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1  Summary 

 

Neurodegenerative diseases like Huntington's, Alzheimer's and Parkinson's diseases are 

incurable conditions associated with protein misfolding and aggregation. In this work, we 

used a yeast model of Huntington's disease to study how polyglutamine (polyQ) 

aggregates interfere with protein quality control in the cell. We used a set of misfolded 

proteins located in different compartments as reporters for polyQ interference. These 

proteins normally undergo rapid degradation via the ubiquitin proteasome system. By 

employing a combination of yeast genetics, biochemistry and proteomics, we found that 

the polyQ-expanded protein, 96QmCh, stabilized misfolded model proteins in the cytosol 

(CG*; misfolded cytosolic carboxypeptidase Y* fused to GFP), nucleus (NLS-CG*), ER 

lumen (CPY*; misfolded secretory carboxypeptidase Y*) and ER membrane (CTG*; CPY* 

fused to a transmembrane domain and cytosolic GFP) by interfering with their 

proteasomal degradation. This effect was neither due to a direct inhibition of the 

proteasome by the polyQ-expanded protein, nor to lack of ubiquitination, as CG* was 

properly ubiquitinated despite the presence of polyQ protein. 

In the second part of the study, we showed that neither 96QmCh alone nor a combination 

of 96QmCh and CG* induced a strong stress response. Moreover, we have found that 

misfolded proteins strongly affect the ability of the cell to upregulate the heat shock 

response, and this effect helps to explain why protein aggregates exert toxicity. 

To investigate how the aggregation of polyQ-expanded protein interfered with the 

degradation of misfolded cytosolic proteins, we used quantitative proteomnics and 

analyzed the polyQ protein interactome in the yeast system.  We identified about 100 

different 96QmCh interactors. Among them the essential Hsp40 Sis1 was highly 

associated and its functional depletion by 96QmCh caused the stabilization of CG*. 

Overexpression of Sis1 rescued CG* and NLS-CG* degradation in the presence of 

96QmCh, while CPY* and CTG* remained unaffected. We could show further that Sis1 

shuttles between the cytosol and nucleus and is required for effective CG* degradation by 

proteasome complexes in the nucleus.  Upon depletion of Sis1 by 96QmCh, CG* formed 

cytoplasmic inclusions. Interestingly, the observed stabilization of CG* by expression of 

96QmCh was dependent on the status of the yeast prion [PIN+]. In [pin-] cells,96QmCh 
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did not form detergent insoluble aggregates and the sequestration of Sis1 and other 

chaperones was reduced.  

In summary, these results show that the aggregation of polyQ-expanded protein 

interferes with cytosolic protein quality control by sequestering critical chaperone factors. 

Moreover, we discovered that the Hsp40 Sis1 has an essential role in transporting 

misfolded proteins from the cytosol into the nucleus for degradation. 
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2  Introduction 

 

2.1  Protein folding 

Proteins perform the majority of biological functions in the cell, including metabolism, 

movement and transport, inter- and intracellular communication as well as the replication 

of the genetic material. They form the cytoskeleton that maintains cell shape and the  

extracellular matrix of tissues and organs. 

Proteins are polymers made of the 21 different amino acids. In order to acquire biological 

activity, for most proteins the linear chain of amino acids must adopt a well defined three-

dimensional conformation. This process is known as a protein folding. 

There are four levels to describe protein structure: primary, secondary, tertiary and 

quaternary structures. Primary structure describes the amino acid sequence in a linear 

polypeptide chain as it is encoded by the corresponding mRNA. Secondary structure 

describes relatively short regions of the polypeptide chain where the amino acids are 

arranged in defined backbone conformations, most prominently α-helices and β-strands, 

the latter forming β-sheets (Pauling and Corey, 1951; Pauling et al., 1951). Secondary 

structure is supported by hydrogen bonds between peptide backbone amino- and 

carboxyl groups. The amino acids exhibit different ability to form various secondary 

structure elements. For example, glycine and proline can disrupt the regularity of the α-

helical backbone conformation. Both amino acids have unusual conformational abilities 

and are commonly found in turns. There is a group of amino acids that prefer to adopt 

helical conformations in proteins: methionine, alanine, leucine, glutamate and lysine. 

Another group of amino acids tends to adopt β-strand conformations – among them we 

find amino acids with large aromatic residues, tryptophan, tyrosine and phenylalanine, 

and amino acids with branched side chains, isoleucine and valine. 

Tertiary structure concerns the whole polypeptide sequence and contains information 

about the arrangement of α-helixes and β-sheets and their interactions in space. At this 

level we can describe a protein as globular (if it is relatively compact and has a spherical 

shape) or as fibrillar (if one axis of the folded polypeptide is significantly longer compared 

to another). Quaternary structure refers to the assembly of two or more folded protein 

molecules to oligomeric complexes. The correct three-dimensional structure is generally 

http://en.wikipedia.org/wiki/Proline
http://en.wikipedia.org/wiki/Turn_(biochemistry)
http://en.wikipedia.org/wiki/Alpha_helix
http://en.wikipedia.org/wiki/Methionine
http://en.wikipedia.org/wiki/Alanine
http://en.wikipedia.org/wiki/Leucine
http://en.wikipedia.org/wiki/Glutamate
http://en.wikipedia.org/wiki/Lysine
http://en.wikipedia.org/wiki/Beta_sheet
http://en.wikipedia.org/wiki/Tryptophan
http://en.wikipedia.org/wiki/Tyrosine
http://en.wikipedia.org/wiki/Phenylalanine
http://en.wikipedia.org/wiki/Isoleucine
http://en.wikipedia.org/wiki/Valine
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essential for function. This operative and functional conformation of the polypeptide is 

called native state. Protein folding is driven by the reduction in free-energy arising from 

polypeptide compaction and the burial of hydrophobic amino acid side chains (Dobson, 

2004; Jahn and Radford, 2008). 

