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         Abstracts 

Abstract 

Spinal Cord Injury (SCI) is a devastating disease which leads to long lasting 

neurological deficits including sensory and motor-dysfunction below the site of injury. The 

persistence of these deficits is due to the low capacity of the adult central nervous system 

(CNS) to regenerate after injury. However, over the last decade it has been shown, that axonal 

tracts in the spinal cord can in principle remodel after injury. The corticospinal tract (CST), an 

important descending motor tract that is involved in the fine movement and coordination of 

the fore- and hindlimbs, serves as a good model to study this remodeling. A key aspect of 

CST remodeling after injury is the formation of intraspinal detour circuits that contribute to 

functional recovery. Which molecules regulate the formation of these new detour circuits is so 

far unknown. In my thesis, I aimed to identify these regulatory molecules and to understand 

their contribution to the establishment of detour circuits after injury.  

First, I investigated, whether activating the intrinsic growth program can induce de 

novo sprouting of CST collaterals and thereby improve functional recovery. To do so, I 

induced sustained expression of STAT3, a growth-promoting transcription factor, via viral 

gene transfer in cortical projection neurons. This allowed me to show that enhanced activation 

of the intrinsic growth program was sufficient to increase sprouting of CST collaterals after 

injury.  

Second, I performed in situ hybridizations for guidance and synaptogenic molecules to 

screen for candidates that could influence targeting of CST collaterals following spinal cord 

injury. I can show that all the molecules studied are also expressed in the adult CNS and that 

several cues among them, Semaphorin 7a, SynCAM4, Slits and Neuroligin 1, are 

differentially expressed in subsets of spinal interneurons suggesting that they could be 

involved in target finding during detour circuit formation. 
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Finally, I focused our attention on the establishment of new synapses during post-

injury detour circuit formation. Recently, the family of fibroblast growth factors (FGF’s) has 

been shown to be important during presynaptic differentiation in the development of the 

cerebellum and CA3 pyramidal neurons in the hippocampus. FGF22 in particular can promote 

the establishment of excitatory synapses and therefore is an interesting candidate that could 

regulate the formation of CST synapses during post-injury remodeling. To test this, I deleted 

the FGF22 ligand (using FGF22KO mice) or specifically ablated its main receptors, FGFR1 

and FGFR2, in the hindlimb CST. Deleting FGF22 or both receptors impaired bouton 

formation and maturation of the newly formed CST collaterals and as a result limited the 

formation of detour circuits following spinal cord injury. This leads to a profound delay of 

functional recovery in mutant mice after spinal cord injury. These results identify FGF22 

signaling as a first regulator of synapse formation during axon remodeling in the injured adult 

central nervous system.   

In summary, the results presented in my thesis provide new insights into the molecular 

regulation of detour circuit formation and identify promising therapeutic targets (such as 

STAT3 and FGF22) that can foster axonal remodeling after spinal cord injury.         
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         Zusammenfassung 

Zusammenfassung 

Eine Rückenmarksverletzung hat für die betroffenen Patienten verheerende Folgen 

und führt häufig zu dauerhaften sensorischen und motorischen Funktionsausfällen unterhalb 

der Verletzungsstelle. Diese Funktionsausfälle sind häufig dauerhaft, da 

Nervenzellverbindungen im  zentralen Nervensystem des Erwachsenen nicht mehr 

regenerieren können. In den letzten Jahren konnte jedoch gezeigt werden, dass 

Nervenzellverbindungen im Rückenmark nach einer Verletzung dazu fähig sind sich zu 

reorganisieren. Der kortikospinale Trakt  (CST), ein wichtiger herabsteigender Fasertrakt, der 

die Ausführung der Feinmotorik und die Abstimmung der Extremitäten koordiniert, ist dabei 

ein besonders gutes Model zur Untersuchung dieser neuronalen Umstrukturierung. So konnte 

gezeigt werden, dass der CST nach einer Durchtrennung einen intraspinalen 

„Umgehungskreislauf“ bildet und damit schließlich zur funktionellen Erholung beiträgt. 

Welche Moleküle die Bildung dieses Umschaltkreislaufes regulieren, ist soweit nicht bekannt. 

In meiner Doktorarbeit habe ich entsprechend versucht erste Signalwege zu identifizieren, 

welche bei der Umstrukturierung nach einer Rückenmarksläsion eine Rolle spielen.  

Im ersten Teil meiner Arbeit, untersuchte ich, ob die Aktivierung des intrinsischen 

neuronalen Wachstumsprogramms die Ausbildung neuer CST Kollateralen veranlassen kann. 

Dazu induzierten wir eine andauernde Expression von STAT3, einen wachstumssteigernden 

Transkriptionsfaktor, in kortikalen Projektionsneuronen mittels viralen Gentransfer und 

konnten zeigen, dass dies zu einer vermehrten Aussprossung neuer CST Kollaterale nach 

einer Läsion führt.  
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Im zweiten Teil meiner Arbeit führte ich einen in situ Hybridisierungs-Screen durch, 

um potentielle Kandidaten, welche das gerichtete Wachstum von Axonen und die Herstellung 

von synaptischen Verbindungen nach einer Rückenmarksverletzung fördern könnten, zu 

identifizieren. Ich konnte zeigen, dass alle untersuchten Moleküle, die während der 

Entwicklung des ZNS das gerichtete Wachstum von neuronalen Verbindungen steuern, auch 

im adulten ZNS exprimiert werden. Einige dieser  Moleküle, unter anderem Semaphorin 7a, 

SynCAM4, Mitglieder der Slit Familie und Neuroligin1, zeigen ein interessantes 

Expressionsmuster, welches auf deren mögliches Mitwirken bei der Entstehung intraspinaler 

Umgehungskreisläufe hindeuten kann. 

Im letzten Abschnitt meiner Arbeit, untersuchte ich, welche Moleküle die Ausbildung 

neuer Synapsen nach einer Läsion steuern. Vor kurzem wurde entdeckt, dass die Familie der 

Fibroblasten Wachstumsfaktoren (FGFs) eine wichtige Rolle während der präsynaptischen 

Differenzierung im Kleinhirn und Hippocampus spielen. Insbesondere für FGF22 konnte 

gezeigt werden, dass es die Ausbildung von exzitatorischen Synapsen induzieren kann und 

somit möglicherweise auch die Bildung neuer Synapsen des CSTs beeinflussen könnte. Um 

dies zu untersuchen, habe ich Mäuse verwendet, die entweder FGF22 defizient waren (FGF22 

KO Mäuse) oder in denen die beiden FGF22 Rezeptoren, FGFR1 und FGFR2, in den 

Neuronen des Hinterbein-CST genetisch entfernt wurden. Unsere Ergebnisse zeigen, dass das 

Fehlen von FGF22 oder seiner Rezeptoren nach einer Läsion bei den neu auswachsenden 

CST Kollateralen zu einer deutlichen Reduktion der Synapsenbildung  und – Reifung führt. 

Dies behindert entsprechend die Ausbildung der intraspinalen Umgehungskreisläufe und 

verzögert die funktionelle Erholung nach einer Rückenmarksverletzung. Unsere Ergebnisse 

identifizieren den FGF22-FGFR Signalweg als einen wichtigen Regulator der Neubildung 

von Synapsen im geschädigten zentralen Nervensystem des Erwachsenen. 
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         Zusammenfassung 

In der Gesamtschau geben die Ergebnisse meiner Arbeit neue Einblicke in die 

molekulare Regulation der Ausbildung von Umgehungskreisläufe und neue Hinweise auf 

vielversprechende therapeutische Ansätze (mit STAT3 oder FGF22), die die 

Umstrukturierung von Nervenzellverbindungen nach einem Rückenmarkstrauma verbessern 

könnten.  
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1. Introduction 

1.1 Epidemiology of Spinal Cord Injury (SCI) 

With an occurrence of 18.5 people/million (source: The International Campaign for Cures of 

spinal cord injury Paralysis, ICCP), spinal cord injury impacts about 3000 new cases in 

Germany every year (Köning and Frowein, 1989). Surviving a traumatic injury of the spinal 

cord is most often followed by a “new” life in a wheelchair and the person usually depends on 

other people’s help for the rest of her / his life. Most of the patients are young males (70%) 

with an average age between 16 and 30 years (Hulsebosch et al., 2002; Sadowsky et al., 

2002). Most of the traumatic injuries occur due to accidents (2/3 of all cases), i.e. sports, 

traffic or work (Figure 1).  In addition to striking life changing circumstances for the patient, 

the economic impact, in terms of long term cost of care and cost of social welfare support, 

reaches a high level every year (Westgren and Levi, 1998). For example, the costs for the 

United States alone reach up to 7.7 billion dollars annually (National Spinal Cord Injury 

Statistical Center, University of Alabama at Birmingham). 

 

 

 

 

 

 

 

 

Figure 1: Causes of Spinal Cord 
Injuries; Over 50% of SCI are caused 
by accidents, one half by vehicle (i.e. 
motorbike) or during work (reprint 
permission from Christopher Reeve 
Foundation). 
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An insult to the spinal cord results in a change of the normal motor, sensory or autonomic 

function. This can be temporary or permanent as well as either complete or incomplete 

(Classification in the ASIA impairment scale, Figure 2). A complete injury leads to a total and 

irreversible loss of voluntary movement and sensation below the segment of injury. After an 

incomplete injury however, some function below the segment of injury remains (Raineteau 

and Schwab, 2001; Fawcett et al., 2007). Thereby in incomplete injuries some degree of 

spontaneous functional recovery in patients might be observed (Wernig and Müller, 1992; 

Dietz et al., 1998). These injuries are of course more amenable to therapies than complete 

injuries. The level where the injury occurs is also crucial, as this can either lead to paraplegia 

or quadriplegia (Figure 2). An injury at the level of the cervical spinal cord (between C1 and 

C7) causes quadriplegia, which happens in 52% of all cases and is classified by a loss of use 

of all four limbs and torso. A lower level of injury (between T1 and L5) instead leads to 

paraplegia, which happens in 47% of all cases and causes impairment in motor and sensory 

function of the lower extremities.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Spinal cord injury classification according to the American Spinal Injury 
Association (ASIA) Impairment Scale (Modified from Thuret et al., 2006; reprint 
permission from Nature Publishing Group) 
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1.2 Clinical Treatments to Date 

Clinical treatments and strategies which are currently available do not lead to full recovery of 

sensory and motor function after spinal cord injury. However, they are designed to prevent 

secondary damage, help recovery as much as possible and usually are targeting different 

pathophysiological phases following the injury. 

1.2.1 Pathophysiology of SCI     

A spinal trauma leads to spinal vertebrate luxation or the break of spinal bones and thereby to 

a local injury of the spinal cord with a disruption of spinal nerve tracts (primary damage). 

This phase, directly after the insult, is called acute phase or spinal shock and includes the 

momentary complete loss of all reflexes, a reduced blood flow and a change of the whole 

biochemical environment (Ditunno et al., 2004; Martirosyan et al., 2011). The acute phase is 

quickly followed by the sub-acute phase which is featured by the release of free radicals, an 

inflammatory response with the influx of macrophages and the development of a vasogenous 

as well as a cytotoxic edema (Dusart and Schwab, 1994; Bethea and Dietrich, 2002; Sharma 

and Olsson, 1990). In the ensuing late phase a scar is formed, which includes the appearance 

of reactive astrocytes, necrosis, apoptosis, Wallerian degeneration (Zhang et al., 1997), 

demyelination and expression of growth inhibitory factors like Nogo-A and OMg or MAGs in 

the vicinity of the scar that inhibit regeneration at the lesion site (secondary damage; Filbin, 

2003; Pernet and Schwab, 2012) (Figure 3).  
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1.2.2   Clinical Intervention to SCI  

Depending on the phase in which the patient is, there are different strategies which are 

applied to avoid the spread of nerve degeneration or to induce functional recovery as much as 

possible.  

 

 

 

 

 

 

 

 

 

 

 

 

In the acute and sub-acute phase, the first step is to remove mechanical causes, like broken 

bones during a reconstructive surgery. After that, most of the patients in many countries 

receive a cocktail of corticosteroids including methylprednisolone (MPS), which is designed 

to decrease inflammation and the release of free radicals. It is supposed to lead to fundamental 

increased functional recovery if applied within 8hrs after trauma (Bracken et al., 1984; 

Bracken et al., 1990; Bracken et al., 1997). Today this therapy is considered controversial and  

Figure 3: Phases of Spinal Cord Injury. The acute phase, with destruction of BBB and 
hemorrhage development. The sub-acute phase, with release of free radicals and NO plus 
inflammatory response. And finally the chronic phase, including glia scar formation. (Modified 
from Nakamura and Okano, 2013; Re-print permission from Nature Publishing Group) 
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often withdrawn as long term studies showed low efficiency, strong side effects (Hurlbert and 

Hamilton, 2008) such as diabetes mellitus, osteoporosis and psychosis and several follow up 

studies couldn’t reproduce the beneficial long term effects which had been shown in the first 

studies of the NASCIS (National Acute Spinal Cord Injury Study I and II) (George et al., 

1995; Gerhart et al., 1995; Nesathurai et al., 1998; Shepard et al., 1994; Hurlbert, 2008). 

Considering these insecurities and potential risks, a lot of effort is put into finding new 

therapeutic treatments. More recently an additional drug has been shown to be glia- and 

neuro-protective – Asialoerythropoetin (AsialoEPO). Here, the reduction of secondary 

damage, such as apoptosis, the inflammation processes and the ability to restore vascular 

integrity (for review see Matis and Birbilis, 2008; Mofidi et al., 2011) has been shown in 

experimental models for SCI and thereby showing exceptional preclinical characteristics and 

giving high promises into clinical human trials. 

The chronic time after the acute phase is usually accompanied with trying to re-activate neural 

connections that have been destroyed due to the injury. Here, the only therapeutic intervention 

that is standard of care and internationally applied to maximize functional recovery in human 

SCI is rehabilitative training, such as weight-supported treadmill training (Edgerton et al, 

2004; Dietz and Harkema, 2004; Dietz and Fouad, 2014). The treadmill training has shown 

some success in patients with functionally incomplete spinal cord injury (ASIA B-D) and 

therefore became routine in the rehabilitation centers. The body weight supporting harness 

and the movement of the legs via a robot or physiotherapist leads to a restoring of natural 

walking and a sensory feedback input (Maegele et al., 2002; Dietz et al., 2010). The 

improvements of locomotor capability depend on the location and on the size of the injury 

(Wernig et al., 1998); however they are maintained over a long period of time. Patients with  

 



13 
 

           Chapter 1 

complete injury, unfortunately, haven’t been able to maintain stepping movements after the 

training sessions were finished (Wirz et al., 2001). 

1.3 Experimental Models to study Spinal Cord Injury 

Trying to understand what happens within the injured human spinal tissue is studied in 

experimental models in order to discover different therapeutic treatments. Some studies focus 

on the prevention of toxicity, apoptosis or inflammation and hence are all driven by the aim to 

reduce cell death and scar formation (Kigerl et al., 2009; Liu et al., 1997; Nicholson et al., 

2000; Fitch et al. 1999; Popovich et al., 1999). Others are trying to promote axonal growth 

and regeneration, and thereby restore function. For instance, attempts are carried out in which 

grafts that can bridge the lesion sites are applied directly after the injury and into the lesion 

area so that the injured fibers are able to regrow along those (Li et al., 1998; Bamber et al., 

2001; Taylor et al., 2006).  

Another strategy is to neutralize the growth inhibiting environment of the scar by applying 

IN-1 antigen, a blocker for the neurite growth inhibitor Nogo-A. In doing so, regeneration of 

sprouting fibers and their growth over longer distances is seen (Schnell and Schwab, 1990; 

Brösamle et al., 2000; Chen et al., 2000). In contrast to  block inhibition, other studies apply 

growth promoting factors such as neurotrohpins (BNDF or NT3) (Jakeman et al., 1998; Jain 

et al., 2005; Sasaki et al., 2009; Houweling et al., 1998; Novikova et al., 2000) or gene 

transcription factors inducing axonal growth (Bareyre et al. 2011) after injury to promote 

induction of axonal growth. All these studies show promising potential to either be transferred 

into clinical studies at some point or at least to help us gain a greater insight into the 

pathophysiology of spinal cord injury.  
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The different attempts mentioned above are carried out in experimental animal models of SCI 

and are crucial to a better understanding of human injuries. Indeed experimental designs are 

trying to model the physical processes by which human SCI occurs and to replicate the 

variety of chronic pathologies that characterize its long term effects (Stokes and Jakeman, 

2002; Filis and Schwab, 2012). The variations in biological processes between species 

contribute to difficulties in generalizing only one experimental model and its findings to the 

human condition. Therefore, depending on the question that is to be answered, different 

models are chosen. For example, is the primary focus of the experiment fiber regeneration and 

sprouting, or is the focus of the study on neuroprotective investigations? 

 1.3.1 Contusion Injury 

The contusion injury is the most commonly used model to study SCI. Here, a determined 

weight is dropped onto the exposed spinal cord (New York University – Multicenter Animal 

Spinal Cord Injury Studies (NYU-MASCIS) impactor device). With different standardized 

weights one can mimic defined grades of spinal cord injury. The outcomes of this injury are 

very similar to human injuries, a necrotic center which is surrounded by histologically 

normal-appearing myelinated fibers and portions of gray matter (Figure 4a). The cell loss 

starts immediately after the initial impact and continues radially in all directions so that the 

lesion expands over time (several days to weeks). This expanded time frame of cell loss offers 

an opportunity for therapeutic intervention to rescue the neural cell populations (Hulsebosch 

2002). 

1.3.2 Dorsal Hemisection Injury  

The second, most common, used model is the dorsal hemisection. It is a model to precisely 

and reproducibly study SCI. Here, the dorsal spinal cord is transected with a very fine pair of  
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scissors (iridectomy scissors). To induce paralysis of the hindlimbs in the mouse model, 

which represents humans paralysis the best and easiest, the hemisection is usually placed at a 

thoracal level of T8 – T9 (Figure 4b). This model induces a precise and local lesion with very 

defined histological consequences and spares parts of the cord. This sparing of parts of the 

spinal cord also represents a hallmark of most SCI in humans. Due to the mentioned 

advantages above, the dorsal hemisection is a very suitable model to study axonal 

regeneration at the lesion site as well as axon remodeling or reorganization (Bareyre et al., 

2004).  

1.3.3 Full Lesion Injury  

A full or complete lesion injury is the term used to describe a complete transection of the 

spinal cord. Here the spinal cord is also transected with a fine pair of scissors, but no tissue is 

spared. Following the injury, the two stomps of the spinal cord retract leaving a “gap” 

between the two spinal extremities. It results in a complete and permanent loss of the ability 

to send sensory and motor impulses to the region below the lesion site and is also a very good 

model to study axonal regeneration at the lesion site. However it is noteworthy to say, that 

even in complete lesion models, some axons might be left intact in the ventral part of the 

spinal cord (You et al., 2003). 
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1.4 Axonal Remodeling following SCI 

For a long time it has been postulated that the adult CNS is not able to remodel or reorganize 

after a CNS injury, i.e. after traumatic brain injury or SCI. Over the last years this dogma has 

been proven wrong. First studies in mice could show some spontaneous recovery after injury 

which also to some extend happens in humans (Burns et al., 1997; Dietz et al., 1998; Dietz 

2002; Curt et al., 2004; Fouad et al., 2001). Most of the studies, that show this potential of 

plasticity, have been investigating spinal cord lesions, in particular lesions of the corticospinal 

tract (CST) (Terashima et al., 1995; Weidner et al., 2001; Fouad et al., 2001; Bareyre et al., 

2004; Courtine et al., 2008; Lang et al., 2012).  

