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Summary 

90 % of human cancers develop from epithelial tissues, emphasizing the importance of 

studying the regulation of epithelial integrity to identify effective cancer treatments. Whereas 

mutations in cell polarity and adhesion pathways are known to disrupt epithelial integrity in 

tumors, little is known about the potential contribution of aberrant cell fate specification that may 

change aspects of epithelial architecture. 

We find that ectopic expression of transcription factors specifying cell fates causes 

epithelial cysts in Drosophila imaginal discs. Cyst formation is driven by cell non-autonomous 

enrichment of actomyosin at lateral interfaces between wild-type and misspecified cells. By 

confirming predictions of 3D vertex model simulations with experiments in vivo, we demonstrate 

that interface contractility is necessary and sufficient to drive cyst formation. However, the exact 

consequences of interface contractility to tissue morphology depend on the size of the cell cluster 

that experiences increased tension. These consequences range from apoptotic elimination of 

single misspecified cells to cyst formation in intermediate-sized clones and cell segregation 

observed in large cell populations. Therefore, interface contractility might exert several distinct 

functions in development and disease including tissue surveillance through removal of single 

misspecified cells, promotion of disease-relevant cysts or tissue separation important during 

development (Figure 1).  

Our results show that transcriptional heterogeneities that arise within tissues - either 

naturally during development or in the context of cell fate misspecification - may underlie several 

distinct morphogenetic responses by activation of interface contractility. Thus, interface 

contractility provides a novel and surprisingly general perspective on developmental processes, as 

well as the etiology of precancerous lesions in the mammalian system. 
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Figure 1: Graphical summary; Actomyosin contractility (magenta) increases at interfaces 
between differently fated epithelial cells (purple and yellow) at the level of adherens junctions 
(red) and laterally (grey). This drives apoptotic elimination (left), cyst formation (middle) or cell 
segregation (right) depending on cell cluster size. Thereby, interface contractility acts as an error 
correction mechanism on single misspecified cells, but may cause disease-promoting cysts in 
intermediate-sized cell clusters. Cell segregation of large clusters subjected to interface 
contractility could drive tissue separation during development. 
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Zusammenfassung 

90 % aller menschlichen Krebserkrankungen haben ihren Ursprung in Epithelgeweben. 

Dies führt vor Augen, wie wichtig es ist, ein besseres Verständnis über die Aufrechterhaltung von 

epithelialen Gewebestrukturen zu erlangen. Während der Zusammenhang zwischen 

Polaritätsdefekten und dessen schädliche Auswirkung auf die Struktur von Epithelien 

weitestgehend bekannt ist, bleibt der Einfluss von Zellen, die falsche Spezifizierungsprozesse 

durchlaufen, größtenteils unerforscht. 

In dieser Arbeit zeigen wir, dass die ektopische Expression von Transkriptionsfaktoren, 

die Zellidentitäten vermitteln, epitheliale Zysten in Imaginalscheiben von Drosophila verursacht. 

Die Zysten entstehen nicht durch veränderte, intrinsische Eigenschaften der falsch-spezifizierten 

Zellen, sondern durch erhöhte Anlagerung von Aktin und Myosin an den lateralen Grenzflächen, 

an denen normale Zellen und falsch-spezifizierte Zellen aufeinander treffen. Wir konnten mit in 

vivo Experimenten die Prognosen eines neu entwickelten 3D Vertex Models bestätigen, welches 

aufzeigte, dass erhöhte Kontraktilität an den Grenzflächen sowohl ausreichend, also auch 

notwendig ist, um Zysten zu induzieren. Weitere Untersuchungen zeigten darüber hinaus, dass die 

exakten Auswirkungen erhöhter Grenzflächenkontraktilität auf das Gewebe stark mit der Größe 

der falsch-spezifizierten Zellgruppe zusammen hängen. Dem zu Grunde liegend reichen 

gewebespezifische Konsequenzen von apoptotischer Eliminierung einzelner, falsch-spezifizierten 

Zellen, über Zystenbildung mittelgroßer Zellgruppen bis hin zur geradlinigen Trennung großer 

Zellpopulationen. Dies deutet darauf hin, dass erhöhte Kontraktilität zwischen unterschiedlich 

spezifizierten Zellgruppen verschiedene Funktionen im Zuge von entwicklungsbiologischen 

Vorgängen und der Entstehung von Krankheiten einnehmen kann. Erhöhte 

Grenzflächenkontraktilität spielt also nicht nur eine Rolle bei der Überwachung der 

Epithelintegrität und der Einführung von Gewebegrenzen, welche wichtig während der 

Musterbildung sind, sondern auch bei der Entstehung von krankheitsfördernden Zysten. 

Unsere Ergebnisse legen dar, dass mehrere, unterschiedliche Ausprägungen der 

Gewebemorphogenese auf dem gleichem Prinzip beruhen können. Dieses ist - in unserem Fall - 

der transkriptionelle Unterschied zwischen angrenzenden Zellpopulationen, welcher entweder 
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natürlicherweise durch Musterbildung in der Entwicklung entstehen kann oder im Zuge von 

krankhafter, falscher Zellspezifizierung. Dies eröffnet eine neue und sehr generelle Sichtweise auf 

morphogenetische Prozesse und der Bildung von Zysten, auch als mögliche Ursache für die 

Entstehung von krebsartigen Veränderungen in Säugetier-Epithelien. 
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1 Introduction 

1.1 Epithelial structure and morphogenesis 

Epithelial tissues belong to the four basic tissue types of multicellular organisms. Their 

development is a fundamental prerequisite for the evolution of metazoans as shown by high 

functional conservation. The importance of epithelial sheets lies in their barrier function 

separating distinct body compartments from each other as well as the animal interior from the 

surrounding environment. Moreover, simple epithelial sheets act as starting points for the 

formation of various organs through remodeling processes occurring in the course of development 

(Rodriguez-Boulan and Macara, 2014; Tepass, 2012) 

In addition to the prominent role in morphogenesis and development, epithelial tissues 

also harbor the basis for disease initiation and progression. As an example, about 90 % of human 

cancers arise in epithelial tissues through transformation of single epithelial cells (McCaffrey and 

Macara, 2011; Nowell, 2002).  

1.1.1 Prerequisites for epithelial function 

Epithelial sheets are arrangements of adhesive cells that are uniformly polarized along 

their apical-basal axis. The cellular polarization leads to the separation of the plasma membrane 

into apical, lateral, and basal membrane regions with distinct protein and lipid compositions 

(Figure 2 a). Whereas the apical side faces the exterior or an internal lumen, the lateral and basal 

regions are engaged in cell-cell and cell-matrix adhesion, respectively. Adhesion, apical-basal 

polarity, and the possibility to change cell shapes due to polarized cytoskeleton components are 

indispensable prerequisites for proper epithelial function (Rodriguez-Boulan and Macara, 2014; 

Schock and Perrimon, 2002). 

a.  Cell-cell and cell-matrix adhesion  

In Drosophila, the adhesion of individual epithelial cells is orchestrated in the apical 

region called Zonula adherens (ZA), which separates the subapical region (SAR) from the more 

basally located domain of septate junctions (SJ) and, therefore, plays a crucial role in membrane 
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domain separation (Figure 2 a). The ZA is comprised of a circumfential adhesive belt that 

connects the actin cytoskeleton of neighboring cells through force-bearing adherens junctions. 

The main component of adherens junctions is the transmembrane protein E-cadherin (E-cad), 

whose extracellular cadherin domain binds cadherins from neighboring cells in a Ca2+-dependent 

manner. Intracellularly, E-cad forms a complex with p120 catenin (p120) and β-catenin (β-cat), 

which eventually connects E-cad to α-catenin (α-cat) and the actin cytoskeleton (Figure 2 a, b). 

However, the exact composition of this intracellular assembly is still not fully understood and 

functional as well as compositional differences depending on cell type or developmental contexts 

may exist (Bulgakova et al., 2012; Schock and Perrimon, 2002; Tepass et al., 2001). 

The region just basally to ZA is marked by another group of intercellular junctions, called 

septate junctions (SJ). They fulfill similar functions to tight junctions in vertebrates by 

establishing a paracellular barrier restricting the flow and exchange of molecules between apical 

and basolateral regions. Structurally, SJ are organized circumferentially around the cell cortex, 

generating ladder-like structures that bridge the intercellular space of two neighboring cells 

(Figure 2 a). So far, more than 20 different proteins have been identified to be components of SJ 

in Drosophila. These include, for example, ion channels, FERM-domain proteins, homophilic 

adhesion molecules, and other transmembrane proteins (Izumi and Furuse, 2014; Tepass et al., 

2001).  

Interaction with the extracellular matrix (ECM) is the third type of adhesion occurring in 

epithelial cells. Conceptually, cell-matrix adhesion shares some similarities to the force-bearing 

aspects of cadherin-based cell-cell contacts. Integrins, another class of transmembrane receptors, 

connect the intracellular actin cytoskeleton to the basement membrane at basally located 

hemiadherens junctions (Figure 2 a). The basement membrane is comprised of a layer of ECM 

material, which covers all epithelial sheets basally, as well as muscles and nerves. It mainly 

includes the four components laminin, nidogen, proteoglycans and collagen IV and has 

fundamental implications in protection, stabilization, signaling and polarization of epithelial tissue 

architecture. Structurally, integrins form a heterodimer composed of one α and one β subunit that 

recognize and bind specific components of the ECM (Gumbiner, 1996; Schock and Perrimon, 

2002; Yurchenco, 2011).  

Similar to cadherins, the composition and assembly of the intracellular integrin complex 

is not yet completely resolved, but Talin has been identified as a crucial interactor mediating the 

linkage to the actin cytoskeleton (Brown et al., 2002). Over the last few years, it has become clear 

that the regulation and function of both cadherin and integrin receptors are highly complex and 

involve, for example, differential expression of receptor subtypes, different synthesis and turnover 

rates, differential complex composition, phosphorylation and alternative splicing (Bulgakova et 

al., 2012). 
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Figure 2: Epithelial architecture and polarity; (a) Schematic cross-section of epithelial cells 
depicting major membrane domains and polarity complexes. Apical regions and complexes are 
red, basolateral ones are blue. Adherens junctions within the zonula adherens (ZA) are orange, 
septate junctions (SJ) pink. Actomyosin structures are green. At the level of adherens junctions 
an actomyosin belt is formed. Basally, hemiadherens junctions (dark grey) connect the basement 
membrane (BM) to the cytoskeleton (green, only shown for one interaction). For simplicity, the 
actin cortex and linker proteins at cell junctions are not represented. Apical and basolateral 
complexes exclude each other mainly through phosphorylation events (P) (b) Xy-view of epithelial 
cells at the level of adherens junctions (orange) illustrates the actomyosin belt (green) underneath 
the cells` plasma membrane (red) (c) Polarity complexes and their individual components as well 
as their corresponding protein features are listed. Par complex and Crb complex are apical 
determinants, Par-1, Lgl complex and Yrt/Cora complex define the basolateral domain. FERM = 
four-point-one, ezrin, radixin, moesin domain; MAGUK = membrane-associated guanylate kinase 
protein. (d) The different epithelial cell shapes, squamous, cuboidal and columnar are depicted. 
Note an increase in lateral membrane domain with increasing cell height. (e) Structure and 
activation of non-muscle myosin II is shown. Hexameric non-muscle myosin II consists of two 
heavy (green), two essential (blue) and two regulatory light (purple) chains, which form a globular 
head domain and a coil-coiled tail domain. Upon phosphorylation (P) of the regulatory light 
chains, the hexamer adopts an open and assembly competent configuration.  
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b.  Apical-basal polarity 

In addition to adhesion, polarity is another essential characteristic of epithelia, arising 

from asymmetric protein compositions along the apical-basal axis. In Drosophila, the primary 

epithelium is formed during cellularization at embryonic blastoderm stages. At this time, apical-

basal polarity is initially established and relies on two fundamental processes. Firstly, the apical 

domain becomes delimited from the junctional region of ZA. Secondly, the apical domains and 

basolateral membranes get clearly separated, and this state has to be maintained throughout later 

developmental stages (Tepass, 2012; Tepass et al., 2001). 

The establishment and maintenance of apical-basal polarity depends on several protein 

complexes that localize to different subcellular membrane domains, thereby conferring apical or 

basolateral identity. Whereas the Par complex and the Crb complex set up apical identity, Par-1, 

the Lgl complex and the Yrt/Cora complex are important for the establishment of basolateral 

membrane domains (Figure 2 a, c). Although this complex classification is generally accepted, 

recent studies imply a more complicated and dynamic picture, where components of different 

complexes interact or proteins act independently of their complex. This is the case for Bazooka 

(Baz), which is, in addition to its function within the Par complex, crucial for the positioning of 

adherens junctions (Laprise and Tepass, 2011; Rodriguez-Boulan and Macara, 2014; Tepass, 

2012; Tepass et al., 2001). 

The molecular mechanism by which polarity proteins get localized within the apical-basal 

axis depends largely on negative feedback loops between the different complexes. This 

antagonism is mainly executed through phosphorylation events. Par-1, for example, 

phosphorylates Baz, thereby restricting Par complex formation to the apical membrane. aPKC in 

return phosphorylates Lgl and Par-1, which impedes apical membrane association (Figure 2 a). 

Besides this, differential mRNA location and the phospholipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3 

seem to have crucial contributions to polarity set-up and maintenance. To add to the complexity, 

it has been shown that some of the polarity complexes are required only during specific 

developmental stages or in specific cell types and that particular cellular conditions, like 

metabolic stress, recruit additional factors to maintain proper polarity (Laprise and Tepass, 2011; 

Rodriguez-Boulan and Macara, 2014; Tepass, 2012).  

The importance of apical-basal polarity lies in the directionality that it confers to the 

tissue, which is important for epithelial integrity on several functional levels. This includes, for 

example, directed vesicle trafficking and cytoskeleton organization. How the polarity regulators 

discussed above directly account for the asymmetric functional organization in cells is not fully 

understood and needs further investigation (Tepass, 2012). 
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c.  Shape and mechanics of epithelial cells 

Epithelial cells can adopt different cell shapes ranging from columnar and cuboidal to 

very flat through dynamic reorganization of their cytoskeleton (Figure 2 d). The ability to change 

cell shapes, not only locally but also on a tissue-level, is needed for epithelial morphogenesis 

(1.1.2) and necessitates a two-step process. Initially, cellular forces are generated, which have to 

be transmitted to neighboring cells in a second step. On a molecular level, this is achieved by the 

force-generating actin cortex and cadherin or integrin-based adhesion complexes, respectively. 

Mechanistically, this means that cellular shape is determined by the balanced actions of cell 

surface tensions and cell adhesion. Whereas cell adhesion strength positively defines the amount 

and area of cell contacts, surface tension, largely generated by the actin cortex, aims to reduce the 

expansion of contacting area (Heisenberg and Bellaiche, 2013; Lecuit et al., 2011). 

The actin cortex is a meshwork of cross-linked actin filaments lying directly underneath 

the plasma membrane of epithelial cells (Figure 24 b). The cortex exhibits a highly dynamic 

composition of actin filaments, myosin motors and several additional proteins including, for 

example, cross-linkers and FERM-domain proteins, which are crucial for anchoring the cortex to 

the plasma membrane. The actin cortex counteracts external forces as well as osmotic pressure, 

and its properties determine the cell`s stiffness. In epithelial cells, non-muscle myosin II is the 

crucial component for the generation of contractile forces within the actomyosin cytoskeleton and 

is therefore required to generate cortical surface tension. Myosin II is composed of two heavy 

chains, two essential chains and two regulatory chains, whose structure is shown in Figure 2 e. 

Phosphorylation of the regulatory light chains leads to the active state where assembling into 

bipolar filaments is possible. These minifilaments are capable of sliding actin filaments passed 

each other, thereby creating contractions within the cortex. Since phosphorylation of the 

regulatory light chain is such a crucial event for myosin activity, it can be regulated by several 

kinases including, for example, Myosin light chain kinase (MLCK) and Rho kinase (Rho1), which 

are activated through distinct pathways (Lecuit et al., 2011; Salbreux et al., 2012; Tan et al., 

1992). 

Due to FERM-domain protein dependent anchoring of the cortex to the plasma 

membrane, the contractility generated within the actin cortex exerts tensions to cell surfaces. 

Adhesion complexes are capable of transmitting these tensile forces locally through the tissue by 

connecting the actin cytoskeleton to neighboring cells or the ECM. The molecular details of force 

transmission remain largely elusive, especially in the case of adherens junctions and at lateral 

membrane domains, where no adherens junctions are located (Lecuit et al., 2011; Salbreux et al., 

2012). 
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1.1.2 Epithelial morphogenesis 

Equipped with all these molecular properties, epithelial tissues carry all prerequisites 

needed for epithelial morphogenesis. Coordinated cell shape changes and the remodeling of cell-

cell junctions or cell-matrix adhesion, for example, contribute to determine the final shape and 

function of epithelial organs. 

The shrinking and expansion of lateral membranes along the apical-basal axis causes cell 

shape changes that underlie tissue flattening and columnarization, respectively. The latter event is 

seen during oogenesis in Drosophila, where follicle cells surrounding the oocyte become more 

columnar with time. Invagination is another prominent example of cell shape changes during 

morphogenesis and causes tissue bending and the creation of a furrow. This is a crucial event 

during gastrulation in the majority of organisms, but is also important for the development of 

organs, such as salivary glands in Drosophila. During invagination, cells constrict their apical 

apices through apical localization and activation of myosin. This subcellular increase in surface 

tension deforms the cell, which becomes wedge-shaped. Together with shortening of the apical-

basal axis, this leads to invagination and fold formation within the tissue (Lecuit and Lenne, 2007; 

Lecuit et al., 2011; Schock and Perrimon, 2002). 

Remodeling of cell-cell junctions during tissue morphogenesis can lead to cell 

intercalation events, where cells change their neighbors and thereby move within the tissue. 

Concerted cell intercalations orientated along one axis can generate tissue elongation, as seen in 

the germ band of Drosophila. However, removal of cell junctions can also induce cell extrusion 

and the reduction of cell numbers, an event that has been called ingression (Guillot and Lecuit, 

2013; Schock and Perrimon, 2002). Not only cell-cell junctions are remodeled during 

morphogenesis but also cell-matrix adhesion, where existing integrin-ECM contacts are resolved 

and new contacts are made. This is important, for example, for cell migration during tubule 

formation in the trachea of Drosophila or during wound closure (Schock and Perrimon, 2002).  

1.2 Drosophila imaginal discs 

Drosophila imaginal discs have been studied for almost a century now. They are an 

established and well-defined model system for studying epithelial architecture and tissue 

patterning (Aldaz and Escudero, 2010). Various genetic methods (4.1) make it easy to genetically 

modify and tract cells within the tissue to answer manifold questions regarding development and 

disease.  
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1.2.1 Drosophila life cycle 

The life cycle of Drosophila covers four different developmental stages: adult, 

embryonic, larval and pupal stages (Figure 3). One complete cycle usually takes 10 days at 25 °C, 

but can vary significantly depending on environmental conditions. At the beginning of the cycle, 

fertilized female flies lay eggs, which undergo a 24 h period of embryonic development. 

Subsequently, larvae hatch and immediately begin to feed for four days, growing from 1st and 2nd 

instar stages to 3rd instar larvae. The larva enters then the wandering stage, where it leaves the 

food source to search for appropriate pupariation sites. Once pupariated, the larva undergoes 

metamorphosis developing into the adult fly within 4 days. After hatching and additional 12-14 h, 

young flies are sexually mature and start to mate again (Ashburner et al., 2005). 

 

 

Figure 3: Life cycle of Drosophila; The life cycle usually takes 10 days at 25 °C, but can vary 
depending on environmental circumstances. After mating, fertilized female flies lay eggs. The 
embryonic development lasts for 24 h followed by larval hatching and a 4-day larval stage. 
Subsequently, larvae pupariate and undergo metamorphosis, which takes approximately 4 days 
and ends with the hatching of adult flies. 
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1.2.2 Imaginal discs are epithelial tissues that give rise to adult fly 
structures 

Imaginal discs are hollow sacs of epithelial sheets found in the larva of Drosophila. All 

larval tissues disintegrate during pupal stages, with the exception of imaginal discs, which will 

give rise to adult body structures of the head, thorax, limbs and genitalia (Figure 4). The name 

imaginal disc arose from the Latin word `imago´, which refers to the adult stage of insects. In 

total, there are 19 discs, 9 pairs of bilateral imaginal discs and one medial genitalia disc (Figure 

4). They are specified during embryonic stages, when roughly 10-50 cells invaginate and locate to 

the inner part of the embryo. They remain located internally during larval stages, when they grow 

approximately 1000-fold to reach their final size. With the onset of metamorphosis, imaginal 

discs undergo profound morphological changes by everting to the larval surface and elongating 

simultaneously. Eventually, imaginal discs fuse with each other to form the continuous epidermal 

structure of the adult fly (Aldaz and Escudero, 2010; Auerbach, 1936; Cohen, 1993; Held, 2002).  

 

 

Figure 4: Imaginal discs give rise to adult body structures; Left side shows Drosophila larvae 
with 6 bilateral imaginal disc pairs and one medial genitalia imaginal disc colored individually. The 
labial, clypeolabral and humeral imaginal disc are not depicted. Right side shows an adult 
Drosophila fly, which can be divided in head, thorax and abdomen. For sake of clearness, only 
one wing is shown. Colors of body parts refer to the imaginal disc from which they derive. 
Abdominal parts (brown) are formed by larval histoblasts, which are not depicted. 

 

Looking in more detail at the architecture of imaginal discs reveals a complex 3-

dimensional, sac-like structure consisting of a continuous epithelial layer. The apical side of the 

epithelial sheet sac faces an inner lumen and the basal, ECM-connected side points outwards 

(Figure 6 e). At early larval stages (1st and 2nd instar), the imaginal sac consists of a cuboidal 

epithelial sheet, but its morphology dramatically changes during the 3rd instar larval stage. One 

side of the imaginal sac becomes squamous and gives rise to the so-called peripodial membrane 

(PM), whereas cells on the other side elongate and form a highly columnar epithelium, the disc 

proper (DP) (Figure 6 e). Cells at the transition zone connecting the PM and the DP exhibit an 

intermediate, more cuboidal cell shape (Aldaz and Escudero, 2010; McClure and Schubiger, 
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2005; Ursprung, 1972). Although the PM has only a minor contribution to epidermal structures, 

its functions are required for proper disc development. It regulates imaginal disc patterning and 

the generation of contractile forces important for disc eversion during pupal metamorphosis 

(Gibson and Schubiger, 2000; Milner et al., 1984).  

1.3 Pattern formation and compartmentalization 

Cell division, pattern formation, morphogenesis, cell differentiation and growth are the 

five prerequisites of tissue development and only their coordinated spatial and temporal interplay 

can generate the complex structure of multicellular organisms. Pattern formation refers to the 

process in which cells receive information about their location within the tissue, leading 

eventually to the establishment of differently fated cell populations. The positional information is 

conveyed by the combinatorial action of different transcription factors belonging either to the 

class of selector genes or selector-like genes. Eventually, their spatial and temporal pattern is 

translated by each cell into a specific gene expression pattern giving the cells its particular 

identity (Weihe et al., 2009; Wolpert et al., 2007). 

During early development, pattern formation plays a crucial role by establishing the early 

body axis of the embryo and specifying the different germ layers. During later stages, patterning 

remains indispensable to further subdivide appendages, such as legs or wings, into their individual 

components (Weihe et al., 2009; Wolpert et al., 2007). 

1.3.1 Selector genes, compartment boundaries and morphogens 

Early clonal experiments in imaginal discs showed that cells do not intermingle freely, 

but their random intercalation is restricted by the existence of borders (Garcia-Bellido et al., 

1973). This was one of the first proofs that tissues are subdivided in compartments that do not mix 

but stay clearly separated. By definition, compartments are tissue subdomains that are comprised 

of cells with an identical fate, which is different from those of other compartments. In other 

words, compartments divide the tissue according to cell identities. Importantly, compartments 

arise from one cell lineage, where a small group of founder cells inherit its assigned fate to the 

progeny. The individual fate of compartments is set by transcription factors belonging to the 

group of so-called selector genes, which pattern the compartment in a cell-autonomous manner 

(Figure 5 a-b, top panel) (Mann and Morata, 2000; Weihe et al., 2009). Compartments have been 

extensively studied in Drosophila, where they were discovered in the abdomen and in imaginal 

discs (Garcia-Bellido et al., 1973; Struhl et al., 1997). The establishment of both AP and DV axis 

through compartmentalization in the wing imaginal disc will be covered in more detail in 1.3.4. 
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Importantly, compartments are also found in vertebrates, for example in the embryonic hindbrain 

and limbs (Altabef et al., 1997; Fraser et al., 1990), suggesting compartmentalization to be a 

common, important theme throughout the animal kingdom.  

 

 

Figure 5: Differences between compartments and expression fields; Compartments are 
depicted in the top panel, expression fields in the bottom panel (a) Selector genes (green) and 
selector-like genes (turquoise) pattern the tissue leading to two distinct cell fates (F1 and F2). (b) 
In the case of compartments, fate decisions are inherited to daughter cells, whereas in the case of 
expression fields continuous signaling input is required for fate propagation. (c) The boundary 
between compartments and expression fields is maintained differently. In the case of 
compartments, a cell of F1 fate that intermingles with cells of F2 fate (red star) is pushed back in 
their respective compartment. Cells of one expression field (F1) that intermingle with cells of the 
other expression field (F2) (red star) can adopt a F2 fate due to continuous signaling inputs. 
Compartment boundary is shown in red, boundary between expression fields in orange. Arrows 
represent signaling inputs. 

 

Compartments are delimited by compartment boundaries, the region at which two 

adjacent compartments are in contact and face each other. Compartment boundaries are essential 

in separating adjacent cell populations and maintaining proper compartmentalization. They play a 

crucial role as organizing centers of morphogen production. Morphogens are diffusible signaling 

molecules that give positional information as long-range gradients, which are directly interpreted 

by cells in a concentration-dependent manner. The organizing centers of compartment boundaries 

usually translate asymmetric signals of two opposing compartments into symmetric morphogen 

gradients that originate at the boundary. Since individual cells can translate incoming signals 

differently depending on their response sensitivity as a function of morphogen concentration, 

multiple cell types can arise by generating a single, spatially positioned signaling source (Mann 

and Morata, 2000; Weihe et al., 2009).  
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Morphologically, compartment boundaries are characterized by increased straightness 

compared to a line drawn along intra-compartment cell contacts. This minimizes the contact area 

between the two different cell populations and thereby prevents intermingling. Indeed, conversion 

of cells to adjacent compartments across the border has only been observed in the context of 

regeneration (Herrera and Morata, 2014) and stresses the necessity of strict compartment 

separation for proper development (Figure 5 c, top panel). Several molecular mechanisms 

ensuring proper tissue separation have been proposed and are discussed below (1.3.3). 

1.3.2 Selector-like genes and expression fields 

The subdivision of tissues by classical compartments and their boundaries is a rare 

biological event and does not apply to all subdivisions that occur during animal development. In 

addition to classical cell-lineage compartments, non-heritable subdivisions also occur quite 

frequently, for example, during the establishment of the proximal-distal axis in limb 

morphogenesis (1.3.4). These so-called expression fields are established by continuous signaling 

inputs and are based on the location of cells and not their cell lineage. In contrast to 

compartments, non-lineage borders between expression fields have not been studied in great 

detail. Expression field boundaries are usually not delimited by classical compartment boundaries 

or morphogen organizing centers and appear to be less strict. Therefore, it is more likely for cells 

to cross these borders and adopt new cell identities through the continuous signaling input within 

expression fields. Because of these differences to compartments, genes that convey the identity of 

an expression field were called selector-like genes and include, for example, vestigial (vg) or 

homothorax (hth) (Figure 5 a-c, bottom panel and 1.3.4) (Mann and Morata, 2000; Weihe et al., 

2009). 

1.3.3 Mechanisms of tissue separation 

The prevention of cell mixing of two adjacent compartments or expression fields is 

crucial for proper development and morphogenesis. However, in proliferating tissues, the 

maintenance of the straight border separating two compartments is challenged by cell 

rearrangement and cell mixing that take place as a result of cell division. Therefore, mechanisms 

must exist that ensure a continuous separation by the formation of sharp boundaries between 

adjacent compartments (Dahmann and Basler, 1999). In the last century, several attempts to 

explain mechanistically how tissue borders are established and maintained have raised different 

hypotheses with ongoing debates and controversies.  
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a.  Differential adhesion (DAH) and differential interfacial tension hypothesis 
(DITH) 

For a long time, the differential adhesion hypothesis (DAH) was generally accepted in the 

field of boundary formation and was initiated by the early discovery of cell affinity. By definition, 

cell affinity describes the cellular tendency to preferably cluster together with the same cell type, 

which was observed during re-sorting of previously dissociated embryonic tissues (Moscona and 

Moscona, 1952; Townes and Holtfreter, 1955). This was the basis for the early work of Steinberg, 

who described similarities between sorting of cells and the partition of non-mixable liquids 

(Steinberg, 1963). Tissues, similar to liquid droplets, tend to minimize their surface area due to 

increased tissue surface tensions generated at the interface between the tissue and the surrounding 

environment. Overall tissue surface tension, in contrast to cell surface tension (1.1.1 c), is 

positively regulated by adhesion. Therefore, according to the DAH, cell sorting is driven only by 

differences in adhesion strength and the resulting tissue surface tension. Correspondingly, tissues 

with stronger adhesion will cluster together and will be surrounded by tissues with less adhesion. 

On a molecular level, differential strength in cell-cell adhesion forces could be achieved through 

differential expression or deviating quantities of adhesion molecules between two populations. 

However, this has remained partially controversial, since expression quantities might not directly 

translate into stronger adhesion forces due to additional levels of adhesion regulation (Fagotto, 

2014; Foty and Steinberg, 2013; Lecuit and Lenne, 2007). 

Additional critique has been stated by Harris, who proposed a model that considered the 

actin cortex and its contractile properties as the source of tissue surface tension rather than 

adhesion (Harris, 1976). This idea was included in the differential interfacial tension hypothesis 

(DITH) developed in 2002, which suggests that surface tension is not solely regulated by 

adhesion, but also to a great extent by contractile forces of the actin cortex (Brodland, 2002) 

(1.1.1 c). As a consequence, interfacial tension is generated by the antagonistic forces of adhesion 

and cortex contractility, thereby specifying tissue surface tension and sorting behavior (Fagotto, 

2014; Foty and Steinberg, 2013). 

b.  Local increase in tension 

A variation of the DITH considers only tension increase at the boundary, rather than 

global tension differences between two cell populations. This idea is based on the observation that 

F-actin and Myosin II specifically enrich along the DV and AP compartment boundaries in the 

wing imaginal disc. Laser ablation experiments could prove that this local enrichment is 

accompanied by a 2.5-3 fold higher mechanical tension and that this increase is both necessary 

and sufficient to generate straight boundaries (Aliee et al., 2012; Fagotto, 2014; Landsberg et al., 

2009; Major and Irvine, 2005, 2006; Monier et al., 2010). Mechanistically, it was suggested that 

an actomyosin cable running through cells at the boundary pushes cells back into their 
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compartment after cell division (Monier et al., 2010). In addition, more recent work showed that 

in the course of cell intercalations at the AP boundary, new junctions are not positioned in an 

unbiased manner, but become located closer along the boundary, thereby maintaining the 

straightness of the AP boundary (Umetsu et al., 2014).  

c.  Repulsion and retraction 

The repulsion and retraction model is based on the action of specific transmembrane 

proteins including the Ephrin (Eph) receptor tyrosine kinase and its ligand, Ephrin, which have 

been extensively studied in vertebrates. Upon heterotypic binding and clustering of the two 

binding partners, activation of Rho family GTPases triggers local actomyosin activity. This leads 

to active repulsion and retraction of cell contacts, thereby inhibiting adhesion and cell mixing. 

Since both Eph receptors and Ephrin ligands are capable of intracellular signal propagation, their 

binding elicits bidirectional signal transduction. In addition to active cell repulsion, Eph signaling 

events have been linked to roles in cell adhesion and tension generation and open the possibility 

that Eph and Ephrin ligands play a role in regulating both differential adhesion and local tension 

increase. However, the exact conditions under which Eph signaling elicits these distinct functions 

remain very complex and might depend on specific expression patterns, binding strengths, and 

tissue properties. In summary, the contributions of the different models discussed above to tissue 

separation and their possible combinatorial actions in imaginal discs and vertebrate systems await 

further investigations (Cayuso et al., 2015; Fagotto, 2014). 