 

Initially it was believed that protein folding is generally a spontaneous process, based on 

the demonstration by Anfinsen that bovine pancreatic ribonuclease (a small globular 

protein with molecular weight ~14kDa) could reach its folded conformation from the 

denatured state without additional factors (Anfinsen, 1973). However, larger proteins and 

proteins with complex fold topologies often do not refold spontaneously and rather tend 

to undergo aggregation, mediated by the exposure of hydrophobic amino acids during 

the initial stages of the folding process (Eichner and Radford, 2011; Chiti and Dobson, 

2006). The rate of aggregation increases in the crowded cellular environment, where the 

protein concentration reaches 300 g/L and more (Zimmerman and Trach, 1991). Under 

these conditions the rate constants of many reactions increase, particularly association 

reactions such as aggregation (Minton, 2000; Zimmerman and Minton, 1993). To suppress 

these aggregation reactions, cells have evolved a specialized machinery of so-called 

molecular chaperones, which assist in the folding of newly-synthesized polypeptides and 

stabilize preexistent proteins against aggregation during cell stress (Hartl, 1996;Bukau and 

Horwich, 1998; Frydman, 2001; Hartl and Hayer-Hartl, 2002). Chaperones recognize the 

hydrophobic amino acid residues that are exposed by non-native polypeptides and 

transiently shield those hydrophobic surfaces, thereby preventing aggregation. Folding is 

mediated by cycles of binding and release, often regulated by an inbuilt ATPae activity 

and by further cofactors.  There are several classes of sequence related molecular 

chaperones. Many of them are referred to as stress or heat shock proteins (Hsp’s) as their 

expression is induced under stress conditions such as heat stress. Chaperones are not only 

involved in folding and assembly but in a wider range of process in which protein 

conformation is modulated, including the transport of proteins across membranes and 

protein degradation. Multiple chaperone factors and other components cooperate in a 

large functional network to ensure protein homeostasis (or proteostasis).  The different 

chaperone classes are typically defined by their molecular weight. In the following 

sections we will describe  the most important chaperone families and their role in the cell. 

 



Introduction 8 

 

2.2 Hsp70 system 

Hsp70s are a family of conserved 70kDa proteins with essential functions in protein 

folding, protein transport and in the protection of the cells from stress. They form a 

central part of the proteostasis network. This family of proteins is expressed ubiquitously 

in almost all prokaryotes and eukaryotes (Folgueira et al., 2008). 

All Hsp70s consist of an N-terminal ATP binding domain and a C-terminal domain that 

binds to the substrate, also known as substrate binding domain (SBD)(Flaherty et al., 1990; 

Zhu et al., 1996). The N-terminal domain consists of two parts, each containing two 

subdomains. The subdomains encompass a nucleotide-binding cleft (Bukau and Horwich, 

1998; Zuiderweg et al., 2013). The C-terminal domain consists of a β-sandwich subdomain 

and anα-helical lid. The substrate-binding site is located in the β-sandwich subdomain 

(Bukau and Horwich, 1998). The substrate binding domain binds to a peptide stretch. This 

peptide stretch contains hydrophobic amino acids and is surrounded by positively 

charged amino acid residues. The peptide and SBD interaction is mediated by hydrogen 

bonds and hydrophobic contacts (Mayer, 2010). Substrate binding and release by the C-

terminal domain of Hsp70 is regulated by ATP binding and hydrolysis in the N-terminal 

domain. In order to recognize unfolded polypeptides Hsp70 uses a cleft in its peptide-

binding site that promotes binding with the peptide in an extended conformation (Zhu et 

al., 1996). If ATP is bound, the SBD is in an open conformation and binds or releases 

substrate rapidly. If ADP is bound, then the lid of the SBD is closed and bound peptide is 

held tightly (Hartl, 1996). Interconversion between ATP and ADP states is critical for 

substrate cycling and folding. This process is regulated by so-called co-chaperones, as has 

been best described for the bacterial system. 

Analysis of the substrate specificity of Hsp70 has demonstrated that this chaperone 

recognizes linear polypeptide sequences enriched in hydrophobic amino acids (Rüdiger et 

al., 1997; Blond-Elguindi et al., 1993; Flynn et al., 1991). These motifs are only exposed in 

the non-native state but are buried in the folded structure. Most polypeptide sequences 

have such hydrophobic regions approximately every 40 residues (Rüdiger et al., 1997). 

In E. coli the main Hsp70 homolog is called DnaK. There are two other cochaperones 

important for Hsp70 function - DNAJ and GrpE proteins (Szabo et al., 1994). DNAJ 

belongs to the family of Hsp40 proteins. These proteins contain special J-domain that 

interacts with Hsp70. Hsp40s also bind to unfolded proteins independently of Hsp70 and 

can recruit Hsp70 to non-native substrates (Langer et al., 1992). DnaJ binds to DnaK and 
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stimulates its ATP hydrolysis, thereby allowing DnaK to bind an unfolded polypeptide 

stably.  

GrpE is a dimeric cochaperone for DnaK, which functions as a nucleotide exchange factor. 

GrpE is required for ADP release from the N-terminal domain of Hsp70 (Harrison et al., 

1997). Rebinding of ATP results in the dissociation of DnaK-substrate complex and leads 

to the release of peptide. The cycle is shown in Figure 1. This process of binding and 

releasing  was shown to be sufficient to fold a model substrate: firefly luciferase (Szabo et 

al., 1994). However if the substrate protein remains unfolded during cycling, then the 

Hsp70 system can transfer the substrate to another type of chaperone for folding (Langer 

et al., 1992). For example, many proteins are transferred to a so-called chaperonin for final 

folding. The chaperonins are large cylindrical complexes of ~800 kDa which provide a 

compartment for single protein molecules to fold in isolation, unimpaired by aggregation 

(Hartl and Hayer-Hartl, 2002).   

 

 

 

Figure 1. Hsp70 system 

 
Hsp70 system. (A) Structures of the N-terminal ATP binding domain and the C-terminal peptide-
binding domain of Hsp70 shown for E. coli DnaK (Zhu et al., 1996). The α-helical lid of the PBD is 
yellow and the peptide substrate is pink. ATP points at the ATP binding site position in the Hsp70 
structure. Hsp70 interaction with cofactors is shown schematically. COOH-terminal sequence 
EEVD present only in eukaryotic Hsp70s (Scheufler et al., 2000). (B) Hsp70 chaperone cycle. 
(1)Polypeptide substrate delivered to ATP-bound Hsp70 with Hsp40 assistance. (2)  Hsp40 binding 
accelerated ATP to ADP hydrolysis. As a result Hsp70 a-helical lid is closed and substrate was 
tightly bound by Hsp70. After the hydrolysis, Hsp40 dissociates from Hsp70 complex.(3) NEF 
triggers the dissociation of ADP. (4) ATP binding result in opening of the a-helical lid and 
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subsequent substrate release. (5) Substrate could either fold to native state (N), rebind to Hsp70 or 
transferred to chaperonin/Hsp90 chaperones. Nucleotide-exchange factor (NEF) is blue. NEF 
represented by GrpE for E. coli DnaK and by HspBP1, Bag, Hsp110 for eukaryotic cytosolic Hsp70 
(from Hartl and Hayer-Hartl, 2009). 