Figure 4: Models to study SCI. a) Contusion Injury; Mechanical device (MASCIS Impactor) 
and representative cross sections from the lesion center (GFAP staining) (adapted from Ishii et 
al., 2012). b) Dorsal Hemisection; Induction of a lesion with a pair of fine iridectomy scissors 
leads to transection of dorsal part of spinal cord, thereby leaving the ventral part intact (as 
indicated in bottom images from Lang et al., 2012). 
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1.4.1  Anatomy of the Corticospinal Tract (CST) 

The corticospinal tract (CST) is one of the major descending pathways from the motor cortex 

down to the spinal cord. The mammalian CST controls fine movements like grasping or 

stepping. It originates in the pyramidal cells of layer V of the motorcortex. About 95% of 

these cells send their axons down to the spinal cord via the brain stem and cross over to the 

contralateral side (pyramidal decussation) at the end of the medulla oblongata 

(spinomedullary junction in the mouse). In humans they cross at the level of the lateral 

funiculi and form the lateral corticospinal tract, whereas in the mouse they form the main CST 

(Terashima, 1995). The left over 5% of the axons do not cross contralaterally and thereby 

travel ipsilaterally in the white matter down to the spinal cord. Once the axons reached their 

target area in the spinal cord, they branch into the gray matter and connect (most of the time 

via interneurons) to the lower motor neurons in the ventral horn. Depending on their target 

area, the fibers are divided into the forelimb CST and hindlimb CST. The forelimb CST 

terminates in the cervical spinal cord (C3-C5 level), the hindlimb CST terminates in the 

lumbar spinal cord (L1-L5).  

1.4.2  Detour Circuit Formation 

The establishments of new circuits in the CNS to overcome or bypass a lesion, and thereby 

forming new circuits, have been shown in several publications over last decade. In 2001, 

Fouad et al. could show that after an incomplete thoracic hemisection, the CST is able to form 

new collaterals in the cervical region (C3-C5) (Fouad et al., 2001). That this sprouting is 

functionally meaningful was shown a couple of years later by Bareyre et al. in 2004. Here the 

authors demonstrated the establishment of a detour circuit which is formed by contacts of the 

newly born collaterals onto long propriospinal neurons (LPSN) which extend their axons from  
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C3-C5 in the ventral and lateral horn (Giovaneli Barilari and Kypers, 1969) down to the 

lumbarsacral enlargement (Alstermark et al., 1987; Dietz et al., 2002) (Figure 5). The LPSN 

are known to coordinate forelimb and hindlimb movements (Jankowska et al., 1974; Grillner 

et al., 1975). These interneurons are spared by an incomplete, dorsal hemisection and are able 

to transduce signals coming from the new CST collaterals onto the hindlimb motoneurons 

hence creating a new circuit (Bareyre et al., 2004) (Figure 5c+d). Electrophysiological 

experiments demonstrated that information coming from the cortex can be transmitted to the 

hindlimb motoneurons. Also the authors show in behavioral experiments that spontaneous 

functional recovery at least in parts is mediated by the detour circuit formation (Bareyre et al., 

2004). 

The importance of newly formed intraspinal circuits has been further strengthened by several 

publications investigating the spontaneous axonal plasticity of the corticospinal tract after 

injury (Weidner et al., 2001; Courtine et al., 2008). A recent publication from van den Brand 

et al., (2012) for instance shows that plasticity and recovery can take place also in cases of 

severe spinal cord injury. Here, after two lateral lesions in the thoracal spinal cord, they 

injected a chemical solution of monoamine agonists which triggers cell responses of spinal 

neurons and replaces the neurotransmitter cocktail which would come from the brainstem 

pathways in the healthy mouse. The cocktail is able to induce activation of lower spinal 

intercircuits and thereby of lower body movement. The authors then electrically stimulated 

the spinal cord with electrodes implanted in the spinal canal. This localized stimulation sends 

continuous electrical signals through nerve fibers to the chemically excited neurons. After a 

couple of weeks of training the rats not only voluntary initiated walking but also were able to 

climb obstacles and steps. They could show that this recovery is also due to a strong  
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remodeling process of supraspinal and intraspinal connections as well as cortical projections 

from the CST (van den Brand et al., 2012).  

Intraspinal remodeling can not only be shown following traumatic lesions of the spinal cord 

but also following inflammatory lesions of the spinal cord. In an animal model of multiple 

sclerosis model (EAE), it has been shown that the CST can show sprouting ability above the 

inflammatory lesion. This leads to a detour circuit formation due to the increased contact 

formation onto spinal interneurons surrounding the lesion site and in the lumbar target area 

(Kerschensteiner et al., 2004). An additional paper supports this remodeling by showing the 

sprouting ability of the CST along blood vessels after EAE induction (Muramatsu et al., 

2012). 
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Figure 5. Model of Detour Circuit Formation. a) Unlesioned hindlimb CST (hCST) travels 
down the spinal cord and sends sprouts into the gray matter of the lumbar enlargement. b) 
After dorsal hemisection (T8) regeneration of collaterals from lesion site fails. Instead the 
lesion leads to spontaneous sprouting of the hCST in the cervical spinal cord (C3-C5). c) 3wks 
after lesion new collaterals form contacts onto excitatory spinal interneurons (SPSN and 
LPSN). d) 12wks after lesion only contacts onto LPSN remain, which run in the ventral horn 
and thereby are able to bridge the lesion site. Also the number of contacts onto the hindlimb 
motoneurons increases (Harel and Strittmater, 2006; Re-print permission from Nature 
Publishing Group). 
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The last decade of research has shown that the spinal cord after an injury has the capability to 

spontaneously form new intraspinal circuits (Fouad et al., 2002; Bareyre et al., 2004; 

Kerschensteiner et al., 2004; Courtine et al., 2008; van den Brand et al., 2012). Studying this 

process in further detail and thereby learning more about intrinsic factors, which might play a 

key role for the establishment of such circuits, will be important in coming one step closer to 

potential therapeutic treatments for human spinal cord injury.   

For the successful formation of the detour circuit after a dorsal hemisection (Bareyre 

et al., 2004), several steps are required. 

  1.4.2.1  Directed Axonal Growth 

In the first phase of the detour circuit formation, the newly born axon collaterals have to know 

where to grow to and thereby find their target area. In case of the detour circuit formation 

after a dorsal SCI, they have to grow into ventral-medial part of the cervical spinal cord, 

where the cell bodies of the LPSNs originate (Alstermark et al., 1987). First, the axons need 

to initiate growth which is possibly promoted via growth promoting molecules such as 

STAT3 or Semaphorin 7a. Second, once the axons have initiated growth, these need to be 

guided toward their appropriate target cells. Several molecules that induce axonal outgrowth 

and axon guidance have been shown to be important during neural development (for review 

Niclou et al., 2006; Guan and Rao, 2003), among others Netrins (Kennedy et al., 2006), 

Semaphorins (Behar et al., 1996), Slits (Lopez-Bendito et al., 2007) and Ephrins (Eberhart et 

al., 2000). Also, first studies now show their expression in the adult CNS, indicating a 

potential important role in injury induced spinal remodeling (Wehrle et al., 2005; Marillat et 

al., 2002; Mann et al., 2007; Bundesen et al., 2003). 
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1.4.2.2 Synapse Formation 

Once the axon collaterals have reached their target cells, they have to contact those. This 

process is called synapse formation and requires a very defined course of events. To date it is 

not entirely clear which exact time course synapse formation follows, but studies conducted 

during CNS development agree that it can either be induced pre-synaptically or post-

synaptically (Gerrow and El-Husseini, 2006).  

Presynaptic-induced formation usually starts with the recruitment of presynaptic molecules 

upon initial contact (presynaptic differentiation) such as molecules for the assembly of the 

vesicle release machinery. This phase is followed by the creation of an active zone and the 

accumulation on the postsynaptic density (postsynaptic differentiation). The postsynaptic-

induced synapse formation first recruits preformed postsynaptic scaffold proteins upon initial 

contact which then signals the presynaptic machinery to assemble. Either way, the recruitment 

of receptors to the postsynaptic side represents the last phase of the synapse formation. There 

are several molecules which are known to be important for the process of synapse formation 

during the development of the CNS, such as SynCams (Biederer et al., 2002), Neuroligins 

(Scheiffele et al., 2000) or FGF’s (Umemori et al, 2004), which act as presynaptic organizers 

and EphrinBs (Henkemeyer et al., 2003) or Neurexins (Graf et al., 2004), which can act as 

postsynaptic organizers (Dalva et al, 2007; Shapiro et al., 2007; Tallafuss et al., 2010). 

Whether these are also important during contact formation after SCI, has been started to be 

investigated in the last couple of years (Thomas et al., 2008, Zelano et al., 2007, Budensen et 

al., 2003, Moreno-Flores et al., 1999). 
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1.4.3   Molecular Regulation of Detour Circuit Formation 

1.4.3.1 STAT3 – a Gene Transcription Factor to Induce Axonal Growth 

It is well known that the CNS is not capable of regenerating axons after injury. The peripheral 

nervous system (PNS) however has shown to be able to induce the regrowth of injured axons 

via the activation of an intrinsic growth program. The activation of transcription factors 

(TF’s) such as c-Jun, CREB, SMAD, Atf-3 (Raiwich and Makwana, 2007; Zou et al., 2009; 

Seiiffers et al., 2007) and in particular the signal transducer and activator of transcription 3 

(STAT3) (Qui et al., 2005; Aaronson et al., 2002), have been shown to take place after injury. 

STAT3 usually appears in the cytoplasm in an inactive state. Only the binding of cytokines 

like interleukin 6 (Il6, Zhong et al., 1994), ciliary neurotrophic factor (CNTF, Rajan et al., 

1996) or leukemia inhibitory factor (LIF, Kunisada et al., 1996) to their receptors leads to 

phosphorylation of the Janus kinase (JAK) and in turn the  phosphorylation of STAT3 and 

thus its homodimerization. This activated form now is transported to the nucleus where it 

binds to DNA-response elements which activate the transcription of specific genes (Zhong et 

al., 1994) (Figure 6). The sustained activation of STAT3 has been shown to be a key 

requirement for the timely induction of the intrinsic growth program in the dorsal root 

ganglion (DRG, Bareyre et al., 2011). Further studies implicated an important role of STAT3 

during neuronal growth initiation. For instance the nuclear accumulation and phosphorylation 

of STAT3 is correlated to the regenerative responses of the neuron after injury (Bareyre et al., 

2011). Also deletion or inhibition this TF impairs the initiation of PNS regeneration (Bareyre 

et a., 2011) or blocks the growth promoting effect after a lesion in the CNS (Qiu et al., 2005). 

Also, STAT3 overexpression as well as the blockage of its inhibitor SOCS3, can improve 

sprouting of the central DRG projections (Bareyre et al., 2011). 
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Finally, the co-deletion of SOC3 and PTEN enables robust and sustained axonal regeneration 

via concurrent activation of mTOR and STAT3 in the retinal ganglion cells (RGCs) after 

crush injury (Sun et al., 2011). 

These key findings after injury and its previously described role during the neuronal 

development, i.e. axon pathfinding, neurite outgrowth and glial cell differentiation (Dziennis 

and Alkayed, 2008, Gautron et al., 2006), give rise to STAT3 being a very good candidate to 

initiate the intrinsic growth program after SCI and thereby induce growth of newly born CST 

collaterals. 

 

 

 

 

 

Figure 6: STAT3 Signaling Pathway. After binding of several cytokines (e.g., IL-6 receptor) to 
the JAK, Jak itself gets phosphorylated and thereby initiates the phosphorylation of STAT3. After 
STAT3 is phosphorylated on a tyrosine residue by activated tyrosine kinases in receptor 
complexes, it forms homodimers and heterodimers and translocates to the nucleus. In the nucleus, 
STAT3 dimers bind to specific promoter elements of target genes and regulate gene expression 
(Modified from Huang, 2007; Re-print permission from American Association for Cancer 
Research). 
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1.4.3.2  Fibroblast Growth Factors and their Receptors: Important 

Inducers for Presynaptic Differentiation 

The family of fibroblast growth factors contains of 22 FGF’s in human and mice and its four 

corresponding receptors (FGFR1 – FGFR4) (Figure 7a). The receptors are cell surface 

receptor tyrosine kinases (RTK’s) with a transmembrane domain, an extracellular binding 

domain for the FGF’s and an intracellular domain with its tyrosine kinase activity which 

interacts with intracellular signal transduction molecules (Böttcher and Niehrs, 2005). 

Binding of the FGF ligand to its receptors leads to dimerization of the receptor (Figure 7b) 

and downstream to the activation of the intracellular pathways such as the RAS/ MAPK 

pathway (Wang et al., 1996; Kouhara et al., 1997) or the PLCɣ/Ca²+ pathway (Hall et al., 

1996; Doherty et al., 1996). Each receptor responds to only a certain subset of ligands (Zhang 

et al, 2006; Guillemot and Zimmer, 2011). The FGF10 family which also includes FGF7 and 

FGF22 binds specifically to FGF receptor 1 and 2 and has been shown to be involved in early 

synapse organization (Figure 7c, Fox et al., 2007). The importance of FGF22 for presynaptic 

differentiation during CNS development has also been shown by Umemori et al. in 2004. The 

authors purified putative target – derived presynaptic organizers from the developing mouse 

brain and identified FGF22 as the major active species. In additional experiments they could 

show that FGFR2bAP, a blocking protein which binds FGF22, inhibited presynaptic 

differentiation of mossy fibers in vitro and in vivo (Umemori et al., 2004). Also this paper 

points toward FGFR2b being the major receptor for FGF22 as experiments with the FGFR2c 

isoform do not show that effect on synapses. A couple of years later another publication could 

show even more precisely the involvement of the FGF10 family in presynaptic differentiation 

(Terauchi et al., 2010).  
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In this very nice study the authors show, that depending on which ligand binds to the receptor, 

either inhibitory (FGF7) or excitatory (FGF22) synapse formation in the CA3 region of the 

developing mouse hippocampus is induced (Figure 7d; Terauchi et al., 2010). To show this, 

they used Knock-out mice for either FGF7 or FGF22 and were able to demonstrate, that 

depending on which factor was missing, the inhibitory, GABAergic or excitatory, 

glutamatergic synapses showed deficits in clustering of synaptic vesicles (SV) in the pre-

synapse and of VGAT or VGLUT1 labeling respectively. Also analyzing the excitatory or 

inhibitory postsynaptic currents in FGF22KO or FGF7KO showed decrease in frequency, 

indicating functional consequences of the change in the vesicle pools.  

These three studies (Umemori et al, 2004; Fox et al., 2007; Terauchi et al., 2010) show the 

important role of the FGF10 family and their receptors in synaptogenesis during development 

thereby making them interesting candidates for studying their role in synapse formation 

during detour circuit formation after SCI. 
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Figure 7. The FGF family involved in presynaptic differentiation. a) Structure and 
binding specificity of the different FGF’s to the receptors. The FGF10 family (outlined 
in red) binds mainly to FGFR1 and 2. b) Binding of the ligand leads to dimerization and 
phosphorylation of the receptor and thereby to activation of the downstream pathways. 
c) Sequential expression of synaptic organizers. FGFs of the 7/10/22 subfamily act 
through FGFR2 to cluster synaptic vesicles in embryos. Additional molecules like 
Collagen a2, b2 laminins, Collagen a3 and a6 follow in the maturation process. d) 
Scheme of distinct synapse development. FGF22 induces excitatory, FGF7 inhibitory 
synapse development (Re-print permission from Elsevier for a and c; Re-print 
permission from Nature Publishing Group for b and d) 
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2.  Aims of the Thesis 

With the different studies of my thesis I am trying to gain more insight into the different 

aspects and phases of spinal cord injury induced detour circuit formation. In my thesis I will 

focus on the two phases of detour circuit formation and therefore asked the following 

questions: 

1) Which factors are important inducers of axonal outgrowth during spinal remodeling? 

In previous studies of our lab and in other studies it has been shown that STAT3 - a 

transcription factor which regulates the transcription of several growth promoting molecules 

(Zhong et al., 1994, Akira, 2000) – is important for initiation of peripheral nerves to 

regenerate (Bareyre et al., 2011) and for the initiation of axonal growth for regeneration in the 

CNS (Pernet et al., 2013). In the first aim of my thesis, I thought of investigating if STAT3 is 

also crucial for initiating the growth of the newly born CST collaterals during detour circuit 

formation. To test this, I specifically ablate STAT3 in the cells of layer V of the motorcortex 

(the origin of the fibers of the corticospinal tract in the spinal cord) and analyze if the deletion 

of STAT3 changes the pattern of axonal outgrowth of the collaterals after injury. In an 

additional set of experiments, I aim to overexpress STAT3 in CST fibers via gene therapy in 

the layer V neurons of the motorcortex. Deleting or overexpressing STAT3 in the CST allows 

us to specifically analyze the role of STAT3 in SCI induced axonal outgrowth. 

2) Which axon guidance and synaptogenesis molecules could guide growing collaterals 

and induce synapse formation during detour circuit formation? 

A lot of developmental studies have shown that for the precise growth and targeting onto 

specific neurons, certain axon guidance and synaptogenic molecules are needed (for review  
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see Kolodkin and Tessier-Lavigne, 2011 and Fox and Umemori, 2006). For instance, Netrins 

(Serafini et al., 1996), Slits (Lopez-Bendito et al., 2007) and Semaphorines (Behar et al., 

1997) have been shown during development to guide axons to their target area and once the 

axon reached its target cell, synaptic molecules such as SynCAMs (Biederer et al., 2002), 

Neuroligins (Scheiffele et al., 2000) and molecules from the Ephrin family (for review see 

Klein, 2012) are important inducers for contact formation via pre- or postsynaptic 

differentiation during development. In the second aim of my thesis, I was investigating if 

some of these developmental cues are also expressed in the adult CNS and if so, whether they 

play an important role during spinal remodeling after SCI. To answer these questions I 

perform an in situ hybridization expression profile of the cues on different types of spinal 

interneurons such as excitatory short (SPSN) and long propriospinal neurons (LPSN) 

(retrogradely labeled) or inhibitory glycinergic interneurons (transgenetically labeled) in the 

cervical spinal cord of healthy and lesioned mice. The expression profile aims at helping to 

find interesting candidates for the establishment of the detour circuit formation. 

3) Which role does the fibroblast growth factor 22 signaling play in the process of 

synapse formation during injury induced remodeling? 

Developmental studies have shown that FGF22 and its receptors are important inducers of 

excitatory presynaptic differentiation, i.e. in the cerebellum (Umemori et al., 2004), in nerve 

terminals of motorneurons (Fox et al., 2007) or in the hippocampus (Terauchi et al., 2010). In 

the third aim of my thesis I was investigating if FGF22 and its receptors are important for 

synapse formation of the newly born CST collaterals onto the LPSN in the adult CNS after 

SCI. To test this, I specifically ablate FGFR1 and FGFR2 in the hindlimb CST (genetically or 

via gene therapy Figure 8a), or analyze the impact of the deletion of FGF22 (Figure 8b) on the 

detour circuit formation after injury. 
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These different approaches to suppress FGF22 signaling allow me to study its role 

specifically in synapse formation after injury induced remodeling.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: The different attempts of ablating FGF22 or its receptors in the adult spinal 
cord. a) Specific Knockout of FGFR1, FGFR2 or both at the same time in the axons of the 
hindlimb CST (red neuron). b) Full Knockout of FGF22 leads also to a loss of FGF22 in the 
LPSN (green neuron) of the cervical spinal cord. (Modified from Terauchi et al., 2010, Re-print 
permission from Nature Publishing Group) 
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3. Results 

The work during this doctoral thesis has resulted in two peer-reviewed publications and one 

manuscript currently submitted to Nature Neuroscience for peer-review. They are included in 

this thesis and constitute Chapter III. 

 

• Lang C, Bradley P, Jacobi A, Kerschensteiner M, Bareyre FM. (2013). STAT3 

promotes corticospinal remodeling, regeneration and functional recovery after spinal 

cord injury. EMBO Rep 2013 Oct; 14(10):931-7. 

 

• Jacobi A, Schmalz AM and Bareyre FM. (2014). Abundant Expression of Guidance 

and Synaptogenic Molecules in the Injured Spinal Cord. PLoS One 2014 Feb 

11;9(2):e88449 

 

• Jacobi A, Loy K, Schmalz AM, Hellsten M, Umemori H, Kerschensteiner M, Bareyre 

FM. (2014). FGF22 signaling regulates synapse formation during post injury 

remodeling of the spinal cord. A manuscript to be submitted. 
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STAT3 promotes corticospinal remodeling, regeneration and 
functional recovery after spinal cord injury 
 
 
Lang C, Bradley P, Jacobi A, Kerschensteiner M, Bareyre FM 

An article published in EMBO Reports (EMBO Rep 2013 Oct; 14(10):931-7) 
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the Injured Spinal Cord 
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FGF22 signaling regulates synapse formation during post injury 
remodeling of the spinal cord 
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The remodeling of axonal circuits requires the formation of new synaptic 
contacts to enable functional recovery after injury.  Here we show that 
depletion of FGF22 or its receptors FGFR1 and FGFR2 impairs formation of 
new synapses, delays synapse maturation and impedes functional recovery in 
a mouse model of spinal cord injury. Hence, FGF22 acts as a synaptogenic 
mediator in the adult CNS and is required for efficient post-injury remodeling.  