1.3.4 Patterning of the wing imaginal disc 

The wing imaginal disc gives rise to the wing itself, but also to the hinge and parts of the 

thorax (Figure 6 d-g). To accomplish this, the wing disc is subdivided in several domains through 

combinatorial developmental patterning defining three different axes: the anterior-posterior (AP), 

the dorsal-ventral (DV) and the proximal-distal axis (PD). Whereas AP and DV orientations are 

established through compartments in classical terms, expression fields are involved in PD axis 

formation (Weihe et al., 2009; Wolpert et al., 2007). 

The AP axis is first established during embryonic development by the expression of the 

posterior selector gene engrailed (en). Its expression separates the tissue in two distinct regions: 

en-expressing cells with posterior fate and non-expressing cells with anterior fate. Therefore, 

early imaginal disc cells already inherit AP information, which initiates a sequence of signaling 

events that lead to the establishment of long-range AP patterning signal. en expression in the 

posterior compartment induces the expression of the signaling molecule Hedgehog (Hh). Due to 

its short-range diffusion and the unresponsiveness of the posterior compartment to Hh, only a 

narrow strip of anterior cells adjacent to the posterior compartment activates the downstream 
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transcription factor Cubitus interruptus (Ci). This in turn induces the establishment of a symmetric 

gradient of the long-range morphogen Decapentaplegic (Dpp) along the AP boundary, which is 

important for patterning and growth of the anterior and posterior compartment (Figure 6 a, c) 

(Weihe et al., 2009; Wolpert et al., 2007). 

As a second step after AP axis formation, the DV axis is defined during 2nd instar larval 

stages. At this time, the homeotic selector gene apterous (ap) becomes expressed exclusively in 

the dorsal compartment, whereas the ventral fate is determined by its absence. Due to the opposite 

expression of the two short-range ligands Delta (Dl) and Serrate (Ser), Notch signaling is 

activated only at the DV border. Eventually, this leads to a symmetric expression gradient of the 

long-range morphogen Wingless (Wg), important factor for DV patterning, wing blade 

determination and proliferation (Figure 6 b, c) (Mann and Morata, 2000; Weihe et al., 2009; 

Wolpert et al., 2007). 

The proximal-distal axis distinguishes the morphological units of the distal blade, the 

hinge and the proximal notum (Figure 6 d, e). Its establishment is not as well characterized as for 

compartment boundaries and depends on the formation of defined expression fields by various 

selector-like genes. This process starts during 2nd instar larval stages, when the secreted signaling 

molecule Vein (Vn) activates EGFR signaling only dorsally, thereby defining the notum region. 

Through the mutually exclusive activation of EGFR signaling proximally and Wg signaling 

distally, proper separation of proximal notum and distal blade structures is achieved (Wang et al., 

2000). Further subdivisions of distal regions into hinge and blade are regulated by complex 

transcription factor networks and are not fully understood. Wg and Dpp signaling appear to 

repress homothorax (hth) and teashirt (tsh), two important factors for hinge development 

(Azpiazu and Morata, 2000; Casares and Mann, 2000; Wu and Cohen, 2002) and activate at the 

same time genes important for wing blade development, including vestigial (vg) and nubbin (nub) 

(Kim et al., 1996; Ng et al., 1995; Wu and Cohen, 2002). In case of the proximal notum, genes of 

the iroquois complex (iro-C) and pannier (pnr) are involved in subdividing the notum in lateral 

and medial regions, respectively (Calleja et al., 2000; Diez del Corral et al., 1999).  

Equipped with all the positional information obtained by patterning in larval stages, wing 

imaginal discs undergo pronounced morphogenetic changes during metamorphosis, where the 

disc proper turns from a monolayer of columnar cells into two basally apposed layers of 

extremely flat cells. Coordinated cell shape changes and rearrangements drive pouch evagination 

along the margin accompanied by dramatic tissue elongation. Eventually, basal sides of the 

ventral and dorsal blade and hinge regions come into apposition, giving rise to the two-layered 

epidermis of the adult wing (Figure 6 f, g) (Taylor and Adler, 2008; Wolpert et al., 2007). 
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Figure 6: Wing imaginal disc patterning; (a-c) (a) AP patterning is established by expression of 
engrailed (en) posteriorly (light green) leading to activation of Hh signaling (dark green) anteriorly 
to the AP border (b) DV patterning is established by dorsal apterous (ap) expression (orange) 
leading to activation of Notch signaling (red) along the DV boundary (c) Hh and Notch signaling 
induce long-range gradients of Dpp (green) and Wg (red), which pattern the disc along the AP 
and DV axis, respectively (d-g) PD patterning (d) Xy-view of wing imaginal disc showing the blade 
(blue), hinge (purple) and notum (orange), the AP (green), DV boundary (red) and PD axis. DV 
boundary gives rise to margin of the adult wing (red). (e) xz cross-section of the wing imaginal 
disc. Color codes the same as in (d). Peripodial membrane is white. (f) Evagination and 
elongation occurring during pupal development. The ventral and dorsal sides come into 
apposition. (g) Adult wing with pouch, hinge, notum, AP boundary and PD orientation is shown. 
Color code as in (d). 
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1.4 Cell fate specification and epithelial structure 

Epithelial morphogenesis relies on the coordinated interplay between cell fate 

specification and the architectural remodeling of cells and tissues. During pattern formation, 

information regarding epithelial structure and shape are conveyed and executed. One prominent 

example illustrating this, is mesoderm invagination during gastrulation in Drosophila. The 

transcription factors Twist (Twi) and Snail (Sna) are specifically expressed in ventral cells that 

invaginate and adopt mesodermal fate (Leptin, 1995). As already mentioned before (1.1.2), a 

highly polarized cytoskeleton is necessary for the invagination process to occur, as well as for 

subsequent interior localization of mesodermal cells. Loss of twi and sna completely abolishes 

apical myosin II location, ventral furrow formation and mesoderm specification (Simpson, 1983). 

Due to such tightly connected processes of patterning and epithelial morphogenesis, epithelial 

defects caused by misregulation of cell fate specification have been observed, but have not been 

studied as extensively as the interplay of polarity and epithelial structure. 

1.4.1 Cell fate misspecification and disruption of epithelial integrity in 
Drosophila 

Cell fate misspecification has been previously associated with pronounced disruption of 

epithelial integrity in the case of epithelial cyst formation by cells mutant for Dpp or Wg signaling 

pathways. As discussed above (1.3.4), both pathways are required for cell fate specification in 

wing imaginal discs. Cell clusters (clones) mutant for components of either pathway form cysts 

by invaginating towards the basal side of the epithelium, thereby creating an apical lumen. Basal 

invagination can cause clones to become partially extruded and lost from the epithelium (Gibson 

and Perrimon, 2005; Shen and Dahmann, 2005; Widmann and Dahmann, 2009b).  

a.  Cell autonomous cell shape changes 

As an explanation for these observations, it was suggested that Dpp as well as Wg 

pathways, promote differentiation of columnar epithelial shapes cell-autonomously. Indeed, their 

gene expression patterns follow the gradient of columnar cell shapes normally occurring within 

imaginal discs. Thus, cell-autonomous height reduction from a columnar to cuboidal shape in Dpp 

or Wg signaling mutant cells has been implicated as the cause of cyst formation in imaginal discs. 

In the case of Dpp signaling, this function was suggested to be directly mediated by subcellular 

localization of Rho1 and Myosin II, whereas Vg was identified as an indirect mediator of 

columnar cell shape regulated by Wg signaling (Widmann and Dahmann, 2009a, b).  
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b.  Cell affinity differences 

Clones mutant for Optomotor-blind (Omb) or spalt major (salm) and spalt related (salr) 

also undergo epithelial retraction of the apical side and exhibit a cystic phenotype (Milan et al., 

2002; Organista and De Celis, 2013; Shen et al., 2010). In these contexts, it was suggested that 

epithelial cyst formation might depend on disruption of cell affinity gradients (1.3.3 a), which 

might be regulated by these genes. The hypothesis derived from the observation that cystic clones 

are extremely round and form smooth borders. According to the differential adhesion hypothesis 

(1.3.3 a), differences in adhesion properties could drive spatial segregation of the mutant cell 

population and surrounding wild-type cells. In accordance with that, increase or decrease in E-cad 

levels, the main component of adherens junctions, causes clone smoothening (Zimmerman et al., 

2010) (Figure 42). However, the same study also showed that E-cad misregulation is neither 

sufficient nor necessary for the cystic invagination phenotype observed in Wg signaling mutant 

clones. In the case of spalt (sal) mutant clones, the transmembrane proteins Capricious (Cap) and 

Tartan (Trn) have been suggested to cause clone smoothening and sorting behavior. But similarly 

to E-cad, Cap and Trn themselves can only induce clone smoothening, but are not sufficient to 

induce cystic invagination (Milan et al., 2002; Organista and De Celis, 2013). In summary, it still 

has to be investigated if cell affinity changes and cell segregation are capable of inducing the 

dramatic cell shape changes occurring during apical invagination events. Additionally, the 

possibility that cell affinity differences act in a combinatorial way with other mechanisms during 

cyst formation cannot be excluded and needs further study.  

c.  Apical constriction and cell proliferation 

The invagination phenotype of epithelial cyst formation resembles invagination events 

occurring in the course of development, for example, during mesoderm invagination and salivary 

gland formation (Schock and Perrimon, 2002) (1.1.2 and 1.4). Models trying to explain these 

endogenous invagination events implicate coordinated apical constriction of multiple cells 

(Sawyer et al., 2010) or proliferation of cells within a confined space, causing the tissue to bend 

(Hannezo et al., 2011; Shyer et al., 2013). Further investigation is needed to determine if 

coordinated apical constriction can also account for cyst initiation and if aberrant proliferation of 

misspecified cells within a confined space can promote the development of cystic structures. 

1.4.2 Cell fate misspecification and disruption of epithelial integrity in 
mammals 

Interestingly, disruption of Wnt/Wg and TGFβ/Dpp signaling has also been connected to 

the occurrence of cyst-like structures in the mammalian system, specifically in the intestinal 

epithelium. 
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Mutations activating the Wnt/Wg signaling pathway, such as those in Adenomatous 

Polyposis Coli (APC), belong to the most frequent transformations that drive colorectal cancer 

initiation. In an APC mouse model, adenomatous polyps are characterized by APC mutant cell 

clusters that outpocket into neighboring tissues (Pinto and Clevers, 2005). Interestingly, these 

morphological changes exhibit phenotypical similarities to epithelial cyst formation described in 

Drosophila imaginal discs. In addition, it was suggested that cyst formation is involved in 

promoting progressive loss of epithelial integrity occurring during the transition from benign 

adenoma to more severe forms of adenocarcinomas and carcinomas (Bell and Thompson, 2014). 

Despite the frequent incidence of invagination events in the context of intestinal cancer, the 

importance and morphological relevance of cyst formation in both cancer initiation and 

progression remains poorly understood. Strikingly, some effects that hold true for cell segregation 

during epithelial morphogenesis have also been implicated in colorectal cancer progression in the 

mouse model. Eph signaling can inhibit the spreading of cancer cells by inducing cell sorting of 

transformed cells and promoting the formation of borders. In agreement with this observation, 

decreased levels of Eph signaling have been linked in some cases to strong invasive cell behaviors 

(Batlle and Wilkinson, 2012; Cortina et al., 2007). 

Secondly, heritable juvenile polyposis is a disease in which patients are predisposed to the 

development of gastrointestinal polyps and cancer formation. Mutations causing this disease have 

been located within genes encoding receptors or signal transducers of TGFβ/Dpp signaling (Howe 

et al., 2001; Howe et al., 1998). It will be interesting to investigate in the future how these 

protruding structures and cyst formation in Drosophila imaginal disc underlie similar 

mechanisms.  

1.4.3 Mechanisms ensuring epithelial integrity 

As explained, misspecification of epithelial cells can have dramatic consequences for the 

integrity and function of tissues (1.4.1 and 1.4.2). To ensure robust epithelial function, several 

mechanisms have evolved that detect and remove aberrant cells from the tissue, thereby restoring 

proper patterning and epithelial integrity. In the following sections, homeostatic mechanisms 

identified in Drosophila will be explained in more detail.  

a.  Morphogenetic apoptosis and short range cell-cell communication 

In the wing imaginal disc, it was demonstrated that discontinuities of Dpp or Wg 

signaling gradients lead to the non-autonomous induction of apoptosis at regions where high and 

low levels of signaling meet. Due to this, cell with aberrant signaling activities are removed from 

the tissue and a smooth signaling gradient is restored. Since manipulating several downstream 

transcription factors of these pathways exerts the same response, it was suggested that the 
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appearance of differently fated cells is required for morphogenetic apoptosis. The induction of 

apoptosis depends on the activation of JNK, which belongs to the conserved family of MAP 

kinases and is responsible for inducing apoptosis in many different biological contexts. Based on 

round clone shapes observed in these studies, the author speculated that the downstream 

transcription factors regulate cell affinity and changes therein could trigger JNK activation. 

However, final proof for this concept is still missing (Adachi-Yamada and O'Connor, 2002, 2004; 

Igaki, 2009).  

More concretely, it has been shown that clones overexpressing the Dpp target genes sal 

are removed by apoptosis from the wing disc in lateral regions, where they are confronted with 

surrounding cells of low sal expression. Interestingly, this removal can be blocked by co-

expression of caps and trn, which encode transmembrane proteins (see also 1.4.1 b). Normally, 

they are expressed in the lateral wing disc regions and are negatively regulated by Sal. The 

authors suggest that Caps and Trn might act as ligands for receptors on neighboring cells, thereby 

ensuring cell survival. However, this mechanism seems to be restricted to regions of endogenous 

Caps and Trn expression and cannot rescue morphogenetic apoptosis, suggesting that other 

mechanisms or molecules must be involved (Adachi-Yamada and O'Connor, 2004; Milan et al., 

2002). 

b.  Classical cell competition 

The classical definition of cell competition describes the process of removing slower 

growing or unfit cells (loser cells) from the tissue, but only in conditions where they are 

surrounded by faster-growing or fitter cells (winner cells). Therefore, cell competition depends on 

fitness comparison of adjacent cell populations, which leads to the JNK-dependent induction of 

apoptosis in loser cells induced by surrounding winner cells. Cell competition was described for 

the first time in the context of Minute mutations affecting ribosomal proteins. Mutant cells grow 

slower and are viable under heterozygous conditions, but are eliminated from the tissue when 

surrounded by wild-type cells. Later, several other regulators of cell growth, additionally to 

Minute genes, have been shown to induce cell competition, including dMyc or components of the 

Hippo pathway. Based on studies of dMyc, the term supercompetitors was defined since high 

expression of dMyc confers increased cellular fitness, leading to the removal of wild-type cells 

with normal level of dMyc expression (de Beco et al., 2012; Levayer and Moreno, 2013). 

A central question in cell competition is what defines winner or loser fate downstream of 

different growth rates. One scenario describes that loser cells, due to their decreased growth and 

fitness, receive less Dpp ligand compared to surrounding winner cells. This competition for Dpp 

uptake could lead to discontinuities in the Dpp gradient at the interface of winner and loser cell 

contacts, similar to morphogenetic apoptosis. Secondly, it was suggested that mechanical 
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compression from faster growing cells acting on slower growing ones could lead to apoptosis 

(Levayer and Moreno, 2013; Vincent et al., 2013). Regardless of the upstream signal, the 

molecular signature of loser cells has been identified and is established by the transmembrane 

protein Flower (Flw). The flw gene encodes three different isoforms, one that is expressed 

ubiquitously and two that are exclusively expressed by loser cells. The Flw code is necessary and 

sufficient for apoptosis of loser cells and provides a molecular mechanism for cells to compare 

their fitness with each other (Rhiner et al., 2010). 

c.  Intrinsic tumor suppression 

Epithelial cells that lose apical-basal polarity because of mutations in lgl, dlg or scrib 

genes (Figure 2) overproliferate and develop into neoplastic tumors. However, if wild-type cells 

surround these mutant cells, polarity-deficient cells are removed through JNK-dependent 

activation of apoptosis. Therefore, direct cell-cell interaction and communication between mutant 

and wild-type cells are a crucial prerequisite for tissue-intrinsic mechanisms of tumor 

suppression. Despite several similarities to cell competition, intrinsic tumor suppression only 

happens after the beginning of morphological cell changes and does not rely on differences in 

growth rates (Igaki, 2009; Levayer and Moreno, 2013; Vincent et al., 2013). 

d.  Apoptotic and live cell extrusion 

Cells activate the apoptotic cascade in order to shape organs or restore epithelial 

patterning. To maintain the barrier function of the epithelium, apoptotic cells have to be removed 

from the tissue layer and the resulting gaps have to be closed. This task is fulfilled by apoptotic 

cells themselves, who instruct their surrounding cells to create an actomyosin cable that squeezes 

the apoptotic cell out of the epithelial plane and subsequently prevents the formation of a gap 

(Rosenblatt et al., 2001).  

This important mechanism of apoptotic cell clearance is distinct from live cell extrusion, 

where cells first leave the epithelium and then activate apoptosis due to loss of cell contacts. Live 

cell extrusion is triggered by cell crowding, which makes it a powerful mechanism for regulating 

cell density and epithelial homeostasis. In the pupal notum of Drosophila, live cell extrusion is a 

stochastic event occurring in regions of high cellular densities. Cells undergoing live cell 

extrusion experience a step-wise loss of cell junctions leading to their delamination and basal 

removal from the epithelium. In contrast, apical extrusion has been observed in vertebrates and 

depends on the cell density-dependent activation of a stretch-induced ion channel called Piezo1. 

Two questions that need to be further explored are whether this channel also plays a role in live 

cell extrusion in Drosophila and what the molecular pathway downstream of its activation is 

(Eisenhoffer et al., 2012; Katoh and Fujita, 2012; Marinari et al., 2012). 
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2 Aim of this study 

Although much is known about how cell polarity and adhesion defects harm epithelial 

integrity (e. g. Halaoui and McCaffrey, 2015; McCaffrey and Macara, 2011), the precise influence 

of tissue patterning on epithelial integrity remains elusive. Therefore, we aimed to understand the 

interplay between cell fate patterning and epithelial architecture in more detail. We approach this 

problem by analysis of epithelial cysts induced upon cell fate misspecification in Drosophila 

imaginal discs, a well-established epithelial model system. 

While cyst formation has severe consequences for epithelial function, little is known 

about the underlying cellular mechanisms and if cysts can be associated with a specific biological 

function. We wanted to identify under which conditions cyst formation occurs to describe the 

detailed molecular and cell-biological signature of cystic clone shapes and to decode the 

biological function driving the formation of this aberrant structure. In addition, we aimed to gain 

knowledge about the physical forces responsible for the dramatic cell shape changes driving cyst 

formation. We wanted to test if cell-autonomous shape changes, coordinated apical constriction, 

or proliferation within a confined space drive cyst formation, since these processes have been 

linked to cysts and morphogenesis before. 

To approach these questions, we conducted a detailed cell-biological and genetic analysis 

in combination with physical modeling of forces in epithelial sheets. Our interdisciplinary work 

sheds light on mechanisms of cyst formation operating in Drosophila and outlines possible 

similarities to normal developmental or disease-promoting shape changes. 
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3 Results 

3.1 Ectopic expression of cell-fate specifying transcription 
factors leads to cyst formation 

3.1.1 Psc-Su(z)2 mutant cells form cysts independent of proliferation and 
JNK  

We performed a mosaic analysis of a precise deletion of the tumor suppressor genes and 

functional paralogues Posterior sex combs (Psc) and Suppressor of zeste 2 (Su(z)2) in wing 

imaginal discs. Psc and Su(z)2 encode Polycomb group proteins, which have important roles in 

epigenetically maintaining gene expression patterns during development (Beh et al., 2012; Li et 

al., 2010; Simon and Kingston, 2013). Interestingly, Psc-Su(z)2 mutant cells have been previously 

observed to form epithelial cysts (Classen et al., 2009).  

We used the FLP/FRT mitotic recombination system (4.1) to induce homozygous mutant 

cell clusters (clones), which are labeled by loss of GFP expression. We found that early (30 h) 

after induction of mitotic recombination, Psc-Su(z)2 mutant clones were rounder when compared 

to wild-type clones. Phalloidin staining revealed changes to actin localization and cell 

rearrangements. (Figure 7 a-c, f-h). At later stages (54 h), smoothening of clone shape proceeded 

leading to large round and confined structures, where mutant cells arranged radially around the 

clone center (Figure 7 d-e, i-j). To better understand how these structures disrupted normal tissue 

architecture, we analyzed xz cross-section of Psc-Su(z)2 mutant clones (Figure 8). Mutant cells 

started to constrict their apical surfaces (Figure 8 a-c, compare red and blue arrows in c` and h) 

around 30 h after clone induction followed by an apical invagination. As a consequence, we 

observed that apical surfaces of mutant cells were shifted more basally when compared to 

surrounding wild-type cells. This suggested that mutant cells were shortened along their apical-

basal axis (Figure 8 a-c). At later time points (54 h), clone invagination had become more 

pronounced generating basally located spherical structures with deep lumina, which we will term 

cysts from now on. At this time point, the apical surface of mutant cells was no longer constricted, 

but appeared to be expanded again (Figure 8 d-f). Nevertheless, mutant cells exhibited a dramatic 

decrease in cell height indicating further shrinkage of apical-basal axis length. At very late stages 
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(102 h), some mutant clones completely lost contact to the surrounding wild-type tissue and fully 

extruded basally as self-contained cystic structures (Figure 8 g). Due to larval lethality, we were 

not able to investigate the survival and morphology of mutant clones into adult stages. However, a 

previous study observed Su(z)12 mutant clones as round vesicles in the adult fly wing that had 

been sorted out, suggesting that cystic clones can survive until adult stages (Zirin and Mann, 

2004). Similarly, it have been reported previously that Dpp mutant cyst survive metamorphosis 

and remain as cuticular vesicles between dorsal and ventral adult wing layers (Gibson and 

Perrimon, 2005; Shen and Dahmann, 2005).  

We wanted to test if higher rates of cell proliferation within the confined space of the 

wing imaginal disc are responsible for cyst formation by Psc-Su(z)2 mutant cells . To this end, we 

reduced proliferation in Psc-Su(z)2 mutant clones by introducing the yorkie allele ykiB5 (Huang et 

al., 2005) into the Psc-Su(z)2 mutant background. 24 h after clone induction, Psc-Su(z)2 mutant 

clones and Psc-Su(z)2, yki double mutant clones both invaginated. At a later time point (72 h) 

many double mutant clones had died and the remaining clones were much smaller suggesting that 

proliferation was indeed restrained. Nevertheless, Psc-Su(z)2, yki double mutant clones 

invaginated and formed cysts (Figure 9 a-f), demonstrating that proliferation is not necessary for 

cyst occurrence. 

JNK signaling is known to play a role in cell shape morphogenesis and stress signaling 

(Rios-Barrera and Riesgo-Escovar, 2013). Since we observed activation of JNK signaling in Psc-

Su(z)2 mutant cells as well as in wild-type cells surrounding the clone (Figure 9 g, h), we wanted 

to test if JNK signaling could be involved in the process of cyst formation. We generated Psc-

Su(z)2 mutant clones in wing imaginal discs hemizygous for a mutation in the JNK kinase gene 

hemipterous (hepR75) (Glise et al., 1995). The absence of JNK signaling did not interfere with cyst 

formation (Figure 9 i, j), thereby excluding JNK signaling as the driving force of this process. 
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Figure 7: Psc-Su(z)2 mutant clones invaginate and form cysts; (a, f) Schematic 
representation of wing imaginal discs containing wild-type clones (a, white) and Psc-Su(z)2 
mutant clones (f, white). Wild-type cells are marked by GFP (green), clones by absence of GFP. 
Wild-type clones retain a neutral shape (a), whereas clones which are misspecified by a 
Polycomb mutation invaginate and form round cysts (f). (b-e and g-j) Xy sections of wing imaginal 
discs containing wild-type clones (b-e) or Psc-Su(z)2XL26 clones (g-j) induced by the FLP/FRT 
system. Wild-type cells are marked by GFP (green in b`-j`), mutant clones by the absence of 
GFP: Actin is shown in grey (b-e, g-e) or red (b`-j`). Time points 30 h (b, c and g, h) and 54 h (d, e 
and i, j) after clone induction are shown. Boxes in (c, d, h, j) frame regions shown at higher 
magnification in (c, e, h, j). Scale bar as indicated.  
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Figure 8: Time course of cyst formation in Psc-Su(z)2 mutant clones; (a-g) Xz cross-section 
of Psc-Su(z)2XL26 clones in wing imaginal discs induced by the FLP/FRT system. Wild-type cells 
are marked by GFP (green in a`-g`), mutant clones by the absence of GFP: Actin is shown in grey 
(a-g) or red (a`-g`). Time points 0 h (a), 30 h (b, c), 54 h (d-f) and 102 h (g) after clone induction 
are shown. Scale bar as indicated. See (h) for explanation of blue and red arrows (h) Schematic 
representation of cyst formation time course. Initially, cells exhibit a columnar shape. Comparing 
the width of apical (red arrows) and basal (blue arrows) surfaces shows that cells start to constrict 
apically (compare to c`) during early cyst formation followed by apical invagination. Progressive 
invagination leads to cysts with deep hollow lumina in the center (late). At very late stages, 
segregation of mutant cells cumulates in total loss of contact to wild-type tissue leading to 
enclosed ball-like structures sitting basally. 
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Figure 9: Cyst formation is independent of proliferation and JNK signaling; (a-f) Xy (a, c, d, 
f) and xz sections (b, e) of wing imaginal disc containing Psc-Su(z)21b8 clones (a-c) or Psc-
Su(z)21b8, ykiB5 clones (d-f) induced by the FLP/FRT system. Wild-type cells (wt) are marked by 
GFP (green in a’-f’), mutant clones by absence of GFP. Actin is shown in grey (a-f) or red (a’-f’). 
Time points 30 h (a, b, d, e) and 72 h (c, f) after clone induction are shown. Arrowheads point to 
invaginating clones. Dashed yellow lines in (a, e) indicate positions of xz cross-sections shown in 
(b, e). The ykiB5 allele prevents proliferation and survival of Psc-Su(z)21b8 cells, but not 
invagination and cyst formation (arrowheads in e, f). (g, h) Xy (g) and xz (h) section of wing 
imaginal disc containing Psc-Su(z)2XL26 clones and Puc-LacZ, a reporter for active JNK signaling 
(grey in g`, h`, red in g```, h```), which was stained 54 h after clone induction for β-galactosidase 
expression. Wild-type cells (wt) are marked by GFP (grey in g`, h`, green in g```, h```), clones by 
absence of GFP. Actin is shown in grey (g). Arrowhead in (h```) is pointing to wt cells with Puc-
LacZ staining. Dashed yellow lines in (g) indicate position of xz cross-sections shown in (h). Note 
the activation of JNK in both mutant and wild-type cells. (i, j) Xy sections of wing imaginal disc 
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containing Psc -Su(z)2XL26 clones in a FM7-GFP background (i) and Psc -Su(z)2XL26 clones in a 
hemizygous hepR75 background (j) induced by the FLP/FRT system. 3rd instar sibling larvae were 
dissected. Actin is shown in grey (I, j) or red (i`, j`). Wild-type cells are marked by GFP (green in i`, 
j`), in (j) mutant clones are marked by absence of GFP. In (i), clonal marker cannot be 
distinguished from FM7-GFP signal. hepR75 prevents activation of JNK signaling in imaginal discs, 
but does not interfere with cyst formation. Scale bars as indicated. 

 

3.1.2 Ectopic expression of unrelated transcription factors leads to 
position-independent cyst formation  

Polycomb proteins execute growth regulatory function through silencing of JAK/STAT or 

Notch signaling pathways (Classen et al., 2009; Martinez et al., 2009), but Polycomb activity is 

also important for the regulation of numerous transcription factors involved in cell differentiation 

(Schuettengruber and Cavalli, 2009). To test whether cell fate misspecification in Psc-Su(z)2 

mutant clones underlies cyst formation, we individually overexpressed cell fate specifying 

transcription factors silenced by the Polycomb system in wing discs. We used the heat-shock 

inducible Gal4/UAS flip out system to express transcription factors in small cell patches (clones) 

(4.1). First, we ectopically expressed the fork head box transcription factor fork head (fkh), which 

normally drives salivary gland morphogenesis (Myat et al., 2000). qPCR analysis and RNAseq 

data (Bunker et al., 2015) revealed a strong upregulation in Psc-Su(z)2 mutant imaginal discs, 

supporting the silencing of this transcription factor by the Polycomb system (Table 1). 30 h after 

induction, fkh-expressing clones started to round up and invaginated in contrast to control clones 

expressing only GFP (Figure 10 a-c, f-h). Similarly to Psc-Su(z)2 mutant clones, the invagination 

became more severe at later time points and led to pronounced cysts 54 h after clone induction 

(Figure 10 d-e, i-j). We continued with the overexpression of two additional genes that were 

Polycomb regulated (Table 1): the homeobox transcription factor Abdominal-B (Abd-B), which is 

involved in segment identity specification (Pearson et al., 2005) and the Runt-domain 

transcription factor lozenge (lz), required for proper eye development and hemocyte 

differentiation (Canon and Banerjee, 2000). Both transcription factors were each sufficient to give 

rise to cysts throughout the entire wing imaginal disc upon overexpression in small patches of 

cells (Figure 11 a-f). 
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Figure 10: Ectopic expression of fkh leads to cyst formation; (a, f) Schematic representation 
of wing imaginal discs expressing GFP (a) and fkh (f) in flip out clones (green). GFP-expressing 
clones have a neutral shape, whereas fkh-expressing clones round up and form cysts at any 
position within the disc. (b-e and g-j) Xy (b, d and g, i) and xz sections (c, e and h, j) of wing 
pouches expressing GFP (b-e) or fkh (g-j) in flip out clones (green in b`-j`) 30 h (b, c and g, h) and 
54 h (d, e and i, j) after clone induction using a short heat-shock. Actin is shown in grey (b-j) or 
red (b`-j`). Dashed yellow lines in (b, d and g, i) indicate positions of xz cross-sections shown in 
(c, e and h, j). Scale bar as indicated. 
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Figure 11: Ectopic expression of unrelated, cell fate specifying transcription factors 
causes cyst formation; Wing imaginal discs ectopically expressing cell fate specifying 
transcription factors regulated by Polycomb (a-f) and not regulated by Polycomb (g-l). (a-l) Xy 
sections (a, b, d, e, g, h, j, k) and xz cross-section (c, f, i, l) of wing imaginal discs expressing Abd-
B (a-c), lz (d-f), ey (g-i) or Ubx (j-l) in flip out clones (green in a`-k`) 54 h after clone induction 
using a short heat-shock. Actin is shown in grey (a-k) or red in (a`-k`). Xy overviews (a, d, g, j) and 
higher magnification pictures (b, h, e, k) shown below were not derived from the same disc. 
Dashed yellow lines in (b, e, h, k) indicate positions of xz cross-sections shown in (c, e, i, l). Scale 
bars as indicated. 
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To test if cyst formation is specific to transcription factors silenced by Polycomb, we 

analyzed additional transcription factors involved in cell fate specification. We ectopically 

expressed randomly selected transcription factors not de-repressed in Psc-Su(z)2 mutant wing 

discs (Table 1). Small clones expressing cell fate specifying transcription factors, such as the Pax6 

homologue eyeless (ey), the homeobox transcription factor Ultrabithorax (Ubx) (Figure 11 g-l) 

and the homebox transcription factor homothorax (hth) (discussed below, Figure 16 e-h) caused 

cysts in wing discs as well. 

