT

DP101 NELFC_T285D_

Y289E_rev

AGGGCCTGACAGGCACGAGGCTCAGAAGCGGCGTCACCC

AGAGCCAGTGTGATCT

DP102 T318Dmut_fwd CCGTACTGTTTAAAATGTTCGACAGCATGGACCCACCACCT

GT

DP103 T318Dmut_rev ACAGGTGGTGGGTCCATGCTGTCGAACATTTTAAACAGTAC

GG
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ID Name Sequence 5' to 3'

DP104 T7_fwd TAATACGACTCACTATAGGG

DP105 T7_rev CTAGTTATTGCTCAGCGG

DP106 NELFA_S9_fwd CGCGCGGCAGCCATATGTCTCCGAAAATGGCCTCAATGC

DP107 NELFA_T20_fwd CGCGCGGCAGCCATATGACCGGTCTGTGGCTGCACA

DP108 NELFA_G29_fwd CGCGCGGCAGCCATATGGGTGCTACCGATGAACTGTGGG

DP109 NELFA_A36_fwd CGCGCGGCAGCCATATGGCTCCTCCGTCAATTGCTTCTCT

G

DP110 NELFA_S182_rev GCTCGAATTCGGATCCTCATGATTTCGGTTTACGTTTCAGTT

GGAAG

DP111 NELFA_S193_rev GCTCGAATTCGGATCCTCATGATTTTTGCAGCAGCTCGGC

DP112 NELFA_R202_rev GCTCGAATTCGGATCCTCAGCGTTTCAGTTGTTGGGCAGT

C

DP113 NELFC_N559_rev GCTCGAATTCGGATCCTCAGTTTTCCAGAATCGGCAGAAAC

AGC

DP114 NELFC_T568_rev GCTCGAATTCGGATCCTCAAGTTTTAATGGTGCCGGCAATG

C

DP115 NELFC_D573_rev GCTCGAATTCGGATCCTCAATCGTGCTCGCCTTCAGTTTTA

ATGG

DP116 NELFC_N585_rev GCTCGAATTCGGATCCTCAGTTGCTTTTACAGTGAGCAATG

AATTCGG

DP117 NELFC_Q30_fwd GGAGATATACATATGCAAGAGGACGATTCCGGTGAAG

DP118 NELFC_S52_fwd GGAGATATACATATGTCTACCCGTGACTATATCATGGAGCC

DP119 NELFC_D55_fwd GGAGATATACATATGGACTATATCATGGAGCCGAGCATTTTT

AACAC

DP120 NELFC_I57_fwd GGAGATATACATATGATCATGGAGCCGAGCATTTTTAACAC

DP121 NELFC_3Ecluster_

mut_fwd

GATTCCATTTTTACCGCAGCGGGCGCAACTCCAGCGTGGC

TGG

DP122 NELFC_3Ecluster_

mut_rev

CCAGCCACGCTGGAGTTGCGCCCGCTGCGGTAAAAATGGA

ATC

DP123 NELFC_QEKcluster

_mut_fwd

GGAAGTCCAACGCTTTGCCGCAGCGGCAGGGCATGATGCT

AGCCAGATCAC

DP124 NELFC_QEKcluster

_mut_rev

GTGATCTGGCTAGCATCATGCCCTGCCGCTGCGGCAAAGC

GTTGGACTTCC

DP125 NELFC_3Kcluster_

mut_fwd

CCTATGCTGCTAGTGTTGTGGAAACGTGGGCAGCAAACGC

ACGTGTGTCTATTAACAAAGACGAACTGAAATCG

DP126 NELFC_3Kcluster_

mut_rev

CGATTTCAGTTCGTCTTTGTTAATAGACACACGTGCGTTTGC

TGCCCACGTTTCCACAACACTAGCAGCATAGG
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ID Name Sequence 5' to 3'

DP127 NELFA1_EEQcluster

_mut_fwd

GTTCACTGAACCTGGAACTGGCAGCAGCGAATCCGAACGT

CCAAGAC

DP128 NELFA1_EEQcluster

_mut_rev

GTCTTGGACGTTCGGATTCGCTGCTGCCAGTTCCAGGTTC

AGTGAAC

 1.2.3 Genes

Table 6: Synthetic genes used in this study

Name organism comment

NELF-A H. sapiens synthetic, codon optimized for E. coli

NELF-B H. sapiens synthetic, codon optimized for E. coli

NELF-C H. sapiens synthetic, codon optimized for E. coli

 1.2.4 Nucleic acids for fluorescence anisotropy

Table 7: Nucleic acids used for fluorescence anisotropy experiments in this study

ID Name Type Sequence 5' to 3' Modification

DP 129 c-fos_RNA ssRNA CCGCAUCUGCAGCGAGCAUCUGAGA 5' 6-FAM

DP 130 junB_RNA ssRNA AGCGGCCAGGCCAGCCUCGGAGCCA 5' 6-FAM

DP 131 44%_RNA ssRNA ACCCCACAACUAAAAAAUCCCAACC 5' 6-FAM

DP 132 60%_RNA ssRNA AAGGGGAGCGGGGGAGGAUAAUAGG 5' 6-FAM

DP 133 72%_RNA ssRNA ACCACCCACCCACCCCACCGAACGC 5' 6-FAM

DP 134 c-fos_DNA ssDNA AAGACTGAGCCGGCGGCCGC 5' 6-FAM

DP 135 junB_DNA ssDNA AGGGAGCTGGGAGCTGGGGG 5' 6-FAM

DP 136 44%_DNA ssDNA ACCCCACAACTAAAAAATCCCAACC 5' 6-FAM

DP 137 60%_DNA ssDNA AAGGGGAGCGGGGGAGGATAATAGG 5' 6-FAM

DP 138 72%_DNA ssDNA ACCACCCACCCACCCCACCGAACGC 5' 6-FAM

DP 139 44%_rev_comp ssDNA GGTTGGGATTTTTTAGTTGTGGGGT

DP 140 60%_rev_comp ssDNA CCTATTATCCTCCCCCGCTCCCCTT

DP 141 72%_rev_comp ssDNA GCGTTCGGTGGGGTGGGTGGGTGGT

DP 142 40%_hybrid RNA:DNA 

hybrid

ACCCCACAACUAAAAAAUCCCAACC 5' 6-FAM a

DP 143 60%_hybrid RNA:DNA 

hybrid

AAGGGGAGCGGGGGAGGAUAAUAGG 5' 6-FAM a

DP 144 72%_hybrid RNA:DNA 

hybrid

ACCACCCACCCACCCCACCGAACGC 5' 6-FAM a
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ID Name Type Sequence 5' to 3' Modification

DP 145 44%_dsDNA dsDNA ACCCCACAACTAAAAAATCCCAACC 5' 6-FAM b

DP 146 60%_dsDNA dsDNA AAGGGGAGCGGGGGAGGATAATAGG 5' 6-FAM b

DP 147 72%_dsDNA dsDNA ACCACCCACCCACCCCACCGAACGC 5' 6-FAM b

a RNA strand is modified

b sense strand is modified

 1.3 Reagents and consumables

Table 8: Reagents and consumables used in this study

Type Source

Chemicals Merck (Darmstadt, Germany), Roth (Karlsruhe, Germany),

Sigma-Aldrich (Schnelldorf, Germany)

Enzymes, reagents and buffers for 

molecular cloning

Fermentas (St. Leon-Rot, Germany), NEB (Frankfurt am 

Main, Germany)

Oligonucleotides ThermoScientific (Ulm, Germany), biomers (Ulm, 

Germany), IDT DNA (Leuven, Belgium)

Synthetic genes Mr. Gene (Regensburg, Germany)

Commercial kits for DNA preparation Qiagen (Hilden, Germany)

Crystallization reagents and tools Hampton Research (Aliso Viejo, CA, USA), Qiagen 

(Hilden, Germany)

 1.4 Growth media and additives

Table 9: Bacterial growth media used in this study

Medium Description Application

Lysogeny 

broth (LB)

1 % (w/v) Tryptone; 0.5 % (w/v) Yeast extract;

1 % (w/v) NaCl

E. coli culture

LB plates 1 % (w/v) Tryptone; 0.5 % (w/v) Yeast extract;

1 % (w/v) NaCl; 1.5 % (w/v) agar; 1x Antibiotic

E. coli culture on plates

X-Gal plates 1 % (w/v) Tryptone; 0.5 % (w/v) Yeast extract;

1 % (w/v) NaCl; 1.5 % (w/v) agar; 1x Antibiotic; 0.02 % 

X-Gal dissolved in N,N-Dimethylformamide (DMF)

E. coli culture, selection of 

pOPIN vectors containing 

the correct insert

SeMet 

medium

Obtained from AthenaES Expression of seleno-

methionine-substituted 

proteins in E. coli
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Table 10: Growth media additives used in this study

Additive Concentration Application

Ampicillin 100 μg/ml Selection of E. coli

Kanamycin 30 μg/ml Selection of E. coli

Chloramphenicol 30 μg/ml Selection of E. coli

Tetracycline 12.5 µg/ml Selection of E. coli

IPTG 0.1 mM - 1.0 mM Induction of protein expression in E. coli

 1.5 Buffers and solutions

 1.5.1 General buffers, solutions and dyes

Table 11: General buffers, solutions and dyes used in this study

Name Composition/Source Application

50x TAE 250 mM EDTA; 12.5 M Tris-acetate, pH = 8.0 Agarose gel 

electrophoresis

TE 1 mM Tris, pH 8.0; 0.1 mM EDTA DNA storage

6x DNA-loading dye 1.5 g/L Bromphenol blue; 1.5 g/L Xylene cyanol; 50

% (v/v) Gylcerol (Fermentas)

Agarose gel 

electrophoresis

MOPS Electro-

phoresis buffer

NuPAGE buffer (life technologie) SDS-PAGE

5x SDS-loading 

buffer

10 % (w/v) SDS; 10 mM DTT; 20 % (v/v) glycerole;

0.2 M Tris-HCl, pH = 6.8; 0.05 % (w/v) 

Bromphenolblue

SDS-PAGE

Western blot transfer

buffer

25 mM Tris; 192 mM glycine; 20 % EtOH Western blot

Gel staining solution Instant blue (Expedion) Coomassie staining of 

PA gels

Thiosulfate solution 0.02 % sodium thiosulfate Silver staining of PA 

gels

Silver nitrate solution 0.1 % silver nitrate; 0.02 % formaldehyde Silver staining of PA 

gels

Developing solution 3 % sodium carbonate; 0.05 % formaldehyde Silver staining of PA 

gels

100x PI 1.42 mg leupeptin; 6.85 mg pepstatin A; 850 mg 

PMSF; 1.685 mg benzamidine in 50 ml ethanol

protein purification

Denaturating buffer 8 M urea; 1 M Tris pH = 8.0 Resuspension of TCA-

precipitated protein
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Name Composition/Source Application

TFB-I 30 mM KAcetate; 50 mM MnCl2; 100 mM RbCl;

10 mM CaCl2; 15 % (v/v) glycerol

Prepare chemically 

competent E. coli

TFB-II 10 mM MOPS, pH = 7.0; 75 mM CaCl2;