 

  

Incomplete lesion of the spinal cord can be followed by substantial functional 

recovery in both human patients and rodent models. This recovery is mediated by the 

remodeling of spinal and supraspinal axonal circuits (Bareyre et al., 2004; Bareyre et 

al., 2005; Courtine et al., 2008; Courtine et al., 2009; Lang et al., 2011; Vander Brand 

et al., 2012; Beauparlant et al., 2013). The hindlimb corticospinal tract (CST), for 

example, responds to a thoracic transection with the de novo formation of intraspinal 

detour circuits that circumvent the lesion site and re-establish a functional connection 

between the motor cortex and the lumbar spinal cord (Bareyre et al., 2004; 

Kerschensteiner et al., 2004; Lang et al., 2011). The key step in the formation of this 

detour circuits is the establishment of new synaptic contacts between newly formed 

CST collaterals that enter the cervical gray matter and long propriospinal neurons 

that are located in the cervical cord and act as a relay to lumbar motor circuits. While 

the functional importance of this and similar detour circuits has been well established 

over the recent years (Bareyre et al., 2004; Courtine et al., 2008; Vander Brand et al., 

2012; Beauparlant et al., 2013) it is currently unclear which mechanisms regulate the 

formation of these circuits. In particular, little is known about the molecular signals 

that can induce the formation of new synapses in the injured adult CNS.  

In the developing nervous system however a number of synaptogenic molecules 

have been identified (Jessel and Sanes, 2000, Sanes and Lichtman, 2001). These 

include the family of the fibroblast growth factors and their receptors that have 

emerged as important regulators of  presynaptic differentiation (Umemori et al., 2004; 

Terauchi et al., 2010; Stevens et al., 2010; Lee and Umemori, 2013; Singh et al., 

2012). One member in particular, FGF22, is crucial for the establishment of excitatory 

synapses as shown for CA3 pyramidal cells in the developing hippocampus 
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(Terauchi et al., 2010). To investigate whether FGF22 signaling could also regulate 

synapse formation during post injury remodeling we first determined the expression 

and localization of FGF22 in the spinal cord of adult mice using in situ hybridization 

and single cell laser microdissection followed by quantitative PCR analysis (see 

Online Methods). Our results showed that FGF22 is expressed in spinal interneurons 

including a large proportion of long propriospinal neurons both constitutively as well 

as after spinal cord injury (Fig. 1a-d). To directly assess the role of spinal FGF22 

expression we performed a T8 spinal cord injury in FGF22 deficient mice (Terauchi et 

al., 2010). Deletion of FGF22 reduced the formation of CST boutons (Fig. 1e, f) as 

well as the proportion of LPSN relay neurons that are contacted (Fig. 1 g, h) at 3 

weeks after injury, while the sprouting and branching of CST collaterals was not 

affected (Supplementary Fig. 1). Deletion of FGF22 did not affect the normal 

development of mature CST projection in healthy mice (Supplementary Fig. 2). To 

better understand which receptors mediate FGF22 signaling to CST collaterals we 

first established that the two main FGF receptors, FGFR1 and FGFR2 (Umemori et 

al., 2004; Lee and Umemori, 2013) were expressed in the cortex of adult mice (Fig. 1 

i-m) and then conditionally deleted them in the forebrain by crossing floxed mouse 

strains to EMX-Cre mice (Fox et al., 2007). While deletion of the receptors did not 

affect the development of a mature CST projection pattern in healthy mice 

(Supplementary Figure 3 and 4), the deletion of either FGR1 or FGR2 reduced the 

formation of synaptic bouton on newly formed CST collaterals. A similar reduction 

was observed in double-floxed mice, in which both FGFR1 and FGFR2 were 

selectively deleted in the hindlimb motor cortex by stereotactic injection of an rAAV-

GFP-Ires- Cre (Fig.1 n,o) indicating that the effect of FGF22 on synapse formation 

requires the presence of both receptors on cortical projection neurons. Notably, 

reduced synapse formation was compensated by increased sprouting of CST 

collaterals if either FGFR1 or FGFR2 was deleted but not if both receptors were 

missing (Supplementary Figure 5) suggesting that FGF22 signaling via either 

receptor participates in the induction of compensatory CST sprouting. As a result 

only mice in which both FGFR1 and R2 were deleted showed impaired formation of 

detour circuits (Fig. 1p).  

To evaluate whether FGF22 signaling not only regulates the formation of new 

synapses but also their molecular composition (as suggested by results in the 

developing hippocampus; Terauchi et al., 2012), we evaluated the expression of an 
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early (Bassoon, Lang et al., 2012) and late (Synapsin, Lang et al., 2012) marker of 

synapse maturation in newly formed hindlimb CST collaterals at different time points 

after injury by confocal microscopy and quantitative immunohistochemical analysis. 

We observed that deletion of either FGFR1 or FGFR2 alone led to a delay in 

synapse maturation that was most obvious at 3 weeks after injury whereas complete 

deletion of FGFR signaling either by conditional depletion of both receptors or by 

depletion of FGF22 enhanced the delay and induced synapse maturation defects that 

persisted for more than 12 weeks after injury (Fig. 2).  

 Finally we wanted to understand whether delayed synapse formation and maturation 

of newly formed CST collaterals would indeed affect the spontaneous recovery of 

CST function that follows an incomplete spinal cord injury. For this we performed T8 

dorsal hemisection and followed the recovery of CST function using specific 

behavioral testing paradigms such as the “ladder rung test” (Metz and Wishaw, 2009) 

in FGF and FGFR competent control mice and in mice in which FGFR22 signaling 

was genetically interrupted by FGF22 deletion or the conditional ablation of FGFR1 

and R2 receptors. Deletion of FGF22 or co-deletion of FGFR1 and R2 in the hindlimb 

motor cortex significantly delayed functional recovery in behavioral test paradigms 

(Fig. 3). Deletion of either FGFR1 or FGFR2 alone did not alter functional recovery 

likely due to the compensatory increase in CST sprouting that prevented deficits in 

detour circuit formation (Supplementary Figure 6).  

Together, the targeted deletion of FGF22 and its receptors FGFR1 and FGFR2 thus 

identify an important contribution of FGF22-FGFR signaling to the formation new 

CST boutons, the maturation of synaptic contacts and the recovery of locomotor 

function after spinal cord injury. These results establish that FGF22 acts as a 

synaptogenic mediator in the adult nervous system and a crucial regulator of 

synapse formation and maturation during post-injury remodeling in the CNS.   

 

 

 

 

  



84 
 

Acknowledgments 

We would like to thank Martin Adrian and Geraldine Heitmann, for excellent technical 

assistance, Dana Matzek for animal husbandry, Klaus Dornmair for his help with 

single cell laser microdissection and quantitative PCR and Alexander Gun for their 

help analyzing normal CST maturation in mutant mice. Work in F.M.B.’s lab is 

supported by grants from the Deutsche Forschungsgemeinschaft (DFG, SFB 870) 

and the German Federal Ministry of Education and Research (BMBF). Work in M.K.’s 

laboratory is financed through grants from the DFG (Transregio 128), the BMBF 

(Competence Network Multiple Sclerosis), the European Research Council under the 

European Union’s Seventh Framework Program (FP/2007-2013; ERC Grant 

Agreement n. 310932), the Hertie-Foundation and the “Verein Therapieforschung für 

MS-Kranke e.V.”. F.M.B. and M.K. are supported by the Munich Center for Systems 

Neurology (SyNergy; EXC 1010).  

 

 

 

AUTHORS CONTRIBUTIONS 

 F.M.B., H.U. and M.K. conceived the experiments. A.J. performed spinal 

surgeries and tracing. A.J. and A.M.S. performed and analyzed in situ hybridizations 

and single cell PCR. A.J., K.L., A.M.S. and F.M.B. contributed to anatomical and 

immunohistochemical analysis. H.U. characterized mutant mouse strains. A.J. and 

K.L. performed and analyzed behavioral testing. F.M.B., A.J. and M.K. wrote the 

paper.  

 

The authors declare no competing financial interests. 

 

 

 

 



85 
 

REFERENCES 

 

1. Bareyre F.M. et al.  Nat Neurosci  7, 269-277 (2004). 

2. Bareyre FM, Kerschensteiner M, Misgeld T, Sanes JR. Nat Med 11 (12):1355-

1360 (2005). 

3. Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, 

Sofroniew MV. Nat Med 14 (1): 69-74 (2008). 

4. Lang C, Guo X, Kerschensteiner M, Bareyre FM. Single collateral reconstructions 

reveal distinct phases of corticospinal remodeling following spinal cord injury. PLoS 

ONE 7 (1): e30461 (2012).  

5. Weidner N, Ner A, Salimi N, Tuszynski MH. Proc Natl Acad Sci U S A 98 (6):3513-

3518 (2001). 

6. van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann 

M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, 

Courtine G. Science 336 (6085): 1182-1185 (2012). 

7. Beauparlant J, van den Brand R, Barraud Q, Friedli L, Musienko P, Dietz V, 

Courtine G. Brain 136 (Pt 11):3347-61 (2013). 

8. Kerschensteiner M, Bareyre FM, Buddeberg BS, Merkler D, Stadelmann C, Brück 

W, Misgeld T, Schwab ME. J Exp Med 200(8): 1027-1038 (2004). 

9. Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H. 

Nature 465:783-787 (2010). 

10. Jessell TM, Sanes JR. Development. The decade of the developing brain. Curr 

Opin Neurobiol. 10(5):599-611. (2000) 

11. Sanes JR, Lichtman JW. Induction, assembly, maturation and maintenance of a 

postsynaptic apparatus. Nat Rev Neurosci. 2(11):791-805 (2001). 

12. Umemori H, Linhoff MW, Ornitz DM, Sanes JR. Cell 118:257-270 (2004). 

13. Stevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, 

Horvath TL, Vaccarina FM. J. Neurosci 30 (16): 5590-5602 (2010). 



86 
 

14. Lee CH, Umemori H. Front Cell Neurosci. 7:43. doi: 10.3389/fncel.2013.00043 

(2013). 

15. Singh R, Su J, Brooks J, Terauchi A, Umemori H, Fox MA. Front Mol Neurosci. 

4:61. doi: 10.3389/fnmol.2011.00061 (2012). 

16. Gorski, J.A. Cortical excitatory neurons and glia, but not GABAergic neurons, are 

produced in the Emx1-expressing lineage. J. Neurosci. 22, 6309-14 (2002). 

17. Bareyre FM, Garzorz N, Lang C, Misgeld T, Büning H, Kerschensteiner M. Proc 

Natl Acad Sci U S A. 108(15):6282-7 (2011). 

18. Lang C, Bradley PM, Jacobi A, Kerschensteiner M, Bareyre FM. EMBO Rep. 

14(10):931-7 (2013). 

19. Muramatsu R, Takahashi C, Miyake S, Fujimura H, Mochizuki H, Yamashita T. 

Nat Med  18(11):1658-1664 (2012).  

20. Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fassler R, Hudson BG, John 

SW, Ninomiya Y, Pedchenko V, Pfaff SL, Rheault MN, Sado Y, Segal Y, Werle MJ, 

Umemori H. Cell 129(1):179-93 (2007). 

21. Metz GA, Whishaw IQ. The ladder rung walking task: a scoring system and its 

practical application. Vis Exp. Jun 12;(28) (2009). 

 

 

 

 

 

 

 

 

 



87 
 

FIGURE LEGENDS  

Figure 1. Deletion of FGF22 or its receptors impairs synapse formation and circuit 

remodeling after spinal cord injury. (a) In situ hybridization of FGF22 mRNA in the 

spinal cord of FGF22 competent and FGF22 deficient mice (right panel). (b) In situ 

hybridization showing localization of FGF22 signal in LPSN retrogradely labeled from 

T12 (LPSN: green; FGF22: red; Neurotrace 435: Blue). (c) Quantification of the 

percentage of LPSN showing FGF22 in situ signal in unlesioned mice (“Ctrl”) and at 3 

(“3w”) and 12 (“12w”) weeks after injury (n=5 in all groups). (d) Images illustrating 

single cell laser microdissection to perform quantitative single cell PCR. Top panel 

shows three long propriospinal neurons (LPSN) retrogradely labeled from T12 with 

Texas Red. Bottom panel shows the two remaining LPSN after one (asterisk) has 

been microdissected. (e) Quantification of single cell PCR analysis of FGF22 

expression in LPSN in unlesioned mice (“Ctrl”) and at 3 (“3w”) and 12 (“12w”) weeks 

after injury (n=5 in all groups). (f) Confocal images showing synaptic boutons on 

newly formed cervical hindlimb CST collateral 3 weeks following spinal cord injury 

(Left panel: FGF22 competent mouse; Right panel: FGF22 deficient mouse). (g) 

Quantification of boutons density on newly formed cervical hindlimb CST collaterals 

in FGF22 competent and deficient mice (n=8 per group). (h) Confocal image of 

putative synaptic contacts between CST collaterals (green) and LPSN (red). (i) 

Quantification of the percentage of LPSN contacted by CST collaterals in FGF22 

competent and deficient mice (n=8 per group). (j, k) In situ hybridization of FGFR1 

(top) and FGFR2 (bottom) mRNA in FGFR competent animals (j) and forebrain 

FGFR1 (k, top panel) and FGFR2 (k, bottom panel) deficient mice. (l) Retrograde 

labeling of CST neurons with Texas Red® (green) show that CST neurons express 

FGFR1 and FGFR2 (insets in k top and bottom are two-fold magnification of boxed 

areas). (m) Quantification of the percentage of CST neurons in layer V of the cortex 

expressing FGFR1 and FGFR2 (n=3 per group). (n) Quantification of the intensity of 

the in situ signal for FGFR1 in FGFR2 deficient mice and FGFR2 in FGFR1 deficient 

mice (n=3 per group). (o)  Confocal images showing synaptic boutons on newly 

formed cervical hindlimb CST collateral 3 weeks following spinal cord injury (left 

panel: FGFR competent animal; Right panels: forebrain FGFR1, FGFR2 and 

FGFR1R2 deficient mice). (p) Quantification of the bouton density on newly formed 

cervical hindlimb CST collaterals in FGFR competent and forebrain FGFR deficient 

animals (n=8 for all group but FGFR1R2 co-deletion in which n=7). (q) Quantification 
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of the percentage of LPSN contacted by CST collaterals in FGFR competent and 

forebrain FGFR deficient mice (n=8 for all group but FGFR1R2 co-deletion in which 

n=7). Scale bars equal 200µm in a (10µm in inset); 20µm in b, 75µm in c, 20µm in f, 

30µm in h, 200µm in j and k, 100µm in l (20µm in insets), 20µm in o. p value *p<0,05; 

**p value<0,01; *** p value< 0,001. Unpaired t-tests were used for two–column 

comparisons, ANOVA followed by Tukey tests were used in case of multiple group 

comparison. 

 

Figure 2: Deletion of FGF22 or its receptors delays synapse maturation following 

spinal cord injury. (a) Confocal image of Bassoon immune reactivity (red) in synaptic 

contacts between a CST collateral (green) and a LPSN (blue). Right images are 

magnification (two-fold) of the area boxed on the left.  (b) Quantification of the 

percentage of boutons on cervical hindlimb CST collaterals that are immunoreactive 

for Bassoon at 3 weeks (left panel) and 12 weeks (right panel) after spinal cord injury 

in FGF22 deficient and forebrain FGFR1, FGFR2 and FGFR1R2 deficient mice 

compared to FGF22 and FGFR competent mice (“Control”). (c) Confocal image of 

Synapsin immune reactivity (red) in synaptic contacts between a CST collateral 

(green) and a LPSN (blue). Right images are magnification (two-fold) of the area 

boxed on the left. Confocal image of a synaptic contact between CST collateral 

(green), a propriospinal neuron (blue). (d) Quantification of the percentage of boutons 

on cervical hindlimb CST collaterals that are immunoreactive for Synapsin at 3 weeks 

(left panel) and 12 weeks (right panel) after spinal cord injury in FGF22 deficient and 

forebrain FGFR1, FGFR2 and FGFR1R2 deficient mice compared to FGF22 and 

FGFR competent mice (“Control”). Scale bars equal 20µm in a; and 20µm in b. T-test 

was used for paired comparisons, ANOVA followed by Tukey tests were used in case 

of multiple group comparison. 

 

Figure 3: Genetic disruption of FGF22 signaling impedes functional recovery 

following spinal cord injury. (a) Image of a spinal cord injured animal performing the 

ladder rung test that assesses recovery of CST function. (b) Quantification of the 

functional recovery in the ladder rung test (irregular walk, upper panel; regular walk, 

lower panel) in control (white bars), FGF22 deficient (red bars) and forebrain FGFR1 
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R2 deficient (blue bars) mice.  Repetitive ANOVA followed by Tukey tests were used 

for multiple group comparison. 

 

 

ONLINE METHODS 

Animals: Adult mice from 6 to 12 weeks of age were used in the study. FGFR1fl/fl 

and FGFR2fl/fl mice (Yu et al., 2003; Pirvola et al., 2002), in which the FGFR1 or 

FGFR2 gene is flanked by loxed P sites have been used to study the importance of 

FGFR1 and FGFR2 to post-injury remodeling. Littermates have been used as 

controls. To delete FGFR1 or FGFR2specifically in the CST, we have crossed 

FGFR1fl/fl and FGFR2fl/fl mice to Emx1-Cre mice (Gorski et al., 2002; Bareyre et al., 

2004) which trigger Cre expression in the forebrain as of embryonic day 10. For co-

deletion of the two receptors in the CST, we did crossed FGFR1fl/fl and FGFR2fl/fl 

until obtaining double floxed offsprings. Then we injected adeno-associated viruses 

expressing the cre recombinase in layer V of the hindlimb motor cortex.  To identify 

the role of FGF22 in the process of detour circuit formation after injury we used 

FGF22 knock-out mice (Terauchi et al., 2010). Normal wildtype C57Bl6j mice 

(Janvier, France) were used as control group for the FGF22 KO mice.  All animal 

procedures were performed according to institutional guidelines and were approved 

by the Regierung von Oberbayern. 

 

Generation and production of AAV vectors: pAAV- GFP-Ires-Cre was created by 

inserting an Ires sequence (from pIres2-DsRed2 (BD Bioscience) at the HincII site. 

The Cre coding sequence was excised from PBS185 (kind gift of Thomas Hughes, 

Montana State University) and inserted upstream to the Ires sequence at the site. 

Green Fluorescent protein (GFP) was excised from pEGFP-N1 and inserted 

downstream to the Ires sequence at. The Control pAAV-CMV-Ires2-GFP used was a 

kind gift of Hildegard Büning (Medical University of Cologne). pAAV-CMV-FGF22-

Ires-GFP was created by excising FGF22 coding sequence from APtag5 (H. 

Umemori, Michigan University) with NheI, XhoI and ligating it into the pAAV –CMV- 

Ires-hrGFP vector (Stratagene) at the HincII site. The original pAAV-Ires-hrGFP 
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(Stratagene) for the above cloning was used as control. Production was done as 

indicated.  

Genomic titers were as follows: 

pAAV-GFP-Ires2-Cre, 1,2 x 10^12 genomes copies /ml 

pAAV- Ires2-GFP, 2,4 x 10^12 genomes copies/ml 

pAAV-FGF22-Ires-hrGFP, 2,06x10^13 genome copies/ml;  

Control pAAV-Ires-hrGFP, 6,55x10^13 genome copies/ml;  

 

Surgical procedures 

Midthoracic dorsal hemisection. Mice were anesthetized with a subcutaneous 

injection of ketamin/xylazine (ketamine 100 mg/kg, xylazine 13 mg/kg). After a 

laminectomy to expose the dorsal spinal cord at thoracic level 8 (T8), a midthoracic 

dorsal hemisection, which results in a transection of the main dorsal and minor 

dorso-lateral CST component, was performed with fine iridectomy scissors  as 

previously described (Lang et al., 2011; Lang et al., 2012). Prior to and after surgery 

animals were kept on a heating pad (38°C) until fully awake and treated with 

Metacam (Boehringer Ingelheim) twice per day for 48 hours.  