 

Eukaryotic cells contain Hsp70 members in various compartments, including cytosol, 

mitochondria, chloroplasts and endoplasmic reticulum (ER). Some of these proteins are 

constitutively expressed, referred to as Hsc70, or stress inducible, referred to as Hsp70 

proper. The class of Hsp70 chaperones has been expanded in fungi. In the yeast 

Saccharomyces cerevisiae Hsp70 homologues are represented by the Ssa subfamily of 

proteins: Ssa1, Ssa2, Ssa3, Ssa4 and also by Ssb (Ssb1, Ssb2), Sse (Sse1, Sse2) and Ssz 

families (Willmund et al., 2013; Mukai et al., 1993; Werner-Washburne et al., 1987). They 

have roles in folding, disassembling aggregates of misfolded proteins and in misfolded 

protein degradation (Deshaies et al., 1988; Glover and Lindquist, 1998; Hartl, 1996). Ssa 

family proteins have a 84-99% homology within the group (Boorstein et al., 1994). Strains 

with mutations in SSA3 and SSA4 genes are indistinguishable from the wild-type. Ssa3 

and Ssa4 are not expressed during vegetative growth and are stress inducible (Werner-

Washburne et al., 1987;Young and Craig, 1993).  

Ssa1 is constitutively expressed in the cytosol under normal conditions. Heat shock and 

some other forms of stress enhance its expression (Werner-Washburne et al., 1989). 

Transcriptional activator Hsf1 mediates the upregulation. It can bind to the regions called 

HSE (heat shock elements) in SSA1 gene promoter and enhance Ssa1 mRNA synthesis. 

Ssa1 function is important for yeast to survive under heat shock conditions as well as in 

conditions characterized by an increased level of misfolded proteins. 

 

 

2.3 Hsp40/DnaJ system 

The Hsp40s are a family of evolutionarily preserved chaperones and regulators of Hsp70 

proteins (Walsh et al., 2004). The Hsp40s have been highly conserved from bacteria to 

eukaryotes and are characterized by the so-called J-domain, a small helical domain of ~70 

amino acids, which mediates interaction with Hsp70 (Pellecchia et al., 1996; Hartl et al., 

2011). 



Introduction 11 

 

The J-domain contains a highly conserved loop with histidine, proline and aspartic acid 

residues. This so-called called HPD motive connects the second and third helices (Qian et 

al., 1996). Mutation of any of these residues results in the loss of the respective Hsp40 to 

stimulate the ATPase activity of its Hsp70 partner (Cheetham and Caplan, 1998; Greene et 

al., 1998).  

According to their domain structure Hsp40 could be categorized in 3 different types 

(Cheetham and Caplan, 1998). These types of Hsp40 members are depicted in the Figure 

2.  

 

Figure 2. Classification of Hsp40 family proteins. 

J-proteins are classified into 3 types: type 1, type 2 and type 3. Schematic representation of each 
class depicted in the figure. Type 1 possess J domain, G/Fregion and cys repeats. Type 2 has J 
domain and G/F repeats. Type 3 has only J domain.  

 

Type 1 Hsp40 proteins contain a J domain, a glycine/phenylalanine (G/F)-rich region and 

a cysteine repeat region which is also known as zinc-finger domain. The G/F region is 

required for stability and precise positioning of the J-domain when Hsp40 interacts with 

Hsp70 (Rajan and D’Silva, 2009). The zinc-finger domain (cys repeats) consists of two 

clusters with two amino acid sequences CXXCXGXG, where X is any amino acid. Two 

clusters coordinate two zinc ions (Martinez-Yamout et al., 2000). This domain is 

implicated in substrate binding and assists in interaction with Hsp70. Proteins from this 

group have similar structure to the classical E.coli DnaJ. Type 2 proteins have a J-domain 

and G/F--rich region but do not have a zinc-finger domain. Proteins from the type 3 

group have a J-domain located anywhere in the protein (Cheetham and Caplan, 1998). 

Type 1 and 2 can bind to non-native substrates and are considered to have quite similar 
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functions and activity, while type 3 members are not binding to non-native proteins and 

therefore cannot function as chaperones on their own (Kelley, 1998). There is also 

evidence that the zinc finger domain can interact with non-native substrates. In addition 

to the described regions, Hsp40 can have additional domains, which may determine 

functional diversity of DnaJ group of proteins. For example, the C-terminal region of DnaJ 

is essential for dimerization and chaperone activity (Shi et al., 2005). 

Like their Hsp70 partners, Hsp40 family members are also found in different 

compartments. There are 6 Hsp40 members in Escherichia coli, 22 in S. cerevisiae and about 

41 in humans (Qiu et al., 2006). Moreover, according to the Human Genome Resource 140 

genes are annotated in humans as DnaJ-related. DnaJ-related proteins could have 

structures similar to normal members of this family but lack the HPD motif. Therefore, 

they probably interact with Hsp70 but do not stimulate its ATP hydrolysis. The number of 

Hsp40 family members is growing with increasing complexity of the organism. Higher 

eukaryotes have more Hsp40 because it is believed that they could provide broad 

substrate specificity for the conserved Hsp70 family members (Cheetham and Caplan, 

1998). Hsp40s bind to different substrates according to their specificity and deliver them 

to Hsp70 or they target Hsp70 to various locations in the cell (Kampinga and Craig, 2010). 

For example human has only 11 Hsp70s and 13 NEFs but 41 Hsp40 proteins.  

Yeast have 22 Hsp40 family members located in different compartments. The 

classification of yeast Hsp40 members with localization of these proteins is described in 

Table 1:  

Table 1. Hsp40 members in yeast Saccharomyces cerevisiae (Gong et al., 2009; SGD, 

http://www.yeastgenome.org). 

  Class Localization Function 

Ydj1 Type 1 Cytosol  

Protein folding, regulation of Hsp90 and Hsp70 functions, 

involved in protein translocation across membranes 

Xdj1 Type 1 Mitochondria Mitochondrial analog of Ydj1p  

Apj1 Type 1 

Mitochondria, 

cytosol? Overexpression interferes with propagation of [PSI+] prion 

Mdj1 Type 1 Mitochondria 

Cochaperone, stimulating ATPase activity of Ssc1p 

(mitochondrial Hsp70), folding and refolding of 

mitochondrial matrix 

Scj1 Type 1 ER lumen With Hsp70 Kar2 mediating maturation of proteins 
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Sis1 Type 2 

Cytosol, 

Nucleus 

Cochaperone for cytosolic Hsp70, increased in response to 

DNA replication stress 

Djp1 Type 2 Cytosol  Peroxisomal protein import and assembly 

Caj1 Type 2 Nucleus 

Binds to non-native substrates for presentation to Ssa3, has a 

function for protein translocation, assembly and disassembly 

Hlj1 Type 2 

Anchored to 

ER membrane 

Cooperates with Ydj1 and promotes ER-associated protein 

degradation of integral membrane substrates 

Zuo1 Type 3 Cytosol  

Ribosome associated chaperone, functions in ribosome 

biogenesis together with Ssz1 and Ssb1/2 

Swa2 Type 3 Cytosol  

Auxillin-like protein involved in vesicular transport, clathrin -

binding protein required for uncoating of clathrin-coated 

vesicles 

Jjj1-3 Type 3 Cytosol  

Cochaperone that stimulates ATPase activity of Ssa1p in a late 

step of ribosome biogenesis 

Cwc23 Type 3 Cytosol? 