 

Table 1: RNAseq and qPCR analysis of transcript expression in Psc-Su(z)2 mutant 
imaginal discs; (a) Fold changes and adjusted p-values (padj) of individual genes analyzed by 
RNAseq (Bunker et al., 2015) are shown. Abd-B, fkh and lz are transcriptionally upregulated in 
Psc-Su(z)2XL26 cells. ey shows a slight upregulation. arm, ci, hop, Ubx and tkv are not elevated. 
(b) qPCR analysis confirming strong upregulation of Abd-B and fkh in Psc-Su(z)2XL26 discs in 
contrast to hth. Fold change and standard deviation (stdv) is shown. Refer to Appendix, Table 12 
for more extended data.  

a RNAseq analysis b qPCR data 
Fold change padj Fold change stdv 

Abd-B 444.96 1.4E-19 Abd-B 1281.55 651.41 

fkh 69.60 1.5E-11 fkh 5514.40 2289.51 

lz 123.74 1.1E-21 hth 0.66 0.32 

ey 2.46 3.7E-01 

arm 0.80 3.2E-01 

ci 1.68 1.7E-03 

hop 0.78 2.0E-01 

tkv 0.27 1.1E-16 

Ubx 0.85 9.9E-01 

 

To exclude that cyst formation is only specific to the wing imaginal disc, we also 

expressed fkh, Abd-B, lz, ey and Ubx in eye imaginal discs. In the case of fkh, Abd-B, lz and Ubx 

overexpression, we also observed smoothening of clones shapes and cyst formation (Figure 12 a-

d, f). Expression of ey, a selector gene of eye formation, caused cyst extrusion in wings (Figure 11 

g-i), but not in eye imaginal discs (Figure 12 e), where ey is endogenously expressed (Quiring et 

al., 1994). Similarly, rounding and sorting of hth. and Distal-less (Dll) were previously shown to 

occur in the leg imaginal disc (Wu and Cohen, 1999). In summary, these results suggest that cyst 

formation is not restricted to the wing imaginal epithelia. 
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Figure 12: Ectopic expression of cell fate specifying transcription factors causes cysts in 
the eye disc; (a) Schematic representation of eye imaginal discs expressing a cell fate specifying 
transcription factor (green, misspecified cells) using a short heat-shock. The misspecified cells 
invaginate and form cysts. (b-f) Xy sections of eye imaginal discs expressing fkh (b), Abd-B (c), lz 
(d), ey (e) and Ubx (f) in flip out clones (green in b`-f`) 54 h after clone induction using a short 
heat-shock. Actin is shown in grey (b-f) or red (b`-f`). Note that ey-expressing clones (e`) have a 
wiggly clone shape resembling wild-type clones represented by little schematic inset in e`. Lower 
left insets are higher magnifications of framed regions. Scale bar as indicated, scale bar in inset: 
25 µm. 

 

3.1.3 Ectopic expression of cytoplasmic proteins or activation of 
apoptosis is not driving cyst formation 

To test if transcription factors not involved in cell fate specification also induce cyst 

formation, we overexpressed the transcription factor dMyc, which is involved in cellular growth 

but not in cell fate specification (Johnston et al., 1999). Clonal overexpression did not lead to cyst 

formation, instead clones retained a normal columnar cell shape (Figure 13 a, b). Additionally, 

ectopic expression of proteins that have a cytoplasmic instead of nuclear functions, like the 

muscle-specific sarcomer protein flightin (fln) (Vigoreaux et al., 1993), did not give rise to cysts 

(Figure 13 c, d). These results highlight the necessity for ectopic activity of cell fate specifying 

transcription factors to induce cysts. 
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Figure 13: Ectopic expression of cytoplasmic proteins or activation of apoptosis does not 
cause cysts; Xy (a, c, e, g) and xz sections (b, d, f, h) of wing imaginal disc pouches expressing 
Myc (a, b), fln (c, d), fkh, p35 (e, f) and fkh, dIAP (g, h) in flip out clones (green in a`-h`) 54 h after 
clone induction using a short heat-shock. Actin is shown in grey (a-h) or red (a`-h`). Dashed 
yellow lines in (a, c, e, g) indicate positions of xz cross-sections shown in (b, d, f, h). Scale bar as 
indicated. Overexpression of a growth promoting factor (Myc) or cytoplasmic protein (Fln) do not 
induce cyst formation, whereas blocking apoptosis is not sufficient to prevent cyst formation. 

 

Previously, apoptosis has been reported to cause apical constriction and basal extrusion 

(Marinari et al., 2012), as well as fold formation in imaginal discs (Manjon et al., 2007). We 

therefore wanted to understand a possible role for apoptosis in the upstream regulation of cyst 

formation and tested whether inhibiting apoptosis could interfere with cyst formation. However, 

neither overexpression of viral anti-apoptotic p35 nor death-associated inhibitor of apoptosis 1 

(dIAP) (Figure 13 e-h) prevented cyst formation in fkh-expressing clones, suggesting that 

apoptosis is not the driving force of the observed cell shape changes.  

In summary, these observations suggest that activation of ectopic transcription factors 

associated with cell fate specification underlies cyst formation in imaginal discs independent of 

Polycomb regulation or induction of apoptosis. Since we could show that the overexpression of 

several unrelated transcription factors leads to an identical phenotype, we suggest that the 

underlying cellular mechanism inducing cyst formation must be of very general nature. 
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3.1.4 Ectopic activation of several signaling pathways leads to position-
dependent cyst formation 

Psc-Su(z)2 mutant clones, or clones expressing the transcription factors investigated 

above, formed cysts independent of position within the wing disc (Figure 10 f). Importantly, none 

of these transcription factors are endogenously expressed in wing imaginal discs at the stage 

analyzed. We, therefore, wanted to analyze transcription factors that are expressed endogenously 

in the wing imaginal disc, but in a spatially defined manner. To this end, we analyze the 

conserved developmental patterning pathways Hh or JAK/STAT (Arbouzova and Zeidler, 2006; 

Tabata and Takei, 2004), which both show a very specific and highly regulated spatial pattern 

within the wing imaginal disc (Ayala-Camargo et al., 2013) (1.3.4) (Figure 14 a, g). We 

introduced clones in wing imaginal disc, that expressed the downstream transcription factor 

cubitus interruptus (ci) of Hh signaling and a dominant-active JAK (hoptum-L), which is rate-

limiting for the activation of the transcription factor STAT (Zoranovic et al., 2013). We found that 

ci-expressing clones maintained normal epithelial shapes in the anterior compartment, where Hh 

signaling is normally high. However, ci-expressing clones formed cysts in the posterior 

compartment, where repression of ci normally prevents Hh signaling (Figure 14 a-f) (Morata, 

2001). Likewise, activation of STAT induced invagination of clones only in pouch and notum 

regions of the wing disc, where JAK/STAT signaling is normally low (Figure 14 g-l). 

It had been reported previously that Wg or Dpp mutant clones or clones ectopically 

activating these signaling pathways give rise to cysts dependent on their position within 

endogenous Wg or Dpp signaling gradients (Gibson and Perrimon, 2005; Shen and Dahmann, 

2005; Widmann and Dahmann, 2009a, b; Zimmerman et al., 2010). We were able to recapitulate 

these results by the clonal expression of a constitutive active version of the Wg transcription 

factor armadillo (arm) (Pai et al., 1997). Cyst formation was observed in the periphery of the 

wing pouch, but not along the DV boundary, where the endogenous Wg signaling is very high 

(1.3.4) (Figure 15 a-f). In order to ectopically activate Dpp signaling, we expressed a 

constitutively active construct of the receptor thickveins (tkv) (Nellen et al., 1996). Similarly, we 

detected cysts only in regions of low Dpp signaling activity in the periphery of the wing imaginal 

disc, but not in close proximity to the AP boundary (1.3.4) (Figure 15 g-k). Previous reports 

showed activation of downstream transcription factors of these pathways is responsible for 

manifestation of the phenotype (Shen et al., 2010; Widmann and Dahmann, 2009a, b). This is in 

accordance with our findings that only cell fate specifying transcription factors induced cyst 

formation when ectopically expressed.  
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Figure 14: Position-dependent cyst formation within Hh/Ci and JAK/STAT patterning fields; 
(a, g) Schematic representation of wing imaginal discs with endogenous Hh/Ci (a) and JAK/STAT 
(g) signaling (orange). ci and hop-expressing flip out clones are indicated in green. Cysts are only 
formed in regions where the respective endogenous signaling is low. (b-f and h-k) Xy (b-d and h-
j) and xz sections (e, f and k, l) of wing imaginal discs expressing ci (a-f) or hop (g-l) in flip out 
clones (green in b, c`-f` and h, i`-l`) 54 h after clone induction using a short heat-shock. Actin is 
shown in grey (c-l) or red in (b, c`-f` and h, i`-l`). Boxes in (b and h) frame regions shown at higher 
magnification in (c, d and i, j). Dashed yellow lines in (c, d and I, j) indicate positions of xz cross-
sections shown in (e, f and k, l). Scale bar as indicated. Contributions: Experiment and image 
generation: Vanessa Weichselberger. 

 

Previous studies suggested that Dpp or Wg signaling directly regulates cell shape and, 

specifically, columnar cell height. Following this interpretation, signaling-compromised cell 

clusters would form cysts because of cell-autonomous shape changes that depend on Dpp or Wg 

signaling. Because of our observations, we want to put forward a much more general 

interpretation, where misregulation of cell fate specification in general is a driving force for cell 

shape changes, rather than a specific role for individual signaling pathways in regulating cell 

height. 
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Figure 15: Position-dependent cyst formation within Wg and Dpp signaling patterning 
fields; (a, g) Schematic representation of wing imaginal discs with endogenous Wg (a) and Dpp 
(g) signaling (orange). arm and tkv-expressing flip out clones are indicated in green. Cysts only 
form in regions where the respective endogenous signaling is low. (b-f and h-k) Xy (b-d and h-j) 
and xz cross-sections (e, f and k) of wing imaginal discs expressing arm (a-f) or tkv (g-l) in flip out 
clones (green in b, c`-f` and h, i`-k`) 54 h after clone induction using a short heat-shock. Actin is 
shown in grey (c-l) or red in (b, c`-f` and h, i`-k`). Boxes in (b and h) frame regions shown at 
higher magnification in (c, d and j). Dashed yellow lines in (c, d and j) indicate positions of xz 
cross-sections shown in (e, f and k). For wing disc with tkv-clones, an apical (h) and basal (i) 
section is shown. Yellow arrows indicate smoothening of clone borders outside of the Dpp 
signaling area (orange in a). The same clone shows wiggly borders on side facing the Dpp 
signaling area (yellow arrowheads). Scale bar as indicated. Contributions: Experiment and image 
generation: Vanessa Weichselberger. 

 

Our hypothesis of generality was supported by additional experiments where 

misspecification within other developmentally patterned tissue domains caused position-

dependent cyst formation. vestigial (vg)-expressing clones gave rise to cysts in the hinge and 

notum region, where vg expression driving wing blade specification is normally low (Figure 16 a-

d) (Liu et al., 2000; Widmann and Dahmann, 2009b). Expression of ey, a selector gene of eye 

formation caused cyst extrusion in wings but not in eye imaginal discs (compare Figure 11 g-i and 
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Figure 12 e). Expression of hth generated smoothening and invagination only in the pouch, but 

not in the hinge that normally expresses hth (Figure 16 e-h) (Azpiazu and Morata, 2000). 

 

 

Figure 16: Position-dependent cyst formation in the context of Vg and Hth expression; (a, 
e) Schematic representation of wing imaginal discs with endogenous Vg (a) and Hth (e) 
expression (orange). vg and hth-expressing flip out clones are indicated in green. Cysts are only 
formed in regions where the respective endogenous expression is low (b-e and f-h) Xy section of 
wing imaginal disc expressing vg (b-d) or hth (f-h) in flip out clones (green in b`-h`) 54 h after 
clone induction using a short heat-shock. Actin is shown in grey (b-h) or red (b`-h`). Boxes in (b` 
and f`) frame regions shown at higher magnification in (c, d and g, h). Scale bar as indicated, 
scale bar in insets represents 25 µm. 

 

In addition, ectopic expression or mutation of other endogenously patterned transcription 

factors, such as Iro-C, salm and omb in the wing imaginal disc, have been previously described to 

cause round invagination phenotypes dependent on location within the endogenous expression 

domain. In the case of mutations, cysts have been observed in high endogenous expression 

domains, whereas clonal overexpression leads to cyst formation in domains of low expression 

(Organista and De Celis, 2013; Shen et al., 2010; Villa-Cuesta et al., 2007). While a detailed 

cellular description of clone invagination is missing in these studies, several hallmarks of cyst 

formation, including rounding, clone sorting, and extrusion were often observed. An overview of 

transcription factors analyzed by us or studies observing similar position-dependent and 

independent phenotypes is shown in Table 2 and emphasizes the generality of cyst formation as 

an epithelial response to the presence of aberrantly patterned cells. 

Collectively, these observations emphasize that initiation of cyst formation in imaginal 

discs represents a very general response to cell fate misspecification and seems to be driven by 

relative fate differences between misspecified and surrounding wild-type tissue in the respective 

patterning field. 
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Table 2: Overview of transcription factors or signaling pathways analyzed in this or other 
studies showing cysts or cyst-related phenotypes upon clonal misregulation; Transcription 
factors (TF) or signaling pathways as well as the TF-family, the respective study, the analyzed 
tissue and the phenotypical description of clone appearance within this study are listed. Table 
also includes studies, in which clone shape was not described, but cystic hallmarks can be 
identified in published figures (stated in italic). Note that table might not be complete and includes 
only studies to our knowledge. WID = wing imaginal disc, EID = eye imaginal disc, LID=leg 
imaginal disc, NE = neuroepithelium 

TF /signaling 
pathway 

TF-family tested in tissue 
Clonal 
phenotype  

Abdominal-B  Homeobox domain this study WID, EID Cysts 
Wg signaling 
armadillo 

 
β-catenin 

this study WID Cysts 

  

(Widmann and Dahmann, 
2009b; Zimmerman et al., 
2010) 

WID 

Cysts, round, 
smooth, apical 
constricted, 
invagination 

Hh signaling 
cubitus 
interruptus 

 
Zinc finger 

this study WID Cysts 

(Worley et al., 2013) WID Round, smooth 
defective	
proventriculus 

Homeobox domain (Terriente et al., 2008) WID Round, smooth 

Distal-less Homeobox domain (Wu and Cohen, 1999) LID 
Sorting out, 
vesicles 

Dorsocross  T-box (Sui et al., 2012) WID 
Basal retraction,  
actin ring, fold 

Dpp signaling this study (tkv) WID Cysts 

  

(Gibson and Perrimon, 2005;
Shen and Dahmann, 2005; 
Widmann and Dahmann, 
2009a) 

WID 

Apical retracted, 
basal extrusion, 
cyst-like 
structure, 
constriction, 
invagination 

engrailed Homeobox domain (Herrera and Morata, 2014) WID Round 

eyegone 
paired domain and 
homedomain 

(Aldaz et al., 2005) WID Round 

eyeless 
paired domain and 
homedomain  

this study WID, EID Cysts in WID 

fork head forkhead box this study WID, EID Cysts 

homothorax Meis homeobox  this study WID Cysts 

  

(Azpiazu and Morata, 
2000; Wu and Cohen, 
2000) 

WID, LID Sorting out 

iroquois 
complex 

Homeobox domain (Villa-Cuesta et al., 2007) WID 
Invagination, 
apical-basal 
shortening 

JAK-STAT 
signaling  

this study (hop) WID Cysts 

lozenge Runt domain this study WID Cysts 

Notch, Mef2 MADS-box (Pallavi et al., 2012) Protrusion, round 

Optomotor-
blind 

T-box (Shen et al., 2010) WID 
Rounding, apical 
indentation, basal 
clone retraction 

Optix Homeobox domain (Gold and Brand, 2014) NE 
Round, rosette, 
apical constriction 

Polycomb  this study (Psc-Su(z)2) WID cysts 
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(Beuchle et al., 2001; 
Gandille et al., 2010) 

WID 
Smooth, cyst-like, 
round 

RTK signaling this study (Ras) WID Cysts 

  

(Bell and Thompson, 2014; 
Prober and Edgar, 2000; 
Worley et al., 2013) 

WID 
Cysts, round, 
smooth 

spalt Zinc finger 
(Organista and De Celis, 
2013) 

WID 
Folds, clone  
extrusion 

teashirt Zinc finger 
(Azpiazu and Morata, 
2000; Wu and Cohen, 
2000) 

WID, LID 
Round, sorting 
out 

tiptop Zinc finger (Bessa et al., 2009) ID Round 

Ultrabithorax Homeobox domain this study WID, EID Cysts 

vestigial TDU repeat this study WID Cysts 

  

(Azpiazu and Morata, 
2000; Liu et al., 2000; 
Widmann and Dahmann, 
2009b) 

WID 
Round, smooth, 
invagination 

Hippo signaling 
yorkie 

 
Cofactor 

(Worley et al., 2013) WID Round, smooth 

Zinc finger 
homedomain-2 

Zinc finger 
Homeobox domain 

(Perea et al., 2013) WID Round 

3.2 Cyst formation is a cell non-autonomous process 

We wanted to investigate how cysts form and why they appear as a general response upon 

induction of misspecified cells. Therefore, we asked if cyst formation is a cell-autonomous 

process, where misspecified cells themselves induce the observed cell shape changes due to 

downstream effects of transcription factors on epithelial architecture. This was suggested in 

previous reports, where Dpp or Wg signaling mutant cells adopt a columnar cell shape in a cell-

autonomous manner (Widmann and Dahmann, 2009a, b). 

To easily examine autonomous cell shape changes, we aimed to increase the area 

occupied by misspecified cells. By extending the length of heat shock that induces the Gal4/UAS 

flip out system, we generated imaginal discs where the majority of cells overexpressed fkh and 

where only small clones of wild-type cells remained. Strikingly, wild-type clones exhibited 

smoothening and they retracted from the apical epithelial surface early on after clone induction 

when compared to control discs only expressing GFP in response to long heat-shock conditions 

(Figure 17 a-h). At later time points, wild-type cell clusters gave rise to prominent cysts in 

contrast to surrounding fkh-expressing cells, where epithelial architecture was not perturbed 

(Figure 17 i).  

For convenience, cysts that formed from wild-type cells surrounded by misspecified ones 

will be referred to as inverse cysts in the following text. Inverse cyst formation of small wild-type 

clones in the wing imaginal disc could also be induced by overexpression of other transcription 
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factor, such as AbdB, Ubx and ey (Figure 17 k-l). Furthermore, the effect was not restricted to 

wing imaginal discs, since inverse cysts could also be observed in the eye imaginal discs when 

fkh, Abd-B and Ubx were overexpressed in large domains (Figure 18 b, c, e). Similar to our 

previous results, where clonal ey overexpression in the eye disc did not lead to cysts (Figure 12 e), 

broad overexpression of ey neither induced strong smoothening nor invagination of wild-type 

clones, likely due to endogenous ey expression (Figure 18 d). We were also interested in 

examining transcription factors, where we had observed position-dependent cyst formation in 

short heat-shock experiments (Figure 14, Figure 15, Figure 16). To do so, we broadly 

overexpressed ci and, importantly, observed inverse cysts, too. However, in accordance with our 

previous observations (Figure 14 a-f), inverse cysts only formed in the posterior wing 

compartment, where Hh signaling is normally low, whereas wild-type clones retained their 

normal shaped in the anterior compartment (Figure 18 f-k). In addition to our results, similar 

observations have been reported for Omb and Iro-C previously (Shen et al., 2010; Villa-Cuesta et 

al., 2007), thereby supporting the generality of our observations.  

In summary, our results strongly indicate that cyst formation is not driven cell-

autonomously by misspecified cells, since wild-type cells can also undergo the same process. 

Instead, cyst formation must depend on a cell non-autonomous process, where the apposition of 

differently fated cell populations acts as the signal to induce cyst formation. (Compare Figure 10 f 

to Figure 17 e, Figure 12 a to Figure 18 a and Figure 14 a to Figure 18 f). 
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Figure 17: Cyst formation is cell non-autonomous; (a, e) Schematic representation of wing 
imaginal discs broadly expressing GFP (a, green) and a cell fate specifying transcription factor (e, 
green, misspecified cells) in flip out clones using a long heat-shock leading to few interspersed 
wild-type cell clusters (white). Whereas wild-type cell clusters retain a neutral shape if surrounded 
by GFP-expressing wild-type cells, they invaginate and form cysts if surrounded by fkh-
expressing cells. (b-d and f-h) Xy section (a,c and f, g) and xz cross-section (d, h) of wing 
imaginal discs expressing GFP (b-d) or fkh (f-h) in flip out clones (green in b`-h`) 30 h after clone 



  RESULTS 

57 
 

induction using a long heat-shock. Actin is shown in grey (b-h) or red in (b`-h`). Boxes in (b, f) 
frame regions shown at higher magnification in (c, g). Dashed yellow lines in (c, g) indicate 
positions of xz cross-sections shown in (d, h). (i-l) Xy sections of wing imaginal discs expressing 
fkh (i), Abd-B (j), ey (k) or Ubx (l) in flip out clones (green in i`-l`) 54 h after clone induction using a 
long heat-shock. Actin is shown in grey (i-l) or red in (i`-l`). Lower left insets are higher 
magnifications of framed regions. (b-l) Scale bar as indicated, scale bar in insets represents 25 
µm.  

 

 

Figure 18: Inverse cysts also form in the eye disc and depend on position within a 
patterning field; (a) Schematic representation of eye imaginal discs broadly expressing a cell 
fate specifying transcription factor (green, misspecified cells) in flip out clones using a long heat-
shock leading to few interspersed wild-type cell clusters (white). The wild-type clusters invaginate 
and form cysts. (b-e) Xy section of eye imaginal discs expressing fkh (b), Abd-B (c), ey (d) or Ubx 
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(e) in flip out clones (green in b`-e`) 54 h after clone induction using a long heat-shock. Actin is 
shown in grey (b-e) or red in (b`-e`). Lower left insets are higher magnifications of framed regions. 
Note that ey-expressing clones have a wiggly clone shape resembling wild-type clones 
represented by little schematic inset in c. (f) Schematic representation of wing imaginal discs 
broadly expressing ci (green) in flip out clones using a long heat-shock leading to few 
interspersed wild-type cell clusters. Cysts are only formed in the posterior compartment, where 
the endogenous Ci signaling (orange) is low. (g-k) Xy (g, h, j) and xz cross-sections (i, k) of wing 
imaginal discs expressing ci in flip out clones (green in g`-k`) 54 h after clone induction using a 
long heat-shock. Actin is shown in grey (g-k) or red in (g`-k`). Boxes in (g`) frame regions shown 
in higher magnification in (h, j). Dashed yellow lines in (h, j) indicate positions of xz cross-sections 
shown in (i, k). (b-k) Scale bar as indicated, scale bar in insets represents 25 µm. Contributions: 
Experiment and image generation g-k: Vanessa Weichselberger. 

3.3 Cyst formation correlates with accumulation of contractility 
markers at the MWI 

3.3.1 Cell polarity is not altered in cysts and at the MWI 

From our previous experiments, we reasoned that cysts must form by mechanisms acting 

at the interface between misspecified and wild-type cells (MWI). We first aimed to understand the 

molecular signature of the MWI and, therefore, analyzed the localization of different cell polarity 

and adhesion markers at apical, adherens junctions or basolateral cell surfaces. We stained wing 

imaginal discs containing Psc-Su(z)2 mutant cysts for the apical marker aPKC, the adherens 

junction protein E-cad and the basolateral component Cora (Figure 19). We were not able to 

detect any changes neither at the MWI nor in the invaginating Psc-Su(z)2 mutant clone itself, 

when compared to marker localization and intensities in surrounding wild-type tissue. This result 

was reproducible for earlier or later time points after clone induction, additional adhesion and cell 

polarity markers (e.g. Sdt, Arm and α-cat), as well as upon analysis in fkh-expressing rather than 

Psc-Su(z)2 mutant cysts (data not shown).  

In summary, this suggests that cell polarity or adhesion is not obviously altered at the 

MWI or within cyst forming cells and, therefore, cell adhesion and polarity changes may not 

account for observed cell shape changes occurring during cyst formation.  
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Figure 19: Cell polarity and adhesion markers are not changed in Psc-Su(z)2 mutant cysts; 
Pouch regions of wing imaginal discs mosaic for Psc-Su(z)2XL26 after 54 h of clone induction 
stained for the apical marker aPKC (a,b), the adherens junction protein E-cad (c, d) and the 
lateral marker Cora (e-f) are shown. An apical (a, c, e), middle (a`, c`, e`) and basolateral xy 
section (a``, c``, e``) are displayed. Xz cross-section of polarity or adhesion marker, (b, d, f), a cell 
outline marker (b`, d`, f`) and the merge of adhesion and polarity marker (red) and clonal marker 
(wt cells, green) are shown. Dashed yellow lines in xy sections indicate positions of xz cross-
section. Dashed yellow lines b, d, f indicate clone borders. Scale bar as indicated. Contributions: 
Experiment and image generation e-f: Hannelore Hartmann. 
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3.3.2 Actin is enriched at the MWI 

In addition to cell polarity and adhesion markers, we had a closer look at the organization 

of the cellular cytoskeleton during cyst formation. We first focused on describing actin 

localization and intensities within cysts, at the MWI and the surrounding tissue. First of all, we 

observed prominent actin enrichment at apical surfaces in misspecified as well as inverse cysts, 

specifically in the invaginating cells at the center of the clone early after clone induction (Figure 

20, compare blue and yellow arrows). We did not observe this accumulation before the onset of 

invagination and at later stages when the apical surface had expanded again into an apical cyst 

lumen (data not shown, Figure 8 d-f). Because of these observations, we interpreted the changes 

in apical actin in invaginating cells as consequences of apical surface constriction that happens 

early during cyst formation (Figure 8 c`, h). The decrease of apical surface area during this 

process could lead to increased local actin concentration. We therefore suggest that the actin 

accumulation observed in invaginating cells is likely to be a secondary effect of invagination.  

 

 

Figure 20: Apical actin accumulation at cyst center during invagination; Xy (a, c) and xz 
sections (b, d) of wing imaginal discs expressing fkh in flip out clones 30 h after clone induction 
using a short (a, b) and long (c, d) heat-shock. Apical actin enriches in invaginating clones (yellow 
arrows) when compared to surrounding columnar cells (blue arrows). Scale bar as indicated. 

 

Interestingly, previous studies have described apical actin enrichments along 

compartment boundaries, locating between two differently specified cell lineages (Landsberg et 

al., 2009; Major and Irvine, 2005). We, therefore, focused next on the experimentally induced 

interface between the two differently fated cell populations of wild type and cell fate transcription 

factor misexpressing cells. Similar to observations at compartment boundaries, we detected 

increased apical actin intensities around fkh-expressing clones (Figure 21 a, b, e). Quantifications 

revealed that actin intensities at MWI adherens junctions of misspecified clones were increased 

by at least 30 % compared to actin intensities at interfaces between wild-type or misspecified 

cells. This was the case at early stages 30 h after clone induction, when even a subpopulation of 
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clones had not yet undergone invagination. At later stages, actin intensities at the MWI increased 

even further, but correlated with increased actin intensities at interfaces between misspecified 

cells (Figure 21 f). This observation can be explained by a late onset of cell-autonomous changes 

in misspecified cells and will be discussed later (3.4.6). 

 

 

Figure 21: Actin is enriched at the MWI; (a-e) Xy sections (a-d) and xz cross-section (e) of 
pouch regions expressing fkh in flip out clones (green in a`-e`) 30 h after induction using a short 
heat-shock. Actin is shown in grey (a-e) or red (a`-e`). Apical xy section are shown in (a, b), 
basolateral sections in (c, d). Yellow arrowheads point to accumulation of actin at the MWI. Boxes 
in (a, c) frame regions shown at higher magnification in (b, d). Scale bars as indicated, in (b, d) 5 
µm. (f-g) Box plots of normalized actin intensity at apical adherens junction (f) and basolateral 
interfaces (g) between wild-type cells (wt/wt), misspecified fkh-expressing cells (mis/mis) and 
between wild-type and misspecified fkh-expressing cells (wt/mis) 30 h (early) and 54 h (late) after 
clone induction. * = p-val < 0.01, ** = p-val < 0.001, ns= not significant. Refer to Appendix, Table 
13 for statistical analysis and data. Contributions: Actin quantification f, g: Anne Classen, Data 
analysis and representation f, g: Marco La Fortezza.  

 

Importantly, in addition to early apical actin accumulation, we found that filamentous 

actin was enriched also along the entire basolateral MWI (Figure 21 c, d, e). Early after clone 

induction, actin intensities were increased about 40 % at the basolateral MWI compared to 

basolateral interfaces between wild-type or between misspecified cells. At late stages of cyst 

formation, when cysts were fully invaginated, actin enrichment at the MWI persisted (Figure 21 

g). Both lateral and apical quantifications revealed that actin intensities at interfaces between 

misspecified cells were not significantly different from intensities observed between wild-type 
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cells. Importantly, actin also enriched at MWI interfaces of inverse cysts included in the 

quantifications. Unfortunately, the resolution of a confocal microscope did not allow us to 

distinguish actin enrichment between interfaces, making it difficult to speculate if both interfaces 

at the MWI contribute to the observed actin accumulation or only one.  

In conclusion, this analysis again supports our interpretation of a cell non-autonomous 

mechanism being responsible for the induction of cyst formation. We found that actin enrichment 

at the MWI, rather than cell-autonomous changes in misspecified or wild-type cells is a defining 

feature of early and late stages of cyst formation. 

3.3.3 The contractile machinery is enriched at the MWI 

Actin accumulation at the apical and basolateral MWI could indicate the possibility of 

higher tension and contractility generated at this specific subcellular location. To get further 

insights, we continued with a more detailed analysis of contractility regulators at early stages of 

cyst formation. We looked at myosin II regulatory light chain in the context of fkh-overexpressing 

cysts, using a GFP reporter of Spaghetti squash (Sqh) and also stained for the activated 

phosphorylated form of Sqh (Sqh 1P). Strikingly, we detected in both cases increased intensities 

basolaterally only at the MWI, but not within the fkh-expressing clone (Figure 22 a-f). The same 

result was observed when we analyzed the GFP-fusion protein of myosin II heavy chain, Zipper 

(Zip) (Figure 22 g-i). We also observed increased levels of the FERM domain protein Moesin 

(Moe) at the MWI upon examination of a GFP-fusion construct and antibody stainings for the 

phosphorylated, active Moe (Figure 22 j-n). Interestingly however, the upstream myosin II 

regulator Rho1 was not enriched at basolateral MWI locations (Figure 22 o, p).  

Our results showed that misspecified cells themselves were not affected by changes to the 

localization and levels of contractility regulators. Again, this observation makes it unlikely that 

cell-autonomous mechanisms are causing cyst formation. Surprisingly, we observed changes in 

components of contractile machinery more prominently at the basolateral surface of the MWI, 

when compared to changes at apical adherens junction for which previous models implied a 

strong function contribution to cell segregation mechanisms (Landsberg et al., 2009; Major and 

Irvine, 2006). 

In summary, these observations demonstrate that, similar to actin, activated Myosin and 

Moesin are specifically recruited to the MWI and suggest that the MWI may be under increased 

actomyosin-mediated contractile tension, specifically laterally.  
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Figure 22: The contractile actomyosin machinery is enriched at the MWI; Xy sections (a, b, 
d, e, g, h, j, k, m, o) and xz cross-section (c, f, i, l, n, p) of pouch region expressing fkh in flip out 
clones (red in merges) 30 h after induction using a short heat-shock. Expression of Sqh-GFP (a-
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c), Zip-GFP (g-i), Moe-GFP (m, n), staining for Sqh 1P (d-f), p.Moe (j-l) and Rho1 (o, p) are shown 
in grey or green in merged images. For (a-k) apical (a, d, g, j) and basolateral (b, e, h, k) sections 
are shown. Lower left inset in (g) shows a maximum projection of apical sections. Dashed yellow 
lines indicate positions of xz cross-sections. Yellow arrowheads point to increased intensities at 
the MWI. Scale bar as indicated. 

 

3.3.4 MWIs are characterized by ECM deformations and increase in clone 
circularity  

Concurrent with enrichment in contractile components, we observed dramatic changes to 

the shape of the interface between misspecified and wild-type cells. Detailed interface analysis 

revealed an upward deformation of the basement membrane at the MWI using a GFP fusion 

construct of Viking (Vkg), the Collagen IV homologue in Drosophila. The deformation was 

accompanied by a focused increase of actin and the βPS subunit of integrin (Figure 23 a, b). 

These changes may reflect actin polymerization and integrin engagement at the basal ECM 

(Lecuit et al., 2011) as cells respond to deformation of a shared contractile MWI away from the 

basement membrane.  

Previously, it had been reported that integrin-ECM interactions regulate cell shape of 

imaginal disc cells and that degradation of ECM components induces tissue folding (Dominguez-

Gimenez et al., 2007; Sui et al., 2012). We did not detect global changes to Vkg-GFP expression 

or to integrin localization in misspecified clones compared to wild-type cells 54 h (Figure 23 a, b) 

or 72 h after clone induction (Figure 23 c, d). This analysis eliminates ECM degradation as a 

possible driving force for the observed cell shape changes occurring during cyst formation. 

At the apical side of the tissue, we often observed minimization of contacts at adherens 

junction between misspecified cells and wild-type cells. While smoothening of interfaces at the 

level of adherens junction between differently fated cells has been previously described (i.e. 

