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Zusammenfassung

Zusammenfassung

Depression (Major depressive disorder; MDD) ist eine der häufigsten psychiatrischen Erkra-
nkungen, deren Entstehung durch ein komplexes Zusammenspiel verschiedener Faktoren
zustande kommt. So ist das Risiko an einer Depression zu erkranken, durch die Kombi-
nation aus genetischer Prädisposition und individuell erlebter Stressbelastung erhöht. Die
biologischen Mechanismen wie aus diesen Faktoren eine Depression entsteht, sind bisher
weitgehend unbekannt. Eine mögliche molekulare Ursache ist die gestörte Regulierung
der Kortisolausschüttung und der E↵ekt dieses Hormons. Das Kortisol wird als Reaktion
des Körpers auf Stress freigesetzt. Durch Bindung des Kortisols an den Glukokortikoid-
Rezeptor (GR), steuert es die Aktivität verschiedener Gene und bewirkt dadurch eine
stressbedingte Anpassung der Zelle. Der GR wandert, nachdem er das Kortisol in der Zelle
gebunden hat, in den Zellkern und bindet dort direkt an die DNS. Eine Störung der Regula-
tion der GR vermittelten Stressantwort wurde bei Depressionserkrankungen nachgewiesen.

In dieser Doktorarbeit wurde zuerst der GR medikamentös aktiviert und die daraus
resultierenden Veränderung in der Genaktivität in Blutzellen von depressiven Patienten
mit denen von gesunden Kontrollpersonen verglichen. Dazu wurden genomweite Genex-
pressionsdaten, vor und nach GR-Stimulierung mit 1.5 mg Dexamethason p.o., von 29
männlichen Depressionspatienten und 31 gesunden Kontrollen analysiert.
Durch Dexamethason wurden 2670 Gene von Kontrollpersonen und 1151 Gene von de-

pressiven Patienten reguliert (aktiviert oder unterdrückt). Darunter waren mehrere Gene,
die zuvor mit Depression in Verbindung gebracht wurden, wie beispielsweise FKBP5 und
DUSP1. Die Genexpressionsprofile dieser GR-stimulierten Gene konnten Patienten und
Kontrollpersonen besser unterscheiden (79,2% vs. 41,7% Sensitivität der Klassifikation)
als herkömmliche endokrine Tests.
Der zweite Teil dieser Doktorarbeit beschäftigte sich mit der Identifikation von Gen-

varianten, welche GR-stimulierte Genexpressionsänderungen beeinflussen. Solche Analy-
sen kombinieren Daten aus Genexpressions- mit Genotypisierungs-Microarrays und wer-
den expression quantitative trait locus (eQTL) Analysen genannt. Das Ziel dieser Arbeit
war es Einzelnukleotid-Polymorphismen (SNPs) zu identifizieren, die mit Glukokortikoid-
vermittelten Genexpressionsänderungen einhergehen (GR-response eQTLs). Dabei konzen-
trierten wir uns auf Assoziationen mit SNPs innerhalb einer 1-Mb-Region vom 5’- oder
3’-Ende des Transkriptes, den sogenannten cis-eQTLs.
Es wurden 3820 GR-response cis-eQTLs identifiziert, bei denen SNPs die GR vermittelte

Veränderung der Gentranskription beeinflussen. Bei diesen SNPs handelt es sich signifikant
häufiger um SNPs, die mit Depression in einer genomweiten Meta-Analyse assoziiert wur-
den (Psychiatric Genomics Consortium (PGC) Daten mit n >9000 depressiven Patienten
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Zusammenfassung

und Kontrollpersonen).
Ähnliche Beobachtungen konnten im Fall von Schizophrenie (SCZ), bipolarer Störung

(BPD) und SNPs, die mit Risiko für mehrere psychiatrische Erkrankungen (Crossdisor-
der Analyse) assoziiert wurden, erzielt werden. Die PGC Crossdisorder Analyse unter-
suchte das gemeinsame Risiko für fünf psychiatrische Erkrankungen (SZC, MDD, BPD,
Autismus und Aufmerksamkeitsdefizit-/ Hyperaktivitätsstörung; n =33000 Patienten und
29000 Kontrollpersonen).
Die 282 gefundenen SNPs, die sowohl eine Assoziation mit GR-regulierter Transkrip-

tion als auch mit Depression zeigen (GR/MDD SNPs), regulieren die Aktivität von 25
verschiedenen Transkripten. Mithilfe einer Pathway Analyse wurde nachgewiesen, dass
diese 25 Transkripte besonders mit molekularen Prozessen, die mit Veränderung synap-
tischer Plastizität, Immunaktivität oder mit der Pathophysiologie von Depression, zusam-
menhängen. In relevanten Mausmodellen konnte gezeigt werden, dass über 66% dieser
Transkripte eine GR-Regulierung in verschiedenen Gehirnregionen aufweisen. Zusätzlich
wurde mit Hilfe des genetischen Risikoprofiles aus GR/MDD SNPs eine veränderte Amyg-
dala Reaktivität in einer unabhängigen Kohorte nachgewiesen.

Zusammenfassend wurde erstens gezeigt, dass ein Genexpressionsprofil aus GR-stimulierten
Genen in Blutzellen ein vielversprechender molekularer Biomarker für Depression sein
könnte, welcher die Veränderungen in der GR-Funktionalität abbildet, die wiederum ein
wichtiger Bestandteil in der zugrundeliegenden molekularen Pathologie bei depressiven
Patienten ist. Weiterhin konnte gezeigt werden, dass genetische Varianten, die mit der er-
sten transkriptionellen Reaktion auf Stress korreliert sind, häufiger mit stress-assoziierten
Krankheiten wie Depression in Verbindung gebracht werden. Diese Erkenntnisse verbessern
unser Verständnis von psychiatrischen Erkrankungen als Folge der Interaktion von Umwelt-
und genetischen Faktoren.
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Abstract

Abstract

The risk for major depressive disorder (MDD) is exacerbated by various genetic factors
and stress exposure; however, the underlying biological mechanisms leading to an increase
in risk are poorly understood. One putative mechanism implicates the variability in the
ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic
and non- genomic processes through glucocorticoid receptor (GR) activation. The GR
exerts its main downstream e↵ects via its function as transcription factor.

In the first part of my doctoral thesis a di↵erential gene expression analysis utilizing the
dexamethasone challenge test to compare GR-mediated changes in gene expression between
depressed patients and healthy controls was conducted. A genome-wide gene expression
data set with RNA samples at baseline as well as following GR stimulation with 1.5 mg
dexamethasone p.o. in peripheral blood cells from 31 male depressed patients and 29
controls was analyzed. I aimed to identify gene expression patterns that would predict
MDD disease status from this sample.
The dexamethasone intake led to a reproducible regulation of 2,670 transcripts in controls

and 1,151 regulated transcripts in depressed patients, including several genes previously
associated with the pathophysiology of MDD, e.g. FKBP5 and DUSP1. Furthermore,
using a machine learning algorithm I showed that a gene expression profile of GR-stimulated
transcripts outperforms baseline gene expression as a classifier for MDD disease status with
sensitivity of 79.2% vs. 41.7%, respectively.
The second part of my doctoral thesis presents a novel approach based on the analysis of

GR-response expression quantitative trait loci (eQTLs). I investigated on a genome-wide
level, whether variants that alter the immediate transcriptional response to GR activation
may alter the risk to su↵er from stress-related disorders, like MDD. The eQTL analysis
was performed on imputed single nucleotide polymorphism (SNP) data in a cis-window
of ±1 Mb and the di↵erences in gene expression between GR-stimulated and baseline
samples from peripheral blood cells of 160 male individuals (see summary figure below for
illustration of the sequence of experiments and analyses investigated in this study).
We identified 3,820 GR-response cis-eQTLs with SNPs modulating the GR induction

of gene transcription. These SNPs were highly enriched among variants associated with
MDD, as identified in a meta-analysis for MDD using the PGC data with an n of over 9,000
MDD cases and controls. Furthermore, there was also evidence for significant enrichment of
these GR-response eSNPs with schizophrenia (SCZ), bipolar disorder (BPD) and variants
conferring psychiatric risk for cross disorders. The PGC cross disorder analysis measures
the shared risk on five major psychiatric disorders (SCZ, BPD, MDD, attention deficit
hyperactivity disorder and autism spectrum disorder; n =33,000 cases and 29,000 controls).
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Abstract

The 282 SNPs showing both an association with GR-mediated transcription and MDD
(GR/MDD SNPs) regulate 25 distinct transcripts. Pathway analysis suggests an involve-
ment of these 25 transcripts in pathways associated with ubiquitination and proteasome
degradation and the inflammatory response- systems that have been implicated in the
pathophysiology of MDD and in stress-related changes in synaptic plasticity. Additionally,
in corresponding mouse models, we found over 66% of these 25 transcripts to be regu-
lated following GR agonist stimulation in hippocampus, prefrontal cortex or amygdala.
In addition, the genetic risk profile of the GR/MDD SNPs was associated with altered
centromedial amygdala reactivity to threat-related cues.

In summary, it was first shown that in vivo stimulated gene expression in peripheral
blood cells could be a promising molecular marker of altered GR functioning, an important
component of the underlying pathology, in patients su↵ering from depressive episodes.
Secondly, our data suggests that genetic variants that modulate the first transcriptional
response to stress are more likely to be associated with stress-related disorders. This
strongly supports the importance of molecular gene by environment interactions for the
understanding of the pathophysiology of MDD and related disorders.
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1 Introduction

1. Introduction

1.1. Background of major depressive disorder

1.1.1. Epidemiology and clinical features

Major depressive disorder (MDD) is the most common psychiatric disorder with a reported
lifetime prevalence up to 17% [108]. In Europe, MDD is the third leading cause of disability
[62] and rated as one of the disorders with the highest global burden of disease according
to the world health organisation (WHO) [218]. From 1990 to 2010, the global burden
of MDD increased by 37% [156]. Although several studies reported MDD to be equally
heritable in man and women [105], there is some evidence suggesting that women are
more likely to experience an episode of depression during their lifetime [106, 3]. Probably
there are genes acting di↵erently on the risk for MDD in both sexes [105]. The average
age-of-onset is estimated to be in the early to mid twenties [5]. Young adults (18-29
years) are more likely to su↵er from depression compared to older adults (>60 years) [107].
Epidemiological studies have shown the high comorbidity of MDD with other psychiatric
disorders, especially with anxiety disorders [107]. Around 90% of the patients with an
anxiety disorder experience MDD at some point in their life [182].
Despite its high prevalence and impact, the pathophysiological mechanisms underlying

MDD are not su�ciently understood, resulting in non-optimal treatments with high rates
of recurrence and treatment resistance [232]. Treatment options include pharmacologic
therapy, electroconvulsive therapy, psychotherapy or a combination of some or all of these
therapies.
The most common symptoms of MDD include a↵ective abnormalities, like depressed

mood and loss of interest or pleasure. Other symptoms are sleep distruptions, poor con-
centration, recurring thoughts of death and significant weight loss without dieting or weight
gain [34]. These symptoms are often recurrent and can become chronic.
Currently, depression diagnosis is based on a set of such signs or symptoms, defined by

the diagnostic and statistical manual of mental disorders forth edition, text revision (DSM-
IV-TR [6]; see table 1.1) or international classification of diseases (ICD-10). Various other
measurements have been used to screen for depressive symptoms including the self-report
rating scales, e.g. Hamilton rating scale for depression (HAM-D) and center for epidemio-
logical studies depression scale (CES-D) as well as the interview-based rating scales, e.g.
Beck depression invertury (BDI) and patient health questionnaire (PHQ-9). The BDI is
the most widely used assessment scale for depression. It is a 21-item questionnaire (<9 no
depression, 10-15 mild depression, 16-23 moderate depression and >24 severe depression)
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with questions rated on a four-point scale. The HAM-D is a 17-item questionnaire (<7
normal depression, 8-13 mild depression, 14-18 moderate depression, 19-22 severe depres-
sion, >22 very severe depression) and questions are rated on a five-point scale [35]. Both
measurements were used in this thesis (see subsection 2.1).

At present, the optimal diagnostic method or screening tool is unknown. No biological
criteria or measures are established for routine diagnosis, thus, finding better biomarkers
is one challenge we aim to answer in this thesis.

A. At least five of the following symptoms have been present during the same 2-
week period and represent a change from previous functioning: at least one of the
symptoms is either 1) depressed mood or 2) loss of interest or pleasure.
(1) Depressed mood most of the day, nearly every day, as indicated either by
subjective report or observation made by others.
(2) Markedly diminished interest or pleasure in all, or almost all, activities most
of the day, nearly every day.
(3) Significant weight loss when not dieting or weight gain, or decrease or increase
in appetite nearly every day
(4) Insomnia or hypersomnia nearly every day.
(5) Psychomotor agitation or retardation nearly every day.
(6) Fatigue or loss of energy nearly every day.
(7) Feelings of worthlessness or excessive or inappropriate guilt nearly every day.
(8) Diminished ability to think or concentrate, or indecisiveness, nearly every day.
(9) Recurrent thoughts of death, recurrent suicidal ideation without a specific plan,
or a suicide attempt or specific plan for committing suicide.

B. The symptoms do not meet criteria for a mixed episode.
C. The symptoms cause clinically significant distress or impairment in social, occu-
pational, or other important areas of functioning.
D. The symptoms are not due to the direct physiological e↵ects of a substance or a
general medical condition.
F. The symptoms are not better accounted for by bereavement, i.e., after the loss of
a loved one, the symptoms persist for longer than 2 months or are characterized by
marked functional impairment, morbid preoccupation with worthlessness, suicidal
ideation, psychotic symptoms, or psychomotor retardation.

Table 1.1.: DSM-IV-TR diagnosis criteria for MDD. The table is based on [6].

1.1.2. Etiology and candidate systems

The etiology of MDD includes psychological, physiological as well as environmental factors,
resulting in a very heterogeneous disorder [82].

2



1.1 Background of major depressive disorder

1.1.2.1. Stress hormone system

The stress hormone system, or hypothalamic-pituitary-adrenal (HPA) axis, is an important
mediator in depression [71]. A stress response, e.g. after exposure to adverse life events,
elicits the activation of this system by releasing corticotrophin-releasing factor/hormone
(CRF/CRH) from the hypothalamus. This hormone is mediated by the corticotropin
releasing hormone receptor 1 (CRHR1 ), leading to secretion of adrenocorticotrophic hor-
mone (ACTH) from the anterior pituitary. ACTH then triggers the release of glucocor-
ticoids (cortisol, a stress hormone, in humans and corticosterone in rodents) from the
cortex of the adrenal glands (see figure 1.1a). Glucocorticoids interact with their receptors
to inhibit further secretion of ACTH and corticotrophin releasing hormone (CRH) in a
negative-feedback loop [43].
Hyperactivity of the HPA axis in depressed patients is the most common finding in

psychiatry. Central mechanisms for this hyperactivity are an increased neurotransmission
of CRH and an impaired negative feedback of the HPA axis [11, 158].
Two di↵erent types of nuclear hormone receptors mediate the action of glucocorticoids:

the mineralocorticoid receptor (MR) and the GR. The MR is selectively expressed in the
limbic system and shows a high a�nity for glucocorticoids, i.e. a ten-fold higher a�nity
for cortisol than the GR [43]. It is already activated at basal glucocorticoid levels (low
stress levels), such as the cortisol concentration in the afternoon and night [205]. The
second receptor is the GR, present in the pituitary, hypothalamus area and prefrontal
cortex (PFC). The GR will only be occupied during stress response (high stress levels),
but always after the complete saturation of the MRs [205, 42].

1.1.2.2. Glucocorticoid receptor

The GR is a prime candidate for associations with susceptibility for MDD and a target
of psychiatric therapy. For example, Modell et al. [154] indicated that people with MDD
have a disturbed function or decreased expression of the GR [42].
Glucocorticoid binding allows the GR to translocate from cytoplasm to nucleus, where

it binds to specific sequences of the deoxyribonucleic acid (DNA) known as glucocorticoid
response elements (GREs) and regulates the expression of target genes (see figure 1.1b).
The GR is able to stimulate or repress transcription, and interact with other transcription
factors (TF)s such as the activating protein-1 (AP1) and the nuclear factor kappa B (NFB)
[145]. The main function of GR activation is to promote proper negative feedback of the
HPA axis to terminate the stress response.
The GR is encoded by the nuclear receptor subfamily 3, group C, member 1 (NR3C1 )

gene, located on chromosome 5.

1.1.2.3. Dexamethasone

A way to evaluate the reactivity on the HPA axis is provided by the dexamethasone sup-
pression test (DST) [127]. Since endogenous glucocorticoids could serve as prime candidates
for stress-related disorders, synthetic analogs of glucocorticoids, i.e. dexamethasone, serve
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as potent GR agonists [191]. By stimulating the GR, dexamethasone activates the nega-
tive feedback loop reducing the activity of the HPA axis and leading to a decrease in the
production and release of ACTH and cortisol, which in turn is measured by the DST [127].
Thus, the DST is can be interpreted as a measurement of GR sensitivity. To potentially
characterize MDD patients and uncover alteration in the stress hormone system, the DST
received considerable attention in psychiatric research [27].
Besides, by altering cortisol secretion, dexamethasone leads to extensive and reproducible

gene expression changes (for example see section 3.1) that can be used as molecular markers
for GR sensitivity. Genetic variants (see subsection 1.2.1) that influence the transcriptional
e↵ects of the GR activation are interesting candidate polymorphisms (see subsection 1.2.1)
for MDD. The genetics of variation in gene expression (see subsection 1.2.2 and section 3.2)
has gained much attention in the last decade, resulting in meaningful studies to characterize
the genetic architecture of transcriptional regulation [150, 224, 155].
Genes which are componets of the HPA axis and known to be associated with MDD are

listed in table 1.2.

Adrenal
gland

Brain

Gluco-
corticoid

ACTH
GR

Peripheral
blood cells

Stress

(a) The stress hormone system.

GENE X

Glucocorticoids

GR

(b) Circulation of the GR between cyto-
plasm and nucleus.

Figure 1.1.: Schematic representation of the stress hormone system and its main e↵ector, the
GR, which is know to have a disrupted function in MDD. (a) Stressful events
activate the HPA axis by including the release of CRH from the hypothalamus,
which promotes the secretion of ACTH from the pituitary. ACTH in turn stimulates
the adrenal gland to release glucocorticoids into blood stream. Normalization of
CRH after stress exposure is archived via negative feedback mechanism, whereby
glucocorticoids activate the GR, which terminates the stress reaction [42]. (b) The
GR is a nuclear hormone receptor and upon activation, it translocates from the
cytoplasm to the nucleus, where it binds to GREs and regulates gene expression.
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1.1 Background of major depressive disorder

Endophenotype Gene Function Chr. Reference

NR3C1 GR 5 [221]
HPA axis

CRHR1 CRH/CRF receptor 17 [19, 126]
TPH2 involved in the biosynthesis of sero-

tonin
12 [246]

MAOA degrades amine neurotransmitters X [50]
SLC6A4 serotonin transporter 17 [195]

Monoamines

COMT breakdown of dopamine in brain 22 [141]
GAD1 production of GABA 2 [91]
GRIA3 glutamate receptor X [114]Glutamate
P2RX7 ATP binding, ion channel activity 12 [128]
DISC-1 neurodevelopment and neural sig-

naling
1 [81]

BDNF plasticity 11 [192]
NTRK2 receptor for brain-derived neu-

rotrophic factor (BDNF )
9 [49]Neuroplasticity

CREB1 transcription factor 2 [49]

Table 1.2.: A list of candidate MDD genes. The table is based on [219].

1.1.2.4. Neurotransmitters

Neurotransmitters are chemical messengers that transmit signals across nerve cells. Alter-
ations in their function in the brain have been implicated in the pathophysiology of MDD
before [219].
Major types of neurotransmitters are amino acids (glutamate), neuropeptides (CRH)

and monoamines. After introducing the monoamine hypothesis in 1965 [188], greatest at-
tention in MDD research was given by the monoamine system, including serotonin or cat-
echolamines (adrenaline, noradrenaline and dopamine). It proposes that ”the underlying
biological or neuroanatomical basis for depression is a deficiency of central noradrenergic
and/or serotonergic systems and that targeting this neuronal lesion with an antidepressant
would tend to restore normal function in depressed patients” [92]. As decreased serotonin
levels and noradrenergic and dopaminergic dysfunction has been associated with depres-
sion and popular antidepressants prevent serotonin reuptake (selective serotonin re-uptake
inhibitor (SSRI)s) candidate studies investigated genes regulating the monoaminergic path-
way. The main candidates are summarized in table 1.2 [82].
Glutamate is the most abundant free amino acid in the brain and has excitatory e↵ects

on nerve cells [245]. Dysregulation of proteins involved in glutamatergic signaling are im-
plicated in alterations in animal models for depression. Drugs influencing the glutamate
receptor tend to have an antidepressant like e↵ect in these models. Additionally, signifi-
cantly higher levels of glutamate are present in patients with MDD [153]. Studies, which
focused on genes involved in the regulation of the glutamatergic neurotransmission, are
listed in table 1.2.
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1.1.2.5. Neuroplasticity

Plasticity refers to the capacity of cells or organs to change their phenotype in response
to alterations in their environment [198]. Especially the term neuroplasticity denotes en-
vironmental adaptability through modification of the connectivity between neurons and
neuronal circuits, i.e. adding new nerve cells, strengthening or weakening nerve connec-
tions (synapses) [140]. In the last few years, the view has gained ground that impairment
of neuroplasticity may play an important role in psychiatric diseases, like MDD, and the
major goal is to identify the specific transmitter systems involved in those diseases and
design appropriate interventions [25].
Patients with MDD display structural brain changes, such as a reduction in hippocampal

volume, which may be due to glutamate neurotoxicity-induced reduction in neurogenesis
[197]. Moreover, an increased density of hippocampal neurons and glia cells (synaptic
plasticity) was observed in MDD patients [209]. In contrast the PFC is associated with
decreasing density of neurons and glia cells [180]. Decreased glia density has also been
found in amygdala (AM) and cingulate cortex (Cg25) [191, 18]. Furthermore, hippocampal
strength is changed by long-term potentiation and depression.
Exposure to chronic stress disrupting hippocampus dependent memory functions and

deficits in memory formation are observed in MDD [174]. Synaptic function that underlie
memory and learning were recently associated with an orchestrated function of protein
synthesis and degradation. Genes involved in the etiology of depression and also in the
cellular mechanisms of neuroplasticity are listed in table 1.2.

1.1.2.6. Neuroimaging

Neuroimaging techniques can be used to further study brain function and structure, and
help to better understand the relationship between certain brain regions and specific mental
function, especially in the light of stress-related disorders. Common techniques include
hemodynamic (blood flow or circulation) techniques- such as positron emission tomography
(PET) and functional magnetic resonance imaging (fMRI), as well as electro-magnetic
techniques-like electroencephalography (EEG) and magnetoencephalography (MEG) [39].
In this thesis we used blood oxygenation level-dependent (BOLD) fMRI to analyze the
importance of functional expression SNP (eSNP)s for MDD (see section 3.2).
An MRI scanner works with a magnetic field inside the scanner and magnetic susceptibil-

ity e↵ects of deoxygenated hemoglobin (deoxygenated hemoglobin is much more magnetic
than oxygen) were utilized for the fMRI technique. Changes in blood oxygenation and
flow, which occur in response to neural activity, can be detected by this technique. When
the brain is activated by a specific task, the magnetic resonance signal intensity is increased
in the thereby activated regions. This is due to greater uptake of oxygen, resulting in an
increased blood flow in this area [78]. An fMRI scan produces activation maps visualizing
which parts of the brain are involved in a particular mental process [65].
Human neuroimaging studies have examined alterations in the activation of specific brain

regions in MDD patients relative to controls. Brain regions involved in emotion experience,
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1.1 Background of major depressive disorder

like PFC and Cg25, as well as hippocampus (HC) and AM, which are part of the emotional
memory formation and retrieval process, are characterized by dysregulated neural activity
in common psychiatric disorders [182].
Structural neuroimaging studies provide strong evidence of decreased volume of brain

regions- such as AM, PFC and the HC [65, 131, 220]- that control emotion, mood and
cognition, in MDD patients compared to healthy controls.
Furthermore, genetic variants in the serotonergic system (5-HTTLPR, serotonin-trans-

porter-linked polymorphic region in solute carrier family 6 (neurotransmitter transporter),
member 4 (SLC6A4 )) are associated with increased amygdala activation in patients with
MDD [65]. Gene by environment interactions indicating risk-allele carriers to be associated
with low grey matter volume and processing of negative a↵ect have been found in this
genetic variants [182, 171].
Other studies report a decrease of the connectivity between HC and PFC as well as other

brain regions, although there are contradicting reports of increased connectivity of some
regions, indicating a more complex disruption of reciprocal connections [53].

1.1.3. Genetic and environmental factors

MDD is characterized by both genetic as well as environmental influences. The primary
known environmental risk factors for MDD are life stress events including sexual, physical
or emotional abuse, childhood neglect, loss of a parent or living with mentally ill parent
[85].
Case-control family studies showing that MDD aggregates within families date back

to the first few decades of the 20th century [62]. A meta-analysis of high-quality family
studies found that the prevalence of MDD in the first-degree relatives was 2.84-fold higher
in relatives of a↵ected subjects compared to relatives of una↵ected subjects [213, 62]. This
meta-analysis estimated heritability for MDD to be 37% (95% confidence interval (CI)
of 31-42%) with minimal shared environmental e↵ects between siblings (0% with 95% CI
of 0-5%), but large individual specific environmental e↵ects (63% with 95% CI of 58-
67%). The absence of shared family environmental influences points to aggregation within
MDD families due to genetics e↵ects. Consistent heritability estimated are found in the
Swedish national twin study, comprising more than 15,000 twin-pairs, which estimated a
38% heritability for MDD [104].
Numerous genes have been associated with risk of depression in various studies, the most

common candidate genes are listed before in table 1.2 [17]. One of the candidate genes is the
most widely studied serotonin transporter gene (SLC6A4 ) on chromosome 17, a therapeutic
target for the SSRI class of drugs [72]. A common polymorphism located in the promoter
of this gene is 5-hydroxytriptamine-transporter-linked polymorphic region (5-HTTLPR), a
44base pairs (bp) insertion/deletion short/long polymorphism. The short allele (deletion)
correlates with reduced serotonin transporter messenger RNA (mRNA) transcription [84,
86, 72]. Mixed results of the relationship of this polymorphism to depression have been
reported [90], including positive and negative associations. More consistent results have
been obtained by studying gene by environment interactions between 5-HTTLPR and
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stressful life events. Caspi et al. [30] reported that the 5-HTTLPR short allele carriers
were more susceptible to depression if they experience early life stress.
Abnormal HPA axis regulation is a key neurobiological characteristic of MDD and GR

function has been shown to be disturbed in MDD patient, as described above. Thus poly-
morphisms altering the transcriptional e↵ects of GR activation might be interesting can-
didates for this disorder. One important regulator of GR sensitivity is the FK506 binding
protein 5 (FKBP5 ) gene on chromosome six. Binder et al. [11, 12] showed that depres-
sion is associated with GR supersensitivity in FKBP5 . Variants in FKBP5 are associated
with antidepressant response. These variants were also correlated with increased intra-
cellular FKBP5 protein expression, which activates alterations in GR and thereby HPA
axis regulation. A less HPA axis hyperactivity during depressive episodes was observed in
individuals carrying the correlated genotypes of these variants.
Despite this estimated substantial genetic contribution, candidate genes and genome-

wide association studies (GWASs) for MDD have failed to identify robust genetic associa-
tions. Flint and Kendler [62] recently found over 1,500 articles reporting genetic associa-
tions for MDD. Only few groups agree with each other, which is reflected by the conflicting
resolution of meta-analysis results for MDD. Table 1.3 summarizes data of 26 candidate
genes analyzed by a meta-analysis of which only seven yield a significant nominal p-value
(P < 0.05) [62]. Furthermore, the Psychiatric Genomics Consortium (PGC) adopted a
large mega-analysis within over 9,000 cases and the same number of controls and was not
able to identify a maker reaching the genome-wide significance threshold (P < 5 ⇥ 10�8)
[133].
Thus, one aim of this thesis is to identify SNPs associated with glucocorticoid-induced

gene expression changes and to functionally characterize their relevance for psychiatric
disorders, especially MDD.