 

Deletion of FGFR1 or FGFR2 and co-deletion of FGFR1 R2: To ablate FGFR1 or 

FGFR2 specifically in the CST, FGFR1fl/fl or FGFR2fl/fl were crossed to EMX1-Cre 

mice (Bareyre et al., 2005). For co-deletion of FGFR2 and FGFR1, FGFR1fl/fl were 

crossed to FGFR2fl/fl until obtaining homozygote double-floxed mice. Then, 0,7μl of 

rAAV-GFP-Ires2-Cre or control rAAV-Ires2-GFP were concentration-matched (to  0.6 

x10^12 genomes copies /ml) and then pressure-injected 4 days prior to the lesion 

into the hindlimb motor cortex using a finely pulled glass micropipette (coordinates 

from bregma: -1.3mm caudal; 1.0mm lateral; 0.6mm depth).The micropipette 

remained in place for 3 minutes following the injection. This produced deletion of 

FGFR1R2 in the motor cortex and labeled the CST in these co-deleted mice.  In 

order to verify that the virus remained confined to the hindlimb motor cortex and did 

not spread to the forelimb area, we amplified the GFP signal with an anti – GFP 
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antibody (rabbit polyclonal anti GFP; Invitrogen A11122), cut consecutive 50µm thick 

sections of the entire brain of all mice in order and determined the spread of the 

labeling of GFP labeled cells in layer V (Suppl. Fig. 7 a,b). Mice in which the labeling 

reached the forelimb motorcortex (coordinate from bregma: +0.5mm caudal) were 

excluded from the evaluation. To confirm that genetic FGFR deletion was similar to 

viral FGFR deletion, we virally deleted FGFR2 in the hindlimb cortex by injecting 

0,7µl of AAV-GFP-Ires-Cre at the following coordinates (bregma: -1.3mm caudal; 

1.0mm lateral; 0.6mm depth). No differences in boutons number, branchpoints and 

exiting CST collaterals could be seen between the genetic (see Fig. 1p,q) and the 

viral (Suppl. Fig. 8) FGFR2 deletion. 

 

Labeling of the hindlimb CST (hCST) fibers: The hindlimb CST of FGFR1fl/fl or 

FGFR2 fl/fl crossed with the EMX-Cre mice (n= 8 per group) was traced by pressure 

injecting 1,5µl of a 10% (in 0.1M PB) solution of biotinylated dextran amine (BDA, 10 

000 MW, Life Technologies) into the hindlimb motor cortex using a finely pulled glass 

micropipette two weeks prior to sacrifice using the following coordinates: −1.3 mm 

posterior to bregma, 1 mm lateral to bregma, 0.6mm depth. The micropipette 

remained in place 3 minutes following the injection. 

Labeling of long propriospinal neurons: Long propriospinal neurons were 

retrogradely labeled by pressure injections of 0.5µl of 2.5% TexasRed (dextran, 

fluorescein, 3000 MW, Life technologies) or 0.25µl of 2% Fluoro–GoldTM (Santa 

Cruz Biotechnology; sc-358883). Briefly, a laminectomy was performed at  thoracic 

level 12 as previously described (Lang et al., 2013) and the 0.5µl of 2.5% TexasRed  

or the 0.25µl of 2% Fluoro-GoldTM was injected into each side of the spinal cord 

using a thin glass capillary (coordinates from central vein: ± 0.6mm; depth: 0.9mm). 

The capillary was maintained in place for 3 minutes following the injection. Mice were 

sacrificed 3 or 12 weeks after dorsal hemisection. 

Tissue processing and histological analysis: Mice were deeply anesthetized with 

isoflurane and perfused transcardialy with saline solution followed by 4% 

paraformaldehyde (PFA) in 0.1M phosphate buffer (PBS). Brains and spinal cords 

were dissected and post-fixed overnight in PFA. The tissue was then cryoprotected in 

30% sucrose (Sigma) for at least 3 days. Coronal sections (50μm thick) were cut on 
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a cryostat. To visualize CST collaterals, BDA detection was performed as follows: 

Sections were incubated in ABC complex (Vector Laboratories) overnight at 4°C. 

After a 20 min tyramide amplification (Biotin-XX, TSA Kit #21, Life technologies) 

sections were incubated overnight with Streptravidin conjugated to FITC 488 (1:500, 

Life technologies). To visualize CST collaterals of the rAAV injected mice, an anti –

GFP staining was performed to amplify the GFP signal. Anti – GFP antibody (dilution 

1:500; Life Technologies A11122) diluted in PBS containing 0.1% Triton X-100 and 

2.5% goat serum (Life Technologies) was thus applied and incubated over night at 

4°C. On day 2, the corresponding secondary antibody was applied for at least 4 

hours (goat anti rabbit conjugated with Alexa 488).  

For synapse characterization, 20µm thick sections were cut and blocked for 1 hour 

with 5% GS (Life technologies) and 0.3% Triton X-100 diluted in 1 x PBS in which the 

hCST was labeled either with BDA or with the rAAV-CMV-GFP-Ires2-Cre. Sections 

were incubated with ABC (Vector Laboratories) and a primary polyclonal antibody 

reactive against synapsin I (Millipore AB1543; dilution 1:500) or a primary mouse 

monoclonal antibody reactive against bassoon (ENZO Life Science SAP7F407, 

dilution 1:200) in Tris buffer containing 0.3% Triton X-100 (Sigma) and 2.5% goat 

serum (Invitrogen) overnight at 4°C. The following day, after a 20 min tyramide 

amplification (Biotin-XX, TSA Kit #21, Invitrogen) to detect BDA, sections were then 

incubated together with Streptavidin-FITC 488 (1:500, Life technologies) and the 

appropriate secondary antibodies for the synaptic markers (donkey anti rabbit 

conjugated with Alexa Fluor 647 or goat anti rabbit conjugated with Alexa Fluor 635) 

incubated over night at 4°C. For rAAV-injected animals (FGFR1R2 co-deletion), the 

sections were first incubated with an anti – GFP antibody (see above) to amplify the 

GFP signal (Invitrogen, A11122) together with the primary antibodies against 

synapsin I or bassoon (concentrations as above) in 2.5% GS and 0.1% Triton X-100 

in 1 x PBS over night at 4°C. On the next day the appropriate secondary antibodies 

for the GFP labeling (goat anti rabbit conjugated with Alexa Flour 488) and for 

synapse staining (donkey anti rabbit conjugated with Alexa Fluor 647 or goat anti 

rabbit conjugated with Alexa Fluor 635) were applied over night at 4°C. The 

counterstaining was performed with NeuroTrace 435 (Invitrogen) and sections were 

mounted in Vectashield (Vector Laboratories).  
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Quantification of synaptic markers: To determine the percentage of boutons that 

express the synaptic markers Synapsin I and Bassoon image stacks of about 20 

sections spanning the C3 to C5 area of the spinal cord (20µm thickness, with every 

5th section taken) were acquired with an Olympus FV1000 confocal microscope 

equipped with standard filter sets and a 660 (NA 1.45) oil immersion objective. Image 

stacks obtained with confocal microscopy were processed using ImageJ software to 

generate maximum intensity projections. On those, the percentage of Synapsin I or 

Bassoon positive boutons were determined by counting the number of Synapsin I or 

Bassoon positive boutons upon the following criteria’s: A bouton was defined as a 

varicosity along the newly born collateral in the cervical spinal cord.  Therefore this 

varicosity on the collateral is clearly distinguishable by its thickness from the thin arm 

of the collateral itself. To assess co-labeling of the boutons we used the following 

evaluation criteria: A bouton was considered Synapsin I or Bassoon positive when its 

contour was clearly overlaid with the synapse staining and did not extend beyond it. 

The number of boutons positive for Synapsin I or Bassoon was determined and 

expressed as a percentage of all boutons on the collaterals counted in the cervical 

spinal cord. A minimum of 100 boutons was counted. All quantifications were 

performed by an observer blinded with respect to injury status and treatment. 

Quantification of CST remodeling: To evaluate axonal remodeling following a 

midthoracic dorsal hemisection, traced CST collaterals entering the grey matter at 

cervical levels C4 were counted on 30 consecutive coronal sections per animal using 

a light microscope (Olympus IX471) with a x40/0.65 air objective. To correct for 

differences in inter-animal tracing efficiency, the number of collaterals was divided by 

the number of traced fibers in the main CST tract and expressed as the ratio of 

collaterals per main CST fiber (Bareyre et al., 2004). All quantifications were 

performed by an observer blinded with respect to injury status and treatment. 

Quantification of contacts onto LPSN: For quantifying the number of contacts 

formed onto LSPN a total amount of 30 sections was evaluated using a fluorescent 

microscope (Olympus IX471) with a x40/0.65 air objective. Collaterals were 

visualized as mentioned above (tyramide amplification or GFP amplification), the total 

number of LPSN labeled was counted and the total number of contacts onto those 

was examined. The number of LPSN was expressed as a ratio of all LPSN contacted 
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by collaterals over the total number of all LPSN. All quantifications were performed 

by an observer blinded with respect to injury status and treatment. 

Quantification of the length of the collaterals: To determine the length of the 

collaterals 10 sections spanning the C3 to C5 area of the spinal cord (50µm 

thickness, sections randomly taken) were acquired with an Olympus FV1000 

confocal microscope equipped with standard filter sets and a 660 (NA 1.45) oil 

immersion objective. Image stacks obtained with confocal microscopy were 

processed using ImageJ software to generate maximum intensity projections. The 

lengths of all collaterals in those sections were measured with the help of the 

measurement tool of ImageJ and a mean of the collaterals length per animal was 

acquired. All quantifications were performed by an observer blinded with respect to 

injury status and treatment.  

Cortical neuronal density: To determine whether genetic deletion of FGFR1 or 

FGFR2 at embryonic day 10 or full deletion of FGF22 alters cortical lamination and 

cortical neuronal density, we cut 50µm brain sections and performed NeuN 

immunohistochemistry (Gt anti-NeuN, Millipore, dilution 1:500, 4°C overnight). 

Counterstaining was performed with Neurotrace500. The density of cells in layer V of 

the motorcortex and sensory – motorcortex was quantified by counting the number of 

NeuN positive cells in every third section all through the hindlimb cortex for a total of 

10 sections per animal. All quantifications were performed by an observer blinded 

with respect to injury status and treatment. 

Lesion volume and Regeneration at lesion site: We verified the extent of the 

spinal cord lesion in all animals, by performing analysis of lesion volume. Lesion 

volume was assessed on spinal cord longitudinal 50µm sections spanning the entire 

lesion extent at thoracic level. Following staining with a fluorescent Nissl dye (NT435, 

LifeTechnologies N-21479, dilution 1:500) the sections were scanned using an 

Olympus IX71 microscope. Images were then processed with ImageJ and the lesion 

area, including both the cavity and surrounding damaged tissue, was outlined. To 

quantify the lesion volume, the measured lesion area of each section was multiplied 

by the section thickness (50μm) and the results of all consecutive sections spanning 

the entire lesion extension were summed up for each animal to provide a final 

estimation of the total lesion volume (Suppl. Figure 9a).  
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To determine the effect of deletion of FGF22 on the growth of CST fibers after a 

midthoracic dorsal hemisection, we analyzed consecutive longitudinal sections of the 

midthoracic spinal cord. Image stacks were recorded on Olympus IX71 microscope. 

The number of BDA-labeled growing fibers in the dorsal funiculus that intersected 

with a dorso-ventral lines positioned every 100μm distal from the lesion site was 

counted. The lesion site was identified visually and level 0 was positioned at the end 

of the retracting non growing fibers. The total number of growing fibers counted on 4-

5 consecutive longitudinal 50µm thick sections was then normalized to the number of 

fibers in the main CST tract (obtained from the dorsal funiculus at cervical C5 level) 

and divided by the number of sections evaluated. The value obtained for a given 

distance is the number of CST fibers per labeled CST axons per section, the “fiber 

number index”. To exclude a contribution from spared fibers, only fibers emerging 

from the dorsal main CST and extending in the dorsal funiculus were counted (Suppl. 

Figure 9b). 

In situ Hybridization: Spinal cord tissue (cervical region C3-C5, 20µm thick) and 

brain tissue (Bregma -1.06 till -1.70, 30µm thick) were sectioned coronally using the 

cryostat (Leica CM1850) and processed as described previously (Jacobi et al., 

2014). Briefly, all steps very carried out with DEPC treated solutions to prevent 

degradation of target RNAs. Sections were washed in 2X SSC (from 20X stock 

solution containing 3M NaCl and 0,3M Na Citrate) and before the prehybridization 

step, the sections were incubated in a 1:1 mixture of 2X SSC and hybridization buffer 

(50% Formamide, 5X SSC, 5X Denhardt’s solution (Sigma-Aldrich D2532), 250μg/ml 

yeast tRNA, 500μg/ml salmon sperm DNA) for 15min at RT. Sections were then 

incubated for 1hr in hybridization buffer at the appropriate (pre-) hybridization 

temperature (65°C). For hybridization, the probe (200-400ng/ml in hybridization 

buffer) was heated for 10min at 80°C, applied to the tissue and incubated overnight 

in an oven at 65°C. Sections were then rinsed at RT in 2X SSC and washed in 

decreasing concentration of SSC (2X to 0.1X SSC at hybridization temperature) 

before applying an alkaline-phosphatase-conjugated sheep anti-digoxigenin 

antibody, Fab fragments (1:2000; Roche Diagnostics) in blocking buffer overnight at 

4°C. Alkaline phosphatase activity was detected using nitroblue tetrazolium chloride 

(337.5mg/ml) and 5-Bromo-4-chloro-3-indolyl phosphate (175mg/ml) (Carl Roth). The 

sections were washed in ddH2O after the staining procedure. The fluorescent Nissl 
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stain Neurotrace 435 was applied for 2h at RT; the sections were washed and 

mounted with Gel Mount (Sigma Aldrich). 

Lasermicrodisection: Total RNA was isolated from LPSN in unlesioned animals 

and 3 weeks after lesion (n = 2 per timepoint). For this purpose 20µm thick fresh 

frozen coronal sections (C3-C5) were collected on Membrane Slides 1.0 PET (Zeiss). 

Sections were covered with n-propanol to prevent drying and to inhibit RNase 

activity, and immediately transferred to a PALM Microbeam-Z microscope. LPSN 

retrogradely labeled with TexasRed and located between layers 6 to 9 in C4 were 

marked electronically. After evaporation of the n-propanol, a total of 10 marked 

neurons were microdissected and laser pressure catapulted into a reaction tube 

(AdhesiveCap 200 clear PCR tubes, Zeiss) and directly put on dry ice. After 

microdissection, it was visually verified that all neurons were actually captured. For 

single cell, QPCR, we used the kit Lifetechnologies. Shortly, one single cell is lysed 

in 10µl Single Cell Lysis/Dnase I solution à 5 min RT. 1 μL of Stop Solution is added 

to lysis reaction -à2min RT and 4.5 μL of RT Mix is added à RT:  Incubate for 10 min 

at 25 °C. Incubation is carried for 60 min at 42 °C and for 5 min at 85 °C. Then 11 μL 

of PreAmp Mix with Primers is added ( FGF22 Forward primer 5'- ACT TTT TCC 

TGC GTG TGG AC -3', FGF22 Reverse primer 5'- TCA TGG CCA CAT AGA AGC 

CT -3'; GapDH Forward primer 5’-TCA ACG ACC CCT TCA TTG-3’, GapDH Reverse 

primer 5’-ATG CAG GGA TGA TGT TCT G-3’). PreAmplification reaction is as 

follows: 95 °C 10 min; 14 cycles: 95 °C for 15 sec, 56 °C for 2 min,  60 °C for 2 min. 

Probes are diluted 1:10 in H2O. 5µl of the probe is used for qPCR in a total volume of 

20µl. Then we use the 2xSsoAdvanced Universal SYBR Green Supermix (BioRad) 

for QPCR with the following protocol: 95°C 3min; 95°C 10sec; 56°C 10sec; (39 

repeats).the melting curve is carried with 65°C to 95°C increments. 

Behavioral Analysis: The following behavioral tests were used to assess locomotor 

recovery after spinal cord injury.  

BMS: We used the Basso mouse scale to assess overall recovery of hindlimb 

locomotion after a spinal lesion. Following the ranking system previously described 

(Basso et al., 2006) mice were given scores from 0-9, with a score of 0 indicating no 

ankle movement and a score of 9 indicating frequent or consistent plantar stepping, 

mostly coordinated stepping, paws parallel at initial contact and lift off, normal trunk 

stability and tail consistently up. For evaluation, the mice (n = 12 per group) were 
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placed in an open field for 4 min and assessed by two observers blinded to the 

genotype of the mice. Mice were assessed before and 2, 7, 14 and 21 days after 

lesion. For overexpression experiments the mice were assessed until 8 weeks after 

lesion. 

Ladder Rung: For more refined  assessment of the CST function following spinal 

cord injury, we used the ladder rung test, or grid walk, which has been described 

previously (Metz and Whishaw, 2009).  Animals were scored for their ability to cross 

accurately a 1 m long horizontal metal-rung runway with varying gaps of 1–2 cm 

between the rungs. All animals underwent a couple of familiarization sessions with 

the apparatus prior to pre-operative baseline testing. Following familiarization, 

sessions were videotaped and scored to determine baseline performance. Pre-

operative score as well as post-operative performance on day 7, 14 and 21 post 

injury, and for the long term analysis of the mice were both receptors have been 

ablated (FGFR1fl/fl ;FGFR2fl/fl) at 8, 10 and 12 weeks after lesion, were collected. A 

hindlimb foot error was defined as a complete miss or slip from the rung at the 

moment of the placement of the paw onto the rung. Baseline and post-operative 

testing sessions consisted of 3 runway crossings. The total number of errors and 

steps by the hindlimbs in each session was counted.  
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SUPPLEMENTARY FIGURES and LEGENDS 

 

 

 

 

 

 

Supplementary Figure 1. FGF22 deletion does not change CST sprouting and CST 

branching following spinal cord injury. (a) Confocal images of exiting hindlimb CST 

collaterals in the cervical cord 3 weeks following T8 hemisection in FGF22 competent (left 

panel) and FGF22 deficient (right panel) mice. (b) Quantification of the number of exiting 

CST collaterals and of the number of hindlimb CST collateral branch points 3 weeks 

following T8 hemisection in FGF22 competent and deficient animals (n=8 per group; 

compared using unpaired t-test) . Scale bar in a (both panels): 40 µm.  



104 
 

 

Supplementary Figure 2. Normal hindlimb CST maturation is not altered in forebrain 

FGF22 deficient mice. (a) Quantification of the number of boutons, (b) branchpoints and (c) 

of exiting CST collaterals in FGF22 competent and deficient mice (n=6 per group; compared 

using unpaired t-test). 
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Supplementary Figure 3. Normal hindlimb CST maturation is not altered in forebrain 

FGFR1 deficient mice. (a,b) Confocal images of the cortex of FGFR1 competent (a) and 

forebrain FGFR1 deficient (b) mice. (c) Quantification of the number of neurons in layer V of 

the cortex in FGFR1 competent and forebrain FGFR1 deficient mice (n=3 per group; 

compared using unpaired t-test).  (d-f) Quantification of the number of boutons (d) and 

branchpoints (e) per µm hindlimb CST collateral and the number of emerging hindlimb CST 

collaterals (f) in FGFR1 competent and forebrain FGFR1 deficient mice (n=6 per group; 

compared using unpaired t-test). Scale bar in a, b: 100 µm. 
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Supplementary Figure 4. Normal hindlimb CST maturation is not altered in forebrain 

FGFR2 deficient mice. (a,b) Confocal images of the cortex of FGFR2 competent (a) and 

forebrain FGFR2 deficient (b) mice. (c) Quantification of the number of neurons in layer V of 

the cortex in FGFR2 competent and deficient mice (n=3 per group; compared using unpaired 

t-test).  (d-f) Quantification of the number of boutons (d) and branchpoints (e) per µm 

hindlimb CST collateral and the number of emerging hindlimb CST collaterals (f) in FGFR2 

competent and forebrain FGFR2 deficient mice (n=6 per group; compared using unpaired t-

test). Scale bar in a, b: 100 µm. 
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Supplementary Figure 5. Deletion of either FGFR1 or FGFR2 but not deletion of both 

increases CST sprouting following spinal cord injury. (a) Confocal images of exiting CST 

collaterals in the cervical cord 3 weeks following T8 hemisection in FGFR competent (left 

panel) and forebrain FGFR1, FGFR2, FGFR1R2 deficient (right panels) mice. (b) 

Quantification of the number of exiting CST collaterals and of the number of CST collateral 

branch points 3 weeks following T8 hemisection in FGFR competent and forebrain FGFR 

deficient animals (n=8 per group except for FGFR1R2 deficient group in which n=7; 

compared using an ANOVA followed by Tukey test for the experiment with the single FGFR 

KO and with an unpaired t-test for the experiment using the double FGFR KO, * P <0,05). 