Dahmann and Basler, 2000; Roper, 2012; Zimmerman et al., 2010) and quantified (i.e. Shen et al., 

2010), we observed that misspecified clones exhibited prominent smoothening and minimization 

of interface contact area especially basolateral (Figure 23 f-i). Quantification of basolateral clone 

circularity revealed an increase from 0.32 in wild-type clones to 0.76 in fkh-expressing clones 

early after clone induction (30 h). We detected a similar increase in basolateral circularity for 

inverse cysts formed by wild-type cells (0.37 and 0.74 for clones surrounded by GFP and fkh 

expressing tissue, respectively). At later time points (54 h), the difference in circularity between 

wild-type and misspecified clones became even more pronounced (Figure 23 j). 
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Figure 23: Higher MWI contractility causes ECM deformations and increase in clone 
circularity; (a-e) Xz cross-sections of wing imaginal discs mosaic for Psc-Su(z)2XL26 54 h (a, b) 
and 72 h (c-e) after clone induction expressing a Collagen IV GFP-fusion protein (Vkg-GFP, grey 
in a`-e`, green in a-e). Additionally, discs were stained for the βPS subunit of integrin (βPS, grey 
in a``-e``, red in a-e). Wild-type cells are displayed in grey and boxes frames regions shown at 
higher magnification. Yellow arrowheads in (b) point to deformation of the basement membrane at 
the MWI. (f-i) Xy sections of wing discs expressing GFP (f, h) and fkh (g, i) in flip out clones 
(green in f, g, h`, i`; grey in h, i) 54 h after induction using a short heat-shock. Actin is shown in 
red (f, g, h`, i`). Basolateral sections are shown. Boxes in (f, g) frame regions shown at higher 
magnification in (h, i). Note differences in clone shape. (a-i) Scale bar as indicated, scale bar in 
inset represents 5 µm (b) and 25 µm (h). (j) Bar plot of clone circularities. Solid colored bars 
represent circularity of clones expressing GFP (green), fkh (red) or RhoV14, p35 (blue) surrounded 
by wild-type cells early (30 h) and late (54 h) after clone induction. White bars represent circularity 
for wild-type clones if surrounded by GFP (green outline) or fkh (red) expressing cells (red outline) 
at early stages after induction (30 h).* = p-val < 0.01, ** = p-val < 0.001. Refer to Appendix, Table 
15 for data and statistical analysis, Contributions: Statistical analysis j: Marco La Fortezza. 
Experiment and image generation a, b: Vanessa Weichselberger. 

 

These results suggest that contractile changes to both apical and basolateral MWI surfaces 

result in dramatic minimization of the entire lateral contact area between wild-type and 

misspecified cells. This likely causes clones to acquire the characteristic smooth ball-like shape as 

they invaginate towards the basal side of the epithelium. Ultimately, minimization of basolateral 

and apical MWIs culminate in complete resolution of MWI contacts and eventually release Psc-

Su(z)2 cysts from the surrounding wild-type epithelium, as described before (Figure 8 g). 
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3.4 Interface contractility is sufficient and necessary for cyst 
formation 

3.4.1 3D vertex model 

The complex three-dimensional deformations that occur during cyst formation depend on 

changes of mechanical properties of cells and forces generated by the cytoskeleton. Different 

approaches have been published that engaged in modeling the mechanical forces in epithelial 

sheets (Fletcher et al., 2014). To understand how changes in the distribution of cytoskeletal forces 

could specifically drive cyst formation, our collaborators Silvanus Alt and Guillaume Salbreux 

developed a novel physical model for the mechanics of epithelial tissues (Figure 24). The model 

is based on a vertex representation of the epithelium with the novelty of not being restricted to 

two dimensions, but covering the epithelium in all three dimensions. Every individual cell is 

defined by a set of vertices that are connected in the tissue plane and between apical and basal 

vertex points. The internal force component of the model takes into account the cellular pressure, 

surface tensions generated on cell surfaces between multiple vertices and line tensions generated 

along cell edges between neighbouring vertices. The model also considers external forces arising 

from the extracellular matrix connections and the overall tissue compression. In addition to 3D 

vertex simulations, the model procedures were supported by calculations using continuum 

theories, which will be not covered here in more detail. For details about the 3D vertex model, the 

continuum theory and the parameter definition, please refer to a more detailed description 

provided by Silvanus Alt and Guillaume Salbreux in our manuscript. 

To simulate cyst formation using the 3D vertex model, we aimed to identify a parameter 

set that would represent force conditions found in normal imaginal discs and during cyst 

formation. Measurements of the height-width aspect ratio of wild-type cells allowed us to 

establish first estimations on the sum of apical and basal forces that must act in imaginal disc 

epithelia. Secondly, we defined a parameter for ECM-induced tissue compression, inspired by 

previous studies, which indicate that imaginal discs are under ECM-induced tissue compression 

enabling the cells to adopt a columnar cell shape (Aegerter-Wilmsen et al., 2007; Aegerter-

Wilmsen et al., 2012; Pastor-Pareja and Xu, 2011). We thus experimentally removed the ECM by 

collagenase treatment and indeed observed tissue flattening (Appendix, Figure 45, Table 16). By 

measuring the cell aspect ratio change induced by collagenase treatment, we were able to specify 

the parameter for ECM-induced external compression. As a third step, exact parameters for apical 

and basal line and surface tension, as well as ECM stiffness, were extracted from clone shape 

quantifications discussed in 3.4.4. 
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Figure 24: Physical description of epithelial tissues in a 3D vertex model; (a) Forces acting 
in the vertex model epithelium are obtained from an effective mechanical work function  that is 
the sum of an internal work functions Wi and an external work function We. The internal work 
function includes (1) an intracellular pressure Pα constraining the volume of cell α, (2) surface 
tensions Tk acting on cell surfaces k, (3) line tensions Λij acting on apical and basal edges 
connecting neighboring vertices i and j. The external work function includes (1) basal springs 
counteracting basal deformations out of the reference plane representing the ECM, (2) external 
forces establishing the overall tissue compressive stress Te (b) In epithelial tissues, surface 
tensions arise from the actomyosin cortex (actin in green, myosin in red) which is associated with 
the apical, lateral and basal membranes. Line tensions are generated by mechanical coupling of 
neighboring cell through adherens junctions. The basement membrane composed of ECM 
proteins covers the basal side. (c) In the 3D vertex model, the tissue geometry is characterized by 
a set of vertices Ri. For each cell surface, an additional central vertex is introduced at the 
barycenter of the surface contour. Planar triangles connecting the central and contour vertices 
define cell boundaries. (d) Forces acting on a vertex Ri are obtained by minimizing the virtual 
mechanical work with respect to vertex position. Forces have contributions from the surface 
tensions Ft, line tensions FΛ and cellular pressures Fv. This figure was generated by Silvanus Alt. 

 

3.4.2 Interface contractility is sufficient and necessary for cyst formation  

Having defined a parameter set reflecting experimental observed tissue properties, we 

aimed to gain more insights into the mechanism responsible for cyst formation. Within the model, 

we simulated the presence of a clone by placing a number of misspecified cells  among a wild-

type cell population (Figure 25 a) and then applied two different types of mechanical changes. 

Firstly, we modified line or surface tensions in misspecified cells (bulk contractility, Figure 25 b) 

and secondly, we modified line and surface tensions only at the interface between misspecified 

and wild-type cells (interface contractility, Figure 25 c). 
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Because reduction of columnar height in mutant cells has been previously linked to cyst 

formation (Gibson and Perrimon, 2005; Shen and Dahmann, 2005; Widmann and Dahmann, 

2009a, b), we first performed bulk contractility simulations in which all misspecified cells 

experienced an increase in lateral surface tensions. Over a range of different parameters (Figure 

25 b, top row, parameter choice discussed in 3.4.4), this perturbation changed the preferred aspect 

ratio towards a cuboidal shape and, indeed, caused cyst formation in simulations. However, 

inverse cyst formation by wild-type cells could not be recapitulated: wild-type cells did not 

invaginate, but instead exhibited increased heights compared to surrounding misspecified cells 

(Figure 25 b, bottom row). We wanted to confirm this simulation prediction experimentally. It 

had been previously shown that ectopic expression of an activated form of Rho1 (RhoV14) leads to 

reduced cell heights (Widmann and Dahmann, 2009a). Since a lot of apoptosis in overexpressing 

RhoV14-clones made it difficult to analyze cell shape changes, we blocked apoptosis by co-

expression of p35. Expression of RhoV14, p35 in clones caused actin to accumulate predominantly 

at the lateral cell cortex and strongly reduced the height of cells. This is in consistency with an 

increase in lateral surface tension. As predicted by simulations, small RhoV14-expressing clones 

caused deep indentations in imaginal discs (Figure 25 d-f). In contrast, overexpression of RhoV14 

in larger areas did not cause inverse cyst formation, where wild-type cells undergo invagination. 

Instead, RhoV14-expressing cells and wild-type cells exhibited different heights and failed to 

perform MWI smoothening, as predicted by simulations (Figure 25 g, h). These results confirmed 

that altering mechanical properties of individual cells can cause cysts, but not inverse cysts.  

This suggests again that cyst formation observed after cell misspecification does not 

solely arise from cell-autonomous changes to the mechanical properties of misspecified cells. 

Instead, cellular apposition of different fates must induce a tissue response upstream of potential 

cell-autonomous shape changes in differently-fated cells to drive cyst formation. 

After excluding bulk changes as the driving force for cyst formation, we simulated 

interface contractility at the MWI to see if this is sufficient to explain cyst formation by 

misspecified and by wild-type cells. At the interface, we increased apical line tension and lateral 

surface tension by 3-fold (parameter choice discussed in 3.4.4) and found that clones invaginated 

and formed cysts (Figure 25 c, top row). Since these simulations only changed forces along the 

interface between misspecified and wild-type cells, inverse cyst formation by wild-type cell 

clones could also be recapitulated by these conditions (Figure 25 c, bottom row). Of note, bulk 

contractility changes were not able to recapitulate clone smoothening neither in experiments 

(Figure 23 j, blue bar) nor in simulations (Figure 25 b), whereas interface contractility caused 

pronounced interface smoothening in simulated as well as experimental clones (Figure 25 c, 

Figure 23 j). 
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From these observations, we conclude that only higher contractility at the MWI is 

sufficient and necessary to account for misspecified and inverse cyst formation observed in our 

experiments.  

 

 

Figure 25: Increased interface contractility is sufficient and necessary for cyst formation 
by misspecified and wild-type cells; (a-c) 3D vertex model simulations visualize epithelial cell 
shapes in cross-section views, apical and basal views, as well as in 3D representations of the 
tissue. A tissue containing a clone of 20 misspecified cells is shown before (a, initial stage) and 
after changes to the mechanical properties of misspecified cells (b, bulk contractility’) or to the 
MWI (c, interface contractility). Simulations of misspecified cells (green) being surrounded by wild-
type cells (white) (small cluster) and vice versa (inverse cluster) are shown. Magenta lines 
represent a 3-fold surface tension increase. Red lines in (c) represent a 3-fold increase to apical 
line tension. Note the absence of interface smoothening between cell populations in bulk 
contractility simulations. (d-h) xy sections (d, g) and reconstructed xz cross-sections (e, f, h) of 
wing discs containing Gal4/UAS flip out clones expressing RhoV14, p35 (green in d`-h’) at 54 h 
after clone induction using a short (d-f) and long (g-h) heat-shock. Actin is shown in grey (d-h) or 
red (d’-h’). Interspersed RhoV14, p35-expressing clones (d-f) give rise to cysts, whereas 
interspersed wild-type clones (g, h) fail to do so (yellow arrowheads). Dashed yellow line in (d) 
indicates positions of xz cross-section in (e). Note the absence of interface smoothening between 
wild-type and RhoV14, p35-expressing cells. Scale bar as indicated. Contributions: Simulations a-
c: Silvanus Alt. 
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3.4.3 Cyst formation depends on cell cluster size 

We noticed that interface contractility simulations predicted a strong dependency of the 

final clone shape on the size of the clone. To better analyze this dependency, we turned to a 

continuum theory of tissue mechanics, which allowed us to draw generic conclusions on tissue 

shape stability. On large spatial scales, the epithelium described by our 3D vertex model 

effectively behaved as a continuous elastic sheet. Continuous elastic sheets tend to buckle if 

compressed. We postulated that cyst formation in our 3D vertex model simulations is driven by 

this buckling instability. The threshold level of compression at which elastic sheets undergo 

buckling is determined by two considerations. First, for a circular contractile boundary, the 

compression felt by the enclosed elastic sheet depends on the radius and the contractile boundary 

tension, as described by the law of Laplace. As a consequence, large clones feel less pressure 

from a contractile circular boundary than small ones and are therefore less likely to buckle and to 

invaginate (Figure 26 a). Secondly, the resistance of an elastic sheet to bending is higher for 

small-scale deformations. That means that small clones have a higher resistance to buckling than 

larger clones preventing them from invaginating (Figure 26 b). The combination of these two 

aspects, predicted that very small and very large clones do not invaginate and do not form cysts. 

Indeed, simulations using a continuum model of elastic sheets confirmed these predictions (data 

not shown). 

To corroborate the results of these simulations experimentally, we performed a 

quantitative analysis, where we measured clone shapes as a function of clone size. We analyzed 

79 fkh-expressing clones from 2 to 120 cells early after clone induction (30 h) using intermediate 

heat-shocks lengths. For each clone, we determined the number of cells Nc and characterized the 

clone shape, when possible, in two perpendicular cross-sections. We specifically measured apical 

and basal clone width wa and wb, as well as apical and basal deformation, away from the apical 

and basal plane of the surrounding tissue, ua and ub (Figure 26 e). This analysis showed clearly 

that apical indentation ua and basal deformation ub were maximal for intermediate clone sizes (Nc 

~70 cells) and minimal for either small or very large clones (Figure 26 c, dotted line). In addition, 

the difference in apical and basal widths wa and wb was maximal for intermediate clone sizes and 

represented strongly wedge-shaped cysts. Very large clones showed a reduction in apical and 

basal width differences, but still exhibited smoothening at the MWI (Figure 26 d, dotted line, 

Figure 33).  

In summary, the experimental quantifications, indeed, recapitulated predictions of the 

continuum model of a circular contractile boundary dependent on the Law of Laplace and the 

buckling resistance. 
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Figure 26: Clone size dependency of cyst formation; (a) Laplace’s Law predicts that the 
pressure Pb coming from a contractile boundary with the force Λ declines with increasing diameter 
R of the encircled area. Therefore, large clones encounter less pressure and are less likely to 
buckle. (b) The resistance for bending a flat elastic sheet depends on the radius of the material. 
Consequently, smaller clones display a higher resistance to buckling than bigger clones. (c, d) 
Experimental (dotted line) and simulated (continuous line, 3-fold increase in apical line and lateral 
surface tension) deformations of apical (red) or basal (blue) cyst surfaces are shown. Absolute 
apical and basal deformation (Ua, and Ub) and absolute apical and basal widths (Wa and Wb) were 
normalized to tissue height h to obtain ua, ub, wa, wb and are plotted with respect to cyst size (see 
also e). Intermediate-sized clones show highest apical and basal deformations whereas small and 
large clones have minimal deformations. Mean values and SEM of 79 fkh-expressing clones 30 h 
after clone induction and of 5 3D vertex model simulations per data point are shown.(e) Illustration 
of experimentally measured parameters which were fitted by simulations. wa :apical clone width, 
wb: basal clone width, ua: apical surface indentation, ub: basal surface deformation (f-j) Simulated 
(f-j) (3-fold increase in apical line and lateral surface tension) and fkh-expressing (f’-j’) cross-
sections of clones containing 3 (f), 15 (g), 25 (h), 55 (i) and 100 (j) cells. Small clones exhibit 
pronounced apical constriction, intermediate clones form to cysts, whereas large clones only 
show interface smoothening. Contributions: a, b: Silvanus Alt, Experimental data analysis, 
simulations and graphs c-j: Silvanus Alt. 

 

3.4.4 3-fold increase in interface contractility recapitulates early shape 
changes 

After we established experimentally the range of clone sizes in which maximal 

deformations occur, we asked what range of physical forces could explain the dependency of 

clone shape on this defined clone size range. We, therefore, performed 3D vertex model 

simulations of cyst formation for varying clone sizes. In doing so, we searched for the smallest 

increase in apical line and lateral surface tension at the MWI that could account for experimental 

measurements. We found that with a 3-fold increase in apical line and lateral surface tensions at 
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the MWI, all features of the 4 measured experimental curves for wa, wb, ua and ub could be 

accurately reproduced by simulations (Figure 26 c, d, f-j). In addition to the mechanical changes 

occurring at the interface, the quantifications also allowed us to adjust initial parameters for (1) 

apical, lateral and basal surface tension of the tissue, (2) apical and basal line tension and (3) 

stiffness of tissue-ECM attachment (Appendix, Table 17). 

3.4.5 Simulation requirements for potent interface contractility  

After having identified the optimal parameter set that recapitulated experimental tissue 

properties required for cyst formation in the 3-D vertex model, we were interested to see how 

deviations of individual parameters influence the simulation outcome. As described before, a 3-

fold increase of apical line and surface tension at the MWI reflected experimental measurements 

the best. Interestingly, when apical line and lateral surface tensions were only increased by a 

factor of 2, the clonal deformations were weaker than observed experimentally. This suggested 

that a stronger boundary effect is required to achieve the measured deformations (Figure 27 a). On 

the contrary, when apical line and lateral surface tensions at the interface were increased 4-fold, 

the deformations were stronger compared to experimentally observed shape behaviors. Especially 

simulated clones bigger than 80 cells, displayed a strong apical and basal deformation, which did 

not appear in experimental quantifications (Figure 27 b). This again supports the importance of an 

increase in interface tension in the order of 3-fold. 

Furthermore, we tested if both increase in apical line tension, as well as surface tension, 

were necessary to mirror the observed shape quantifications. Importantly, a 3-fold increase in 

only apical line tension was insufficient to induce buckling, neither apically nor basally (Figure 

27 c). Increasing the apical line tension even 10-fold did not simulate the strong deformations 

observed experimentally neither (Figure 27 d). This strongly suggests that contribution of 

basolateral contractility is indispensable in describing the observed clone shapes. Vice versa, if 

only the lateral surface tension at the interface was increased 3-fold, simulated clones did not 

display a constant basal deformation, but remained mainly flat. In addition, the apical deformation 

was not as strong as observed experimentally (Figure 27 e). This indicates that the increase in 

apical line tension is required to explain the observed deformations.  

In summary, the simulations strongly suggest that at the interface an increase in apical 

line tension together with an increase in lateral surface tension is necessary to mimic the observed 

clone shapes for a range of different clone sizes, as an increase in apical line or lateral surface 

tensions alone did not recapitulate experimental observations. 

We also increased the ECM attachment stiffness by 2-fold and observed that especially 

the basal surfaces remained flat. This suggests that the stiffness of the ECM attachment influences 

the strength of the basal deformations and thus final cyst shape (Figure 27 f).  
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Figure 27: 3D vertex model simulations deviating from optimal parameter set; Deviations of 
mechanical parameters from the optimal parameter set (Tl

wt/mis = 3 Tl
wt/wt; Ʌa

wt/mis = 3 Ʌa
wt/wt) 

demonstrate how changes influences equilibrium shapes in comparison to experimental clone 
quantifications. Experimental (dotted line) and simulated (continuous line) deformations of apical 
(red) or basal (blue) cyst surfaces are shown by plotting the parameters ua, ub (left graphs), wa, wb 

(right graphs) (see Figure 26 e) with respect to cyst size. Simulations parameters are listed for 
each scenario. Graph shows mean values and SEM of 18 simulations. Experimental data set is 
the same as in Figure 26, for clarity error bars are excluded. Simulations and graphs by Silvanus 
Alt. 

 

3.4.6 Cell-autonomous shape changes influence clone shapes at late 
stages 

We wanted to understand if increased interface contractility could also explain the clonal 

shapes of later stages. Therefore, we quantified 30 clones at 54 h after clone induction using a 

short heat-shock. At this time point, the strongest apical and basal indentation did not occur for 

intermediate-sized clusters, but for larger clone sizes (Figure 28 a, top graph). In addition, the 
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strongest wedge-shaped behavior of clones was observed for large cell clusters (Figure 28 a, 

bottom graph). Interestingly, simulation of bulk effects by increased lateral surface tension in all 

misspecified cells generated a similar trend. Apical as well as basal indentation and wedge-shaped 

behavior were the strongest for bigger and not intermediate clones (Figure 28 b).  

This suggests that cell-autonomous cell shape changes of misspecified cells have to be 

considered at later stages as additional mechanical perturbations that influence final clone shape. 

The occurrence of bulk effects at later stages is supported by the observation that misspecified 

clones have undergone pronounced cell height decrease at 54 h after clone induction which is 

accompanied by cell volume reduction (Figure 28 c-d, Appendix, Table 16). 

 

 

Figure 28: Cell-autonomous shape changes influence clone shapes at late stages; (a) 
Experimental deformations of apical (red) or basal (blue) cyst surfaces 54 h after clone induction 
are shown. Parameters ua, ub (top graph), wa, wb (bottom graph) (see Figure 26 e) are plotted with 
respect to cyst size. Mean values and SEM of 30 fkh-expressing clones 54 h after clone induction 
are shown (b) Bulk simulations by increasing lateral surface tension 3-fold in clone and 2-fold at 
interfaces are shown. Graph illustrates simulated apical (red) and basal (blue) deformation by 
plotting the parameters ua, ub (top graph), wa, wb (bottom graph) (see Figure 26 e) with respect to 
cyst size. Graphs show mean values and SEM of 18 simulations. (c) Xz cross-sections of wing 
imaginal disc containing Gal4/UAS flip out clones expressing fkh (shown in green) 54 h after 
clone induction using a long heat-shock. Actin is shown in red. Note the difference of tissue height 
between wild-type cells (blue arrow) and fkh-expressing cells (yellow arrow). Scale bar as 
indicated (d) Volume measurements of GFP and fkh-expressing Gal4/UAS flip out clones at 30 h 
and 54 h after clone using a short heat-shock. Note the tendency of volume decrease for fkh-
expressing clones after 54 h. Contributions: Simulations a, b: Silvanus Alt. 



  RESULTS 

75 
 

3.5 Interface contractility drives apoptotic extrusion of small, 
misspecified clones  

3.5.1 Small, misspecified clones are extruded via apoptosis 

In simulations and experiments, single cells or very small clones did not form cysts but 

display significantly reduced apical cell areas (Figure 26 f). This resembled initial stages of cell 

extrusion events that occur during clearing of apoptotic cells from epithelial tissues or during live 

cell extrusion initiated by cell crowding (Eisenhoffer et al., 2012; Eisenhoffer and Rosenblatt, 

2013; Marinari et al., 2012; Monier et al., 2015). Our observations, therefore, suggested that 

interface contractility may specifically drive elimination of single misspecified cells or small 

misspecified cell clusters by promoting apical surface constriction and, potentially, basal 

extrusion. To understand if size-dependent elimination of misspecified cell clusters indeed 

occurred, we quantified the frequencies of misspecified clone sizes and compared them to those 

of wild-type clones. To control for variability in experimental conditions, we used the Tie-Dye 

technique to generate misspecified cells marked by RFP and wild-type clones marked by GFP in 

the same imaginal disc (4.1) (Worley et al., 2013). To normalize for intrinsic differences in 

frequencies of GFP and RFP clone induction (Worley et al., 2013), clone counts were compared 

to those for neutral GFP and neutral RFP clones from control discs (Figure 29 a-d). When we 

analyzed the total amount of GFP and RFP clones in all fkh-expressing Tie-Dye discs and control 

discs, we found that small fkh-expressing clones were indeed dramatically underrepresented 

compared to RFP clones of control discs (Figure 29 e`, light blue and orange line). GFP clones of 

fkh-expressing discs did not show differences to GFP clones of control discs (Figure 29 e, light 

blue and orange line) suggesting that the underrepresentation of small fkh clones is specific to fkh 

expression. We made use of the Tie-Dye technique by normalizing the clone frequency in each 

disc to its internal GFP control. This analysis revealed that fkh-expressing clones are 

underrepresented up to clonal size of 6 cells (Figure 29 f) when compared to clone frequencies in 

control discs.  

To understand if apoptosis is necessary for elimination of small clones, we inhibited 

apoptosis in fkh-expressing cells by co-expression of dIAP, an inhibitor of Caspase activation. 

Interestingly, we still observed that the amount of small fkh, dIAP clones was reduced when 

compared to RFP control clones (Figure 29 e`, dark blue and red line). Analysis of RFP clone 

frequencies relative to GFP clone frequencies in each disc, revealed that dIAP significantly 

rescued distribution of large fkh clones sizes back to wild-type levels indicating that apoptosis in 

large clones was strongly reduced. Strikingly, however, dIAP-expression was not able to rescue 

loss of single fkh-expressing cells when compared to control dIAP-expressing Tie-Dye discs 

(Figure 29 f`). This was also evident, when relative clone frequencies were analyzed in binned 
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clone size categories that have been previously determined to be statistically significant (Figure 

29 f, f`, Appendix, Table 22). In Figure 29 g, significant clone size categories determined for 

dIAP / fkh, dIAP were applied to all genotypes, in Figure 29 h, individually determined clones 

sizes categories were applied to wt / fkh and dIAP / fkh, dIAP data sets, respectively. 

 

 

Figure 29: Tie-Dye analysis of clone size-dependent elimination of aberrant cells; (a-d) Tie-
Dye imaginal discs 30 h after clone induction using a short heat-shock carrying control GFP-
expressing clones (green) and RFP clones expressing RFP alone (a), fkh (b), dIAP (c) and fkh, 
dIAP (red). Actin is shown in grey. White boxes frame higher magnification insets shown in (a’-d’). 
Scale bar as indicated, scale bar in inset (a`-d`) represents 25 µm. (e) Frequencies of control GFP 
(e) and RFP (f) clones of a given size in Tie-Dye wing discs at 30 h after clone induction. RFP 
clones express RFP (light blue), fkh (orange), dIAP (dark blue) or fkh, dIAP (dark red). Mean and 
SEM of clone counts analyzed for 10 (wt, fkh and fkh, dIAP) and 8 discs (dIAP) are shown. See 
also Appendix, Table 20 and Table 21. (f) Relative RFP clone frequencies of fkh (f) and fkh, dIAP 
clones (f`) compared to relevant control RFP clones (RFP alone in f and dIAP in f`, respectively) 
in Tie-Dye wing discs. For each disc, the number of control GFP-expressing clones was 
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subtracted from the number of RFP-clones and normalized to the number of GFP-clones per bin 
size. Mean and SEM of 10 (wt, fkh and fkh, dIAP) and 8 discs (dIAP) are shown, color code as in 
(e). Dashed red line indicates threshold for statistical significance (refer to Appendix, Table 22 
and Table 23). This analysis utilizes the strength of the Tie-Dye system as the data is normalized 
to intrinsic control GFP-clones for each clone size bin and genotype. See also Appendix, Table 22 
(g, h). Relative RFP clone frequencies of fkh (f) and fkh, dIAP clones (f`) compared to relevant 
control RFP clones (RFP alone in f and dIAP in f`, respectively) in Tie-Dye wing discs shown for 
different clone bins. Graphs report mean and SEM of 10 (wt, fkh and fkh, dIAP) and 8 discs 
(dIAP). Calculations as in (f), color code and data set as in (e). In (g) clones sizes were binned 
into statistically significant clone size categories determined for dIAP (see f). In (h) statistically 
significant clone size categories of fkh and fkh, dIAP were used respectively (see f).* = p-val < 
0.01, ** = p-val < 0.001, ns= not significant. Refer to Appendix, Table 23 for statistical analysis. 
Contributions: Data analysis including statistics and representation e-h: Marco La Fortezza. 

 

These observations suggest that small fkh-expressing clones up to 6 cells are efficiently 

eliminated from the tissue. Furthermore, apoptosis seems to play a role in this process, since dIAP 

co-expression could rescue clone frequencies with the exception of single cell clones. Therefore, 

we wanted to understand if single misspecified cells are extruded via a distinct mechanism to 

apoptosis or if dIAP co-expression did not blocked apoptosis efficiently in single cell clones. 

3.5.2 Clone size-dependent efficiency of dIAP in blocking apoptosis  

We continued to analyze if the efficiency with which dIAP suppressed apoptosis 

depended on clone size. In general, we often observed apoptosis in misspecified cells (Figure 30 

a). We now asked whether small fkh-expressing clones exhibited higher levels of apoptotic signal 

than larger clones. We thus quantified the volume occupied by apoptotic cells positive for cleaved 

Caspase Dcp-1 within fkh-expressing clones. While the relative proportion of apoptotic clones did 

not change between small and larger clone size bins (Figure 30 d), we found that relative 

apoptotic volumes in clones of up to 6 cells were strongly increased when compared to clones 

larger than 6 cells (Figure 30 c). This suggested that small fkh-expressing clones may be subject 

to stronger apoptotic stimuli than larger clones.  

We were then curious to see if the distribution of apoptosis in fkh, dIAP clones is 

different, and analyzed Dcp-1 volumes with respect to clone size in fkh, dIAP-expressing clones. 

We found that dIAP was only half as efficient in inhibiting apoptosis in single cell clones as in 

clones of larger sizes (Figure 30 b, d). Similarly, dIAP-expression could not reduce the proportion 

of apoptotic volumes in very small clones as observed for larger clone sizes (Figure 30 c).  

This suggests that specifically small fkh-expressing cell clusters are subject to strong 

apoptotic stimuli resistant to limiting dIAP levels. In contrast, apoptosis in large cell clusters, 

which incidentally do not experience strong apical constriction induced by the MWI, may arise 

via less potent and MWI-independent signals. 
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Figure 30: Clone size-dependent efficiency of dIAP in blocking apoptosis; (a-b) Xy sections 
of wing discs expressing fkh (a) and fkh, dIAP (b) in flip out clones (green in a```, b```; grey in a`, 
b`) 30 h after induction using a short heat-shock. Actin is shown in grey (a, b), Dcp-1 is shown in 
grey (a``, b``) or red (a```, b```). Lower left insets in (a```, b```) are higher magnifications of framed 
regions. Scale bar as indicated, scale bars in inset represent 25 µm. (c) Dot plot of Dcp-1 positive 
volume fractions for fkh- and fkh, dIAP-expressing apoptotic clones (light red and dark red, 
respectively). Data was binned into clone size classes analyzed for Tie-Dye sets (1 cell, 2-6 cells 
and clones larger than 6 cells). Mean and SEM for each clone size bin is shown. * = p-val < 0.01, 
ns= not significant. Refer to Appendix, Table 24 for statistical analysis. Single cell clones do not 
show a significant decrease in proportion of apoptotic volume upon dIAP-expression, whereas 
larger clones do. (d) Table listing relative proportions of apoptotic clones for fkh-expressing (top) 
and fkh, dIAP-expressing (below) clones binned into the same clone size categories as in (c). 
Total clone count, apoptotic clone count and percentage of apoptotic clones per bin size are 
shown. Efficiency of inhibition of apoptosis by dIAP-expression was calculated as percentage of 
apoptosis in fkh (n=3 discs, 233 clones) / percentage of apoptosis in fkh, dIAP clones (n=3 discs, 
290 clones) per bin size. Contributions: Quantification support c: Hartmann Harz; Data analysis 
including statistics and representation c, d: Marco La Fortezza. 
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3.5.3 Wild-type clones subjected to MWI contractility activate apoptosis 

We hypothesized that if apoptosis in small, misspecified cell clusters is specific to MWI 

contractility, then apoptosis must also be induced in small inverse wild-type cell clusters encircled 

by misspecified cells. We thus examined inverse clones at early stages after induction of large 

domains of fkh-expressing cells. Strikingly, we indeed observed frequent Dcp-1 activation in 

small wild-type cell clusters (Figure 31 a-c). Nevertheless, we also detected a lot of apoptosis in 

the large regions of fkh-expressing cells, suggesting that overexpression of fkh itself activated the 

apoptotic pathway independent of MWI contractility. To reduce the amount of ectopic apoptosis 

and potential non-autonomous effects on interspersed wild-type cells, we analyzed wild-type 

clones in the context of broad fkh, dIAP overexpression. We observed significant suppression of 

apoptosis in fkh, dIAP-expressing tissue, but frequent Dcp-1 positive signals in inverse clones. 

This suggested that the activation of apoptosis in inverse wild-type clones is due to the MWI 

contractility and is not caused by unspecific effects from surrounding, dying cells (Figure 31 d-f). 

To further support our theory, we examined wing disc that ectopically expressed ey. Even if 

apoptosis was observed in ey-expressing cells, we found that apoptosis was repeatedly activated 

in small, inverse wild-type cell clones (Figure 31 g-h).  