1.1.4. Animal models of stress-related disorders

The underlying disease process of depression is not fully understood and recreating the
disease in animal models is not possible. At present, the models exhibit a depression-
like behavior in simulating parts of the human symptoms. But, not all symptoms can
be reproduced in animals, for example subjective feeling and appetite change cannot be
used for modeling. Examples for symptoms assessable in animals include physiological,
endocrinological and neuroanatomical alterations as well as behavioral traits. Such models
can be used to predict variability to detect accurate treatments that are useful for the
clinic. Depending on the stressor (physical/systemic vs. cognitive/psychological), di↵erent
neurological circuits are activated [52].
To assess depression and antidepressant-like behavior the forced swim test (FST) [129]

and tail suspension test (TST) [208] were used. An animal model of MDD incorporating
disease etiology and predisposition is the learned helplessness (LH) paradigm [194]. All
three models rely on relatively short-term aversive stress exposure [45].
Stress exposure is the main environmental risk factor for MDD; therefore, the majority

of animal models of MDD are based on the exposure to various types of acute or chronic
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1.1 Background of major depressive disorder

Relevance # of studies # of cases # of controls P value

5-HTR2A 7 - 11 768 - 1,491 959 - 2,937 � 0.12
5-HT-6R 4 701 2,422 0.41
5HTTLPR/SLC6A4 4 - 39 275 - 6,836 739 - 14,903 � 0.007

ACE 4 - 15 586 - 2,479 5,169 - 7,744 > 0.1
BDNF 2 - 23 285 - 4,173 688 - 12,747 > 0.1
CLOCK 6 930 2,305 0.47
COMT 6 NA NA NS
DRD3 4 541 606 NS
DRD4 5 318 814 0.003

GABRA3 NA NA NA NS
GNB3 3 375 492 < 0.05

HTR1A 4 - 13 1,658 - 3,199 2,046 - 4,380 � 0.006

HTR1B NA NA NA NS
HTR2A 4 - 11 768 - 1,491 959 - 2,937 > 0.1
HTR2C 2 NA NA NS
HTR6 4 701 2,422 0.406
MAOA 4 NA NA NS
MTHFR 4 - 17 291 - 3,341 835 - 13,840 �0.003

NET/SLC6A2 3 - 6 1,673 - 1,681 1,410 - 2,938 0.78
DAT/SLC6A3 3 151 272 < 0.05

TPH1 10 1,812 2,223 > 0.1

Table 1.3.: Candidate gene polymorphisms implicated in meta-analyses of genetic association
studies of MDD. NA refers to not available, NS nonsignificant and # to number of.
The number of samples and studies included in the meta-analysis is given as range of
size (samllest to largest). Significant meta-analysis p-values are highlighted in bold.
The table is based on [62].

stressors. Example for models of MDD that include a stress component in adulthood
are: the chronic mild stress (CMS) paradigm, aiming to model a chronic depressive-like
state that develops gradually over time in response to a mild stressor (isolation or crowed
housing, food or water deprivation, disruption in dark-light cycle, etc.) [52]. The CMS
has been linked to result in long lasting behavioral and neuroendocrinological changes,
which resemble dysfunctions in MDD patients [45]. Other models of adult stress are social
conflict animal models. Stress can be a chronic and a recurring factor occurring in lives
of all higher animal species. Humans experiencing social defeat show increased MDD
symptoms [13]. Di↵erent paradigm for the social stress model have been established, like
dyadic, i.e. animal is exposed to a dominant and aggressive other animal, and group
social stress [45]. In this thesis we used a paradigm developed by Schmidt et al. [189],
utilizing chronic social stress as a key pathogenic factor during adolescence. An unstable
social environment for a prolonged period of time is created. Animals are exposed to a
continuous, stressful situation with no possibility to escape and adapt to. Briefly, animals
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were exposed to seven weeks of chronic social stress, e.g. the group composition in each
cage is changed twice per week, so that each time four di↵erent mice are put together in a
new clean cage. After the seven weeks stress procedure, all animals were single housed for
five weeks. After this recovery phase, susceptible animals exhibit depression-like behavioral
and endocrine phenotypes, while this is not the case for resilient animals, which show strong
stress-related disturbance immediately after the seven weeks of stress but recovery to the
level of unstressed control animals [190, 189, 110].

Contrary to the adult stress models, the early life stress models, like the maternal sepa-
ration paradigm, have been investigated.

Further evidence is provided by genetic animal models in which components of the HPA
axis were modified by mutagenesis (GR or CRHR1 knockout mice) or models which assess
the functionality of the HPA axis by challenge tests, such as the DST or the combined
dexamethasone-CRH test [42]. The dexamethasone treated mice experiment was part of
this thesis (see section 3.2 and subsection 2.1).

1.2. Technological background to identify complex traits

1.2.1. Genome-wide association studies

The genome-wide association study (GWAS) methods screen the whole genome for asso-
ciations between common genetic variants (single nucleotide polymorphism (SNP)s) and
a phenotype without any prior selection for specific regions, genes or variants of interest.
Therefore, the GWAS approach is also called hypothesis-free approach. This method uti-
lizes high-throughput genotyping arrays (see section 1.2.1), which capture a remarkable
proportion of common variation in the genome [109]. GWAS can be used to detect case-
control associations. Thereby, a set of cases and matched controls is used to assess the
di↵erence in SNP frequencies between both sets [22]. The basic design of a GWAS includes
two steps: the first one is statistical testing of the correlation between SNPs and pheno-
type and the second one follows up the best hits in an independent sample for statistical
validation [226].

GWASs are an important advance for the identification of genetic variants influencing
common human diseases, but there are several limitations. Firstly, there is a huge gap
between statistical association and identifying the underlying functional basis between
a genomic interval and a given complex trait. Secondly, associations identified in one
population are often not reproducible and cannot be replicated in other populations and
furthermore a large number of identified loci are cell and tissue specific. Thirdly, the
enormous number of loci identified by GWASs have only been able to account for a very
small proportion of the heritability of the complex traits [64]. This phenomenon has become
known as the ”case of missing heritability” [143, 136].

Regardless of the drawbacks, these studies mainly represent a valuable discovery tool for
examining genomic function and elucidate pathophysiologic mechanisms [168].
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1.2.1.1. Analysis of GWASs

In the following section, several methodologies, which are crucial for GWASs, are described.
The outcome highly relies on the correct genotype data, which otherwise reduces the power
to fine map the trait of interest.

SNP genotyping
The increased interest in SNPs has been reflected by the rapid development of diverse and
dense SNP genotyping methods. This constitutes the process of determining the geno-
type of an individual by examining its DNA sequence with the use of biological assays. A
higher throughput was provided through the implementation of oligonucleotide microar-
rays. Hundreds of thousands of fixed sequences can be arranged in a small area, enabling
very high-throughput data generation. The typical feature of a microarray based genotyp-
ing platform is the large number of SNPs that can be genotyped from one or more samples
at the same time.
SNP genotyping methods hold two components: at first a method for discrimination

between alternative alleles and second a method for reporting the presence of the allele/s
in a given DNA sample. Determination methods include primer extension, enzyme cleavage
and allele-specific hybridization. The detection is based on light signals emitted at specific
spots on these chips [216].
Several companies such as Applied Biosystems, Luminex, Fluidigm, A↵ymetrix or Illu-

mina provide high-throughput genotyping arrays commonly used in GWASs.
In this thesis, all individuals of the Max-Planck Institute of Psychiatry (MPIP) co-

hort were independently genotyped utilizing the Illumina Human610-Quad and Illumina
Human660W-Quad Genotyping BeadChips, using the llumina Sentix Human-1, Human-
Hap300, Illumina Human610-Quad and HumanOmniExpress Genotyping BeadChips for
the Munich antidepressant response signature (MARS) cohort and Illumina HumanOmni-
Express BeadChips for the Duke Neurogenetics Study (DNS) cohort (see section 3.2).

Hardy-Weinberg equilibrium, genotypic- and allelic frequencies
Allele frequency defines the rate of a single allele in a population and is calculated by
dividing the number of times the allele of interest is observed in a population by the total
number of copies of the alleles at a particular locus1. The genotype frequency refers to
the frequency of the di↵erent combinations of those alleles in the population. One of these
alleles will appear less frequently than the other, which is then defined as the minor allele.
Typically, SNPs with a low minor allele frequency (MAF)(<5%) are excluded in GWASs
to avoid misclassification bias, since variants with a low MAF do not show much variation
across the population and their detection becomes unlikely [136].
The Hardy-Weinberg equilibrium (HWE) is a principle describing that the genetic vari-

ation in a population in the absence of disturbing factors will remain constant over gen-
erations. Moreover, when mating is random in a large population and disturbing factors,

1http://www.nature.com/scitable/definition/hardy-weinberg-equilibrium-122
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e.g. natural selection, mutations and inbreeding, are excluded the law predicts that both
genotypes and allele frequencies will remain constant because they are in equilibrium (Eq.
1.1). For instance, a mutation can destroy the equilibrium by introducing new alleles into
a population or nonrandom mating and natural selection by changing gene frequencies1.
Deviation from HWE within genotyped SNPs can provide wrong evidence for association.
Therefore testing for HWE is part of the normal quality control of GWASs and markers
are typically exclude if the P value of the HWE test is less than 10�5.
The Hardy-Weinberg principle can be illustrated with the following equation:

p

2 = f(AA)

2pq = f(Aa)

q

2 = f(aa)

p

2 + 2pq + q

2 = 1

(1.1)

Linkage disequilibrium, haplotypes and tagging SNPs
The pattern of association between SNPs in the genome can be derived from haplotypes
and linkage disequilibrium (LD).
A haplotype is a combination of a set of alleles at a number of closely spaced sites on a

chromosome [74].
In a GWAS, the genetic phenomenon of a non-random association of alleles at two

or more loci is important. Resulting genetic markers in proximity of a disease-causing
variant will be more often co-inherited with this disease-causing variant than expected
under independent conditions. In fact, the closer two genes are on a chromosome the
higher their chances of being inherited together. Contrary, for more distant genes the
likelihood of separation during recombination is greater2. This lack of independence among
di↵erent genetic variants is termed LD. Some studies reported that physical distance does
not always explain the level of linkage and small distance does not ensure a high level of
LD [207, 228, 185, 199]. For example, Abecasis et al. [1] showed that only 45% oft their
observed variation in disequilibrium measures could be explained by physical distance.
Additional factors, such as allele frequency, type of polymorphism, and genomic location
must be taken into consideration.
Various statistical measures are used to quantify LD between alleles of two loci. D0 and

r

2 are most widely used and depend on linkage coe�cient, D (Eq. 1.2), which is defined
for a specific pair of alleles, A and B, and does not depend on how many other alleles are
at the two loci- each pair has its own D.
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is defined as the ratio of D to its maximum possible absolute values of D (Eq. 1.3), given
the allele frequencies [199].

D

0 =
D

D

min/max

(1.3)

The second measure to quantify LD is:

r

2 =
D

2

f

A

(1� f

A

)f
B

(1� f

B

)
(1.4)

D

0 and r

2 range from zero (independence; no LD) to one (complete LD), but their inter-
pretation is slightly di↵erent. D0 equal to one if just two or three of the possible haplotypes
are present, and it is less than one if all four possible haplotypes are present. An r

2 equal
to one can just be reached if only two haplotypes are present. In association mapping the
r

2 is the LD measure of choice, since there is a inverse relationship between r

2 and the
sample size required to detect association between susceptibility loci and SNPs (for more
details please see [247]) [228].

The human genome is split into blocks of high LD regions, which are known as haplotype/LD
blocks. The length of a LD block varies across di↵erent ethnics. The LD in Europeans and
European-Americans extends larger distances than in Africans and African-Americans,
which might reflect a population bottleneck at the time when modern humans first left
Africa[228].
The most widely studied region in humans is the major histocompatibility complex

(MHC)- also referred as human leukocyte antigen (HLA) complex, which is located on
chromosome 6 and spans 3.6mega base pairs (Mb) (extended MHC spans 7.6Mb [93]).
This regions is known for its high degree of LD. It is arranged into conserved extended
haplotypes of variable size, which makes portioning into LD blocks highly complex [15].

The LD pattern can further be used to create non-redundant sets of SNPs (LD bins/
SNP bins), this process is called ”tagging”. SNPs, capturing other SNPs on the basis of
LD patterns are defined as tagging SNPs. If a tagging SNP is correlated with a trait of
interest the markers in high LD should exhibit association to this trait as well. A su�cient
selection of tagging SNPs can provide enough information to predict the information about
the other variants in LD [101].

Population stratification
One of the key challenges in GWASs is to avoid spurious associations. Such misleading
associations can occur due to confounding factors, e.g. inconsistency in data collection
methods or di↵erences in allele frequencies within subpopulations (for more details see
section 1.2.2.2). Especially in GWASs with a case-control design, di↵erences in allele
frequency among cases and controls unrelated to the outcome of interest can cause spurious
associations between phenotype and genotype. Population stratification refers to those
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ancestral di↵erences. Large samples comprising multiple populations can interfere the
LD structure or lead to deviation from the HWE [176]. Methods dealing with correction
for population stratification include the genomic control approach, structured association
approach, multidimensional scaling (MDS), principal component analysis (PCA) or linear
mixed models. The genomic control [46] corrects stratification by adjusting association
statistics at each marker by a common factor for all SNPs (�

GC

). The structured association
correction [177] assigns the sample to discrete subpopulation clusters and then accumulates
evidence of association within each cluster. The most widely used method is the PCA
approach. The EIGENSTRAT method [176], uses PCA to identify several top principal
components (PC)s and includes them as covariates in the association analysis. A PC is
defined as the product of a weight vector and a genotype vector, with weights reflecting the
marginal information about ancestry [229]. Another method correcting for stratification,
which is equivalent to PCA for certain similarity matrices, is the MDS approach.

Missing genotypic values and imputation
Missing genotype information is a frequent problem within GWASs. Since most of the anal-
ysis tools cannot handle missing values, they have to be removed prior to their application,
resulting in a considerable loss of information.
Imputation methods address this problem by using the LD information within a region

to predict missing genotypes at typed SNPs or genotypes that are not genotyped at all
[80, 69]. Based on a reference panel of samples from identical or similar populations that
was produced by whole-genome sequencing, imputation methods infer genotypes at markers
that were not directly typed in a study. Samples from the HapMap project [96] and/or 1,000
Genomes Project (1KGP) [225] are used as reference panels. Those reference panels contain
a much larger number of SNPs, because they were produced by genome sequencing. The
1KGP reference panel allows a deeper analysis of the contribution of genetic variation than
the HapMap data. It benefited from whole-genome sequencing technology, which increased
resolution significantly. The obvious advantage of imputation is a considerable gain of
information at no or low additional costs. Before the rise of GWASs, imputation methods
were successfully applied to association studies [83]. Unfortunately, most of them do not
work for genome-wide approaches due to excessive computational costs of the algorithms.
However, other algorithms especially developed for the genome-wide task proved themselves
to be particularly useful because of the dense and numerous marker sets and background
information made available by these kinds of studies.
Computationally intensive tools used for genotype imputation include IMPUTE [139],

MACH [123], BEAGLE [24] and fastPHASE [187]. They mainly di↵er in the approach to
choose the ancestral haplotypes.
In this thesis we utilized IMPUTE version 2 (see section 2.3) to estimate the genotypes

of incomplete or untyped SNPs applying combined reference data of HapMap and 1KGP.
Briefly, IMPUTE first aims to identify shared haplotypes of the individuals from a study
panel and the haplotypes in the reference sets. Individuals in the study and reference
panels share a degree of common ancestry. Therefore, di↵erent parts of the study data will

14



1.2 Technological background to identify complex traits

be more closely related to di↵erent individuals of the reference panel, thus, the haplotypes
of a given individual could be modeled as a mosaic of haplotypes of the related individuals.
Missing genotypes in the study sample were then imputed on the basis of the matched
haplotypes of the reference set. The output for each imputed SNP is the probability of the
distributions over the genotypes 0, 1 or 2, which was used to estimate the missing genotype
[139, 138].

Analyzing the imputed SNPs can lead to more significant associations and a more de-
tailed view of associated regions.

1.2.2. Gene expression as molecular phenotype

The expression of genes is an intermediate molecular phenotype, which can help to identify
genetic variation responsible for psychiatric disorders. Gene expression likely reflects both,
state and trait dependent disease-related influences and these have been shown to be highly
heritable [211].

1.2.2.1. Analysis of gene expression profiles

Gene expression can be detected using sequencing-based (RNA sequencing (RNA-seq)) or
hybridization-based approaches (microarray). In this thesis, gene expression microarrays
(see section 2.2) provided the measurements on gene expression. Microarrays utilize the
principle of complementary hybridization between nucleic acids and the advantage of the
knowledge of the genome. High-density microarrays harbore probe sequences complemen-
tary to thousands of genes, each immobilized at a specific coordinate on the surface of the
array. To measure gene abundance from certain cells of tissues the ribonucleic acid (RNA)
is extracted and labeled fluorescently or radioactively. The tagged RNA hybridizes specifi-
cally to complementary DNA (cDNA) sequences on the array and the signal is proportional
to the abundance of RNA in the sample [147]. The emitted light signal is detected using
autoradiography, chemiluminescence, or fluorescent scanning. Quantitative signal intensity
scanning allows gene expression levels to be measured by their positions on the microarray
and level of hybridization [224].

Microarrays allow researchers to measure the expression of thousands of genes simulta-
neously with relatively low costs as compared to the sequencing methods. Nevertheless,
microarrays have some limitations. They depend on the quality of the available genome
annotations, there is cross-hybridization between similar array probe sequences and they
are only able to detect known transcripts- since they interrogate a fixed content.

Furthermore, microarray technologies are very sensitive to create batch e↵ects. Due to
practical reasons, the number of samples that can be hybridized or amplified at the same
time is limited, resulting in di↵erent runs that might be several days or weeks apart. Dif-
ferences in lab conditions and preparation methods can further contribute to the variation
within the gene expression data [118].
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Di↵erential gene expression
Examining the di↵erences in gene expression levels across two or more experimental groups
is referred to as ”di↵erential expression analysis”. This can be done by targeting a specific
gene or by utilizing genome-wide gene expression levels [41]. In this thesis, we identified
significant di↵erences in gene expression levels between cases and controls as well as di↵er-
ences in gene expression levels after dexamethasone between cases and controls (see section
3.1). Further we showed that genetic variants altering the transcriptional response to GR
activation are relevant for psychiatric disorders (see section 3.2).

Functional genomic analyses of gene expression
Transcriptional regulation of gene expression
The aim of functional genomics is to elucidate the functions of genes by identifying the lo-
cations of all their regulatory elements. A regulatory element, including TFs, DNA methy-
lation patterns, promoters and enhancers, refers to a discrete region in the genome that
encodes a defined product or a reproducible biochemical signature such as transcription or
specific chromatin structure [57]. Since, the regulation of gene expression mainly occurs at
the transcriptional level, the identifiction of regulatory elements plays an important role
in understanding regulation of gene transcription [231]. The formation of regions of open
chromatin is a key factor elucidating functional regulatory activity. The structure of the
DNA is organized by nucleosome packing, acting as a regulator of transcription by enabling
or restricting protein binding, and therefore influencing the activity of a gene [132]. Re-
gions of open chromatin are indicated by deoxyribonuclease I hypersensitive sites (DHSs)
and deoxyribonuclease I (DNaseI) mappings which have been instrumental in the discov-
ery of regulatory elements. Chromatin structure can be profiled with DNase-seq [201], a
combination of DNaseI digestion and high-throughput sequencing, as well as FAIRE-seq
(formaldehyde-assisted isolation of regulatory elements followed by sequencing) [70]. His-
tone modifications can be also assessed by chromatin immunoprecipitation (ChIP) followed
by high-throughput sequencing (ChIP-seq) [67]. The same technique can be used to map
the genomic location for TF binding sites. The binding of TFs can modulate transcrip-
tion levels and influence the activity of specific genes. Further, chromatin contact between
specific regulatory elements highlights an important feature in gene expression regulation.
The characterization of these physical interactions can be carried out by chromatin inter-
action analysis by paired-end tag sequencing (ChIA-PET) [242]. This technique converts
chromatin structure into millions of short tag sequences and by combining ChIP with chro-
matin conformation capture (3C) technology and high-throughput sequencing. Thereby,
higher order chromatin interactions at genome-wide resolution can be assessed.

The encyclopedia of DNA elements (ENCODE) project [58] proposes to build a compre-
hensive map of all functional elements in the human genome. Parts of the ENCODE data
were used in this thesis to evaluate whether the long-range regulation of GR-response ex-
pression quantitative trait locus (eQTL)s may also be associated with long-range physical
chromatin interactions, (see section 3.2.2). Therefore, our eQTL data (see section 1.2.2.2)
were compared to the ENCODE DHSs and ChIA-PET data. Furthermore, we investigated
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whether specific TF binding motifs are enriched in the set of GR-response eSNPs.
Of course, other mechanisms to modulate gene expression exist, containing e.g. mi-

croRNA (miRNA)s, non-coding RNAs or DNA methylation on the epigenetic level.

Gene network analysis
Gene networks provide a straightforward representation of the relationship between genes.
Di↵erent network-based approaches can be used, including gene co-expression, protein-
protein interaction as well as cell-cell interaction [241].
In general, gene networks are used to identify higher-level features of gene-gene rela-

tionships based on graph theoretic consideration like node degree or clustering coe�cient.
Genes functionally related to each other, often show correlated gene expression profiles.
Therefore, co-expression can be utilized to identify clusters of genes, which share a biolog-
ical function. Similarity can be measured by Pearson correlation coe�cient, Kendall’s ⌧

correlation or Spearman’s rank correlation. The similarity measure is applied to all possi-
ble gene pairs generating a symmetric matrix of correlation values [151]. The associations
established from a co-expression analysis can be illustrated in a network, depicting a gene
expression profiles as a node and shared edges between nodes indicate a significant pairwise
expression profile association [241]. Evaluating the broader structure of networks allows
detecting groups of even higher co-regulation (modules). The genes in a network can be
characterized by the number of connections they have. Highly connected genes are major
players in a network and are referred to as hubs [152].
In this thesis we used the Pearson similarity measure to test if a set of gene products

identified in the GR-response eQTL analysis tends to be more co-regulated on a transcrip-
tional level than random eQTL genes (see section 3.2.6).
Furthermore, these genes were analyzed for physical interactions, regulatory interac-

tions and association with psychiatric disorders based on manually curated relationships
extracted from the scientific literature (see section 3.2.6).

Classification
The ability to distinguish between classes of samples, like patients and healthy controls, is
especially important in psychiatric research, since the diagnosis is solely based on verbal
information. Gene expression data can be used for classification and help to identify
biomarkers for psychiatric disorders. The primary classification methods include k-nearest
neighbor classifiers, discriminant analysis, neural networks, logistic regression, support
vector machines and classification trees.
The classification of microarray gene expression data is challenging due to the large

number of genes relative to the small number of samples. Typically, these data sets contain
around 12,000 genes for less than 100 samples [51], including a large number of irrelevant
or redundant genes uninformative for classification. Therefore, it is crucial to reduce the
number of genes in order to achieve good classification accuracy. Feature selection and
dimension reduction are the main approaches for this purpose. Feature selection methods
are: entropy-based, t-statistics, correlation-based, �2 and signal-to-noise statistic [2].
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Creating a classifier is a multi-step approach. Firstly, the set of samples is divided
randomly into training and test set, using the hold-out, k-fold cross validation or leave-one-
out approach. The model is fit on the training set and then used to predict the responses
for observations in the test set. The performance of this model can be represented in a
confusion matrix that reports the number of true (TP) and false plosives (FP) as well
as true (TN) and false negatives (FN). From these values the true positive rate (TPR)
(sensitivity; see Eq. 1.5), true negative rate (TNR) (specificity; see Eq. 1.6) and accuracy
(ACC; see Eq. 1.7) can be calculated.

TRP =
TP

(TP + FN)
=

TP

P

(1.5)

TNR =
TN

(FP + TN)
=

TN

N

(1.6)

ACC =
TP + TN

(P +N)
(1.7)

In this thesis, we performed classification with the random forest (RF) classification
technique [20]. It gains some advantages compared to other classifiers: usage of bagging
on samples, random subset of variables and majority vote schema [2]. The RF uses the
training set to create an in-bag partition to construct the tree and the test set, which is
not used in the construction of the tree, is used as an out-of-bag (OOB) partition to test
the constructed tree and to evaluate the performance. All trees vote to determine the
prediction results and an OOB estimate of the error rate is calculated. The RF provides
the mean decrease Gini as an importance measure that calculates the quality of a split for
each node of a tree by means of the Gini index. Each time a node is split on a variable,
the Gini index for both descendent nodes is less than the ancestor node. A higher mean
decrease Gini represents a higher variable importance [20, 161]. In this thesis, the Gini
index was used as importance measure to run a feature section before starting to create a
classification model (see section 3.1).

1.2.2.2. Analysis of expression quantitative trait loci

The study of the genetic source of variation in gene expression is known as expression
quantitative trait locus (eQTL) study. It combines established quantitative trait locus
(QTL) mapping with genome-wide gene expression data (see figure 1.2 for illustration).
These studies take advantage of technical developments such as microarrays, which allow
the parallel measurement of expression levels and genotypes of thousands of genes in large
numbers of samples [32].
The mapping of eQTLs is based on the assumption that gene expression levels can

be incorporated with genotype data in the same way as any other phenotype, such as
age or body weight. Typical data sets for eQTL studies consist of a set of two data
matrices. The first n ⇥ G matrix contains gene expression values for diverse individuals
(n) and the measured transcripts (G; plus several phenotypes). The second n⇥ S matrix
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Figure 1.2.: Genetic association mapping of genome-wide gene expression data. Genome-wide
genotyping (SNP) and gene expression data (treated as quantitative phenotype)
were combined to identify genetic loci that control quantitative variation in gene
expression (eQTLs).

similarly contains all participants (n) and collected information on genomic markers (S)
[33]. Thereby eQTL studies connect variation in DNA sequence level to that at the RNA
level. The significance of these eQTL studies is further enhanced by the possibility to scan
for regulators without the need of prior knowledge of the mechanisms and by simultaneously
investigating many gene expression probes enabling the identification of co-regulation, i.e.
co-expression networks [32]. The understanding of eQTL data can be further increased
by integrating additional biological information e.g. epigenetic or regulatory factors [36].
eQTLs are influenced not only by genetic polymorphisms but also by other biological
e↵ects, such as heritability, and cis and trans e↵ects, which are further characterized in
the following paragraphs.
Application of eQTL studies are deeper understanding of the genetic basis of complex

disorders and identification of gene networks involved in disease pathogenesis.

Heritability of eQTLs
eQTL studies take advantage of variation in gene expression to detect the underlying
genetic cause. A key question is to what extend the phenotypic variation in a trait can be
attributed to genetic factors, i.e. heritability [236]. Heritability, attributable to additive
genetic factors, is defined as narrow-sense heritability. It can be inflated by non-additive
genetic e↵ects, such as epistasis, referring to broad-sense heritability [136]. It is inherently
di�cult to restrict the contribution of non-genetic factors in humans. An inference of
the genetic contribution to polymorphic variation on the level of gene expression can be
assessed by estimating heritability of genes by familial aggregation studies. Evidence for
familial aggregation was observed by comparing variation among unrelated individuals,
among siblings within families and between monozygotic twins [31].
Previous studies [240, 56, 73, 48, 31] have shown that levels of gene expression are highly
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heritable using a variety of cells and tissues. For example, Dixon et al. [48] identified
15,084 eQTL probes (out of 54,675 probes) representing 6,660 genes with narrow-sense
heritabilities > 0.3 in lymphoblastoid cell lines (LCLs). Lately, in the Multiple Tissue
Human Expression Resource (MuTHER) study [76] gene expression across multiple tissues
in 856 twins was analyzed. For expressed genes they reported mean heritability values
of 0.16 (skin), 0.21 (LCLs) and 0.26 (adipose), with higher estimates for significant cis-
eQTLs (> 0.3). Most recently, Wright and colleagues [237] analyzed gene expression of
18,392 genes from peripheral blood in 2,752 twins and reported low heritability estimates.
Interestingly, they detected that a significantly positive association between heritability and
GWAS genes and heritability is strongly associated with expression mean and variance.

Cis- and trans-e↵ects of eQTLs
When interpreting eQTL data one must consider that identified loci can influence the gene
expression levels either in cis (local; see figure 1.3) or in trans (distal; see figure 1.4). To
distinguish both e↵ects a search radius (✏) has to be selected and for each expression probe
p a cis -window is termed by Eq. 1.8.

N

p

= N

p,✏

= (a
p

� ✏, b

p

+ ✏) (1.8)

,where a

p

refers to the coordinated of the 5’ end and b

p

to the 3’ end of the expression
probe p. |N

p

| denotes the number of SNPs in the defined search space. In this thesis ✏ was
set to 1Mb to define cis-eQTLs (see section 2.5.2). Cis-acting eQTLs include SNPs in the
vicinity of the regulated transcripts. To date, eQTL studies have found more cis than trans
e↵ects. This is probably due to the diverse thresholds used for statistical significance and
sample sizes [32]. Cis- associations have larger e↵ects, are more stable across statistical
methodologies and are more common [41], resulting in an easier detectability than trans
associations. Several studies have indicated that > 90% of the cis-eQTLs in humans are
located 100kilo base pairs (kb) upstream and downstream of the transcript [48]. The
cis-eQTLs cluster symmetrically around the transcription start or end sites and reflect
polymorphisms located directly upstream of the transcript [211].

When the genomic distance between gene expression probe and genetic variant is large
(usually greater than 1Mb), the eQTLs are defined as trans [211]. Because trans-acting
variants can be anywhere in the genome relative to the target gene and stringent statistical
correction for multiple testing has to be applied, it is more di�cult to detect these e↵ects.
Furthermore, their e↵ects are usually weaker than cis e↵ects. This is possibly due to
the combined influence on a gene by multiple trans-acting regulators, whereas usually
one or only very few cis-acting regulators [32] have su�cient influence. However, trans
associations are of interest since they are mainly mediated through transcription factors
and can possibly reveal master regulators (hubs) of transcription [41, 36].

Of note, the declaration as cis or trans-regulator only implies the distance of the genetic
signal to the target gene [32] but carries no functional significance.
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Figure 1.3.: E↵ect of cis-acting variants on expression levels of genes. Cis- acting variants are
found to be in the vicinity to the target genes. Di↵erent allelic forms of the genetic
variant show di↵erent influences on gene expression. Here, individuals with the
A-allele have higher expression levels of the target gene than individuals with the
G-allele.