10 mM RbCl; 15 % (v/v) glycerol

Prepare chemically 

competent E. coli

 1.5.2 Protein purification buffers

Table 12: Buffers used for protein purification in this study

Name Composition Application

Lysis buffer A 150 mM NaCl; 40 mM Na-HEPES pH 7.4 at 

4°C; 10 mM imidazole; 2 mM DTT; 1x PI

NELF-AC purification

Lysis buffer B 250 mM NaCl; 40 mM Na-HEPES pH 7.4 at 

4°C; 10 mM imidazole; 2 mM DTT; 1x PI

NELF-ABC purification

Lysis buffer C 500 mM NaCl; 40 mM Na-HEPES pH 7.4 at 

4°C; 10 mM imidazole; 2 mM DTT; 1x PI

NELF-E purification

Dialysis buffer A 150 mM NaCl; 40 mM Na-HEPES pH 7.4 at 

4°C; 2 mM DTT

NELF-AC purification

Dialysis buffer B 500 mM NaCl; 40 mM Na-HEPES pH 7.4 at 

4°C; 2 mM DTT

NELF-E purification

Washing buffer 

MBP

300 mM NaCl; 40 mM Na-HEPES pH 7.4 at 

4°C; 10 % glycerole; 2 mM DTT

NELF-ABC purification

Elution buffer 

MBP

300 mM NaCl; 40 mM Na-HEPES pH 7.4 at 

4°C; 10 % glycerole; 2 mM DTT; 40 g/l maltose

NELF-ABC purification

Ion exchange low/

high salt buffer

100/1000 mM NaCl; 40 mM Na-HEPES pH 7.4 

at 4°C; 2 mM DTT

Ion exchange 

chromatography

Size exclusion 

buffer A

150 mM NaCl; 10 mM Na-HEPES pH 7.4 at 

4°C; 2 mM DTT

Size exclusion 

chromatography of NELF-AC

for crystallization

Size exclusion 

buffer B

500 mM NaCl; 10 mM Na-HEPES pH 7.4 at 

4°C; 2 mM DTT

Size exclusion 

chromatography of complete-

NELF

Size exclusion 

buffer C

50 mM NaCl; 10 mM Na-HEPES pH 7.4 at 4°C;

2 mM DTT

Size exclusion 

chromatography of NELF-AC

for fluorescence anisotropy
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 1.5.3 Fluorescence anisotropy buffers

Table 13: Buffers used for fluorescence anisotropy

Name Composition Application

Dilution buffer 50 mM NaCl; 40 mM Na-HEPES pH 7.4 at 4°C;

2 mM DTT

Serial dilution of 

protein

2.5x buffer 12.5 mM NaCl; 12.5 mM Na-HEPES pH 7.4;

7.5 mM MgCl2; 2.5 mM DTT; 125 µg/ml BSA

Adjustment of final 

concentrations

 1.5.4 Crosslinking buffers and solutions

Table 14: Buffers used for crosslinking

Name Composition Application

Crosslinking 

solution

disuccinimidyl suberate (DSS) 50 mM solution in DMSO 

prepared immediate before use, life technologies

Crosslinking

Quenching 

solution

1 M ammonium bicarbonate Crosslinking

 1.6 Crystallization screens

Table 15: 96-well high-throughput crystallization screens used in this study

Screen Source

AJ1 in-house productiona

AJ2 in-house productiona

Complex screen in-house productiona

Complex screen 2 in-house productiona

Crystal platform Magic 1 in-house productiona

Crystal platform Magic 2 in-house productiona

Morpheus in-house productiona

Wizars I II in-house productiona

Hampton research Index Hampton

Qiagen Classics Suite Qiagen

Qiagen Cryos Suite Qiagen

Qiagen JCSG+ Suite Qiagen

Qiagen PACT Suite Qiagen

Qiagen PEGs Suite Qiagen
a  In-house  production  of  the  Crystallization  Facility  at  the  Max  Planck  Institute  of

Biochemistry (Martinsried, Germany).
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 2 Methods

 2.1 Molecular cloning

Polymerase chain reaction

All inserts for molecular cloning were amplified by polymerase chain reaction (PCR) from

codon optimized, synthetic genes (Mr. Gene) (NELF-A, -B and -C) or  H.sapiens cDNA

(NELF-E).  PCR  programs  comprised  35  cycles  (Biometra  T3000  Thermocycler).

Annealing  temperature  and  elongation  time  were  adjusted  to  the  respective  required

conditions of the primers and template.

Primers were designed using the online NEB Tm-calculator (www.tmcalculator.neb.com)

and optimized for an annealing temperature of 55°C in the complementary region. Primers

used for molecular cloning contained an 5' overhang of 12 or 15 nt including the restriction

site for conventional or ligation independent cloning (LIC), respectively, followed by the

sequence complementary to the gene of interest. Tags and protease cleavage sites were

introduced by in-frame cloning into a suitable vector.

For fragment amplification 2x Phusion High Fidelity PCR Master Mix (NEB) was used with

a final primer concentration of  500 nM and 50 ng of pure DNA template in 50 µl final

volume.

For colony PCR Thermus aquaticus  (Taq)  DNA polymerase (Fermentas) was used with

final primer and Mg2+ concentrations of 640 nM and 2.5 mM, respectively, in 25 µl total

volume according to the manufacturers instructions. Single E. coli colonies were picked to

be used as template, resuspended in the complete reaction mix and additionally streaked

on a LB-plate containing the appropriate antibiotic. Colonies containing the correct insert

were later retrieved from this LB-plate.

Mutant genes were generated by amplifying two overlapping PCR products containing the

mutant site in the overlapping region at the 3' and 5' end of the sense strand, respectively.

In a second step both fragments were joined by fusion PCR.

PCR products were visualized by electrophoretic separation in a PerfectBlue Gelsystem

electrophoresis chamber using 0.5-1 % agarose gel and staining with  Sybr Safe diluted

1:10,000 (Invitrogen). Purification of PCR products from agarose gels was carried out us-

ing the QIAquick gel extraction kit (Qiagen).

Restriction and ligation

Vectors and inserts were digested with restriction endonucleases (NEB) according to the
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manufacturers manual and purified with QIAquick PCR purification kit  (Qiagen). 40 ng

vector and a seven-fold molar excess of insert were ligated using T4 DNA ligase (NEB) in

20 µl reaction volume according to the manual. Cloning into pOPIN vectors was done by

ligation independent cloning (LIC) using the InFusion Kit (Clontech) in 10 µl total volume

according to the manufacturers manual.

Preparation and transformation of competent cells

Two strains of chemically competent E. coli  cells were used for transformations. Ligation

products and plasmids (for  amplification)  were transformed into  XL1-Blue.  For  protein

overexpression  from  the  correspondent  plasmids  BL21-CodonPlus(DE3)-RIL  were

employed (Table 3).

To prepare chemically competent cells 400 ml of LB including the appropriate antibiotic

were inoculated 1:100 with cells from an ON LB-culture, grown at 37°C until OD600  ~ 0.5

and  cooled  down  on  ice  to  stop  growth.  Subsequently  cells  were  harvested  by

centrifugation for 10 min at 4°C and 4000 rpm, resuspended in 100 ml prechilled TFB-I on

ice and centrifuged as before. The pellet was resuspended in 8 ml prechilled TFB-II on

ice. 50 µl aliquots were flash frozen in liquid nitrogen and stored at -80°C.

100 ng of each pure plasmid, 4 µl ligated plasmid or 2.5 µl InFusion product, respectively,

were transformed into chemically competent cells by heat shock. 50 µl cells were thawed

on ice and incubated with DNA for 20 min on ice followed by 45 sec at 42°C and 2 min on

ice. Subsequently 450 µl of LB were added and the cells shaken for 1 h at 37°C. Cells

were spread on selective LB- plates and grown ON at 37°C.

Plasmid verification, preparation and storage

Bacterial  colonies containing a plasmid with an insert  were verified by colony-PCR as

described and incubated ON in 10 ml LB. Plasmids were prepared from this ON cultures

using Miniprep purification kits (Qiagen). To obtain glycerol stocks 500 µl of an ON culture

were mixed with 500 µl glycerole and stored at -80°C.

 2.2 Protein methods

 2.2.1 General protein methods

Protein analysis methods

For sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) the NuPAGE
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system (life technologies) was employed using 4-12 % gradient  gels.  Protein samples

were mixed with 5x SDS-loading buffer to a final concentration of 1x and incubated for 3

min  at  95°C.  SDS-PAGE  Molecular  Weight  Standard  Broad  Range  (Bio-Rad)  and

PageRuler  Prestained  Protein  Ladder  (Fermentas)  were  used  as  molecular  weight

standards. Gels were developed in 1x MOPS buffer at 200 V until the dye reached the

lower end of the gel and stained with instant blue (Expedeon).

In case of low protein concentration TCA-precipitation was performed before SDS-PAGE

analysis. Trichloroacetic acid (TCA) was added to a final concentration of 10 %, incubated

on ice for  20 min and centrifuged at  15000 rpm and 4°C for  15 min.  The pellet  was

washed twice with prechilled (-20°C) acetone on ice, dried at 50°C and resuspended in 12

µl denaturating buffer.

Trace amounts of protein on a PA gel were detected by silver staining. The PA gel was

washed in ddH2O thoroughly and incubated in thiosulfate solution for 1 min. After washing

3x20 sec with ddH2O the gel was incubated in silver nitrate solution for  20 min. After

washing  3x20 sec  with  ddH2O the gel  was  incubated  in  developing  solution  until  the

protein bands were visible and the reaction stopped with 5 % (v/v) acetic acid.

Protein concentration was determined with a NanoDrop 1000 spectrophotometer (Peqlab)

using  protein  specific  parameters  regarding  the  molar  attenuation  coefficient  ε and

molecular weight.

Dynamic light scattering (DLS) was done with a Viscotek 802 DLS (Malvern Instruments)

and the result analysed with the OmniSIZE software.

Limited proteolysis and fragment identification

Limited proteolysis was employed to identify stable fragments of proteins that were more

likely to form crystals. 30 µg of protein in 100 µl total reaction volume were incubated at

37°C with varying amounts of  protease (chymotrypsin or  subtilisin)  in  order  to ensure

observable and complete degradation of flexible regions within 30 min. Samples of 12 µl

volume were taken at varying points in time and the reaction stopped by immediate mixing

with 3µl 5x SDS-loading dye and incubation at 95°C for 3 min. Degradation products were

analysed by PAGE, transferred to a PVDF-membrane by Western blot (35 V, ON) and

identified by Edman-Sequencing at the Max Planck Institute of Biochemistry core facility

(Martinsried,  Germany).  Unknown protein bands were identified by MALDI-MS peptide

mass fingerprinting at the Adolf  Butenandt Institut, Zentrallabor für Proteinanalytik (ZfP)

(Munich, Germany).
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 2.2.2 Purification of recombinant proteins

NELF-A6-188C36-590 and NELF-A6-188C183-590

The borders of NELF-A and NELF-C within the NELF-AC subcomplex were determined by

limited proteolysis of human full-length NELF-AC complex with chymotrypsin and subtilisin

followed by Edman sequencing. Human NELF-A and NELF-C were amplified from codon

optimized DNA (Mr. Gene) and cloned into pET28a and pET21b vectors, between NdeI

and XhoI or NdeI and BamHI restriction sites, respectively, resulting in N-terminally His6-

tagged NELF-A (6-188) and untagged NELF-C (36-590 or 183-590).

Plasmids  encoding  NELF-A  (6-188)  and  NELF-C  (36-590  or  183-590)  were  co-

transformed into E. coli BL21 CodonPlus (DE3) RIL cells. Cells were grown in LB medium

at 37°C until OD600 ~0.6 and cooled on ice for 30 minutes. Protein expression was induced

by the addition of 1 mM IPTG. After induction, cells were grown for an additional 16 hrs at

18°C. All purification steps were performed at 4°C. Cells were resuspended and lysed in

lysis buffer A including 1x protease inhibitor. The lysate was applied to Ni-NTA agarose

beads (Qiagen)  and washed extensively with lysis  buffer  A containing  20 and 40 mM

imidazole.  Protein  was  eluted  from the  beads  with  lysis  buffer  A containing  200  mM

imidazole.  The  eluted  protein  was  mixed  with  1  U  thrombin/mg  protein  (Sigma)  and

dialyzed against dialysis buffer A for 16 hrs at 4°C. The protein was applied to Ni-NTA

beads equilibrated in  dialysis  buffer  A to remove uncleaved protein.  The Ni-NTA flow

through was applied to an anion exchange column (HiTrap Q-HP, 1 ml, GE Healthcare)

equilibrated in ion exchange low salt buffer. Protein was eluted via a salt gradient from

100 mM (low salt) to 1 M NaCl (high salt) in ion exchange buffer. The protein was further

purified by size exclusion chromatography with the use of a Superose 6 10/300 column

(GE Healthcare) equilibrated in size exclusion buffer A. Peak fractions were pooled and

concentrated by centrifugation in Amicon Ultra 4 ml concentrators (30 kDa and 10 kDa

MWCO, respectively) (Millipore) to 6 mg/ml (NELF-A6-188C36-590) and 12 mg/ml (NELF-A6-

188C183-590), respctively. Protein concentration was determined as described in 2.2.1. Protein

was aliquoted, flash frozen, and stored at -80° C. 