Our combined results strongly suggest that MWI contractility may drive cell elimination 

by specifically inducing apoptosis in small clusters of MWI-encircled cells. 
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Figure 31: Apoptosis is activated in wild-type cells when surrounded by misspecified cells; 
(a–c) Xy section (a) and xz cross-section (b, c) of pouch region expressing fkh in flip out clones 
(green in a```-c```; grey in a`-c`) 30 h after induction using a long heat-shock. Actin is shown in 
grey (a-c), Dcp-1 is shown in grey (a``-c``) or red (a```-c```). Dashed yellow lines in (a) indicate 
position of cross-section shown in (b, c). (d-f) Xy section (d) and xz cross-section (e, f) of pouch 
region expressing fkh, dIAP in flip out clones (green in d```-f```; grey in d`-f`) 30 h after induction 
using a long heat-shock. Actin is shown in grey (d-f), Dcp-1 is shown in grey (d``-f``) or red (d```-
f```). Dashed yellow lines in (d) indicate position of cross-section in (e, f). (g-h) Xy sections of wing 
disc expressing ey in flip out clones (green in g```, h```; grey in g`, f`) 30 h after induction using a 
short (g) and long (h) heat-shock. Actin is shown in grey (g, h), Dcp-1 in grey (g``, h``) or red (g```, 
h```). (a-h) Scale bars are indicated, scale bar in inset (g```, h```) represents 25 µm. Yellow arrows 
point to regions of apoptosis activation in wild-type cells. 
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3.5.4 Ectopic expression of Ras elicits MWI contractility 

We were curious to investigate a potential relevance for our observations to mechanisms 

that disrupt epithelial integrity in mammalian models of cancer. We wanted to understand 

specifically, if the occurrence of round clones in imaginal discs upon overexpression of oncogenic 

Ras (RasV12) (Prober and Edgar, 2000) is driven by MWI contractility. Indeed, when we 

visualized small RasV12-expressing clones, we found that they formed basally extruding cysts in 

peripheral domains of the wing disc (Figure 32 c, d) (Bell and Thompson, 2014). Excitingly, we 

found that in these regions, wild-type cell patches surrounded by RasV12-expressing cells 

underwent interface smoothening and cyst formation (Figure 32 e-g).  

 

 

Figure 32: RasV12 overexpression leads to cyst formation and activation of apoptosis in wt 
cells; (a, b) Xy sections of wing discs expressing GFP (a) or RasV12 (b) in flip out clones (green) 
30 h after induction using a short heat-shock. Actin is shown in red and the apoptosis marker 
Dcp-1 in grey. Box frames region shown in (c). (c-d) Xy section (c) and xz cross-section (d) of 
pouch region expressing RasV12 in flip out clones (green in c``,d``; grey in c`, d`) 30 h after 
induction. Actin is shown in grey (c, d) or red (c``, d``). Dashed yellow lines in (c) indicate position 
of cross-section in (d). (e-g) Xy section (e) and xz cross-section (f, g) of pouch region expressing 
RasV12 in flip out clones (green in e```-g```; grey in e`-g`) 30 h after induction using a long heat-
shock. Actin is shown in grey (e-g), Dcp-1 is shown in grey (e``-g``) or red (e```-g```). Yellow 
arrows point to regions of apoptotic wild-type cells. Upper left inset in (e```) is higher magnification 
of framed region. (a-g) Scale bars as indicated, scale bar in inset represents 25 µm. 
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This suggested that oncogenic Ras promotes cyst formation by inducing MWI 

contractility, likely because Ras signaling also specifies cell fate (Halfar et al., 2001). While we 

rarely observed apoptosis in wild-type GFP-expressing or RasV12-transformed cells (Figure 32 a, 

b), we found that Dcp-1 was frequently activated in small wild-type cell clusters surrounded by 

RasV12-expressing cells (Figure 32 e-g). Apoptosis in wild-type cells occurred almost exclusively 

in the disc periphery where RasV12-induced MWI-effects are strongest.  

Combined, these results reinforce our conclusion that MWI contractility is induced by 

diverse transcriptional perturbations and that MWI contractility drives cell elimination by 

activation of apoptosis in small, encircled cell clusters.  

3.6 Large misspecified clones smoothen and minimize 
interface contacts 

After analyzing the consequences of small and intermediate-sized misspecified cell 

clusters on tissue architecture in detail, we concentrated on understanding the effects of larger 

clones on epithelial structure. Simulations and shape quantifications already showed that large 

clones were less likely to invaginate, because, according to the Law of Laplace, they experienced 

less pressure coming from a contractile boundary (Figure 26).  

Using an intermediate heat-shock, we wanted to analyze the behavior of larger clones 

more precisely. Large clones underwent dramatic interface smoothening 30 h after clone 

induction, accompanied by prominent lateral actin accumulations at the interface (Figure 33 a-c, 

blue arrows). As predicted by simulations, we did not observe prominent invaginations events, but 

in some cases only slight apical indentations at the MWI (Figure 33 c, red arrow). Therefore, 

large misspecified clones did not exhibit dramatic 3-dimensional shape changes, such as apical 

constriction or invagination seen in small or intermediate clones, respectively. However, big 

clones minimized their contact area with the neighboring cell populations, thereby ensuring a 

strict separation between two cell populations invoking similarities to compartment boundaries 

that separate differently fated cell populations during development (1.3.1). 
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Figure 33: Large misspecified clones minimize interface contacts; Xy (a, b) and xz sections 
(c) of wing pouch containing fkh-expressing clones marked by GFP (green in a`-c`) 30 after clone 
induction using an intermediate heat-shock. Actin is shown in grey (a-c) or red (a`-c`). Dashed 
yellow lines in (b) indicate position of cross-section shown in (c). Box in (a`) frames region shown 
at higher magnification in (b). Scale bars are indicated. Blue arrows point to lateral actin 
accumulation, red arrow to slight apical indentation at interface. 

3.7 Interface contractility may drive fold formation  

In the course of our analysis, we observed in xz cross-section a striking phenotypical 

similarity between endogenous wing disc folds and the invagination of intermediate-sized, 

misspecified clones. This included the overall shape of the indentation as well as actin 

localization and cellular arrangements (compare Figure 34 to cysts in e.g. Figure 8, Figure 10 or 

Figure 13). 

The appearance of endogenous folds in the wing imaginal disc is spatially and temporally 

highly regulated. The most prominent folds separate the blade from the distal hinge (B/DH fold), 

the distal hinge from the proximal hinge (DH/PH fold) and the proximal hinge from the notum 

(PH/N fold) (Figure 34, Figure 36). The function of endogenous disc folds is not fully understood, 

but B/DH folds might have an implication in the bending event during pupariation that forms to 

the two-layered adult wing (Sui et al., 2012). Because of these phenotypical similarities between 
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clones subjected to MWI contractility and endogenous folds, we wondered if endogenous folds 

could arise due to mechanisms involving modulation of lateral contractility. 

 

 

Figure 34: Endogenous folds exhibit similarities to epithelial cysts; Xy (a, b) and xz (a`, b`) 
sections of wild-type imaginal disc stained for actin. Dashed yellow lines in (a, b) indicate position 
of cross-section shown in (a`, b`). Box in (a) frames region shown at higher magnification in (b). 
Scale bars as indicated. Blue arrow marks B/DH fold, red arrow DH/PH fold, yellow arrow PH/N 
fold.  

 

3.7.1 Stripe-shaped overexpression of ey induces ectopic fold formation 

Following this idea, we wanted to test if we could induce an ectopic fold by 

overexpression of transcription factors in a stripe-shaped pattern. To do so, we expressed the eye 

selector gene ey within the patched (ptc) expression domain (Figure 35 a).  

As described before, expressing ey in flip out clones led to cyst formation in the wing 

imaginal disc, but not in the eye (Figure 11, Figure 12).Visualized by GFP, it can be seen that ptc 

is expressed in a narrow stripe along the AP boundary of the wing imaginal disc. The expression 

domain is marked by a sharp border on the posterior side, whereas the expression declines 

gradually on the anterior side (Figure 35 b-d). Indeed, ectopic expression of ey using ptc-Gal4, led 

to a strong invagination and fold formation throughout the pouch, hinge and notum region of the 

wing imaginal disc. Phenotypically, the ectopic fold exhibited high similarity to endogenous folds 

regarding actin intensities and fold width (Figure 35 b-g). 
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Figure 35: Stripe-shaped overexpression of ey induces ectopic fold formation; (a) 
Schematic representation of wing imaginal disc, where ey is usually not expressed (left side). 
Using the ptc-Gal4 driver (middle, green), ey is ectopically expressed along the AP boundary 
(right) leading to an ectopic fold (blue). (b-g) Xy (b, c, e, f) and xz sections (d, g) of wing imaginal 
discs expressing GFP (b-d) and ey (e-g) using the ptc-Gal4 driver. In (b-d) expression domain is 
marked by GFP (green in b`-d`), in (e-g) by Ptc staining (green in e`-g`). Actin is shown in grey (b-
g) or in red (b`-g`). Dashed yellow lines in (c, f) indicate position of cross-section shown in (d, g). 
Boxes in (b, e) frame regions shown at higher magnification in (c, f). Scale bars as indicated. Blue 
arrows point to ectopic fold formation.  

 

3.7.2 Expanding hth expression domain alters depths of endogenous folds  

Because of these remarkable results, we raised the question whether endogenous 

expression patterns of transcription factors could induce the same MWI effect that we observed 

for the clonal expression of ectopic transcription factors. Interestingly, expression domains of 

several transcription factors established during PD pattering are often delimited by epithelial folds 

in the wing imaginal disc. In Figure 36, transcription factor expression domains aligning with 

hinge folds are depicted.  

We concentrated on Hth, which is uniformly expressed in the disc at early stages and 

restricted to the hinge region at later stages (Azpiazu and Morata, 2000). In the 3rd instar larvae, 
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the Hth expression domain is dorsally bordered by a fold separating the distal hinge from the wing 

blade (B/DH fold) (Figure 36). We aimed to understand if the apposition of Hth-expressing and 

non Hth- expressing cells at this location might drive fold formation, which would be in 

accordance with our interpretation of cyst formation induced by MWI contractility. We have 

shown before, that clonal expression of hth led to cyst formation in the pouch, but not in hinge 

region coinciding with endogenous Hth expression domain. By driving expression of UAS-hth 

construct using the MS1096-Gal4 driver (Figure 37 a), we expanded the hth expression pattern 

into the pouch region generating a continuous expression pattern over the dorsal B/DH fold.  

 

 

Figure 36: Expression domains of several transcription factors align with epithelial folds; 
Schematic representation of the expression domains (orange) of Homothorax (Hth) (a), Teashirt 
(Tsh) (b) (Azpiazu and Morata, 2000; Zirin and Mann, 2004), members of the Iroquois complex 
(Iro-C) (c) (Cavodeassi et al., 2001; Diez del Corral et al., 1999) and Dorsocross transcription 
factors (Doc) (d) (Sui et al., 2012). Borders of the expression domains align with endogenous 
folds (red). P = Proximal, D = Distal, V=Ventral, Do = Dorsal, B= Blade, DH = Distal hinge, PH = 
Proximal hinge, N= Notum. 

 

Interestingly, this reduced the B/DH fold depth compared to control wild-type folds, 

whereas the remaining hinge folds were unaffected. In addition, we observed ectopic fold 

formation along the DV boundary (Figure 37 b-e). Since the MS1096-Gal4 driver is weaker in the 

ventral compared to the dorsal region of the pouch, this fold might occur due to strong expression 

differences of hth. Both results, the weakening of the B/DH fold and the ectopic fold formation at 

the DV boundary, support the notion that imaginal disc cells exhibit a quantitative comparison 

mechanism regarding differently fated cell populations.  

These experiments indicated that fold formation in the wing imaginal disc may be based 

on the apposition of transcriptionally divergent cell populations leading to increased MWI 

tensions. Due to the extensive patterning of imaginal disc, the apposition of differently patterned 

cell groups occurs frequently during normal development and might be a prerequisite and cause 

for endogenous fold formation. 
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Figure 37: Expanding hth expression domain alters depth of endogenous folds; (a) 
Schematic representation of wing imaginal disc with endogenous Hth expression domain (orange, 
left side). The expression domain borders the fold between wing blade (B) and distal hinge (DH) 
(red). Ectopic hth expression using the MS1096 driver (green, middle) leads to expression of hth 
also in the pouch (green, right). Expression is ventrally weaker than dorsally (light and dark 
green). Continuous hth expression leads to a weakening of the B/DH fold (dashed red line) and to 
an ectopic fold along the DV boundary (blue). (b-e) Xy (b, d) and xz sections (c, e) of wing 
imaginal discs expressing GFP (d, c) and hth (d, e) using the MS1096-Gal4 driver (grey in c, e or 
green in b`, d`, c``, e``). Actin is shown in grey (b, d, c`, e`) or red (b`, c``, d`, e``). Dashed yellow 
lines in (b, d) indicate position of cross-section shown in (c, e). Scale bars are indicated. Red 
arrows point to fold between blade and distal hinge, blue arrow to ectopic fold formation. PH = 
proximal hinge, DH = distal hinge, B/DH fold = Blade/Distal hinge fold. 
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4 Material and Methods 

4.1 Mosaic genetic systems 

In the course of this study, two powerful Drosophila genetic tools and variations of them were 

used.  

(1) FLP/FRT system. This genetic tool can be used to create mosaic tissues with homozygous 

mutant cells within a wild-type cell population. The technique is based on site-specific 

recombination events induced by a yeast recombinase (flipase, FLP) binding to its FRT (FLP 

recognition target) sites. FRT sites are inserted close to the centromere on the chromosome arm 

where a mutation of interest is located. A fly strain carrying these genetic elements is crossed to a 

fly carrying a chromosome with a FRT site at exactly the same position and a clonal marker (e.g. 

GFP) on the corresponding chromosome arm. During mitosis, the homologous chromosomes 

come into close proximity enabling the FLP to recombine and exchange the chromosome arms in 

trans. The recombinant chromosomes are segregated in course of mitosis, leading to daughter 

cells that are homozygous for the mutation (GFP negative) or homozygous for the marker (GFP 

positive). Since the FLP expression can be controlled spatially and temporally by different 

promoters, this technique makes it possible to study the tissue-specific function of genes, that 

otherwise would cause lethality if the entire animal carried a mutation in these gene (Golic and 

Lindquist, 1989; Hafezi and Nystul, 2012; Xu and Rubin, 1993) (Figure 38 a). 

 (2) Gal4/UAS flip out system (Pignoni and Zipursky, 1997). This approach is a combination of 

the classical GAL4/UAS technique (Brand and Perrimon, 1993) and the flip out technique (Struhl 

and Basler, 1993) and is widely used for overexpression experiments. The classical Gal4/UAS 

system is a two-component expression system. It consists of the yeast transcriptional activator 

protein Gal4 and a transgene under control of the UAS promoter, which is only activated by 

binding of Gal4. The ability to control Gal4 expression by various cell and tissue-specific 

enhancers allows highly targeted transgene expression. Separating transcriptional activator and 

transgene in two individual fly lines makes this technique very powerful and practical in use (del 

Valle Rodriguez et al., 2012; Hafezi and Nystul, 2012) (Figure 38 b). The flip out technique uses 
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FLP induced recombination to excise DNA sequences flanked by FRT sites. Since these FRT 

sites are localized in cis, the recombination event is not dependent on chromosome alignments 

during mitosis. Combining this approach with the Gal4/UAS system increases the level of 

temporal regulation. The Gal4 sequence is placed downstream of a ubiquitous promoter (act5C), 

but expression is impeded by insertion of a flip out cassette consisting of transcriptional stop 

sequences flanked by FRT sites on both ends. Upon expression of the flipase, the flip out cassette 

is removed and expression of Gal4 is enabled. Consequently, this leads to expression of a UAS-

driven clonal marker (e.g. GFP) and the UAS-driven transgene (del Valle Rodriguez et al., 2012; 

Hafezi and Nystul, 2012) (Figure 38 c). 

(3) Gal80ts system. This technique is a variation of the classical Gal4/UAS system, which allows 

not only spatial but also temporal control of gene expression. This is achieved by using a 

temperature-sensitive version of the yeast Gal4 inhibitor Gal80, called Gal80ts. At low 

temperatures, Gal80 binds Gal4 thereby blocking its ability to bind to UAS sequences. Increasing 

the temperature leads to inhibition of Gal80ts repressor activity and allows transcriptional 

activation by Gal4 (McGuire et al., 2003) (Figure 38 d). 

 (4) Tie Dye system. This system is a variation of the flip out technique using three independent 

flip out cassettes of which one is Gal4/UAS dependent. Successful excision of the stop cassette 

sequences can lead to expression of GFP, lacZ or Gal4. Because of the spatially stochastic nature 

of the recombination events in the tissue, expression of either one, combinations of two or all 

three marker genes are possible in an individual cell, giving rise to up to 7 genotypically distinct 

cell populations. This technique makes it possible to trace different cell lineages simultaneously 

and genetically manipulate a subpopulation at the same time based on Gal4/UAS-transgene 

expression driven from one cassette. In our case, we made use of the ubi-GFP and act-Gal4, UAS-

RFP flip out cassette only to compare frequencies of misspecified clone sizes to wild-type clone 

sizes in the same disc (Worley et al., 2013) (Figure 38 e). 

Note for all cases: Clones are continuous patches of numerous cells with the same genotype that 

probably originated from one cell. Since the DNA excision of the recombination event is 

irreversibly inherited to daughter cells, we induced clones in all techniques described above. 

Therefore, these techniques are suitable for cell lineage tracing and observation of clonal 

behavior. For all genetic approaches, we used heat-shock driven expression of the flipase. By 

doing so, we did not only control the time of clone induction but also the amount of genetically 

altered cells and indirectly the number of cells within one clone by varying the length of heat-

shocks. 
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Figure 38: Mosaic genetic systems used in this study; (a) FLP/FRT system. Cell 
heterozygous for a mutation (asterisk) and a marker gene (GFP) that each lie distal to FRT sites 
(yellow) undergoes DNA synthesis. After G2, homologous chromosomes align and become 
located in close proximity. This allows the FLP induced recombination and the exchange of the 
homologous chromosome arms to occur. Chromosome segregation leads to daughter cells that 
are either homozygous for the mutation or the marker (b) Binary Gal4/UAS system. Expression of 
Gal4 is controlled by a tissue specific enhancer (blue). Binding of Gal4 (green) to the UAS 
sequence leads to transcription of the downstream transgene (TG). (c) Gal4/UAS flip out system. 
After heat-shock, the flipase (FLP, yellow) is expressed and excises the transcriptional stop 
sequence (orange) allowing expression of Gal4 under the act5C promoter (blue) and subsequent 
transcriptional activation of GFP and transgene (TG) (d) Gal80ts system. At 18 °C, transcriptional 
activation is blocked by binding of Gal80ts (orange) to Gal4 (green). At 30 °C, Gal80ts is inhibited 
and Gal4 can bind to UAS sequences. In this case, Gal4 and Gal80ts are expressed under the 
control of ptc and tub promotor (blue and purple), respectively. (e) Tie-Dye system. Only two flip 
out cassettes are shown. Expression of the FLP after heat-shock leads to excision of 
transcriptional stop sequences (not depicted) allowing expression of downstream genes (GFP 
and Gal4). Expression of Gal4 leads to subsequent expression of RFP and the transgene (TG). 
Excision happens randomly either on one cassette or on both cassettes, leading to GFP, RFP or 
GFP and RFP positive cells. 

4.2 Fly husbandry and experimental protocols 

For detailed fly genotypes, exact heat-shock lengths and time point of dissection time, refer to 

Appendix, Table 11. All flies and crosses were kept on standard media and general procedures are 

described below. 

FLP/FRT experiments:  ► 72 h egg lay at 25 °C 

    ► Heat-shock for 40 – 30 min at 37°C 

    ► Dissection as indicated (usually 30 h or 54 h after HS) 
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Gal4/UAS flip out experiments: ► 72 h egg lay at 25 °C 

    ► Heat-shock for 5-30 min at 37°C 

    ► Dissection as indicated (usually 30 h or 54 h after HS) 

 

Staged Gal4/UAS flip out: ► 7 h egg lay on grape plates 

(Eggcollection, for  ► 24 h AEL, 1st instar larvae are transferred to standard media 

shape quantifications)  ► 72 h AEL, vials were heat-shocked for 10, 15 and 25 min 

    ► Dissection 30 h and 54 h after HS 

 

Gal80TS experiments:   ► 4-6 days of egg lay at 18 °C 

    ► Temperature shift, 24 h 30 °C 

    ► 1st option: immediate dissection 

    ► 2nd option: dissection after additional 24 h at 18 °C  

 

Tie-Dye experiments:   ► 24 h egg lay at 18 °C (to prevent early induction of FLP) 

    ► 8 h at 18 °C 

    ► 32 h AEL, vials are transferred to 25 °C 

    ► Dissection 30 h after HS 

4.3 Dissection and immunostaining of imaginal disc 

Dissection of imaginal discs was done in a transparent glass dissection dish in 1x PBS using fine 

forceps and a stereo microscope with flexible swan neck lighting illuminating the samples from 

the side rather than from above. Using both forceps, the larva was separated in the middle. The 

front part was inverted by grabbing the mouth parts with the right forceps and pushing the cuticle 

onto the right forceps using the left one. After that, fat body (non-transparent, white) and parts of 

the digestive tract (yellow) were removed. Cuticles were transferred to a reaction tube and fixed 

for 18 min at RT with 4 % paraformaldehyde in PBS. After three times of 10 min washing with 

PBS + 0.1 % Triton-X-100 (PBT), cuticles were blocked with PBT + 5 % NGS (PBTN) for at 

least 20 min. Primary antibodies (Table 6) were incubated overnight in PBTN at 4 °C. Secondary 

antibodies, phalloidin (Table 7) and DAPI (0.25 ng/µl) were incubated for 2-3 h at RT in PBTN 

followed by three 10 min washing circles. Cuticles were emptied in a glass dissection dish and 

imaginal discs were separated from the cuticle in PBS. Imaginal discs were transferred onto a 

microscope slide using a pipette (20 µl). Excessive PBS was removed using the pipette and 

position of imaginal discs could be carefully adjusted. A drop of antifade medium was added 

close to the imaginal discs and a coverslip was carefully placed on top. When squeezing of 



MATERIAL AND METHODS  

92 
 

imaginal disc was not wanted, two strips of double-side tape were attached to the microscope 

slide and imaginal discs were placed in between. 

4.4 qPCR analysis 

Expression levels of fork head (fkh), Abdominal-B (Abd-B) and homothrorax (hth) were analyzed 

in Psc-Su(z)2 mutant wing imaginal discs and compared to wild-type conditions. Mutant 3rd instar 

larvae (ubxflp/+; FRT42D cell lethal / FRT42D Psc-Su(z)2XL26 ; +/+) and wild-type larvae (w118) 

were dissected in cold Shields&Sang M3 medium using an ice-chilled dissection dish. w118 discs 

had been verified as suitable control discs before, since comparison of ubxflp/+; FRT42D cell 

lethal / FRT42D; +/+ discs and w118 discs had showed no significant differences (personal 

communication with Anne Classen). At least 15 mutant and 30 wild-type discs where collected in 

RNAlater and kept on ice. 3 batches of each genotype were dissected and used as biological 

replicates. RNA was extracted using the RNeasy Mini Kit (Qiagen) and TURBO DNA-free™Kit 

(Ambion). Sample quality was validated using a Bioanalyzer set-up following standard protocols. 

For reverse transcription, the Superscript III First strand synthesis Supermix (Invitrogen) was 

used. Subsequently, samples were treated for 20 min at 37 °C with RNAse H. Transcript detection 

was performed using the Power SYBR Green PCR Master Mix (Applied Biosystems) with 2-3 

technical replicates per sample. Reaction mix composition and PCR protocol are listed in Table 3, 

primers in Table 4. Ct values of technical replicates were averaged and were normalized to an 

average of ct values from 3 different cDNA control genes (GAPDH2, CG12703, HP1or CP-1, see 

also Table 4) using the ΔΔCt method (Livak and Schmittgen, 2001; Winer et al., 1999). Since in 

wild-type discs, no transcript could be detected for fkh, Ct values were set to 40. 3 (for fkh and 

hth) or 2 (for Abd-B) biological replicates were analyzed. Refer to Appendix, Table 12 for 

overview of average Ct values.  

Table 3: qPCR reaction mix and program; (a) Components of qPCR reaction mix and their 
volumes are listed: Final volume for one reaction was 10 µl. (b) PCR program used for qPCR 
analysis. Time and temperature (Temp) is indicated.  

a Reaction mix b PCR program 
Component µl Time Temp 

2x SYBR Green mix 5 3 min 95 °C 
forward Primer* 0.2
reverse Primer* 0.2 10 s 95 °C 
cDNA 4 30 s 60 °C 40x 
DEPC-water 0.6 30 s 72 °C 

10 
10 s 95 °C 

* concentration: 10 µM Melt curve (0.2 steps) 
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Table 4: Primers used for qPCR; Primer number, gene name and primer sequence are listed. 

Primer No. Gene name Primer sequence 
AC01 GAPDH2 forward GTGAAGCTGATCTCTTGGTACGAC 

AC02 GAPDH2 reverse CCGCGCCCTAATCTTTAACTTTTAC 

AC89 CG12703 forward ATGGGCATCATCGACAACATTATC 

AC90 CG12703 reverse AGCATGCGTCCGTAGGTGTAGTAG 

AC127 Su(var) 205 (HP1) forward ATCTGTGGTACGTTTTGATTTATTG 

AC128 Su(var) 205 (HP1) reverse AGCAAGCGAAAGTCCGAAGAAC 

AC129 Cysteine Proteinase 1 (CP-1) forward TGGTCATGGAGGAATGGCATACG 

AC130 Cysteine Proteinase 1 (CP-1) reverse ACGCTCCTCGGTTTCATCCTGATAG 

AC353 fork head (fkh) forward GAATCTTTACGAAGCAATCGTTGAA 

AC354 fork head (fkh) reverse ATTCAGAATAACCCCACCAGAATGT 

AC394 homothorax (hth) forward ACTGAACATTGCAATATCCTCGTTG 

AC395 homothorax (hth) reverse ACAAACGTGATAAGGATGCGATTTA 

AC461 Abdominal-B (Abd-B) forward CTGGAACTTCGAGTACGGCTTG 

AC462 Abdominal-B (Abd-B) reverse ATCCCAGCGAGAACTACTCCAG 

4.5 Collagenase treatment of imaginal discs 

Wing imaginal discs were incubated for 12 min in 200 µl – 400 µl of Collagenase (1000 u/ml + 2 

mM CaCl2 and 2 mM MgCl2). Discs were immediately fixed and processed as described above. 

For better comparison, imaginal discs siblings of one larva were used. One disc was incubated 

only with PBS as control and the corresponding sibling disc with collagenase. For Quantifications 

of cell shapes see 4.6.2. 

4.6 Image quantification using Fiji 

4.6.1 Characterization of clone shape and cell dimensions 

We aimed to analyze misspecified clone shapes in order to compare simulations results of the 3D 

vertex model to experimental outcomes. In addition, we quantified wild-type cell dimensions in 

order to implement this information in the model.  

Extensive analysis of clone shape included measuring of actin intensities (a), clone volume (b), 

cell numbers (c), clone shape coordinates (d) and clone circularity (e). This analysis was done on 

staged Gal4/UAS flip out wing imaginal discs expressing fkh at different time points (30 h and 54 

h) and with different heat-shock conditions (10 min, 15 min and 25 min). Circularity was 

additionally measured using corresponding GFP-expressing control discs (30 h and 54 h, 10 min 

and 25 min heat-shocks, staged Gal4/UAS flip out protocol) and RhoV14-expressing discs (54 h, 10 
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min heat-shock, standard Gal4/UAS flip out protocol). Cell dimensions of wild-type cells were 

measured in GFP-expressing control discs with an additional time point at 0 h after heat-shock 

(standard Gal4/UAS flip out protocol) and in fkh-expressing discs in GFP-negative areas. All 

measurements were done using Fiji Software (Table 9). 

To obtain an overview of the pouch, discs were usually imaged using a 63x objective (zoom 1, xy 

0.24 µm, z 1.51 – 2.98 µm). Subsequently, selected regions were imaged at higher magnification 

(zoom 2.5 or zoom 3, xy 0.08 µm – 0.096 µm, z 0.42 – 1 µm). Refer to Appendix, Table 14 for 

overview on genotypes, experimental conditions and types of analysis that were applied. 

a.  Actin intensities 

Actin intensities were measured on reconstructed xz-cross-section (reslice tool, 1 µm spacing, top 

and left) using zoom 1 image stacks of fkh-expressing discs. In overlay stacks of phalloidin and 

clonal marker, the section at a vertical position through the center of radially symmetric clones 

was identified. Using a 5 px line, apical junctions and lateral surfaces were selected and average 

fluorescence intensity was measured using the measure tool. For each clone, the two lateral MWI 

interfaces, up to 8 cell surfaces inside the clone and up to 15 cell surfaces outside the clone near 

the MWI were measured. Data points were averaged to obtain a single value for wt/wt, wt/mis 

and mis/mis interfaces for each clone. These values were then normalized to the average mean 

intensity of actin staining on wt/wt interfaces within the experimental series (done by Anne 

Classen and Marco La Fortezza) (Figure 39 a) (Appendix, Table 13 for measurements). 

b.  Clone volumes 

To determine volumes of individual fkh-expressing clones, the GFP-signal defining the clone 

volume was used to generate a quantification mask using the Threshold (settings: default, stack 

histogram, dark background, between 5-30) and Remove outlier (settings: black and white pixel 

removal with radii 0.5-2 at a threshold of 50, see macro below) functions in Fiji. The resulting 

binary mask was used to measure clone area in each section using the Analyze particles function 

(settings: size (micron^2): usually 10-Infinity for images with higher zoom and 5-Infinity for 

zoom 1 images, Circularity 0.00-1.00). To control if the clone area was well defined, the outlines 

of the binary mask were merged with the original GFP stack and manually validated. Area 

measurements in all sections for each clone were summed up and multiplied with z-stack step size 

to obtain clone volumes (Figure 39 b). 

Removing outliers macro – Clone volumes 

run("Remove Outliers...", "radius=0.5 threshold=50 which=Bright stack"); 

run("Remove Outliers...", "radius=0.5 threshold=50 which=Bright stack"); 

run("Remove Outliers...", "radius=0.8 threshold=50 which=Bright stack"); 

run("Remove Outliers...", "radius=2 threshold=50 which=Dark stack"); 
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run("Remove Outliers...", "radius=2 threshold=50 which=Dark stack"); 

run("Remove Outliers...", "radius=5 threshold=50 which=Dark stack"); 

run("Remove Outliers...", "radius=3 threshold=50 which=Bright stack"); 

c.  Cell number and average cell volumes 

Nuclei counts were obtained using reslices of zoom 2.5 or zoom 3 image stacks of fkh-expressing 

discs. In an overlay stack between DAPI and clonal marker, nuclei were tracked through each 

slice and counted with the help of the text tool of Fiji. An average cell volume for each 

experimental condition was calculated by dividing the clone volume obtained above by nuclear 

counts for each individual clone. Average cell volumes obtained in higher zoom images were 

used to extrapolate cell numbers from the GFP-volume measured for additional clones imaged at 

zoom 1 of the same experimental condition (Figure 39 c) (Appendix, Table 16 for measurements). 

d.  Experimental clone shape analysis 

To quantify experimental clone shapes, we extracted 22 characteristic shape coordinates for 

individual fkh-expressing clones (Figure 39 d). Precision of coordinate selection was verified 

between higher zoom and zoom 1 image stacks. Zoom 1 image data was then used for further 

analysis because more clones could be sampled. Coordinates were defined using the Fiji Point 

picker tool. For clones showing no apical indentation, Points 15-20 were not defined. Following 

part was performed by Silvanus Alt. From each set of coordinates, 4 characteristic data points 

were extracted using MATLAB. (1) The apical surface of the wild-type tissue was identified by 

the least-square fit of a linear function through all apical wild-type coordinates. (2) Tissue height 

 was defined as the average distance of all basal wild-type coordinates to the apical surface. (3) 

The absolute apical indentation  was defined as the distance of the apical midpoint of the cyst 

to the apical wild-type surface. (4) The basal deformation  was defined as the distance of the 

basal clone midpoint to a straight line fitted through basal wild-type points. The apical and the 

basal width  and  were defined as the distance between the left and right clone interfaces 

apically and basally, respectively. Finally, the data points were normalized to the wild-type height 

of the surrounding tissue in order to obtain relative tissue deformations: 

	 ;   	 ;   	 ;   	  

Each clone was analyzed in two perpendicular cross sections which were averaged. By doing so, 

we accounted for deviations from a rotationally symmetric clone (Figure 39 d). 

e.  Clone circularity  

A section at exactly a third (for fkh-expressing clones and GFP-expressing clones) and a fifth (for 

RhoV14-expressing clones) of the clone height from the most basal section was identified and used 

for tracing a clone outline with the help of the polygon tool. Area and perimeter of this region 
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were measured and circularity was defined using the following equation: C =	4  

(Figure 39 e) (Appendix, Table 15 for measurements). 

f.  Wild-type cell dimensions 

Based on phalloidin counterstain, 2 regions within the same stack of GFP-expressing discs were 

chosen for analysis: 15-25 wild-type cells with (1) small apical cell areas and (2) big apical areas. 