Tissue specificity of eQTLs
One of the first questions in designing an eQTL study regards the type of cells to utilize in
the study [32]. Ideally, RNA for eQTL analysis should be obtained from a wide range of
tissues, to downstream analyze disease-associated SNPs in the disease-relevant tissue/s. For
many diseases, it is very di�cult to obtain disease-relevant tissue from living humans, this
is especially true for brain tissue needed in psychiatric research. However, the Genotype-
Tissue Expression (GTEx) project achieved to collect gene expression data in over 60
tissues across approximately 1,400 individuals [77].
Studies in humans are primarily investigated in blood and subcutaneous adipose tissues

[56], cells from liver samples [186], lymphocytes [73] and cells from tissue from brain banks
[157]. These studies indicated that eQTLs are common [77]. Several studies have reported
tissue specific e↵ects of eQTLs [76, 244]. The simplest approach to determine eQTLs in dif-
ferent tissues is by mapping eQTLs separately for each tissue and subsequently examining
the overlap (tissue-by-tissue analysis) [63]. Another approach is the joint-analysis on all
tissues, while simultaneously allowing for di↵erences among eQTLs present in each tissue.
This method maximizes the power to detect eQTLs that are actually shared among tissues.
It is superior to the tissue-by tissue analysis, which, due to incomplete power, leads to high
numbers of falsely interpreted tissue-specific eQTLs. For example, Flutre and colleagues
[63] re-analyzed cis-eQTLs in samples of LCLs, T-cells and fibroblasts from Dimas and
colleagues [47] by applying both, the joint and tissue-by tissue approach. They showed an
increased power to identify eQTLs with the joint-analysis, and discovered additional 63%
genes with eQTLs. Moreover, they concluded only 8% of the eQTLs to be tissue-specific
and 88% to be common between all three tissues. Originally, using the tissue-by-tissue
approach 69-80% of the eQTL were thought to operate in tissue-specific manner. Another
approach to investigate eQTLs shared among di↵erent tissues is to study cross-heritability
of gene expression. The method is based on polygenic models and attempts to estimate
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Figure 1.4.: E↵ect of trans-acting variants on gene expression levels of genes. Trans-acting
variants are distally located from the target gene, often on other chromosomes.
Di↵erent allelic forms of the genetic variant exhibit di↵erent influences on gene
expression. Here, individuals with the A-allele have a higher expression level of the
target gene than those with the T-allele.

the combined influence of all shared eQTLs [63].
An attractive choice of tissue in psychiatric studies is blood since it is the most accessible

tissue [32] in the clinic. Many studies show the utility of blood as a surrogate for brain tis-
sue. This has been supported mainly through indirect investigations of expression profiles
in relation to specific neurological and psychiatric disorders [26]. However, the question
remains, are the resulting eQTLs meaningful? In this thesis, we show that it is indeed
possible to di↵erentiate between MDD cases and controls utilizing GR-stimulated gene ex-
pression patterns obtained from peripheral blood samples (see section 3.1). Furthermore,
we compared gene expression profiles of human GR-response eQTL genes from peripheral
blood cells to mice assays from blood and brain tissue. Over 65% of the transcripts identi-
fied as candidate genes in our human blood data were also regulated following GR agonist
stimulation in mice (see section 3.2.6). Furthermore, a study by Jasinska and colleagues
[99] determined gene expression profiles across eight brain regions (cerebellar vermis, pul-
vinar, head of caudate, hippocampus, occipital pole, orbitofrontal cortex, frontal pole,
dorsolateral PFC) and peripheral blood in male monkeys. The primary focus of the study
was to identify the correlation of brain and peripheral blood transcriptional profiles. Can-
didate transcripts were selected for mapping brain eQTLs in peripheral blood. The gene
expression of 33% of the transcripts expressed in both brain and blood was found to be
highly correlated. Furthermore, Sullivan et al. [212] report correlations of gene expression
patterns available in whole blood and multiple brain tissues of around 50%.
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Confounding factors of eQTL studies
Confounding factors a↵ect the relationship between an independent and depend variable,
thus evoking false correlations leading to incorrect results. Several eQTL studies have
shown that confounding variables reduce the power to detect eQTLs [206]. Some con-
founders are known and others are unknown. Well known confounders include population
di↵erences, sample size and technical source of variation referred to as batch e↵ects. Batch
e↵ects are systemic variation between groups of samples (batches) induced by experimental
features that are not of biological interest [181], i.e. chip type, protocols (sample prepa-
ration, amplification, hybridization and labeling), platform, laboratory, sta↵ (technician),
storage (time and place), etc. [206, 130, 181]. They can be minimized or even avoided by
a thoroughly planed experimental design, considering e.g. randomizing possibly present
groups. This means, in cases-control studies, one should always avoid to process all cases
on one day and all of the controls on another day. It will be impossible to distinguish the
introduced batch e↵ect from any real biological e↵ects [118]. But many types of batches
are unavoidable. For example, larger studies with huge sample sizes and have to be carried
out over many month or even years [117]. A di↵erent issue are the unknown or hidden
factors, which cannot directly be removed as they are not measured [206]. Normalization
methods for gene expression microarrays have been widely used to adjust for such exper-
imental artifacts between samples [130]. The methods remove systemic e↵ects within or
between microarrays (chips). However, they are not directly designed to remove batch
e↵ects. Therefore, batch e↵ects may often remain after normalization. Consequently, mul-
tiple methods have been developed to remove batch e↵ects, including PCA [181], empirical
Bayes approach- called ComBat [102] and surrogate variable analysis [119].

Multiple-testing problem in eQTL studies
The multiple testing problem
Multiple-testing refers to any instance that tries to test a set of hypotheses at the same
time. Take the case of n = 100 hypotheses to be tested simultaneously, using some level
of significance ↵. For ↵ = 0.05, one expects five true hypotheses to be rejected. Further, if
all tests are independent, the probability that at least one of the significant results is due
to chance is given by 1� (1� ↵)n = 1� 0.95100 = 0.994 (family-wise error rate (FWER)).
Thus, with 100 tests being considered, one has a 99,4% chance of observing at least one
significant result, even if all of the test are actually not significant. In microarray studies
the number if simultaneous tests is quite large, and if one does not take the multiplicity
of tests into account, the probability that some of the true null hypotheses are rejected by
chance alone is very high [184].

The Bonferroni correction
A very conservative method to corrected for multiple-testing is the Bonferroni correction,
which reduces the number of FP and at the same time it also reduces the number of true
discoveries. It sets the significance cut-o↵ at ↵/n. For example, with n = 100 tests and
↵ = 0.05, the null hypothesis will only be rejected if the P value is less than 0.0005 [184].
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called significant called not significant total

null true F m0 � F m0

alternative true T m1 � T m1

total S m� S m

Table 1.4.: Hypotheses definition. The table is based on [210].

Benjamini and Hochberg’s false-discovery rate control
A less conservative method is the false discovery rate (FDR) correction introduced by
Benjamini and Hochberg [9]. The FDR method has been widely used to detect di↵erential
gene expression in microarray experiments [210]. It considers the probability of one or
more false positives (FP) discoveries among multiple tests and estimates the proportion
of FP in the result [185]. Thus, FDR is a sensitive measure of the balance between the
number of TP and FP [210].
Suppose we have m P values with various outcomes that can occur when a significance

threshold is applied to them. Table 1.4 summarize these outcomes. F is the number of
FP, T is the number of TP and S is the total number of features called significant. m0 is
the number of features that are true and m1 = m�m0 is the number of truly alternative
features. The FDR is can be expressed as in Eq. 1.9, E[⇤] being the overall error measure
in terms of an expected value [210].

FDR = E


F

F + T

�
= E


F

S

�
(1.9)

,where FDR is defined to be 0 when S = 0 [210]. The FDR adjusted p-values are called
q-values.

Resampling-based methods
Resampling-based multiple-testing corrections are the most commonly used methods to
adjust the significance of di↵erential gene expression between classes. Some common
resampling-based methods include bootstrapping or permutation tests. These methods
create a pseudo-data set, where the phenotype values are randomly sampled and reas-
signed to individuals with (e.g. bootstrap) or without (e.g. permutation) replacement. A
statistical test is applied to the pseudo-data set [227]. Westfall and Young [233] suggested
to compare the observed minimum P value for given pseudo-data set (pseudo-p-value) with
the actual P value and record (R) the number of times the pseudo P value is equal or less
than the actual one. This procedure is repeated several thousand times (R counters) and
the proportion of resampled data sets with a minimum pseudo P value less or equal to an
actual P value is the adjusted P value.
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Multiple-testing correction for eQTLs
For eQTL studies a huge number of statistical tests will be examined. A typical study
includes 500,000 genotyped or up to 8 million imputed SNPs and approximately 15,000
gene expression probes, resulting in (500, 000 � 8, 000, 000) ⇥ 15, 000 = 7.5 ⇥ 109 � 1.2 ⇥
1011 tests. In this case a large number of false positive results is expected. To increase
the amount of meaningful information obtained from eQTL studies, appropriate multiple-
testing correction is crucial [243].
As eQTL data contains two kinds of data, genotyping as well as gene expression data,

a two stage design is common. Multiple testing correction on both (i) SNP level and (ii)
gene expression probe levels is performed. An according approach was used in this thesis
(see section 2.5.2). Briefly, (i) one of the most commonly used method for multiple-testing
correction across multiple genetic marker for each phenotype include the resampling-based
procedure using permutation or bootstrap (here: permutation). The null distribution is
simulated with permuted phenotype values. In detail, the phenotype values are randomly
shu✏ed and reassigned to individuals without replacement. To find the maximal test
statistic for each phenotype among SNPs a genome-wide scan is performed. The adjusted
P value is the proportion of permutated phenotypes with a maximal test statistics greater
than the actual test statistic of the original data [243]. The resampling-based test preserves
the correlation structure of the SNPs (LD) and does not require any assumption of distri-
bution for the test statistic [243]. In this thesis the permutation-based p-values for each
phenotype were further adjusted by a Westfall-Young correction regarding the number of
SNPs per probe. (ii) A second level of multiple-testing problem in eQTL studies are the
multiple tests across gene expression traits. Therefore, the prior estimated adjusted empir-
ical p-values (of the most significant association- independence) for each expression probe
was used to determine a threshold for the adjusted P values across all gene expression
probes by controlling for the FDR [243].
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2 Material and Methods

2. Material and Methods

2.1. Samples and study design

2.1.1. MPIP cohort

The subject pool for the eQTL analysis consisted of 164 male Caucasian individuals (90%
of German origin) recruited within the MARS project [97]: 93 healthy probands (age
= 40.2± 12.4 years; body mass index (BMI) = 24.9± 3.1 kg/m

2) and 71 in-patients with
depressive disorders (age = 48.5±13.5 years; HAM-D = 25.3±8.0; BMI = 26.1±3.6 kg/m2)
treated at the hospital of the Max Planck Institute of Psychiatry in Munich, Germany
(MPIP cohort). Only individuals not reporting a history of current psychiatric disorders
as well as major neurological and general medical disorders were included in the control
sample. Recruitment strategies and further characterization of the MPIP cohort have
been described previously [148, 88]. Of these participants, 4 were excluded due genotyping
problems. Baseline whole blood samples (for plasma and RNA) were obtained at 6pm
after 2 hours of fasting and abstention from co↵ee and physical activity and immediately
followed by oral administration of 1.5 mg dexamethasone. A second blood draw was
performed three hours later at 9pm (see figure 3.3a). Cortisol and ACTH serum levels were
determined using previously described radioimmunoassays [148]. Plasma dexamethasone
concentrations were assessed in serum samples drawn at 9pm using Liquid chromatography-
tandem mass spectrometry on API4000 (AB Sciex). The study was approved by the local
ethics committee and all individuals gave written informed consent.
A subsample of 60 participants (29 patients with depressive disorders and 31 healthy

probands; see table 2.1 for full description of diagnoses) out the 164 participants from
the eQTL analysis were used to study di↵erential gene expression between patients and
controls. This subsample was further randomly subdivided into two samples, which were
used as training and test set for classification.

2.1.2. MARS cohort

This sample included 1,005 unipolar depressed patients (561 female, 444 males; age =
48.15 ± 14.13 years; HAM-D = 25.68 ± 6.5), as well as 478 controls (298 females, 180
males; age = 47.83± 13.7 years), recruited for the MARS project at the MPIP in Munich,
Germany. All included patients were of European descent. Recruitment strategies and
further characterization including population stratification of the MARS cohort have been
described previously [148, 88]. All individuals used within the eQTL study (MPIP cohort)
were not part of this sample.
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Sample 1 (training set) Sample 2 (test set)

Cases Controls Cases Controls
n = 18 n = 18 n = 11 n = 13 P value

Mean Age 44.2± 14.3 43.2± 10.8 50.8± 15 37.7± 10.2 0.075
Mean BMI 24.5± 3.0 25.3± 3.5 26.1± 2.5 24.7± 4.5 0.612
Mean age of onset 33.3± 13.3 30.1± 13.2 0.548
Mean HAM-D 25.8± 7.9 23.9± 9.8 0.573
Bipolar disorder 5 (28%) 2 (18%) 0.649
Prev. episodes 2.7 (3.7) 4.6 (9.6) 0.486
Recurrent depression 13 (72%) 6 (55%) 0.331
Prev. suicide attempts 3 (17%) 4 (36%) 0.172
Family history 9 (50%) 7 (64%) 0.306
Response 5 weeks 9 (50%) 5 (45%) 0.306
Remission 5 weeks 7 (38%) 5 (45%) 0.125
Medication⇤

TCA 4 (22%) 1 (9%) 0.418
SSRI 2 (11%) 4 (36%) 0.074
SNRI 7 (39%) 6 (55%) 0.283
NaSSA 6 (33%) 2 (18%) 0.454
SSRE 1 (6%) 0 0.448
Antipsychotics 6 (33%) 3 (27%) 0.856
Mood stabilizer 5 (28%) 2 (18%) 0.649
Lithium 2 (11%) 1 (9%) 0.927
Benzodiazepine 8 (44%) 8 (73%) 0.069

Table 2.1.: Sociodemographic and clinical characteristics of MPIP cohort subsample subdivided
into training (sample 1) and test set (sample 2). ⇤at RNA withdraw

2.1.3. DNS cohort1

The DNS samples were ascertained at the Duke University in Durham, NC, USA and all
participants provided informed written consent prior to participation in accord with the
guidelines of the Duke University Medical Center Institutional Review Board. All partici-
pants were in good general health and free of DNS exclusion criteria: (1) medical diagnosis
of cancer, stroke, diabetes requiring insulin treatment, chronic kidney or liver disease or
lifetime psychotic symptoms; (2) use of psychotropic, glucocorticoid or hypolipidemic med-
ication, and (3) conditions a↵ecting cerebral blood flow and metabolism (e.g., hyperten-
sion). Current DSM-IV Axis I and select Axis II disorders (Antisocial Personality Disorder
and Borderline Personality Disorder) were assessed with the electronic Mini International
Neuropsychiatric Interview [196] and Structured Clinical Interview for the DSM-IV Axis
II (SCID-II) [61], respectively. These disorders are not exclusionary as the DNS seeks to

1Parts of the DNS methods have been published previously by our collaborators [175, 16]
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2.1 Samples and study design

establish broad variability in multiple behavioral phenotypes related to psychopathology.
On January 6th, 2014, 726 participants had overlapping fMRI and genetic data that was

fully processed and used for these analyses. Of these participants, 79 were excluded due to
scanner-related artifacts in fMRI data (n = 6), incidental structural brain abnormalities
(n = 2), a large number of movement outliers in fMRI data (n = 21; see Artifact detection
tool (ART) description below), inadequate signal in our amygdala regions of interest (n =
14; see coverage description below), poor behavioral performance (n = 20; accuracy lower
than 75%), outlier status according to ancestrally-informative principal components (n =
5), scanner malfunctions (n = 2), incomplete fMRI data collection (n = 1), and failed
genotyping at one genetic risk profile score (GRPS) polymorphisms (without a proxy of
r

2
> 0.90; n = 8). Thus, all imaging genetics analyses were conducted in a final European-

Americans (EUR-AM) subsample of 306 participants (age = 19.72±1.23 years; 148 males;
63 with DSM-IV Axis I disorder) and a full sample of 647 participants (age = 19.65± 1.24
years; 285 males; 117 with DSM-IV Axis I disorder; 306 European Americans, 72 African
Americans, 170 Asians, 37 Latino/as, and 62 of Other/Multiple racial origins according to
self-reported ethnicity; for a full description of diagnoses present in the sample see table
2.2).

EUR-AM Full sample

n = 306 n = 647

Alcohol Abuse 22 41
Alcohol Dependence 19 31
Major Depressive Disorder 8 17
Marijuana Abuse 7 15
Gernalized Anxiety Disorder 7 11
Social Anxiety Disorder 3 8
Agoraphobia w/o Panic Disorder 6 8
Bipolar Disorder NOS 6 8
Marijuana Dependence 5 7
Bipolar II 3 6
OCD 4 6
Bulimia Nervosa 2 5
Panic Disorder 1 4
Dysthymia 0 1
PTSD 0 1
Anorexia Nervosa 0 1
Bipolar I 1 1
TOTAL 94 171

Table 2.2.: This table represents the number of diagnoses across DNS participants for the
European-Americans (EUR-AM) and entire sample. Some individuals presented
with comorbid status.
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2.1.4. Mouse models

The animal experiments were carried out in the animal facilities of the MPIP in Munich,
Germany. Male C57BL/6N mice at an age of 12 weeks (mean bodyweight 26.8 ± 0.1
g) were used for the dexamethasone-stimulation test (DEX-mouse). The experiment was
performed twice with two separate batches of mice (n = 22 per batch). All mice were
kept under 12h light/dark cycle and held under standard conditions. Food and tap water
were available ad libitum. All e↵orts were made to minimize animal su↵ering during the
experiment. The committee for the Care and Use of Laboratory animals of the Government
of Upper Bavaria, Germany approved the protocols. Animals were injected i.p. with either
vehicle (n = 11) or 10 mg/kg dexamethasone (n = 11) between 9am and 11am. Animals
were sacrificed 4 hours post injection, blood was collected and the brains were carefully
removed. The PFC (batch 1), HC (batch 1) and AM (batch 2) were dissected immediately
according to standard protocols [202]. Briefly, Amygdala preparation: brains were cut into
ca. 1 mm thick slices using a custom-mounting device. Amygdala (all subnuclei [167])
was manually dissected with a scalpel under visual control using a binocular microscope;
HC and PFC preparation: brain regions were manually dissected from the whole brain
by trained personnel. Dissected tissues were directly transferred into RNA lysis solution
(Applied Biosystems, USA) and frozen at �80 �C. In addition, 300 µl of trunk blood (batch
1) was collected into microcentrifuge tubes containing PaxGene RNA stabilizer solution
and frozen at �20 �C.

The chronic social stress mice sample includes 12 male CD1 mice (6 susceptible and 6
resilient mice). The chronic social stress procedure and mice sample have been described
previously [110, 190, 189]. Brain slices of the hippocampal region were cut at 20 µm and
thaw-mounted on membrane-coated slides (Carl Zeiss MicroImaging). Laser dissection of
CA1 and dentate gyrus (DG) material was performed using a laser-capture microscope (for
more details see Schmidt et al. [190]).

2.2. Gene expression data

2.2.1. MPIP cohort

Human whole blood of the MPIP cohort was collected using PAXgene Blood RNA Tubes
(PreAnalytiX), processed as described previously [148] and hybridized to Illumina HumanHT-
12 v3.0 Expression BeadChips. Samples had a mean RNA integrity number (RIN) of
7.97 ± 0.42 standard deviation (SD). The Illumina Bead Array Reader was used to scan
the microarrays and summarized raw probe intensities were exported using Illumina’s
GenomeStudio v2011.1 Gene Expression module. Further processing was carried out using
R version 2.14.02.

2http://www.r-project.org/

30

http://www.r-project.org/


2.2 Gene expression data

2.2.1.1. eQTL analysis

All 48,750 probes present on the microarray were first filtered by an Illumina detection
P value of 0.01 in at least 10% of the samples, leaving 14,168 expressed probes for fur-
ther analysis. Second, each transcript was transformed and normalized through variance
stabilization and normalization (VSN) [125]. Third, technical batches were adjusted us-
ing ComBat [102] with fixed e↵ects of amplification round. To further reduce batch e↵ects
baseline (6pm)and dexamethasone stimulated (9pm) RNA samples for each individual were
processed within a single run. Finally for each probe, we constructed a linear model of the
log fold change in gene expression between 6pm and 9pm standardized to 6pm controlling
for age, disease status and BMI. Models were implemented in R using the ”lm” func-
tion. The residuals (=GR-response residuals) from this regression were used as phenotype
values in the following analyses. Including dexamethasone serum levels 3 hours following
administration or the RIN factor, as additional covariates did not change the results. To
control if significant eQTLs might be biased due to SNPs within the probes, the Illumina
re-annotation pipeline [7] (ReMOAT version August 2009) was used to annotate SNPs
(relying on UCSC dbSNP 126 table) that were located within the gene expression probe
sequence. No bias of eQTL misclassifications due to such sequence polymorphisms in the
probe region could be identified. For the GR-response eQTL analysis only transcripts that
showed a di↵erence in gene expression between the samplings at 6pm and 9pm with an
absolute fold change � 1.3 in at least 20% of all samples were categorized as robustly
e↵ected by dexamethasone stimulation (n = 4, 630 transcripts) and further used in the
analysis. The probe gene names were updated using the NCBI build 36 (hg18) Reference
Sequence (RefSeq) [178] gene annotation table obtained from the UCSC table browser3.
The positions of the probes were annotated using ReMOAT and only autosomal probes
were used for the GR-response eQTL analysis (n = 4, 447 autosomal probes).

2.2.1.2. Di↵erential gene expression analysis

A subset (n = 60 individuals, i.e 120 RNA samples) from the raw microarray data of the
entire MPIP cohort was extracted and first filtered by a Illumina detection P value of
0.01 in at least five individuals and secondly, transformed and normalized through VSN
[125]. From a total of 48,750 transcripts 15,573 remained in the analysis having significant
expression according to these criteria.

2.2.2. Mouse models

DEX-mouse RNA was extracted from whole blood using the PAXgene blood miRNA kit
(PreAnalytiX) according to Krawiec et al. [111] and mouse brain regions using RNeasy Plus
Universal Mini Kit (Qiagen) with standardized protocols. RNA was quality checked on the
Agilent 2100 Bioanalyser, amplified using the Illumina Total Prep 96-Amplification kit (Life
Technology) and then hybridized on Illumina MouseRef-8 v2.0 BeadChips. For each tissue

3http://hgdownload.soe.ucsc.edu/goldenPath/hg18/database/refGene.txt.gz
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2 Material and Methods

the samples were processed together (RNA amplification, hybridization and scanning). All
samples had a mean RIN of 7.5±0.2 SD for blood cells and a mean RIN of 9.2±0.4 SD for
brain tissues. All 25,697 probes present on the microarray were first filtered by an Illumina
detection P value of 0.05 in at least 15% of the samples, leaving for blood 10,667, HC
16,838, PFC 16,576 and AM 14,890 expressed array probes for further analysis. Secondly,
each transcript was transformed, normalized and batch corrected, in the same fashion as
for the human gene expression data. An additional analysis was performed taking HC and
PFC samples together. Therefore the quality control was repeated on the joint data set,
leaving 16,536 expressed array probes. For di↵erential gene expression analysis between
the vehicle and dexamethasone treated animals linear regression models implemented in
R were used on the normalized, transformed and batch corrected expression values for
each tissue. For the combined analysis of PFC and HC repeated measures ANOVA was
performed.

Full details of the RNA quality checks as well hybridization procedures from the chronic
social stress sample have been previously described in [190], including details for the mi-
croarray gene expression analysis.

2.3. Genotype data

2.3.1. MPIP cohort

Human DNA of the MPIP cohort samples was isolated from EDTA blood samples using
the Gentra Puregene Blood Kit (Qiagen) with standardized protocols. Genome-wide SNP
genotyping was performed using Illumina Human610-Quad and Illumina Human660W-
Quad Genotyping BeadChips according to the manufacturer’s standard protocols. 582,539
genetic markers in 163 individuals could be successfully genotyped. Individuals with low
genotyping rate (< 98%) and SNPs showing significant deviation from HWE (P value
< 1 ⇥ 10�5) were excluded. Similarly, low MAF (< 10%) and SNPs with high rates
of missing data (> 2%) were excluded, resulting in 436,643 SNPs and 160 individuals
for further analysis. In the 160 samples that passed the quality control imputation of
additional variants was performed using IMPUTE v2 [94] on the basis of HapMap Utah
Residents (CEPH) with Northern and Western European ancestry (CEU) Phase 3 [95]
and 1,000 Genomes Project version June 2010 (hg18) CEU data for ⇠ 8 million SNPs
[54]. Imputed SNPs were excluded if their posterior probability averages were less than
90% for the most likely imputed genotype. SNPs were also excluded if their call rate was
less than 98%, HWE P value was less than 1 ⇥ 10�5 and MAF < 10%. This yielded a
total of 2,011,895 SNPs. To annotate SNPs for the closest gene, we used Annovar version
November 2011 [230] with the RefSeq gene annotation [178]. SNP coordinates are given
according to hg18.
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2.3 Genotype data

2.3.2. MARS cohort

Human DNA of the MARS cohort samples was extracted from EDTA blood samples us-
ing the Gentra Puregene Blood Kit (Qiagen) with standardized protocols. Whole-genome
SNP genotyping for the MARS cohort was performed on Illumina Sentix Human-1, Hu-
manHap300, Illumina Human610-Quad and HumanOmniExpress Genotyping BeadChips
according to the manufacturer’s standard protocols. Individuals as well as the genotype
data have been subjected to the same quality control steps as the MPIP cohort (genotyping
rate < 98%,MAF < 10%, HWE P value < 1 ⇥ 10�5, SNP missingness < 98%). Missing
genotype data were imputed via IMPUTE v2 [94] based the 1,000 Genomes Project version
Nov. 2010 (hg19) ALL reference panel [54]. The GR/MDD eSNP profile was derived from
loci associated with both GR-induced di↵erences in gene expression and MDD, and in-
cluded alleles from 20 of the 23 tagging eSNPs (3 SNPs diverged from HWE in the MARS
sample, see table 3.4). Non-risk and risk alleles (according to association with depression
in the PGC dataset) were coded 0 and 1, respectively, and summed in an additive fashion
to create cumulative genetic risk profile scores (GRPS; 0,1,2). The MARS GRPSs ranged
from 12-30. This genetic profile is highly correlated with a profile weighted based on the
strength of association in the PGC dataset (R = 0.99); hence we report only the additive
profile here for simplicity.

2.3.3. DNS cohort

Human DNA from participants of the DNS cohort was isolated from saliva derived from Or-
agene DNA self-collection kits (DNA Genotek) customized for 23andMe4. DNA extraction
and genotyping were performed by the National Genetics Institute (NGI), a CLIA-certified
clinical laboratory and subsidiary of Laboratory Corporation of America. The Illumina Hu-
manOmniExpress BeadChips and a custom array containing an additional⇠ 300, 000 SNPs
were used to provide genome-wide data. Due to di↵erences in genotyping array content
the DNS GRPSs included alleles from 19 of the 23 eSNPs (see table 3.4) and were coded
in the same way as the MARS GRPSs. All SNPs used for the GRPSs had genotyping
rates < 97%, MAF < 10%, HWE P value < 1⇥ 10�5 (see table 3.4). DNS GRPSs ranged
from 10-28 and were normally distributed (see figure 3.10). To account for di↵erences in
ancestral background in the full sample, we used EIGENSTRAT (v, 5.0.1) [176] to gener-
ate principal components and included the first 5 components as covariates in the analysis.
Five participants were outliers on these components (±6 SD from the mean on one of the
top ten components) and were hence excluded from analyses.

4www.23andme.com
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2.4. DNS neuroimaging protocol5

2.4.1. BOLD fMRI paradigm

A widely used and reliable challenge paradigm was employed to elicit amygdala reactivity.
The paradigm consists of 4 task block requiring face-matching interleaved with 5 control
blocks requiring shape-matching (see figure 2.1). In each face-matching trial within a
block, participants view a trio of faces derived from a standard set of facial a↵ect pictures
(expressing angry, fearful, surprised, or neutral emotions), and select which of 2 faces
presented on the bottom row of the display matches the target stimulus presented on the
top row. Each emotion-specific block (e.g., fearful facial expressions only) consists of 6
individual trials, balanced for gender of the face. Block order is pseudo-randomized across
participants. Each of the 6 face trios is presented for 4 seconds with a variable inter-
stimulus interval of 2-6 seconds; total block length is 48 seconds. In the shape-matching
control blocks, participants view a trio of geometric shapes (i.e., circles, horizontal and
vertical ellipses) and select which of 2 shapes displayed on the bottom matches the target
shape presented on top. Each control block consists of 6 di↵erent shape trios presented
for 4 seconds with a fixed inter-stimulus interval of 2 seconds, comprising a total block
length of 36 seconds. The total paradigm is 390 seconds in duration. Reaction times and
accuracy are recorded through an MR-compatible button box.

 
Figure 2.1.: DNS fMRI task. Participants completed four expression-specific (Neutral, An-

gry, Fear, Surprise) face-matching task blocks interleaved with five sensorimotor
shape-matching control blocks. Order for task blocks was counterbalanced across
participants.

5Parts of the DNS neuroimaging protocol have been published previously by our collaborators [175, 16]
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2.4 DNS neuroimaging protocol

2.4.2. BOLD fMRI acquisition

Participants were scanned using a research-dedicated GE MR750 3T scanner equipped
with high-power high-duty-cycle 50-mT/m gradients at 200 T/m/s slew rate, and an eight-
channel head coil for parallel imaging at high bandwidth up to 1MHz at the Duke-UNC
Brain Imaging and Analysis Center. A semi-automated high-order shimming program was
used to ensure global field homogeneity. A series of 34 interleaved axial functional slices
aligned with the anterior commissure-posterior commissure (AC-PC) plane were acquired
for full-brain coverage using an inverse-spiral pulse sequence to reduce susceptibility ar-
tifact (TR/TE/flip angle = 2000 ms / 30 ms / 60; FOV = 240 mm; 3.75 ⇥ 3.75 ⇥ 4
mm voxels (selected to provide whole brain coverage while maintaining adequate signal-
to-noise and optimizing acquisition times); interslice skip = 0). Four initial RF excitations
were performed (and discarded) to achieve steady-state equilibrium. To allow for spatial
registration of each participant’s data to a standard coordinate system, high-resolution
three-dimensional structural images were acquired in 34 axial slices co-planar with the
functional scans (TR/TE/flip angle = 7.7 s / 3.0 ms / 12; voxel size = 0.9⇥ 0.9⇥ 4 mm;
FOV = 240 mm; interslice skip = 0).