Scale bar in a: 40 µm.  
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Supplementary Figure 6. Deletion of either FGFR1 or FGFR2 does not impair 

functional recovery after spinal cord injury. (a) Quantification of functional recovery in 

the ladder rung test (irregular walk) in control (white bars) and conditional FGFR1 (dark blue 

bars) or FGFR2 (green bars) deficient mice (n=8 per group; compared with a repeated 

ANOVA followed by post-hoc test). (b) Quantification of functional recovery in the ladder 

rung test (regular walk) in control (white bars) and conditional FGFR1 (dark blue bars) or 

FGFR2 (green bars) deficient mice (n=8 per group; compared with a repeated ANOVA 

followed by post-hoc test). 
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Supplementary Figure 7. Stereotactic injection of AAVs allows selective targeting of the 

hindlimb motor cortex. (a) Confocal image of the hindlimb motor cortex 3 weeks following 

injection of rAAV-GFP-Ires-Cre illustrating the presence of many transduced neurons (green)  

in layer V of the cortex (blue, counterstaining with Neurotrace 435). (b) No transduced 

neurons (green) are seen in the forelimb motor cortex of the same animals.  Scale bar in a, b: 

150 µm.  
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Supplementary Figure 8. Genetic and viral deletion of FGFR2 has similar effects on 

post-injury remodeling. (a) Confocal images of exiting hindlimb CST collaterals in the 

cervical grey matter 3 weeks following spinal cord injury in FGFR2 floxed mice after 

injection of  either rAAV-GFP (left panel) or rAAV-GFP-ires-Cre (right panel) in the 

hindlimb motor cortex. (b) Quantification of the number of exiting hindlimb CST collaterals 3 

weeks following spinal cord injury in FGFR2 floxed mice after injection of  either rAAV-

GFP or  rAAV-GFP-ires-Cre in the hindlimb motor cortex.  (n=8 per group; compared using 

unpaired t-test, * P value<0,05). The amplitude of the sprouting should be compared to Suppl. 

Fig. 5 when the deletion is performed by crossing FGF22fl/fl mice with EMX-Cre mice. (c) 

Confocal images of boutons on hindlimb CST collateral in FGFR2 floxed mice after injection 

of either rAAV-GFP (upper panel) or rAAV-GFP-ires-Cre (lower panel) in the hindlimb 

motor cortex. (d-f) Quantification of the number of boutons (d), branchpoints (e) per 
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hindlimb CST collateral as well as the percentage of contacted LPSN (f) 3 weeks after injury 

in FGFR2 floxed mice after injection of either rAAV-GFP or rAAV-GFP-Ires-Cre in the 

hindlimb motor cortex (n=8 per group, compared using unpaired t-test, * P value<0,05). 

Again the changes are similar to those obtained by crossing FGF22fl/fl mice with EMX-Cre 

mice (See Fig. 1). Scale bar in a, 40 µm; in c: 15 µm. 
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Supplementary Figure 9. Lesion volume and fiber number index of regenerative fibers 

in FGF22 KO mice following spinal cord injury. (a) Confocal picture (left panel) of a 

representative longitudinal section of spinal cord around T8 showing the extent of lesion size 

using NT435. Dash lines outline the lesion area. Quantification of lesion area (µm3/ right 

panel) in FGF22 KO and control mice. (b) Fiber number index of regenerative fibers in 

FGF22 KO and control mice. Scale bar in a equals 250µm. Data were analyzed with student t-

test in (a) and a repeated ANOVA followed by post-hoc test in (b).  
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                      Chapter 4 

 
 

 

4. Discussion 
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The process of detour circuit formation after spinal cord injury is subdivided into different 

phases starting with (i) the growth of new CST collaterals, (ii) the navigation of those de novo 

collaterals toward their target area and (iii) the formation and refinement of synapses onto 

appropriate relay neurons (LPSN). My thesis was aiming at identifying some of the molecular 

mechanisms which govern these individual phases of post-injury axonal remodeling and the 

findings obtained during this time will be discussed in this chapter.      

 

4.1 Molecular modulation of post-injury outgrowth of new CST 

collaterals.  

The first aim of my thesis was the identification and manipulation of molecules that could 

influence axonal outgrowth during detour circuit formation following spinal cord injury. The 

work performed during this thesis has allowed the identification of a transcription factor 

STAT3 as a key regulator of axonal outgrowth following spinal cord injury. In the next 

paragraphs, I will discuss how STAT3 can induce sprouting of lesioned and unlesioned axons. 

 

 

4.1.1 Activation of Intrinsic Growth Program: the Example of STAT3  

CNS neurons axotomy can lead to the activation of the intrinsic growth program (Smith et al., 

2011). However this process is thought to be very transient because of a simultaneous 

activation of inhibitory growth factors (Sun and He, 2010). Accordingly, we show a transient 

expression of STAT3 in cortical projection neurons after injury which is back to baseline 

levels one week after the injury (Lang et al., 2013). This could be due to a negative feedback 

loop with the  
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upregulation of SOCS3 upon STAT3 activation. As SOCS3 is a strong inhibitor of STAT3, 

this could lead to the quick down regulation of STAT3 following CNS injury (Crocker et al., 

2008; Smith et al., 2009). In the CNS, the negative feedback loop could be regulated not only 

by SOCS3 but also by other factors. For example, a study in which the JAK-STAT pathway is 

inhibited via the infusion of a JAK2 kinase inhibitor (AG490, Qui et al., 2005), shows a 

significant reduction of dorsal column axonal regeneration after a pre-conditioning sciatic 

nerve transection. Similarly, genetically ablating the IL-6 pathway, in IL-6 deficient mice, 

leads to a failure in the regeneration processes after a conditioning lesion in the dorsal column 

neurons (Cafferty et al., 2001 and 2004). The inability of the injured neurons to regenerate in 

the CNS therefore might be due to the multi-level activation of feed-back loops triggering a 

failure of the timed upregulation of STAT3.Various studies could show that genetic deletion 

of SOCS3 is able to lead to sustained activation of STAT3 and thereby could promote axonal 

outgrowth and regeneration after a CNS lesion (Smith et al., 2009; Sun et al., 2011).  

 

The results also show that the deletion of STAT3 in cortical projection neurons does not 

impair normal post-injury axonal sprouting and spinal remodeling after spinal cord injury 

(Lang et al., 2013). Indeed, the ability of the corticospinal tract to sprout spontaneously in the 

absence of STAT3 after injury (Lang et al., 2013), as well as the ability of the DRG neurons 

to induce the growth program albeit in a delayed fashion following PNS lesion (Bareyre et al. 

2011), indicate that other growth factors can activate growth promoting pathways after injury.  

What are those factors that can initiate growth in the absence of STAT3 and may act as a 

backup system in case of absence of STAT3? 
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The intrinsic growth program has been in the focus of various studies in the last years and the 

identification of several regulators such as the members of the PTEN/ mTOR pathway (Park 

et al., 2008; Liu et al., 2010) has emerged. Liu et al., were able to show that the deletion of 

PTEN, a negative regulator for mTOR, leads to increased sprouting of CST neurons after SCI. 

Down regulation of PTEN also leads to the activation of Akt pathway (Park et al., 2010; 

Hassan et al., 2013) which in turn is known to be associated with enhanced neurite outgrowth 

in the DRG and in perinatal cortical neurons (Markus et al., 2002; Ozdinler and Macklis 

2006). Other potential candidates could be the cyclic AMP (cAMP) pathway and its 

downstream mediators (Qiu et al., 2002; Deng et al., 2009). cAMP is known to regulate 

neurite outgrowth, i.e. administration of cAMP into the DRG can promote the regeneration of 

dorsal column axons (Neumann et al., 2002; Qiu et al., 2002). 

 

In order to try to further promote the remodeling process, we aimed in exogenously inducing 

sustained STAT3 overexpression via viral gene transfer in order to investigate if this leads to 

improved spinal remodeling. We could show that if we overexpress STAT3 genetically in the 

neurons of the corticospinal tract this promotes axonal outgrowth after SCI (Lang et al., 

2013). However, the increased CST sprouting does not lead to an increase in the number of 

contacts onto spinal relay neurons (LPSN). Why this is not the case might be due to the fact 

that the detour circuit is spontaneously formed at an optimal rate, at least in absence of 

additional manipulations which aim at inducing axonal guidance and synapse formation. 

Additionally we can show in our study, that long-lasting overexpression of STAT3 is able to 

induce outgrowth of non-injured axons. In particular, using the pyramidotomy lesion 

paradigm, in which only one  
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side of the CST is injured at the level of the medulla oblongata and the direct cortical input is 

unilaterally interrupted (Bareyre et al., 2002), we can show that the intact side is 

compensating for the loss of innervation by sending midline-sprouting collaterals to the 

denervated site. Those midline-crossing collaterals were in turn shown to contact spinal 

interneurons and motoneurons. Other manipulations have also been shown to induce 

remodeling after pyramidotomy. For example, neurotrophic factors (Zhou and Shine, 2003), 

or the inhibition of NOGO-A (Bareyre et al., 2002; Wiessner et al., 2003), a neurite outgrowth 

inhibitor, are able to induce sprouting of fibers across the midline. Also electrical stimulation 

has been shown to increase midline–crossing fibers (Brus-Ramer et al., 2007), or in 

combination with exercises improved behavioral outcome (Harel et al., 2013). Finally, 

manipulating the inhibitory milieu, i.e. degrading chrondrotin sulphate proteoglycans 

(CSPGs) via enzyme chrondrotinase ABC (ChABC), or overexpressing other proteins such as 

the neuronal calcium sensor1 (NCS1) have also promoted midline sprouting and supported 

functional recovery (Yip et al., 2010; Starkey et al., 2012).  

 

 4.1.2 STAT3 as a Therapeutic Agent: Risks and limitations 

We have demonstrated that STAT3 is a potent mediator of neurite outgrowth. However, as 

STAT3 is a pleiotropic molecule embedded in a complex signaling cascade, its sustained 

expression might also induce unwanted side effects such as cancer or inflammation which are 

discussed in short below.  

The effects of STAT3 for instance are not only restricted to neuronal cells. After a spinal cord 

injury, reactive astrocytes are migrating to the lesion site. Okada et al. (2006) could show that 

the  
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function of reactive astrocytes here are largely dependent on STAT3. Having astrocytes 

expressing STAT3 leads to the proper formation of the scar and prevents unorganized 

inflammation and reduces functional deficits (Okada et al., 2006; Herrmann et al., 2008). The 

critical point with STAT3 being applied in a non-selective way and over a longer time here 

could be the continuous activation of astrocytes that might be detrimental to axonal 

regeneration as this keeps the scar and its inhibitory environment intact. As the effects of 

STAT3 are on the transcriptional level, an upregulation can also lead to suppression of 

apoptosis because it activates genes, which in the case of an injury are pro regenerative (such 

as bcl-xl or bcl-2), but might lead to aberrant growth in other areas (Yu et al., 2009). This 

indicates that the use of STAT3 could have a high risk to induce cancer formation if not 

applied carefully.  

A very promising application could be the use of viral gene therapy (recombinant adeno – 

associated viral vectors, rAAV). Not only that these tools have been used extensively in 

animal studies, but also they are very well characterized in terms of safety and restrictiveness 

to neuronal populations, depending on their capsid structure (Xiao et al., 2012). They have 

been used for gene therapy during clinical trials, i.e. for neurodegenerative diseases such as 

Alzheimer’s disease (Lim et al., 2010) and cystric fibrosis (Moss et al., 2004; Moss et al., 

2007). Limitations to overcome, so far are the reactions of the immune system, i.e. that 

transgene-expressing cells are eliminated by the cells of the immune system (Mingozzi et al., 

2011; Rogers et al., 2011). Particularly in the case of spinal cord injury this could affect a 

stable expression of the rAVV. Here, the injury itself leads to a strong inflammatory response 

(Bareyre et al., 2003) which in addition could also “attack” the rAAVs and thereby eliminate 

transduced neuronal cells. However, efforts are taken to also overcome those difficulties. For 

example, studies are ongoing  
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in which the transduction efficacy of the vector is increased. This way, one can achieve the 

same expression levels, or higher, with a lower amount of transferred rAAV (Li et al., 2010; 

Bartel et al., 2011).  

The identification of molecules such as STAT3, which induce growth during injury-induced 

axonal remodeling, is one key step in the aim of triggering the formation of the detour circuit 

after injury. Therefore, finding additional growth promoting cues, which could trigger growth 

or be combined with STAT3 for additive effects, is of great interest for the future. 

  

4.2 Identification of the Expression of Guidance Molecules in the 

Injured Spinal Cord 

Once the growth of the de novo collaterals is induced, the axons have to be guided into their 

proper target area and form contacts onto the target cells. The second aim of my thesis was 

the identification of potential candidate molecules which can guide the axons onto the proper 

target interneurons in the spinal cord during the remodeling process. To do so, we examined 

the expression of guidance molecules which determine the formation of neuronal circuits in 

the developing nervous system, within different groups of spinal interneurons during detour 

circuit formation following spinal cord injury.  

 

4.2.1 Role of Guidance cues in the developing and in the Adult CNS 

In the human developing CNS, each of over a trillion cells has to form connections with, on 

average, over a thousand target cells. The correct connection and wiring is essential for the 

proper  
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functioning of the nervous system. To achieve this, the newly growing axons are either guided 

via contact attraction, chemoattraction, contact repulsion or chemorepulsion. The contact 

mediated repulsion or attraction is used over short range guidance, whereas the 

chemoattraction or –repulsion is usually used during long range guidance (Figure 9; for 

review see Tessier-Lavigne and Goodman, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Guidance forces leading the growing axon through the developing tissue. 
Attraction or repulsion occurs either via long distance (such as secreted Semaphorines) or 
via contact mediation and thereby are defined as short-range cues (such as Ephrin ligands 
or transmembrane Semaphorines). (Adapted from Tessier – Lavigne and Goodman, 1996; 
Re-print permission from the American Association for the Advancement of Science) 
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In the last years, numerous cues important for axon guidance have been identified in the 

developing nervous system. Their expression usually is depending on the phase in which the 

axon is (growing, targeting or synapsing) or in which area it is growing to (Kolodkin and 

Tessier – Lavigne, 2011; Fox and Umemori, 2006). For instance, the guiding molecule 

semaphorin 6a is expressed in the developing corticospinal tract. It is shown to only be 

expressed in the area were the tip of the growing CST axons are located, such as at embryonic 

day E17.5 in the pons, and in the inferior olives just before the pyramidal decussation at P4 

(Rünker et al., 2008). Other examples show spatially distinct expression patterns of the 

guidance cues. The Slits, repulsive guidance cues, are only located in the ventral half of the 

developing spinal cord, e.g. the floor plate (Hammond et al., 2005). Members of the Ephrin 

family, also part of the repulsive guidance cues, such as EphrinB3 is expressed in the floor 

plate, whereas EphrinB2 and B1 show expression only in the dorsal spinal cord (Jevince et al., 

2006). In contrast, our study shows a very ubiquitous distribution of the individual cues 

investigated in the adult CNS (Jacobi et al., 2014). One potential explanation for the 

differences in the expression pattern between development and adult could be a change in the 

role of the guidance cues. Axon guidance cues could switch from a repulsive to an attractive 

cue and vice versa. The expression of these cues in the adult CNS indicates that they could 

influence the stabilization of neuronal circuits during adulthood and axonal remodeling 

following injury. Some of these cues have been shown to be expressed at the lesion site after 

injury (Wehrle et al., 2005; Kopp et al., 2010). So far, the exact roles of the different cues 

investigated during my thesis are not fully understood, but their potential role during adult 

neuronal circuit formation can be strengthened by the fact, that all their receptors are also 

expressed in the layer V neurons of the motorcortex that send their axons down to the spinal 

cord and form the CST tract. These receptors have also been shown to be  
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expressed in the developing CST tract (Rünker et al., 2008; Yokoyama et al. 2001; Bagri et 

al., 2002). More experiments are warranted in order to elucidate the role of these cues in 

adulthood and following injury. 

 

4.2.2 Role of Axon Guidance Cues During Post-Injury Remodeling 

As mentioned above, the attractive and repulsive guidance cues have been studied in great 

detail during the development (Tessier-Lavigne and Goodman, 1996; Mueller et al., 1999).  

One group is the repulsive guidance cues of the slit / robo family (Slit-1,-2 and -3, and their 

receptors Robo-1,-2 and -3). First hints of this family being a negative regulator in the adult 

CNS rose after it has been shown that the slits are expressed at the lesion site after spinal cord 

injury and thereby perhaps contribute to the failure of regeneration (Wehrle et al., 2005, Lu et 

al., 2008). In our study we can show that slits are also expressed in the cervical spinal cord, in 

unlesioned and lesioned animals, remote from the lesion site. As we also show their receptors 

being expressed by the neurons of the corticospinal tract, we can assume an important role in 

the nervous system and among others after injury. Interestingly, we do observe a specific 

expression of the slit ligands in excitatory propriospinal neurons compared to inhibitory 

glycinergic interneurons (Jacobi et al., 2014). As those are specifically contacted by 

regrowing CST collaterals after injury, this might indicate a change in their role from neurite 

repulsion in development (Sang et al., 2002) to neurite attraction in adulthood (as mentioned 

above). 

Another group of guidance cues are the semaphorins and their receptors (Sema6a, -7a and 

their receptors PlexinA2 and –C1). Similarly to the slits, they have been implicated in the 

control of neuronal development (Suto et al., 2007; Rünker et al., 2008; Pasterkamp et al., 

2003; Mann et al., 2007). Also here we can show the ubiquitous expression of the two  
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ligands, sema6a and sema7a, in the cervical gray matter. The two main receptors, PlexinA2 

and PlexinC1 respectively, do also show expression in the adult cortex, as reported before 

(Shim et al., 2012; Kopp et al., 2010) and in particular in the lamina V of the motorcortex. 

Sema7a is known to be a growth promoting cue (Pasterkamp et al., 2003). After injury this 

cue is expressed by all propriospinal neurons but in only a restricted subset of glycinergic 

interneurons, indicating that this cue might help the new collaterals to grow towards the 

propriospinal neurons. It is worth noting that the injury is not accompanied by a change in the 

expression pattern of Sema7a. This is in contrast to previous findings where Sema7a 

expression is increased in neurons and components of the glial scar (Kopp et al., 2010) at the 

site of the injury. This discrepancy is most likely due to the difference in location for the 

analysis. The study of Kopp et al is performed at the site of the lesion while our study is 

performed remote from the lesion site, at the level of axonal remodeling. 

The axon guidance cues studied here have been shown to be expressed in the adult central 

nervous system, in the unlesioned and lesioned situation. The distinct expression of the 

ligands preferably on the propriospinal neurons might suggest a change in the signaling effect 

from development to adulthood for sema6a but a preserved transduction pathway for Sema7a. 