Selenomethionine-labeled protein NELF-A6-188C183-590

For  production  of  selenomethionine-labeled  protein,  NELF-AC  (6-188  and  183-590)

plasmids were co-transformed into E. coli  B834(DE3) cells. For protein expression, cells

were  grown  in  SelenoMet  Medium  (Table  9)  supplemented  with  40  µg/ml  L-

selenomethionine (SeMet). Selenomethionine-labeled protein was purified as above. 
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NELF-A6-188C36-590  mutant poteins

All NELF-A6-188C36-590 mutant poteins were purified like the wildtype protein.

NELF-ABC and ABCE

Human NELF-B (1-580) was cloned into a pOPIN-M-vector (Berrow et al., 2007) (provided

by OPPF-UK) to produce a N-terminally His6-MBP-tagged protein. Bicistronic expression

plasmids containing full-length His6-tagged NELF-A and NELF-C or His6-tagged NELF-A

(6-188) and NELF-C (36-590) were produced in the pET28a background between  NdeI

and  XhoI sites.  Full  length NELF-E was cloned into a pOPIN-F-vector  (Berrow et  al.,

2007) (provided by OPPF-UK) resulting in a protein with N-terminal His6-tag. All protein

expressions  were  performed  as  described  above  for  the  NELF-AC  constructs.  All

purification steps were performed at 4°C and protease inhibitor was used during lysis only.

NELF-E was purified in  lysis  buffer  C using  Ni-NTA chromatography as described for

NELF-AC.  Protein  was  dialyzed  against  dialysis  buffer  B  for  16  hrs  at  4°C  and

simultaneously  the  His-tag  was  cleaved  by  3C  protease.  Uncleaved  protein  and  3C

protease were removed by a second Ni-NTA chromatography step. NELF-E was further

purified by heparin affinity chromatography using a salt gradient from 100 mM to 1 M NaCl

in ion exchange buffer.

The full-length and truncated NELF-ABC complexes were obtained by coexpression of

full-length or truncated NELF-AC from a bicistronic vector together with full-length NELF-

B.  The  complex  was  purified  by  Ni-NTA in  lysis  buffer  B  and  amylose  resin  affinity

chromatography (NEB) in washing buffer MBP. Protein was eluted from amylose resin with

elution buffer MBP and diluted with water to achieve a final salt concentration of 150 mM

NaCl. The complex was purified further by anion exchange chromatography (HiTrap Q-HP,

1 ml, GE Healthcare) as described for NELF-AC, and the salt concentration was adjusted

to 500 mM NaCl. To remove the His6-MBP -tag from NELF-B, the complex was incubated

with 3C protease for 16 hrs at 4ºC. To obtain full-length and truncated NELF complexes,

an excess of heparin-purified NELF-E was added to pure NELF-ABC prior to cleavage of

the His6-MBP- tag from NELF-B. Both the NELF-ABC and complete NELF complex were

then applied to a Superose 6 10/300 size exclusion column equilibrated in size exclusion

buffer B. Truncated NELF-ABC and complete NELF were concentrated by centrifugation

to 2.1 mg/ml and 3.3 mg/ml, respectively, using Amicon Ultra 4 ml Centrifugal Filters (50

kDa MWCO) (Milipore), flash frozen, and stored at -80°C.
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 2.2.3 Protein interaction studies

Popin-M vector containing full length His-MBP-NELF-B was transformed into E. coli BL21

CodonPlus  (DE3)  RIL  cells.  NELF-B  was expressed  and  purified  by  Ni-NTA

chromatogaphy as described above. His-MBP-NELF-B was bound to amylose resin and

incubated for 16 hrs at 4°C with NELF-AC or NELF-C constructs NELF-A6-188C36-590, NELF-

A6-188C183-590,  NELF-C36-190 and  NELF-C183-590 which  have  been  purified  by  Ni-NTA as

described above for NELF-A6-188C36-590 and NELF-A6-188C183-590. After incubation the resin

was washed extensively with washing buffer MBP, eluted with elution buffer MBP and the

eluate analyzed by PAGE.

 2.3 X-Ray crystallography

 2.3.1 Crystallization screens of NELF-A6-188C36-590

Screens to find initial crystallization conditions for NELF-A6-188C36-590 were conducted at the

crystallization facility of the Max Planck Institute of Biochemistry (Martinsried, Germany)

using 96-well high throughput screens from Hampton, Qiagen and in-house productions

(Table 15). Screens were set up using a nanoliter crystallization robot (Phoenix) by mixing

each 100 nl protein and reservoir solution. Extensive screening yielded conditions that

were used as starting point.  Initial crystals were improved manually in 24-well hanging

drop plates (VDX plates with sealant, Hampton, 0.5 ml reservoir volume) by varying pH,

concentrations of salt and precipitant, temperature from 4°C – 20°C and drop size from

0.5 – 4 µl. Thin needle shaped crystals grew within 3-5 days in 1.1 – 1.2 M (NH4)2SO4, 0.2

M NaCl and 100 mM Na-HEPES pH 7.4.

 2.3.2 Crystallization screens and optimization of NELF-A6-188C183-590

Screens to  find  crystallization  conditions  for  NELF-A6-188C183-590 were  conducted  at  the

crystallization facility of the Max Planck Institute of Biochemistry (Martinsried, Germany)

using 96-well  high throughput screens from Hampton, Qiagen and in-house production

(Table 15). Screens were set up using a nanoliter crystallization robot (Phoenix) by mixing

each  100  nl  protein  and  reservoir  solution.  Extensive  screening  yielded  a  suitable

crystallization condition to produce well-diffracting crystals. Initial crystals were optimized

manually in 15-well EasyXtal hanging drop vapor diffusion plates (Qiagen, 0.2 ml reservoir

volume) by varying pH, concentrations of salt and precipitant, temperature from 4°C –

20°C and drop size between 0.5 and 4 µl.
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Optimized  native  and  selenomethionine-labeled NELF-AC  crystals  were  grown  by

hanging-drop vapor diffusion and obtained by mixing 1µl NELF-AC protein (12 mg/ml) with

1  µl  reservoir  solution  containing  14-14.5  %  (w/v)  PEG  3350  and  200  mM  sodium

malonate pH 6.8-7.0.  Tetrahedral NELF-AC crystals grew within 3-5 days. Crystals were

cryo-protected in mother liquor containing 25 % (w/v) glucose, and flash frozen in liquid

nitrogen.

 2.3.3 Data collection and processing

Diffraction data for native NELF-A6-188C183-590  crystals were collected under cryo conditions

(100 K)  in  0.1°  increments  at  beamline  X06DA of  the  Swiss  Light  Source  in  Villigen

(Switzerland) using a wavelength of  1.0000 Å and a Pilatus 2M-F detector (Table  17)

(Broennimann et al., 2006).

Raw data  were processed and scaled  with XDS.  The structure was solved by  single

isomorphous replacement with anomalous scattering (SIRAS) using diffraction data from

an isomorphous crystal of SeMet-labeled protein. Location of 13 selenomethionine sites,

calculation of initial phases and density modification were performed with the SHELX suite

(Sheldrick, 2008). An initial model was built with Buccaneer  (Cowtan, 2006). The model

was iteratively built with COOT  (Emsley and Cowtan, 2004) and refined with REFMAC

(Vagin et al., 2004) and phenix.refine (Afonine et al., 2005) until the R-factors converged

(Table 17). 

 2.4 Identification of P-TEFb in-vivo phosphorylation sites on 

NELF-A6-188C183-590

All experiments described in chapter II 2.4 were conducted by Seychelle M. Vos (NELF-

AC phosphorylation by P-TEFb) and Henning Urlaub (Phosphopeptide enrichment and

LC-MSMS analysis), both members of the MPI for Biophysical Chemistry, Goettingen.

NELF-AC phosphorylation by P-TEFb

Human Cdk9 (1-372) and Cyclin T1 (1-272) were co-expressed in High 5 insect cells and

purified as described (Schulze-Gahmen et al., 2013). NELF-A6-188C183-590 (10-200 µM) and

P-TEFb (0.4-2 µM) were incubated for 4-16 hrs at 30 ºC in a buffer containing 3-10 mM

ATP, 3-15 mM MgCl2, 1 mM DTT, 30 mM Na-HEPES pH 7.4, 4 % (v/v) glycerol, and 100

mM NaCl. The kinase-treated NELF-AC protein (100-500 pmol) was analyzed on a 4-12
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% Bis-Tris acrylamide gel and submitted for mass spectrometry.

Phosphopeptide enrichment and LC-MSMS analysis

Phosphopeptides derived after in-gel digest of the sample were enriched as described

previously  (Oellerich et al.,  2009). Enriched phosphopeptides were analyzed on a LC-

coupled  Q-Exactive  HF  mass  spectrometer  (ThermoFisherScientific)  under  standard

chromatography conditions as described (Oellerich et al., 2009). The MS raw files were

processed by MaxQuant  (Cox and Mann, 2008) (version 1.5.2.8)  and MS/MS spectra

were searched against Uniprot human database with Andromeda (Cox et al., 2011) search

engine. Allowed variable modifications included phosphorylation of serine, threonine, and

tyrosine, methionine oxidation, and carbamidomethlyation of cysteine.

 2.5 Fluorescence anisotropy 

All experiments described in chapter  II 2.5 were planned and conducted in cooperation

with Seychelle M. Vos.

Preparation of mutant proteins

WT and  mutant  NELF-A6-188C183-590 proteins  (Table  4)  were  expressed and  purified  as

described above (II 2.2.2). For the final size exclusion step, the column was equilibrated in

size exclusion buffer C. Peak fractions were pooled, concentrated by centrifugation to 30

mg/ml, aliquoted, flash frozen, and stored at -80ºC.

Nucleic acids

5'  6-FAM  labeled  ssDNA,  ssRNA and  dsDNA were  obtained  from  Integrated  DNA

Technologies and dissolved in water to 100 µM. Sequences of artificial ssDNA and dsDNA

with 44 %, 60 % and 72 % GC content are listed in Table 7 (corresponding sequences for

ssRNA). Natural ssDNA sequences correspond to sequences of exposed coding (non-

template) strands at the c-fos gene (‘DP 134’, bps 87-96 downstream of the TSS (Fivaz et

al., 2000)) and the junB gene (‘DP 135’, bps 45-54 downstream of the TSS (Aida et al.,

2006)) during  promoter-proximal  pausing  +/-5  bps  (Figure  14E).  Natural  ssRNA

sequences correspond to 25 nt of nascent mRNA sequence predicted to be proximal to

the RNA exit pore on the Pol II surface at c-fos (‘DP 129’, bps 53-77 relative to TSS) and

junB (‘DP 130’, bps 13-37 relative to TSS) during promoter-proximal pausing (Figure 14E).

To produce RNA-DNA hybrids, labeled ssRNA template was mixed at a 1:1 molar ratio

with reverse complementary ssDNA (Thermo Fisher Scientific), heated to 95° for 10 min
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and cooled down at a rate of 0.1°/min.