2.4.3. BOLD fMRI data analysis

The general linear model of Statistical Parametric Mapping 8 (SPM8)6 was used for whole-
brain image analysis. Individual subject data were first realigned to the first volume
in the time series to correct for head motion before being spatially normalized into the
standard stereotactic space of the Montreal Neurological Institute (MNI) template using
a 12-parameter a�ne model. Next, data were smoothed to minimize noise and residual
di↵erences in individual anatomy with a 6mm FWHM Gaussian filter. Voxel-wise signal
intensities were ratio normalized to the whole-brain global mean. Then the ART7 was used
to generate regressors accounting for images due to large motion (i.e., > 0.6 mm relative
to the previous time frame) or spikes (i.e., global mean intensity 2.5 standard deviations
from the entire time series). Participants for whom more than 5% of acquisition volumes
were flagged by ART (n = 21) were removed from analyses. An region of interest (ROI)
mask (Automated Anatomical Labeling (AAL) atlas) from WFU pickatlas [134] was used
to ensure adequate amygdala coverage for the face-matching and number-guessing tasks,
respectively. Participants who had less than 90% coverage of the amygdala (n = 14) were
excluded from analyses.
Following preprocessing steps outlined above, linear contrasts employing canonical hemo-

dynamic response functions were used to estimate task-specific (i.e., ”Angry & Fearful Faces
> Neutral Faces”, ”Angry & Fearful > Shapes”, ”Neutral > Shapes”) BOLD responses for
each individual. The primary contrast of ”Angry & Fearful > Neutral” was used to assay
centromedial reactivity to cues that are conditioned social signals to threat in the envi-

6http://www.fil.ion.ucl.ac.uk/spm
7https://www.nitrc.org/docman/view.php/104/390/Artifact%20Detection%20Toolbo/

%20Manual
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ronment (i.e., angry and fearful expressions) relative to signals that do not convey threat
information about the environment (i.e., neutral expressions). Post-hoc analyses using
the ”Angry & Fearful > Shapes” and ”Neutral > Shapes” contrasts were used to discern
if the association with GRPS reflected relatively decreased reactivity to angry and fear-
ful expressions or increased reactivity to neutral expressions. Individual contrast images
(i.e., weighted sum of the beta images) were used in second-level random e↵ects models
accounting for scan-to-scan and participant-to-participant variability to determine mean
contrast-specific responses using one-sample t-tests. A voxel-level statistical threshold of P
value < 0.05, family wise error corrected for multiple comparisons across the bilateral cen-
tromedial amygdala ROIs, and a cluster-level extent threshold of 10 contiguous voxels was
applied to these analyses. The bilateral centromedial amygdala ROIs were defined using
anatomical probability maps [4]. The centromedial ROI was chosen because it includes the
central nucleus of the amygdala (CeA), which specifically functions to drive physiologic,
attentive, and neuromodulatory responses to threat, as opposed to the basolateral complex
of the amygdala (BLA), which primarily functions to relay information to the CeA; thus
the expression of stress responsive behavior is more closely linked with the activity of the
CeA and not the BLA [40, 116]. Human research using such distinctions has shown that
ROIs encompassing the CeA or BLA di↵erentially respond to stimuli and share di↵erent
patterns of functional as well as structural connectivity [23, 59, 120].
BOLD parameter estimates from a cluster within the left centromedial amygdala ROI

exhibiting a main e↵ect for the ”Angry & Fearful > Neutral” contrast were extracted using
the VOI tool in SPM8 and exported for regression analyses in SPSS (v.18). No significant
cluster emerged in the right centromedial amygdala. Extracting parameter estimates from
clusters activated by our fMRI paradigm, rather than those specifically correlated with
our independent variables of interest, precludes the possibility of any correlation coe�cient
inflation that may result when an explanatory covariate is used to select a region of interest.
Our collaborators have successfully used this strategy in prior studies [16].

2.5. Statistical Analysis

2.5.1. Di↵erential gene expression analysis

For di↵erential expression analysis linear regression models implemented in R were used on
the normalized log2-transformed expression values from a subset of MPIP cohort (n = 60
individuals) at baseline, after GR-stimulation as well as their di↵erence comparing cases
and controls
Classifications were performed with the RF classification technique [124]. The sample

was randomly subsetted into training (sample 1: 18 cases and 18 controls; see section 2.1
and table 2.1) and test set (sample 2: 11 cases and 13 controls; see section 2.1 and table
2.1). The RF provides the mean decrease Gini as an importance measure that calculates
the quality of a split for each node of a tree by means of the Gini index. Each time a node
is split on a variable, the Gini index for both descendent nodes is less than the ancestor
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node. A higher mean decrease Gini represents a higher variable importance [20].

2.5.2. eQTL analysis

The eQTL analysis (MPIP cohort, n = 164) was restricted to those SNP-probe pairs that
map within a region of 1Mb upstream or downstream of the gene expression probe, in order
to detect cis-eQTLs. To measure the transcriptional response we used the log fold change
in gene expression changes between 6pm (baseline) and 9pm (GR-stimulation) standard-
ized to 6pm.

PLINK v1.07 [179] was used to test for cis-association between all imputed SNPs and
transcriptional response. As eQTL data were composed of two kinds of data: genotyping
and expression data, we used a two stage of multiple testing correction: (i) SNP level
correction: for each cis-region (array probe) we preformed a permutation test. The sample
identifiers in the gene expression data were shu✏ed in order to preserve the structure in
the genotype data (LD). A total of 500,000 permutations were carried out per probe, i.e.
maxT procedure of Westfall-Young [233]. (ii) Probe level correction: Cis-regions with an
extensive LD structure will increase the number of false positive eQTLs [234]. Therefore
we applied the Benjamini-Hochberg method to correct the maxT adjusted P value signif-
icance by using only the most significant and independent SNPs per probe (tag SNPs).
The number of tag eSNPs per cis-region was identified by LD pruning and ”clumping”
the SNPs using the ”clump” command in PLINK (using distance < 1 Mb and r

2  0.2
as setting). Each tag SNP forms a SNP bin, by aggregating all other SNPs into bins by
tag SNP at r

2  0.2 and distance < 1Mb, such that all SNPs within a given bin were
correlated to the tag SNP, but to any other tag SNP. We aim to limit the false-positive
SNP-probe pairs to less than 5% and therefore we considered the FDR analogue of the P
value (Q value) < 5% as statistically significant.

Validation of cis-eQTL results was carried out with a sample size-weighted Z-score meta-
analysis [60] in an additional independent data set using peripheral blood samples (baseline
and after GR-stimulation with 1.5 mg dexamethasone) of 58 individuals (21 male controls,
14 male cases and 23 female cases). We applied the same strategy as used in the discovery
sample (MPIP cohort) to filter, normalize and batch correct the gene expression data. We
adjusted the analysis for the same covariates plus gender; applied the same SNP quality
control checks and performed the cis-eQTL mapping in PLINK. A cis-eQTL is validated
if the meta-analysis P value is less than the actual maxT adjusted P value in the discovery
sample.

The Genomic control inflation factor (�
gc

) [46] was calculated for every GR-response cis-
eQTL gene expression probe (n = 297) based on (i) the genome-wide genotype data (�

gc

)
and (ii) the genotype data within each of the cis-windows (�cis). Both inflation factors
were computed in PLINK as median �

2 statistic. The median �

gc

over all probes is 1 and
the median �cis is 1.0099, which imply that no large inflation was present.
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2 Material and Methods

The combined set of the first two replicates of the RNA Polymerase II ChIA-PET data
[121, 122] generated from K562 chronic myeloid leukemia cell lines (n > 400, 000 interac-
tion regions; other cell lines n < 70, 000 interaction regions) were obtained from the UCSC
genome browser8. Genomic coordinates of our GR-response eSNP bins were converted
from hg18 to GRCh build 37 (hg19) using the UCSC genome browser liftOver tool9 and
the probe gene coordinates were updated with the hg19 RefSeq [178] gene table obtained
from the UCSC table browser10 (excluding 15 probe genes on hg19). To estimate the
overlap of the direct chromatin interactions and GR-response eQTL bins (eSNP bin-probe
gene combination) we tested if one ChIA-PET tag overlapped with the region of the eSNP
bin ±10kb as well as the relevant array probe gene (10kb ± transcription start or end).
To establish the null distribution, we permuted the distances between the GR-response
eSNP bins and the transcription sites of the corresponding probe genes (n = 270 updated
to hg19) and estimated the overlap with ChIA-PET interaction signals. We repeated the
analysis 1,000 times and for each set we counted the number of genes with overlapping
ChIA-PET data. Enrichment calculations with a permutation-based FDR < 10% were
considered as statistically significant within the entire manuscript.

Transcription factor binding a�nities for a set of SNPs were estimated using the web tool
of the physical a�nity-based method TRAP [183, 135]. We extracted a region of ±20bp
around all cis-eSNPs from the human genome (hg18) as provided by UCSC (Bioconductor
Annotation package11). For each binding matrix (n = 904) TRAP first calculates the
a�nity of the matrix for every SNP sequence (length of 41bp) and then transforms these
a�nities into P values. The P values for the SNPs are combined using Fisher’s method
to determine whether the a�nities to specific TF are significantly higher than the ones
from 2,000 random promoter sequences (matched for sequence length) after correction for
multiple testing using Benjamini Hochberg method [215]. This analysis was applied to the
reference and alternative allele, separately. To exclude possible e↵ects due to di↵erent GC
content between our eSNP and human promoter sequences, we generated random control
data sets with RSA tools12 matching (i) GC content = 42% (equal to eSNP sequences)
and (ii) GC content = 50% (equal to random promoter sequences). We determined the
TRAP a�nity P values for both controls sets and observed similar P value distributions
(Wilcoxon P(i):(ii) = 0.0002) showing a pronounced di↵erence to the GR-response P value
distribution (Wilcoxon P

eQTL:(i) = 5.57 ⇥ 10�52 and Wilcoxon P

eQTL:(ii) = 3.68 ⇥ 10�50 ;
no di↵erences among the alleles). Therefore, we exclude confounding due to di↵erent GC
contents between human promoter and GR-response sequences.
In order to calculate whether GR-response eSNPs would show allele-specific binding pro-

files (reference vs. alternate allele) we used the GR position-specific weight matrix present

8http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGisChiaPet/
9http://genome.ucsc.edu/cgi-bin/hgLiftOver

10http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz
11www.bioconductor.org/packages/2.12/data/annotation/BSgenome.Hsapiens.UCSC.hg18.html
12rsat.ulb.ac.be/rssa/
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2.5 Statistical Analysis

in Genomatix (Matrix Family Library version 8.413, vertebrates: 867 matrices in 182 fam-
ilies) and calculated the binding a�nities separately for the two SNP alleles using the R
package of TRAP14. The significance of the di↵erences in the binding a�nity between the
opposite alleles was archived using 1,000 sets of random SNPs (sized matched) and deter-
mining the expected allele-bases di↵erences.

To identify whether GR-response eSNPs were enriched for association with MDD we
conducted a meta-analysis based on the Psychiatric Genomics Consortium (PGC) GWAS
mega-analysis for MDD [133]. We used the ”meta-analysis” function in PLINK assuming
a fixed e↵ect model in 17,846 individuals of European ancestry (8,864 cases with MDD
and 8,982 controls) from 8 of the 9 studies included in the PGC data and excluded all
samples from the initial PGC data (n = 18,759) that overlap with our MARS cohort (n =
376 cases and 537 controls), which we used as validation sample. The PGC used SNP
data imputed to the 1,000 Genomes Project version June 2011. For comparability we
converted all our SNP coordinates from hg18 to hg19 using the UCSC genome browser
liftOver tool and created the overlap of all MDD SNPs and our imputed SNPs of high
quality. To match the MAF distributions of the random SNP sets with our GR-response
eQTL data we divided the SNPs into non-overlapping MAF bins, each of the width 0.05
as described previously [159]. We generated 1,000 sets (conditional on MAF and number
of GR-response eSNPs overlapping with MDD associations; n = 3,492) of randomly drawn
SNPs (without replacement) from the set of all imputed SNPs. For every set we counted
the percentage of unique SNPs with a MDD meta-analysis P value  0.05. On this basis
we constructed the null distribution and compared it to the observed percentage of eSNPs
with a MDD meta-analysis P value  0.05 to measure the enrichment statistics. Addition-
ally, we compared baseline eSNPs (see supplementary notes A.1.1) to GR-response eSNPs.
Due to the di↵erent size of the overlap of GR-response and baseline eSNPs with the MDD
meta-analysis data (GR-response eSNP overlap n = 3,492 vs. baseline eSNP overlap n =
28,861; 31,541 original number of eSNPs) we used the same strategy as described above for
random SNPs. To further account for the genomic LD structure, we limited the analyses
to tag SNPs (tag SNP = SNP showing the highest association per cis-eQTL bin) and
generated 1,000 randomized SNP sets; conditional on MAF and each of the same size as
the GR-response tag SNPs overlap with MDD associations (n = 285).

To identify whether GR-response eSNPs were enriched within risk loci associated with
other psychiatric disorders we used the results of the PGC cross-disorder (CD) analysis
(33,332 patients and 27,888 controls of European ancestry distributed among five disor-
ders: SCZ, BPD, attention deficit-hyperactivity disorder (ADHD), autism spectrum dis-
order (ASD) and MDD) [37]. The PGC CD analysis applied a multinomial regression
procedure and used SNP data imputed to the HapMap Phase 3 data (hg18). The data
sets from the PGC CD associations and the sub-analysis results for BPD, SCZ, ASD and

13http://www.genomatix.de
14http://trap.molgen.mpg.de/cgi-bin/download.cgi
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2 Material and Methods

ADHD used within the CD associations were obtained from the PGC website15. We used
the same enrichment analysis as described for MDD to assess whether SNPs with nom-
inal CD associations (P  0.05) and if SNPs with nominal associations among the four
individual diseases (SCZ, BPD, ASD and ADHD) were enriched for GR-response eSNPs.
Briefly, for the individual diseases and the CD associations, 1,000 randomized SNP sets
were generated, each conditional on MAF and of the same size as the GR-response eSNPs
overlap with CD data sets (n = 1,047). We summarized the enrichment results for these
simulations in table 3.5.

To proof the significance of the GR/MDD tag SNPs for MDD we used a logistic regres-
sion model in R with the function ”glm” to test the association of the GRPSs for disease
status in the MARS cohort. Gender and age were used as covariates. To establish the
null distribution we generated 1,000 random SNP profiles by swapping individual labels to
provide new SNP profiles under the null hypothesis.

The interaction network (figure 3.11) was built by manual curation and literature min-
ing, using the CIDeR database [115] and the yED software (yWorks GmbH, Tübingen,
Germany). Gene products identified in the GR-response eQTL analysis were analyzed for
physical interactions, regulatory interactions and association with psychiatric disorders.

We used the GR-response residuals from all array probes (n = 4447) to determine if
the 25 GR/MDD array probes are more tightly co-regulated than 1,000 sets of randomly
chosen transcripts. To realize this, we carried out a co-expression analysis in R using the
function ”dist” specifying the Euclidian distance as distance measure and calculated the
mean distance of all pair-wise distances. We established the significance of co-expression
network of the 25 GR/MDD array probes by testing the observed mean distance versus
the null distributions created by calculating the mean distance of all pair-wise distances
for 1,000 sets of 25 randomly chosen GR-response transcripts. Next, we determined the
number of sets, having lower mean distances than the actual GR/MDD-relevant transcripts
to measure the enrichment statistic.

Statistical analyses of the imaging data were completed using linear regression in SPSS
to test the association of the DNS GRPSs to amygdala reactivity. To maintain variabil-
ity but constrain the influence of extreme outliers, prior to analyses all imaging variables
were winsorized (i.e., following data quality control procedures, outliers more than ± 3 SD
were set at ±3 SD from the mean; for the ”Angry and Fearful > Neutral faces” contrast,
13 outliers (2.01%) of the entire sample were moved to ±3 SD from the mean). Gender,
psychiatric diagnosis (0,1) and age were entered as covariates for both EUR-AM and en-
tire sample analyses. Five ancestrally-informative principal components that distinguish
the sample were added as additional covariates in the analyses of the entire sample. We
computed permutations (n = 1, 000) in which we constructed randomly generated SNP

15http://pgc.unc.edu
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2.6 Quantitative real-time PCR validation

profiles that were matched for MAF, amount of SNPs (n = 19) and constrained by the
max LD observed within the sample.

Graphs were generated with Haploview [8], ggplot2 [235] and Circos[112].

2.6. Quantitative real-time PCR validation

Total RNA was reverse-transcribed to cDNA using random primers and the Superscript
II reverse transcriptase (Invitrogen) for quantitative real-time PCR (qPCR) to validate
microarray results. qPCR was carried out according to manufactures instructions using
Roche-LightCycler 480 System (Roche Applied Science) and assays were designed using
the Roche Universal Probe Library16.

2.6.1. Di↵erential gene expression analysis

Microarray results were validated separately in sample 1 (training set) and 2 (test set).
We selected FKBP5 and BEST1 as genes showing both regulation with dexamethasone as
well as di↵erences between cases and controls (in the microarray data), and TBP as the en-
dogenous control gene. For the both target genes both the regulation with dexamethasone
as well as the di↵erences between cases and controls could be validated (see figure 3.2).
Sequences of primers used are summarized in table 2.3. All samples were run in duplicates
and duplicates discordant in crossing points by more than 0.4 cycles, were excluded from
the analysis.

Target gene Primer set (5’-3’) UPL probe nr.

FKBP5 Forward: ccattgctttattggcctct 15
Reverse: ggatatacgccaacatgttcaa

BEST1 Forward: ttgattcaggctgttgtaggac 76
Reverse: ctaggaagcggccaatgat

TBP Forward: ctttgcagtgacccagcat 67
Reverse: ccagcaggacactgatcca

Table 2.3.: List of primers and Universal probe library number used for the qPCR validation of
di↵erential expressed genes within a subset of the MPIP cohort (n = 60).

16http://qpcr.probefinder.com
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2.6.2. eQTL analysis

Microarray results were validated for ADORA3 - the probe with a significant GR-response
eQTLs), HIST2H2AA3/ HIST2H2AA4 - the probe with the most eSNPs overlapping with
the meta-analysis results for MDD) and TBP as the endogenous control gene. The asso-
ciation between eSNPs and GR-stimulated gene expression of the two target genes could
be validated using qPCR (see figure 3.4a,(b) and supplementary notes A.1.2). Sequences
of primers used are summarized in table 2.4. All samples were run in duplicates and du-
plicates discordant in CT values by more than 0.2 cycles, were excluded from the analysis.
Relative gene transcript levels were determined by Pfa✏’s equation [172] with:

ratio =
(E

gene

)4CT gene(baseline sample-GR-stimulated sample)

(E
TBP

)4CTTBP (baseline sample-GR-stimulated sample)
(2.1)

These ratios were regressed against the SNPs of interest, while adjusting for age, BMI and
disease status in R. qPCR ratios shown in figure 3.4b were calculated using the following
equations:

pre =
(E

TBP

)CTTBP (baseline sample)

(E
gene

)CT gene(baseline sample)
(2.2)

post =
(E

TBP

)CTTBP (GR-stimulated sample)

(E
gene

)CT gene(GR-stimulated sample)
(2.3)

Target gene Primer set (5’-3’) UPL probe nr.

ADORA3 Forward: tcatttgcagccaggtagc 82
Reverse: tgcttgggtgtggtctatca

HIST2H2AA3/HIST2H2AA4 Forward: cgacgaggaactgaacaagc 61
(short isoform) Reverse: gcctggatgttaggcaagac
HIST2H2AA3/HIST2H2AA4 Forward: aaggggcacctgtgaactc 21
(long isoform) Reverse: gactgagagtggccagcatt
TBP Forward: ctttgcagtgacccagcat 67

Reverse: cgctggaactcgtctcacta

Table 2.4.: List of primers and Universal probe library number used for qPCR validation of
GR-response eQTLs (MPIP cohort, n = 160).
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3 Results

3. Results

3.1. Genome-wide gene expression profiles following
glucocorticoid stimulation in healthy volunteers and
MDD patients1

To test whether reliable case-control di↵erences can be identified following GR activation,
we compared gene expression profiles between MDD cases and controls before and 3h after
stimulation with dexamethasone in two independent samples (see section 2.1).

3.1.1. Dexamethasone e↵ect on gene expression levels of MDD cases
and healthy controls

In controls dexamethasone led to the overlapping regulation of 2,670 transcripts in both
samples at P value  0.05 of which 42% (n = 1, 132 array probes) were up-regulated and
58% (n = 1, 538 array probes) down-regulated (see supplementary table 2 in Menke/Arloth
et al. [148] for more details). In depressed patients only 1,151 transcripts were significantly
regulated in both samples with 44% up-regulated transcripts (n = 507 array probes; see
supplementary table 3 in Menke/Arloth et al. [148] for more details). In total 23% of the
significant dexamethasone-induced gene expression changes observed in patients were also
observed in controls.

3.1.2. Using gene expression profiles to classify MDD cases and
controls

Classification was performed with the RF algorithm using sample 1 to train the model and
sample 2 for testing (see subsection 2.1).

3.1.2.1. Baseline gene expression

We first performed a feature selection by including those transcripts that showed a signifi-
cant di↵erence in baseline gene expression between MDD cases and controls in the training
set at P value  0.05 (uncorrected) and of absolute fold change � 1.15. This resulted in
635 array probes that were used for classification with the RF algorithm. The RF was run
using the best performing parameters, e.g. 1,000 trees (ntree) and 25 random features to

1A version of this chapter has been published in Menke/Arloth et al. [148].
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build each tree (mtry)). This revealed an OOB error rate of 27.8% to classify MDD cases
and controls with a sensitivity (see Eq. 1.5) of 72.2% and specificity (see Eq. 1.6) of 72.2%.
However, using the test set (sample 2), the constructed prediction model only achieved an
area under the curve (AUC) value of 0.56 and an accuracy of 41.7% (see Eq. 1.7; 10 out
of 24 correctly classified).

3.1.2.2. GR-stimulated gene expression

To select features for classifying cases and controls using GR-stimulated gene expression
measures we only kept those transcripts that showed a di↵erence in gene expression change
from baseline to GR-stimulation between MDD cases and controls at a nominal P value
 0.05 and an absolute fold change following dexamethasone in controls � 1.15. This
resulted in 250 transcripts, which we used for classification with RF. Using the best
performing parameters, e.g. ntree = 1, 500 trees and mtry = 240, the RF algorithm
revealed an OOB error rate of 16.7% to di↵erentiate between MDD cases and controls
with a sensitivity of 80% and specificity of 87.5%. Testing this model in sample 2 resulted
in an AUC value of 0.73 and an accuracy of 79.2% (19 out of 24 correctly classified). Thus
the predicator created by GR-stimulated gene expression levels performed much better
than the predictor built from baseline gene expression (accuracy of 79.2% vs. 41.7%).

3.1.2.3. Reduction of the number of transcripts for classification

To identify the genes that contributed most to the classification in both samples, RF classi-
fication was performed without feature selection in all individuals together (not separated
by samples). The analysis was repeated 10 times and the importance scores (Gini index)
were averaged. Out of the 206 most important features, i.e. features having an average
Gini index in the 10 repetitions � 0.02, 19 transcripts also showed a significant di↵erences
(nominal P value  0.05) in dexamethasone regulation between MDD cases and controls
in both samples (see table 3.1 and figure 3.1).

3.1.2.4. Validation of di↵erentially regulated transcripts

We used qPCR to validate gene expression di↵erences of two out of the 19 transcripts, e.g.
FKBP5 andBEST1 in cases and controls in both samples (see figure 3.2). For FKBP5 we
could validate the significant association between the change in gene expression from base-
line to GR-stimulation and disease status for both samples (Psample 1 = 0.005; Psample 2 =
0.007) as well as the main e↵ect of GR-stimulation (Psample 1 = 0.001; Psample 2 = 0.001).
For BEST1 we could validate the regulation by dexamethasone (Psample 1 & 2 = 0.028) and
the e↵ect of the disease status when analyzing both samples together (Psample 1 & 2 = 0.08
two-sided and 0.041 one-sided), but not separately for each sample. However, the direction
of the e↵ect was the same in both samples and the observed lack of significance may reflect
lack of power in the subsample analysis.
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3.1 Genome-wide gene expression profiles following glucocorticoid stimulation in healthy
volunteers and MDD patients
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Figure 3.1.: This heatmap illustrates the gene expression changes (GR-stimulation/baseline
mRNA levels) of the 19 significantly di↵erentially regulated genes between MDD
cases and controls. Red indicates an up-regulation (58% of the transcripts) follow-
ing dexamethasone and blue a down-regulation (42% of the transcripts).
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Sample 1 Sample 2

Probe gene Probe id FC

Cases

FC

Controls

P FC

Cases

FC

Controls

P

ARG1 ILMN 1812281 1.70 2.09 0.03 1.56 2.04 0.003
BEST1 ILMN 1718982 1.33 1.62 0.003 1.43 1.80 0.01
CD14 ILMN 1740015 -1.25 -1.44 0.01 -1.06 -1.32 0.037
CKLF ILMN 1712389 1.15 1.30 0.039 1.24 1.48 0.042
CPVL ILMN 2400759 -1.34 -1.59 0.04 -1.11 -1.53 0.005
FAM129B ILMN 1661755 -1.16 -1.43 0.00 -1.24 -1.58 0.005
FKBP5 ILMN 1778444 4.78 6.32 0.03 5.16 6.93 0.031
FLJ20699 ILMN 1692464 1.01 1.19 0.01 1.02 1.19 0.019
GNA15 ILMN 1773963 -1.11 -1.21 0.02 -1.05 -1.25 0.015
LAT2 ILMN 2326953 1.18 1.33 0.01 1.37 1.61 0.031
MUM1 ILMN 1764764 -1.09 -1.19 0.04 -1.13 -1.27 0.007
P2RY2 ILMN 2372915 -1.02 -1.18 0.02 -1.08 -1.25 0.002
RNF144B ILMN 1752526 1.48 1.70 0.03 1.43 1.72 0.002
RUNX1 ILMN 1801504 -1.08 -1.17 0.03 -1.05 -1.20 0.023
SELL ILMN 1724422 1.22 1.40 0.02 1.33 1.68 0.024
SOCS1 ILMN 1774733 1.43 1.58 0.04 1.24 1.40 0.017
SSH2 ILMN 1672834 1.47 1.74 0.01 1.62 1.99 0.04
TMEM176A ILMN 1791511 -1.08 -1.22 0.04 -1.10 -1.27 0.019
no symbol ILMN 1880406 1.42 1.67 0.05 1.44 1.65 0.047

Table 3.1.: List of the 19 transcripts contributing most to the classification algorithm.

1 2 1 2
FKBP5 BEST1

Samples

Figure 3.2.: Validation of the di↵erential gene expression of FKBP5 and BEST1 and compari-
son of healthy controls and depressed cases for sample 1 (training set) and sample
2 (test set). A significant associations were observed for FKBP5 (⇤) and significant
main e↵ects (#) of dexamethasone was observed for FKBP5 when analyzing both
samples separately. For BEST1 we observed a significant main and association
with disease status when analyzing both samples together.
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3.2 Genetically determined di↵erences in the immediate transcriptome response to stress
predict risk-related brain function and psychiatric disorders

3.2. Genetically determined di↵erences in the immediate
transcriptome response to stress predict risk-related
brain function and psychiatric disorders

3.2.1. Genetic regulation of GR-stimulated gene expression

We first identified genetic variants that alter GR-stimulated gene expression changes, by
adopting a stimulated eQTL approach (see figure 3.3a).
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(a) Study design for GR-
stimulated gene expression
in whole blood of 160 male
individuals from the MPIP
cohort.
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(b) Circularized Manhattan plot displaying cis-associations for GR-
response set of eSNP bin probe combination (eQTL bin)s (n = 320)
and their respective significance (�log10 Q values). Displayed from the
outer to the inner circle are the number of chromosomes, the ideograms
for the human karyotype (hg18), genes nearby eSNPs and Manhattan
plots for the eQTL bins that survived correction for multiple testing.

Figure 3.3.: Analysis of GR-response cis-eQTLs
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3 Results

Gene expression profiles from peripheral blood cells of 160 male individuals of the MPIP
cohort (91 cases and 69 controls, see section 2.1) were obtained at baseline and three hours
after stimulation with the selective GR agonist dexamethasone (see supplementary figure
A.1) and combined with genome-wide SNP data. All individuals showed a strong endocrine
response to dexamethasone (Cortisol: F1,159 = 43.93, P = 5.02⇥10�10 and ACTH: F1,158 =
37.96, P = 5.76 ⇥ 10�9, see supplementary figure A.2). After quality control, 4,447 gene
expression probes that exhibited strong regulation following dexamethasone administration
(absolute fold change in gene expression, i.e. baseline to three hours post-dexamethasone,
� 1.3 in at least 20% of all samples) were combined with genotype data of around 2
million imputed SNPs (see section 2.5.2). We used the log fold change in gene expression
standardized to baseline values as phenotype and restricted the analysis to a 1Mb cis-region
around each array probe. 3,820 GR-response-modulating cis-eQTLs (GR-response eQTLs)
were identified, which remain significant after accounting for disease status, age, and BMI
and correction for multiple testing (see section 2.2). These comprised 297 unique array
probes and 3,662 unique SNPs. The 3,662 unique GR-response cis-expression SNP (eSNP)s
can be summarized in terms of independent tag SNPs (tag SNP=SNP showing the highest
association per bin) into 296 uncorrelated cis-eSNP bins, i.e. sets of SNPs in LD (see
section 2.5.2). These 296 cis-eSNP bins correspond to 320 cis-eQTL bins, i.e. cis-eSNP
bin-probe combinations (listed in supplementary table A.1 and see figure 3.3b, 3.4(a)(b)
for illustration).
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Figure 3.4.: Boxplots of human gene expression values for ADORA3, which is an example of a
significant GR-response eQTL. Expression levels are stratified based on the eSNP
genotypes for ADORA3. Baseline (6pm) measures are displayed in red and GR-
stimulated measures (9pm) in blue. Microarray data could be validated by qPCR.
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3.2 Genetically determined di↵erences in the immediate transcriptome response to stress
predict risk-related brain function and psychiatric disorders

Including dexamethasone serum levels as covariate did not change the results, thus we
could exclude any confounding e↵ects of individual genetic and environmental variability
of dexamethasone concentration.