 

Taken together, the expression of the slit’s and Sema7a mainly on the excitatory spinal relay 

neurons (LPSN) but not on inhibitory, glycinergic interneurons, gives rise to a potential role 

in post-injury axonal remodeling. Further, more detailed investigations, i.e. via genetic 

manipulations (knock-out mice or viral mediated genetic overexpression), could help gaining 

a greater insight into their role in the adult CNS and after injury. 
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4.3 Identification and Molecular Modulation of Synaptogenesis during 

Injury Induced Remodeling 

The last task of my thesis was to identify molecules that could be involved in regulating 

synapse formation during post-injury axonal remodeling. We first established an in situ screen 

to identify potential candidates and then continued by manipulating one particular synaptic 

organizer in our injury model. In this chapter I will explain which synaptogenic molecules we 

investigated and will discuss how the modulation of one of them, FGF22, interferes with 

detour circuit formation following spinal cord injury. 

 

4.3.1 Role of Synaptogenic Cues During Post-Injury Remodeling 

Once the axon has reached its target cell, a synapse has to be formed in order for neuronal 

transmission to be established. This usually is induced either pre-synapticaly or post-

synapticaly (Gerrow and El-Husseini, 2006). The process of synapse formation has been 

studied extensively during development (Fox and Umemori, 2006; Biederer et al., 2006). It 

involves several molecules such as trans-synaptic adhesion molecules which span the synaptic 

cleft and are needed to precisely align pre- and postsynaptic sites.  

We first focused on Synaptic Cell Adhesion Molecules (SynCAMs), which are known to be 

crucial for the formation of new connections during development (Biederer et al., 2006). This 

family of molecules acts bi-directionally (Biederer and Stagli, 2008); therefore we analyzed 

their expression in the cortex, for the receptors, and in the spinal cord, for the ligands. We can 

detect expression of SynCAM1, 3 and 4 throughout the adult cortex (prominently in layer V) 

and the adult spinal cord which is in line with previous reports (Thomas et al., 2008; Zelano et 

al, 2009). We can show that, SynCAM1 and SynCAM3 do not show a preferential expression  
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in the different types of interneurons; however SynCAM4 is preferentially expressed in 

propriospinal neurons. The abundant expression of the SynCAMs in the spinal cord indicates 

a contribution of these molecules to the formation or maintenance of synapses in the adult 

CNS and might reveal a role in the formation of new contacts and synapses between the 

newly born CST collaterals and propriospinal interneurons after dorsal hemisection. As we 

did not detect any change in expression over time, it is unlikely that the SynCAMs, in 

particular SynCAM4 contribute to the pruning process or the maintenance and stabilization of 

synapses during injury-induced axonal remodeling.  

Next to the SynCAMs, our studies focused on other inducers of presynaptic organization - the 

neuroligins (Scheiffele et al., 2000). They are located post-synapticaly and connect to the 

postsynaptic organizers neurexins which are located pre-synapticaly (Ushkaryov et al., 1992 

and 1993). They are known to play a role in the concept of formation of new synapses during 

development of non-neuronal as well as neuronal tissue (Scheiffele eta al., 2000; Dean et al., 

2003). We were able to show, that the neuroligins, NL1 and NL4, are present in interneurons 

and motoneurons throughout the cervical gray matter of the spinal cord, which is consistent 

with previous findings showing also NL2 and NL3 being localized to motoneurons 

(Varoqueaux et al., 2006). One interesting finding of our study is the distinct expression of 

NL1 mainly in excitatory propriospinal interneurons, whereas NL4 is strongly expressed in 

the inhibitory glycinergic interneurons. NL1 is known to be an initiator for excitatory synapse 

formation (Song et al., 1999) and therefore might contribute to the establishment of excitatory 

synapses between the newly growing CST collaterals and their target cells after spinal cord 

injury. This way NL1 might play a role in the remodeling processes after injury. In another 

study from Zelano and Colleagues (2007), it could also be shown, that neuronal transection 

leads to a downregulation of neuroligin mRNA in transected neuron. In our study we could  
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not show such a downregulation following the thoracic lesion. Again, the distance between 

the lesion site and the area of investigation, as well as the fact that these interneurons are not 

directly affected by the lesion itself might explain such differences. 

The next group we investigated was the group of Ephrins and their receptors (Ephs). This 

family has been found to be involved in several developmental processes such as cell 

migration, axon guidance and the neuronal organization of the CNS (Klein, 2004). Their role 

in targeting has been shown in studies which investigated the development of the visual 

system and the development of the corticospinal tract (Nakagawa et al., 2000; Williams et al., 

2003; Yokoyama et al., 2001). The first study revealing the role of ephrinB-ephB signaling in 

synapse formation was presented by Greenberg and Colleagues in 2000. Here they show that 

ephrinBs induce glutamate receptor clustering. Following studies showed, i.e. that 

hippocampal neurons, lacking ephB1-3, exhibit smaller postsynaptic components and smaller 

postsynaptic densities (Henkemeyer et al., 2003). In our study we were able to show for the 

first time the expression of ephrinB1 and its receptor ephB2 in spinal interneurons. So far, 

ephrinB1 and ephB2 have only been shown in the white matter, as well as in meningeal cells 

and astrocytes before and after SCI (Budensen et al., 2003). Similar to the SynCAMs, they are 

known to be bidirectional inducers of synapse formation and therefore we detected the 

receptors and ligands in the cortex, which is consistent with previous findings (Moreno-Flores 

et al., 1999; Wang et al., 2005). The abundant and constantly unaffected expression of 

ephrinB1 and ephB2 in interneurons of the cervical spinal cord before and after SCI indicates 

a similar role for those cues as for the SynCAMs. They might be important contributors of the 

establishment of functional synapses but are most probably not participating in the 

stabilization of those contacts.  
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4.3.2 Role of FGF Signaling during Development and Adulthood  

The last group of synaptogenic molecules we focused on is the family of the fibroblast growth 

factors (FGFs). The FGF family is a very well-known group of secreted molecules, which are 

important in various organs during embryonic development (for review see Ornitz and Itoh, 

2001), i.e. FGF10 has been shown to play a role in wound healing (Tagashira et al., 1997) or 

development of the limbs and lung (Martin, 1998; Bellusci et al., 1997).  In 2004, Umemori et 

al. identified for the first time FGF22 and its close relatives, FGF7 and -10, as inducers of 

presynaptic differentiation via signaling through their main receptor FGFR2b, during 

neuronal development (Ornitz et al., 1996). The authors show that i.e. FGF22 is able to induce 

clustering of synaptic vesicles and neurite branching in vitro and in vivo (Umemori et al., 

2004). This function is specific to FGFR2b but not the other main isoform of the FGF 

receptor, FGFR2c. Later it has been shown that FGFR1b also shows a specific binding 

affinity to FGF22, albeit not as strong as FGFR2b (Zhang et al., 2006). Another study in 2010 

shows how FGF22 and FGF7 promote the organization of excitatory and inhibitory 

presynaptic terminals, respectively, during the development of CA3 hippocampal pyramidal 

neurons (Terauchi et al., 2010). The involvement of this FGF family in presynaptic 

differentiation has also been shown in the development of neuromuscular junctions in the 

mouse (Fox et al., 2007). However, the presence and role of FGF22 and its receptors in the 

adult CNS, also in the context of the detour circuit after injury, has not been investigated so 

far. 

In our study we can show, that FGF22 and its receptors, FGFR1 and FGFR2, are also 

expressed in the adult CNS. FGF22 is expressed ubiquitously in the cells of the spinal cord, 

whereas the receptors show a distinct expression in the cortex, in particular in layer V of the  
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cortex. The fact that FGF22 and its receptors are expressed in the adult CNS indicates that 

they could play a role in adulthood and particularly during detour circuit formation. We also 

show that a lesion to the spinal cord does not alter the expression of the ligand, FGF22, distal 

to the lesion site. As with the synaptogenic cues investigated in our previous paper (Jacobi et 

al., 2014), we can assume, that the effect of the lesion onto the expression of the FGF22 

ligand and its receptors might only be minimal because of the distance of the observed area to 

the lesion site. It is important to note that a conditional ablation of one of the receptors does 

not lead to compensation by an increased expression of the other receptor after injury. It 

might indicate that those two receptors have slightly different function.  

4.3.3 Role of FGF Signaling following Injury  

 To identify an involvement of FGF22 and / or its receptors in the process of detour circuit 

formation, we took advantage of several approaches. First, we analyzed mice with a genetic 

ablation of FGF22 (FGF22 KO). Second, we genetically ablated either of the receptors in the 

cells of layer V of the cortex (origin of the CST) by crossing a floxed mouse line (FGFR1fl/fl 

or FGFR2fl/fl) with an EMX1-Cre mouse line. Because the EMX1 promoter drives the 

expression of the Cre recombinase in the forebrain, this leads to the specific deletion of the 

FGF receptors in the forebrain and hence in the CST as of E10. Finally, we deleted each of 

the receptor separately or we co-deleted both receptors in the neurons of the hindlimbCST via 

gene-therapy using adeno-associated viruses expressing the Cre recombinase (See also 

Manuscript 3). We can show that the deletion of the ligand and the receptors leads to a drastic 

reduction of boutons on newly formed collaterals during injury-induced detour circuit 

formation. In mice deleted of one FGF22 receptors, we could also show that complexity of 

the new collaterals is reduced – an additional marker for neuronal plasticity (Shen and 

Cowan, 2010). A reduction in the number of boutons indicates that contact-induced  
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presynaptic differentiation is less efficient in these mice. Both, a deletion in the receptors or 

of the ligand, seem to inhibit synaptic bouton formation. This is in contrast to the study of 

Terauchi et al., 2010, who show that in the CA3 of the hippocampus the KO of FGF22 does 

not alter the number of asymmetric excitatory synapses but only the vesicle recruitment. 

However they also show, that already in the adjacent area, CA1, the FGF signaling 

mechanism is not required for synapse formation, thus indicating that the effect of FGF 

signaling can be very specific to the type of cells, the area and the time point.   

The loss of either of the receptors, FGFR1 or FGFR2, also shows an interesting side effect. 

Knocking out the receptors as early as embryonic day E10, leads to an increased sprouting of 

the corticospinal tract after spinal cord injury. This suggests that FGF22 signaling via either 

receptor participates in the induction of compensatory CST sprouting. Co-deletion of the two 

FGF receptors and deletion of FGF22 before the injury did not lead to such an increased 

sprouting while the synapse formation and maturation was strongly reduced. One possible 

explanation could be that there is activation of a different signaling pathway via one or the 

other of the receptors (Guillemot and Zimmer, 2011). Also, it is not known if the different 

receptors are able to dimerize with each other and in this case, FGFR1-FGFR2 interaction 

could activate another pathway.  

We also characterized the maturation of the boutons on de novo CST collaterals in the 

cervical spinal cord of our different mouse lines following spinal cord injury. We can show 

that markers for early and late synapse maturation, Bassoon and Synapsin respectively (Zhai 

et al., 2000; Lang et al., 2012), are differentially expressed at different time points. Bassoon 

expression, a marker for the active zone in the synapse (Schoch and Gundelfinger, 2006), is 

reduced in the boutons of CST collaterals of the FGF22 KO and FGFR co-deletion mice 

shortly after lesion and only goes back to baseline levels in the FGF22KO at the later time  
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point, when the detour circuit is fully established (12wks). In FGFR co-deleted mice, Bassoon 

labeling remained significantly below control even 12wks following the lesion. For Synapsin, 

a vesicle marker which stands for more mature boutons (Lang et al., 2012), the boutons in the 

different types of KO show a decreased labeling at early time points as well as at later time 

points, with an exception of the single KO of FGFR1.  

These results indicate that inactivating FGF signaling prevents presynaptic differentiation by 

blocking active zone formation and vesicle clustering at early and late stages of detour circuit 

formation rather than just delaying it. This is in agreement with another study where this 

blockade is shown in the postnatal development of hippocampal CA3 neurons (Terauchi et 

al., 2010).   

4.3.4 Impaired FGF Signaling Delays Functional Recovery after 

Injury: a Potential Therapeutic Target? 

In our study we can show, that the co-deletion of both receptors, FGFR1 and FGFR2, or the 

ligand, FGF22, results in a drastic decrease of the contacts onto the LPSN. To test how this 

affects functional recovery, we performed various behavioral tests (Figure 10). The BMS test 

is an open field test, in which the mice are under observation while exploring a certain area. It 

is a gross locomotor test which is commonly used to observe the recovery of the animals 

following spinal cord lesion. The Ladder Rung Test is reflective of the thin locomotion 

abilities of the animal and is highly CST specific in particular when an irregular spacing of 

the bars is used. Indeed, it tests the ability of the mouse to place its hindlimbs onto the bars of 

the ladder and therefore is a very good behavioral assessment of CST related functional 

recovery and detour circuit formation after injury. We can see that control mice recover 

gradually some motor function over the course of 3 weeks. However, we found that  
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FGF22KO and FGFR1-R2 co-deleted mice could not recover as well as the control mice and 

remained impaired over the weeks following the injury. In particular in the irregular walk, in 

which the mice have to pass the ladder rung with altering bars and gaps between those, the 

FGF22 KO and the FGFR1-R2 co-deleted mice perform a lot worse than their controls. 

 

       
 

 

 

 

 

 

 

 

 
These results show a potential effect of a FGF22 overexpression on recovery after SCI in 

wildtype mice. Trying to overexpress FGF22 in the LPSN of the cervical spinal cord of 

normal wildtype mice could have a positive effect on recovery after injury and maybe also 

increase axonal remodeling. To test this, we now created a virus (rAAV) which carries the 

FGF22 sequence and inject this virus into C3-C5, the area in which the cell bodies of the 

LPSN are located (Alstermark et al., 1987). After an incomplete spinal cord injury, we would 

like to investigate if the establishment of the detour circuit is strengthened by additional 

contacts onto the LPSN, or fastened by a quicker formation of the full circuit, i.e. already after 

two weeks (with growth rate being the limiting factor here). Also the overexpression of 

FGF22 could lead to a quicker maturation of the synapses, as we show in our study that this  

Figure 10; Behavioral Tests to record functional recovery after SCI. A) BMS (Basso Mouse 
Scale for locomotion, Basso et al., 2006)) is an open field test in which the mouse is scored under 
different points, i.e. limb movement, trunk support, tail movement, according to its performance 
after injury. B) Ladder Rung (Grid Walk; Metz and Whishaw, 2009) is a horizontal ladder which 
the mice have to pass. While doing so the number of foot falls is acquired and compared. The 
placement of the paws is a very CST specific function. 
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maturation is impaired in the FGF22 KO mice. These ongoing investigations will help us 

finding out if FGF22 can act as a potential therapeutic target after injury. 

However, one also has to keep in mind that some FGF family members and their 

overexpression or activation-mutations have been shown to induce various kinds of tumors 

and cancer in humans (Turner and Grose, 2010; Brooks et al., 2012). The persistent and 

excessive activation of the FGFR signaling pathway for example can result in carcinogenic 

functions in the cells and thereby end in excessive proliferation and apoptosis (Greulich et al., 

2012). Also in the CNS, the FGF family has been shown to lead to several types of tumors, 

i.e. gliomas and meningiomas (Takahashi et al., 1990) or astrocytomas (Morrison et al., 

1994). Even though there is nothing known about FGF22 in CNS tumor development, one has 

to keep this strong proliferation potential in mind that is activated by overexpression of FGFs 

and has to be careful when performing experiments using FGF22 to increase axonal 

remodeling after injury.  

More recently the FGFs have also been shown to play a role in a different disease – epilepsy 

(for review see, Paradiso et al., 2013). In particular, FGF22 has been shown to be a potential 

target of therapy for epilepsy (Lee and Umemori, 2013). The authors show in their study that 

the FGF22 KO mice exhibit resistance to kindling generated epileptic seizures. The mice 

don’t show the typical pathological events such as increased neurogenesis, ectopic migration 

of dendate gyrus cells (DGC) or hilar cell death after a seizure. This suggests the possibility 

that inhibiting FGF22 signaling in the hippocampus might alleviate epileptogenesis. 

The results obtained during my thesis suggest that i.e. STAT3 or FGF22 could be 

valuable therapeutic candidates for the induction of growth (STAT3) or the efficient 

establishment and maturation of synapses (FGF22), hence axonal remodeling following SCI.  
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The work carried out during my thesis also suggests that some other molecules, such as 

Sema7a (Jacobi et al., 2014) for example could be important for the correct targeting of detour 

circuits following injury. 
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5.  Conclusions 

 

Axonal remodeling after spinal cord injury is a key feature that contributes to functional 

recovery (Fouad et al., 2001; Bareyre et al., 2004; Courtine et al., 2008; van den Brand et al., 

2012). After an incomplete spinal cord injury, axonal detour circuits have been shown to 

contribute to this functional recovery. This axonal remodeling is divided into three different 

phases, (i) the initiation of growth, (ii) the formation of collaterals which are guided into a 

certain target area and (iii) the formation of contacts and the followed refinement of those 

onto the target cells.  

In my thesis, I was trying to find molecules which regulate the different phases of the 

formation of this detour circuit in order to better understand the underlying mechanisms of 

axonal remodeling. This could help guiding future studies and help finding therapeutic targets 

to support recovery and thereby prevent the devastating consequences after injury.  

Looking at the research that has been done in the last years, it has become clearer that 

manipulation of a single molecule will not be sufficient to achieve successful recovery, but 

rather a combination of the manipulation of several cues. This also underlies the need of a 

combination of therapeutic interventions to overcome the lack of recovery such as gene 

therapy, physiotherapy or electrical stimulation. The field of spinal cord injury research has 

evolved very quickly in the last years, and thanks to progresses in many different 

experimental techniques such as in vivo imaging, electrophysiology, transgenic technologies 

or optogenetics, the chances of establishing experimentally combined therapies that could 

then be translated to help patients with SCI are coming closer and more realistic.     

 



135 
 

                Bibliography 

 

6. Bibliography 
 

Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. (2002) May 
31;296(5573):1653-5. 

Akira S. Roles of STAT3 defined by tissue‐specific gene targeting. Oncogene. (2000) 19:2607‐11 

Alstermark B, Lundberg A, Pinter M, Sasaki S. Subpopulations and functions of long C3-C5 
propriospinal neurons. Brain Res. (1987) Feb 24;404(1-2):395-400. 

Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, et al. Slit proteins prevent midline crossing and 
determine the dorsoventral position of major axonal pathways in the mammalian forebrain. 
Neuron (2002) 33(2):233–248. 

Bamber NI, Li H, Lu X, Oudega M, Aebischer P, Xu XM. Neurotrophins BDNF and NT‐3 promote 
axonal re‐entry into the distal host spinal cord through Schwann cell‐seeded mini‐channels. 
European Journal of Neuroscience (2001) 13:257‐68 

Bareyre FM, Haudenschild B, Schwab ME. Long-lasting sprouting and gene expression changes 
induced by the monoclonal antibody IN-1 in the adult spinal cord. J Neurosci. 2002 Aug 
15;22(16):7097-110. 

Bareyre FM, Schwab ME. Inflammation, degeneration and regeneration in the injured spinal 
cord: insights from DNA microarrays. Trends in Neurosciences (2003).26:555‐63 

Bareyre FM, Kerschensteiner M, Raineteau O, Mettenleiter TC, Weinmann O, Schwab ME. The 
injured spinal cord spontaneously forms a new intraspinal circuit in adult rats. Nat Neurosci. 
(2004) Mar;7(3):269-77.  

Bareyre FM, Garzorz N, Lang C, Misgeld T, Büning H, Kerschensteiner M. In vivo imaging reveals a 
phase-specific role of STAT3 during central and peripheral nervous system axon 
regeneration. Proc Natl Acad Sci USA (2011) Apr 12;108(15):6282-7.  

Bartel M, Schaffer D and Buning H. "Enhancing the Clinical Potential of AAV Vectors by Capsid 
Engineering to Evade Pre-Existing Immunity." Front Microbiol (2011)2: 204. 

Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC. Semaphorin III is needed for normal 
patterning and growth of nerves, bones and heart. Nature (1996) Oct 10;383(6600):525-8. 

Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL. Fibroblast growth factor 10 (FGF10) and branching 
morphogenesis in the embryonic mouse lung. Development (1997) Dec;124(23):4867-78. 