Assays

NELF- A6-188C183-590 was serially diluted in 2-fold steps in dilution buffer (Table 13). Nucleic

acid (2.4µl, 10nM final concentration) and NELF-AC (12µL, 100-0.1µM final concentration)

were mixed on ice and incubated for 10 minutes. The assay was brought to a final volume

of 24 µl 2.5x buffer (Table 13) and incubated for 20 min at RT in the dark (final conditions:

30 mM NaCl, 3 mM MgCl2, 10 mM Na-HEPES 7.4, 2 mM DTT and 50 µg/ml BSA). 20 µl of

each solution was transferred to a Greiner 384 Flat Bottom Black Small volume plate.

Measurement and evaluation

Fluorescence  anisotropy  was  measured  at  30°C  with  an  Infinite®  M1000Pro  reader

(Tecan) with an excitation wavelength of 470 nm (±5 nm), an emission wavelength of 518

nm (±20 nm) and a gain of 72. All experiments were done in triplicate and analyzed with

GraphPad Prism Version 6. Binding curves were fit with a single site quadratic binding

equation:

y=(
Bmax∗ ([x ]+[L]+Kd ,app− √([x ]+[L ]+Kd , app)2− 4([x ]∗ [L ]))

2∗ [L]
)

where Bmax is the maximum specific binding, L is the concentration of nucleic acid, x is

the concentration of NELF-A6-188C183-590, Kd,app is the apparent disassociation constant for

NELF- A6-188C183-590 and nucleic acid. Error bars (Figure 14,  Figure 15,  Figure 18,  Figure

26,  Figure  27)  are  representative  of  the  standard  deviation  from  three  experimental

replicates.

 2.6 Crosslinking and mass spectrometry

Crosslinking with disuccinimidyl suberate (DSS)

Truncated NELF-ABC complex and complete NELF complex were incubated with 1.0 mM

and 1.1 mM DSS H12/D12 (Creative Molecules), respectively,  for 30 min at 30°C. The

crosslinking  reaction  was  quenched  by  adding  ammonium  bicarbonate  to  a  final

concentration of 100 mM and incubation for 20 min at 30°C (Table 14).

Mass spectrometry identification of lysine-lysine crosslinking sites

All  experiments  described  in  this  paragraph were  performed  by  Tomasz Zimniak  and

Franz Herzog, both members of the Gene Center, LMU Munich.

36



 II Materials and Methods

The chemical cross-links on NELF complexes were identified by mass spectrometry as

described previously (Herzog et al., 2012). Briefly, cross-linked complexes were reduced

with 5 mM TCEP (Thermo Scientific) at 35°C for 15 min and subsequently treated with 10 

mM iodoacetamide (Sigma-Aldrich) for 30 min at room temperature in the dark. Digestion

with lysyl enodpeptidase (Wako) was performed at 35°C, 6M Urea for 2 h (at enzyme-

substrate  ratio  of  1:50  w/w)  and  was  followed  by  a  second  digestion  with  trypsin

(Promega)  at  35°C overnight  (also  at  1:50  ratio  w/w).  Digestion  was stopped  by  the

addition of 1 % (v/v) trifluoroacetic acid (TFA). Acidified peptides were purified using C18

columns  (Sep-Pak,  Waters).  The  eluate  was  dried  by  vacuum  centrifugation  and

reconstituted in water/acetonitrile/TFA, 75:25:0.1. Cross-linked peptides were enriched on

a Superdex Peptide PC 3.2/30 column (300 × 3.2 mm) at a flow rate of 25 μl min−1 and

water/acetonitrile/TFA, 75:25:0.1 as a mobile phase. Fractions of 100 μl were collected,

dried, and reconstituted in 2 % acetonitrile and 0.2 % FA, and further analyzed by liquid

chromatography coupled to tandem mass spectrometry using a hybrid LTQ Orbitrap Elite

(Thermo  Scientific)  instrument.  Cross-linked  peptides  were  identified  using  xQuest

(Walzthoeni et al., 2012). False discovery rates (FDRs) were estimated by using xProphet

(Walzthoeni et al., 2012). and results were filtered according to the following parameters:

FDR = 0.05, min delta score = 0.90, MS1 tolerance window of -4 to 4 ppm, ld-score > 22.

 2.7 Bioinformatic tools

ClustalW  (Larkin  et  al.,  2007) was  used  to  produce  multiple  sequence  alignments.

Secondary structure predictions and analysis were done with Hhpred (Soding, 2005) and

psipred (Buchan et al., 2013). DNA and protein sequences were obtained from the NCBI´s

database and www.uniprot.org, respectively.  Protein specific parameters were calculated

using the ProtParam software  (Wilkins et al., 1999). For protein domain predictions we

used the NCBI´s conserved domain database (Marchler-Bauer et al., 2011). To predict

cluster of  surface amino acids  suitable for surface entropy reduction we employed the

SERp server  (http://services.mbi.ucla.edu/SER/)  (Goldschmidt  et  al.,  2007).  The  DALI

server  (Holm  and  Rosenstrom,  2010) was  used  for  structure  similarity  searches.

Evaluation of binding affinity data obtained by fluorescence anisotropy was conducted by

Prism 6.0 (see II 2.5). Pymol was used to visualize and investigate molecular models and

to produce images. Crystallography software tools were used as described in II 2.3.3.
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 III Results and discussion

 1 Structure and function of a truncated NELF-AC subcomplex 

and architecture of complete NELF

Data presented in chapter III 1 have been obtained during this thesis and were submitted

for publication (see page IV).

 1.1 NELF subcomplex NELF-AC

In a long-standing effort to obtain structural information on the intrinsically flexible NELF

complex, we delineated regions in human NELF subunits that form soluble subcomplexes

amenable to structural analysis (Figure 6, Figure 24, Figure 25, Table 16, II 2.2.2, III 2.1).

Bacterial co-expression of NELF subunit variants revealed that the N-terminal region of

NELF-A could be co-purified with NELF-C. Limited proteolysis and co-expression analysis

with  truncated  protein  variants  showed  that  the  N-terminal  residues  6-188  of  human

NELF-A and residues 183-590 of human NELF-C formed a stable subcomplex (‘NELF-

AC’). Purified NELF-AC could be crystallized by vapor diffusion, and the X-ray structure

was  solved  by  SIRAS  (Figure  7,  II  2.3).  The  structure  contained  one  NELF-AC

heterodimer in the asymmetric unit and was refined to a free R-factor of 25.6 % at 2.8 Å

resolution (Table 17). The structure shows very good stereochemistry and lacks only the

mobile NELF-A residues 183-188, and NELF-C residues 183-185, 401-402, 445-448, 523,

and 564-572.  In  the  final  model,  98.2  % of  residues  are in  preferred  Ramachandran

regions and 1.8 % of residues are in additionally allowed regions.
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Figure 6: Iterative truncation of full-length NELF-AC yields a variant amenable to crystallization

(A) Crystallized variant and previously identified functional regions in human NELF-A and NELF-C.
Cleavage sites of chymotrypsin and subtilisin are indicated by black and green arrows, respectively.
‘NELF-C’  delineates  the  previously  identified  NELF-C-binding  region  in  NELF-A  (Narita  et  al.,
2003), whereas ‘Pol II’ marks the region in NELF-A that associates with Pol Il (Narita et al., 2003).

(B) Partial digestion of pure full-length NELF-AC with chymotrypsin yields three stable degradation
products that were identified as NELF-A N-terminal domain (residues 6-188), NELF-A C-terminal
region  (residues  248-~485)  and  NELF-C  (residues  52-590).  The  resulting  truncated  construct
NELF-A6-188C36-590 did not yield diffracting crystals. Shown are SDS-PAGE analyses.

(C) Partial  digestion of  pure full-length NELF-AC and truncated NELF-A6-188C36-590 with subtilisin
yield the same stable degradation products for NELF-A (residues 6-188) and NELF-C (residues
190-590). 

(D)  The  resulting  truncated  variant  NELF-A6-188C183-590 (‘NELF-AC‘)  was  successfully  used  for
crystallization.
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Table 16: Solubility of bacterially expessed NELF variants

Protein variant Solubility

NELF-AC (+), (1)

NELF-AD (++), (1)

NELF-AC36-590 (++), (1)

NELF-A6-188C36-590 (+++), (2)

NELF-A6-188 C183-590 (+++)

NELF-ABC (++), (1)

NELF-A6-188BC36-590 (++), (3)

NELF-ABCE (+), (1), (3)

NELF-A6-188BC36-590E (++), (2), (3)

Variants are full-length proteins if not otherwise specified. (+) = low solubility, (++) = medium 
solubility, (+++) = high solubility, (1) = aggregation, (2) = slight aggregation, (3) = stable at high salt 
concentrations only (500 mM NaCl).
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The final 2Fo-Fc electron density map was contoured at 1.5 σ (grey) and the anomalous difference
Fourier electron density for the selenomethionine-labeled crystal was contoured at 4.0 σ. The final
model for NELF-C helix α4´ (Figure 8, Figure 9) is superimposed in stick representation, showing
the position of selenium atoms in selenomethionine residues (red) used for phasing.

Figure 7: Exemplary region of the electron density map
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Table 17:  X-ray diffraction and refinement statistics

Native SeMet

Data collection a

Space group I213 I213

Cell dimensions

    a=b=c (Å) 185.07 184.45

Wavelength (Å) 1.00000 0.97910

Resolution (Å) 12.3-2.75 (2.82-2.75) b 14.54-3.25 (3.33-3.25)

Rsym (%) 9 (271) 9 (130)

I / σI 32.2 (1.9) 24.0 (2.2)

Completeness (%) 100 (100) 100 (100)

Redundancy 39.8 (40.7) 20.6 (15.8)

CC (1/2) 
c (%) 100 (73.9) 100 (78.4)

Figure of merit for SeMet sites 0.323

Refinement

Resolution (Å) 2.75

No. reflections observed 1,093,935 657,156

No. Reflections unique 27,492 31,923

Rwork / Rfree (%) 23.7 / 25.6

No. atoms

    Protein 4434

    Ligand/ion 2

   Water 13

B-factors (Å2)

    Protein 110.8 (NELF-A)

108.4 (NELF-C)

    Ligand/ion 103.5

    Water 77.4

R.m.s deviations

    Bond lengths (Å)  0.003

    Bond angles (°)  0.662
a Diffraction data were collected at beamline X06DA of the Swiss Light Source, Switzerland

and processed with XDS (Kabsch, 2010).

b Values in parentheses are for the highest-resolution shells

c CC1/2 = percentage of correlation between intensities from random half-datasets (Karplus

and Diederichs, 2012).
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 1.2 Unusual structure of the human NELF-AC subcomplex

The structure of NELF-AC reveals a novel fold and an extended interface between the two

NELF subunits  (Figure 8,  Figure 9,  Figure 10B and C).  NELF-C adopts a horseshoe-

shaped structure (Figure 9). NELF-C consists of 22 α-helices (α1´-α22´) and a small two-

stranded β-sheet  (β1´-β2´,  residues 367-379) that  protrudes from the surface.  The C-

terminal half of NELF-C (helices α14´-α19´) forms three HEAT repeats (H1-H3). The HEAT

repeat region shows structural similarity (Holm and Rosenstrom, 2010) to the C-terminal

repeat  domain  (CTD)-interacting  domain  (CID)  (Meinhart  and  Cramer,  2004) and  the

polyadenylation factor symplekin (Xiang et al., 2010). Despite the presence of a CID-like

fold,  NELF-AC  did  not  show  significant  binding  to  CTD  diheptad  peptides  carrying

phosphorylations at CTD residues serine-2 or serine-2 and serine-5 (not shown). Subunit

NELF-A forms a highly conserved helical ‘N-terminal domain’ (helices α1-α5, residues 6-

110) that resembles (Holm and Rosenstrom, 2010) the fold of the HIV integrase-binding

domain in human PC4 and SFRS1-interacting protein (Figure 10A)  (Cherepanov et al.,

2005).  This  domain  is  followed  by  an  ‘extended  region’  in  NELF-A that  forms  four

additional  helices  (helices  α6-α9,  residues  111-182) arrayed  around  the  NELF-C

horseshoe (Figure 8, Figure 9). 