This approach was chosen to capture the endogenous diversity of cell shapes in wing imaginal 

discs. The height of cells was defined in reslices at the ROI positions and multiplied by the apical 

area of all selected cells. An average wild-type cell volume was obtained by dividing the resulting 

volume through the number of selected cells. Aspect ratios were calculated using the equation      

β =	
√

 (Figure 39 f). In addition, we aimed to analyze volumes of wild-type cells 

surrounding fkh-expressing clones. Therefore we followed the same procedure as described above 

but chose ROIs in GFP negative regions (Appendix, Table 16 for measurements). 

4.6.2 Cell dimensions before and after Collagenase treatments 

4 pairs of imaginal discs were quantified. Measurements of cell volumes and calculation of aspect 

ratios was performed accordingly to 4.6.1 f. See Appendix, Figure 45 for microscopy images and 

Appendix, Table 16 for measurements. 



  MATERIAL AND METHODS 

97 
 

 

Figure 39: Workflow for analysis of clone shape and cell dimensions; Wing imaginal discs 
with Gal4/UAS flip out clones expressing fkh (green) are shown (a) Xz cross-section of wing disc 
is shown, phalloidin (Actin) staining is presented in grey and red. Actin intensities at cell-cell 
interfaces were quantified tracing actin staining with a 5 px wide line. The average fluorescence 
intensities were measured within the misspecified clone (fkh+), wild-type cells and at the MWI 
apically and laterally as indicated by colored lines. (b) Single clone marked by GFP is shown in 
xy. Clone volumes were determined by generating a GFP mask using the Threshold function. 
Outliers were removed and area of each slice was measured with the Analyzes particle tool. 
Results were summed up and multiplied with the stack z-step size to obtain clone volumes. 
Threshold choice was controlled by merging mask outlines with original images (clonal marker is 
shown in green, mask outline in red) (c) Single clone is shown in different xz cross-section. Actin 
is shown in red, clonal marker in green and DAPI in blue. The number of cells in a clone was 
defined by counting nuclei in GFP-positive areas using the DAPI staining (blue). Individual nuclei 
were tracked throughout the clone. Average single cell volume was calculated by dividing the 
clone volume by the number of cells. (d) Scheme of invaginating and non- invaginating clone in xz 
cross-section is shown. Lighter yellow marks misspecified cells. Experimental images of two 
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perpendicular cross-sections (Top and Left) are shown below. Clone shape was defined by 
creating a coordinate matrix of up to 22 points marking characteristic hallmarks of clone shapes 
(coloured dots in scheme and images, description is shown). These coordinates were used for 
constructing a vector matrix of clone shape (apical is red, lateral green and basal blue). Compare 
images of non-invaginating clone to clone matrixes. Not all coordinates could be set in all images. 
(e) Substack of clone in xy is shown. Actin is shown in red, clonal marker in green. Clone 
circularity was measured by choosing the 1/3 basal section of a clone and tracking the outlines. 
Clone area and perimeter were measured and circularity was calculated as indicated. (f) Wing 
imaginal disc with Gal4/UAS flip out clones expressing GFP is shown in xy. Wild-type cell 
dimensions were analyzed by defining 2 ROIs containing 15-20 cells: ROI1 is located in the 
periphery of the pouch, Roi2 in the center of the disc. Tissue height and areas were measured 
and cell dimensions were calculated by dividing the area of ROI1 and 2 through the number of 
cells. 

 

4.6.3 Tie-Dye analysis 

Tie-Dye analysis was run on 4 different genotypes: (1) GFP/RFP control discs, n=10 (2) 

GFP/RFP, fkh expressing discs, n=10 (3) GFP/RFP, fkh, dIAP-expressing discs, n=10 (4) 

GFP/RFP, dIAP expressing discs, n=8. Imaginal discs of all Tie-Dye genotypes were 

counterstained with DAPI and phalloidin and were imaged using a 20x objective to obtain an 

overview of the pouch and hinge region (xy 0.45 – 0.54 µm, z=2.01 – 2.18 µm). Image stacks 

were processed as follows: 

► Peripodial membrane clones were excluded from the analysis and deleted in both GFP and RFP 

channels manually using the polygon and clear function (Figure 40 a). 

► Since a majority of the Tie-Dye signal in the notum derived from adepithelial cells, the ROI set 

for subsequent analysis only considered the pouch and hinge regions (Figure 40 b). 

► To identify the optimal fluorescence threshold for RFP and GFP masks, different thresholds 

were tested. This was done by choosing a threshold, removing outliers (see macro below) and 

generating outlines of the resulting mask. Mask outlines were merged with original images and 

checked for visual match with GFP and RFP borders. GFP and RFP thresholds were determined 

separately for each disc (Figure 40 c), but were validated by optimal fit and similar volume 

measurements for clones that expressed both GFP and RFP (Figure 40 d). 

Removing outlier macro – Tie-Dye 

run("Remove Outliers...", "radius=0.5 threshold=50 which=Bright stack"); 

run("Remove Outliers...", "radius=0.5 threshold=50 which=Bright stack"); 

run("Remove Outliers...", "radius=0.8 threshold=50 which=Bright stack"); 

run("Remove Outliers...", "radius=2 threshold=50 which=Dark stack"); 

run("Remove Outliers...", "radius=3 threshold=50 which=Dark stack"); 

run("Remove Outliers...", "radius=3 threshold=50 which=Bright stack"); 
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► We decided to exclude GFP/RFP double-labelled clones from our final analysis because small 

differences in GFP and RFP masks leads to systematic underestimations of their size. We 

therefore only selected GFP or RFP positive clones by subtracting the mask of GFP from that of 

RFP and vice versa using the Image calculator tool. In the resulting masks (GFP only, RFP only) 

outliers were removed by a series of Remove outlier commands (see above) (Figure 40 e). Mask 

holes were filled using the Fill holes tool (Figure 40 f). 

► The resulting GFP only and RFP only masks were analyzed using the 3D object counter 

(Version V2.0, Threshold 128, No exclusion of size or edges, Maps to show: Objects, Results 

table to show: Summary, Statistics). Volume measurements were transferred to Excel (Figure 40 

g). 

► 3-4 small clones per disc where selected from the object map, identified in original image and 

nuclei were counted for each clone. The clone volume determined by the 3D analysis was divided 

by the number of nuclei to obtain an average nuclei volume for each genotype (Figure 40 h) 

(Appendix, Table 19 for measurements). 

► GFP and RFP volumes below an empirically determined minimum cell volume (<60 µm3) were 

excluded from the analysis. All remaining data points were binned into multiples of empirically 

determined average cell volumes for each genotype. Relative RFP clone frequencies were 

calculated for each chosen bin: (RFP clone count - GFP clone count) / GFP clone count within the 

analyzed bin. (done by Marco La Fortezza, Appendix, Table 18, Table 19, Table 20, Table 21, 

Table 22, Table 23 for quantifications). 
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Figure 40: Workflow of Tie-Dye analysis; Figure displays examples for the GFP channel; the 
same analysis war performed on RFP channels. (a) Apical xy section and xz cross-section of 
wing imaginal disc with neutral GFP clones is shown. DAPI is shown in blue. Peripodial 
membrane clones were deleted manually and are visualized in red, clones in the columnar 
epithelium are yellow. (b) Wing imaginal disc expressing neutral GFP (green) and RFP (red) 
clones is shown. DAPI is shown in blue. To exclude adepithelial cells, a ROI (yellow) including 
only pouch and hinge was set and signal outside was cleared. (c) For defining the optimal 
threshold, different thresholds were applied (first row, threshold 50, 36 and 20), outliers were 
removed (second row) and mask outlines were merged with original images (third row, GFP 
clones in green, RFP clones in red, outlines in white). Threshold 36 was determined visually to be 
most suitable (green box). (d) After defining optimal thresholds for GFP and RFP channels of one 
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disc, thresholds were tested for accordance by measuring volumes in double labeled clones. GFP 
and RFP volumes were expected to be in a similar range. (e) To exclude double labeled clones 
from the analysis, RFP mask was subtracted from GFP mask using the Image Calculator tool 
(and vice versa, not shown). (f) Holes in masks were filled using the Fill Holes tool. (g) Final 
masks were analyzed using the 3D object counter. Resulting Object map and clone volume 
results are shown. (h) 3-5 different clones were chosen, e.g. Clone 116 in (g). Nuclei were 
counted using the clonal marker and divided by clone volume to obtain average nuclei volume; (a 
– h) Scale bar lengths are indicated and refer to related images. 

 

4.6.4 Apoptotic volume analysis 

To understand the correlation between clone size and extent of apoptosis, we analyzed the total 

volume of apoptotic particles within differently sized clones. Gal4/UAS flip out discs expressing 

fkh or fkh, dIAP were stained for Dcp-1, DAPI and phalloidin. Discs were imaged using a 63x 

objective (zoom 1, xy 0.24 µm, z 2.01 – 3.48 µm). 3 wing discs per genotype were analyzed. 

Images were processed in Fiji as follows:  

► Peripodial membrane clones were excluded from the analysis and manually deleted using the 

polygon and clear function (refer to Figure 40 a). 

► Each stack was classified in background, clonal marker (GFP signal) and Dcp-1 signal using 

the trainable Weka segmentation tool. Mask holes were filled using the Fill Holes function. The 

quality of the segmentation was verified visually by overlaying mask outlines with original 

images (Figure 41 a). 

► Dcp-1 signal that was not part of a flip out clone was removed by combining Dcp-1 and GFP 

masks with a logical AND operation of the Image Calculator tool (Figure 41 b). 

► Segmented stacks were used to reconstruct 3D objects of clonal marker and Dcp-1 staining. For 

each clone, the total volume and the volume of all included Dcp-1 sites was determined. All 3D 

operations were performed with custom macros using the API of the 3D ImageJ Suite (done by 

Hartmann Harz) (Figure 41 c and d). 

► For defining the average cell volume, 3-4 clones were selected per disc, nuclei within the clones 

were counted and divided by clone volume (refer to Figure 40 h). GFP volumes below an 

empirically determined minimum cell volume (<50 µm3) were excluded from the analysis. All 

remaining data points were binned into multiples of empirically determined average cell volumes 

for each genotype (done by Marco La Fortezza, Appendix, Table 24 for measurements and 

statistical test). 
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Figure 41: Workflow for analysis of apoptotic volumes; (a) GFP (clonal marker) and Dcp-1 
channels (top row) were segmented using the trainable Weka segmentation tool. Binary masks 
(middle row) where controlled by overlaying mask outlines (red) with original images (green, 
bottom row). (b) Dcp-1 signal that was not part of a flip out clone was excluded from the analysis 
using the AND operation of the Image calculator tool (top row). The resulting mask only includes 
Dcp-1 signal inside of a clone (middle row). This step was controlled by merging clonal marker 
(green), Dcp-1 mask before and after AND operation (bottom row). Clonal marker is shown in 
green, Dcp-1 staining outside of clones in magenta and clonal Dcp-1 signal in white. (c) Final 
mask only includes clonal Dcp-1 signal (red, clonal marker green) (d) Clone volumes in 
combination with their apoptotic volume was measured using the 3D ImageJ Suite. Scale bar is 
indicated and refers to all following related images. Insets in (a) represent a 250 % increase in 
magnification. 

4.7 Statistical analysis of imaging data 

Every data set was checked for normality of distribution and homogeneity of variances by 

applying Shapiro’s and Bartlett’s test, respectively. The α value for each analysis was set to 0.01 

(α =0.01). Wilcoxon Signed-Rank test (WSR), Wilcoxon-Mann-Whitney test (WMW) and 

Welch’s t-test were applied to check for statistical significance as indicated in figure legends or 

Appendix information (done by Marco La Fortezza). 
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4.8 Fly stocks 

Table 5: Fly stocks; Fly stocks are divided in (a) wild-type stock, (b) drivers (FLP or Gal4), (c) 
UAS constructs, (d) mutations, (e) GFP-constructs. Source of fly stocks is listed. Bloomington 
stands for Bloomington Drosophila Stock Center at Indiana University. 

Fly lines Provided by 

a Wild-type stock 
w118 Bloomington 

b Drivers  
hsflp122; Sp/CyO GFP; Dr/TM6c Bloomington 

hsflp122;  FRT42D ubi-eGFP/CyO, GFP Bloomington 

hsflp122; FRT42D ubi-mRFP Bloomington 

ubxflp; FRT42D cell-lethal/CTG Bloomington 

hsflp122; Sp/CyO GFP; act > y+ > GAL4, UAS GFP/TM6b Bloomington 

hsflp122; Sp/CyO, ubi-GFP; Act5C.GAL4 (FRT.CD2), UAS-RFP/TM6c Bloomington 

act > CD2 > GAL4, UAS GFP/CyO; MKRS hsflp/TM6b  Bloomington 

FRT42D ubi-eGFP/CyO; T155 GAL4, UAS-flp/TM6 Bloomington 

MS1096 Gal4/FM7a; UAS-eGFP/CyO Bloomington 

ptc Gal4, tubGal80TS-20/ CyO A. Classen 

c UAS-constructs Bloomington 
w;UAS-Abd-B Bloomington 

UAS-armS10  S. Eaton 

UAS-ci.HA.wt Bloomington 

UAS-dIAP.HA Bloomington 

UAS-Ecad-GFP K. Röper 

yw; UAS-ey Bloomington 

UAS-hth N. Azpiazu 

UAS-fkh-3xHA  M. Jünger 

UAS-fln.HA3 F. Schnorrer 

UAS-GFP S56T/CyO Bloomington 

UAS-hopTumL/ CyO N. Perrimon 

UAS-lz  Bloomington 

Sp/CyO; UAS-myc/TM6c I. Hariharan 

UAS-p35; Dr/TM6c Bloomington 

Sp/CyO; UAS-p35/TM6c Bloomington 

w; UAS-RasV12/(CyO); Dr/TM6c H.Richardson 

UAS-Rho1V14 Bloomington 

UAS-tkv.CA  Bloomington 

w; UAS-Ubx/TM3, Ser Bloomington 

UAS-vg Bloomington 
w; ubi <stop <GFPnls, act5C <stop <lacZnls; Act5C <stop <GAL4, UAS-
his2A::RFP/SM5-TM6b 

I. Hariharan 

d Mutants 
w; FRT 42D iso  Bloomington 

FRT42D Psc-Su(z)2XL26/CyO, ubi-GFP Bloomington 
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FRT42D Su(z)21b8/CyOKG Bloomington 

FRT42D Su(z)21b8, ykiB5/ CTG  Bloomington 

hepr75/FM7, ubi-GFP Bloomington 

FRT42D shgR69b/SM6b U. Tepass 

e GFP or lacZ-constructs 
sqh:sqh-GFP/CyO; Dr/TM6c D. Bilder 

zip>GFP  Flytrap 

Sp/CyO; sqh>MoeGFP/TM6c D. Kiehart 

Nrg-GFP/FM7; Sco/CyO D. Bilder 

vkg>GFP  Flytrap 

pucA251.1F3 ry506/ TM3Sb Bloomington 

gstD-GFP D. Bohmann 

4.9 Antibodies 

4.9.1 Primary antibodies 

Table 6: Primary antibodies; Antigen, source, catalogue numbers, manufacturers and working 
dilutions are listed. DHSB stands for Developmental Studies Hybridoma Bank, Iowa. 

Antigen Derived from Cat # Provided by Dilution 
aPKC Rabbit Sc-216 Santa Cruz Biotechnology 1:1000 
Cleaved Dcp-1 Rabbit 9578 Cell signaling Technology 1:250 
Coracle (Cora) Mouse C566.9 DHSB 1:100 
Discs large (Dlg) Mouse 4F3 DHSB 1:100 
E-cadherin (Ecad) Rat DCAD2 DHSB 1:100 
Patched (Ptc) Mouse Apa1 DHSB 1:20 
P-Ezrin/radixin/moesin Rabbit 3149 Cell signaling Technology 1:500 
Rho1 Mouse p1D9 DHSB 1:100 
Sqh 1P Guinea pig / Robert Ward 1:400 
Wingless (Wg) Mouse 4D4-s DHSB 1:100 
βPS-integrin Mouse CF.6G11 DHSB 1:100 

4.9.2 Secondary antibodies and phalloidin 

Table 7: Secondary antibodies and phalloidin; Antigen, source, fluorescent label, manufacturer 
and working dilution are listed. 

Antigen Derived from Label Provided by Dilution 
Rabbit Goat 

Alexa 488 or 647 
Life Technologies 
GmbH, Darmstadt 

1:500 
Mouse Goat 
Guinea pig Goat Alexa 647 
Rat Goat Alexa 647 
Phalloidin  Alexa 647 Life Technologies 

GmbH, Darmstadt 
1:200 

 Alexa 488 1:100 
 

TRITC 
Sigma-Aldrich Chemie 
GmbH, München 1:400 
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4.10 Buffer and reagents 

Table 8: Buffers and chemicals; Individual manufacturers are listed. 

Buffer/ chemicals Manufacturer 

Collagenase (CLSPA, Cat # LS005275) 
Worthington Biochemical Corporation, 
Lakewood 

DAPI Sigma-Aldrich Chemie GmbH, München 

Normal goat serum 
BIOZOL Diagnostica Vertrieb GmbH, 
München 

Paraformaldehyde Science Services GmbH, München 
PBS Sigma-Aldrich Chemie GmbH, München 
Phalloidin Alexa488 and Alexa647 Life Technologies GmbH, Darmstadt 
Phalloidin-TRITC Sigma-Aldrich Chemie GmbH, München 
Power SYBR Green Master Mix Life Technologies GmbH, Darmstadt 
RNAlater Qiagen GmbH, Hilden 
RNase H Life Technologies GmbH, Darmstadt 
RNeasy Mini Kit Qiagen GmbH, Hilden 
Shields&Sang M3 medium  Sigma-Aldrich Chemie GmbH, München 
SlowFade® Antifade Kit (Cat # S2828) Life Technologies GmbH, Darmstadt 
SlowFade® Gold Antifade reagent (Cat 
#S36936) Life Technologies GmbH, Darmstadt 

Superscript III First strand synthesis SuperMix Life Technologies GmbH, Darmstadt 
Triton-X 100 Sigma-Aldrich Chemie GmbH, München 
TURBO DNA-free™Kit Life Technologies GmbH, Darmstadt 

4.11 Equipment 

Table 9: Technical equipment, consumables and software; (a) Technical equipment, (b) 
consumables, (c) software; individual manufacturers are listed.  

Equipment Manufacturer 

a technical  
Agilent 2100 Bioanalyzer Agilent Technologies GmbH, Oberhaching 
CFX96 Real-Time PCR Detection System Bio-Rad Laboratories, Inc; Hercules 
Incubator (18 °C), Percival CLF Plant Climatics GmbH, Wertingen 
Incubator (25°C), Mir-154 Panasonic Biomedical Sales, Europe 
Nutating Mixer VWR International GmbH, Darmstadt 
Vortex mixer Scientific Industries, Inc., New York 
Water bath Julabo GmbH, Seelbach 

b Consumables  
Coverslips Gerhard Menzel GmbH, Brauschweig 
Dissection dish Science Services GmbH, München 
Double sided tape  #5338 tesa 
Fine forceps Fine Science Tool, Dumont, Switzerland 
Immersion oil 518F Carl Zeiss, Jena 
Microscope slides Carl Roth GmbH + Co. KG, Karlsruhe 
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Nail polish (transparent) p2 cosmetics   
Reaction tubes, Rotilabo® Carl Roth GmbH + Co. KG, Karlsruhe 

c Software  
Adobe Illustrator CS5.1 Adobe Systems, Inc., San José 
Adobe Photoshop CS5.1 Adobe Systems, Inc., San José 

Image J1.48 b 
Wayne Rasband, National Institues of Health, 
USA; http://imagej.nih.gov/ij 

Office 2007 Microsoft, Redmond 
 
 

Table 10: Microscopes; Equipment and manufacturers are listed. 

Microscope  Equipment Manufacturer 

Confocal laser  
scanning microscope 
Leica TCS Sp5  

Lasers:  

Leica, Heidelberg 

Diodenlaser 405 nm, 25 mV 
Argon Laser 458, 476, 488 and 514 nm 

 DPSS Laser 561 nm, 10 mV 
 HeNe Laser 633 nm, 10 mV 
 Objectives: 
 HCX PL APO Lambda Blue 20x 0.7 imm  
 HCX PL APO Lambda Blue 63x 1.4 oil 
 Software: Leica Application Suite 
 Emission filters: detection spectrally adjusted 
   
Stereoscopic Zoom 
Microscope 
SMZ745 

SMZ745 zooming body, C-PS plain focusing 
stand 

Nikon Eyepieces: C-W10XB, 10x/22   
 Lightsource: 
 KL 1500 LCD with flexible light guides Schott AG, Mainz 
 Halogen lamp 15V/150W, Type 6423FO Philips, Eindhoven 
   
Fluorescence  Stere 
Stereomicroscope 
StereoLumar v12 

Optics: 

Carl Zeiss, Jena 

Neolumar S 0.8x FWD 80mm, PI 10x/23 
eyepieces 
Filters: 38 HeGFP BP470/40, BP525/50 

 43 Cy3 BP545/25, BP605/70 
 Lightsource: HXP 120 C 
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5 Discussion 

With this work, we showed that ectopic expression of transcription factors that specify 

cell fates causes epithelial cysts of intermediated-sized cell clusters in Drosophila imaginal discs. 

In contrast, small misspecified clones undergo apoptotic extrusion and large clones induce cell 

segregation by interface minimization. These distinct, clone-size dependent tissue responses are 

all accompanied by cell non-autonomous enrichment of actomyosin at lateral interfaces between 

wild-type and misspecified cells. This suggested that the interface might be under higher tension. 

We aimed provide experimental evidence that higher interface contractility is sufficient and 

necessary for the observed morphogenetic behaviors, but technical restrictions did not allow us to 

genetically manipulated specifically only the lateral interfaces between two cell populations. 

Therefore, we combined experimental approaches and 3D vertex model simulations to 

demonstrate that interface contractility is the driving force of tissue shape changes that are 

induced by the apposition of differently fated cell populations. Our work has important 

implications for understanding the interplay between cell fate patterning and epithelial structure in 

the course of development and disease, not only in Drosophila. 

5.1 Mechanics of cyst formation 

Using a 3D vertex model of the epithelium combined with a continuum description of the 

tissue allowed us to identify the mechanical principles driving cyst formation and cell extrusion. 

In principle, the observed cell shape changes arise from two simple physical effects that drive 

tissue buckling instability: the law of Laplace and the resistance of the tissue to bending. 

Furthermore, by confirming predictions of 3D vertex model simulations with experiments in vivo, 

we demonstrated that interface contractility is necessary and sufficient to drive cyst formation. 
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5.1.1 Introduction of 3rd dimension in epithelial modeling 

Previous studies have simulated a tension increase at adherens junctions and described its 

role in determining interface morphology at compartment boundaries in 2D models (Aliee et al., 

2012; Landsberg et al., 2009; Major and Irvine, 2005). However, what had been missing so far, is 

a physical description of the 3rd dimension along the apical-basal axis and the analysis of 

morphogenetic behaviors arising from cellular forces acting along this interface dimension. In 

addition to forces arising from adherens junction, we demonstrated that actomyosin contractility 

at basolateral interfaces can be extensively increased, which has dramatic consequences for tissue 

shape. Our novel mechanical description of this 3rd tissue dimension has crucial implications in 

our understanding of epithelial morphology and force generation during development and disease.  

5.1.2 Role of cell-autonomous cell height reductions 

As discussed in the introduction, cyst formation in Dpp or Wg signaling compromised 

cell clusters had been linked to a role for these pathways in regulating columnar cell height. This 

suggests that cyst formation is caused by cell-autonomous cell height reductions in mutant cells 

(Widmann and Dahmann, 2009a, b). As shown by our simulations and experiments (Figure 25), 

changes in the bulk properties of misspecified cell clusters indeed explain cyst formation, but not 

inverse cyst formation by wild-type cells that are surrounded by misspecified cells. In addition, 

we observed accumulation of actin and other components of the contractile machinery only at the 

interface between cyst cells and surrounding cells and not throughout the entire misspecified 

clone, suggesting that cell-autonomous changes to subcellular actin organization are unlikely to 

play a role during cyst initiation (Figure 21, Figure 22). Combined, this line of evidences 

demonstrates clearly that bulk property changes are neither necessary nor sufficient for the 

initiation of the cyst formation process. Nevertheless, we cannot exclude the possibility that bulk 

effects are occurring at later stages. As shown in Figure 28, misspecified cells exhibited a 

significant decrease in cell volume at late stages. Moreover, increased interface contractility could 

not recapitulate experimental clone shapes at 54 h after clone induction indicated that additional 

factors influence clone shape at later stages. Late clone shape analysis revealed some similarities 

to simulations of bulk effects, which suggest that at later stages misspecified cells are changing 

indeed their clone shape because of cell-autonomous cell aspect ratio changes. It is possible that 

the bulk effect strength differs between the clonal overexpression of distinct transcription factors 

as well as the time point of bulk effect initiation. These differences might explain variations in 

final clone shape behaviors induced by different transcription factors. 
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5.1.3 A similar change in interface contractility maintains developmental 
compartment boundaries 

Our simulations suggest that higher apical and lateral interface contractility explains all 

observed size-dependent tissue deformations including cell extrusion and tissue invagination 

accompanied by interface smoothening. We showed that a simulated 3 fold increase in lateral 

surface tension and apical line tension accounts for the tissue deformations seen in experiments. 

Using laser ablation approaches, it was shown previously that apical line tensions at the 

compartment boundary between anterior and posterior cells fates in the wing imaginal disc is 

increased by a factor of 2.5 and between the dorsal and ventral compartment by 2.5 to 3 fold. 

Simulations revealed that this increased tension is necessary and sufficient to generate smooth 

boundaries and that considering in addition anisotropic tissue stress, oriented cell division and 

reduced proliferation rates at the boundary could accurately simulated the temporal 

developmental of the DV boundary (Aliee et al., 2012; Landsberg et al., 2009). Interestingly, the 

increase in measured tension at compartment boundaries and the increase in simulated interface 

contractility acting during cell fate misspecification fall into the same range. However, it is 

important to stress that the experimental and simulation analysis of tension at compartment 

boundaries is restricted to the 2D plane of adherens junctions. It will be interesting to investigate 

if enrichment of the actomyosin machinery can be detected basolaterally at compartment 

boundaries and how addition of a 3-fold increase in basolateral surface tension would influence 

simulations of compartment boundary functions. 

5.1.4 Clone smoothening and cell affinity changes 

One prominent feature of clones subjected to MWI contractility is the dramatic 

smoothening of clone interfaces. This indicates that adjacent, differently fated cell populations 

minimize their common contact area, a characteristic feature of many developmental processes 

involving apposition of differently fated cells (Batlle and Wilkinson, 2012; Fagotto, 2014). 

However, smoothening itself is not sufficient to induce the invaginating phenotype observed 

during cyst formation. For example, the deregulation of E-cad (Zimmerman et al., 2010) (Figure 

42), of the transmembrane proteins Caps and Trn (Milan et al., 2002) or of the homophilic 

adhesion molecule Echinoid (Ed) (Chang et al., 2011) leads to clone smoothening specifically at 

adherens junctions, but no invagination is observed. Closer investigation of the degree of lateral 

smoothening in these different genetic contexts is still outstanding. A lack of lateral smoothening 

may provide an explanation why genetic manipulation of these adhesion regulators fails to induce 

a full cystic phenotype. In addition to smoothening, round clones lacking caps and trn as well as 

overexpressing clones located in the dorsal compartment do not activate the apoptotic cascade 

(Milan et al., 2002; Milan et al., 2001).  
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Taken together, these observations suggests that smoothening induced by altered 

adhesion functions may be neither sufficient to induce the full range of observed clone shape 

behavior, nor induce apoptosis as observed for small clones subjected to MWI contractility.  

According to the DITH, interfacial tension is regulated by the opposing contributions of 

adhesion and contractility (1.3.3). Therefore, clone smoothening could be driven either by 

adhesion or by contractility changes. Since we observed a prominent enrichment of filamentous 

actin and myosin components apically and especially laterally at the MWI, it is tempting to 

speculate that contractility is the dominant determinant of clone smoothening. However, the 

temporal correlation of increased MWI contractility and smoothening, as well as the lack of 

genetic tools to specifically manipulate interface contractility, makes it challenging to define if 

MWI contractility is upstream of smoothening. Supporting the idea of predominant contractility, 

it could be shown that during zebrafish gastrulation, adhesion forces are indeed small compared to 

those generated by tension and that the function of adhesion mainly lies in the transmission and 

scaffolding of these forces to neighboring cells (Maitre et al., 2012). However, as adherens 

junctions are tightly connected to the actin cytoskeleton, we cannot exclude the possibility that 

cell affinity differences are achieved through the combinatorial action of adhesion and 

contractility and that this is linked to a cellular comparison mechanism that leads to increased 

MWI contractility (5.2). 

5.2 What is compared between differently fated cells? 

5.2.1 Generality of interface contractility 

We showed that ectopic expression of several unrelated cell fate specifying transcription 

factors induces MWI contractility. Misspecification of both selector and selector-like transcription 

factors led to cyst formation showing that the mechanism of increased MWI contractility does not 

discriminate between these two major classes of transcription factors. In addition to the 

transcription factors analyzed by us, several publications have described the occurrence of round 

or cystic clones in mosaic analysis of fate specification in imaginal discs and neuroepithelia. An 

overview of these transcription factors is provided in Table 2 and stresses the generality of MWI 

contractility as tissue-level response to the presence of aberrantly specified cells. 

Interestingly, phenotypes similar to cyst formation in Drosophila have been shown to 

occur in the context of the mouse small intestine and colon. The small intestine consists of 

invaginating crypts and evaginating villi, the colon of crypts and a flat surface epithelium. At the 

crypt bottom, multipotent stem cells produce transit amplifying cells (TA), which locate to the 

bottom 2/3 of the crypt. TA cells generate precursor cells that migrate to the upper part of the 



  DISCUSSION 

111 
 

crypt, where they finish differentiation as soon as they reach the transition zone from crypt to 

villus. The villus is completely occupied by differentiated cells, which undergo apoptosis once 

they reach the tip of the villus. The spatial and temporal coordination of proliferation, 

differentiation, and apoptosis is essential for homeostasis of the intestinal epithelium and is 

regulated mainly by Wnt/Wg signaling. Wg/Wnt signaling activity is high at the bottom of the 

crypt, regulating a stem cell and progenitor cell fate as well as proliferation. Wg/Wnt activity 

decreases in the direction of cell migration and ongoing differentiation along the crypt-villus axis 

(Pinto and Clevers, 2005; Reya and Clevers, 2005). Interestingly, cells mutant for Adenomatous 

Polyposis Coli (APC), a negative regulator of Wnt/Wg signaling, remain within the epithelium at 

the crypt bottom, but extrude as they migrate into regions of low Wnt/Wg signaling. There, 

cluster of APC mutant cells form outpocketings and polyps, which are clinically staged as 

adenomas and which develop into carcinomas upon acquisition of additional mutations (Barker et 

al., 2009; van de Wetering et al., 2002). Adenoma formation exhibits striking similarities to MWI 

induced cyst formation in Drosophila. Both processes are dependent on position of mutant cell 

within a signaling gradient and lead to aberrant, epithelial structures with phenotypical 

similarities. These include epithelial outpocketing or invagination and lumen formation, during 

which epithelial polarity is preserved. Due to these striking similarities, it is tempting to speculate 

that adenomas are caused by induction of interface contractility at mutant-wild-type cell 

boundaries. Future studies should analyze the localization of actomyosin components in this 

context to elucidate potential contributions to the outpocketing of mutant cells located in regions 

of surrounding cells with different fates. Interestingly, Eph signaling is implicated in 

compartmentalization along the crypt-villus axis and during colorectal cancer progression and 

might therefore provide link to actomyosin regulation at cellular interfaces (5.2.4) (Batlle et al., 

2002; Clevers and Batlle, 2006; Cortina et al., 2007). 

In summary, given the diversity of transcription factors investigated in Drosophila and 

the possibility of interface contractility in the mammalian system, we suggest that a very general 

mechanism must underlie these observations. However, so far, we do not understand which cues 

epithelial cells utilize to detect different cell fates and what a common signaling pathway may be, 

but possible scenarios are discussed below. 

5.2.2 Differential adhesion and homophilic bindings 

Clones subjected to MWI contractility exhibit dramatic smoothening and clone rounding. 