Component of complex Cef1p, involved in pre-mRNA 

splicing 

Mdj2 Type 3 

Associated 

with 

mitochondria 

Constituent of mitochondrial import motor associated with 

presequence translocase, stimulates ATPase activity of Ssc1p 

to drive mitochondrial import 

Pam18 Type 3 

Associated 

with 

mitochondria 

Constituent of mitochondrial import motor (PAM complex), 

stimulate ATP activity of Ssc1p to drive mitochondrial import 

Jac1 Type 3 Mitochondria 

Specialized J-protein that functions with Hsp70 in Fe-S cluster 

biogenesis in mitochondria, involved in iron metabolism 

Jid1 Type 3 

ER 

membrane? 

Probable Hsp40 cochaperone, involved in ER degradation of 

misfolded proteins 

Jem1 Type 3 ER membrane 

Nuclear membrane fusion during mating, has genetic 

interactions with Kar2 

Sec63 Type 3 ER membrane 

Essential subunit of Sec63 complex, with other components 

forms a channel competent for signal recognition 

particle(SRP) dependent and SRP independent protein 

targeting and import in the ER 

Erj5 Type 3 ER lumen Important for folding capacity preservation in the ER 
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2.4 The Hsp40 Sis1 

Sis1 is a type 2 Hsp70 cochaperone. This protein is essential and it plays an important role 

in protein aggregation prevention and proteasomal degradation of misfolded proteins. 

Sis1 is delivering misfolded proteins to Hsp70 (Lee et al., 2002). Sis1 is also essential for 

initiation of translation (Zhong and Arndt, 1993). It interacts with Ssa1 and Ssa2 proteins 

on translating ribosomes (Horton et al., 2001). At a non-permissive temperature, a strain 

with sis1ts mutation rapidly accumulates 80S ribosomes and has a decreased amount of 

polysomes. Sis1 was also shown to associate with 40S ribosomes and probably mediates 

the dissociation of 80S ribosomes (Zhong and Arndt, 1993). Sis1 is widely distributed in 

the cell and could be found both in cytosol and nucleus. However, it is ~3-fold more 

concentrated in the nucleus. Sis1 could interact with Ssa1 in yeast instead of Ydj1, 

however overexpression of Ydj1 cannot substitute for Sis1 deletion (Luke et al., 1991).  

 

Sis1 consists of J-, G- and C-terminal domains, the latter mediating substrate binding (Fan 

et al., 2004). The experiments of crystallization of C-terminal domain of Sis1 have 

demonstrated that several patches of hydrophobic side chains are required for substrate 

binding (Sha et al., 2000). The conserved J-domain contains the HPD loop and mediates 

interaction with Hsp70. The G-domain is an extended glycine-rich region of 104 residues, 

composed of a region rich in phenylalanine residues (G/F) followed by region rich in 

methionine residues (G/M). This domain plays an important role in yeast prion 

maintenance of [RNQ+]. Single alterations in amino acid sequence in this region result in 

loss of prion maintenance (Lopez et al., 2003). Moreover, the G-domain mediates substrate 

selectivity. A fusion construct of the J-domain of Ydj1 with the G-domain of Sis1 can 

replace Sis1 for growth but a chimera containing the J-domain of Sis1 and the G-region of 

Ydj1 could not rescue the Δsis1 lethality (Yan and Craig, 1999). Substrate binding is 

mediated by hydrophobic residues in the C-terminal domain (Stirling et al., 2003).  

Although Sis1 and Ydj1 are structurally similar, they have different functions. Ydj1 is a 

type 1 Hsp40 while Sis1 belongs to type 2. Both proteins form homodimers via a C-

terminal dimerization domain (Figure 3). Interestingly, the structural difference between 

the proteins relates to only one region. Ydj1 has zinc fingers following G/F domain, while 

Sis1 has glycine/methionine-rich region (Fan et al., 2004; Kampinga and Craig, 2010). As 

an example, Sis1 promotes elongation of yeast prion and supports maintenance of 
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[RNQ+] status of the cell while Ydj1 antagonizes the maintenance of this prion. It was 

shown that these specificities were determined by the G/F domain of Sis1 (Yan and Craig, 

1999; Lopez et al., 2003). 

 

Figure 3. Ydj1 and Sis1 structure compared (adopted with modifications from Summers et 
al., 2009). 

Ydj1 consists of Zinc fingers (denoted as I and II), Glycine/Phenylalanine rich region (G/F), C-
terminal domain (CTD) and DD (dimerization domain). Sis1 contains glycine/methionine G/M 
domain which has essential functions (Luke et al., 1991). Both proteins have polypeptide binding 
pockets (PBP) for association with unfolded polypeptides. Adapted with modifications 
fromSummers et al., 2009.  

 

The closest Sis1 homologue in human is Dnajb1. The main function of this protein is 

interaction with Hsp70 and stimulation of ATPase activity of this protein and it could 

stimulate association between Hsc70 and Hip (Ohtsuka, 1993). Dnajb1 is a stress-inducible 

protein. Under normal conditions, it is expressed at low levels and diffusely distributed in 

the cell. If cells are stressed with heat shock it translocates rapidly from the cytoplasm to 

the nucleus (Hattori et al., 1992). 
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In the mammalians, Hsp70-Hsp40 chaperone cycle is more complex and has some unique 

features. Hsp70 reaction cycle is regulated by J-domain proteins and nucleotide exchange 

factors (NEFs). Different combination of J-domain proteins with NEFs could adapt cycling 

rates to various substrates. Hip attenuates Hsp70 cycle by stabilizing Hsp70-ADP-

substrate state, therefore increasing the substrate  “holdase” activity of Hsp70 (Höhfeld et 

al., 1995). Hip attenuates cycle by binding to the Hsp70 site which is mutually exclusive 

with NEFs binding site. Extended residence of the substrate on Hsp70 may prevent 

aggregation or promote transfer to degradation machinery or to Hsp90(Li et al., 2013). 