Both NELF-A regions interact extensively with NELF-C through hydrophobic and polar

contacts. Two invariant tryptophan side chains (W24 and W89) on the NELF-A N-terminal

domain insert into largely conserved hydrophobic pockets of NELF-C (Figure 8,  Figure

10B). The extended region of NELF-A is essential for NELF-C interaction  (Narita et al.,

2003) and contacts the N- and C-terminal regions of NELF-C with its helices α6 and α9,

respectively. NELF-A helices α7 and α8 are buried in the central surface of the NELF-C

horseshoe (Figure 10C). Overall, the heterodimer interface buries a large surface area

(3,690 Å2), explaining the high stability of the complex in 2 M sodium chloride (not shown).
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Alignment  of  NELF-A and NELF-C regions present  in  the structure  from Homo sapiens (H.s.),
Drosophila  melanogaster (D.m.)  and  Dictyostelium discoideum (D.d.).  Invariant  and  conserved
residues are highlighted in green and yellow, respectively. Barrels above the alignment represent α-
helices, arrows β-sheets. HEAT-repeats H1-H3 are marked with black lines above the alignment.
Residues residing in the heterodimeric interface and hydrophobic core residues are marked by
black  and  red  squares,  respectively.  Red  triangles  label  residues  involved  in  nucleic  acid
interaction,  blue  and  orange  dots  mark  previously  known phosphorylation  sites  located  at  the
protein  surface  and residues identified  to  be  phosphorylated by P-TEFb,  respectively.  The “N-
terminal  domain”  and  “extended  region”  of  NELF-A are  indicated.  Sequence  alignments  were
carried  out  with  ClustalW2  (Larkin et  al.,  2007) followed by manual  editing  and rendered with
JALVIEW (Waterhouse et al., 2009).

Figure 8: Conservation of human NELF-A and NELF-C
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Ribbon model of  NELF-AC with NELF-A in red and NELF-C in cyan. N- and C-termini,  mobile
regions, and truncated regions are indicated by dashed lines. The two views are related by a 180°
rotation around the vertical axis.

Figure 9: Crystal structure of human NELF-AC complex.

Figure 10: Details of NELF-AC structure and subunit interaction
(A)  NELF-A N-terminal  domain enlarged and rotated 60° around the horizontal  axis  relative to
“bottom view” (Figure 9).
(B) Detailed view of  invariant NELF-A residues W24 and W89 and surrounding residues (stick
model) interacting with the NELF-C surface. NELF-C surface conservation colored according to
Figure 8. The view is rotated by 90° around the vertical axis relative to “bottom view” (Figure 9).
(C) Detailed view of NELF-A helices α7 and α8 (stick model, residues 138–154) surrounded by
NELF-C. NELF-C surface conservation is colored according to  Figure 8. The view is rotated 60°
around the horizontal axis relative to “bottom view” (Figure 9).
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 1.3 The NELF-AC core is highly conserved

The  crystallized  regions  of  human  NELF-AC  share  considerable  homology  among

metazoans,  particularly  at  residues  forming  the  hydrophobic  cores  and  the  interface

between NELF-A and NELF-C (Figure 8).  The extent  of  conservation is evident  when

human and Drosophila melanogaster are compared, which share 55 % identity for NELF-

A and 50 % identity for NELF-C. Most regions outside of the crystallized core appear to

have diverged in metazoans, suggesting a conserved role for the central NELF-AC core

(Figure 11,  Figure 12).  Thus, the human NELF-AC structure is an excellent  model for

NELF-AC complexes in other multicellular species. 

Surprisingly,  a  part  of  the NELF-AC complex also exists  in  the single cell  slime mold

Dictyostelium discoideum. The hypothetical  Dictyostelium  proteins  DDB_G0286295 and

DDB_G0268678 share sequence similarity with NELF-A and the crystallized C-terminal

region of NELF-C (Figure 8). The conservation of many residues in the hydrophobic core

and heterodimer interface indicates that the NELF-AC subcomplex exists in this single cell

organism. A putative Dictyostelium homolog is also found for a region of human NELF-B

comprising residues 1-410  (DDB_G0284195)  (Chang et al., 2012), but not for NELF-E,

suggesting  that  Dictyostelium NELF may be composed of  a  three-subunit  NELF-ABC

complex that contains the conserved NELF-AC core.
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The alignment  compares  full-length NELF-A from Homo sapiens (H.s.),  Mus musculus  (M.m.),
Danio rerio (D.r.), Drosophila melanogaster (D.m.) and Dictyostelium discoideum (D.d.). Residues
are  colored  according  to  percent  conservation  with  brighter  colors  representing  higher
conservation. Barrels above the alignment represent α-helices, arrows β-sheets and are colored
according  to  Figure  8.  N-  and  C-terminal  borders  of  solved  crystal  structure  are  indicated.
Sequence alignment was done with ClustalW2 (Larkin et al., 2007) followed by manual editing and
rendered with JALVIEW (Waterhouse et al., 2009).

Figure 11: Multiple sequence alignment of full-length NELF-A demonstrating the comparatively 
high conservation of the crystallized region



 III Results and discussion

 1.4 NELF-AC binds single-stranded nucleic acids

Analysis of the NELF-AC surface showed that one face of the NELF-AC complex contains

four positively charged patches (Figure 13, bottom view).  Patch 1 consists of  NELF-A

residues R65 and R66 and NELF-C residues R291 and K315. Patch 2 encompasses

NELF-C residues K372, K373, and K374, and patch 3 contains NELF-C residues K384

and K388. Patch 4 is composed of NELF-A residues K146, K161, K168, and R175, and

NELF-C residues R419 and R506. These patches are well conserved among metazoa,

and are partially conserved in  Dictyostelium  (Figure 8). In addition to the four positive
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Figure 12: Multiple sequence alignment of full-length NELF-C demonstrating the low conservation
of the N-terminal region
The alignment  compares full-length  NELF-C from Homo sapiens (H.s.),  Mus musculus  (M.m.),
Danio rerio (D.r.), Drosophila melanogaster (D.m.) and Dictyostelium discoideum (D.d.). Residues
are  colored  according  to  percent  conservation  with  brighter  colors  representing  higher
conservation. Barrels above the alignment represent α-helices, arrows β-sheets and are colored
according  to  Figure  8.  N-  and  C-terminal  borders  of  solved  crystal  structure  are  indicated.
Sequence alignment was done with ClustalW2 (Larkin et al., 2007) followed by manual editing and
rendered with JALVIEW (Waterhouse et al., 2009).
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patches, the NELF-AC surface contains a polar conserved surface (patch 5) that is formed

by NELF-A residues K166, R167, K170, L174, E177, K181, and S182, and residues E491,

K494, D498, D526, S528, R531, Y532, T535 and E536 that protrude from NELF-C helices

α18´ and α20´ (Figure 13, side view).

The  positively  charged  patches  of  NELF-AC  suggested  that  the  subcomplex  may

associate with nucleic  acid.  To investigate this  idea,  we used fluorescence anisotropy

titration assays (Figure 14,  II 2.5). We tested NELF-AC binding to fluorescently labeled,

synthetic 25-nt single-stranded (ss) DNA and ssRNA random sequence (Table 7). Indeed,

we detected binding of NELF-AC to both ssDNA and ssRNA. Regression analysis of the
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Figure 13: Surface properties of NELF-AC
Three views of the solvent-accessible surface related by 90° rotations around a vertical axis are
shown.
(A)  Surface conservation.  Residues that  are invariant  from human to  Drosophila are in  green,
conserved residues in yellow (Figure 8). Surface areas involved in nucleic acid binding (patches 1–
4) (III 1.4) are highlighted. Colors of labels according to color code of protein features belong to
(Figure 9). A conserved polar surface area (patch 5) is formed by the C-terminal region of NELF-A
and NELF-C helices α18´ and α20´.
(B)  Electrostatic  surface  potential  generated  with  ABPS.  Blue,  red,  and  white  areas  indicate
positive, negative and neutral charge, respectively. Surface areas involved in nucleic acid binding
(patches 1–4), exposed phosphorylation sites mapped  in vivo (T157, T285 and Y289) and sites
phosphorylated  by  P-TEFb  in  vitro (T173  and  T318)  are  highlighted  (III  1.5).  Colors  of  labels
according to color code of protein features belong to (Figure 9). Phosphorylation sites mapped in
vivo and in vitro are framed by blue and orange boxes, respectively (Figure 8).
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binding curves revealed that Kd values in the micromolar range (Figure 14A). In contrast,

NELF-AC did not associate with nucleic acid duplexes composed of DNA or DNA-RNA

hybrids (not shown).

To  investigate  whether  the  positively  charged  patches  were  involved  in  nucleic  acid

binding,  we generated NELF-AC variants in  which lysine and arginine residues in the

patches  were  substituted  with  methionine  and  glutamine,  respectively.  Indeed,  single-

stranded nucleic acid binding was strongly impaired in variants with mutations in three or

four of the positively charged patches (Figure 14B, C). We also tested whether single-

stranded nucleic acids corresponding to known Pol II in vivo pause sites could associate

with NELF-AC (Figure 14E). A ssRNA oligonucleotide with a sequence corresponding to a

promoter-proximal transcript from the  junB gene bound NELF-AC with a Kd of ~8.0±0.9

µM, whereas ssDNA corresponding to the non-template strand in this region bound more

weakly (Aida et al., 2006) (Figure 14D). Furthermore, ssRNA and ssDNA derived from the

c-fos  promoter-proximal  region  sequences  (Fivaz  et  al.,  2000) also  bound  NELF-AC,

albeit  with a preference for DNA (Figure 14D). Taken together, NELF-AC binds single-

stranded nucleic acids via positively charged patches, and both the strength of binding

and the preference for RNA or DNA are sequence-dependent.

49



 III Results and discussion

50

Figure 14: NELF-AC binds single-stranded nucleic acids
(A) Binding of wild type (WT) NELF-AC to 10 nM fluorescently labeled ssRNA or ssDNA with 60 %
GC content as monitored by the change in relative fluorescence anisotropy. Error bars reflect the
standard deviation from three experimental replicates.
(B, C) Binding of WT NELF-AC and variants containing mutations in surface patches (Figure 13) to
the same ssRNA (B) or ssDNA (C) used in panel A. Numbers indicate mutated patches present in
NELF-AC variants.
(D) Binding of WT NELF-AC to 10 nM of fluorescently labeled ssRNA and ssDNA derived from
natural sequences of promoter-proximal regions of paused genes junB and c-fos (II 2.5, Table 7) as
monitored by the change in relative fluorescence anisotropy.
(E) Schematic of the presence of single-stranded nucleic acids (ssRNA, ssDNA) in the promoter-
proximally paused Pol II elongation complex.
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 1.5 NELF-AC phosphorylation counteracts nucleic acid binding

The above results suggested that NELF acts at least partially during Pol II pausing by

binding  single-stranded nucleic  acids  in  the promoter-proximal  transcription  elongation

complex. Because it is known that release of paused Pol II involves NELF phosphorylation

(Chiba et al., 2010; Fujinaga et al., 2004), we hypothesized that NELF phosphorylation

counteracts nucleic acid binding by NELF-AC. In support of this, known phosphorylation

sites mapped to the nucleic acid-binding face of NELF-AC. The human NELF-A residue

T157  (Q9H3P2)  and  NELF-C  residues  T285,  Y289,  and  S301  (Q8IXH7)  can  be

phosphorylated  in  vivo (www.phosphosite.org)  and T157,  T285 and Y289 are  located

close to the nucleic acid-binding patches 1 and 4 in our structure. We therefore generated

protein  variants  with  the  phosphomimetic  mutations  T157D,  T285D  and  Y289E,  and

tested their affinity for ssRNA and ssDNA. Double mutants exhibited poor solubility. All

three variants significantly impaired binding to ssRNA and ssDNA (Figure 15), arguing that

phosphorylation of NELF-AC counteracts nucleic acid binding, and providing a possible

explanation for how paused Pol II may be released upon NELF phosphorylation.