To assess the robustness of these GR-response eQTLs, we validated these eQTLs in an
independent sample of n = 58 (see section 2.5.2). Due to the small sample size of the
validation set we applied a sample size-weighted Z-score meta-analysis. 72% of the GR-
response eQTLs could be validated, i.e. showing a meta-analysis P value equal or less than
the actual significance threshold (see section 2.5.2).

3.2.2. GR-response eSNPs are located in long-range enhancer regions

Next, we mapped the distances between eSNPs and array probes. In order to account for
genomic LD structure, the following analyses are based on eSNP bins. We mapped the
distance of the set of eSNPs in LD (eSNP bin)s from the 320 GR-response eQTL bins to
the probe sequence of the respective regulated transcript and compared this to eSNP bin-
probe distances for baseline cis-eSNP bins (see supplementary note A.1.1). GR-response
eSNP bin-probe distance (mean = 406kb ± 303kb, n = 320 bins) was significantly longer
(Wilcoxon P = 1.03 ⇥ 10�50) than baseline eSNP bin-probe distance (mean = 149kb ±
232kb, n = 1, 148 bins; see figure 3.5, supplementary note A.1.1). The results indicate that
GR stimulation is associated with significantly more long-range transcriptional regulation
than baseline gene expression.

To evaluate whether the long-range regulation of GR-response expression quantitative
trait loci (eQTLs) may also be associated with long-range physical chromatin interaction,
we compared our data to data from a chromatin interaction analysis with paired-end tag
sequencing (ChIA-PET [121]) generated by ENCODE [57] in leukemia cells line K562.
For this, we examined whether regions containing the GR-response eSNP bin and the cor-
responding probe gene overlap with physically interacting ChIA-PET tags (see section
2.5.2). Twenty-five percent of the GR-response eSNP bin/probe gene combinations (i.e.
68 out of 270 probe genes) overlapped with chromatin interaction signals. Notably, we ob-
served that our GR-response eSNP bin/probe gene pairs were more likely to colocalize with
physically interacting ChIA-PET tag pairs than 1,000 equally sized sets of randomly dis-
tributed GR-response eSNP bin/probe gene pairs (enrichment ratio = 1.13, permutation-
based FDR = 0.056; see section 2.5.2). Interestingly, restricting the analysis to more
long-range eSNP bin/probe gene pairs (distance > 100kb) strengthened the enrichment of
such colocalizations (enrichment ratio = 1.57, permutation-based FDR = 0.007).

Figure 3.6 illustrates such an example of long-range regulation accompanied by long-
distance chromatin interaction: SNPs in the CLOCK locus regulate the GR-stimulated
gene expression of the PAICS transcript, which is located about 900kb upstream of the
CLOCK locus.
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3 Results
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Figure 3.5.: Boxplots show the distance of eSNP to array probe for significant eQTL bins from
the GR-response and the baseline analyses. The dotted red lines indicate the mean
eSNP bin-probe distances

3.2.3. GR-response eSNPs influence predicted transcription factor
binding a�nity

To investigate whether specific TF binding motifs are enriched in the set of GR-response
eSNPs, we compared these eSNP sequences to random human promoter sequences using
TRAP [183] (see section 2.5.2). Consistent with evidence that dexamethasone selectively
activates the GR (itself a TF), GR binding sites and TF binding sites that directly modulate
GR signaling (such as AP1, CEBP, HNF3, HNF4, OCT1, STAT5A and STAT6 [103, 44])
were significantly over-represented in the GR-response eSNP sequence set (TRAP a�nity
P values  4.58 ⇥ 10�17) as compared to the random sequences (see supplementary table
A.2). Using only the unique tagging eSNPs (n = 296, representing the highest association
per cis-eQTL bin) we also observed a significant enrichment of these TF binding sites.
Interestingly, we found not only that TF binding sites were enriched among the GR-

response sequences, but also significant GR a�nity di↵erences between the opposite alleles
(t

all

= �3.02, P
all

= 0.0025; t
taggingSNPs

= �2, 23, P
taggingSNPs

= 0.027). It is thus likely
that the observed eSNPs modulate GR-stimulated gene expression changes by altering the
a�nity of the DNA binding sites to the GR and its co-factors. Figure 3.7, provides one
specific example of this possible mechanism by illustrating how the predicted changes in
a�nity to the GR for the sequence containing one intronic SNP (rs2460432) parallel the
observed allele-based di↵erences in GR-stimulated gene expression of the gene ASL.
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Figure 3.6.: Long-range chromatin interaction of GR-response eQTLs as exemplified by the
region containing the CLOCK locus (chr4: 56,350,000-57,300,000; hg19).Top panel,
ideogram for chromosome 4. A red box isolate the region shown (enlarged) in
panel 2 and 3. Second panel, linkage disequilibrium plot based on r

2 for the SNPs
surrounding the tagging SNP rs7673908 of the CLOCK locus (r2 = 0 is shown
in white, 0 < r

2
< 1 is shown in shades of grey and r

2 = 1 is shown in black).
Third panel, ChIA-PET tags from leukemia cells (brown and green tracks) validate
a chromatin interaction between the CLOCK eSNP locus and the promoter of the
regulated gene PAICS (relevant tags highlighted in purple). The paired ChIA-PET
tags coincide with DNaseI hypersensitivity sites in the leukemia cell line (blue
track) and blood cells (violet track). Magnified views of the region around the
ChIA-PET tags are shown in the last track. Bottom panel, normalized expression
intensity levels for CLOCK (left) and PAICS (right) at baseline (6pm; red) and
after dexamethasone stimulation (9pm; blue), stratified by rs7673908 genotypes.
Note that rs7673908 shows significant associations only with the GR-stimulated
gene expression of PAICS but not with the expression of CLOCK (Q values were
obtained by GR-response cis-eQTL analysis).
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Figure 3.7.: Transcription factor binding site analysis of the GR. (a) First panel, gene structure
of the ASL gene and position of the eSNP rs2460432. Second panel, sequence motif
of the GR a�nity matrix and a box indicating the position of rs2460432 within the
motif. Third panel, 20bp sequence around rs2460432 and a box indicating the GR
binding site with the highest a�nity. Fourth panel, C-allele of rs2460432 impairs
GR binding a�nity. A�nity values are estimated for both alleles (orange line
for C-allele and black line for T-allele). Peaks (continuous lines) indicate possible
binding sites of the GR with a reduction in the predicted binding a�nity for the
C-allele sequence (total a�nity indicated by horizontal dashed lines: A

C

= 8.83�6,
A

T

= 4.68�6 ). (b) SNP rs2460432 significantly influences GR-induced changes
in ASL expression (q value obtained by GR-response cis-eQTL analysis). The C-
allele, which has a lower predicated a�nity (as shown in 3.7 is associated with a
smaller GR-induced change in ASL transcription.

3.2.4. GR-response eSNPs are enriched in loci nominally associated
with MDD

In order to test whether our functionally relevant eSNPs are over-represented among nom-
inally significant GWAS results for MDD, we determined the overlap between the GR-
response eSNPs and all MDD-associated markers reaching a meta-analysis P value  0.05
from an analysis including approximately 9,000 cases and the same number of controls
(part of the PGC data [133]; see section 2.5.2). Permutation analysis (see section 2.5.2)
predicted an expected mean overlap of 210 SNPs (6%, range 168 to 255, SD = 13.9) from
1,000 randomly selected SNP sets. For 1,000 randomly generated baseline cis-eSNP sets,
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a mean overlap of 218 SNPs (6.2%, range 174 to 268, SD = 13.5) was calculated. Both
estimates were significantly lower than the actual overlap of 282 (8%) SNPs from the GR-
response eSNPs. No simulated random set nor baseline cis-eSNP set ever yielded the same
or greater overlap with MDD-associated SNPs (enrichment ratio

random

= 1.34, enrichment
ratio

baseline

= 1.29, permutation-based FDRs < 0.001; see figure 3.8).
The 282 GR-response eSNPs that overlap with MDD-associated SNPs correspond to

23 unique eSNP bins (reflecting 26 eQTL bins) that regulate 25 unique transcripts (see
table 3.2). We call these 23 eSNP bins GR/MDD eSNP bins in the remaining manuscript
to refer to GR-response eSNPs that also show a nominal association with MDD in this
meta-analysis. If we restricted this analysis to tagging eSNPs only (n = 285; see section
2.5.2) we still observed an enrichment compared to 1,000 equally sized sets of random and
random baseline tagging eSNP sets (enrichment ratio

random

= 1.42, permutation-based
FDR

random

= 0.059 and enrichment ratio
baseline

= 1.31, permutation-based FDR

baseline

=
0.082), indicating that the enrichment is independent from LD structure.
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random SNPs
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Figure 3.8.: GR-response eSNPs are enriched among variants associated with MDD (GR/MDD
eSNPs). The dotted red line shows the number of GR-response eSNPs that overlap
with SNPs in our meta-analysis for MDD. The distribution of the observed overlap
for sets of 1,000 random SNPs (gray) and 1,000 random baseline eSNPs (brown)
are represented as histograms.
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3.2 Genetically determined di↵erences in the immediate transcriptome response to stress
predict risk-related brain function and psychiatric disorders

We next constructed a genetic risk profile score (GRPS) using the 23 GR/MDD tagging
eSNPs for each individual, by adding up the individual’s number of risk alleles of each
SNP (see section2.5.2). These GRPSs are associated with MDD in an independent cohort
(Z = 3.76, P = 0.00017; 1,005 MDD cases and 478 controls; see table 3.3 and section
2.5.2); specifically, individuals with higher GRPSs were overrepresented in the MDD group
(see figure 3.9). The association was significantly enriched compared to 1,000 randomly
generated SNP profiles (see section 2.5.2) with a permutation-based FDR = 0.008.

GR-response cis-eQTL data MARS cohort
tag SNP Proxy for SNP Genes nearby tag SNP A1a A2b MAF HWEc Used

1 1-148440425 rs72694971 PLEKHO1, ANP32E G T 0.12 0.56 yes
(renamed)

2 19-40883657 rs73048504 UPK1A, ZBTB32 C G 0.18 0.22 yes
(renamed)

3 rs10002500 CNGA1 T C 0.13 0.58 yes
4 rs10505733 CLEC4C C A 0.29 0.42 yes
5 rs12432242 SLC7A7 C T 0.39 0.87 yes
6 rs12611262 SEMA6B, TNFAIP8L1 T C 0.39 0.59 yes
7 rs12620091 rs34874205 ALMS1P C T 0.37 <0.00001 no

(r2 = 0.92)
8 rs17239727 BLVRA T C 0.21 0.48 yes
9 rs1873625 BSN A C 0.29 0.85 yes
10 rs1981294 LRIF1, DRAM2 C T 0.17 0.47 yes
11 rs2072443 TMEM176B T C 0.41 0.75 yes
12 rs2269799 SV2B C T 0.32 0.23 yes
13 rs2395891 BTBD2, MKNK2 T G 0.35 0.21 yes
14 rs2422008 WDPCP A C 0.43 1 yes
15 rs2956993 GANAB G T 0.38 0.30 yes
16 rs35288741 NFASC G A 0.35 0.25 yes
17 rs6493387 TRPM1 T C 0.47 0.11 yes
18 rs6545924 COMMD1, B3GNT2 G T 0.50 0.30 yes
19 rs7194275 C16orf91, CCDC154 C T 0.12 0.0007 yes
20 rs7252014 KCNN1 A G 0.48 0.054 yes
21 rs917585 SLC6A7 G C 0.50 0.57 yes
22 rs9268671 rs116072659 HLA-DRA, HLA-DRB5 A G 0.34 <0.00001 no

(renamed)
23 rs9268926 rs114766558 HLA-DRA, HLA-DRB5 G A 0.31 <0.00001 no

(r2 = 0.81)

Table 3.3.: GR/MDD tagging eSNPs and their proxy SNPs used to generate the
cumulative risk allele profile in the MARS cohort. Three SNPs deviated
from HWE (rs12620091, rs9268671 and rs9268926) and were excluded
from the analysis. As result the remaining 20 SNPs were used to generate
a profile.

a code for allele 1 (reference allele, not necessary minor allele) in MARS cohort
b code for allele 2 in MARS cohort
c Hardy-Weinberg test statistics (P values) in MARS cohort

55



3 Results
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Figure 3.9.: The distribution of the GRPSs for an independent sample of MDD cases (violet) and
controls (gray) are represented as histograms and kernel density curves. Individuals
with depression display higher GRPSs.
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3.2 Genetically determined di↵erences in the immediate transcriptome response to stress
predict risk-related brain function and psychiatric disorders

3.2.5. Cumulative risk scores for the GR/MDD eSNPs correlate with
dysfunctional amygdala reactivity2

To investigate the relationship between GR/MDD tagging eSNP GRPSs and variability in
stress-related brain function, we applied an imaging genetics strategy to data from 647 par-
ticipants (171 individuals with current or past DSM-IV Axis I disorders and 476 controls;
306 of participants were self-reported EUR-AM; see table 3.4) of the Duke Neurogenetics
Study (DNS) (see section 2.1). Our analyses focused on centromedial amygdala reactivity
to canonical threat-related angry and fearful facial expressions (see figure 3.10a), because
this phenotype is clearly implicated in the etiology and pathophysiology of stress-related
disorders, including depression [173]. Moreover, activity in the amygdala triggers a coordi-
nated behavioral and physiologic response to threat. This includes activation of the stress
hormone response via projections from the medial division of the central nucleus of the
amygdala, (captured in our analysis by our centromedial amygdala region of interest) to
the paraventricular nucleus of the hypothalamus [217].
A significant e↵ect of GRPSs (see section 2.5.2) on centromedial amygdala responses to

angry and fearful facial expression in comparison to neutral expressions was identified for
the EUR-AM DNS subsample (F1,301 = 7.06, P = 0.008; see figure 3.10a and 3.10b) after
correcting for age, sex, and the presence of an Axis I disorder. The e↵ect was found in
the entire sample as well, after accounting for population stratification (F1,637 = 6.05, P =
0.014; see supplementary figure A.3). In both the EUR-AM subsample and entire sample,
individuals with higher GRPSs had blunted centromedial amygdala reactivity to angry
and fearful facial expressions in comparison to neutral expressions relative to individuals
with lower GRPSs (see figure 3.10b, supplementary figure A.3). Permutation analyses
that formed random SNP profiles (n = 1, 000; matched for MAF and not exceeding the
maximum correlation among profile SNPs; see section 2.5.2) indicated that the actual
GRPSs were more likely to be associated with these di↵erences in amygdala reactivity
than 1,000 sets of random SNP profiles (EUR-AM subsample: permutation-based FDR =
0.003; entire sample: permutation-based FDR = 0.012). Post-hoc analyses revealed that
this di↵erential e↵ect was driven by a higher centromedial amygdala reactivity to neutral
facial expressions in comparison to shapes in participants with higher GRPS (EUR-AM
subsample: F1,301 = 6.47, P = 0.011; see figure 3.10c and entire sample: F1,637 = 8.52,
P = 0.004; see supplementary figure A.3 and A.4b) while there were no e↵ects of GRPS
on amygdala response to angry and fearful facial expressions in comparison to shapes
(EUR-AM subsample: F1,301 = 0.2, P = 0.65; see figure 3.10d and entire sample: F1,637 =
0.09, P = 0.76; see supplementary figure A.3 and and figure A.4a).
This pattern of altered amygdala reactivity in individuals with higher GRPSs is sug-

gestive of impaired threat-related cue learning with inappropriately increased reactivity

2The imaging analysis in the DNS cohort was conducted in collaboration with Ryan Bogdan+,⇤ and
Ahmad R. Hariri⇤.
+ Department of Psychology, Washington University in St Louis, St Louis, MO, USA
⇤ Department of Psychology and Neuroscience, Institute for Genome Sciences and Policy, Duke University,
Durham, NC, USA
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3 Results

to neutral expressions, which do not convey threat [21, 160]. Thus, higher GRPS may
be associated with non-specific or overgeneralized threat and stress responses, which are
consistently observed in depression as well as other mood and anxiety disorders [21, 160].
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Figure 3.10.: GR-response eSNPs correlate with dysregulated threat-related amygdala reactiv-
ity. (a) Statistical parametric map illustrating left centromedial amygdala re-
activity to the ”Angry & Fearful > Neutral” contrast in the entire sample (15
contiguous voxels; max voxel MNI coordinate, x = �24, y = �10, z = �14,
t = 4.35, P = 7.76 ⇥ 10�6). (b) Higher DNS GRPSs in the European-American
subsample (n = 306) predicted amygdala reactivity to threat-related facial expres-
sions in comparison to neutral facial expressions. Post-hoc analyses (c, d) revealed
that GRPSs did not predict amygdala reactivity to threat-related expressions (d),
but that higher GRPSs predicted elevated amygdala reactivity to neutral facial
expressions (c), in comparison to non-face control stimuli. The 95% confidence
interval is displayed as gray shaded band in (b-d).
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3 Results

3.2.6. Functional relevance of transcripts regulated by GR/MDD
eSNPs

3.2.6.1. Network-based analysis of GR/MDD genes3

To validate our results, we investigated whether the probe genes (n = 24) regulated by the
GR/MDD eSNPs are part of specific pathways that may be relevant for the pathophysiol-
ogy of MDD. We were able to generate a tightly interconnected network containing 22 of
the 24 gene products, based on manually curated relationships extracted from the scientific
literature (see figure 3.11, supplementary table A.3). This network revealed that the 22
gene products show direct associations with mood disorders and response to antidepres-
sant treatment in independent datasets. In addition, they are predominantly involved in
pathways associated with ubiquitination and proteasome degradation and the inflamma-
tory response - systems that have been implicated in the pathophysiology of MDD and in
stress-related changes in synaptic plasticity [149, 214].
These gene products not only interact on the protein level but also appear to be co-

regulated on a transcriptional level. Co-expression analysis (see section 2.5.2) from the GR-
stimulated gene expression measures in blood cells from all individuals of the MPIP cohort
(n = 160) identified that the 25 GR/MDD array probes are more tightly co-regulated
than 1,000 sets of randomly chosen transcripts selected from all GR-stimulated transcripts
(inverse enrichment ratio = 1.04, permutation-based FDR = 0.078). These data suggest
that these 25 array probes (24 genes) not only functionally interact on the protein level but
are also coordinated in their transcriptional response to GR activation or stress to perform
an orchestrated function.

3.2.6.2. Convergent functional genomics: integrating human GR/MDD genes with
relevant mouse models

To establish whether the transcripts regulated by acute GR activation in blood are also
regulated in the brain in a similar timeframe, we investigated whether the orthologues of
the 24 GR/MDD genes were di↵erentially regulated in mouse blood and brain (PFC, HC,
and AM) following dexamethasone administration (10 mg/kg dexamethasone i.p.)). In this
experiment 15 of the 24 genes had a mouse orthologous gene, which were expressed above
detection threshold (see supplementary table A.3). Ten (66.7%) of the 15 genes showed
significant changes in transcriptional levels 4 hours after dexamethasone administration in
one or more of the investigated brain regions, and all 15 genes were also regulated in mouse
blood (see figure 3.12 right panel and supplementary table A.4).
In order to better link the 24 GR/MDD genes to actual risk for MDD and not only GR

reactivity, we further investigated whether chronic social stress di↵erentially regulates the
same 24 GR/MDD genes in resilient vs. susceptible mice. In this animal model,

3The interaction network was conducted in collaboration with Goar Frishman⇤ and Andreas Ruepp;⇤.
⇤ Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Land-
strae 1, 85764 Neuherberg, Germany
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Figure 3.11.: For 22 of the 24 GR/MDD genes a tightly interconnected network was generated
from manually curated experimental data derived from the scientific literature.
Transcripts that were di↵erently expressed in the GR-stimulation mouse model
are marked by a gray mouse and those di↵erential regulated in the chronic social
stress mouse model are marked by a brown mouse.

mice were exposed to seven weeks of chronic social stress during adolescence. After
five weeks of recovery, susceptible animals exhibit depression-like behavioral and endocrine
phenotypes, while this is not the case for resilient animals [110, 190, 189]. In this experiment
11 orthologous genes were analyzed in HC samples (see supplementary table A.4). After
5 weeks recovery, 8 (72.7%) of 11 genes expressed in the CA1 area and/or the DG showed
nominally significant (absolute DiffScore > 13) di↵erential expression between resilient
vs. susceptible animals (see supplementary table A.4). Interestingly, for 6 of these 8 genes,
the di↵erence in gene expression regulation between resilient and susceptible animals in
the HC matched the direction of the di↵erence in GR-induction in humans with the risk
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allele vs. humans with the protective genotypes (see figure 3.12 left panel).

We also tested whether additional transcripts of proteins linked to the GR/MDD genes
in the interaction network analysis were significantly regulated in either of the two mouse
models. We identified a set of 15 additional transcripts from the network (see supplemen-
tary table A.5) that were regulated in brain by GR activation or were associated with risk
or resilience to exposure to chronic social stress; these are marked in figure 3.11.

Chronic stress mouse model  GR-stimulation mouse model GR-stimulation human study 

Blood PFC HC AMCA1 DG Blood 
log fold change in mRNA
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Figure 3.12.: Rows of the heatmaps correspond to genes, and columns correspond to the an-
alyzed tissues. First heatmap: left panel, log fold change in gene expression
between stress-susceptible (SS) vs. stress-resilient (SR) groups of mice (brown,
n = 12 mice) in the CA1 and DG region of the hippocampus and di↵erence in
GR-induced expression of these genes in blood cells in humans between risk al-
lele (RA) and protective genotype (PG) carriers (blue, n = 160 samples). Second
heatmap: gene expression changes from baseline to GR-stimulation in mouse brain
(gray, n = 22 mice) and human blood cells (blue). Investigated tissues are labeled
within the bottom row of every heatmap (PFC, HC, and AM, CA1 area of HC
and DG). Log fold change in mRNA levels are color coded as indicated in bottom
of each heatmap.
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3.2.7. GR-response eSNPs are enriched in loci associated with other
psychiatric disorders

Recent studies suggest shared genetic risk loci for five major psychiatric disorders, which
include MDD, BPD, SCZ, ADHD and ASD [37]. In fact, using GWAS data to identify
SNP-based genetic correlation (rg

SNP

), MDD has been shown to have relevant genetic
correlation with BPD (rg

SNP

= 0.47), SCZ (rg
SNP

= 0.43) and ADHD (rg
SNP

= 0.32)
but not with ASD (rg

SNP

= 0.05) [38].
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Figure 3.13.: The plots show the results of the GR-response eSNP enrichment analysis in GWAS
for bipolar disorder (BPD), schizophrenia (SCZ), attention deficit-hyperactivity
disorder (ADHD), autism spectrum disorder (ASD) and the cross-disorder associ-
ations (CDA). The dotted red lines show the actual overlap of GR-response eSNPs
with the respective disease SNPs. The histograms represent the distribution of
the overlap observed for sets of 1,000 random SNPs matched for MAF. GR-
response eSNPs are enriched for CDA (permutation based FDR = 0.001), SCZ
(permutation based FDR < 0.001) and BPD (permutation based FDR = 0.009)
susceptibility loci.
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Considering this shared genetic liability across at least some of these five psychiatric
disorders and the fact that adverse life events confer risk for most of them [144], we tested
for enrichment of our GR-response eSNPs in the association data set from the PGC cross-
disorder analysis (33,332 cases and 27,888 controls; see section 2.5.2). We also tested for
enrichment in each disorder independently (9,379 SCZ cases; 6,990 BPD cases; 840 ADHD
cases, 1,947 ADHD trio cases; 161 ASD cases, 4,788 ASD trio cases; see figure 3.13 and
table 3.5). There was evidence for significant GR-response eSNP enrichment in 1,000 ran-
domly generated SNP sets in the cross-disorder associations (enrichment ratio = 1.33,
permutation-based FDR = 0.001). Furthermore, there was evidence of GR-response
eSNP enrichment in SCZ (enrichment ratio = 1.87, permutation-based FDR < 0.001)
and BPD (enrichment ratio = 1.29, permutation-based FDR = 0.009). By contrast, a
significant underrepresentation in ASD (inverse enrichment ratio = 1.87, permutation-
based FDR < 0.001) and ADHD (inverse enrichment ratio = 1.92, permutation-based
FDR < 0.001) was observed.Those findings are consistent with the evidence that SCZ and
BPD have the highest co-heritability with MDD, while ASD and ADHD have the lowest
co-heritability with MDD [38].

GR-response eSNPs Random eSNPs
Count Mean counta Range FDRb

CDA* 115 (11%) 86.5± 8.99 SD (8%) 61-119 0.001
BPD* 91 (9%) 70.36± 8.34 SD (7%) 44-100 0.009
SCZ* 157 (15%) 84.08± 8.79 SD (8%) 61-111 <0.001
ADHD* 29 (3%) 55.69± 7.14 SD (5%) 36-79 1
ASD* 34 (3%) 63.73± 7.62 SD (6%) 44-91 1

MDD# 282 (8%) 210± 13.9 SD (6%) 168-255 <0.001

Table 3.5.: Number (proportion) of GR-response eSNPs overlapping with SNPs from
the PGC cross-disorder analyses (*) and meta-analysis for MDD (#).

a mean count (proportion) of the number of GR-response eSNPs observed for
1,000 random draws of 1,047* and 3,492# SNPs from bins matched for the
MAF to the GWAS SNPs

b permutation-based FDR
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4. Discussion

This doctoral thesis presented genome-wide results from both a di↵erential gene expres-
sion as well as an eQTL study and shows that both analyses are important contributors in
the understanding of the pathophysiology of stress-related psychiatric disorders, especially
MDD.

The di↵erential gene expression analysis showed that GR-stimulated gene expression
changes in peripheral blood cells enable a much better discrimination between depressed
patients and healthy controls than gene expression measures at baseline. Interpretation of
the GR-stimulated gene expression profiles of the top di↵erentially regulated genes (see fig-
ure 3.1 and table 3.1) led to a correct prediction for 79.2% of the tested samples, and thus
outperformed baseline gene expression patterns with a rate of 41.7% correct predictions.
This supports the previously described superiority of GR-stimulated over baseline gene ex-
pression di↵erences as biomarkers for MDD [203]. Spijker and colleagues [203] investigated
gene expression changes in peripheral blood monocytes following an ex vivo challenge with
lipopolysaccharide, a strong immunogenic stimulus. This paradigm is less influenced by
confounding variables than the here presented in vivo challenge test. However, the reported
sensitivity and specificity values are comparable to the ones reported here in this thesis
(sensitivity: 76.9% vs. 80% and specificity: 71.8% vs. 87.5%.). This suggests that in vivo
stimulated gene expression patterns, which require less hands on time in the laboratory
than ex vivo stimulation, could be better suited to further serve as potential biomarkers
for depression-related GR function changes.
Endocrine measures could serve as an alternative to gene expression patterns to classify

depressed cases and healthy controls. Such endocrine measures, e.g. cortisol or ACTH,
showed a robust suppression in depressed patients as well as healthy controls after dexam-
ethasone investigation. However, they failed to be a reliable discriminator between both
groups (for more details please see [148]) in our data set.
Robust GR-induced reproducible gene expression profiles in both depressed patients and

healthy controls were found. Interestingly, three of the most significantly GR-regulated
genes in both groups (FKBP5, DUSP1 and ZBTB16 ) have been previously reported to
be involved in the development of stress-related psychiatric disorders or neuroprotection.
Briefly, SNPs in FKBP5 have been associated with a number of phenotypes related to
mood disorders [12] and FKBP5 gene expression di↵erences have been reported for post-
traumatic stress disorder [146, 193]. DUSP1 has been shown to be more strongly expressed
in postmortem hippocampus tissue from depressed patients as compared to healthy con-
trols [55]. Additionally, it mediates stress-related depression-like behavior in rodents [55].
ZBTB16 is a corticosteroid-responsive transcription factor. It is induced by stress exposure
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in the brain and may have a neuroprotective function [170].
Of the 19 genes contributing most to our classifier (see figure 3.1 and table 3.1), FKBP5

and TMEM176A have previously been associated with stress-related disorders. Alternated
gene expression profiles in HC and PFC of TMEM176A were identified in a rat model of
depression-like behavior [14]. Thus, these results support the importance of using GR-
stimulated gene expression patterns as biomarkers for depression.

A limitation of this study was the discordant medication with antidepressants of the
patients compared to un-medicated controls. This generally complicates downstream anal-
yses of the observed associations since it is di�cult to examine whether gene expression
changes are related to treatment or disease status. But even if the observed di↵erences
were exclusively related to the e↵ects of antidepressant drugs, this would not a↵ect the
observed superiority of GR-stimulated over baseline gene expression. To exclude possible
medication e↵ects, we post-hoc tested if the duration or number of antidepressant treat-
ment/s at the time of RNA collection had an impact on gene expression regulation in all
patients for the 19 genes that best di↵erentiate between cases and controls (see table 3.1).
We did not find any significant e↵ect (see table 4.1) suggesting that antidepressant med-
ication is not likely to have a major impact on the expression of those genes. To further
exclude medication as a confounder of the reported case-control di↵erences, a new experi-
ment comparing medicated and un-medicated patients and controls has to be investigated
as follow-up.