 

 

2.5 Yeast prions 

Prions are infections misfolded proteins which are capable of self-replicating. They cause 

neurodegenerative diseases in mammals (for example Creutzfeldt - Jakob disease), while 

in S. cerevisiae prions are epigenetic elements. Prions are transmitted via non-Mendelian 

protein only interaction (Wickner, 1994). There are at least seven confirmed prion proteins 

in S. cerevisiae: Sup35, Rnq1, Ure2, Swi1, Mot3, Cyc8 and Mod5. Importantly, most of the 

yeast prions are based on glutamine or asparagine-rich sequences (except HET-s and 

Mod5). Therefore, the data observed for the yeast prions could be partially applied to 

huntingtin polyQ model in yeast.   

The Sup35 protein of S. cerevisiae yeast is a homologue of the polypeptide chain release 

factor 3 (eRF3) of higher eukaryotes (Paushkin et al., 1996). Sup35 has glutamine and 

asparagine rich N-terminal region that causes its aggregation. It could form a [PSI+] prion 

phenotype in yeast S. cerevisiae. [PSI+] strain is auxotrophic for adenine due to a nonsense 

mutation (Patino et al., 1996). In fact, [PSI+] phenotype is the result of self-propagation of 

misfolded form of Sup35 protein. In the yeast cell with [PSI+] phenotype, misfolded 

Sup35 protein forms amyloid-like aggragates (Tuite et al., 2008).  

Interestingly, Ssa1 plays a role in prion propagation in yeast. Ssa1 overexpression could 

cure [PSI+] and [URE3]  prion phenotype (Schwimmer and Masison, 2002; Mathur et al., 

2009). Some prion types could be cured not only by Ssa but even by Ssb overexpression 

(Kushnirov et al., 2000). Conversely, Ssa family members overexpression promotes prion 

formation and suppresses the ability of Hsp104 to cure the prion phenotype, suggesting a 
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complex interplay between chaperones (Allen et al., 2005). Influence of different 

chaperones on [PSI+] propagation were reviewed by Sweeny and Shorter, 2008. 

De novo formation of the yeast [PSI+] requires the presence of another yeast prion, [PIN+]. 

Prions in [PIN+] strain might act as “seeds” for the polymerization of [PSI+] and other 

prions (Sharma and Liebman, 2013). [PIN+] formed by abnormal version Rnq1 protein, 

which is forming amyloid arranged in the parallel beta sheets structures (Wickner et al., 

2008). [PIN+] phenotype is not required for [PSI+] maintenance (Sondheimer and 

Lindquist, 2000).  

 

 

2.6 Huntington's disease and polyglutamine aggregation 

In 1872, George Huntington published a paper in the Medical and Surgical Reporter of 

Philadelphia. This paper described a hereditary disease that results in chorea, henceforth 

referred to as Huntington’s disease (HD). HD has autosomal dominant inheritance 

(Walker, 2007).This disorder usually has an onset in the late 30s-40s of the affected 

individual. Huntington's disease is characterized by progressive neuronal dysfunction 

and neuronal loss and it leads to death 10-20 years after onset (Hardy and Orr, 2006).HD 

is associated with neuronal cell death occurring in a selective way mostly in the cortex 

and striatum (Vonsattel et al., 1985). 

HD is caused by a protein called huntingtin, which contains a polymorphic 

polyglutamine (polyQ) tract. Heritable expansion of this polyQ tract is causally linked 

with the disease. The expression of normal and mutant forms of huntingtin was observed 

in the central nervous system at similar levels and also in peripheral tissues (Trottier et al., 

1995). In the brain, huntingtin is expressed mostly in the cell bodies, dendrites, and nerve 

terminals of neurons. Huntingtin was described using immunohistochemical and electron 

microscopy method as a cytosolic protein. Moreover, it was shown that it is associated 

with vesicles and/or microtubules and therefore may play a part in cytoskeletal fixing or 

vesicular transport (DiFiglia et al., 1995;Gutekunst et al., 1995;Sharp et al., 1995). 

Huntingtin was also found in the nucleus (Hoogeveen et al., 1993;De Rooij et al., 1996), 

but its functions in the nucleus remain unknown.  

HD is caused by expansion of the polyQ tract in huntingtin. Glutamine is encoded by 

CAG repeats in the respective gene and there is a number of diseases that are caused by a 

CAG expansion in the genome occurring during replication. All these diseases cause 
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progressive neuronal degeneration and include: dentatorubral pallidoluysian atrophy 

(DRPLA), spinobulbar muscular atrophy (SBMA, or Kennedy’s disease), spinocerebellar 

ataxias (SCA1, SCA2, SCA3/MJD, SCA6, SCA7 and SCA17) and HD (Kanazawa, 1999; 

Kennedy et al., 1968; Mutsuddi and Rebay, 2005; Lebre and Brice, 2003). For all of these 

diseases certain threshold length of the polyQ stretch must be reached for disease 

manifestation. Moreover, the longer the polyQ-expanded tract, the earlier the age of onset 

(Duyao et al., 1993).  

 

HD is the most common among all the polyQ expansion diseases. The CAG repeat 

expansion results in an increased number of glutamines in the N-terminal part of the 

protein. If polyQ stretch is shorter than 35 glutamines, it does not cause the disease. 

However if the number of the repeats is greater than 36 glutamines, HD manifestation 

will occur. The polyQ expansion strongly increases the propensity of the protein to form 

cytotoxic aggregates. There have been cases reported of HD patients with 240 glutamines, 

however normally such long polyQ tracts cause death during embryonic development 

(Nance et al., 1999). The CAG expansion mechanism appears to be unique to the human 

genome. PolyQ tracts are often not conserved in other mammals and appear not to have a 

necessary function (Hardy and Orr, 2006). 

 

It is practically very hard to overexpress whole huntingtin in yeast, because the full 

protein has 3144 amino acids, is encoded in over 67 exons and the predicted mass of the 

protein is around 350 kDa. It was shown, that expression of exon 1 huntingtin (67 amino 

acids long plus variable length for polyQ tract) is sufficient to cause HD pathology(Singer 

et al., 2010). 

 

Interestingly, there is substantial variability in age of onset and lifespan for individuals 

with the same length of polyQ repeat. The exact reasons for these differences are not 

known, but it is conceivable that protein quality control plays a role. In any case, the late 

age of onset of the disease suggests that cellular control systems can cope with the 

expanded polyQ protein for decades, until eventually the resistance mechanism become 

insufficient, presumably as a result of aging.  

 



Introduction 19 

 

The toxicity of the expanded polyQ tract is attributed to a gain of function that correlates 

with the ability of the protein to form fibrillar, amyloid-like aggregates. Poly-L-glutamine 

forms sheets of β-strands through hydrogen bonds between their main chain and side 

chain amides, so-called polar zippers (Perutz et al., 1994). 

 

According to a widely held view, polyQ toxicity is caused by aberrant interactions of the 

mutant protein with key cellular factors, resulting in transcriptional dysregulation and 

interference with the function of the ubiquitin-proteasome system (UPS)(Gerber et al., 

1994; Bence et al., 2001; Faux et al., 2005; Bennett et al., 2005). 