To test whether P-TEFb can phosphorylate NELF-AC in vitro, and to investigate whether

phosphorylation may impair nucleic acid binding of NELF-AC, we prepared recombinant

P-TEFb by co-expressing  its subunits CDK9 and cyclin-T1 in insect  cells (II  2.4).  We

incubated NELF-AC with purified P-TEFb and ATP, and subjected the two NELF subunits

to  phosphopeptide  analysis  by  mass  spectrometry  (Figure  16,  Figure  17,  II  2.4).  We
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Figure 15:  In  vivo phosphorylation  of  NELF-AC counteracts  binding  of  single-stranded nucleic
acids
(A,  B)  Binding  of  WT NELF-AC  and  variants  carrying  phosphomimetic  mutations  that  mimic
phosphorylations previously identified in vivo to 10 nM of fluorescently labeled ssRNA (A) or ssDNA
(B) with 60 % GC content as monitored by changes in relative fluorescence anisotropy (same as
Figure 14A-D). Error bars reflect the standard deviation from three experimental replicates.
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indeed detected two P-TEFb dependent phosphosites corresponding to NELF-A residue

T173 (patch 4) and NELF-C residue T318 (patch 1). To ensure complete phosphorylation

and to avoid complications caused by inherent P-TEFb nucleic acid binding activity, we

cloned and purified NELF-AC variants with phosphomimetic mutations of NELF-A T173D

and NELF-C T318D. Binding experiments showed strongly decreased affinity for ssRNA

and ssDNA compared to wild type NELF-AC (Figure 18). Thus nucleic acid binding by

NELF-AC can  be  impaired  by  P-TEFb-dependent  phosphorylation  of  its  nucleic  acid-

binding face. 
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Production ion spectrum of phosphorylated peptide SATLRAELLQK (position 171 – 181) in NELF-
A. The b- and y-type fragmention ions are depicted within the spectrum and in the corresponding
peptide sequence. b-type- and/or y-fragment ions marked with an asterisk (*) are those that reveal
a loss of H3PO4 (98 Da) in the spectrum and thus contain the phosphorylated amino acid. The b3-
ion (Ser-Ala-Thr) but not the b2-ion (Ser-Ala) shows unambigiously a loss of H3PO4 so that Thr-173
is  the  phosphorylated  amino  acid.  Scan  number  is  the  according  to  Excalibur  software
(ThermoFisherScientific) and score according to MaxQuant software (Cox and Mann, 2008).

Figure 16: Identification of pT-173 in NELF-C by LC-MSMS
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Production ion spectrum of phosphorylated peptide MFTSMDPPPVELIR (position 316 – 329) in
NELF-C.  The  b-  and  y-type  fragment  ions  are  depicted  within  the  spectrum  and  in  the
corresponding peptide sequence. b-type- and/or y-fragment ions marked with an asterisk (*) are
those that reveal a loss of H3PO4 (98 Da) in the spectrum, and thus contain the phosphorylated
amino acid. The b3-ion (Metox-Phe-Thr) shows unambiguously a loss of H3PO4 so that Thr-318 is
the  phosphorylated  amino  acid.  Scan  number  is  the  according  to  Excalibur  software
(ThermoFisherScientific) and score according to MaxQuant software (Cox and Mann, 2008).

(A,  B)  Binding  of  WT NELF-AC  and  variants  carrying  phosphomimetic  mutations  that  mimic
phosphorylations made by P-TEFb in vitro to 10 nM of fluorescently labeled ssRNA (A) or ssDNA
(B) with 60 % GC content and monitored binding by changes in relative fluorescence anisotropy
(same  as  Figure  14A-D).  Error  bars  reflect  the  standard  deviation  from  three  experimental
replicates.

Figure 18: Phosphorylation of NELF-AC by P-TEFb counteracts binding of single-stranded nucleic
acids

Figure 17: Identification of pT-318 in NELF-AC by LC-MSMS



 III Results and discussion

 1.6 Complete NELF has an accessible nucleic acid-binding face

To investigate whether the nucleic acid-binding face on NELF-AC is accessible in the four-

subunit  NELF complex,  we prepared the entire NELF complex in recombinant form (II

2.2.2). We co-expressed full-length NELF-A, NELF-C, and NELF-B carrying a solubility-

enhancing maltose-binding protein (MBP) tag in E. coli. The resulting NELF-ABC complex

was  partially  purified,  and  supplemented  with  independently  expressed  and  purified

NELF-E.  Because  the  resulting  NELF  complex  was  prone  to  aggregation,  we  also

prepared a truncated version that lacked the C-terminal region of NELF-A (residues 189-

528) and the non-conserved N-terminal tail of NELF-C (residues 1-35) (Figure 11, Figure

12,  Figure 19A,  II  2.2.2).  Similarly,  we prepared a three-subunit  truncated NELF-ABC

complex lacking the NELF-E subunit.

We crosslinked  purified  truncated three-  and four-subunit  NELF complexes  DSS and

detected lysine-lysine crosslinks by mass spectrometry as described (Herzog et al., 2012).

For the four-subunit NELF, we obtained a total of 158 unique high-confidence lysine-lysine

crosslinks,  including 70 inter-subunit  and 88 intra-subunit  crosslinks (Figure 20A).  Our

NELF-AC  crystal  structure  explained  11  inter-  and  intra-subunit  crosslinks,  with  Cα

distances below the maximum allowed distance of 30 Å (Figure 19B). This provided a

positive  control  and  argued  that  the  structure  of  NELF-AC  is  preserved  within  the

complete NELF complex. 
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(A) SDS-PAGE of pure truncated four-subunit NELF used for crosslinking analysis.
(B)  Crosslinking  of  truncated  four-subunit  NELF  complex.  Cα-atom  distances  of  lysine-lysine
crosslinks located within the known NELF-AC structure.

Figure 19: Controls of complete NELF crosslinking
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The lysine residues in the nucleic acid-binding patches were devoid of crosslinks. Patches

3 and 4 formed monolinks with the crosslinking reagent, indicating they are accessible to

solvent  (Figure  22).  Independent  crosslinking  analysis  of  the  3-subunit  NELF-ABC

complex confirmed and complemented these results (Figure 20B).  Taken together,  the

nucleic acid-binding face of NELF-AC remains accessible for nucleic acid binding in the

complete NELF complex. 
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Figure 20: Interactions detected by crosslinking
Inter-protein and intra-protein crosslinks are colored in black and in the colors of the corresponding
NELF subunits, respectively.  The crosslinking interaction map has been created using the xiNET
program (Combe et al., 2015). NELF-A, NELF-B, NELF-C and NELF-E are colored as in Figure 22.
(A) Crosslinking interaction map of a truncated 4-subunit NELF complex as determined by lysine
crosslinking followed by mass spectrometric identification of the crosslinked sites. A red loop at
NELF-B K278 indicates a self-crosslink.
(B) Crosslinking interaction map of a truncated three-subunit NELF-ABC as determined by lysine
crosslinking followed by mass spectrometric identification of the crosslinked sites.  A red loop at
NELF-B K278 indicates a self-crosslink.



 III Results and discussion

 1.7 Location of NELF-B and NELF-E

The crosslinking analysis also revealed the topology of the complete NELF. To position

NELF-B with respect to the NELF-AC structure, we first prepared a model of NELF-B. The

program I-TASSER (Yang et al., 2015) predicted that NELF-B forms a HEAT repeat fold

(Figure 22) (C-score = -2.31, best template structure is 1B3U – human PP2A). The model

is strongly supported by 54 intra-crosslinks, which suggest a strong curvature of the HEAT

repeat  fold  (Figure  20A),  as  observed  for  a  HEAT repeat  protein  folding  around  an

interaction partner (Cingolani et al., 1999).

Three distinct regions of NELF-B crosslinked to NELF-AC; the N-terminal region (residues

K72, K85 and K92), the central region (K278 and K292), and the C-terminal region (K497)

(Figure 20A, Figure 22). These three regions of NELF-B crosslink to the side opposite of

the NELF-AC nucleic acid-binding face, indicating that NELF-B and nucleic acids bind to

opposite  faces  of  NELF-AC.  The central  region  of  NELF-B  also  crosslinks  to  the  N-

terminal region of NELF-C that is not present in our crystal structure (K125). In vitro, the

N-terminal  region  of  NELF-C  bound  NELF-B  (Figure  21),  suggesting  that  NELF-B

embraces the N-terminal region of NELF-C. Crosslinks detected with the truncated four-

subunit NELF complex were corroborated by independent XL-MS experiments performed

with the three-subunit NELF-ABC complex (Figure 20B).
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Pull-down assays demonstrating that the NELF-C N-terminal region (residues 36-190) is sufficient
for  interaction  with  NELF-B.  MBP-NELF-B  was  bound  to  amylose  resin  and  incubated  with
different  NELF-AC constructs.  Only  NELF-A6-188C36-590 and NELF-C36-190 could  bind  to  NELF-B.
Asterisks mark NELF-A and NELF-C constructs added to NELF-B as described above the lanes. i
= input, e = eluate.

Figure 21: Interaction between NELF-AC and NELF-B
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Finally,  the crosslinking indicated that NELF-E is located at the periphery of NELF-ABC.

NELF-E crosslinked to NELF-B, except for one residue (K130) within a mobile region that

crosslinked to multiple distant sites on NELF-C (Figure 20). The extensive crosslinking

between NELF-E and NELF-B is consistent with biochemical interaction data (Narita et al.,

2003). A predicted N-terminal helix of NELF-E (residues 7-36) formed a crosslink to NELF-

B residue K364 (Figure 22), placing this helix near the central region in NELF-B. The RRM

domain of NELF-E  (Rao et al., 2006) (residues 257-335, PDB-code 2JX2) crosslinks to

numerous locations on NELF-B with its residues K260 and K332 on one side of the RRM

(Figure 20, Figure 22). This crosslinking pattern indicates that the RRM domain remains

mobile within NELF. Residue K326 of NELF-E is located in the RNA-binding β-sheet and

was monolinked, arguing that the RNA-binding face of NELF-E is accessible within NELF.

Taken together, our analysis revealed the topology of complete NELF and showed that

both nucleic acid-binding sites of NELF are accessible.
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Figure 22: Molecular architecture of complete NELF
Structural overview of observed crosslinks between NELF-A6-188 (red), NELF-C183-590 (cyan), NELF-B
(orange), and NELF-E (magenta). NELF-B was modeled with I-TASSER (Yang et al., 2015). Two
views related  by a  180º rotation  around a vertical  axis  are shown.  The NELF-E RRM-domain
structure was previously solved  (Rao et al., 2006) (2JX2). A predicted (Buchan et al., 2013) N-
terminal helix (7-36) and a predicted flexible region (37-261) of NELF-E are indicated. Lysines on
NELF-AC surface  forming  crosslinks  to  NELF-B  are  colored  blue  and labeled  as  in  Figure  9.
Residues of NELF-B that form crosslinks with both NELF-AC and NELF-E are blue, residues solely
forming crosslinks between NELF-B and NELF-E are green. NELF-AC patches (1-4) responsible
for nucleic acid interaction are circled and the conserved patch 5 is indicated (Figure 13, III 1.4).
NELF-AC lysine residues forming monolinks with DSS are in yellow.
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 1.8 Discussion

Understanding the mechanisms of promoter-proximal pausing and release is essential for

understanding  gene  regulation  and  ultimately  requires  structural  information  of  Pol  II

elongation complexes bound by DSIF, NELF, and P-TEFb. To this end, structures of the

involved multi-protein components are required. Structural information is already available

for Pol II elongation complexes (Martinez-Rucobo and Cramer, 2013), DSIF (Klein et al.,

2011; Martinez-Rucobo et al., 2011), and P-TEFb (Baumli et al., 2012; Baumli et al., 2008;

Schulze-Gahmen et al., 2014; Schulze-Gahmen et al., 2013; Tahirov et al., 2010), but is

lacking for NELF, except for the RRM domain of NELF-E  (Rao et al., 2006; Rao et al.,

2008). To close this gap, we report here the overall architecture of NELF and the crystal

structure of  its conserved core subcomplex NELF-AC.  In addition,  we report  a single-

stranded  nucleic  acid-binding  function  of  NELF-AC  that  is  repressed  by  P-TEFb-

dependent phosphorylation of the NELF-AC surface. Our results are generally relevant for

understanding NELF function and the mechanisms of Pol II pausing because the NELF-

AC structure and functionally important residues are conserved.