Probe id Gene name Type of medication Duration of medication

ILMN 1718982 BEST1 0.69 0.82
ILMN 1724422 SELL 0.97 1
ILMN 1752526 RNF144B 0.39 0.21
ILMN 1773963 GNA15 0.08 0.09
ILMN 1661755 FAM129B 0.36 0.32
ILMN 2372915 P2RY2 0.08 0.34
ILMN 1672834 SSH2 0.85 0.27
ILMN 1712389 CKLF 0.79 0.34
ILMN 1791511 TMEM176A 0.99 0.62
ILMN 1692464 FLJ20699 0.65 0.49
ILMN 1764764 MUM1 0.35 0.4
ILMN 1778444 FKBP5 0.72 0.19
ILMN 1880406 no symbol 0.2 0.8
ILMN 1740015 CD14 0.9 0.47
ILMN 1774733 SOCS1 0.65 0.38
ILMN 1801504 RUNX1 0.78 0.68
ILMN 1812281 ARG1 0.86 0.29
ILMN 2326953 LAT2 0.64 0.94
ILMN 2400759 CPVL 0.22 0.07

Table 4.1.: List of the 19 transcripts contributing most to our classifier for MDD disease sta-
tus. The duration or number of antidepressant treatment/s had no impact on gene
expression regulation of the listed transcripts.
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Antidepressant drugs have been reported to increase GR mRNA expression [28, 66,
87, 222], GR protein expression [28, 89, 113] and GR function as measured using the
translocation of the receptor to the nucleus [28, 66, 87, 165] or dexamethasone- induced
GR-mediated gene transcription [162, 163, 164, 165, 169]. This pattern of increased GR
activation was not observed here. Moreover, the number of genes significantly regulated
by dexamethasone in depressed patients was significantly lower than in controls (1.151 vs.
2.670 transcripts). In addition, the fold changes of the 19 genes used for classification (see
table 3.1) were lower in patients than the ones in controls (mean fold change in patients:
sample 1 = 1.19±1.51, sample 2 = 1.24±1.72 vs. controls: sample 1 = 1.23±1.51 ,sample
2 = 1.27± 1.78). This observation could likely reflects baseline di↵erences in GR sensitiv-
ity. This is further supported since FKBP5 shows less regulation after dexamethasone in
patients than in controls. FKBP5 is a heatshock protein 90 associated co-chaperone of the
GR and its expression is strongly induced by glucocorticoids via intronic steroid response
elements as part of an intracellular short negative feedback loop for GR activity [223]. Its
induction by GR activation has been proposed as a molecular indicator of GR sensitivity
[98, 223].

On the other hand, this thesis also reported a genome-wide analysis of genetic variants
that influence the GR-induced gene expression changes of cis-genes (±1Mb) in peripheral
blood cells of 160 male individuals. Based on the results of previous reports [186] and our
current sample size we chose not to engage to the analysis of trans variants.
This study showed that common variants in long-range enhancer elements alter the

transcriptional responsiveness of a network of GR target genes to the GR, and that these
variants cumulatively increase the risk for stress-related psychiatric disorders, including
MDD. These findings suggest that the risk of developing MDD after adverse life events
may be influenced by an individual’s sensitivity to the downstream, transcriptional e↵ects
of cortisol released during the stressful adverse events. In addition, the findings suggest
that the alterations in the very first transcriptional response to stress may influence how an
individual processes stressful exposures. Indeed, the risk variants were also associated with
altered centromedial amygdala reactivity to threat-related cues. Such abnormal neural
processing of threat-related cues may mediate the increase in risk for MDD and other
psychiatric disorders.
One of our notable genetic findings was that the distance between the GR-response

eSNPs and the regulated probe is significantly longer than the distances previously re-
ported for baseline eQTLs (mean distance of 406kb for GR-response eQTLs vs. 149kb
baseline eQTLs in our dataset). Our data support and extend previous observations that
indicated a long-range transcriptional regulation by the GR [200, 100, 79], i.e. GREs
were generally distally distributed between upstream and downstream regions of the tran-
scription start and end site. Particularly, 63% of the GREs were distal, i.e. further than
10kb from the transcription start and end site, whereas only 31% were proximal (within
5kb from the transcription start and end site) [100]. In fact, a combined analysis of our
GR-response eQTLs and ChIA-PET data [121] from the ENCODE project [57] suggests
that there could be a physical long-range interaction between the eSNP locus and the pro-
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moter of the GR-regulated transcript for at least 25% of the GR-response eQTLs. This
observation was more frequent than expect (permutation-based FDR = 0.056). Addi-
tional experiments that investigate the direct e↵ects of the di↵erent alleles on the enhancer
function are necessary to further validate this suggestion. The finding that the identified
GR-response eSNPs do indeed tag GREs is supported by a strong enrichment of GREs
and other GR-function-related TF binding sites [103] among GR-response eSNP sequences
compared to random sequences. The potential long-range transcriptional regulations by
GR activation further highlights the importance of using functional data for the annotation
of GWAS signals, including those for MDD [142]. Proximity to or location within a gene
does not necessarily indicate that associated SNPs regulate the expression of this gene or
that they do not impact the regulation of more distant genes (see figure 3.6), even if there
is convincing prior evidence for pathophysiological relevance (such as, in our case, for the
CLOCK gene and MDD [166]).

Our results indicate that stimulated eQTL approaches that involve disease-risk relevant
transcriptional stimuli (in our case GR activation and stress) are useful in identifying novel
risk genes for common disorders. Previous studies have used eQTLs or DNA methylation
QTLs (mQTLs) for the annotation of GWAS results [155, 238] and have indicated the
importance of using eQTLs and mQTLs from disease-relevant tissues [68, 159]. While we
do not observe a significant enrichment of baseline blood eQTLs, GR-response eQTLs from
this tissue were enriched almost 1.34-fold among the variants associated with MDD. Our
findings support the notion that not only the tissue but also the type of stimulation, e.g.
mimicking aspects of stress in our experiments, can be relevant for using such QTL studies
in annotating GWAS results.

While these common genetic variants were discovered in peripheral blood cells, we pro-
vided evidence for their importance in neural circuits that are critical for generating and
regulating the stress axis response to adversity. First, using imaging genetics we demon-
strated that the cumulative GR/MDD eSNP genetic risk profile predicts dysfunctional
reactivity of the human amygdala. Second, the majority of the transcripts a↵ected by
these eSNPs in their GR-regulated gene expression in human blood were also regulated
by short-term GR activation or following exposure to chronic stress in the mouse hip-
pocampus, prefrontal cortex, or amygdala. In addition, 22 of the 24 genes formed a tightly
interconnected network with numerous experimentally validated links to psychiatric and
neurological disorders as well as antidepressant treatment (see figure 3.11 and supplemen-
tary table A.3). Next to inflammation, proteasome degradation was the pathway with
the highest connectivity in our network. For example PELI1, MKNK2, MOB3A and
COMMD1, all GR/MDD transcripts, are involved in ubiquitination. It has been shown
that activation of GRs enhances ubiquitin/proteasome-mediated degradation of glutamate
receptor subunits, and thereby mediates cognitive impairment induced by repeated stress
exposure [239]. Genetic modulation of such e↵ects may provide a mechanistic link be-
tween risk for psychiatric disorders and the genetic di↵erences in GR-induced expression
of ubiquitination-related genes observed in this study.
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Most importantly, our GR-response eQTL analysis revealed an enrichment of these
eSNPs among MDD-associated SNPs contrary to random SNP sets. This suggests that
SNPs altering the first transcriptional response to stress also influence the risk for MDD.
This association could be verified in an independent cohort and the increase in risk con-
ferred by these functional variants may extend to SCZ and BPD. A recent study of
cis-eQTLs in human cerebellumon for BPD reported a 1.32-fold enrichment of eSNPs over
random sets [68], which is concordant with our GR-respone eSNP enrichment results for
BPD (1.29-fold enrichment). A possible explanation for this agreement could be that our
analysis takes advantages, since we only used a set of preselected, i.e., di↵erentially regu-
lated, probes. Alternatively, it is not clear to what extent results obtained on postmortem
brain tissue are relevant for the disease in living subjects. Interestingly, when using the
eQTL data to measure the enrichment of GR-response eSNPs in a disorder where blood
is a more relevant tissue, like rheumatoid arthritis (RA), the eSNPs perform di↵erently
compared to MDD. In this case GR-response cis-eSNP show no enrichment (see figure
4.1). Thus, we further can conclude that GR-response eQTLs are more relevant for MDD
and related disorders than for RA and future analyses may benefit from incorporating
knowledge of cis-regulatory eSNPs from disease-risk relevant transcriptional stimuli.

The imaging genetics results provided one potential neural pathway by which GR/MDD
eSNPs may increase risk for the development of stress-related psychopathology, includ-
ing depression. Interestingly, GR/MDD eSNPs predict heightened amygdala reactivity to
stimuli that do not inherently signal threat (i.e., neutral facial expressions); this suggests
that GR/MDD eSNPs associated with the immediate transcriptome response to stress may
impair the neural circuitry that supports the learning of threat-related cues and, possibly,
thereby contribute to the overgeneralization of threat-related stress responses. Such over-
generalization may evoke stress responses in non-threatening situations and contribute to
cognitive biases associated with the development of depression and other forms of psy-
chopathology [29].

In summary, both analyses supported that studying GR-stimulated blood may help to
give additional insights into disease etiology of stress-related psychiatric disorders, espe-
cially MDD. The results of the first part of this doctoral thesis underline the value of GR-
stimulated gene expression profiles as a biomarkers for depression-related GR resistance.
Studies in larger independent samples with di↵erent gender composition and di↵erent clin-
ical settings will further explore the potential of the molecular dexamethasone-stimulation
test as a biomarker helping to characterize subgroups within patient samples that fulfill
current diagnostic criteria for a certain psychiatric category. The data presented in the
last part of this thesis show that common genetic variants that change the GR-mediated
immediate transcriptome response to stress are linked, in long-term, to both changes in
neural processing of threat and increased risk for MDD and other psychiatric disorders. To
our knowledge this is the first in vivo study of eQTLs that moderate the transcriptional re-
sponse to glucocorticoids. Two previous studies reported GR-stimulated cis-eQTLs using
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Figure 4.1.: An enrichment of GR-response eSNPs was not observed for a meta-analysis of
rheumatoid arthritis (RA; n = 5,500 cases and 20,000 controls) [204], a disease
in which glucocorticoids are one of the e↵ective treatments [10]. Only 6.5% of
the GR-response eSNPs (the dotted red line) were associated with RA at the
significant level of 0.05. The distribution of the observed overlap for sets of
1,000 random SNPs is represented as histogram.

in vitro dexamethasone incubation in osteoblasts [75] and lymphoblastoid cell lines [137],
respectively. Unfortunately, due to di↵erences in study design, e.g. cell types, smaller
cis-windows and in vitro conditions, which may have an e↵ect on gene expression levels,
our results are not directly comparable with these reports. Another important conclusion
from the here reported data led further support to the notion of a possible shared genetic
liability of some psychiatric disorders and specifically point to stress-responsive genes as
common risk factors. Studies dissecting how these genetic variants alter the molecular,
cellular, and neural response to glucocorticoids in the short- and long-term could inform
the development of novel strategies for the prevention and treatment of stress-related psy-
chiatric disorders.
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A. Appendix

A.1. Supplementary Notes

A.1.1. Baseline cis-eQTLs

Using baseline gene expression of the 4,447 di↵erently regulated autosomal array probes
(absolute fold change � 1.3 in at least 20% of all samples), 26,205 unique cis-SNPs and
764 gene expression probes corresponding to 31,541 cis-eQTLs were found to be significant
after multiple testing correction with the same strategy as described for the GR-stimulated
gene expression changes. The 26,205 unique eSNPs represent 1,010 uncorrelated eSNP bins
(1,148 eSNP bin-probe combinations). 775 eQTL bins (68%) are located within 100 kb
upstream or downstream from the array probe ends, 911 eQTL bins (79%) within 200 kb
and only 237 eQTLs bins > 200 kb (21%; figure 3.5 main text).

A.1.2. qPCR validation results for GR-response eQTLs

HIST2H2AA3/4 was the array probe with the most eSNPs overlapping with the meta-
analysis results for MDD. Two transcript variants encoding isoforms with a di↵erent 3’UTR
length have been identified for HIST2H2AA3, HIST2H2AA4. The shorter gene product
(isoform 1) is annotated by RefSeq while the alternatively spliced longer gene product (iso-
form 2) is annotated by Ensembl release 54 (HIST2H2AA3-001; ENST00000369161) and
further predicted by AceView (HIST2H2AA3.aApr07-unspliced, HIST2H2AA4.aApr07-
unspliced). This longer isoform is tagged by the significant Illumina probe (ILMN 1695435).
Hence we designed two di↵erent assays- one covering the common part of both isoforms
(assay 1) and the other tagging isoform 2 (assay 2). The expression levels measured with
both assays were highly correlated (Spearman’s test P value < 1.5⇥ 10�20, R = 74%). We
could replicate a significant SNP e↵ect in 137 samples with a P value of 0.012 using assay
1 with a genotypic model and P = 0.017 using a carrier model, with the same direction of
change as in the expression array.
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A.2. Supplementary Figures
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Figure A.1.: The number of genes that are di↵erently expressed at several time points af-
ter administration of 1.5 mg dexamethasone relative to baseline in 4 healthy
male individuals are shown. The height of the bars indicates the total num-
ber of transcripts with nominally significant changes from baseline gene
expression. Baseline blood samples were obtained at 6pm. This evening
time point was chosen so that the stimulation experiments took place dur-
ing the quiescent period of the stress hormone system. Baseline blood draws
were immediately followed by oral administration of dexamethasone. Ad-
ditional blood samples were drawn at 9pm, 11pm the same day, 8am, 6pm
the next day and 6pm at day 3. A comparison of baseline gene expression
vs. gene expression after 3, 5, 14, 24 and 48 h shows an initial high number
of gene expression changes, followed by a normalization within 24-48 hours.
The highest number of di↵erently expressed genes (highest bar in chart)
was observed at 3 and 5 hours after dexamethasone ingestion. For practical
reasons as well as to avoid secondary GR target e↵ects, in the subsequent
experiment we collected blood 3 hours after dexamethasone intake.
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Figure A.2.: Administration of dexamethasone resulted in a robust suppression of cortisol
in all individuals. Cortisol levels were significantly suppressed in healthy
controls (a; F1,90 = 89.74, P = 3.57⇥ 10�15) as well as in depressed patients
(b; F1,67 = 7.09, P = 0.0097) 3h after dexamethasone challenge. Similar
results were observed for ACTH, with a significant reduction in ACTH levels
in healthy controls (a; F1,91 = 43.96, P = 2.33 ⇥ 10�9) and in depressed
patients (b; F1,65 = 9.75, P = 0.0027) after 3h.
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Figure A.3.: Elevated GRPSs correlate with dysfunctional amygdala reactivity in the en-
tire DNS sample (n = 647). As was found in the European-American sub-
sample, elevated GRPSs predicted blunted amygdala reactivity to threat-
related expressions in comparison to neutral expressions in the entire sample
when controlling for patterns of population stratification. Post-hoc analy-
ses revealed that GRPS was not predictive of reactivity to threat-related
expressions, but that higher GRPSs predicted elevated amygdala reactivity
to neutral expressions, in comparison to non-face control stimuli.
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Figure A.4.: Statistical parametric map illustrating amygdala reactivity. Main e↵ects of
post hoc contrasts for left centromedial amygdala reactivity used in imaging
genetics analyses of GRPS in the entire sample. (a) ”Angry & Fearful
> Shape” (49 contiguous voxels; max voxel MNI coordinate, x = �24,
y = �10, z = �14, t = 22.59, P < 4.41⇥10�16), and (b) ”Neutral > Shape”
(35 contiguous voxels; max voxel MNI coordinate, x = �24, y = �10,
z = �14, t = 10.73, P < 4.41⇥ 10�16).
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A.3 Supplementary Tables

Table A.2.: List of transcription factor binding sites enriched within the sequences of
GR-response cis-eSNPs. Transcription factor a�nities were calculated using
TRAP (http://trap.molgen.mpg.de/). For all GR-response cis-eSNPs a
region of 20bp was used for the analysis. The list is ranked according to the
most enriched factors.

ID6 Name7 Sequences with the reference al-
leles

Sequences with the alternative al-
leles

�

28 Combined P9 Corrected P10
�

28 Combined P9 Corrected P10

M01230 ZNF333 29329 <1e-321 <1e-321 27243 <1e-321 <1e-321
M00980 TBP 22500 <1e-321 <1e-321 20684 <1e-321 <1e-321
M00486 PAX2 16213 <1e-321 <1e-321 14555 <1e-321 <1e-321
M01107 RUSH1A 15509 <1e-321 <1e-321 15033 <1e-321 <1e-321
M01181 NKX32 14829 <1e-321 <1e-321 12921 <1e-321 <1e-321
M00489 NKX62 14763 <1e-321 <1e-321 14267 <1e-321 <1e-321
M01162 OG2 14540 <1e-321 <1e-321 13820 <1e-321 <1e-321
M00630 FOXM1 14433 <1e-321 <1e-321 13248 <1e-321 <1e-321
M01281 NFAT1 13992 <1e-321 <1e-321 12693 <1e-321 <1e-321
M01275 IPF1 13952 <1e-321 <1e-321 12937 <1e-321 <1e-321
M00493 STAT5A 13531 <1e-321 <1e-321 12277 <1e-321 <1e-321
M01032 HNF4 13184 <1e-321 <1e-321 11774 <1e-321 <1e-321
M01653 HMGIY 13135 <1e-321 <1e-321 12740 <1e-321 <1e-321
M00100 CDXA 12004 <1e-321 <1e-321 11957 <1e-321 <1e-321
M00137 OCT1 11468 <1e-321 <1e-321 11462 <1e-321 <1e-321
M01131 SOX10 11426 <1e-321 <1e-321 10355 4.8e-236 2.1e-234
M00395 HOXA3 11132 1e-309 <1e-321 11511 <1e-321 <1e-321
M00624 DBP 10963 4.4e-293 2e-291 10516 9e-251 4.1e-249
M00921 GR 10896 1.2e-286 5.1e-285 10194 1.2e-221 4.7e-220
M01292 HOXA13 10803 1.1e-277 4.6e-276 10560 7.6e-255 3.6e-253
M00500 STAT6 10726 2e-270 8e-269 9863 5.1e-193 1.9e-191
M00744 POU1F1 10234 3.3e-225 1.3e-223 10212 3.2e-223 1.3e-221
M00912 CEBP 10173 8.2e-220 3e-218 9664 1.7e-176 5.9e-175
M01665 IRF8 10138 9.3e-217 3.2e-215 9147 4.1e-136 1.2e-134
M01117 OTX 9897 5.9e-196 2e-194 9895 9.9e-196 3.7e-194
M01227 MAFB 9578 1.5e-169 4.6e-168 8420 2.6e-86 6.1e-85
M00962 AR 9461 3.3e-160 9.8e-159 8949 1.2e-121 3.3e-120
M00109 CEBPB 9381 6.4e-154 1.9e-152 9330 5.3e-150 1.7e-148
M00268 XFD2 9249 8.4e-144 2.3e-142 9065 4.3e-130 1.3e-128
M00482 PITX2 8901 2.9e-118 7.5e-117 8880 8e-117 2.2e-115
M00690 AP3 8854 5.8e-115 1.4e-113 8335 4.3e-81 9.3e-80
M00498 STAT4 8691 8e-104 2e-102 8137 2e-69 3.8e-68
M00285 TCF11 8651 3.5e-101 8.3e-100 8428 9e-87 2.1e-85
M00396 EN1 8569 8.4e-96 1.9e-94 8596 1.4e-97 3.8e-96
M01294 PROP1 8544 3.4e-94 7.6e-93 8590 3.6e-97 9.1e-96
M00672 TEF 8505 1.1e-91 2.3e-90 8398 6.1e-85 1.4e-83
M01067 GFI1 8459 9.6e-89 2e-87 8256 2.4e-76 4.9e-75
M00987 FOXP1 8386 3.2e-84 6.7e-83 8362 1.1e-82 2.4e-81
M00252 TATA 8244 1.2e-75 2.5e-74 7693 4.7e-46 7e-45
M01483 DBX1 8197 7.7e-73 1.5e-71 8241 1.9e-75 3.7e-74
M00960 PR 8159 1.2e-70 2.3e-69 7906 9.7e-57 1.6e-55
M00451 NKX3A 8136 2.5e-69 4.7e-68 8294 1.4e-78 2.9e-77
M01232 SATB1 8097 3.7e-67 6.7e-66 8157 1.5e-70 3e-69
M00463 POU3F2 8096 4.5e-67 8e-66 8082 2.7e-66 5e-65
M00116 CEBPA 8076 5.9e-66 1e-64 8161 9.2e-71 1.8e-69

6transcription factor accession number according to the TRANSFAC database
7name of transcription factor
8
�

2-distribution for each eSNP sequence combined using Fisher’s method
9P value for the �

2-distribution
10multiple testing corrected combined P values using Benjamini-Hochberg method
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M00267 XFD1 7916 3e-57 5e-56 7939 1.6e-58 2.9e-57
M01654 DRI1 7912 4.3e-57 7.2e-56 7959 1.4e-59 2.5e-58
M00293 FREAC7 7876 3.6e-55 6e-54 7793 5.6e-51 9e-50
M01432 HOXD8 7875 3.7e-55 6e-54 7916 2.7e-57 4.7e-56
M00465 POU6F1 7842 2e-53 3.2e-52 7862 1.8e-54 3e-53
M00742 HFH4 7797 3.9e-51 6e-50 7790 8.2e-51 1.3e-49
M00510 LHX3 7758 3e-49 4.5e-48 7792 6.2e-51 9.8e-50
M01137 FOXO3A 7711 6.3e-47 9.4e-46 7766 1.2e-49 1.9e-48
M01464 HOXA10 7682 1.6e-45 2.4e-44 7731 7e-48 1.1e-46
M01316 TST1 7628 5.2e-43 7.4e-42 7682 1.6e-45 2.3e-44
M00096 PBX1 7616 2e-42 2.7e-41 7613 2.8e-42 3.8e-41
M01473 BRN4 7555 1.2e-39 1.6e-38 7616 2e-42 2.7e-41
M00351 GATA3 7549 2.2e-39 2.9e-38 7512 9.9e-38 1.3e-36
M01308 SOX4 7543 4.2e-39 5.5e-38 7178 2.2e-24 2e-23
M00809 FOX 7533 1.1e-38 1.5e-37 7524 2.8e-38 3.7e-37
M01420 NCX 7531 1.3e-38 1.7e-37 7556 1e-39 1.4e-38
M00269 XFD3 7512 9.8e-38 1.2e-36 7512 9.6e-38 1.3e-36
M00130 FOXD3 7485 1.4e-36 1.8e-35 7492 7.3e-37 9.2e-36
M00925 AP1 7475 3.7e-36 4.6e-35 6993 3.6e-18 2.6e-17
M00496 STAT1 7436 1.8e-34 2.2e-33 7164 6.6e-24 5.9e-23
M00423 FOXJ2 7434 2.2e-34 2.6e-33 7439 1.3e-34 1.6e-33
M01399 HB24 7415 1.4e-33 1.6e-32 7509 1.3e-37 1.6e-36
M01148 DMRT3 7397 7.6e-33 8.8e-32 7393 1.1e-32 1.3e-31
M00148 SRY 7396 8.3e-33 9.5e-32 7349 6.7e-31 7.1e-30
M00795 OCT 7371 8.7e-32 9.9e-31 7402 4.9e-33 5.7e-32
M00616 AFP1 7364 1.7e-31 1.9e-30 7335 2.6e-30 2.7e-29
M01599 FOXP3 7330 3.7e-30 4.1e-29 7319 1.1e-29 1.1e-28
M01469 NKX61 7324 6.5e-30 7.1e-29 7426 4.7e-34 5.7e-33
M01147 DMRT2 7315 1.5e-29 1.6e-28 7384 2.6e-32 3e-31
M01377 IRXB3 7311 2.3e-29 2.4e-28 7360 2.4e-31 2.6e-30
M01659 CDX2 7308 2.7e-29 2.8e-28 7304 4e-29 4e-28
M00082 EVI1 7295 8.9e-29 9.2e-28 7153 1.7e-23 1.5e-22
M00129 HFH1 7293 1.1e-28 1.1e-27 7258 2.5e-27 2.4e-26
M00241 NKX25 7290 1.4e-28 1.4e-27 7333 2.9e-30 3e-29
M00394 MSX1 7269 9.3e-28 9e-27 7405 3.6e-33 4.3e-32
M00802 PIT1 7264 1.4e-27 1.3e-26 7374 6.7e-32 7.6e-31
M01472 IRX5 7227 3.5e-26 3.3e-25 7244 8.4e-27 8e-26
M01324 OCTAMER 7227 3.6e-26 3.4e-25 7220 6.6e-26 6.2e-25
M00416 CART1 7216 9e-26 8.2e-25 7204 2.5e-25 2.3e-24
M01375 HOXD10 7199 3.7e-25 3.3e-24 7060 2.6e-20 2.1e-19
M00405 MMEF2 7196 4.9e-25 4.4e-24 7263 1.5e-27 1.5e-26
M01391 PAX6 7190 8e-25 7e-24 7250 4.9e-27 4.7e-26
M00406 HMEF2 7140 5e-23 4.4e-22 7168 4.9e-24 4.4e-23
M01439 DLX1 7108 5.9e-22 5.1e-21 7183 1.4e-24 1.3e-23
M00724 HNF3ALPHA 7108 6.4e-22 5.4e-21 7163 7.3e-24 6.4e-23
M01321 HOXC8 7101 1.1e-21 9.1e-21 7177 2.4e-24 2.2e-23
M01405 IRX2 7083 4.2e-21 3.5e-20 7053 4.2e-20 3.3e-19
M00006 MEF2 7079 6e-21 4.9e-20 7116 3.3e-22 2.8e-21
M00639 HNF6 7067 1.5e-20 1.2e-19 7098 1.3e-21 1.1e-20
M00318 LPOLYA 7054 4e-20 3.2e-19 7101 1e-21 8.8e-21
M00132 HNF1 7053 4.2e-20 3.4e-19 7023 3.9e-19 3e-18
M01363 LMX1B 7051 4.9e-20 3.9e-19 7087 3.2e-21 2.6e-20
M01410 IRX4 7049 5.6e-20 4.4e-19 7081 5.1e-21 4.1e-20
M01146 DMRT1 7037 1.4e-19 1.1e-18 6994 3.4e-18 2.5e-17
M01149 DMRT4 7020 5e-19 3.7e-18 6965 2.7e-17 1.8e-16
M00102 CDP 7012 9e-19 6.6e-18 7057 3.1e-20 2.5e-19
M00334 DTYPEPA 6990 4.4e-18 3.2e-17 6898 2.5e-15 1.6e-14
M01353 LHX5 6987 5.6e-18 4e-17 7038 1.3e-19 1e-18
M01268 FXR 6977 1.1e-17 7.7e-17 6439 4.5e-05 0.00019
M00991 CDX 6975 1.3e-17 8.9e-17 6953 5.9e-17 4e-16
M00311 ATATA 6967 2.2e-17 1.5e-16 6990 4.3e-18 3.1e-17
M00310 APOLYA 6967 2.3e-17 1.6e-16 6998 2.6e-18 1.9e-17
M00045 E4BP4 6962 3.2e-17 2.2e-16 6893 3.4e-15 2.2e-14
M00478 CDC5 6950 7.4e-17 5e-16 6954 5.7e-17 3.9e-16
M01409 LMX1 6947 9.2e-17 6.1e-16 6963 3.1e-17 2.1e-16
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M01406 HOXC6 6934 2.3e-16 1.5e-15 7023 4e-19 3e-18
M01150 DMRT5 6919 6.2e-16 4.1e-15 6779 4.3e-12 2.6e-11
M01318 IRX3 6896 2.8e-15 1.8e-14 6929 3.2e-16 2.1e-15
M01408 BRN3C 6877 9.8e-15 6.4e-14 6941 1.4e-16 9e-16
M01451 HOXB8 6876 1.1e-14 6.9e-14 7006 1.4e-18 1.1e-17
M00260 HLF 6871 1.5e-14 9.4e-14 6850 5.6e-14 3.5e-13
M01392 HOXA6 6867 2e-14 1.2e-13 6944 1.1e-16 7.5e-16
M00294 HFH8 6865 2.2e-14 1.4e-13 6902 2e-15 1.3e-14
M00042 SOX5 6802 1.1e-12 6.7e-12 6741 3.8e-11 2.2e-10
M00407 RSRFC4 6800 1.2e-12 7.4e-12 6818 4.1e-13 2.6e-12
M00789 GATA 6779 4.2e-12 2.5e-11 6885 5.9e-15 3.7e-14
M00791 HNF3 6754 1.8e-11 1.1e-10 6757 1.5e-11 8.9e-11
M01426 HOXB9 6746 2.9e-11 1.7e-10 6730 7e-11 4e-10
M00131 HNF3B 6743 3.4e-11 1.9e-10 6694 5e-10 2.7e-09
M01125 OCT4 6742 3.6e-11 2.1e-10 6755 1.7e-11 9.8e-11
M00725 HP1SITEFACTOR 6735 5.2e-11 3e-10 6757 1.5e-11 8.9e-11
M01418 LIM1 6708 2.3e-10 1.3e-09 6779 4.1e-12 2.5e-11
M01400 DLX3 6701 3.4e-10 1.9e-09 6765 9.7e-12 5.8e-11
M00292 FREAC4 6687 7.2e-10 3.9e-09 6593 7.8e-08 3.9e-07
M01356 PMX2B 6672 1.6e-09 8.5e-09 6714 1.7e-10 9.4e-10
M01431 BARX2 6671 1.7e-09 8.9e-09 6720 1.2e-10 6.9e-10
M01446 BARHL2 6665 2.3e-09 1.2e-08 6654 3.8e-09 2.1e-08
M00734 CIZ 6648 5.3e-09 2.8e-08 6640 7.9e-09 4.2e-08
M00228 VBP 6648 5.4e-09 2.9e-08 6574 1.8e-07 9e-07
M00485 NKX22 6644 6.5e-09 3.4e-08 6623 1.8e-08 9.5e-08
M01211 PARP 6633 1.1e-08 5.9e-08 6523 1.7e-06 7.7e-06
M01486 DLX7 6632 1.2e-08 6.2e-08 6696 4.5e-10 2.5e-09
M01328 ISL2 6627 1.5e-08 7.9e-08 6723 1.1e-10 5.9e-10
M00291 FREAC3 6597 6.2e-08 3.1e-07 6523 1.7e-06 7.7e-06
M00145 BRN2 6593 7.7e-08 3.8e-07 6717 1.4e-10 7.7e-10
M01348 K2B 6593 7.7e-08 3.8e-07 6557 3.9e-07 1.9e-06
M01396 HOXB7 6573 1.9e-07 9.2e-07 6631 1.2e-08 6.5e-08
M00640 HOXA4 6567 2.5e-07 1.2e-06 6557 3.9e-07 1.9e-06
M00103 CLOX 6556 4e-07 2e-06 6581 1.3e-07 6.7e-07
M00622 CEBPGAMMA 6555 4.2e-07 2.1e-06 6573 1.9e-07 9.3e-07
M00157 RORA2 6548 5.8e-07 2.8e-06 6439 4.5e-05 0.00019
M01487 HOXA1 6546 6.2e-07 3e-06 6580 1.4e-07 7e-07
M01454 HOXC5 6536 9.5e-07 4.5e-06 6573 1.9e-07 9.2e-07
M01460 HOXB6 6531 1.2e-06 5.6e-06 6594 7.3e-08 3.7e-07
M01319 HOXB5 6516 2.3e-06 1e-05 6543 7.1e-07 3.4e-06
M01413 HMX3 6512 2.7e-06 1.2e-05 6504 3.6e-06 1.6e-05
M01458 UNCX4.1 6512 2.7e-06 1.2e-05 6563 3e-07 1.4e-06
M01429 HOMEZ 6507 3.3e-06 1.5e-05 6438 4.6e-05 0.00019
M00410 SOX9 6507 3.3e-06 1.5e-05 6263 0.0088 0.031
M01394 HOXA7 6500 4.3e-06 1.9e-05 6540 8.1e-07 3.8e-06
M00403 AMEF2 6499 4.4e-06 2e-05 6517 2.2e-06 9.8e-06
M01369 HOXC4 6490 6.5e-06 2.9e-05 6538 9e-07 4.2e-06
M01416 HOXC9 6481 9.2e-06 4.1e-05 6578 1.5e-07 7.4e-07
M01016 SOX17 6480 9.6e-06 4.2e-05 6460 2e-05 8.8e-05
M01378 HOXA11 6469 1.4e-05 6.2e-05 6528 1.4e-06 6.4e-06
M01381 OBOX5 6464 1.8e-05 7.6e-05 6557 3.9e-07 1.9e-06
M00289 HFH3 6442 4e-05 0.00017 6472 1.3e-05 5.7e-05
M01661 HBP1 6439 4.4e-05 0.00019 6429 6.4e-05 0.00027
M01359 DOBOX4 6438 4.6e-05 0.00019 6359 0.00063 0.0024
M01435 PSX1 6434 5.3e-05 0.00022 6435 5.2e-05 0.00022
M01244 HSF2 6422 8e-05 0.00033 6374 0.00041 0.0016
M01478 CPHX 6418 9.2e-05 0.00038 6521 1.8e-06 8.3e-06
M01351 HOXA9 6418 9.4e-05 0.00039 6423 7.9e-05 0.00033
M01423 ARX 6412 0.00011 0.00046 6416 1e-04 0.00042
M01360 DBX2 6408 0.00013 0.00052 6441 4.1e-05 0.00018
M01335 VSX1 6406 0.00014 0.00057 6428 6.5e-05 0.00027
M01183 BCL6 6402 0.00016 0.00065 6376 0.00037 0.0014
M01323 OTP 6393 0.00022 0.00087 6409 0.00013 0.00052
M00437 CHX10 6372 0.00043 0.0017 6402 0.00016 0.00066
M01345 SIX6 6371 0.00045 0.0017 6377 0.00036 0.0014
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M01315 NKX52 6367 5e-04 0.0019 6360 0.00061 0.0023
M01251 E2F1 6360 0.00062 0.0024 6284 0.0053 0.019
M01327 VAX2 6356 7e-04 0.0027 6389 0.00025 0.001
M01424 HOXB4 6355 0.00072 0.0028 6387 0.00026 0.001
M01151 DMRT7 6341 0.0011 0.0042 6290 0.0045 0.016
M00462 GATA6 6333 0.0014 0.0052 6402 0.00016 0.00065
M01329 HOXC11 6333 0.0014 0.0052 6380 0.00033 0.0013
M01341 MSX3 6329 0.0016 0.0059 6358 0.00066 0.0025
M00805 LEF1 6304 0.0031 0.011 6268 0.0078 0.028
M01368 OCT2 6301 0.0034 0.013 6328 0.0016 0.0061
M01355 ALX3 6286 0.005 0.018 6296 0.0039 0.014
M01402 HOXA2 6282 0.0055 0.02 6307 0.0029 0.011
M01286 SOX 6275 0.0067 0.024 6264 0.0086 0.031
M01476 POU2F3 6257 0.01 0.036 6288 0.0048 0.017
M01326 GSH2 6246 0.013 0.047 6313 0.0024 0.009
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Table A.3.: Annotation of all interactions in figure 3.11 with the respective literature
references supporting the interaction network.