Bethea JR  and Dietrich DW. Targeting the host inflammatory response in traumatic spinal cord 
injury. Current Opinion in Neurology (2002) 15:355‐360 



136 
 

                Bibliography 

Biederer T, Sara Y, Mozhayeva M, Atasoy D, Liu X, Kavalali ET, Südhof TC. SynCAM, a synaptic 
adhesion molecule that drives synapse assembly. Science (2002) Aug 30;297(5586):1525-
31. 

Biederer T.  Hooking up new synapses. Nat Neurosci (2006) 9(10): 1203–1204. 

Biederer T and Stagi M. Signaling by synaptogenic molecules. Current Opinion in Neurobiology 
(2008), 18:261–269. 

Böttcher RT, Niehrs C. Fibroblast growth factor signaling during early vertebrate development. 
Endocr Rev. (2005) Feb;26(1):63-77. 

Bracken MB, Collins WF, Freeman DF, Shepard MJ, Wagner FW, Silten RM, Hellenbrand KG, 
Ransohoff J, Hunt WE, Perot PL Jr. Efficacy of methylprednisolone in acute spinal cord 
injury. JAMA ( 1984) Jan 6;251(1):45-52. 

Bracken MB. Methylprednisolone in the management of acute spinal cord injuries. Med J Aust. 
(1990) Sep 17;153(6):368. 

Bracken MB, Shepard MJ, Holford TR, Leo‐Summers L, Aldrich EF. Administration of 
Methylprednisolone for 24 or 48 Hours or Tirilazad Mesylate for 48 Hours in the Treatment 
of Acute Spinal Cord Injury. JAMA: The Journal of the American Medical Association (1997) 
277:1597‐604. 

Brösamle C, Huber AB, Fiedler M, Skerra A, Schwab ME. Regeneration of Lesioned Corticospinal 
Tract Fibers in the Adult Rat Induced by a Recombinant, Humanized IN‐1 Antibody 
Fragment. The Journal of Neuroscience (2000) 20:8061‐8. 

Brooks AN, Kilgour E, Smith PD. Molecular pathways: fibroblast growth factor signaling: a new 
therapeutic opportunity in cancer. Clinical Cancer Research (2012) 18:1855–62. 

Brus‐Ramer M, Carmel JB, Chakrabarty S, Martin JH. Electrical Stimulation of Spared 
Corticospinal Axons Augments Connections with Ipsilateral Spinal Motor Circuits after 
Injury. The Journal of Neuroscience (2007) 27:13793‐801. 
 

Bundesen LQ, Scheel TA, Bregman BS, Kromer LF. Ephrin-B2 and EphB2 regulation of astrocyte-
meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci 
(2003) 23(21): 7789–800. 

Burns SP, Golding DG, Rolle Jr WA, Graziani V, Ditunno Jr JF. Recovery of ambulation in 
motorincomplete tetraplegia. Archives of physical medicine and rehabilitation (1997) 
78:1169‐72. 

Cafferty WB, Gardiner NJ, Gavazzi J, Powell J, McMahon SB, Heath JK, MunsonJ ,Cohen J  and 
Thompson SW. Leukemia inhibitory factor determines the growth status of injured adult 
sensory neurons.  J Neurosci (2001) 21(18): 7161-7170. 

 



137 
 

                Bibliography 

Cafferty WB, Gardiner NJ, Das P, Qiu J, McMahon SB and Thompson SW. Conditioning injury-induced 
spinal axon regeneration fails in interleukin-6 knock-out mice. J Neuroscience (2004) 
24(18): 4432-4443. 

Chen M, Huber A, van der Haar M, Frank M, Schnell L. Nogo‐A is a myelin‐associated neurite 
outgrowth inhibitor and an antigen for monoclonal antibody IN‐1. Nature (2000) 403:434‐9. 

Courtine G, Song B, Roy RR, Zhong H, Herrmann JE. Recovery of supraspinal control of stepping via 
indirect propriospinal relay connections after spinal cord injury. Nat Med (2008) 14:69‐74. 

Croker BA, Kiu H and Nicholson SE. SOCS regulation of the JAK/STAT signaling pathway. Semin Cell 
Dev Biol (2008) 19(4): 414-422. 

Curt A, Schwab ME, Dietz V. Providing the clinical basis for new interventional therapies: refined 
diagnosis and assessment of recovery after spinal cord injury. Spinal Cord (2004) 
Jan;42(1):1-6. 

Dalva MB, McClelland AC, Kayser MS. Cell adhesion molecules: signalling functions at the synapse. 
Nat Rev Neurosci. (2007) Mar;8(3):206-20.  

Dean C, Scholl FG, Choih J, DeMaria S, Berger J. Neurexin mediates the assembly of presynaptic 
terminals. Nat Neurosci (2003) 6: 708 –716. 

Deng K, He H,  Qiu J, Lorber B, Bryson JB and Filbin MT. Increased synthesis of spermidine as a result 
of upregulation of arginase I promotes axonal regeneration in culture and in vivo. J 
Neurosci  (2009) 29(30): 9545-9552. 

Dietz V, Wirz M, Colombo G, Curt A. Locomotor capacity and recovery of spinal cord function in 
paraplegic patients: a clinical and electrophysiological evaluation. Electroencephalogr Clin 
Neurophysiol. (1998) 109:140‐53. 

Dietz V. Recent advances in spinal cord neurology. J Neurol. (2010) Oct;257(10):1770-3. 

Dietz V, Fouad K. Restoration of sensorimotor functions after spinal cord injury. Brain. (2014) 
Mar;137(Pt 3):654-67.  

Dietz V, Harkema SJ. Locomotor activity in spinal cord-injured persons. J Appl Physiol (1985). 2004 
May;96(5):1954-60. 

Ditunno JF, Little JW, Tessler A, Burns AS. Spinal shock revisited: a four‐phase model. Spinal 
Cord (2004) 42:383‐95 

Doherty P, Walsh FS. CAM-FGF Receptor Interactions: A Model for Axonal Growth. Mol Cell Neurosci 
(1996) Aug;8(2/3):99-111. 

Dusart I, Schwab ME.  Secondary Cell Death and the Inflammatory Reaction after Dorsal Hemisection 
of the Rat Spinal Cord. European Journal of Neuroscience (1994) 6:712‐24. 

 



138 
 

                Bibliography 

Dziennis S, Alkayed NJ. Role of signal transducer and activator of transcription 3 in neuronal survival 
and regeneration. Rev Neurosci. (2008) ;19(4-5):341-61. 

Edgerton V, Tillakaratne N, Bigbee A, de Leon R, Roy R. Plasticity of the spinal neural circuitry after 
injury. Annu Rev Neurosci.(2004) 27:145‐67 

Eberhart J, Swartz M, Koblar SA, Pasquale EB, Tanaka H. Expression of EphA4, ephrin-A2 and ephrin-
A5 during axon outgrowth to the hindlimb indicates potential roles in pathfinding. Dev 
Neurosci (2000) 22(3): 237–250. 

Fawcett  JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, 
Dietz V, Ditunno J, Dobkin BH, Havton LA, Ellaway PH, Fehlings MG, Privat A, Grossman R, 
Guest JD, Kleitman N, Nakamura M, Gaviria M, Short D. Guidelines for the conduct of 
clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery 
after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal 
Cord. (2007) Mar;45(3):190-205. 

Filbin MT. Myelin‐associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat 
Rev Neurosci (2003) 4:703‐13 

Filli L, Schwab ME. The rocky road to translation in spinal cord repair. Ann Neurol. (2012) 
Oct;72(4):491-501.  

Fitch MT, Doller C, Combs CK, Landreth GE, Silver J. Cellular and Molecular Mechanisms of 
Glial Scarring and Progressive Cavitation: In Vivo and In Vitro Analysis of Inflammation‐ 
Induced Secondary Injury after CNS Trauma. The Journal of Neuroscience (1999) 19:8182‐
98 

Fouad K, Pedersen V, Schwab ME, Brösamle C. Cervical sprouting of corticospinal fibers after 
thoracic spinal cord injury accompanies shifts in evoked motor responses. Curr Biol. (2001) 
Nov 13;11(22):1766-70. 

Fox MA, Umemori H. Seeking long-term relationship: axon and target communicate to organize 
synaptic differentiation. J Neurochem (2006) 97(5): 1215– 1231. 

Fox MA, Sanes JR, Borza DB, Eswarakumar VP, Fässler R, Hudson BG, John SW, Ninomiya Y, 
Pedchenko V, Pfaff SL, Rheault MN, Sado Y, Segal Y, Werle MJ, Umemori H. Distinct target-
derived signals organize formation, maturation, and maintenance of motor nerve terminals. 
Cell. (2007) Apr 6;129(1):179-93. 

Gautron L, De Smedt-Peyrusse V, Layé S. Characterization of STAT3-expressing cells in the postnatal 
rat brain. Brain Res. (2006) Jul 7;1098(1):26-32.  

George ER, Scholten DJ, Büchler M, Jordan-Tibbs J,Mattice C, Albrecht RM: Failure of 
methylprednisolone to improve the outcome of spinal cord injuries. Am Surg 61(1995) 659-
663. 

 



139 
 

                Bibliography 

Gerhart KA, Johnson RL, Menconi J, Hoffman RE,Lammertse DP: Utilization and effectiveness of 
methylprednisolone in a population-based sample of spinal cord injured persons. 
Paraplegia 33 (1995) 316-321. 

Gerrow K, El-Husseini A. Cell adhesion molecules at the synapse. Front Biosci. (2006) Sep 1;11:2400-
19. 

Giovanelli Barilari M, Kuypers HG. Propriospinal fibers interconnecting the spinal enlargements in 
the cat. Brain Res. (1969) Jul;14(2):321-30. 

Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM.  Neurexins induce differentiation of GABA and 
glutamate postsynaptic specializations via neuroligins. Cell (2004) 119(7): 1013–1026. 

Greulich H, Pollock PM. Targeting mutant fibroblast growth factor receptors in cancer. Trends in 
Molecular Medicine (2011) 17:283–92. 

Grillner S, Wallen P. Central pattern generators for locomotion, with special reference to 
vertebrates. Annu Rev Neurosci (1985) 8:233‐61. 

Guan KL, Rao Y. Signalling mechanisms mediating neuronal responses to guidance cues. Nat Rev 
Neurosci (2003) Dec; 4(12):941-56. 

Guillemot F, Zimmer C. From cradle to grave: the multiple roles of fibroblast growth factors in 
neural development. Neuron (2011) Aug 25;71(4):574-88.  

Hall H, Walsh FS, Doherty P. Review: a role for the FGF receptor in the axonal growth response 
stimulated by cell adhesion molecules? Cell Adhes Commun. (1996) Apr;3(6):441-50. 

Hammond R, Vivancos V, NaeemA, Chilton J, Mambetisaeva E, et al. (2005) Slit-mediated repulsion 
is a key regulator of motor axon pathfinding in the hindbrain. Dev 132(20): 4483–4495. 

Harel NY, Strittmatter SM. Can regenerating axons recapitulate developmental guidance during 
recovery from spinal cord injury? Nat Rev Neurosci. (2006) Aug;7(8):603-16. 

Harel NY, Yigitkanli K, Fu Y, Cafferty WB, Strittmatter SM. Multimodal exercises simultaneously 
stimulating cortical and brainstem pathways after unilateral corticospinal lesion. Brain Res. 
(2013) Nov 13;1538:17-25. 

Hassan B, Akcakanat A, Holder AM, Meric-Bernstam F. Targeting the PI3-kinase/Akt/mTOR signaling 
pathway. Surg Oncol Clin N Am. (2013) Oct;22(4):641-64.  

Henkemeyer M, Itkis OS, Ngo M, Hickmott PW, Ethell IM. Multiple EphB receptor tyrosine kinases 
shape dendritic spines in the hippocampus. J Cell Biol (2003) 163(6): 1313–1326. 

Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S and Sofroniew 
MV. STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury.  J 
Neurosci (2008) 28(28): 7231-7243. 

 



140 
 

                Bibliography 

Houweling DA, Bär PR, Gispen WH, Joosten EA. Spinal cord injury: bridging the lesion and the role 
of neurotrophic factors in repair. Prog Brain Res. (1998) 117:455-71. 

Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling 
pathway: clinical implications. Clin Cancer Res. (2007) Mar 1;13(5):1362-6. 

Hulsebosch CE. Recent advances in pathophysiology and treatment of spinal cord injury. Adv 
Physiol Educ. (2002) Dec;26(1-4):238-55. 

Hurlbert RJ and Hamilton MG. Methylprednisolone for acute spinal cord injury: 5-year practice 
reversal. Can J Neurol Sci. (2008) Mar;35(1):41-5. 

Ishii H, Jin X, Ueno M, Tanabe S, Kubo T, Serada S, Naka T, Yamashita T. Adoptive transfer of Th1-
conditioned lymphocytes promotes axonal remodeling and functional recovery after spinal 
cord injury. Cell Death Dis. (2012) Aug 9;3:e363. 

Jakeman LB, Wei P, Guan Z, Stokes BT. Brain-derived neurotrophic factor stimulates hindlimb 
stepping and sprouting of cholinergic fibers after spinal cord injury. Exp Neurol. (1998) 
Nov;154(1):170-84. 

Jain A, Kim YT, McKeon RJ, Bellamkonda RV. In situ gelling hydrogels for conformal repair of spinal 
cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials. (2006) 
Jan;27(3):497-504.  

Jankowska E. Interneuronal relay in spinal pathways from proprioceptors. Prog. Neurobiol. (1992) 
38:335‐78 

Jevince AR, Kadison SR, Pittman AJ, Chien CB and Kaprilian Z. Distribution of EphB Receptors and 
Ephrin-B1 in the Developing Vertebrate Spinal Cord. The Journal of Comparative Neurology 
(2006) 497:734–750.  

Katoh M. FGFR2 Abnormalities Underlie a Spectrum of Bone, Skin, and Cancer Pathologies. Journal 
of Investigative Dermatology (2009) 129, 1861–1867. 

Kerschensteiner M, Bareyre FM, Buddeberg BS, Merkler D, Stadelmann C, Brück W, Misgeld T, 
Schwab ME. Remodeling of axonal connections contributes to recovery in an animal model 
of multiple sclerosis. J Exp Med. (2004) Oct 18;200(8):1027-38. 

Kennedy TE, Wang H, Marshall W, Tessier-Lavigne M. Axon guidance by diffusible chemo 
attractants: a gradient of netrin protein in the developing spinal cord. J Neurosci. (2006) 
Aug 23;26(34):8866-74. 

Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two 
distinct macrophage subsets with divergent effects causing either neurotoxicity or 
regeneration in the injured mouse spinal cord. J Neurosci. (2009) Oct 28;29(43):13435-44.  

Klein R. Eph/ephrin signalling during development.t Development. (2012) Nov;139(22):4105-9.  



141 
 

                Bibliography 

Kolodkin AL, Tessier-Lavigne M. Mechanisms and molecules of neuronal wiring: a primer. Cold 
Spring Harb Perspect Biol  (2011) 3(6). 

Köning W, Frowein RA. Incidence of spinal cord injury in the Federal Republic of Germany. 
Neurosurg Rev. (1989) ;12 Suppl 1:562-6. 

Kopp MA, Brommer B, Gatzemeier N, Schwab JM, Prüss H. Spinal cord injury induces differential 
expression of the profibrotic semaphorin 7A in the developing and mature glial scar. Glia 
(2010) 58(14): 1748–1756. 

Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, Schlessinger J. A lipid-
anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK 
signaling pathway. Cell. (1997) May 30;89(5):693-702. 

Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y. Activation of JAK‐STAT and MAP Kinases by 
Leukemia Inhibitory Factor Through gp130 in Cardiac Myocytes. Circulation (1996) 94:2626‐
32 

Lang C, Guo X, Kerschensteiner M, Bareyre FM. Single collateral reconstructions reveal distinct 
phases of corticospinal remodeling after spinal cord injury. PLoS One (2012) ;7(1):e30461.  

Lang C, Bradley PM, Jacobi A, Kerschensteiner M, Bareyre FM. STAT3 promotes corticospinal 
remodelling and functional recovery after spinal cord injury. EMBO Rep. (2013) 
Oct;14(10):931-7.  

Lee CH, Umemori H. Suppression of epileptogenesis-associated changes in response to seizures in 
FGF22-deficient mice. Front Cell Neurosci. (2013) Apr 18;7:43.  

Li Y, Field PM, Raisman G. Regeneration of Adult Rat Corticospinal Axons Induced by Transplanted 
Olfactory Ensheathing Cells. The Journal of Neuroscience (1998) 18:10514‐24. 

Li M, Jayandharan GH, Li B, Ling C, Ma W, Srivastava A and Zhong L. Highefficiency transduction of 
fibroblasts and mesenchymal stem cells by tyrosine-mutant AAV2 vectors for their potential 
use in cellular therapy. Hum Gene Ther (2010) 21(11): 1527- 1543. 

Lim ST, Airavaara M, Harvey BK. Viral vectors for neurotrophic factor delivery: A gene therapy 
approach for neurodegenerative diseases of the CNS. Pharmacological Research (2010) 
61:14‐26. 

Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, 
Choi DW. Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci. (1997) 
Jul 15;17(14):5395-406. 

Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu 
B, Connolly L, Steward O, Zheng B and He Z. PTEN deletion enhances the regenerative 
ability of adult corticospinal neurons. Nat Neurosci (2010) 13(9): 1075-1081. 

 



142 
 

                Bibliography 

López-Bendito G, Flames N, Ma L, Fouquet C, Di Meglio T, Chedotal A, Tessier-Lavigne M, Marín O. 
Robo1 and Robo2 cooperate to control the guidance of major axonal tracts in the 
mammalian forebrain. J Neurosci. (2007) Mar 28;27(13):3395-407. 

Lu YJ, Xu NW, Yang WQ. Immunofluorescence laser confocal expression and localization study of rat 
nerve growth guidance cues Netrin-1 and Slit2 after spinal cord injury. Chin J Traumatol 
(2008) 11(2): 98–103. 

Maegele M, Müller S, Wernig A, Edgerton VR, Harkema SJ. Recruitment of spinal motor pools 
during voluntary movements versus stepping after human spinal cord injury. J Neurotrauma 
(2002) Oct;19(10):1217-29. 

Mann F, Chauvet S, Rougon G.  Semaphorins in development and adult brain: Implication for 
neurological diseases. Prog Neurobiol (2007) 82: 57–79. 

Markus A, Zhong J, Snider WD. Raf and Akt Mediate Distinct Aspects of Sensory Axon Growth. 
 Neuron (2002) 35:65‐76.  

Marillat V, Cases O, Nguyen-Ba-Charvet KT, Tessier-Lavigne M, Sotelo C. Spatiotemporal expression 
patterns of slit and robo genes in the rat brain. J Comp Neurol  (2002) 442(2): 130–155. 

Martin GR. The roles of FGFs in the early development of vertebrate limbs. Genes Dev (1998) 
12:1571-1586. 

Martirosyan NL, Feuerstein JS, Theodore N, Cavalcanti DD, Spetzler RF, Preul MC. Blood supply and 
vascular reactivity of the spinal cord under normal and pathological conditions. Journal of 
Neurosurgery: Spine (2011) 15:238‐51. 

Nakamura M and Okano H. Cell transplantation therapies for spinal cord injury focusing on induced 
pluripotent stem cells. Cell Research (2013) 23:70–80.  

Matis GK, Birbilis TA. Erythropoietin in spinal cord injury. Eur Spine J. (2009) Mar;18(3):314-23.  

Mingozzi F and High KA. Immune responses to AAV in clinical trials. Curr Gene Ther (2011) 11(4): 
321-330. 

Mofidi A, Bader A, Pavlica S. The use of erythropoietin and its derivatives to treat spinal cord injury. 
Mini Rev Med Chem. (2011) Aug;11(9):763-70. 

Moreno-Flores MT, Wandosell F. Up-regulation of Eph tyrosine kinase receptors after excitotoxic 
injury in adult hippocampus. Neurosci (1999) 91(1): 193– 201. 

Morrison RS, Yamaguchi F, Saya H, Bruner JM, Yahanda AM, Donehower LA, Berger M. Basic 
fibroblast growth factor and fibroblast growth factor receptor I are implicated in the growth 
of human astrocytomas. J Neurooncol. (1994);18(3):207-16. 