The latter effect may be attributed to the sequestration by the polyQ aggregates of 

molecular chaperones or factors of the ubiquitin-proteasome system (Ciechanover and 

Brundin, 2003; Sakahira et al., 2002). The polyQ aggregate inclusions were demonstrated 

to be ubiquitin-positive. They may engage proteasomes but resist degradation, leading to 

proteasome inhibition (Bennett et al., 2007; Pandey et al., 2007). It was also shown that 

polyglutamine proteins can alter nuclear and cytoplasmic proteins (Harjes and Wanker, 

2003; Li and Li, 2004). 

Another possible mechanism of toxicity is damage to membrane structures through 

formation of ion-permeable pores (Hirakura et al., 2000; Monoi et al., 2000; Trushina and 

McMurray, 2007). These mechanisms can also cause mitochondrial damage that may 

provoke ATP deficits, Ca2+ release, depletion of antioxidants and overproduction of 

reactive forms of oxygen (reviewed in Trushina and McMurray, 2007). One more 

mechanism that appears to explain polyQ toxic effect is the physical block of axonal and 

dendritic transport that can affect the soma structure and, in turn, result in cell death 

(Piccioni et al., 2002). Observing these mechanisms, we can conclude that all of them may 

contribute to neuronal dysfunction in neurodegenerative diseases.  

Brains of the people affected by HD have small neuronal inclusions. These inclusions 

contain huntingtin as well as chaperones, parts of proteasome machinery and other 

factors. These inclusions are amyloid-like and mainly consist of huntingtin protein (Figure 

4). Remarkably, aggregates of huntingtin are very stable and cannot be dissolved in SDS. 

In general, "amyloid fibrils" in vitro are termed "intracellular inclusions" in vivo  and can be 

detected with the Congo red dye (Westermark et al., 2005;Sipe and Cohen, 2000). 

Strikingly, the precursor proteins differ substantially in structure, but the associated fibrils 

originated from these proteins have very similar properties and appearance (Sunde and 

Blake, 1997;Tycko, 2004). Within the cell, the inclusions are usually found in neuronal 
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nuclei and in the peri-nuclear space. The regions harboring these inclusions belong to the 

mid-frontal gyrus, mid-temporal gyrus, caudate nucleus, amygdaloid nucleus and globus 

pallidus (McGowan et al., 2000). 

While the inclusions were initially considered harmful, more recent studies suggest that 

soluble precursors of the inclusions (oligomers) may be the major toxic species(Arrasate et 

al., 2004;Behrends et al., 2006) (Figure 4). The sequestration of soluble oligomers into 

insoluble inclusions may even be protective by reducing the exposed surface available for 

aberrant interactions (Leitman et al., 2013). Moreover, chaperones seems to play an 

important role is shifting toxic soluble oligomers to fibrillar aggregates (Hipp et al., 2014). 

 

 

Figure 4. Protein misfolding, degradation and homeostasis(Hipp et al., 2014).  

Protein homeostasis is achieved by controlling the levels of functional proteins and preventing the 
formation of toxic aggregates. Proteins involved in protein biogenesis labelled green, in 
conformational maintenance - blue, in degradation by UPS or autophagy – red.  Toxic aggregates 
(mainly diffusible, oligomeric states) may be converted to less toxic, insoluble inclusions of 
amorphous or fibrillar (amyloid-like) structure. 
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It is very important to understand the cause of toxicity for Huntington's and other 

neurodegenerative diseases because this will allow the development of effective 

therapeutic strategies.  

 

 

2.7 Ubiquitin proteasome system in protein quality control. 

The accumulation of misfolded proteins is a significant threat to cellular health. Cells rely 

on molecular chaperones to hold (in order to prevent aggregation) and to refold 

misfolded proteins (Hartl and Hayer-Hartl, 2002). If a protein cannot be refolded, it is 

targeted for degradation via the UPS. Generally, the ability of a cell to refold or to destroy 

misfolded proteins is known as quality control.  

The UPS is the most important pathway to degrade misfolded and incorrectly assembled 

proteins. Proteins that are degraded via the proteasome are generally labelled by covalent 

attachment of polyubiquitin (poly-Ub) chains to the lysine of target protein. The poly-Ub 

chain is recognized by the 26S proteasome (Wolf and Hilt, 2004; Hershko and 

Ciechanover, 1998). Canonical signal for protein degradation is poly-Ub chain linked at 

the 48th lysine residue (Komander and Rape, 2012). If this chain connected via lysine 63, it 

has different functions. In this case it regulates different processes in the cell: 

inflammation, endocytic trafficking, translation and DNA repair (Miranda and Sorkin, 

2007). Poly-Ub could be formed via other lysine residues (Lys6, lys11, Lys27, Lys29, or 

Lys33) of ubiquitin; however, their role is poorly understood.  

 

Ubiquitin is a regulatory protein with molecular weight 8.5 kDa which is found in all 

eukaryotic organisms (Goldstein et al., 1975). This protein is highly conserved and almost 

invariant in yeast and humans (96% sequence identity). Ubiquitin is a highly stable 

protein with a compact β-fold structure and a flexible C-terminal tail (Vijay-Kumar et al., 

1987). Most of its core residues are not flexible; however, β1/β2 loop with Leu8 is flexible. 

This flexibility is important for recognition of ubiquitin-binding proteins, since binding to 

them leads to conformational change (Lange et al., 2008). All lysine residues, which are 

used for chain assembly are exposed at the surface of the ubiquitin molecule. Lys6 and 

Lys11 are located in the flexible region of the protein, which is binding to ubiquitin-
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binding domains of different proteins. Lys27 is located inside the molecule. Poly-Ub 

association with it leads to the structural changes in the protein structure. Lys48 and 

Lys63 association does not lead to significant changes in the ubiquitin structure 

(Komander and Rape, 2012).  

 

A cascade of enzymes carries out the process of attachment of ubiquitin to the 

proteasome. Enzymes activate free ubiquitin and label the target protein with it (Figure 5). 

These enzymes are E1, E2 and E3. E1 is an ubiquitin activating enzyme, which activates 

and transfers ubiquitin to the carrier protein E2. E2 is an ubiquitin-conjugating enzyme, 

which needs another interacting partner in order to label the protein. E3 is an ubiquitin 

ligase and it is a partner of E2. E3 recognizes a protein that needs to be degraded and 

labels it with ubiquitin. Ubiquitination is repeated several times, which creates a poly-Ub 

chain that targets proteins for degradation or plays a part in many other processes in the 

cell (Wilkinson, 1999;Pickart, 2001). There is only one E1 protein, however there are 

approximately 20 E2 and hundreds of E3 ligases (Pickart, 2001). This ratio allows control 

of degradation and other processes where ubiquitin is involved very precisely.  