Based on our data and available literature (Chiba et al., 2010; Yamaguchi et al., 1999a)

we propose that Pol II pausing involves binding of NELF-AC to nascent RNA, and that Pol

II  release  involves  phosphorylation  of  the  RNA-binding  face  of  NELF-AC by  P-TEFb,

thereby impairing RNA binding. We also suggest a topological model for NELF interaction

with the promoter-proximally paused Pol II-DSIF transcription elongation complex (Figure

23).  In this model,  the positively charged face of  NELF-AC interacts  with exiting RNA

because in a Pol II-DSIF elongation complex ssRNA is accessible, whereas non-template

ssDNA is most likely not (Martinez-Rucobo et al., 2011). The NELF-A region immediately

following the region in our structure (residues 189-248) is flexible (proteolysis data not

shown) and may interact with the Pol II clamp  (Yamaguchi et al., 2007).  The adjacent,

highly conserved surface patch 5 on NELF-AC (Figure 13, side view) may contribute to

Pol II binding or may bind DSIF or another factor, such as P-TEFb. NELF-B and NELF-E

are likely  oriented away from the Pol  II  surface,  but  NELF-E is flexible and can bind

nascent RNA when it is approximately 70 nucleotides long  (Missra and Gilmour, 2010;

Pagano et al., 2014; Rao et al., 2008). The comparatively weak affinity of NELF-AC for

nucleic  acids would not  contradict  our  model  since upon binding  to the  Pol  II  clamp,

NELF-AC is positioned close to nascent RNA effecting an increases binding efficiency.

Further,  for  reversible  protein-nucleic  acid interactions the affinity  of  individual  binding

sites would be expected to be rather weak so nucleic acids can be released easily.
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It is known that the extent of Pol II pausing strongly differs between different genes (Muse

et al., 2007). Such gene specificity may be explained by differences in promoter-proximal

DNA regions. How can DNA sequence influence pausing? First, certain sequences may

lead to DNA-RNA hybrids that favor Pol II pausing by slowing down the elongation rate,

similar to DNA sequences that influence pausing of bacterial RNA polymerase (Greive and

von Hippel, 2005; Larson et al., 2014; Vvedenskaya et al., 2014). Second, nascent RNA

may bind  to  NELF with  different  affinities,  directly  influencing  the  efficiency  of  NELF

recruitment to pausing sites. Indeed we observed that nucleic acid binding of NELF-AC is

strongly sequence-dependent. It is also known that DNA regions differ in their GC content

(Ginno et al., 2012) and in Drosophila there is a known sequence motif that is associated

with pausing (Hendrix et al., 2008). Third, nucleosome stabilities vary with DNA sequence

and nucleosomes are known to influence Pol II elongation (Gilchrist et al., 2010; Gilchrist
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Figure 23:  Topology  of  a  promoter-proximally  paused  Pol  II  transcription  elongation  complex
containing DSIF and NELF
NELF (Figure 22) was positioned next to the previously published Pol II-DSIF elongation complex
model  (Martinez-Rucobo et al., 2011). We used a single scale to allow for a comparison of the
relative sizes of the complexes. The view of NELF-AC is rotated 90° relative to the ‘bottom view’ in
Figure 9 and Figure 13 around the vertical axis. The positively charged, nucleic acid-binding face of
NELF-AC was oriented towards RNA exiting Pol II. Note the Pol II-binding region of NELF-A that
may contact the Pol II clamp helices (violet) is not present in the NELF-AC structure. The presumed
interaction between the NELF-A Pol II-binding region and the Pol II clamp domain positions the
NELF complex close to the RNA exit tunnel of Pol II.
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et al., 2008; Mayer et al., 2015).

Our results are essential for deciphering the molecular basis of Pol II pausing and release

and its sequence dependency and thus gene specificity. We note that nucleic acid binding

alone may explain recruitment of NELF to certain genes and its association with promoter-

proximal regions,  but  is  insufficient  to explain Pol  II  pausing,  which would additionally

require  a  change  in  the  elongation  behavior  of  the  polymerase.  This  may  involve  a

conformational change in the enzyme that may be triggered or stabilized by NELF binding

to the Pol II surface. Analysis of this intricate mechanism awaits the formation of functional

complexes comprising Pol II, DSIF, and NELF, and their structural analysis.

 2 Further analysis of the NELF subcomplex NELF-AC

Results described in this chapter have been obtained during this thesis. They support and

broaden the results described in chapter III 1 but were not published.

 2.1 Crystallization experiments with NELF-A6-188C36-590

A first  phase  of  limited  proteolysis  using  chymotrypsin  and  subsequent  truncation  of

mobile  and  unconserved  regions  resulted  in  a  highly  soluble  and  compact  construct

consisting of NELF-A (6-188) and NELF-C (36-590) (‘NELF-A6-188C36-590’) (Figure 6B, C).

Validity of this result was supported by bioinformatic analysis predicting NELF-C to consist

of a single and entirely alpha helically structured TH1 domain comprising the conserved

region 36-590 (Figure 3A, Figure 12) (Buchan et al., 2013; Marchler-Bauer et al., 2011).

Pure NELF-A6-188C36-590 formed trimers as determined by size exclusion chromatography

(Figure 24A) and dynamic light scattering (~250 kDa extimated size, monomer: 85.8 kDa)

with  an  RSD of  24.5  %.  Thin  needle  shaped  crystals  were  obtained  after  extensive

screening  (II  2.3.1,  Figure  25A).  However,  the  small  size  and fragility  of  the  crystals

prevented us from collecting diffraction  data.  To improve crystal  quality  we varied  the

termini  of  the construct  NELF-A6-188C36-590 with the objective to remove flexible terminal

sequences not identified before or add terminal amino acids important for crystal contacts

(Table  4 ‘DP33-DP47’)  (Derewenda,  2004).  The four  termini  of  NELF-A6-188C36-590 were

varied individually with the remaining three termini invariant resulting in NELF-A constructs

with N-termini beginning at S9, T20, G29 or A36 and C-termini ending at S182, S193 or

R202. NELF-C N- and C-termini were defined at Q30, S52, D55 or I57 and N559, T568,

D573 or N585, respectively. Yet none of these constructs could improve crystal quality.
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Our second approach to enhance the quality of NELF-A6-188C36-590  crystals was based on

surface  entropy  reduction  (Cooper  et  al.,  2007;  Derewenda,  2004;  Derewenda  and

Vekilov,  2006).  Clusters  of  flexible  and polar  side  chains,  in  particular  glutamate  and

lysine, comprise a high entropy and consecutively account for protein-protein repulsion

preventing crystallization. Mutation to alanine thus can increase chances of  successful

crystallization.  Based  on  results  of  the  “surface  entropy  reduction  prediction  server”

(Goldschmidt et al., 2007) four high-entropy clusters were modified: NELF-A E111, E112,

Q113; NELF-C E138,  E139,  E141;  NELF-C Q270, E271,  K272; NELF-C K371,  K372,

K374. Clusters were mutated to alanine individually and in combinations (Table 4, ‘DP48 -

DP53’).  We found  that  all  mutations  did  not  affect  protein  solubility.  However,  crystal

quality could not be increased.

In a second phase of limited proteolysis we found that subtilisin cleaves the N-terminal

region of NELF-C (36-189) resulting in the new construct NELF-A6-188C183-590 (‘NELF-AC’)

(Figure 6C and D,  III  1.1). Pure NELF-A6-188C183-590 was homogeneous and showed no

signs of aggregation as demonstrated by size exclusion chromatography (Figure 24B).

Using DLS the particle size was calculated to 60 kDa (65.9 kDa in theory) with an RSD of

19.1 %.

In combination with results from interaction assays (Figure 21) we concluded that NELF-C

consists of at least two compact and independently folding regions 36-189 and 190-590.

The NELF-C N-terminal region accounts for aggregation of NELF-A6-188C36-590, possibly due

to the lack of its binding partner NELF-B. Thus crystallization of the NELF-C N-terminal

region presumably requires previous complex formation with NELF-B.

Initial  crystallization  screens  with  NELF-A6-188C183-590 (Table  15)  identified  aplenty  of

predominantly  polyethylene  glycole  (PEG)  containing  crystallization  conditions  (not

shown) providing a basis for optimization and consecutive structure solution as described

in III 1.1 (Figure 25B, C).
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Figure 24: Size-exclusion analysis of truncated NELF-AC subcomplexes.
Size exclusion chromatography of trimeric NELF-A6-188C36-590 (A) and monomeric NELF-A6-188C183-590

(B). Truncation of the NELF-C N-terminal region (36-182) results in a substantial shift towards a
higher  retention  volume (13.8 and 16.0 ml,  respectively)  and hence lower  apparent  molecular
weight (250 and 65 kDa, respectively). For both size-exclusion chromatographies a Superose 6
10/300 column equilibrated in size exclusion buffer A was used. The blue and red curves indicate
absorption in milli absorption units (mAU) at 280 nm and 256 nm, respectively.
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 2.2 In depth analysis of NELF-AC interactions with nucleic acids

Additional fluorescence anisotropy experiments measuring the interaction between NELF-

A6-188C183-590 wildtype or mutant protein and nucleic acids enabled us to further explicate

and differentiate the results obtained in chapters III 1.4 and III 1.5.

NELF-AC preferentially binds nuleic acids with high GC content

We tested ssDNA and ssRNA with 44 %, 60 % and 72 % GC content as described in III

1.4 (II 2.5, Table 7). We found a low affinity of NELF-AC for both 44 % ssDNA and ssRNA.

Binding assays using nucleic acids with higher GC content (60 % and 72 %) yielded no

clear pattern. However, by trend nucleic acids with higher GC content exhibited a higher

affinity  to  NELF-AC (Figure  26).  Affinites  of  natural  sequences  supported  this  results

(Figure 14D): In vivo c-fos ssRNA sequence (60 % GC content) showed a lower affinity to

NELF-AC compared to in vivo junB ssRNA,  junB ssDNA and c-fos ssDNA (76 %, 75 %

and 75 % GC content, respectively). Summarized, NELF-AC tends to bind to nucleic acids

with high GC content more tightly than to nucleic acids with low GC content.
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(A) Needle shaped crystals of NELF-A6-188C36-590 WT grown in 1.15 M (NH4)2SO4, 0.2 M NaCl, 0.1 M
Na-HEPES pH 7.4. Despite extensive protein modification quality improvement was not possible.
(B) Crystallization screen Hampton Research Index HT, condition H3 (0.2 M Sodium malonate pH
7.0  and  20  %  w/v  Polyethylene  glycol  3,350).  This  condition  was  used  as  starting  point  for
successful optimization.
(C) Optimized  NELF-A6-188C183-590 crystal that was used to solve the structure, mounted in a cryo-
loop. The size of the tetraedric shaped crystal was ~300x200 µM. The crystal was grown in 0.2 M
Sodium malonate pH 7.0 and 14.25 % w/v Polyethylene glycol 3,350 (II 2.3.2).