Moss RB, Milla C, Colombo J, Accurso F, Zeitlin PL, Clancy JP, Spencer LT, Pilewski J, Waltz DA, 
Dorkin HL, Ferkol T, Pian M, Ramsey B, Carter BJ, Martin DB, Heald AE. Repeated  



143 
 

                Bibliography 

aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled 
phase 2B trial. Hum Gene Ther. (2007) Aug;18(8):726-32. 

Moss RB, Rodman D, Spencer LT, Aitken ML, Zeitlin PL, Waltz D, Milla C, Brody AS, Clancy JP, 
Ramsey B, Hamblett N, Heald AE. Repeated adeno-associated virus serotype 2 aerosol-
mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients 
with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial. Chest. (2004) 
Feb;125(2):509-21. 

Mueller BK. Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 
(1999) 22: 351–358. 

Muramatsu R, Takahashi C, Miyake S, Fujimura H, Mochizuki H, Yamashita T. Angiogenesis induced 
by CNS inflammation promotes neuronal remodeling through vessel-derived prostacyclin. 
Nat Med. (2012) Nov;18(11):1658-64. 

Nesathurai S. Steroids and spinal cord injury: revisiting the NASCIS 2 and NASCIS 3 trials. J Trauma. 
(1998) Dec;45(6):1088-93. 

Neumann S, Bradke F, Tessier‐Lavigne M, Basbaum AI. Regeneration of Sensory Axons within 
the Injured Spinal Cord Induced by Intraganglionic cAMP Elevation. Neuron (2002) 34:885‐
93. 

Nicholson DW. From bench to clinic with apoptosis‐based therapeutic agents. Nature (2000) 
407:810‐6 

Niclou SP, Ehlert EM, Verhaagen J. Chemorepellent axon guidance molecules in spinal cord injury. J 
Neurotrauma. (2006) Mar-Apr;23(3-4):409-21. 

Novikova LN, Novikov LN, Kellerth JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal 
neurons depend on the temporal pattern of neurotrophin administration. Eur J Neurosci. 
(2000) Feb;12(2):776-80. 

Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, 
Toyama Y and Okano H. Conditional ablation of Stat3 or Socs3 discloses a dual role for 
reactive astrocytes after spinal cord injury. Nat Med (2006) 12(7): 829-834. 

Ornitz DM and Itoh N. Fibroblast growth factors. Genome Biology (2001) Vol 2 No 3. 
 
Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, Gao G, and Goldfarb M. Receptor 

specificity of the fibroblast growth factor family. J. Biol. Chem.(1996) 271, 15292–15297. 
 
Ozdinler PH, Macklis JD. IGF‐I specifically enhances axon outgrowth of corticospinal motor 

neurons. Nat Neurosci (2006) 9:1371‐81. 

Paradiso B, Zucchini S and Simonato M. Implication of fibroblast growth factors in epileptogenesis-
associated circuit rearrangements. Frontiers in Cellular Neuroscience (2013) Volume 7, 152. 

 



144 
 

                Bibliography 

Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M and He Z. 
Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. 
Science (2008) 322(5903): 963-966. 

Park KK, Liu K, Hu Y, Kanter JL and He Z. PTEN/mTOR and axon regeneration. Exp Neurol (2010) 
223(1): 45-50. 

Pasterkamp RJ, Peschon JJ, Spriggs MK, Kolodkin AL Semaphorin 7A promotes axon outgrowth 
through integrins and MAPKs. Nature (2003) 424(6947): 398–405. 

Pernet V, Schwab ME. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 
(2012) Jul;349(1):97-104. 

Pernet V, Joly S, Jordi N, Dalkara D, Guzik-Kornacka A, Flannery JG, Schwab ME .Misguidance and 
modulation of axonal regeneration by Stat3 and Rho/ROCK signaling in the transparent 
optic nerve. Cell Death Dis. (2013) Jul 18;4:e734.  

Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes BT. Depletion of Hematogenous 
Macrophages Promotes Partial Hindlimb Recovery and Neuroanatomical Repair after 
Experimental Spinal Cord Injury. Experimental Neurology (1999) 158:351‐65. 

Qiu J, Cai D, Dai H, McAtee M, Hoffman PN. Spinal Axon Regeneration Induced by Elevation of Cyclic 
AMP. Neuron (2002) 34:895‐903. 

 
Qiu J, Cafferty WB, McMahon SB and Thompson SW. Conditioning injuryinduced spinal axon 

regeneration requires signal transducer and activator of transcription 3 activation. J 
Neurosci  (2005) 25(7): 1645-1653. 

Raineteau O, Schwab ME. Plasticity of motor systems after incomplete spinal cord injury. Nat Rev 
Neurosci. (2001) Apr;2(4):263-73. 

Raivich G, Makwana M. The making of successful axonal regeneration: genes, molecules and signal 
transduction pathways. Brain Res Rev. (2007) Feb;53(2):287-311. 

Rajan P, Stewart CL and Fink JS. LIF-mediated activation of STAT proteins after neuronal injury in 
vivo. Neuroreport (1995) 6(16): 2240-2244. 

Rogers GL, Martino AT, Aslanidi GV, Jayandharan GR, Srivastava A and Herzog RW. Innate Immune 
Responses to AAV Vectors. Front Microbiol (2011) 2: 194. 

Rünker AE, Little GE, Suto F, Fujisawa H, Mitchell KJ. Semaphorin-6A controls guidance of 
corticospinal tract axons at multiple choice points. Neural Dev (2008) 3: 34. 

Sadowsky C, Volshteyn O, Schultz L, McDonald JW. Spinal cord injury. Disabil Rehabil. (2002) Sep 
10;24(13):680-7. 

 

 



145 
 

                Bibliography 

Sang Q, Wu JY, Rao Y, Hsueh Y-P, Tan S-S. Slit promotes branching and elongation of neurites of 
interneurons but not projection neurons from the developing telencephalon. Mol Cell 
Neurosci (2002) 21: 250–265. 

Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD. BDNF-
hypersecreting human mesenchymal stem cells promote functional recovery, axonal 
sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 
(2009) Nov 25;29(47):14932-41.  

Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. Neuroligin expressed in nonneuronal cells triggers 
presynaptic development in contacting axons. Cell (2000) Jun 9;101(6):657-69. 

Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against 
myelin‐associated neurite growth inhibitors. Nature (1990) 343:269‐72. 

Schoch S and Gundelfinger ED. Molecular organization of the presynaptic active zone. Cell Tissue 
Res. (2006) Nov;326(2):379-91.  

Seijffers R, Mills CD and Woolf JC. ATF3 increases the intrinsic growth state of DRG neurons to 
enhance peripheral nerve regeneration.  J Neurosci (2007) 27(30): 7911- 7920. 

Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, Tessier-Lavigne M. 
Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous 
system. Cell. (1996) Dec 13;87(6):1001-14. 

Shapiro L, Love J, Colman DR. Adhesion molecules in the nervous system: structural insights into 
function and diversity. Annu Rev Neurosci. (2007);30:451-74. 

Sharma HS, Olsson Y, Dey PK. Early accumulation of serotonin in rat spinal cord subjected to 
traumatic injury. Relation to edema and blood flow changes. Neuroscience. (1990) 
36(3):725-30. 

Shepard MJ, Bracken MB The effect of methylprednisolone, naloxone, and spinal cord trauma on 
four liver enzymes: observations from NASCIS 2. National Acute Spinal Cord Injury Study. 
Paraplegia. (1994) Apr;32(4):236-45. 

Shim SO, Cafferty WB, Schmidt EC, Kim BG, Fujisawa H. PlexinA2 limits recovery from corticospinal 
axotomy by mediating oligodendrocyte- derived Sema6A growth inhibition. Mol Cell 
Neurosci (2012) 50(2): 193–200. 

Shen K and Cowan CW. Guidance Molecules in Synapse Formation and Plasticity. Cold Spring Harb 
Perspect Biol (2010). 

Smith PD, Sun F, Park KK, Cai B, Wang C, Kuwako K, Martinez-Carrasco I, Connolly L and He Z. SOCS3 
deletion promotes optic nerve regeneration in vivo. Neuron (2009) 64(5): 617-623. 

Smith RP, Lerch‐Haner JK, Pardinas JR, Buchser WJ, Bixby JL, Lemmon VP. Transcriptional 
 



146 
 

                Bibliography 

profiling of intrinsic PNS factors in the postnatal mouse. Molecular and Cellular 
Neuroscience (2011) 46:32‐44. 
 

Song JY, Ichtchenko K, Suedhof TC, Brose N. Neuroligin 1 is a postsynaptic call-adhesion molecule of 
excitatory synapses. Proc Natl Acad Sci USA (1999) 96: 1100–1105. 

Starkey ML, Bartus K, Barritt AW and Bradbury EJ. Chondroitinase ABC promotes compensatory 
sprouting of the intact corticospinal tract and recovery of forelimb function following 
unilateral pyramidotomy in adult mice. European Journal of Neuroscience, (2012) 36, 3665–
3678. 

Stokes BT, Jakeman LB. Experimental modelling of human spinal cord injury: a model that crosses 
the species barrier and mimics the spectrum of human cytopathology. Spinal Cord. (2002) 
Mar;40(3):101-9. 

Sun F and He Z. Neuronal intrinsic barriers for axon regeneration in the adult CNS. Curr Opin 
Neurobiol (2010) 20(4): 510-518. 

Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, He Z. 
Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature. (2011) 
Nov 6;480(7377):372-5.  

Suto F, Tsubio M, Kamiya H, Mizuno H, Kiyama Y. Interactions between Plexin-A2, Plexin-A4, and 
Semaphorin6A controls lamina-restricted projection of hippocampal mossy fibers. Neuron 
(2007) 53: 535–547. 

Tagashira S, Harada H, Katsumata T, Itoh N, Nakatsuka M. Cloning of mouse FGF10 and up-
regulation of its gene expression during wound healing. Gene (1997) Sep 15;197(1-2):399-
404. 

Takahashi JA, Mori H, Fukumoto M, Igarashi K, Jaye M, Oda Y, Kikuchi H, Hatanaka M. Gene 
expression of fibroblast growth factors in human gliomas and meningiomas: demonstration 
of cellular source of basic fibroblast growth factor mRNA and peptide in tumor tissues. Proc 
Natl Acad Sci USA (1990) Aug;87(15):5710-4. 

Tallafuss A, Constable JR, Washbourne P. Organization of central synapses by adhesion molecules 
Eur J Neurosci (2010) Jul;32(2):198-206.  

Taylor L, Jones L, Tuszynski MH, Blesch A. Neurotrophin-3 gradients established by lentiviral gene 
delivery promote short-distance axonal bridging beyond cellular grafts in the injured spinal 
cord. J Neurosci (2006) Sep 20;26(38):9713-21. 

Terashima T. Anatomy, development and lesion‐induced plasticity of rodent corticospinal tract. 
Neuroscience Research (1995) 22:139‐61. 

Terauchi A, Johnson-Venkatesh EM, Toth AB, Javed D, Sutton MA, Umemori H. Distinct FGFs 
promote differentiation of excitatory and inhibitory synapses. Nature (2010) Jun 
10;465(7299):783-7.  



147 
 

                Bibliography 

Tessier-Lavigne MT, Goodman CS. The molecular biology of axon guidance. Science, (1996) 274  

Thomas LA, Akins MR, Biederer T. Expression and adhesion profiles of SynCAM molecules indicate 
distinct neuronal functions. J Comp Neurol (2008) 510(1): 47–67. 

Thuret S, Moon LDF, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 
(2006) 7:628‐43. 

Turner N and Grose R. Fibroblast growth factor signalling: from development to cancer. Nature 
Reviews Cancer (2010), Vol 10.  

Umemori H, Linhoff MW, Ornitz DM, Sanes JR. FGF22 and its close relatives are presynaptic 
organizing molecules in the mammalian brain. Cell (2004) Jul 23;118(2):257-70. 

Ushkaryov YA, Petrenko AG, Geppert M, Südhof TC. Neurexins: synaptic cell surface proteins 
related to the alpha- latrotoxin receptor and laminin. Science(1992) 257: 50 –56. 

Ushkaryov YA, Südhof TC. Neurexin III alpha: extensive alternative splicing generates membrane-
bound and soluble forms. Proc Natl Acad Sci USA (1993) 90: 6410–6414. 

van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, 
Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G Restoring 
voluntary control of locomotion after paralyzing spinal cord injury. Science (2012) Jun 
1;336(6085):1182-5. 

Wang JK, Xu H, Li HC, Goldfarb M. Broadly expressed SNT-like proteins link FGF receptor stimulation 
to activators of Ras. Oncogene (1996) Aug 15;13(4):721-9. 

Wehrle R, Camand E, Chedotal A, Sotelo C, Dusart I. Expression of netrin-1, slit-1 and slit-3 but not 
of slit-2 after cerebellar and spinal cord lesions. Eur J Neurosci (2005) 22(9): 2134–2144. 

Weidner N, Ner A, Salimi N, Tuszynski MH. Spontaneous corticospinal axonal plasticity and 
functional recovery after adult central nervous system injury. Proceedings of the National 
Academy of Sciences (2001) 98:3513‐8. 

Wernig A, Nanassy A, Müller S. Maintenance of locomotor abilities following Laufband (treadmill) 
therapy in para- and tetraplegic persons: follow-up studies. Spinal Cord (1998) 
Nov;36(11):744-9. 

  Wernig A, Müller S. Laufband locomotion with body weight support improved walking in persons 
with severe spinal cord injuries. Paraplegia (1992) Apr;30(4):229-38. 

Westgren N, Levi R. Quality of life and traumatic spinal cord injury. Arch Phys Med Rehabil. (1998) 
Nov;79(11):1433-9. 

Wiessner C, Bareyre F, Allegrini P, Mir A, Frentzel S. Anti‐Nogo‐A antibody infusion 24 hours after 
experimental stroke improved behavioral outcome and corticospinal plasticity in 
normotensive and spontaneously hypertensive rats. J Cereb Blood Flow Metab. (2003) 
23:154‐65. 



148 
 

                Bibliography 

Wirz M, Colombo G, Dietz V. Long term effects of locomotor training in spinal humans. J Neurol 
Neurosurg Psychiatry (2001) Jul;71(1):93-6. 

Varoqueaux F, Aramuni G, Rawson RL, Mohrmann R, Missler M,  Gottmann G , Zhang W, Südhof TC, 
Brose N. Neuroligins Determine Synapse Maturation and Function. Neuron (2006) 51, 741–
754. 

Xiao X, Li J, McCown TJ and Samulski RJ. Gene transfer by adeno-associated virus vectors into the 
central nervous system. Exp Neurol (1997) 144(1): 113-124. 

Yip PK, Wong L‐F, Sears TA, Yáñez‐Muñoz RJ, McMahon SB. Cortical Overexpression of Neuronal 
Calcium Sensor‐1 Induces Functional Plasticity in Spinal Cord Following Unilateral 
Pyramidal Tract Injury in Rat. PLoS Biol (2010) 8:e1000399. 

Yokoyama N, Romero MI, Cowan CA, Galvan P, Helmbacher F. Forward signaling mediated by 
ephrin-B3 prevents contralateral corticospinal axons from recrossing the spinal cord 
midline. Neuron(2001) 29: 85–97. 

You SW, Chen BY, Liu HL, Lang B, Xia JL, Jiao XY, Ju G. Spontaneous recovery of locomotion 
induced by remaining fibers after spinal cord transection in adult rats. Restor Neurol 
Neurosci (2003) 21:39‐45 
 

H. Yu, D. Pardoll and R. Jove. STATs in cancer inflammation and immunity: a leading role for STAT3. 
Nat Rev Cancer (2009) 9(11): 798-809. 

Zelano J, Berg A, Thams S, Hailer NP, Cullheim S. SynCAM1 expression correlates with restoration of 
central synapses on spinal motoneurons after two different models of peripheral nerve 
injury. J Comp Neurol (2009) 517(5): 670–682. 

Zhai R. Temporal appearance of the presynaptic cytomatrix protein bassoon during synaptogenesis. 
Mol Cell Neurosci (2000) 15, 417–428 

  Zhang X, Ibrahimi OA, Olsen SK, Umemori H, Mohammadi M, Ornitz DM. Receptor specificity of the 
fibroblast growth factor family. The complete mammalian FGF family. J Biol Chem (2006) 
Jun 9;281(23):15694-700.  

Zhang Z, Krebs CJ, Guth L. Experimental Analysis of Progressive Necrosis after Spinal Cord Trauma in 
the Rat: Etiological Role of the Inflammatory Response. Experimental Neurology (1997) 
143:141‐52 

Zhong Z, Wen Z and Darnell JE, Jr. Stat3: a STAT family member activated by tyrosine 
phosphorylation in response to epidermal growth factor and interleukin-6. Science (1994) 
264(5155): 95-98. 

Zhou L, Shine HD. Neurotrophic factors expressed in both cortex and spinal cord induce axonal 
plasticity after spinal cord injury. Journal of Neuroscience Research (2003) 74:221‐6 

Zou H, Ho C, Wong K and Tessier-Lavigne M. Axotomy-induced Smad1 activation promotes axonal 
growth in adult sensory neurons. J Neurosci (2009) 29(22): 7116-7123. 



149 
 

               Reprintpermissions 

 

 

 



150 
 

               Reprintpermissions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



151 
 

               Reprintpermissions 

 

       

 

 

 



152 
 

               Reprintpermissions 

 

 

 

 

 

 

 



153 
 

               Reprintpermissions 

 

 

 

 

 

 

 



154 
 

               Reprintpermissions 

 

 

 

 

 

 

 



155 
 

               Reprintpermissions 

 

 

 

 

 

 



156 
 

               Reprintpermissions 

 

 

 

 

 

 

 

 

 



157 
 

               Reprintpermissions 

 

 

 

 

 

 

 



158 
 

Acknowledgements 

 

7. Acknowledgements 
 
There are many people I would like to thank for their support throughout the 

time of this thesis. 

First and outer most, I would like to thank Dr. Florence Bareyre and Prof. 

Martin Kerschensteiner. Thank you, for giving me the opportunity to work 

on such an interesting and also challenging project. You both were always 

there with positive energy, fruitful discussions, continuous support and 

encouragement in tough times! Thank you for the opportunity to learn from 

you as great scientists and giving me the chance to discover this great and 

highly interesting field of neuroscience research! 

 

Next, I would like to thank my supervisor from the biology faculty, Prof. 

Hans Straka, who showed a lot of interest in my work and help me through 

the time of my thesis studies. 

 

Also I would like to thank all members of the lab who created a great and 

joyful work environment! Next to great work atmosphere, I enjoyed our lab 

excursions, our BBQ parties and the nights out a lot! It is truly a wonderful 

place to work at! Most important to mention, Anja! Thank you for being 

there from the first day of work, for helping doing countless in situs, for 

always supporting me (in anger  and laugh) and for being a great friend 

who made long hours of work to a lot of fun! I will miss you! 

Room 007, with all its current and former members, was great and a lot of 

fun!! Special thanks goes to Elisa, for sharing the desk with me and the van 

during hot days of summer, for the hours you spent laughing with me and 

this way becoming a very good friend.   

 



159 
 

               Acknowledgements 

Cathy, who started the doctoral studies at the same time as me and was a 

great company during joyful times! Also a big thank you to Kristina, for 

your unique help and the many hours you spent in the animal room to help 

finishing up the FGF paper! You joined our lab at the right time .Finally, a 

special thanks to Peter, for your help, our critical discussions about 

techniqual challenges and even though you don’t remember, for all your help 

to finish up my thesis as quick as possible .  

 

Next to the great support at work, I would like to thank all my friends! 

Especially worth mentioning, Anschi, Meike and Sandra! I am very grateful 

to have you in my life and thankful for your support! A special Thank You to 

my dear friend Susi! Thank you for all your support, for encouraging and 

motivating me after long days or weekends of work! You were always there 

for me!  

Finally, my family, my brother with his family, my two grandmas’! I thank 

you for your constant support and care during the last years! A special 

Thanks goes to my dear parents, you have always been there for me, 

supported me and encouraged me in tougher times. I am extremely grateful 

for your support during my whole life! 

  



162 
 

 

Multitasking PhD (Winner of the 2.price award of the Graduate Center, LMU  
Fotocompetition 2011) 