This reflects differences in cell affinity, a term describing the cellular tendency to preferably 

cluster together with the same cell type (1.3.3). In several previous studies, clone rounding of 

misspecified clones had been linked to a function of the respective transcription factor in 

regulating cell adhesion (Liu et al., 2000; Organista and De Celis, 2013; Shen et al., 2010; Villa-
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Cuesta et al., 2007; Worley et al., 2013). However, specific cell surface molecules or signaling 

pathways mediating this response have only been proposed for sal-expressing clones and include 

Caps, Trn and FasIII (Milan et al., 2002; Organista and De Celis, 2013). Nevertheless, differential 

adhesion could be a possible mechanism how differently fated cell populations detect differences 

and initiate the process of increased MWI contractility. 

 

 

Figure 42: Clones mutant for or overexpressing E-cad show smoothening but no 
invagination; (a) Xy section of wing imaginal discs containing shgR69b (null-allele for E-cad) 
mutant clones 30 h after induction using the FLP/FRT system. Wild-type cells are marked by RFP 
(a), mutant clones by the absence of RFP: Actin is shown in grey (a``) or red (a```). E-cad staining 
shows loss of E-cad in mutant clones (grey in a`, green in a```). Mutant clones smoothen but do 
not invaginate. Note the accumulation of actin around E-cad mutant clones (a``). (b, c) Apical (b) 
and basolateral (c) xy sections of wing imaginal discs overexpressing Ecad-GFP (grey in b`, c`, 
green in b```, c```) in flip out clones 30 h after a short heat-shock. The clonal marker RFP is shown 
in (b, c). Actin is shown in grey (b``, c``) or red (b```, c```). Note apical smoothening. Scale bars as 
indicated. 

 

We therefore analyzed the localization several intercellular junctions and polarity markers 

during cyst formation (Figure 19 and data not shown). This analysis included markers known to 

mediate extracellular homophilic interactions, such as E-cad, Crb and Nrg. We found that 

junctional and polarity markers distributed normally and no consistent changes could be observed 

between wild type and aberrantly specified cells (Figure 19). However, this analysis is far from 

complete, since we did not study several adhesion molecules, such Ed or Fas III or did analyze 
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activation or phosphorylation states. Moreover, we manipulated cellular adhesion properties in 

clones by mutating or overexpressing E-cad. Clones exhibited smoothening at apical adherens 

junctions, but basolateral smoothening or actin enrichment at the basolateral interface of clones 

was not observed (Figure 42). Similarly, overexpression or knock-down of a list of other 

junctional or polarity regulators in clonal assays was not sufficient to induce cyst formation (data 

not shown).  

In summary, this suggests that changes to adhesion or cell affinity may not be the only 

comparison cue utilized by differently fated cells to elicit the program of MWI contractility. We 

cannot exclude the possibility that differential adhesion mechanisms induce and regulate MWI 

contractility more downstream via unknown mechanisms. Many more experiments are clearly 

needed to explore the contribution of adhesion as a cell fate comparison cue regulating interface 

contractility. 

5.2.3 Metabolic changes as signals mediating cell-cell comparison 

According to the concept of DAH, the final comparison cues reside on the extracellular 

surface. Alternatively, one could consider differences in metabolic states as possible and general 

read-outs of fate differences between cells, similar to signals that are thought to mediate cell-cell 

competition (Levayer and Moreno, 2013). Due to the transcriptional diversity implicated in MWI 

contractility, we imagine that very general cellular pathways might be altered and used as 

comparison cues. We speculate that such pathways include, for example, Calcium signaling or 

oxidative stress sensing. Therefore, we made use of the oxidative stress sensor gstD-GFP in the 

context of fkh and ci-overexpressing clones (Sykiotis and Bohmann, 2008). Indeed, fkh-

overexpressing cells showed reporter activity both in the context of short and long heat-shock 

induced experiments (Figure 43 b, c). This suggested that fkh-overexpressing cells are under 

oxidative stress in contrast to wild type cells, which could provide a comparison cue for the 

detection of metabolic differences. However, in the case of clonal ci-overexpression, we did not 

observe similar results (Figure 43 d), suggesting that oxidative stress is not a common feature 

potentially acting upstream of MWI contractility induced cyst formation.  

In addition to the identity of a metabolic pathway that could be used for fate comparison, 

it is completely unclear how differences between two cell populations are detected and translated 

into increased interface contractility. In the case of calcium signaling, detection of calcium level 

differences could be directly achieved at gap junctions, which allow for exchange of small 

signaling molecules between neighboring cells (Bauer et al., 2005). However, a mechanism 

connecting gap junctions to actin regulation has, to our knowledge, not been identified. 

Alternatively, metabolic differences could induce expression or alterations in signaling properties 

of specific cell surface molecules. A mismatch in cell surface molecule activity could signal cell 
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fate differences between neighboring cells and elicit intracellular signals that increase contractility 

at the mismatched interfaces. A link between a mismatch in cell surface molecules and actin 

regulation has already been shown for Eph signaling and Toll-receptors (5.2.4) (Fagotto et al., 

2014; Pare et al., 2014).  

 

 

Figure 43: fkh but not ci-expressing cells are under oxidative stress; (a) Xy section of wing 
imaginal disc expressing the oxidative stress sensor gstD-GFP (grey in a`, maximum projection in 
a``, red in a```). Actin is shown in grey (a) or red (a```). Note the specific pattern along the DV 
boundary around the pouch and at the edges of the imaginal disc. Lower left inset in (a``) is a 
higher magnification of framed region. Scale bar as indicated, scale bar in inset represents 100 
µm. (b-c) Xy sections of wing imaginal discs expressing fkh (b, c) and ci (d) in flip out clones 54 h 
after heat-shock using a short (b, d) or long (c) heat-shock. gstD-GFP expression pattern is 
shown in in grey (b`-d`) or red (b```-d```). Actin is shown in grey (b-d), clonal marker in grey (b``) 
and red (b```-d```). Scale bar as indicated. Note that fkh-expressing are under oxidative stress (c 
d), whereas ci-expressing cells are not (d). Wild-type cells that invaginate are do not show gstD-
GFP expression (c).  
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5.2.4 Cell surface proteins and heterophilic binding  

Eph signaling has emerged as an attractive candidate connecting cell surface cues to the 

regulation of cytoskeleton components. Heterotypic binding of Eph receptors to their ligands 

activates several downstream signaling pathways, including the regulation of actomyosin 

components. Since both the Eph receptors as well as the ligands are capable of signal 

transduction, activation of Eph signaling is an interesting model for the detection of differences 

and the induction of increased actomyosin contractility at both sides of the interface (Cayuso et 

al., 2015). In fact, Eph signaling components are differentially expressed in specific rhombomere 

lineages during mouse development and appear to be required to establish sharp, actomyosin rich 

lineage boundaries (Calzolari et al., 2014). Future experiments could address the questions if Eph 

signaling is regulated by cyst-inducing transcription factors and if misregulation could have any 

implications in increased MWI contractility. 

During convergent extension, tissues elongate in one specific direction through spatially 

organized cell intercalations, which are driven by orientated actomyosin contractility. The authors 

of a recent study showed that transmembrane molecules belonging to the Toll family, establish 

this positional information through heterophilic receptor interactions (Pare et al., 2014). Although 

the exact linkage between the toll receptors and the actomyosin contractile network is still 

missing, this study, similarly to Eph signaling, links cell surface molecules capable of signal 

transduction, to the regulation of actomyosin contractility. 

Further supporting the concept of cell surface cues acting as signal-inducing detectors of 

cell fate differences, Milan and colleagues showed that the transmembrane proteins Caps and Trn 

are ligands providing cell identity cues between neighboring cells. They suggest that Caps and 

Trn binding to cell surface receptors on neighboring cells elicits survival signals. Loss of ligand 

expression in misspecified cells leads to compromised ligand-receptor binding and might prompt 

neighboring cells to induce apoptosis in misspecified cells. They specifically observed that sal-

overexpressing clones, in which caps and trn expression is lost, undergo apoptosis in lateral wing 

disc region, where Caps and Trn are endogenously expressed. caps and trn re-expression was 

sufficient to rescue clone survival. However, several observations led the authors to the 

conclusion that Caps and Trn do not serve as common survival factors and that additional cell 

interactions engaged in presenting cell fate decision and survival cues must exist. For example, 

the recovery of misspecified clones by caps and trn re-expression was only observed in their 

endogenous expression domains, which are restricted to the dorsal compartment early in wing 

disc development and to lateral regions at later stages (Milan et al., 2002; Milan et al., 2001). So 

far, the nature of the cell surface receptor involved in Caps and Trn binding remains elusive, as 

well as the possible contribution of actomyosin contractility to apoptotic elimination and clone 

rounding. However, it would be interesting to see if caps and trn are misregulated in cyst-forming 



DISCUSSION  

116 
 

contexts and if actomyosin levels or distributions are changed in clones overexpressing caps or 

trn.  

In the future, it will be crucial to determine if and which of these cell surface molecules 

are involved in the increase of MWI contractility. Importantly, the mechanisms of differential 

adhesion, metabolic cues and cell surface signals might not exclude each other, but could act in 

combinatorial and interdependent pathways. Eph signaling, for example, was shown to also 

regulate adhesion, positively in regions of low Eph activation or negatively through cleavage of 

E-cad molecules (Cayuso et al., 2015; Hansen et al., 2004; Solanas et al., 2011). Therefore, Eph-

elicited cell surface signals at MWI interfaces could connect contractility generation to 

differential adhesion. 

5.3 Interface contractility as potent error correction 
mechanism 

We suggest that interface contractility is a potent mechanism to eliminate aberrantly 

specified clones from the epithelium in order to maintain proper tissue patterning and epithelial 

integrity. The extrusion of misspecified cell clusters is size-dependent with cell cluster up to 6 

cells being removed most efficiently (Figure 29). Since small cell cluster experience more 

pressure from MWI tensions compared to big clones, we suggest that MWI tensions acting on big 

clones are not strong enough to elicit an extrusion process. This observation may convey the 

impression that interface contractility is not a potent error correction mechanism, as size-

dependent extrusion of larger clones initiates the formation of aberrant cyst structures. However, 

we assume that most mutations in nature arise on a single cell level and are therefore subject to 

MWI mediated cell elimination (5.4, Figure 44 a, b).  

5.3.1 Interface contractility does not induce live cell extrusion 

As shown in Figure 29, cell elimination of small cell clusters by MWI contractility 

depends on the activation of the apoptotic pathway. Therefore, MWI contractility causes cell 

elimination by inducing cell death, rather than by directly driving mechanical live cell extrusion 

which was observed in the context of cell crowding (Eisenhoffer et al., 2012; Marinari et al., 

2012). Our experiments suggest that small fkh-expressing clones are subjected to stronger 

apoptotic stimuli than larger clones, as they contain proportionally more apoptotic cells (Figure 

30). The apoptotic stimuli may arise indirectly from strong apical constriction, which was 

observed in our simulations and experiments. Apical constriction may limit the apical surface area 

available for survival signals (Fletcher et al., 2015). This is consistent with the survival of large 
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clones undergoing MWI-induced cyst formation when their apical face expands into a large cyst 

lumen after initial invagination events causing apical constriction.  

Recent studies illustrate the differences between live cell and apoptotic extrusion on a 

mechanistic level. Whereas progressive loss of apical area is associated with apoptotic extrusion, 

live cells leaving the epithelium first undergo loss of individual cell junctions and significant 

neighbor exchanges (Marinari et al., 2012). It will be interesting to distinguish if different 

localization of cellular forces and mechanical parameters regulate these distinct processes. 

5.3.2 Morphogenetic apoptosis and short range interactions 

As discussed above (1.4.3 a), morphogenetic apoptosis describes JNK-dependent 

induction of apoptosis where discontinuities in Wg and Dpp morphogen gradients occur. Similar 

to interface contractility, morphogenetic apoptosis removes aberrantly specified cells from the 

tissue to restore a smooth morphogen gradient (Adachi-Yamada and O'Connor, 2002). In the 

respective study, localization of actomyosin components as well as shapes of clones deregulating 

Wg or Dpp components were not analyzed in detail. Our own experiments show that clones 

ectopically activating Dpp and Wg signaling invaginate and form cysts as a result of MWI 

interface contractility (Figure 15). This suggests that morphogenetic apoptosis might be also 

driven by an increase in MWI tension. However, it remains elusive if morphogenetic apoptosis 

displays the same size-dependent clonal extrusion as shown for interface contractility. In addition, 

we did not specifically address the importance of activated JNK signaling for extrusion of small 

clones by increased interface contractility (5.3.4). Therefore, we cannot draw a final conclusion 

regarding the possibility that morphogenetic apoptosis and increased interface contractility are the 

same or two distinct mechanisms. 

In agreement with our results, clones overexpressing the transcription factors salm and 

salr undergo cyst formation in regions of low endogenous expression (Organista and De Celis, 

2013). The frequency of sal-overexpressing clones outside the endogenous expression regions can 

be increased by blocking apoptosis, suggesting that the majority of clones are normally lost from 

the epithelium by an apoptosis-dependent mechanism. This mechanism is likely to be the same 

we observe for misspecified clones experiencing interface contractility. Interestingly, co-

expression of the cell surface proteins Capricious (Caps) and Tartan (Trn) leads to the recovery of 

sal-overexpressing clones comparable to blocking apoptosis. The authors suggest that these 

surface proteins act as ligands for the neighboring cells thereby ensuring survival. Therefore, sal-

overexpressing clones are lost from the epithelium because they negatively regulate caps and trn 

(Milan et al., 2002). We cannot exclude the possibility, that Caps and Trn play also a role in 

eliminating clones subjected to increased interface contractility. However, several observations 

speak against a mechanism solely relying on these two transmembrane proteins. Most 
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prominently, the authors show that caps and trn co-expression only rescues clone survival in the 

lateral regions of the wing imaginal disc where Caps and Trn are endogenously expressed (Milan 

et al., 2002). fkh-expressing clones, however, do not exhibit a position-dependent extrusion. 

Furthermore, morphogenetic apoptosis induced by the overexpression of a dominant-active 

version of the Dpp receptor tkv cannot be blocked by caps co-expression (Adachi-Yamada and 

O'Connor, 2004). Therefore, we conclude that deregulation of caps and trn alone cannot explain 

all apoptotic events occurring upon misspecification of cells. However, it supports the exciting 

idea that several cell surface molecules are employed to signal cellular fate decision between 

neighboring cells enabling them to compare each other and detect perturbations (5.2.4).  

5.3.3 Cell competition is distinct to interface contractility 

As discussed in section 1.4.3 b, cell competition is an interface-dependent tissue 

surveillance mechanism. During this process, metabolically unfit ‘loser’ cells that touch 

metabolically fitter ‘winner’ cells are induced to undergo apoptosis. Several arguments suggest 

that cell competition is mechanistically distinct from increased interface contractility. Cell 

competition has not been shown to cause contractile changes at interfaces between winner and 

loser cells or clone smoothening. In addition, cell competition always acts unidirectional by 

eliminating loser cells, even if they surround a cluster of winner cells (Levayer and Moreno, 

2013). In contrast, interface contractility extrudes the encircled cell clusters regardless of their 

metabolic state since misspecified as well as wild-type cells extrude via apoptosis (Figure 31). 

Experiments changing the metabolic fitness status of misspecified cells did not prevent MWI-

induced cyst formation (data not shown). This suggests that epithelial tissues likely evolved 

multiple mechanisms to eliminate homeostatic perturbations, either in metabolic activity (cell 

competition) or cell fate specification (interface contractility). Future studies should aim to 

provide insight into which triggers initiate one process or the other.  

5.3.4 JNK signaling and interface contractility 

Several error correction mechanisms including cell competition, intrinsic tumor 

suppression or morphogenetic apoptosis (1.4.3) rely on JNK activation for apoptotic clearance of 

aberrant cells. As shown in Figure 9, JNK signaling is activated in Psc-Su(z)2 mutant and 

surrounding wild-type cells. We demonstrated that JNK signaling is not necessary for an increase 

in interface contractility, since Psc-Su(z)2 mutant clones still formed cysts in a JNKK mutant 

background (Figure 9). Similarly, it was suggested that JNK activation is not the cause of clonal 

extrusion in Dpp-signaling compromised clones, but likely a secondary stress response (Gibson 

and Perrimon, 2005). This suggests that JNK is not an upstream regulator of interface 

contractility. 
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However, the activation of apoptosis in small misspecified cell cluster and their 

subsequent extrusion might be JNK-dependent. Interestingly, morphogenetic apoptosis induced 

by discontinuities in morphogen gradients can be blocked by mutations in the JNK pathway 

(Adachi-Yamada and O'Connor, 2002). Therefore, future experiments need to address if JNK is 

indeed a downstream effector of interface contractility and if it is necessary for the removal of 

small misspecified clones subjected to interface contractility. The signal that could promote pro-

apoptotic JNK activity in small cluster of misspecified cells remains elusive and awaits further 

investigations. Alternatively to the idea of reduced uptake of survival signals discussed above 

(5.3.1), it was shown that mechanical stress activates JNK in the course of wound healing (Galko 

and Krasnow, 2004; Ramet et al., 2002). In addition, imbalances between Dpp and Hh signaling 

levels were reported to cause JNK activation, suggesting that perturbed signaling ratios are sensed 

by cells and initiate the apoptotic program (Adachi-Yamada and O'Connor, 2002). It will be 

interesting to investigate if these JNK-activating mechanisms are restricted to the specific context 

in which they were described or if they may also apply to apoptotic processes induced by 

interface contractility. 

5.4 Interface contractility and cancer initiation 

Paradoxically, cysts are caused by a failure to eliminate intermediate-sized aberrant cell 

cluster from the epithelium. For intermediate-sized clones, increased interface contractility is able 

to induce the observed cell shape changes of cyst formation, but the forces are not strong enough 

for a complete removal by apoptosis. Although cysts are not eliminated by apoptosis, in several 

cases full extrusion as self-contained structures from the wing disc epithelium was observed 

(Figure 44 b). In these cases, cysts can survive metamorphosis and become located within the 

adult wing structure (Gibson and Perrimon, 2005; Shen and Dahmann, 2005; Shen et al., 2010). 

We observed full cystic extrusion only in the case of Psc-Su(z)2 mutant clones (Figure 8), 

suggesting that the success of complete extrusion might depend on the genetic background or the 

experimental approach. In agreement with this, Gibson and colleagues found significant 

differences in clone extrusion and clone death using two different flipping approaches (Gibson 

and Perrimon, 2005).  

In a disease promoting scenario, cysts surviving abscission from the surrounding wild-

type tissue may promote displacement of cells into new microenvironments and may precede 

emergence of invasive cell behaviors (Figure 44 b). Strikingly, cystic deformations have been 

observed in mouse models of colon cancer upon deregulation of Wnt/Wg and TGFβ/Dpp 

signaling (Barker et al., 2009; Batlle et al., 2002; Haramis et al., 2004; Pinto and Clevers, 2005). 
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These observations emphasize that epithelial cysts may be an early hallmark of tissue disruption 

in cancer driven by mutagenic changes to differentiation state. However, the exact implication 

and function of cyst formation in cancer initiation and progression is not understood and needs 

further investigations.  

 

 

Figure 44: Model of interface contractility acting between differently fated cell populations; 
Schematic tissue cross-sections with apical surfaces in red, basal surfaces in blue, lateral cell 
surfaces in grey and adherens junctions as red dots. Magenta writing indicates experimentally 
used conditions (HS = heat-shock) and green writing indicates possible naturally occurring 
scenarios creating clusters sizes of differently fated cells. Grey writing indicates speculations on a 
role of interface contractility in normal development. (a) Single misspecified cells are 
experimentally induced by a short heat-shock (HS). In nature, random mutations may arise 
leading to strong fate differences compared to surrounding wt tissues. Experimentally or naturally 
induced differences induce interface contractility, which causes apical constriction, apoptosis and 
preserve tissue homeostasis. (b) Intermediate clone sizes are induced experimentally by 
intermediate HS. In nature, clusters of misspecified cells could arise from single mutant cells that 
proliferate before the onset of interface contractility or escape induction of apoptosis. Both 
scenarios could be mediated by onco- or tumor suppressor gene mutations. Weak fate 
differences that are not immediately recognized may also allow for proliferation. During 
development, differently fated intermediate cell clusters arise by means of tissue patterning. 
Developmental or abnormal fate differences drive cell cluster invagination and cyst abscission. 
Cyst formation by misspecified cells compromises tissue integrity and might be cause for the 
development of precancerous lesions. (c) Large clone sizes are induced experimentally by a long 
HS. During development, large domains of cell fates arise by tissue growth and patterning. We 
speculate that fate differences at cell fate interfaces could be translated into enhanced 
contractility, leading to a decrease in interface roughness. Large clones also arise from 
intermediate sizes (indicated by dashed line) due to reasons described in (b). 

 

Experimentally, intermediate-sized cell clusters giving rise to cysts can be generated by a 

long heat-shock causing an increase in the likelihood of neighboring cells to flip and generate 

larger misspecified clone patches. For tumor initiation and progression, it is usually anticipated 

that mutations occur on a single cell level (Nowell, 2002). This raises the question what 
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mechanism may prevent the extrusion of these single, misspecified cells by increased interface 

contractility and allows their proliferations to intermediate-sized clusters. One explanation might 

lie in the strength of differences between misspecified and surrounding cells. Big fate differences 

are probably sensed immediately enabling a quick tissue response, whereas slight fate differences 

could allow cells to proliferate before increased tension at the interfaces is generated. Similarly, in 

the case of APC mutations and intestinal polyp formation (5.2.1), mutations constitutively 

activating Wnt/Wg signaling might not be detected at the crypt base, where all cell are 

characterized by high Wnt/Wg signaling levels. This circumstance might allow a single, mutant 

cell to proliferate before it migrates to the crypt/villus junction, an environment of low Wnt/Wg 

signaling activity. There, mutant cells may be detected by surrounding cells and the, meanwhile, 

intermediate-sized cluster will form cyst-like outpocketings. Alternatively, intermediate clusters 

may also arise by continuous proliferation of single misspecified cells resistant to apoptotic 

signals. This scenario could either arise from two mutations promoting apoptotic resistance and 

cell fate differences independently, or one mutation fulfilling both of these conditions (Figure 44 

b). Prominently, based on our experiments, tumor suppressor gene mutations, such as Psc-Su(z)2 

or RasV12 confer apoptosis resistance shown by apoptotic marker staining, and elicit MWI 

contractility and cyst formation (Figure 32). Supporting this, several studies describe altered 

interface actin dynamics of RasV12 transformed cells in MDCK monolayers, suggesting that one of 

the most potent human oncogenes may indeed induce interface contractility (Hogan, 2012; Hogan 

et al., 2009; Liu et al., 2012; Wu et al., 2014). 

5.5 Role of interface contractility during morphogenesis 

Since increased interface contractility is driven by the apposition of differently fated cell 

populations, it raises the questions if interface contractility could not only play a role as error 

correction mechanism for cell fate misspecification, but also as a driver of epithelial 

morphogenesis during development. Interface contractility mechanisms would thereby offer an 

opportunity to understand similarities and differences between morphogenetic behaviors in 

development or disease. It has become clear, that spatial regulation of actomyosin at specific 

cellular interfaces is a crucial concept for several morphogenetic processes (Lecuit et al., 2011; 

Schock and Perrimon, 2002) and that many developmental invagination processes are driven by 

cell fate specification of intermediate-sized cell clusters (Bate and Arias, 1991; Cohen et al., 

1993; Roper, 2012). As mentioned previously (1.3.3 b), a local increase in actomyosin 

contractility at the AP compartment boundary in imaginal discs, where two cell lineages meet, is 

sufficient and necessary for boundary maintenance and straightness (Aliee et al., 2012; Landsberg 

et al., 2009; Major and Irvine, 2006). Similarly, in the hindbrain of zebrafish, the segmentation of 
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individual specified rhombomeres is accompanied by Eph signaling-dependent actomyosin 

enrichment and contractility increase at the borders. The increase in contractility is required to 

prevent cell mixing and assure border straightness (Calzolari et al., 2014).  

Our own experiments suggest that increased interface contractility might also play a role 

in endogenous fold formation in the wing imaginal disc. The occurrence of these folds is highly 

regulated and coincides temporally as well as spatially with the apposition of different 

transcription factor domains (Sui et al., 2012) (Figure 36). We showed that ectopic transcription 

factor domains, as well as changes to endogenous ones, can induce ectopic folds and weakens 

endogenous folds, respectively In agreement with that, a previous study connected the expression 

of Dorsocross (Doc) transcription factors to fold formation. Doc is expressed specifically at the 

B/DH hinge folds ventrally and dorsally (Figure 36) and its expression pattern coincides spatially 

and temporally with B/DH fold formation. Reduction of Doc leads, similar to our results, to 

weakening of the B/DH fold and Doc overexpression is able to induce ectopic folds and cyst 

formation (Sui et al., 2012). Although this result had been interpreted as a specific cell-

autonomous function for Doc in inducing cell shape changes, it would be important to test if 

specifically the apposition of Doc- positive and Doc-negative cell populations is sufficient to 

drive fold formation.  

Endogenous folds exhibit a distinct cell-biological signature compared to non-fold cells 

including microtubule redistribution, reduction of collagen and integrin levels as well as Matrix 

metalloproteinase 2 (Mmp2) expression (Sui et al., 2012). So far, we have not yet tested if ectopic 

folds exhibit a similar molecular signature compared to normal folds. This is important to 

understand if ectopic folds resemble endogenous ones not only phenotypically, but also on a 

molecular level. Future experiments need to analyze if lateral actomyosin accumulates as a 

hallmark of increased interface contractility, in ectopic or endogenous folds. Details of a 

molecular signature of ectopic and endogenous folds will provide insights if both fold types arise 

from similar or distinct mechanisms. 

Large misspecified clones smoothen at the contact side to surrounding wild-type cells, 

and sometimes show slight apical indentations. So far, we do not understand what regulates the 

occurrence of smoothening or indentations. However, clone shape might influence how much 

tension is felt. Ectopic expression of cell fate specifying transcription factors in large, elongated 

clones led to deep invaginations and fold formation. Possibly, 3D-vertex model simulations could 

give more insights in the mechanical and experimental parameters that distinguish between fold 

formation and just smoothening of contact surfaces. These simulations have important 

implications for understanding the distinct mechanisms of cell segregation at compartment 

boundaries and invagination into cysts (Figure 44 b, c). 
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Moreover, it will be crucial to investigate if cellular mechanisms that regulate interface 

contractility at aberrantly specified cells and at developmental compartments are alike. We could 

show that the change in interface tensions is similar in the context of misspecified clones 

subjected to MWI contractility and compartment boundaries in imaginal discs (5.1.3). So far, we 

have not analyzed, if actomyosin at compartment boundaries only enriches at adherens junctions, 

but if it is also found at lateral surfaces right at the cell lineage interface. Thus, understanding if 

lateral MWI contractility plays a role in compartment boundary formation requires further 

experiments.  

Strikingly, morphogenetic apoptosis does not only play a role as an error correction 

mechanism, but also during normal development. The leg of Drosophila consists of different 

segments, which are connected by joints. In the leg imaginal discs, the future joints are 

represented as folds in the tissue (Manjon et al., 2007). It has been shown, that fold formation 

depends on the activation of JNK-dependent apoptosis induced by the establishment of sharp Dpp 

borders distally in each segment. Interestingly, compromising these sharp boundaries lead to loss 

of fold and joint formation (Manjon et al., 2007). Although the exact correlation of 

morphogenetic apoptosis and interface contractility is not resolved yet (5.3.2), this example 

illustrates that sharp interfaces of differently fated cells arise in different developmental processes 

and induce a mechanism that can translate cell fate patterning into the required shape changes. 

Interestingly, only the distal joints in the leg imaginal disc are formed by JNK-dependent 

apoptosis, whereas proximal fold formation arise due to another mechanism (Manjon et al., 2007). 

It would be interesting to see, if interface contractility at these sharp boundaries could play a role 

in joint morphogenesis. 
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6 Conclusion 

By combining experimental and modeling approaches, we demonstrated that actomyosin 

contractility increases at lateral interfaces between normal and aberrantly specified epithelial cells 

in Drosophila imaginal discs. This drives apoptotic cell elimination, cyst formation or cell lineage 

segregation depending on cell cluster size. Thereby, interface contractility acts as an error 

correction mechanism on single misspecified cells, but may cause disease-promoting cysts in 

intermediate-sized cell clusters. Cell segregation of large clusters subjected to increased interface 

contractility could drive tissue separation during development (Figure 1, Figure 44). 

These results provide a novel and very general perspective on morphogenetic 

mechanisms arising from cell fate heterogeneities within tissues. Our work has important 

implications for understanding the interplay between cell fate patterning and epithelial structure in 

the course of development and disease, not only in Drosophila, but likely also in the mammalian 

system.  

However, several intriguing questions remain unanswered and have to be addressed in 

future experiments. First of all, the upstream mechanism that allows detection of many unrelated 

cell fates and of misspecified cells could, due to the generality of this phenomenon, not be 

resolved yet. Understanding the contributions of differences in adhesion, metabolic states or cell 

surface molecules between different fates might shed light on the complex nature of this process. 

Secondly, the translation of cell fate differences into the molecular regulation and coordination of 

increased actomyosin contractility at the interface need to be further addressed. Investigating a 

potential role for Eph signaling may be of particular interest. Apart from unraveling the exact 

upstream pathway of interface contractility, the implications of this mechanism during normal 

development and morphogenesis, as well as for cancer initiation and progression in mammalian 

systems, remain exciting starting points for future studies.  
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Appendix 

I. Genotypes 

Table 11: Genotypes and experimental conditions; Detailed genotypes and experimental 
conditions, including time point of dissection (TP), heat-shock length (HS), egg collection/larval 
staging (EC) and use of spacer between coverslip and slide for microscopy of each figure are 
listed. 