Subject Relation type Object PubMed ID CIDeR ID
15q13.3 microdeletion syndrome a↵ects activity of Autism 19289393 46184
15q13.3 microdeletion syndrome a↵ects activity of mental retardation 19289393 46185
22q11.2 deletion syndrome a↵ects activity of Schizophrenia 17008057 46202
22q11.2 deletion syndrome increases expression of RPS2 17008057 46203
AKT1 increases activity of mTOR signaling 18924132 32977
AKT1 increases quantity of HIF1A 12764143 32458
AKT1 is part of COMMD1-AKT1 complex 20237237 32241
Alzheimer disease a↵ects expression of APP (amyloid beta peptide) 24270855 46214
Alzheimer disease increases expression of OCIAD2 24270855 46204
ATP5F1 Interacts (localizes) with ICT1 20186120 46187
ATP5F1 interacts (colocalizes) with SNCA 18614564 31888
ATP5F1 interacts (colocalizes) with VHL 17353931 31896
C7orf44 Interacts (localizes) with CCDC56 23260140 46189
CCDC56 Interacts (localizes) with OCIAD2 23260140 46190
CCT7 interacts (colocalizes) with CDKN1A 21900206 32886
CDKN1A interacts (colocalizes) with HMGXB3 21900206 32897
Citalopram increases quantity of CTNNB1 22634067 32972
CLEC4C a↵ects activity of immune response 23606632 46851
CLEC4C interacts (colocalizes) with NEK2 12386167 46849
COMMD1 a↵ects activity of NEDD4L 20237237 32238
COMMD1 decreases activity of NF-kappaB complex 19220812 32316
COMMD1 decreases expression of HIF1A 20458141 32449
COMMD1 interacts (colocalizes) with CUL2 17183367 31950
COMMD1 interacts (colocalizes) with SGK1 20237237 31547
COMMD1 is part of COMMD1-SGK1 complex 20237237 32931
COMMD1 interacts (colocalizes) with AKT1 20237237 32235
COMMD1 is part of COMMD1-AKT1 complex 20237237 32902
COMMD1-AKT1 complex decreases activity of EnaC complex 20237237 32237
COMMD1-SGK1 complex decreases activity of EnaC complex 20237237 32236
CTNNB1 interacts (colocalizes) with NEK2 18086858 46845
CUL2 is part of ElonginB/C-CUL2-VHL-RBX1 complex 21942715 31944
Dexamethasone decreases quantity of ATP5F1 21060993 31540
Dexamethasone increases expression of FKBP5 12519866 32803
Dexamethasone interacts (colocalizes) with NR3C1 16189295 31548
CUL2-VHL-RBX1 complex decreases activity of HIF1A 21942715 31945
ESR2 Interacts (localizes) with CTNNB1 21182203 46192
ESR2 (polymorphism) cooccurs with Major depressive disorder 22901010 46208
EWSR1 a↵ects expression of C7orf44 20442286 41802
FAN1 (MTMR15) co-occurs with 15q13.3 microdeletion syndrome 19289393 46186
FAN1 (MTMR15) Interacts (localizes) with FSCN1 20603015 46194
FAN1 (MTMR15) Interacts (localizes) with SUMO2 21693764 46191
FKBP5 decreases activity of AKT1 22590527 32808
FKBP5 interacts (colocalizes) with HSP90AA1 19560279 32795
FKBP5 (polymorphism) cooccurs with Major depressive disorder 15565110 19744
FKBP5 (polymorphism) cooccurs with response to antidepressants 15565110 19606
FSCN1 Interacts (localizes) with CTNNB1 10026156 46195
FTH1 Interacts (localizes) with GRB2 21988832 46197
GRB2 Interacts (localizes) with CCT7 19380743 46198
GRB2 Interacts (localizes) with HIST2H2AA3 12577067 46196
HIF1A increases activity of inflammatory response 12628185 32471
HIF1A increases expression of EWSR1 20442286 41801
HLA-DRB4 (alelle variant) co-occurs with Autism 12039413 41905
HLA-DRB4 (polymorphism) cooccurs with Schizophrenia 9713902 41901
HLA-DRB5 (haplotype) a↵ects activity of Schizophrenia 17001352 46209
HLA-DRB5 (polymorphism) a↵ects activity of immune response 24075919 46210
IFNG increases expression of SLC7A7 15280038 32261
IKBKB a↵ects activity of inflammatory response 18626576 46211
IKBKB Interacts (localizes) with CTNNB1 11527961 46200
immune response a↵ects expression of HLA-DRB4 9952022 41903
IMPDH2 decreases activity of NF-kappaB complex 21460227 32324
IMPDH2 decreases activity of TLR signaling pathway 21460227 32546
IMPDH2 interacts (colocalizes) with AKT1 10930578 32903
Ketamine decreases activity of Major depressive disorder 22205190 32978
Ketamine increases activity of mTOR signaling 20724638 32809
Major depression disorder increases expression of TMEM176A 20830301 46212
Major depressive disorder increases expression of ATP5F1 22832852 31537
MKNK2 decreases activity of SPRY2 19864419 32242
MKNK2 increases activity of inflammatory response 10559880 32362
MKNK2 increases quantity of IFNG 10559880 32361
MKNK2 increases quantity of SPRY2-NEDD4 complex 19864419 32231
MKNK2 increases quantity of TNF 10559880 32357
MKNK2 Interacts (localizes) with ESR2 11013076 46199
MRPL54 Interacts (localizes) with ICT1 20186120 46188
NEDD4 increases ubiquitination of MOB3A 19953087 32436
NEDD4 is part of SPRY2-NEDD4 complex 19864419 32233
NEDD4L decreases activity of BMP receptor signaling 15496141 32523
NEDD4L decreases activity of EnaC complex 20237237 32239
NEDD4L increases ubiquitination of MOB3A 19953087 32436
NF-kappaB complex a↵ects activity of inflammatory response 22726116 32319
NF-kappaB complex increases expression of HIF1A 18432192 32463
NF-kappaB complex increases expression of NUAK2 15345718 32395
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NR3C1 increases expression of CDKN1A 9442036 32989
NR3C1 increases expression of SGK1 16189295 31549
NR3C1 interacts (colocalizes) with HSP90AA1 19560279 32793
NUAK2 increases activity of neural tube development 22689267 32406
Obesity increases expression of OCIAD2 20020228 46206
OCIAD2 increases quaintity of APP (amyloid beta peptide) 24270855 46205
PELI1 a↵ects activity of inflammatory response 19734906 32252
PELI1 a↵ects activity of TLR signaling pathway 19734906 32562
PELI1 increases activity of NF-kappaB complex 19734906 32251
PELI1 Interacts (localizes) with IKBKB 21204785 46201
POLR2I interacts (colocalizes) with TBP 20482850 32611
Post-traumatic stress disorder increases methylation of FSCN1 23630272 46215
RELA increases activity of NF-kappaB complex 12213593 32952
RELA interacts (colocalizes) with COMMD1 20048074 31555
RELA interacts (colocalizes) with TBP 7706261 31648
response to antidepressants a↵ects quantity of CTNNB1 22472057 32974
RPS2 Interacts (localizes) with VHL 17353931 46217
Schizophrenia increases expression of FTH1 18191109 46218
SGK1 increases transport of SLC9A3R2 11751930 31677
SGK1 increases transport of SLC9A3R2 11751930 31677
SGK1 is part of COMMD1-SGK1 complex 20237237 32240
SLC6A15 increases activity of neutral amino acid transport 21521612 32887
SLC6A15 (polymorphism) cooccurs with Major depressive disorder 21521612 22768
SLC7A7 increases activity of neutral amino acid transport 9878049 32965
SLCO3A1 interacts (colocalizes) with SLC9A3R2 15553237 31675
SLCO3A1 (polymorphism) cooccurs with Schizophrenia 18521091 32933
SNCA interacts (colocalizes) with CCT7 18614564 31889
SPRY2 interacts (colocalizes) with NEDD4 19864419 32232
SPRY2 is part of SPRY2-NEDD4 complex 19864419 32244
SUMO2 Interacts (localizes) with HIST2H2AA3 21693764 46193
TLR signaling pathway increases activity of mTOR signaling 18924132 32871
TMEM176A a↵ects activity of dendritic cell di↵erentiation 20501748 46216
TNF increases expression of SLC7A7 11742806 32266
VHL interacts (colocalizes) with CUL2 9122164 31934
VHL is part of CUL2-VHL-RBX1 complex 21942715 31941

90



A.3 Supplementary Tables

Table A.4.: List of the gene expression data from two mouse experiments com-
pared to human eQTL study. The orthologous genes in mice were
compared to the human probe genes of the GR-response cis-eQTLs
that showed overlap with the meta-analysis for MDD and tested
for di↵erential expression between baseline and GR-stimulated ex-
pression in HC, PFC and AM, as well as for di↵erential expression
between stress resilient and susceptible groups of mice in CA1 and
DG. Transcripts regulated in brain are marked with #.

Humans

Network$ Probe genea Probe idb FCc
FCRisk

d
FCNoRisk

e changef

1 yes ATP5F1 ILMN 1721989 -1.13 -0.12 -0.33 0.21
2 yes C7orf44 ILMN 2081335 1.18 0.18 0.36 0.17
3 yes CCT7 ILMN 1662954 -1.17 -0.4 -0.2 -0.2
4 yes CLEC4C ILMN 1665457 1.19 0.69 0.21 -0.48

CLEC4C ILMN 1682259 1.12 0.46 0.14 -0.32
5 yes COMMD1 ILMN 1761242 -1.22 -0.18 -0.34 0.16

6 yes FTH1 ILMN 1746525 1.11 0.29 0.11 -0.18

7 yes HIST2H2AA3.HIST2H2AA4 ILMN 1695435 1.22 0.34 -0.02 -0.36
8 yes HLA-DRB4 ILMN 2159694 -1.08 -0.03 -0.23 -0.2
9 yes HLA-DRB5 ILMN 1697499 -1.07 0.04 -0.32 -0.36
10 yes HMGXB3 ILMN 1694686 -1.14 -0.3 -0.13 0.16
11 yes IMPDH2 ILMN 1705737 -1.24 -0.36 -0.2 -0.16
12 no LRRC25 ILMN 1766487 1.1 -0.06 0.21 0.15
13 yes MKNK2 ILMN 2347068 1.18 0.44 0.22 -0.21

14 yes MOB3A ILMN 1721344 1.15 0.42 0.2 -0.22
15 yes MRPL54 ILMN 1658486 -1.24 -0.45 -0.27 -0.18
16 yes MTMR15 ILMN 1778734 -1.16 -0.27 -0.16 0.11
17 yes NUAK2 ILMN 2094952 1.15 0.1 0.3 0.19
18 yes OCIAD2 ILMN 1700306 -1.32 0.24 -0.36 -0.61
19 yes PELI1 ILMN 1679268 1.68 0.98 0.69 -0.29

20 yes POLR2I ILMN 1720542 -1.18 -0.29 -0.11 -0.19
21 yes RPS2 ILMN 1688749 -1.22 0.14 -0.3 0.17
22 yes SLC7A7 ILMN 1810275 -1.01 -0.23 0.03 -0.2

23 yes SLCO3A1 ILMN 1663699 1.11 0.34 0.12 -0.22

24 yes TMEM176A ILMN 1791511 -1.15 -0.02 -0.24 -0.22
* expressed below background-signal
$ Probe genes that generated a tightly interconnected network in 3.11 (indicated by: yes)
a Human array probe gene
b Illumina probe identifier for HumanHT-12 v3
c, d, e fold change of GR-stimulated/baseline gene expression (=deltaDex) for all samples, risk genotype car-
riers and nonrisk genotype carriers in human blood

f deltaDex change from risk to nonrisk genotype carriers in human blood
g orthologous genes in mice
h,u array quality checks
i Illumina probe identifier for MouseRef-8 v2
j, l, n ,p ,r fold change of GR-stimulated/baseline gene expression in each mice tissue (blood, HC, PFC, HC
and PFC together, AM)

k, m, o, q, l, s nominal P value for di↵erentially regulated mRNA Expression of deltaDex in each mice tissue
(blood, HC, PFC, HC and PFC together, AM)

U Illumina probe identifier for MouseRef-8 v1
v, w score for di↵erential expression between resilient and stress susceptible groups of mice (DS=Di↵Score>
±13 equal to P value=0.05)

x, y fold change of general expression between resilient and stress susceptible groups of mice
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GR-stimulation mouse model
Orthologe Genesg Array QCh Probe idi FCBlood

j
PBlood

k
FCHC

l
PHC

m

1 Atp5f1 ILMN 2790486 -1.11 0.00669 1.04 0.412
2 no orthologous gene NA NA NA NA NA NA
3 # Cct7 ILMN 1233793 1.14 0.00353 1.23 0.0428
4 Clec4c ILMN 2959372 -1.14 0.00418 * *
5 Commd1 ILMN 1215639 1.05 0.24 -1.01 0.93

Commd1 ILMN 1231658 -1.19 9.66e-05 -1.02 0.503
6 Fth1 ILMN 2876066 1.16 0.109 -1 0.978

Fth1 ILMN 2876071 1.23 0.0276 -1.04 0.732
7 Hist1h2al no Ilum. Probe NA NA NA NA NA
8 no orthologous gene NA NA NA NA NA NA
9 no orthologous gene NA NA NA NA NA NA
10 # Hmgxb3 ILMN 1246992 -1.17 0.00727 1.1 0.0632
11 Impdh2 ILMN 2588398 -1.43 2.36e-06 1.02 0.697
12 Lrrc25 ILMN 2715800 * * * *
13 # Mknk2 ILMN 2733887 -1.19 0.0381 1.16 0.00162
14 Mob3a no Ilum. Probe NA NA NA NA NA
15 # Mrpl54 ILMN 2755519 -1.36 3.89e-05 -1.06 0.141
16 Mtmr15 no Ilum. Probe NA NA NA NA NA
17 # Nuak2 ILMN 2680038 -1.24 0.00153 1.06 0.14
18 # Ociad2 ILMN 2943722 1.21 0.0388 -1.03 0.739
19 # Peli1 ILMN 1239770 -1.22 0.000412 1.07 0.279

Peli1 ILMN 2627441 -1.26 0.00012 1.07 0.406
20 # Polr2i ILMN 2666438 -1.02 0.597 -1.06 0.0287
21 Rps2 ILMN 2946616 -1.22 0.0435 -1.09 0.125
22 # Slc7a7 ILMN 1240318 * * 1.06 0.288

Slc7a7 ILMN 2723826 * * 1 0.953
23 Slco3a1 ILMN 1235635 * * 1.16 0.219

# Slco3a1 ILMN 1235735 1.07 0.00475 1.04 0.402
# Slco3a1 ILMN 2663230 1.05 0.105 1.23 0.000565

24 Tmem176a no Ilum. Probe NA NA NA NA NA

GR-stimulation mouse model
FCPFC

n
PPFC

o
FCPFC$HC

p
PPFC&HC

q
FCAM

r
PAM

s

1 1.08 0.204 1.05 0.2463 1.05 0.294
2 NA NA NA NA NA NA
3 -1.12 0.142 1.03 0.6176 1 0.968
4 * * * * * *
5 -1.08 0.261 -1.06 0.284 1.02 0.723

1.01 0.813 -1.01 0.7038 1 0.918
6 1.01 0.899 1.01 0.9968 -1.04 0.306

-1.06 0.419 -1.05 0.455 -1.02 0.581
7 NA NA NA NA NA NA
8 NA NA NA NA NA NA
9 NA NA NA NA NA NA
10 1.07 0.218 1.08 0.02834 -1.03 0.373
11 1.04 0.325 1.02 0.4948 -1.04 0.358
12 * * * * * *
13 1.14 0.00155 1.14 3.847e-05 1.05 0.226
14 NA NA NA NA NA NA
15 -1.08 0.0877 -1.08 0.02002 -1.01 0.787
16 NA NA NA NA NA NA
17 1.1 0.0274 1.08 0.004751 1.13 0.00145
18 1.39 0.000124 1.15 0.01646 1.34 2.45e-06
19 1.12 0.0489 1.09 0.05299 1.11 0.0154

1.02 0.643 1.04 0.3519 1.09 0.0667
20 -1.02 0.424 -1.04 0.01715 -1.02 0.376
21 1.08 0.231 1.01 0.8909 1.01 0.783
22 1.15 0.00107 1.09 0.00193 * *

1.06 0.12 1.03 0.2904 1.02 0.562
23 -1.02 0.805 1.06 0.3859 1.03 0.62

1.19 0.000628 1.11 0.001138 1.03 0.509
1.37 3.29e-05 1.28 6.379e-08 1.05 0.365

24 NA NA NA NA NA NA
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Chronic social stress mouse model
Orthologe Genes Array QCt Probe idu DSCA1

v
changeCA1

w
DSDG

x
changeDG

y

1 # Atp5f1 ILMN 2790486 -87.35 0.51 -5.67 0.11
2 no orthologous gene NA NA NA NA NA NA
3 # Cct7 ILMN 1233793 -259.81 0.71 -5.01 0.06
4 Clec4c no Ilum. Probe NA NA NA NA NA

5 Commd1 ILMN 1215639 * * -0.41 0.04
Commd1 ILMN 1231658 -3.41 0.3 -4.38 0.09

6 # Fth1 ILMN 2744442 -0.92 0.02 30.91 -0.21

7 Hist1h2al no Ilum. Probe NA NA NA NA NA
8 no orthologous gene NA NA NA NA NA NA
9 no orthologous gene NA NA NA NA NA NA
10 Hmgxb3 no Ilum. Probe NA NA NA NA NA
11 # Impdh2 ILMN 2588399 15.23 -0.14 4.16 -0.06
12 Lrrc25 ILMN 2715800 * * * *
13 Mknk2 ILMN 2733887 2.44 -0.29 3.73 -0.27

Mknk2 ILMN 2776441 * * * *
14 Mob3a no Ilum. Probe NA NA NA NA NA
15 Mrpl54 ILMN 2755519 -2.67 0.22 -4.65 0.11
16 Mtmr15 no Ilum. Probe NA NA NA NA NA
17 Nuak2 no Ilum. Probe NA NA NA NA NA
18 Ociad2 no Ilum. Probe NA NA NA NA NA
19 # Peli1 ILMN 1239770 * * 18.18 -1.09

# Peli1 ILMN 2627441 2.82 -0.55 17.92 -0.26
20 # Polr2i ILMN 2666438 -3.05 0.16 16.44 -0.2
21 # Rps2 ILMN 2717549 -14.56 0.12 24.45 -0.13
22 Slc7a7 ILMN 1240318 * * * *

Slc7a7 ILMN 2690187 * * * *
23 # Slco3a1 ILMN 1235635 -16.46 0.45 -35.34 0.29

Slco3a1 ILMN 1235735 * * * *
Slco3a1 ILMN 2663230 13.38 -0.47 0.68 -0.03

24 Tmem176a no Ilum. Probe NA NA NA NA NA
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Table A.5.: This list represents the set of genes of the interaction network in figure 3.11
including genes supported by the eQTL study (”eQTL”) as well as the addi-
tional genes (”add”) from the network analysis. The probes for orthologous
mouse genes on gene expression arrays were tested for di↵erential expression
in the CA1 and DG region of the HC between stress-resilient and stress-
susceptible groups of mice. The orthologous genes were also tested for signif-
icant regulation in the HC, PFC and the AM after stimulation with dexam-
ethasone. The human genes APP, C7ORF44, HLA-DRB4 and HLA-DRB5
had no orthologs in mouse.