Figure 25: Crystallization of NELF-AC variants
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Surface patch 1 is essential for interaction with nucleic acids

We asked whether specific surface patches contribute to nucleic acid binding in particular.

Hence, in addition to the combined mutation of three or four surface patches (Figure 14B

and C, III 1.4) we generated NELF-AC variants containing individual mutations of patches

1, 2, 3 or 4 (Figure 13). We then tested their affinity for fluorescently labeled, synthetic 25-

nt  single-stranded  ssDNA and  ssRNA random sequence  with  60  % GC content  and

ssDNA random sequence with 72 % GC content (III 1.4,  Figure 27, Table  7). We found

that mutation of patch 1 strongly reduced binding to all three nucleic acids tested. Patch 1

thus appears to be crucial for binding nucleic acids. In contrast, mutating patch 2 had little

effect on the affinity for both types of nucleic acid in general. Binding assays with NELF-

AC variants  carrying  mutations in  patches 3 and 4 produced ambiguous results,  only

interaction with ssDNA but not ssRNA was affected. Taken together patch 1 is an essential

binding site for nucleic acids while patch 2 contributes to binding of nucleic acids to a

minor  extent  and rather  stabilizes  the interaction.  Contribution  of  patches  3  and 4 to

nucleic acid binding remains unclear.
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(A, B) Binding of WT NELF-AC to 10 nM of fluorescently labeled ssRNA (A) or ssDNA (B) with 44
%, 60 % or 72 % GC content as monitored by the changes in relative fluorescence anisotropy
(same  as  Figure  14A-D).  Error  bars  reflect  the  standard  deviation  from  three  experimental
replicates.

Figure 26: NELF-AC preferentially binds single stranded nucleic acids with high GC content
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Binding of WT NELF-AC and variants containing one or four mutations in surface patches to 10 nM
of fluorescently labeled ssRNA (A), ssDNA (B) with 60 % and ssDNA (C) with 72 % GC content as
monitored by the changes in relative fluorescence anisotropy (same as  Figure 14A-D). Numbers
indicate mutated patches present in NELF-AC variants (Figure 13). Error bars reflect the standard
deviation from three experimental replicates.

Figure 27: Effect of mutating individual suface patches on NELF-AC affinity for nucleic acids
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 2.3 Discussion

Detailed analysis of interaction between NELF- A6-188C183-590 and nucleic acids revealed a

differentiated  pattern.  The  observed  significance  of  patch  1  for  nucleic  acid  binding

becomes momentous in view of  its vicinity to the phosphorylation sites NELF-C T285,

Y289 and T318. Phosphorylation abrogates the nucleic acid binding capacity of a nearby

patch by neutralizing the positive charge. Indeed, phosphomimetic mutations T285D and

Y289E reduce nucleic acid affinity much stronger than NELF-A T157D, which is located

proximal  to  the  positive  patch  4  (Figure  15).  Thus  our  results  explain  the  efficient

regulation of  nucleic acid binding by phosphorylation. Further, multiple phosphorylation

sites  that  are  presumably  controlled  by  different  kinases,  provide  the  possibility  for

dynamic regulation of promoter-proximal pausing.

The observed tendency of NELF-AC to stronger bind nucleic acids with high GC content

can contribute to explaining the establishment of promoter-poximal pausing. Gene regions

circumjacent  and  downstream  of  the  TSS  exhibit  a  significantly  above-average  GC

content (Ginno et al., 2013; Ginno et al., 2012). A preference of NELF-AC for nucleic acids

with  high  GC  content  sequences  would  ensure  a  tight  grip  and  prevent  unspecific

interactions outside promoter-proximal pausing regions.
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Since NELF has been discovered in 1999  (Yamaguchi et al., 1999a) numerous studies

revealing the biochemistry (Li et al., 2013; Missra and Gilmour, 2010; Narita et al., 2003;

Wu et al., 2005) and genomic function  (Fujita and Schlegel, 2010; Gilchrist et al., 2008;

Williams et al., 2015; Zeitlinger et al., 2007) were published. The structure of the common

and widespread  (Koonin and Makarova, 2013) NELF-E RRM domain has been solved

(Rao et al., 2006; Rao et al., 2008) and two functional regions of NELF-A, the NELF-C

and the Pol-II interaction domain, have been mapped (Narita et al., 2003). The general

importance  of  NELF  for  transcriptional  regulation  has  recently  been  recognized

(Yamaguchi et al., 2013). Yet, no specific structural information on NELF was available to

date. 

In this work we could solve the high-resolution structure of a highly conserved NELF-AC

subcomplex  and  identify  a  binding  site  for  single  stranded  nucleic  acids  previously

unknown.  NELF-AC affinity  for  nucleic  acids  strongly  depends  on  sequence  and  GC

content  and  can  be  regulated  through  phosphorylation  by  P-TEFb  and  likely  other

kinases. Analysis of the holo-NELF architecture showed that both single stranded nucleic

acid  binding  faces  are  located  at  opposite  ends  of  the  NELF  complex  and  freely

accessible.  These  results  allowed  to  propose  a  model  describing  the  topology  of  a

pausing complex and the molecular basis of NELF action.

Our model now needs to be reviewed, verified and expanded. It provides a starting point

for  future  structural  and  mechanistic  studies  to  deeper  understand  the  molecular

background of  promoter-proximal  pausing.  However,  important  aspects  of  the pausing

mechanism such as the change in Pol II conformation upon NELF binds to Pol II and

resulting  consequences  for  the transcription rate cannot  be explained yet  and require

further research.

The next steps to better understand NELF are in-depth analysis of  the function of  the

NELF-AC subcomplex and the  structural  characterization  of  further  parts  of  NELF.  In

continuation of this work two major points should be addressed. First, the specificity and

biological  relevance  of  the  newly  identified  NELF-AC  nucleic  acid  binding  capacity.

Despite the relatively weak interaction (Kd ~10 µM), binding is not unspecific as proven by

the  strong  sequence  dependency.  One way  to  verify  the  significance  of  nucleic  acid

binding  in  vivo could  be  to  knock  out  NELF-A  and  -C  genes  in  cell  culture  and

subsequently  replenish  NELF-A and  -C  carrying  mutations  in  positive  patches.  The

resulting  cells  can  then  be  analyzed  globally  for  differences  in  transcription  and
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specifically  for  defects  in  promoter-proximal  pausing  at  well-known paused genes like

hsp70 or junB. Consecutively the specificity of NELF-AC for single stranded nucleic acids

regarding  type,  sequence  and  secondary  structure  needs  to  be  determined  in  vivo.

Although in vivo interaction with ssDNA is less probable than with ssRNA, as discussed

above, our results were ambiguous. PAR-CLIP to discover RNA-bound NELF (Hafner et

al.,  2010),  chromatin  immunoprecipitation  of  DNA-bound protein  and related  methods

would  clarify  this  question.  Subsequently,  the  preference  of  NELF-AC  for  specific

sequences, sequence motifs or sequence characteristics like the GC content should be

defined  more  accurately  by bioinformatic  analysis  of  in  vivo experiments  and  in  vitro

validation  of  data  using  systematic  evoluation  of  ligands  by  exponential  enrichment

(SELEX)  as  demonstrated  for  NELF-E  RRM  (Pagano  et  al.,  2014).  Once  a  tightly

interacting nucleic acid has been identified, crystallization of NELF-AC and its nucleic acid

ligand is within the realms of possibility. Structural elucidation of a NELF-AC-nucleic acid

complex would render a deeper insight into the interaction between the two molecules

possible. Since NELF-AC was crystallized in a variety of PEG-containing conditions (III

2.1) this provides a promising starting point.

Another important question emanating from this work is for the function and interaction

partners of the highly conserved NELF-AC surface area ‘patch 5’ (Figure 13). This site is

outstanding  in  the  context  of  the  generally  well  conserved  NELF  surface  and  likely

fundamental for NELF function. One approach could be comparative pull-down assays

using affinity-tagged NELF-AC subcomplexes with and without mutations in patch 5 and

NELF-depleted  nuclear  extracts  as  demonstrated  previously  (Narita  et  al.,  2003)  or

alternatively in vivo over-expression of affinity-tagged NELF-AC followed by pull-down.

Structural studies on other NELF subunits as well  are necessary to clarify how NELF

contributes  to  establish  promoter-proximal  pausing.  Crystallization  of  NELF-AC  has

revealed a novel function and its regulation as well as a highly conserved surface area

previously unknown. Similarly, high-resolution structures of other NELF regions might lead

to unexpected new discoveries.  Regarding its  stucture and function NELF-B is  poorly

analyzed.  Considering the high sequence conservation of  NELF-B (Figure 3A)  and its

central position within the NELF complex (Figure 22)  (Narita et al., 2003), resolving the

structure would be an important step. A promising approach might be co-expression of

NELF-B carrying a solubility-enhancing tag together with the NELF-C N-terminal region

(36-189)  (Figure  21)  followed  by determination  of  a  minimal  complex  using  repetitive

limited  proteolysis  and  truncation  as  applied  successfully  for  crystallizing  NELF-AC.

Results obtained during this thesis indicate a flexible linker between NELF-C N- and C-
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terminal region (36-189 and 190-590) (Figure 6). For that reason successful crystallization

of a NELF-ABC complex presumably requires genetic engeneering of this linker region.

Determining the position of the NELF-E RRM on the NELF-B surface and in the context of

complete NELF would allow to better estimate the minimal length of a nascent RNA bound

to the RRM and the significance of NELF-E in promoter-proximal pausing  (Missra and

Gilmour, 2010). The flexible linker region between the predicted NELF-E N-terminal helix

(7-36) and the RRM would allow the RRM to be dynamic within NELF if it was not fixed on

the  NELF-B  surface.  Defining  the  position  of  the  N-terminal  helix  on  NELF-B  more

precisely thus is important, too. This could be achieved by co-crystallization of NELF-B

and the NELF-E region 7-36.  

Structure and function of the partially conserved NELF-A C-terminal region (249-528) are

unknown (Figure 3A, Figure 11). This part of NELF-A has been analysed in the context of

the bachelor thesis of Denis Höfler. All results are described in this work. In brief, we found

that NELF-A C-terminal region can be separated into two stable and soluble subregions

(250-369,  349-528)  that  can  readily  be  expressed  and  purified.  However,  successful

crystallization requires further construct optimization.

The final question is how NELF action pauses elongating RNA polymerase. In order to

find the answer to this question, the interactions of NELF with other protein complexes

need to be analyzed. A first step would be to identify the NELF binding site on the Pol II

surface. The inherently unstable and likely unfolded Pol II-interaction region of NELF-A

(Narita  et  al.,  2003) (189-248)  presumably  requires  an  interaction  partner  to  adept  a

defined  conformation.  Crosslinking  of  a  Pol  II-NELF  complex  coupled  with  mass-

spectrometry could locate the position of NELF on Pol II. As mentioned above (III 1.8)

detailed structural studies with a ternary pausing complex of Pol II-DSIF-NELF including a

nucleic  acid  scaffold  are  requisite  to  obtain  an  overview  of  all  molecular  aspects  of

pausing.  Cryo-electron  microscopy  studies  of  large  complexes  combined  with

crystallographic data from subcomplexes or crosslinking were proven to be a powerful

approach to such problems  (He et al., 2013; Klein et al., 2011; Martinez-Rucobo et al.,

2015). With the crystallization of large functional complexes possibly being intricate, cryo-

electron  microscopy  studies  of  a  complete  pausing  complex  accompanied  by  x-ray

analysis  of  subcomplexes  would  be  the  method  of  choice  to  answer  the  molecular

enigmas of the pausing complex.
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