Fig 
 

Genotype TP HS  EC 
Spa- 
cer 

7 b, c hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D iso; +/+ 30 h 60 no no 
d, e hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D iso; +/+ 54 h 60 no no 
g, h hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[XL26]; +/+ 30 h 60 no no 
i, j hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[XL26]; +/+ 54 h 60 no no 

 

8 a hsflp [122] /+;  FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26]; +/+ 0 h 45 no yes 
b, c hsflp [122] /+;  FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26]; +/+ 30 h 45 no yes 
d, e hsflp [122] /+;  FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26]; +/+ 54 h 45 no yes 
f hsflp [122] /+;  FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26]; +/+ 54 h 45 no yes 
g hsflp [122] /+;  FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26]; +/+ 102 h 45 no yes 

 

9 a, b hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[1b8]recA; +/+ 27 h 60 no no 
c hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[1b8]recA; +/+ 72 h 60 no no 
d, e hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[1b8]recA, yki[B5]; +/+ 27 h 60 no  no  
f hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[1b8]recA, yki[B5]; +/+ 72 h 60 no no 

g, h hsflp [122] /+;  FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[XL26]; puc[A251.1F3]-lacZ ry[506]/ 
+ 54 h 60 no no 

i FM7-GFP/ +; FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[XL26]; T155 Gal4 UAS-flp/+ / / no no 
j hep[r75]/Y; FRT42D ubi-eGFP / FRT42D Psc-Su(z)2[xl26]; T155 Gal4 UAS-flp/+ / / no no 

 

10 b,c hsflp [122] / + ; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 yes yes 
d,e hsflp [122] / + ; + / +; act > y[+] > GAL4, UAS-GFP/+ 54 h 10 yes yes 
g, h UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 yes yes 
i, j UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 54 h 10 yes yes 

 

11 a hsflp [122] / +; UAS-AbdB / + ; act > y[+] > GAL4, UAS GFP/ + 54 h 10 no no 
b, c act > CD2 > GAL4, UAS GFP/ UAS-AbdB; MKRS hsflp / +  54 h 60 no no 
g, h, i  hsflp [122] / +; UAS-ey / + ; act > y[+] > GAL4, UAS GFP/ + 54 h 10 yes yes 
d, e, f hsflp [122] / +;+ / +; act > y[+] > GAL4, UAS GFP / UAS-Lz 54 h 10 no  no 
j, k, l hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP/ UAS-Ubx 54 h 10 no  no 

 

12 b UAS-fkh-3xHA /  +, act > CD2 > GAL4, UAS GFP/ +; MKRS hsflp / +  54 h 60 no no 
c act > CD2 > GAL4, UAS GFP/ UAS-AbdB; MKRS hsflp / +  54 h 60 no no 
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d hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP / UAS-Lz 54 h 10 no  no 
e act > CD2 > GAL4, UAS GFP/ UAS-ey; MKRS hsflp / +  54 h 60 no no 
f act > CD2 > GAL4, UAS GFP/ +; MKRS hsflp / UAS-Ubx  54 h 60 no no 

 

13 a, b hsflp [122] / +; Sp/CyO GFP; act > y[+] > GAL4, UAS GFP/ UAS-dmyc 54 h 10 no yes 
c, d hsflp [122] / +; Sp or CyO GFP / + ; act > y[+] > GAL4, UAS GFP/ UAS-fln-HA3 54 h 10 no no 

e, f UAS-fkh-3xHA / hsflp [122]; Sp or CyOGFP / UAS-p35; act > y[+] > GAL4, UAS-GFP/ 
+ 54 h 10 no yes 

g, h UAS-fkh-3xHA / hsflp [122]; Sp or CyOGFP / +; act > y[+] > GAL4, UAS-GFP/ UAS-
DIAP 54 h 10 no yes 

 

14 b-f hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP / UAS-Ci.HA.wt 54h 10 no yes 
h-l hsflp [122] / +; UAS-hop[TumL]/ +; act > y[+] > GAL4, UAS GFP / + 54 h  8 no yes 

 

15 b-f hsflp [122] / UAS-armS10; + / +; act > y[+] > GAL4, UAS GFP / + 54 h 10 no no 
h-k hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP / UAS-tkv.CA 54 h 10 no no 

 

16 b-d hsflp [122] / +; + / +; Act5C.GAL4 (FRT.CD2), UAS-RFP / UAS-Vg 54 h 10 no no 
f-h hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP / UAS-hth 54 h 10 no no 

 

17 b-d hsflp [122]/ +; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 25 yes yes 
f-h UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 25 yes yes 
i UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 54 h 40 no no 
k hsflp [122] / +; UAS-ey / + ; act > y[+] > GAL4, UAS GFP/ + 54 h 40 no no 
j hsflp [122] / +;  UAS-AbdB / + ; act > y[+] > GAL4, UAS GFP/ + 54 h 40 no no 
l hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP/ UAS-Ubx 54 h 40 no no 

 

18 b UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 54 h 40 no no 
d hsflp [122] / +; UAS-ey / + ; act > y[+] > GAL4, UAS GFP/ + 54 h 40 no no 
c hsflp [122] / +; UAS-AbdB / + ; act > y[+] > GAL4, UAS GFP/ + 54 h 40 no no 
e hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP/ UAS-Ubx 54 h 40 no no 
g-k hsflp [122] / +; + / +; act > y[+] > GAL4, UAS GFP / UAS-Ci.HA.wt 54 h 30 no yes 

 

19 a.d hsflp [122] / nrgGFP; FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26]; +/+ 54 h 60 no no 
e, f hsflp [122] /+;  FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26]; +/+ 54 h 60 no no 

 

20 a, b UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 yes yes 
c,d UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 25 yes yes 

 

21 
a, c, 
e 

UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 yes yes 

b, d UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 15 yes yes 

 

22 a-c hsflp [122] / UAS-fkh-3xHA; + / shq-GFP; Act5C.GAL4 (FRT.CD2), UAS-RFP / + 30 h 10 no yes 
d-f UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 no yes 
g-i hsflp [122] / UAS-fkh-3xHA; + / zip>GFP; Act5C.GAL4 (FRT.CD2), UAS-RFP /+ 30 h 10 no yes 
j-l UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 no yes 

m, n hsflp [122] / UAS-fkh-3xHA; + / +; Act5C.GAL4 (FRT.CD2), UAS-RFP / 
sqh>MoeGFP 30 h 15 no  yes 

n, p UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 no yes 

 

23 a, b hsflp [122] / +; FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26], vkg>GFP; +/+ 54 h 40 no yes 
c-e hsflp [122] / +; FRT42D ubi-mRFP / FRT42D Psc-Su(z)2[XL26], vkg>GFP; +/+ 72 h 40 no yes 
f, h hsflp [122]/ +; + / +; act > y[+] > GAL4, UAS-GFP/ + 54 h 10 yes  yes 
g, i UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 54 h 10 yes  yes 

 

25 d, e hsflp [122] / +; Sp or CyOubi GFP / UAS-p35; Act5C.GAL4 (FRT.CD2), UAS-RFP / 54 h 10 no no 
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UAS-RhoV14 

f hsflp [122] / +; Sp or CyOubi GFP / UAS-p35; Act5C.GAL4 (FRT.CD2), UAS-RFP / 
UAS-RhoV14 54 h 10 no yes 

g, h hsflp [122] / + ; Sp or CyOGFP / UAS-p35; act > y[+] > GAL4, UAS-GFP / UAS-
RhoV14 54 h 20 no yes 

 

28 c UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 54 h 25 yes yes 

 

 29 a hsflp[122]/+; ubi <stop <GFPnls, act5C <stop <lacZnls/+; Act5C <stop <GAL4, UAS-
his2A::RFP/+ 30 h 7 

24 
h 

no 

 
b UAS-fkh-3xHA/ hsflp[122]; ubi <stop <GFPnls, act5C <stop <lacZnls/+; Act5C <stop 

<GAL4, UAS-his2A::RFP/+ 30 h 7 
24 
h 

no 

 
c UAS-fkh-3xHA/ hsflp[122]; ubi <stop <GFPnls, act5C <stop <lacZnls/+; Act5C <stop 

<GAL4, UAS-his2A::RFP/UAS-DIAP 30 h 7 
24 
h 

no 

 
d hsflp[122]/ Y; ubi <stop <GFPnls, act5C <stop <lacZnls/+; Act5C <stop <GAL4, UAS-

his2A::RFP/UAS-DIAP 30 h 7 
24 
h 

no 

 

30 a UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 7 no no 
b UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/UAS-DIAP 30 h 7 no no 

 

31 
a, b, 
c 

UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30h 30 no no 

d, e, f UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/UAS-DIAP 30 h 30 no no 
g hsflp [122] / + or Y; + /  UAS-ey; act > y[+] > GAL4, UAS-GFP/ + 30h 7 no no 
h hsflp [122] / + or Y; + /  UAS-ey; act > y[+] > GAL4, UAS-GFP/ + 30h 30 no no 

 

32 a hsflp [122] / Y or +; Sp / CyO ; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 no no 
b-d hsflp [122] / Y or +; UAS-RasV12 / + ; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 no no 
e-f hsflp [122] / Y or +; UAS-RasV12 / + ; act > y[+] > GAL4, UAS-GFP/+ 30 h 27 no no 

 

33 a-c UAS-fkh-3xHA / hsflp [122]; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 15 yes yes 

 

34 a, b hsflp [122] / + ; + / +; act > y[+] > GAL4, UAS-GFP/+ 30 h 10 yes yes 

 

35 b-d ptc Gal4, tubGal80[ts]-20 / UAS-GFP 
EL 4 days at 18°C, TS 24 h 30 °C, 
back to 18°C for 24 h, dissection 

 
e-g ptc Gal4, tubGal80[ts]-20 / UAS-ey 

EL 6 days at 18 °C, TS 24 h 30 °C, 
immediate dissection 

 

37 b, c MS1096 Gal4 / FM7a ; UAS-eGFP/CyO; +/+ / / no  no 
d, e MS1096 Gal4 / +; UAS-eGFP/+ ; UAS-hth /+ / / no  no 

 

42 a hsflp [122] /+;  FRT42D ubi-mRFP / FRT42D shg[R69b]; +/+ 30h 45 no  no 
b, c hsflp [122] / +; + / UAS-Ecad-GFP; Act5C.GAL4 (FRT.CD2), UAS-RFP / + 30h 10 no  no 

 

43 a gstD-GFP / / no no 
b hsflp [122] / UAS-fkh-3xHA; gstD-GFP / CyO; Act5C.GAL4 (FRT.CD2), UAS-RFP /+ 54 h 10 no no 
C hsflp [122] / UAS-fkh-3xHA; gstD-GFP / CyO; Act5C.GAL4 (FRT.CD2), UAS-RFP /+ 54 h  25 no  no 
d hsflp [122] / +; gstD-GFP / CyO; Act5C.GAL4 (FRT.CD2), UAS-RFP / UAS-Ci 54 h 10 no no 

 

45 a, b Vkg-GFP / / no no 
c - r w118 / / no no 
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II. qPCR data 

Table 12: qPCR analysis of fkh, Abd-B and hth expression in Psc-Su(z)2 mutant imaginal 
discs; (a) Mean Ct values of three technical replicates are shown for GAPDH2, CG12703, CP1, 
fkh, Abd-B and hth in wild-type (wt) and Psc-Su(z)2 mutant discs and for 3 biological replicates 
(Rep1, 2 and 3). GAPDH2, CG12703, HP1 and CP-1 values were averaged to obtain one Ct 
value for control genes. Standard deviation (stdv) is reported. Wt Ct values of fkh were set to 40 
(red) (b) Fold change of fkh, Abd-B and hth expression levels in each replicate (Rep1, 2 and 3) 
were calculated using the ∆∆Ct method. Mean including all 3 replicates and standard deviation 
(stdv) is reported. Fold change is also reported in Table 1. 

a wt stdv Psc-Su(z)2-/- stdv 

Rep 1 GAPDH2 21.10 0.06 22.48 0.13 

CG12703 26.79 0.03 28.34 0.03 

CP1 22.64 0.04 23.09 0.06 

control genes 23.51 2.94 24.64 3.22 

fkh 40 28.43 0.17 

Abd-B 35.76 1.15 27.21 0.36 

hth 21.55 0.20 24.46 0.19 

Rep 2 GAPDH2 22.53 0.16 21.03 0.11 

HP1 20.29 0.16 20.32 0.04 

CP1 22.88 0.14 22.28 0.05 

control genes 21.90 1.40 21.21 0.99 

fkh 40 27.82 0.08 

Abd-B 38.44 0.23 26.98 0.15 

hth 25.14 0.01 24.78 0.04 

Rep 3 GAPDH2 20.35 0.08 22.61 0.14 

HP1 19.82 0.16 21.43 0.62 

CP1 22.25 0.10 23.94 0.09 

control genes 20.81 1.28 22.66 1.25 

fkh 40 29.08 0.12 

Abd-B / / 

hth 23.27 0.32 25.31 0.08 

      

b Rep 1 Rep 2 Rep 3 Mean stdv 
fkh 6643.73 2879.63 7019.84 5514.40 2289.51 

Abd-B 820.93 1742.17 1281.55 651.41 

hth 0.29 0.80 0.88 0.66 0.32 
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III. Actin quantifications 

Table 13: Actin intensities measurements; (a) Normalized mean intensities and SEM of actin 
intensity measurements in discs containing Gal4/UAS flip out clones expressing fkh. Actin 
intensities at interfaces between wild-type cells (wt/wt), misspecified fkh-expressing cells 
(mis/mis) and between wild-type and fkh-expressing cell (wt/mis) are shown for early stages (30 
h) and late stages (54 h) after clone induction. Measurement of fkh-expressing clones (10 min 
heat-shock) and wild-type clones (25 min heat-shock) were pooled to reflect the mirror symmetry 
of the cyst-forming conditions. Numbers of measured clones are indicated. (b) Significance of 
differences between data sets (table below) was tested by applying a two-tailed WSR-test. 
Calculated p-values are shown. Red = p-val < 0.01. Lack of statistically significant differences for 
apical actin intensities at late stages are due to mild cell-autonomous enrichment of actin in fkh-
expressing cells. Data is visualized in Figure 21 f, g. Actin quantification done by Anne Classen, 
Data analysis including statistics by Marco La Fortezza. 

a Apical Lateral 

Early Late Early Late 

Mean SEM Mean SEM Mean SEM Mean SEM 

wt/wt 1.000 0.046 1.000 0.055 1.000 0.031 1.000 0.041 

wt/mis 1.464 0.077 1.716 0.134 1.525 0.044 1.405 0.045 

mis/mis 1.138 0.084 1.463 0.117 1.124 0.030 1.199 0.055 

n (10 min HS) 15 7 49 17 

n (25 min HS) 10 3 38 14 

n (total) 25 10 87 31 

b Apical Lateral 

Early late Early late 

wt/mis_wt/wt 0.001 0.002 3.40E-12 2.99E-06 

wt/mis_mis/mis 0.001 0.275 7.18E-13 0.006 

 

 

IV. Shape quantifications 

Table 14: Cell dimensions and clone shape analysis – experimental data setup; Gal4/UAS 
flip out discs expressing fkh (a), GFP and RhoV14 (b) were analyzed at different time points (0 h, 
30 h and 54 h after HS) and different heat-shock length (10 min – 25 min) as indicated. NZ= no 
zoom, HZ= higher zoom, 2.5 or 3. Ticks report which experimental condition underwent which 
analysis and what image source was used. Number of discs is indicated. 

a fkh 30 h 54 h 

  10 min  15 min  25 min  10 min  25 min 

 see NZ HZ NZ HZ NZ HZ NZ HZ NZ HZ 

Actin intensities 4.5.1a  ×   ×  ×  ×   ×   × 

Clone volume 4.5.1b     ×  ×    ×  × 

Nuclei counts 4.5.1c ×   ×   ×   ×   ×  × 

Clone shape 4.51d    ×  ×     ×  × 

Circularity 4.5.1e ×   ×   ×   ×   ×  × 

Wt dimension 4.5.1f ×   ×   ×  ×  ×   ×  × 

# of discs 3 4 6 3 3 
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b GFP 0 h 30 h 54 h 54 h RhoV14 54 h 

     10 min  25 min  10 min  25 min    10 min  

HZ NZ HZ NZ HZ NZ HZ NZ HZ NZ HZ 

Circularity 4.5.1e ×  ×   ×    ×  ×  ×     ×  

Wt dimension 4.5.1f  ×   ×   ×   ×   ×  × 

# of discs 1 3 3 2 3 4 
 

Table 15: Circularity measurements; (a) Gal4/UAS flip out discs expressing GFP (wt), fkh, or 
RhoV14 were analyzed 30 h and 54 h after HS. Inverse clones (inv) were generated by applying a 
long HS. Individual circularity measurements are listed. Mean, standard deviation (Stdv), 
Standard error of the mean (SEM) and number of clones analyzed are listed. (b) Significance of 
differences between data sets was tested by applying a two-tailed WMW test. * = p-val < 0.01, ** 
= p-val < 0.001. Date is visualized in Figure 23j. Contributions: Statistical analysis in b: Marco La 
Fortezza. 

a 30 h 54 h 

GFP fkh GFP inv fkh inv GFP fkh RhoV14 

0.39 0.89 0.38 0.89 0.19 0.80 0.37 

0.46 0.78 0.37 0.78 0.24 0.87 0.77 

0.29 0.82 0.70 0.78 0.26 0.87 0.34 

0.24 0.61 0.26 0.72 0.39 0.73 0.40 

0.24 0.83 0.19 0.63 0.23 0.87 0.66 

0.44 0.67 0.52 0.82 0.26 0.87 0.64 

0.34 0.79 0.21 0.67 0.93 0.36 

0.23 0.69 0.48 0.72 0.86 0.41 

0.27 0.26 0.69 0.83 0.53 

0.25 0.98 0.30 

0.91 0.42 

Mean 0.31 0.76 0.37 0.74 0.26 0.86 0.47 

Stdev 0.09 0.09 0.17 0.08 0.07 0.06 0.16 

SEM 0.03 0.03 0.06 0.03 0.03 0.02 0.05 

# clones 10 8 9 9 6 11 11 

b wt_fkh wt_RhoV14

30h 4.57E-05 

** 

30 inv 2.90E-04 

** 

54 h 1.60E-04 1.90E-03 

**  * 

 



  APPENDIX 

143 
 

 

Figure 45: Collagenase treatment of wing imaginal discs; (a, b) 3rd instar wing imaginal discs 
expressing the Collagen IV GFP-fusion protein Vkg-GFP were treated with PBS (a) or 
Collagenase (b). Imaginal discs originate from same larva to allow better comparison. After 
Collagenase treatment, Vkg-GFP signal is dramatically reduced (b`) compared to control (a`). 
Note increase in disc size and folding. (c-o) Xy sections of 4 wing imaginal discs pairs where one 
disc was treated with PBS (left column) and the sibling with collagenase (second row from left). 
The two right columns show the same discs imaged closer. Lower left insets are higher 
magnifications of white framed regions. Scale bar as indicated, scale bars in insets represent 25 
µm. Note the increase in cell area. Refer for measurements to Table 16. 
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Table 16: Cell dimensions; Mean of cell height, apical area, volume, aspect ratios and numbers 
of analyzed discs are reported. Tot=mean of ROI1 and 2. ROI1=means of measurements in 
periphery of the wing pouch. Roi2=means of measurements in the pouch center. Stdv = standard 
deviation. Measurements include (a) Gal4/UAS flip out clones expressing GFP at 0 h, 30 h and 54 
h after heat-shock; (b) 3rd instar wing imaginal disc treated with collagenase and sibling imaginal 
discs treated with PBS as control. (c) Surrounding wild-type (wt) cells (GFP-) and (d) fkh-
expressing cells itself (GFP+) of Gal4/UAS flip out discs 30 h and 54 h after heat-shock. 

 Tot Stdv ROI1 Stdv ROI2 Stdv Nr. of discs  

a GFP-expressing cells         

0 h 

cell height 28.41 1.01 29.12 27.70 n=1 disc 

apical area 11.97 1.72 10.75 13.19 

cell volume 339.11 36.85 313.06 365.17 

aspect ratio 8.25 0.89 8.88 7.63 

30 h 

cell height 41.26 6.34 39.33 6.82 43.19 5.89 n=5 discs 

apical area 6.75 2.06 8.61 0.71 4.88 0.58 

cell volume 275.01 81.71 337.52 54.22 212.50 48.12 

aspect ratio 16.50 3.91 13.45 2.59 19.55 2.10 

54 h 

cell height 43.95 3.84 44.33 3.90 43.56 4.34 n=4 discs 

apical area 6.39 1.69 7.85 0.92 4.94 0.40 

cell volume 281.35 80.18 347.86 51.43 214.85 23.72 

aspect ratio 17.77 2.76 15.89 1.69 19.65 2.33 

b Collagenase  PBS Collagenase 
cell height 37.23 7.31 25.76 5.39 n=4 discs 

apical area 3.81 0.61 4.90 0.65 

cell volume 143.82 42.88 127.64 39.01 

aspect ratio 19.07 3.21 11.63 2.05 

c wt cells surrouning fkh+ clones 
30 h 

cell height 39.48 2.58 38.64 2.50 40.33 2.88 n=3 discs 

apical area 8.44 2.24 10.22 1.67 6.65 0.35 

cell volume 329.99 73.28 392.41 39.29 267.58 13.95 

aspect ratio 13.93 2.35 12.20 1.67 15.67 1.42 

54 h 

cell height 53.24 1.94 53.64 2.02 52.83 2.20 n=3 discs 

apical area 6.64 1.65 8.07 0.72 5.21 0.37 

cell volume 353.54 89.51 432.14 31.84 274.93 21.88 

aspect ratio 21.06 2.65 18.94 1.44 23.19 1.38 

d fkh+ cells 
30 h 

cell volume 266.05 33.73 n=8 clones, 3 discs 

54 h 

cell volume 192.86 2.23 n=13 clones, 3 discs 
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Table 17: Parameter set for 3-D vertex modeling; List of parameters obtained from comparison 
of the vertex model to clone shape measurements as a function of clone size; 60 simulations with 
10 cyst sizes and 6 different initial tissue configurations were run, from which averages and 
standard deviations were calculated. These curves were generated for 200 different parameter 
sets. The set of parameters shown here was found to give rise to equilibrium shapes that closely 
resemble the experimental data. * marks changes to initial parameters during cyst simulations. 
Parameter definition by Silvanus Alt. 

Description Parameter Value

cell volume V0/l
3

0 1.0 

lateral surface tension Tl/Tl 1.0 

*lateral surface tension MWI Tc
l/Tl 3.0 

apical surface tension Ta/Tl 3.1 

basal surface tension Tb/Tl 6.95 

external compression Text/Tl -4.2 

apical line tension Ʌa/(l0Tl) 0.18 

*apial line tension MWI Ʌc
a/(l0Tl) 0.53 

basal line tension Ʌb/(l0Tl) 0.18 

stiffness ECM attachment kv/Tl 5.0 

 

 

V. Tie-Dye analysis 

Table 18: Total clone counts; The amount of GFP control clones and RFP clones expressing 
RFP alone (wt); fkh; dIAP; or fkh, dIAP of a given size (from 1 to 20 cells) was determined in all 
discs (10 disc for wt, fkh, and fkh, dIAP and 8 discs for dIAP). Numbers represent the sum of all 
analyzed discs. The total clone counts for all clone sizes up to 20 cells (# clones ≤ 20 cells) and 
all sizes (# total clones) is shown. Analysis by Marco La Fortezza. 

wt fkh dIAP fkh, dIAP 
# cells GFP RFP GFP RFP GFP RFP GFP RFP 

1 470 493 352 211 378 373 352 239 

2 305 359 249 207 269 281 244 210 

3 179 253 172 135 159 195 167 164 

4 158 174 168 104 138 120 134 118 

5 106 141 120 74 82 100 105 114 

6 75 87 110 45 82 68 106 86 

7 77 77 89 32 56 44 69 52 

8 63 51 81 42 36 38 67 60 

9 53 45 64 24 26 32 60 33 

10 40 40 49 23 47 34 41 28 

11 40 31 50 19 24 25 30 23 

12 32 24 29 12 15 11 37 19 

13 17 23 31 17 14 20 29 13 

14 24 18 34 12 18 11 22 13 

15 19 11 29 9 14 9 26 7 

16 19 9 20 5 29 2 23 15 

17 12 8 22 7 21 5 16 7 
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18 16 6 16 12 9 7 22 9 

19 13 7 17 4 6 4 14 4 

20 20 4 12 3 8 2 8 7 

# clones ≤ 20 cells 1738 1861 1714 997 1431 1381 1572 1221 

# total clones 1942 1917 1927 1031 1546 1416 1755 1259 

n (discs) 10 10 8 10 
 

Table 19: Single nuclei volumes measured in Tie-Dye experiments; Nuclei volumes 
determined in GFP control clones and RFP clones expressing RFP alone (wt), fkh, dIAP or fkh, 
dIAP. Number of measured clones is indicated (n (clones)) as well as number of discs (n (discs)) 
that were analyzed. Mean and standard deviation (stdv) is shown. For following quantifications, 
the average of GFP and RFP measurements for each individual genotype was used (final). 

GFP  RFP   

Mean stdv n (clones) Mean stdv n  (clones) n (discs) final 

wt 158.88 51.25 28  140.89 38.05 34 10 149.88 

fkh 135.51 46.07 28 148.32 50.27 30 10 141.91 

dIAP 131.68 41.63 24 152.23 47.83 26 8 141.95 

fkh, dIAP 138.45 34.02 30 156.84 48.27 33 10 147.65 
 

Table 20: GFP clone frequencies for given clone sizes; The amount of GFP control clones of 
the genotypes RFP alone (wt); fkh; dIAP or fkh, dIAP of a given size (from 1 to 20 cells) was 
determined in all discs. The mean of 10 (wt, fkh, and fkh, dIAP) and 8 (dIAP) discs is shown as 
well as the standard error of the mean (SEM). Data is visualized in Figure 29 e. Analysis by 
Marco La Fortezza. 

 Wt fkh dIAP fkh, dIAP 
# cells Mean SEM Mean SEM Mean SEM Mean SEM 
1 47.00 8.68 35.20 4.35 47.25 9.76 35.20 3.11 
2 30.50 4.99 24.90 4.18 33.63 7.71 24.40 3.50 
3 17.90 3.09 17.20 2.19 19.88 3.69 16.70 2.65 
4 15.80 1.87 16.80 2.28 17.25 2.74 13.40 1.27 
5 10.60 0.91 12.00 1.28 10.25 1.68 10.50 1.11 
6 7.50 0.65 11.00 1.17 10.25 2.06 10.60 1.54 
7 7.70 1.51 8.90 1.59 7.00 1.24 6.90 0.74 
8 6.30 0.78 8.10 0.77 4.50 0.87 6.70 0.99 
9 5.30 0.79 6.40 0.69 3.25 1.00 6.00 0.67 
10 4.00 0.42 4.90 0.85 5.88 0.88 4.10 0.48 
11 4.00 0.67 5.00 0.52 3.00 0.65 3.00 0.61 
12 3.20 0.57 2.90 0.55 1.88 0.35 3.70 0.65 
13 1.70 0.40 3.10 0.84 1.75 0.37 2.90 0.55 
14 2.40 0.48 3.40 0.73 2.25 0.41 2.20 0.36 
15 1.90 0.35 2.90 0.72 1.75 0.31 2.60 0.34 
16 1.90 0.38 2.00 0.33 3.63 0.65 2.30 0.40 
17 1.20 0.33 2.20 0.36 2.63 0.26 1.60 0.37 
18 1.60 0.58 1.60 0.45 1.13 0.35 2.20 0.47 
19 1.30 0.30 1.70 0.40 0.75 0.41 1.40 0.43 
20 2.00 0.42 1.20 0.13 1.00 0.38 0.80 0.25 
n 10 10 8 10 
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Table 21: RFP clone frequencies for given clone sizes; The amount of RFP clones of the 
genotypes RFP alone (wt); fkh; dIAP or fkh, dIAP of a given size (from 1 to 20 cells) was 
determined in all discs. The mean of 10 (wt, fkh, and fkh, dIAP) and 8 (dIAP) discs is shown as 
well as the standard error of the mean (SEM). Data is visualized in Figure 29 e`. Analysis by 
Marco La Fortezza. 

 Wt fkh dIAP fkh, dIAP 
# cells Mean SEM Mean SEM Mean SEM Mean SEM 

1 49.30 8.60 21.10 3.51 46.63 11.37 23.90 4.55 
2 35.90 6.45 20.70 4.19 35.13 8.36 21.00 3.31 
3 25.30 4.12 13.50 1.35 24.38 4.77 16.40 1.77 
4 17.40 2.40 10.40 1.32 15.00 2.24 11.80 0.95 
5 14.10 1.40 7.40 0.97 12.50 1.48 11.40 1.05 
6 8.70 1.29 4.50 0.91 8.50 1.07 8.60 0.88 
7 7.70 1.33 3.20 0.71 5.50 0.89 5.20 0.65 
8 5.10 0.77 4.20 0.84 4.75 0.84 6.00 0.87 
9 4.50 0.62 2.40 0.45 4.00 0.89 3.30 0.82 
10 4.00 0.68 2.30 0.52 4.25 0.75 2.80 0.51 
11 3.10 0.60 1.90 0.35 3.13 0.79 2.30 0.47 
12 2.40 0.67 1.20 0.36 1.38 0.38 1.90 0.31 
13 2.30 0.60 1.70 0.37 2.50 0.50 1.30 0.33 
14 1.80 0.61 1.20 0.39 1.38 0.46 1.30 0.26 
15 1.10 0.41 0.90 0.41 1.13 0.35 0.70 0.21 
16 0.90 0.46 0.50 0.17 0.25 0.16 1.50 0.31 
17 0.80 0.29 0.70 0.26 0.63 0.26 0.70 0.26 
18 0.60 0.27 1.20 0.53 0.88 0.30 0.90 0.31 
19 0.70 0.26 0.40 0.22 0.50 0.27 0.40 0.22 
20 0.40 0.22 0.30 0.15 0.25 0.16 0.70 0.30 
n 10 10 8 10 

 

Table 22: Relative RFP clone frequencies; For each disc, the number of GFP control clones 
was subtracted from the number of RFP clones expressing RFP alone (wt); fkh; dIAP; or fkh, 
dIAP and normalized to the number of GFP control clones of the respective bin. The average of 
10 disc for wt, fkh, and fkh, dIAP and 8 discs for dIAP is shown as well as the standard error of 
the mean (SEM). Data is visualized in Figure 29 f. Analysis by Marco La Fortezza. 

wt fkh dIAP fkh, dIAP 
# cells Mean SEM Mean SEM Mean SEM Mean SEM 
1 0.12 0.10 -0.42 0.05 -0.06 0.06 -0.35 0.09 
2 0.23 0.15 -0.15 0.15 0.14 0.18 -0.13 0.08 
3 0.56 0.25 -0.14 0.09 0.30 0.20 0.12 0.12 
4 0.11 0.10 -0.36 0.07 -0.07 0.10 -0.05 0.11 
5 0.38 0.17 -0.30 0.11 0.44 0.25 0.21 0.17 
6 0.22 0.20 -0.59 0.07 0.10 0.20 0.21 0.43 
7 0.47 0.36 -0.49 0.16 0.00 0.23 0.09 0.44 
8 0.48 0.74 -0.44 0.13 0.29 0.28 0.23 0.40 
9 0.03 0.25 -0.59 0.09 1.20 0.59 -0.48 0.12 
10 0.19 0.27 -0.46 0.10 -0.03 0.24 -0.27 0.15 
11 -0.01 0.23 -0.56 0.11 0.26 0.33 -0.44 0.10 
12 -0.01 0.26 -0.53 0.13 -0.08 0.25 -0.30 0.20 
13 -0.09 0.24 -0.11 0.22 0.57 0.25 -0.44 0.14 
14 -0.03 0.28 -0.37 0.25 -0.29 0.31 -0.50 0.11 
15 -0.26 0.34 -0.68 0.11 -0.21 0.23 -0.75 0.08 
16 -0.53 0.24 -0.73 0.11 -0.92 0.06 -0.14 0.27 
17 -0.24 0.16 -0.61 0.13 -0.77 0.08 -0.44 0.22 
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18 -0.67 0.15 -0.19 0.31 -0.50 0.17 -0.61 0.12 
19 -0.33 0.23 -0.74 0.21 -0.67 0.18 -0.83 0.09 
20 -0.80 0.11 -0.70 0.15 -0.90 0.07 -0.33 0.33 
n 10 10 8 10 

 

Table 23: p-values of statistical analysis of TIE-DYE experiments; (a) p-values calculated to 
test for statistical differences of relative clone frequencies (fkh compared to wt and fkh, dIAP to 
dIAP) (Figure 29 f and Table 22) per clone size utilizing a one-tailed WMW test. p-values < 0.0.1 
are red. The analysis suggests that fkh-expressing clones of less than 6 cells and fkh, dIAP-
expressing clones of 1 cell are significantly underrepresented in the data set (red lines). We thus 
chose these thresholds for further analysis. (b) p-values calculated to test for statistical 
differences of relative clone frequencies (fkh compared to wt and fkh, dIAP) binned into two 
statistically significant clone size categories (Figure 29 g: 1 cell clone and 2 to 6 cell clones for 
both fkh and fkh, dIAP; Figure 29 h: fkh 1-6 cells and above 6 cells, fkh, dIAP 1 cell clones and 
above 1 cell clones. Significant differences between non-parametrically distributed data sets were 
tested by applying a one-tailed WMW test. A one-tailed Welch’s t test was applied to normally 
distributed data sets with unequal variances. * = p-val < 0.01, ** = p-val < 0.001, ns= not 
significant. Analysis by Marco La Fortezza. 

a # cells 
wt 
_fkh 

dIAP 
_fkh, dIAP  

b # cells
wt 
_fkh 

dIAP 
_fkh, dIAP

Fkh 
_fkh, dIAP 

 1 0.0003 0.0075  1 2.89E-04 0.0075 / 
 2 0.0481 0.1305  1 to 6 1.42E-04 / / 
 3 0.0014 0.3519  2 to 6 5.41E-06 0.3283 0.0059 
 4 0.0023 0.4396  2 to 20 / 0.0864 / 
 5 0.0026 0.3804  7 to 20 1.16E-02 0.0092 0.0273 
 6 0.0004 0.2591  

 7 0.0205 0.3240  

 8 0.0698 0.1805  

 9 0.0055 0.0213  

 10 0.0315 0.1700  

 11 0.0221 0.0385  

 12 0.1042 0.2336  

 13 0.5000 0.0071  

 14 0.2138 0.5000  

 15 0.4595 0.0404  

 16 0.5330 0.9969  

 17 0.0777 0.8200  

 18 0.8208 0.2214  

 19 0.0649 0.1970  

 20 0.5790 0.7686  
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VI. Apoptotic volume analysis 

Table 24: Nuclei volumes and statistical analysis; (a) Nuclei volumes determined in fkh and 
fkh, dIAP expressing flip out clones. Number of measured clones is indicated (n (clones)) as well 
as number of discs (n (discs)) that were analyzed. Mean and standard deviation (stdv) is 
shown.(b) p-values calculated to test for statistical significance in relative apoptotic volume ratios 
between fkh and fkh, dIAP-expressing clones per clone size bin applying two-tailed WMW test. 
Red = p-val < 0.01. Data is visualized in Figure 30 c. Contributions: Statistics in b: Marco La 
Fortezza. 

a Mean stdv n (clones) n (discs) 
 fkh 146.49 30.00 12 3 
 fkh, dIAP 206.69 44.35 12 3 

 

b # cells fkh_fkh, dIAP 
 1 0.0277 
 2 to 6 0.0021 
 > 6 0.0026 

 