 

 

Figure 5. Ubiquitination of substrate protein. 

The main steps of protein ubiquitination are described:  
1. Ubiquitin activating enzyme (E1) adenylates an ubiquitin molecule and transfers it to the active 
site with cystein residue. One ATP is hydrolyzed.  
2. Adenylated ubiquitin transferred to ubiquitin conjugated enzyme (E2).  
3. Ubiquitin ligase (E3) recognizes the target protein and ubiquintinates it with assistance of E2 
protein. It transfers poly-Ub chain from ubiquitin to the conjugated enzyme. Target protein should 
have a chain of at least four ubiquitins to be recognized by proteasome(Thrower et al., 2000). 
However for some proteins monoubiquitination is enough to be degraded (Sun et al., 2011). 
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After the protein has been labeled by poly-Ub chains with Lys48 connections it is 

recognized by the 26S proteasome. This structure is found in the nucleus and in the 

cytosol in eukaryotes and archaea and it is responsible for degradation of most proteins 

(Peters et al., 1994). It is a very abundant and complex structure, constituting 

approximately 1-2% of total cell mass (Voges et al., 1999). In the proteasome, proteins are 

linearized and poly-Ub chain is removed. The linearized protein is injected into the 

central core of the proteasome where it is digested to short peptides of about seven to 

eight amino acids length. Peptides are degraded to amino acids by peptidases.   

 

26S proteasome is a very large protein with molecular weight of 2000kDa, which consists 

of a 20S core particle and two regulatory 19S particles on both ends of the core structure. 

20S core particle have three different proteolytic activities and degradation occurs in an 

ATP-dependent manner (Kisselev et al., 2002). The core particle is responsible for 

degradation of the target protein. 19S particles recognize ubiquitinated proteins via 

ubiquitin binding sites, de-ubiquitinate them and deliver them into catalytic core.  

 

Degradation of misfolded proteins happens in different compartments in the cell. The ER 

has its own protein quality control system. Misfolded proteins in the ER are degraded via 

ER-associated protein degradation (ERAD) (Lippincott-Schwartz et al., 1988). Misfolded 

proteins are recognized, translocated back to the cytosol, ubiquitinated and subsequently 

degraded via the proteasome. In addition, some folded and active proteins are also 

degraded via ERAD. For example, 3-hydroxy-3-methylglutary1-acetylcoenzyme-A 

reductase (HMGR) a pivotal enzyme in sterol synthesis is degraded as ERAD substrate 

(Gil et al., 1985;Varga et al., 2004;Song et al., 2005). 

 

Newly-synthesized proteins enter the ER in an unfolded state via a narrow Sec61 

translocon channel (Rapoport, 2007). Polypeptide chain emerges into the ER and 

immediately starts to fold. Some of these proteins might be modified by glycosylation and 

disulfide bond formation. (Braakman and Hebert, 2013). Some proteins fold 

spontaneously and do not require special factors for this process. Other proteins need 

special assistance in this process. There are many factors enhancing folding in the ER 

lumen, for example Hsp70 and Hsp90 chaperones. Another important enzyme is protein 

disulfide isomerase (PDI), which oxidizes pairs of cysteine and creates chemical bonds 
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between them. PDI usually oxidizes and reduce cysteine bonds in few cycles, which 

allows a protein to attain the native conformation. Secretory proteins in the ER also get 

modifications by oligosaccharides. There are few enzymes involved in this process like 

calnexin, calreticulin and lectins. Protein modification by sugars makes them more 

hydrophilic (Aebi et al., 2010).  

 

Despite the presence of chaperones, a fraction of proteins fail to acquire native 

conformation (Hartl and Hayer-Hartl, 2009). ERAD has multiple branches with different 

specificity for different topology of misfolded proteins (Taxis et al., 2003; Bernasconi et al., 

2010; Christianson et al., 2012). Despite this diversity, ERAD substrates undergo similar 

steps on their way to the degradation in the proteasome (Figure 6). These steps include 

recognition of substrate in the ER, retrotranslocation of the substrate back to the cytosol, 

ubiquitination, extraction from the membrane in ATP-dependent manner and 

degradation by the proteasome. These steps are regulated by E3 ligases. Activity of these 

proteins specified by RING domain, which mediates the interaction with E2 protein. E3 

facilitates the direct transfer of ubiquitin from E2 to lysine residue of the substrate. There 

are two main ERAD E3 ligase complexes in yeast – Hrd1  and Doa10 (Bays et al., 2001; 

Swanson et al., 2001). 

 

 

Figure 6. Steps required for degradation of all types of ERAD substrates.  

A generic misfolded (red star) ER lumenal substrate is a subject for ERAD. E3 ligase complex 
coordinate substrate recognition, retrotranslocation and ubiquitination. Ubiquitin is illustrated as a 
small brown circles. With modifications from Ruggiano et al., 2014. 
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Recognition of the misfolded proteins in the ER is tightly regulated, because ineffective 

detection results in their accumulation and affects the cell (Jonikas et al., 2009). Misfolded 

or wrongly assembled proteins expose hydrophobic regions, may have unpaired cysteine 

residues and possibly could have abnormal sugar modifications. These abnormalities are 

recognized by different enzymes, such as lumenal Hsp70 and Hsp40 members, calnexin, 

and calreticulin and protein disulphide isomerases. These proteins cooperate with E3 

ligase complexes, which have a major role in mediating ERAD substrate specificity. 

Recognition of lumenal substrates requires Hrd3, Kar2 and for glycosylated proteins – 

Yos9 lectin (Plemper et al., 1997; Szathmary et al., 2005; Carvalho et al., 2006). Der1 

membrane protein might be also involved in substrate recognition (Stanley et al., 2011). 

Some ERAD substrates with membrane domain could be directly recognized by E3 ligase 

Hrd1 (Sato et al., 2009).  