Chronic social stress mouse model GR-stimulation mouse model

Network P genea Probe idb DSCA1
c DSDG

d Probe ide PHC
f PPFC

g PPFC&HC
h PAM i

1 add Akt1 ILMN1213935 * * ILMN1213935 * * * *
2 eQTL Atp5f1 ILMN 2790486 -87.35 -5.67 ILMN 2790486 0.412 0.204 0.2463 0.294
3 add Ccdc56 ILMN 2932518 * * ILMN 2932518 0.458 0.767 0.4927 0.0676
4 eQTL Cct7 ILMN 1233793 -259.81 -5.01 ILMN 1233793 0.0428 0.142 0.6176 0.968

add Cdkn1a ILMN 2634083 -0.26 -2.86 ILMN 2634083 4.29e-14 1.59e-15 3.877e-28 2.17e-18
add Cdkn1a ILMN 1214871 0.06 -0.85 no Ilum. Probe NA NA NA NA
add Cdkn1a no Ilum. Probe NA NA ILMN 2846775 1.46e-14 1.33e-13 5.184e-27 5.98e-17

5 add Cdkn1a no Ilum. Probe NA NA ILMN 2846776 5.5e-16 3.06e-15 2.511e-30 4.28e-16
6 eQTL Clec4c no Ilum. Probe NA NA ILMN 2959372 * * * *

eQTL Commd1 ILMN 1215639 * -0.41 ILMN 1215639 0.93 0.261 0.284 0.723
7 eQTL Commd1 ILMN 1231658 -3.41 -4.38 ILMN 1231658 0.503 0.813 0.7038 0.918

add Ctnnb1 no Ilum. Probe NA NA ILMN 2616556 0.671 0.519 0.7962 0.312
add Ctnnb1 ILMN 2696575 371.3 205.5 ILMN 2696575 0.524 0.0561 0.2291 0.568

8 add Ctnnb1 no Ilum. Probe NA NA ILMN 2994460 0.0794 0.246 0.6201 0.951
add Cul2 ILMN 1238615 2.51 -36.65 ILMN 1238615 0.438 0.53 0.8926 0.476

9 add Cul2 no Ilum. Probe NA NA ILMN 2987369 0.236 0.459 0.1312 0.629
add Esr2 ILMN 1236030 0.2 -5.55 ILMN 1236030 * * * 0.948
add Esr2 no Ilum. Probe NA NA ILMN 3041053 * * * *

10 add Esr2 no Ilum. Probe NA NA ILMN 3115826 * * * *
add Ewsr1 ILMN 1219609 * * ILMN 1219609 * * * *

11 add Ewsr1 ILMN 2769308 * * ILMN 2769308 * * * *
12 add Fkbp5 ILMN 2718266 0.81 0.03 ILMN 2718266 5.05e-13 1.41e-13 1.223e-24 4.95e-20
13 add Fscn1 ILMN 2630605 2.19 -53.54 ILMN 2630605 0.00419 0.5 0.003726 0.596

eQTL Fth1 ILMN 2744442 -0.92 30.91 ILMN 2876066 0.978 0.899 0.9968 0.306
14 eQTL Fth1 ILMN 2876071 0.732 0.419 0.455 0.581
15 add Grb2 ILMN 1222450 -10.32 -4.16 ILMN 2995537 0.579 0.689 0.6062 0.409
16 add HIF1A no Ilum. Probe NA NA ILMN 2852034 0.505 0.11 0.06288 0.837
17 eQTL Hist1h2al no Ilum. Probe NA NA no Ilum. Probe NA NA NA NA
18 eQTL Hmgxb3 no Ilum. Probe NA NA ILMN 1246992 0.0632 0.218 0.02834 0.373

add Hsp90aa1 no Ilum. Probe NA NA ILMN 2662557 * * * *
19 add Hsp90aa1 no Ilum. Probe NA NA ILMN 2752883 0.285 0.0204 0.3996 0.714
20 add Ict1 ILMN 2642063 -10.32 -4.16 ILMN 2642063 0.271 0.735 0.3128 0.082
21 add Ifng ILMN 2685712 * * ILMN 2685712 * * * *
22 add Ikbkb ILMN 2589557 4.41 25.13 ILMN 2589556 0.0291 0.938 0.08341 0.525
23 eQTL Impdh2 ILMN 2588399 15.23 4.16 ILMN 2588398 0.697 0.325 0.4948 0.358

eQTL Mknk2 ILMN 2733887 2.44 3.73 ILMN 2733887 0.00162 0.00155 3.847e-05 0.226
24 eQTL Mknk2 ILMN 2776441 * *
25 eQTL Mob3a no Ilum. Probe NA NA no Ilum. Probe NA NA NA NA
26 eQTL Mrpl54 ILMN 2755519 -2.67 -4.65 ILMN 2755519 0.141 0.0877 0.02002 0.787
27 eQTL Mtmr15 no Ilum. Probe NA NA no Ilum. Probe NA NA NA NA
28 add Nedd4 ILMN 2594344 -9.54 13.46 ILMN 2594344 0.075 0.513 0.07812 0.196
29 add Nedd4l ILMN 2604457 34.36 -2.76 ILMN 2878501 8.15e-06 2.91e-06 1.274e-10 0.000183
30 add Nek2 no Ilum. Probe NA NA no Ilum. Probe NA NA NA NA
31 add Nr3c1 ILMN 2740568 * * ILMN 2740568 0.0389 7.46e-07 3.807e-07 NA
32 eQTL Nuak2 no Ilum. Probe NA NA ILMN 2680038 0.14 0.0274 0.004751 0.00145
33 eQTL Ociad2 no Ilum. Probe NA NA ILMN 2943722 0.739 0.000124 0.01646 2.45e-06

eQTL Peli1 ILMN 1239770 * 18.18 ILMN 1239770 0.279 0.0489 0.05299 0.0154
34 eQTL Peli1 ILMN 2627441 2.82 17.92 ILMN 2627441 0.406 0.643 0.3519 0.0667
35 eQTL Polr2i ILMN 2666438 -3.05 16.44 ILMN 2666438 0.0287 0.424 0.01715 0.376
36 add Rela ILMN 2740859 -7.16 -11.26 ILMN 2740859 0.61 0.909 0.6022 0.0311
37 eQTL Rps2 ILMN 2717549 -14.56 24.45 ILMN 2946616 0.125 0.231 0.8909 0.783
38 add Sgk1 ILMN 1213954 * * ILMN 1213954 1.23e-07 2.47e-09 4.711e-15 3.21e-12

add Slc6a15 ILMN 1245258 -102.16 -0.25 ILMN 1245258 0.75 0.715 0.8139 0.594
add Slc6a15 ILMN 1258914 0.72 4.5 ILMN 1258914 0.913 0.426 0.4772 0.753

39 add Slc6a15 no Ilum. Probe NA NA ILMN 2689230 0.825 0.624 0.7441 0.527
eQTL Slc7a7 ILMN 1240318 * * ILMN 1240318 0.288 0.00107 0.00193 *

40 eQTL Slc7a7 ILMN 2690187 * * ILMN 2723826 0.953 0.12 0.2904 0.562
add Slc9a3r2 ILMN 1231582 * * no Ilum. Probe NA NA NA NA
add Slc9a3r2 ILMN 1218241 0.51 * ILMN 1218241 * 0.755 * *

41 add Slc9a3r2 ILMN 2710274 * * ILMN 2710274 0.174 0.319 0.1818 0.328
eQTL Slco3a1 ILMN 1235635 -16.46 -35.34 ILMN 1235635 0.219 0.805 0.3859 0.62
eQTL Slco3a1 ILMN 1235735 * * ILMN 1235735 0.402 0.000628 0.001138 0.509

42 eQTL Slco3a1 ILMN 2663230 13.38 0.68 ILMN 2663230 0.000565 3.29e-05 6.379e-08 0.365
add Snca ILMN 3059393 * * ILMN 3059393 0.937 0.873 0.7163 0.393
add Snca ILMN 3136638 * * ILMN 3136638 0.295 0.9 0.5863 0.709

43 add Snca ILMN 3161601 * * ILMN 3161601 0.71 0.695 0.7955 0.767
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44 add Spry2 ILMN 2749464 -0.27 2.29 ILMN 2749464 0.67 0.308 0.6795 NA
add Sumo2 ILMN 2715025 -8.62 -1.77 ILMN 2980331 0.938 0.123 0.221 0.703

45 add Sumo2 ILMN 1221126 -0.44 7.72 no Ilum. Probe NA NA NA NA
add Tbp ILMN 2626740 * * ILMN 2869461 0.991 0.112 0.4598 0.943

46 add Tbp ILMN 2613569 * * no Ilum. Probe NA NA NA NA
47 add Tgfb1 ILMN 2711461 * * ILMN 2711461 0.048 0.0763 0.02671 0.00015
48 eQTL Tmem176a no Ilum. Probe NA NA no Ilum. Probe NA NA NA NA
49 add Tnf ILMN 2467245 * * ILMN 2899863 * * * *
50 add Vhlh ILMN 2518546 -119.09 -10.06 ILMN 2518546 0.244 0.392 0.7012 0.787

* expressed below background-signal
a Mouse array probe gene
b Illumina probe identifier for MouseRef-8 v1
c,d score for di↵erential expression between resilient and stress susceptible groups of mice (for a P value of 0.05, DS=Di↵Score
> ±13)
e Illumina probe identifier for MouseRef-8 v2
f,g,h,i nominal P value for di↵erentially regulated mRNA Expression of the ratio GR-stimulated/baseline
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List of Abbreviations

1KGP 1,000 Genomes Project
5-HTR2A 5-hydroxytryptamine receptor 2A
5-HTTLPR 5-hydroxytriptamine-transporter-linked polymorphic region
ACC accuracy
ACTH adrenocorticotrophic hormone
ADHD attention deficit-hyperactivity disorder
AM amygdala
AP1 activating protein-1
ART Artifact detection tool
ASD autism spectrum disorder
ASN East Asian
ATP adenosine triphosphate
AUC area under the curve
BDI Beck depression invertury
BDNF brain-derived neurotrophic factor
BLA basolateral complex of the amygdala
BMI body mass index
BOLD blood oxygenation level-dependent
bp base pairs
BPD bipolar disorder
cAMP cyclic adenosine monophosphate
CD cross-disorder
CDA cross-disorder associations
cDNA complementary DNA
CeA central nucleus of the amygdala
CES-D center for epidemiological studies depression scale
CEU Utah Residents (CEPH) with Northern and Western European ancestry
Cg25 cingulate cortex
ChIA-PET chromatin interaction analysis by paired-end tag sequencing
ChIP chromatin immunoprecipitation
CI confidence interval
CMS chronic mild stress
COMT catechol-O-methyltransferase
CREB1 cAMP responsive element binding protein 1
CRF corticotropin releasing factor
CRH corticotrophin releasing hormone
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CRHR1 corticotropin releasing hormone receptor 1
DAOA D-amino acid oxidase activator
DG dentate gyrus
DHSs deoxyribonuclease I hypersensitive sites
DISC-1 disrupted in schizophrenia-1
DNA deoxyribonucleic acid
DNaseI deoxyribonuclease I
DNS Duke Neurogenetics Study
DSM-IV-TR diagnostic and statistical manual of mental disorders forth edition, text

revision
DST dexamethasone suppression test
EEG electroencephalography
ENCODE encyclopedia of DNA elements
eQTL bin set of eSNP bin probe combination
eQTL expression quantitative trait locus
eQTLs expression quantitative trait loci
eSNP bin set of eSNPs in LD
eSNP expression SNP
EUR-AM European-Americans
FDR false discovery rate
FKBP5 FK506 binding protein 5
fMRI functional magnetic resonance imaging
FN fase negatives
FP false positives
FST forced swim test
FWER family-wise error rate
GABA gamma-aminobutyric acid
GAD1 glutamate decarboxylase 1
GR glucocorticoid receptor
GREs glucocorticoid response elements
GRIA3 glutamate receptor, ionotropic, AMPA subunit 3
GRPS genetic risk profile score
GTEx Genotype-Tissue Expression
GWAS genome-wide association study
HAM-D Hamilton rating scale for depression
HC hippocampus
HLA human leukocyte antigen
HMM hidden Markov model
HPA hypothalamic-pituitary-adrenal
HWE Hardy-Weinberg equilibrium
ICD-10 international classification of diseases
kb kilo base pairs
LCLs lymphoblastoid cell lines
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LD linkage disequilibrium
LH learned helplessness
LM linear models
MAF minor allele frequency
MAOA monoamine oxidase A
MARS Munich antidepressant response signature
Mb mega base pairs
MDD major depressive disorder
MDS multidimensional scaling
MEG magnetoencephalography
MHC major histocompatibility complex
miRNA microRNA
MPIP Max-Planck Institute of Psychiatry
mQTLs DNA methylation QTLs
MR mineralocorticoid receptor
MRI magnetic resonance imaging
mRNA messenger RNA
MuTHER Multiple Tissue Human Expression Resource
NaSSA noradrenergic and specific serotonergic antidepressant
NFB nuclear factor kappa B
NR3C1 nuclear receptor subfamily 3, group C, member 1
NTRK2 neurotrophic tyrosine kinase, receptor, type 2
OOB out-of-bag
P2RX7 purinergic receptor P2X, ligand-gated ion channel, 7
PC principal components
PCA principal component analysis
PET positron emission tomography
PFC prefrontal cortex
PGC Psychiatric Genomics Consortium
PHQ-9 patient health questionnaire
qPCR quantitative real-time PCR
QTL quantitative trait locus
RA rheumatoid arthritis
RefSeq Reference Sequence
RF random forest
RIN RNA integrity number
RNA-seq RNA sequencing
RNA ribonucleic acid
ROI region of interest
SAGE serial analysis of gene expression
SCZ schizophrenia
SD standard deviation
SLC6A4 solute carrier family 6 (neurotransmitter transporter), member 4
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SNP single nucleotide polymorphism
SNRI serotonin and noradrenaline re-uptake inhibitor
SSRE selective serotonin re-uptake enhancer
SSRI selective serotonin re-uptake inhibitor
TCA tricyclic antidepressants
TF transcription factors
TN true negatives
TNR true negative rate
TP true prosives
TPH2 tryptophan hydroxylase 2
TPR true positive rate
TST tail suspension test
VSN variance stabilization and normalization
WHO world health organisation

100



Bibliography

Bibliography

[1] G. R. Abecasis, E. Noguchi, A. Heinzmann, J. A. Traherne, S. Bhattacharyya, N. I.
Leaves, G. G. Anderson, Y. Zhang, N. J. Lench, A. Carey, L. R. Cardon, M. F.
Mo↵att, and W. O. Cookson. Extent and distribution of linkage disequilibrium in
three genomic regions. American journal of human genetics, 68(1):191–197, Jan.
2001.

[2] H. Abusamra. A Comparative Study of Feature Selection and Classification Methods
for Gene Expression Data of Glioma. Procedia Computer Science, 2013.

[3] J. Alonso, M. C. Angermeyer, S. Bernert, R. Bru↵aerts, T. S. Brugha, H. Bryson,
G. de Girolamo, R. Graaf, K. Demyttenaere, I. Gasquet, J. M. Haro, S. J. Katz,
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N. Taub, W. A. M. Vollebergh, and ESEMeD/MHEDEA 2000 Investigators, Euro-
pean Study of the Epidemiology of Mental Disorders (ESEMeD) Project. Prevalence
of mental disorders in Europe: results from the European Study of the Epidemiology
of Mental Disorders (ESEMeD) project. Acta psychiatrica Scandinavica, 109(Suppl.
420):21–27, 2004.

[4] K. Amunts, O. Kedo, M. Kindler, P. Pieperho↵, H. Mohlberg, N. J. Shah, U. Habel,
F. Schneider, and K. Zilles. Cytoarchitectonic mapping of the human amygdala,
hippocampal region and entorhinal cortex: intersubject variability and probability
maps. Anatomy and embryology, 210(5-6):343–352, Dec. 2005.

[5] L. Andrade, J. J. Caraveo-Anduaga, P. Berglund, R. V. Bijl, R. De Graaf, W. Volle-
bergh, E. Dragomirecka, R. Kohn, M. Keller, R. C. Kessler, N. Kawakami, C. Kiliç,
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Expression profiling of a genetic animal model of depression reveals novel molecular
pathways underlying depressive-like behaviours. PloS one, 5(9):e12596, 2010.

[15] A. Blomho↵, M. Olsson, S. Johansson, H. E. Akselsen, F. Pociot, J. Nerup,
I. Kockum, A. Cambon-Thomsen, E. Thorsby, D. E. Undlien, and B. A. Lie. Link-
age disequilibrium and haplotype blocks in the MHC vary in an HLA haplotype
specific manner assessed mainly by DRB1*03 and DRB1*04 haplotypes. Genes and
immunity, 7(2):130–140, Mar. 2006.

[16] R. Bogdan, D. E. Williamson, and A. R. Hariri. Mineralocorticoid receptor Iso/Val
(rs5522) genotype moderates the association between previous childhood emotional
neglect and amygdala reactivity. American Journal of Psychiatry, 169(5):515–522,
May 2012.

[17] J. R. Bostwick and C. H. Le. Pharmacogenetics and Depression: Realized Dream or
Great Expectation? US Pharmacist, 2011.

102



Bibliography

[18] M. P. Bowley, W. C. Drevets, D. Ongür, and J. L. Price. Low glial numbers in the
amygdala in major depressive disorder. Biological Psychiatry, 52(5):404–412, Sept.
2002.

[19] R. G. Bradley, E. B. Binder, M. P. Epstein, Y. Tang, H. P. Nair, W. Liu, C. F.
Gillespie, T. Berg, M. Evces, D. J. Newport, Z. N. Stowe, C. M. Heim, C. B. Nemero↵,
A. Schwartz, J. F. Cubells, and K. J. Ressler. Influence of Child Abuse on Adult
Depression: Moderation by the Corticotropin-Releasing Hormone Receptor Gene.
Archives of General Psychiatry, 65(2):190–200, Feb. 2008.

[20] L. Breiman. Random forests. Machine Learning, 45(1):5–32, Oct. 2001.

[21] J. C. Britton, S. Lissek, C. Grillon, M. A. Norcross, and D. S. Pine. Development
of anxiety: the role of threat appraisal and fear learning. Depression and anxiety,
28(1):5–17, Jan. 2011.

[22] J. Brookfield. Q&A: promise and pitfalls of genome-wide association studies. BMC
biology, 2010.

[23] V. M. Brown, K. S. Labar, C. C. Haswell, A. L. Gold, G. McCarthy, R. A. Morey,
and M.-A. M. Workgrp. Altered Resting-State Functional Connectivity of Baso-
lateral and Centromedial Amygdala Complexes in Posttraumatic Stress Disorder.
Neuropsychopharmacology, 39(2):351–359, Jan. 2014.

[24] S. Browning. Multilocus association mapping using variable-length markov chains.
The American Journal of Human Genetics, 2006.

[25] J. H. Byrne. Neuroscience Online: An Electronic Textbook for the Neurosciences.
Department of Neurobiology and Anatomy; University of Texas Medical School at
Houston, 1997.

[26] C. Cai, P. Langfelder, T. F. Fuller, M. C. Oldham, R. Luo, L. H. van den Berg,
R. A. Opho↵, and S. Horvath. Is human blood a good surrogate for brain tissue in
transcriptional studies? BMC genomics, 11:589, 2010.

[27] B. Carroll. Dexamethasone suppression test for depression. Advances in biochemical
psychopharmacology, 1984.

[28] L. A. Carvalho and C. M. Pariante. In vitro modulation of the glucocorticoid receptor
by antidepressants. Stress (Amsterdam, Netherlands), 11(6):411–424, Nov. 2008.

[29] A. Caspi, A. R. Hariri, A. Holmes, R. Uher, and T. E. Mo�tt. Genetic sensitivity to
the environment: the case of the serotonin transporter gene and its implications for
studying complex diseases and traits. American Journal of Psychiatry, 167(5):509–
527, May 2010.

103



Bibliography

[30] A. Caspi, K. Sugden, T. E. Mo�tt, A. Taylor, I. W. Craig, H. Harrington, J. Mc-
Clay, J. Mill, J. Martin, A. Braithwaite, and R. Poulton. Influence of life stress on
depression: moderation by a polymorphism in the 5-HTT gene. Science (New York,
NY), 301(5631):386–389, July 2003.

[31] V. Cheung, L. Conlin, T. Weber, and M. Arcaro. Natural variation in human gene
expression assessed in lymphoblastoid cells. Nature genetics, 2003.

[32] V. G. Cheung and R. S. Spielman. Genetics of human gene expression: mapping
DNA variants that influence gene expression. Nature Publishing Group, 10(9):595–
604, Sept. 2009.

[33] H. Chun and S. Keles. Expression Quantitative Trait Loci Mapping With Multivari-
ate Sparse Partial Least Squares Regression. Genetics, 2009.

[34] D. C. Clark, S. vonAmmon Cavanaugh, and R. D. Gibbons. The core symptoms of
depression in medical and psychiatric patients. The Journal of nervous and mental
disease, 171(12):705–713, Dec. 1983.

[35] S. D. Cohen, L. Norris, K. Acquaviva, R. A. Peterson, and P. L. Kimmel. Screening,
diagnosis, and treatment of depression in patients with end-stage renal disease. Clin-
ical journal of the American Society of Nephrology : CJASN, 2(6):1332–1342, Nov.
2007.

[36] W. Cookson, L. Liang, G. Abecasis, M. Mo↵att, and M. Lathrop. Mapping complex
disease traits with global gene expression. Nature Publishing Group, 10(3):184–194,
Mar. 2009.

[37] Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk
loci with shared e↵ects on five major psychiatric disorders: a genome-wide analysis.
The Lancet, 381(9875):1371–1379, Apr. 2013.

[38] Cross-Disorder Group of the Psychiatric Genomics Consortium, S. H. Lee, S. Ripke,
B. M. Neale, S. V. Faraone, S. M. Purcell, R. H. Perlis, B. J. Mowry, A. Tha-
par, M. E. Goddard, J. S. Witte, D. Absher, I. Agartz, H. Akil, F. Amin, O. A.
Andreassen, A. Anjorin, R. Anney, V. Anttila, D. E. Arking, P. Asherson, M. H.
Azevedo, L. Backlund, J. A. Badner, A. J. Bailey, T. Banaschewski, J. D. Barchas,
M. R. Barnes, T. B. Barrett, N. Bass, A. Battaglia, M. Bauer, M. Bayés, F. Bel-
livier, S. E. Bergen, W. Berrettini, C. Betancur, T. Bettecken, J. Biederman, E. B.
Binder, D. W. Black, D. H. R. Blackwood, C. S. Bloss, M. Boehnke, D. I. Boomsma,
G. Breen, R. Breuer, R. Bruggeman, P. Cormican, N. G. Buccola, J. K. Buitelaar,
W. E. Bunney, J. D. Buxbaum, W. F. Byerley, E. M. Byrne, S. Caesar, W. Cahn,
R. M. Cantor, M. Casas, A. Chakravarti, K. Chambert, K. Choudhury, S. Cichon,
C. R. Cloninger, D. A. Collier, E. H. Cook, H. Coon, B. Cormand, A. Corvin, W. H.
Coryell, D. W. Craig, I. W. Craig, J. Crosbie, M. L. Cuccaro, D. Curtis, D. Cza-
mara, S. Datta, G. Dawson, R. Day, E. J. De Geus, F. Degenhardt, S. Djurovic,

104



Bibliography

G. J. Donohoe, A. E. Doyle, J. Duan, F. Dudbridge, E. Duketis, R. P. Ebstein,
H. J. Edenberg, J. Elia, S. Ennis, B. Etain, A. Fanous, A. E. Farmer, I. N. Ferrier,
M. Flickinger, E. Fombonne, T. Foroud, J. Frank, B. Franke, C. Fraser, R. Freed-
man, N. B. Freimer, C. M. Freitag, M. Friedl, L. Frisén, L. Gallagher, P. V. Gejman,
L. Georgieva, E. S. Gershon, D. H. Geschwind, I. Giegling, M. Gill, S. D. Gordon,
K. Gordon-Smith, E. K. Green, T. A. Greenwood, D. E. Grice, M. Gross, D. Grozeva,
W. Guan, H. Gurling, L. De Haan, J. L. Haines, H. Hakonarson, J. Hallmayer, S. P.
Hamilton, M. L. Hamshere, T. F. Hansen, A. M. Hartmann, M. Hautzinger, A. C.
Heath, A. K. Henders, S. Herms, I. B. Hickie, M. Hipolito, S. Hoefels, P. A. Holmans,
F. Holsboer, W. J. Hoogendijk, J.-J. Hottenga, C. M. Hultman, V. Hus, A. Ingason,
M. Ising, S. Jamain, E. G. Jones, I. Jones, L. Jones, J.-Y. Tzeng, A. K. Kähler,
R. S. Kahn, R. Kandaswamy, M. C. Keller, J. L. Kennedy, E. Kenny, L. Kent,
Y. Kim, G. K. Kirov, S. M. Klauck, L. Klei, J. A. Knowles, M. A. Kohli, D. L.
Koller, B. Konte, A. Korszun, L. Krabbendam, R. Krasucki, J. Kuntsi, P. Kwan,
M. Landén, N. Langstrom, M. Lathrop, J. Lawrence, W. B. Lawson, M. Leboyer,
D. H. Ledbetter, P. H. Lee, T. Lencz, K.-P. Lesch, D. F. Levinson, C. M. Lewis,
J. Li, P. Lichtenstein, J. A. Lieberman, D.-Y. Lin, D. H. Linszen, C. Liu, F. W.
Loho↵, S. K. Loo, C. Lord, J. K. Lowe, S. Lucae, D. J. MacIntyre, P. A. F. Mad-
den, E. Maestrini, P. K. E. Magnusson, P. B. Mahon, W. Maier, A. K. Malhotra,
S. M. Mane, C. L. Martin, N. G. Martin, M. Mattheisen, K. Matthews, M. Mattings-
dal, S. A. McCarroll, K. A. McGhee, J. J. McGough, P. J. McGrath, P. McGu�n,
M. G. McInnis, A. McIntosh, R. McKinney, A. W. McLean, F. J. McMahon, W. M.
McMahon, A. McQuillin, H. Medeiros, S. E. Medland, S. Meier, I. Melle, F. Meng,
J. Meyer, C. M. Middeldorp, L. Middleton, V. Milanova, and A. Miranda. Genetic
relationship between five psychiatric disorders estimated from genome-wide SNPs.
Nature genetics, 45(9):984–994, Sept. 2013.

[39] B. Crosson, A. Ford, K. M. McGregor, M. Meinzer, S. Cheshkov, X. Li, D. Walker-
Batson, and R. W. Briggs. Functional imaging and related techniques: an introduc-
tion for rehabilitation researchers. Journal of rehabilitation research and development,
47(2):vii–xxxiv, 2010.

[40] M. Davis and P. J. Whalen. The amygdala: vigilance and emotion. Molecular
Psychiatry, 6(1):13–34, Jan. 2001.

[41] S. de Jong. Expression QTL analysis of top loci from GWAS meta-analysis highlights
additional schizophrenia candidate genes. PhD thesis, University Medical Center
Utrecht, Utrecht, The Netherlands, 2011.
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E. M. Fèvre, M. M. Finucane, S. Flaxman, L. Flood, K. Foreman, M. H. Forouzanfar,
F. G. R. Fowkes, M. Fransen, M. K. Freeman, B. J. Gabbe, S. E. Gabriel, E. Gakidou,
H. A. Ganatra, B. Garcia, F. Gaspari, R. F. Gillum, G. Gmel, D. Gonzalez-Medina,
R. Gosselin, R. Grainger, B. Grant, J. Groeger, F. Guillemin, D. Gunnell, R. Gupta,
J. Haagsma, H. Hagan, Y. A. Halasa, W. Hall, D. Haring, J. M. Haro, J. E. Har-
rison, R. Havmoeller, R. J. Hay, H. Higashi, C. Hill, B. Hoen, H. Ho↵man, P. J.
Hotez, D. Hoy, J. J. Huang, S. E. Ibeanusi, K. H. Jacobsen, S. L. James, D. Jarvis,
R. Jasrasaria, S. Jayaraman, N. Johns, J. B. Jonas, G. Karthikeyan, N. Kassebaum,

117



Bibliography

N. Kawakami, A. Keren, J.-P. Khoo, C. H. King, L. M. Knowlton, O. Kobusingye,
A. Koranteng, R. Krishnamurthi, F. Laden, R. Lalloo, L. L. Laslett, T. Lathlean,
J. L. Leasher, Y. Y. Lee, J. Leigh, D. Levinson, S. S. Lim, E. Limb, J. K. Lin,
M. Lipnick, S. E. Lipshultz, W. Liu, M. Loane, S. L. Ohno, R. Lyons, J. Mabwei-
jano, M. F. MacIntyre, R. Malekzadeh, L. Mallinger, S. Manivannan, W. Marcenes,
L. March, D. J. Margolis, G. B. Marks, R. Marks, A. Matsumori, R. Matzopoulos,
B. M. Mayosi, J. H. McAnulty, M. M. McDermott, N. McGill, J. McGrath, M. E.
Medina-Mora, M. Meltzer, G. A. Mensah, T. R. Merriman, A.-C. Meyer, V. Migli-
oli, M. Miller, T. R. Miller, P. B. Mitchell, C. Mock, A. O. Mocumbi, T. E. Mo�tt,
A. A. Mokdad, L. Monasta, M. Montico, and Moradi-... Disability-adjusted life years
(DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis
for the Global Burden of Disease Study 2010. Lancet, 380(9859):2197–2223, Dec.
2012.

[157] A. J. Myers, J. R. Gibbs, J. A. Webster, K. Rohrer, A. Zhao, L. Marlowe, M. Kaleem,
D. Leung, L. Bryden, P. Nath, V. L. Zismann, K. Joshipura, M. J. Huentelman,
D. Hu-Lince, K. D. Coon, D. W. Craig, J. V. Pearson, P. Holmans, C. B. Heward,
E. M. Reiman, D. Stephan, and J. Hardy. A survey of genetic human cortical gene
expression. Nature genetics, 2007.

[158] C. B. Nemero↵. The corticotropin-releasing factor (CRF) hypothesis of. Molecular
Psychiatry, 1996.

[159] D. L. Nicolae, E. Gamazon, W. Zhang, S. Duan, M. E. Dolan, and N. J. Cox. Trait-
associated SNPs are more likely to be eQTLs: annotation to enhance discovery from
GWAS. PLoS genetics, 6(4):e1000888, Apr. 2010.

[160] L. Oliveira, C. D. Ladouceur, M. L. Phillips, M. Brammer, and J. Mourao-Miranda.
What does brain response to neutral faces tell us about major depression? evidence
from machine learning and fMRI. PloS one, 8(4):e60121, 2013.
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Prüfungskommission vor.

München, den 05. August 2014

129


	Zusammenfassung
	Abstract
	Introduction
	Background of major depressive disorder
	Epidemiology and clinical features
	Etiology and candidate systems
	Stress hormone system
	Glucocorticoid receptor
	Dexamethasone
	Neurotransmitters
	Neuroplasticity
	Neuroimaging

	Genetic and environmental factors
	Animal models of stress-related disorders

	Technological background to identify complex traits
	Genome-wide association studies
	Analysis of GWASs

	Gene expression as molecular phenotype
	Analysis of gene expression profiles
	Analysis of expression quantitative trait loci



	Material and Methods
	Samples and study design
	MPIP cohort
	MARS cohort
	DNS cohortParts of the DNS methods have been published previously by our collaborators Prather:2013hm,Bogdan:2012iw
	Mouse models

	Gene expression data
	MPIP cohort
	eQTL analysis
	Differential gene expression analysis

	Mouse models

	Genotype data
	MPIP cohort
	MARS cohort
	DNS cohort

	DNS neuroimaging protocolParts of the DNS neuroimaging protocol have been published previously by our collaborators Prather:2013hm,Bogdan:2012iw
	BOLD fMRI paradigm
	BOLD fMRI acquisition
	BOLD fMRI data analysis

	Statistical Analysis
	Differential gene expression analysis
	eQTL analysis

	Quantitative real-time PCR validation
	Differential gene expression analysis
	eQTL analysis


	Results
	Genome-wide gene expression profiles following glucocorticoid stimulation in healthy volunteers and MDD patientsA version of this chapter has been published in Menke/Arloth et al. Menke:2012ih.
	Dexamethasone effect on gene expression levels of MDD cases and healthy controls
	Using gene expression profiles to classify MDD cases and controls
	Baseline gene expression
	GR-stimulated gene expression
	Reduction of the number of transcripts for classification
	Validation of differentially regulated transcripts


	Genetically determined differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders
	Genetic regulation of GR-stimulated gene expression
	GR-response eSNPs are located in long-range enhancer regions
	GR-response eSNPs influence predicted transcription factor binding affinity
	GR-response eSNPs are enriched in loci nominally associated with MDD
	Cumulative risk scores for the GR/MDD eSNPs correlate with dysfunctional amygdala reactivityThe imaging analysis in the DNS cohort was conducted in collaboration with Ryan Bogdan+,* and Ahmad R. Hariri*.+ Department of Psychology, Washington University in St Louis, St Louis, MO, USA * Department of Psychology and Neuroscience, Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
	Functional relevance of transcripts regulated by GR/MDD eSNPs
	Network-based analysis of GR/MDD genesThe interaction network was conducted in collaboration with Goar Frishman* and Andreas Ruepp;*.* Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
	Convergent functional genomics: integrating human GR/MDD genes with relevant mouse models

	GR-response eSNPs are enriched in loci associated with other psychiatric disorders


	Discussion
	Appendix
	Supplementary Notes
	Baseline cis-eQTLs
	qPCR validation results for GR-response eQTLs

	Supplementary Figures
	Supplementary Tables

	Abbreviations
	Bibliography
	Acknowledgements