Incorrectly folded glycoproteins are recognized and degraded by ERAD. Typically, newly 

synthesized proteins enter the ER lumen and are modified at asparagine residues with 

glycan moieties. This moiety is a well-defined structure that consists of 3 glucoses, 9 

mannoses and 2 N-acetylglucosamine residues and is referred to as Glc3-Man9-GlcNAc2 

(Braakman and Hebert, 2013). Glc3-Man9-GlcNAc2 is N-linked to asparagine residues 

and can be modified by several enzymes. Glycosidases and other early processing 

enzymes modify the glycan moiety and increase the binding affinity of glycoproteins 

towards lectins, which assist in the folding of glycoproteins. Late processing enzymes, 

such as Htm1 mannosidase, trigger the binding of different types of lectins that guide 

proteins to ERAD (Quan et al., 2008;Clerc et al., 2009). Through this process, newly 

synthetized proteins have time to acquire their native conformation and traffic away from 

the ER. Conversely, glycoproteins that remain in the ER for a long period of time likely 

encounter folding problems. These incorrectly folded proteins are labeled by Htm1 with α 

1,6-linked mannose, which is recognized by Yos9, a lectin that is involved in ERAD 

recognition (Quan et al., 2008; Clerc et al., 2009). Interestingly, the simultaneous 

recognition of specific N-linked glycans by Yos9 and an unstructured polypeptide motif 

by HRD3 is required for ERAD-mediated degradation of these incorrectly folded 

substrates (Denic et al., 2006;Xie et al., 2009). 

Proteins containing lumenal, cytoplasmic and membrane-spanning domains are degraded 

via ERAD-L, ERAD-C and ERAD-M, respectively (Denic et al., 2006;Vashist and Ng, 2004; 

Huyer et al., 2004). However, these pathways have not been clearly identified in 
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mammals (Ballar et al., 2011). For substrates that reside in the ER membrane, 

ubiquitination occurs prior to or simultaneously with translocation. ERAD-C substrates 

are regulated by the Doa10 E3 ligase protein complex, while ERAD-L and ERAD-M 

substrates are regulated by the Hrd1 E3 ligase protein complex. The composition of these 

complexes is depicted in Figure 7. 

The Hrd1 complex is responsible for the degradation of lumenal misfolded proteins 

(ERAD-L). These substrates are ubiquitinated in cooperation with the E2 ubiquitin-

conjugating enzymes Ubc1 and Ubc1-Cue1. E3 ligases accept an ubiquitin (Ub) molecule 

from their cognate E2 ligase and transfer the ubiquitin molecule to the substrate thereby 

promoting substrate degradation. ERAD-M substrates are also processed by the Hrd1 E3 

ligase complex; however, fewer components are required to mediate ERAD-M substrate 

degradation through this mechanism (Bordallo et al., 1998; Gardner et al., 2000; Gauss et 

al., 2006). The Doa10 complex mediates the degradation of substrates containing 

misfolded cytosolic domains. ERAD-C substrates are ubiquitinated by the Doa10 

ubiquitin ligase in cooperation with the E2 Ub-ligases Ubc6 and Ubc7-Cue1 (Ravid et al., 

2006; Carvalho et al., 2006). Interestingly, despite differences in their recognition and in 

the complexes required for ubiquitination, ubiquitinated substrates in the late stages of 

ERAD-mediated degradation are extracted by the same Ufd-Npl4-CDC48/p97 AAA+ 

ATPase complex resulting in their delivery to the proteasome (Bays et al., 2001b; 

Rabinovich et al., 2002). 

In mammalian cells, many E3 ligases exist, such as Trc8, Rfp2, Rnf170 and Rma1/Rnf5, 

but most mammalian E3 ligases are poorly characterized. The best-studied E3 ligases are 

Hrd1 and Gp78. Hrd1 and Gp78 are homologs of yeast Hrd1 but can target different types 

of substrates for degradation (Schulze et al., 2005;Christianson et al., 2012;Burr et al., 

2013). 
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Figure 7. ERAD-C, ERAD-L and ERAD-M pathways for the degradation of misfolded 
proteins. 
 

The Doa10 and Hrd1 complexes involved in ERAD-mediated protein degradation in S. cerevisiae 
and their substrate specificities. ERAD-C substrates, which contain a misfolded domain in the 
cytoplasm, are degraded with the assistance of the Doa10 complex. ERAD-L substrates, which 
consist of proteins containing a lumenal misfolded domain, are degraded via the Hrd1 complex. 
ERAD-M substrates, which contain other misfolded domains, are also degraded via the Hrd1 
complex. U and N denote the Cdc48 cofactors Ufd1 and Npl4. Misfolded domains within proteins 
are marked by a red star. Reproduced with modifications from Ruggiano et al., 2014. 

 

After a misfolded protein is recognized by ERAD, the protein is retrotranslocated to the 

cytoplasm. For lumenal proteins, the entire polypeptide is transported across the ER 

membrane. Membrane proteins are partially retrotranslocated and subsequently extracted 

from the ER membrane. Retrotranslocation occurs via Sec61 or possibly via a different 

protein. Many studies have shown that Sec61 plays a part not only in translocation but 

also in retrotranslocation; however, this observation has yet to be confirmed with 

additional studies (Wiertz et al., 1996; Schmitz et al., 2000; Pilon et al., 1997). Moreover, 

some of the proteins that aberrantly engage Sec61 on their way to the ER can become 

substrates of the Hrd1 ligase, which could explain the interactions reportedly observed 

between ERAD and Sec61 (Rubenstein et al., 2012). Therefore, Sec61 interaction with 

proteins undergoing retrotranslocation could represent an artifact of the ER protein 

translocation system. However, even if Sec61 is involved in retrotranslocation, whether 

two distinct families of proteins function as translocons and retrotranslocons remains 

unclear. Alternatively, Sec61has different functions depending on the protein with which 

it interacts. 
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E3 ligase complexes contain many multispanning membrane proteins and thus represent 

good candidates for retrotranslocons. E3 ligases themselves could conduct 

retrotranslocation (Ye et al., 2001;Horn et al., 2009;Mehnert et al., 2014). For example, 

overexpression of the E3 ligase Hrd1 results in the degradation of lumenal ER substrates 

in the absence of Der1, Usa1 and Hrd3 (Carvalho et al., 2010). Other proteins, such as 

Der1, are crucial for the degradation of many lumenal ERAD substrates (Carvalho et al., 

2006; Wahlman et al., 2007). 

Target proteins are usually ubiquitinated during retrotranslocation on the cytoplasmic 

side of the ER. Moreover, ubiquitination may assist in protein retrotranslocation 

(Nakatsukasa et al., 2008;Richly et al., 2005). Ubiquitination allows proteins to be 

recognized by the Cdc48/p97 ATPase complex. Cdc48 plays a role in the 

retrotranslocation of target proteins. Cdc48 is an AAA+ ATPase that acts to extract 

proteins in an ATP-dependent manner. Moreover, Cdc48 can distinguish between 

polyubiquitinated and non-polyubiquitinated proteins and can assist with the delivery of 

proteins to the 19S regulatory subunit of the proteasome (Jentsch and Rumpf, 2007). 

Cdc48/p97 is also associated with de-ubiquitinating enzymes (DUBs), which remove 

ubiquitin chains prior to proteolysis by the proteasome (Rumpf and Jentsch, 2006;Jentsch 

and Rumpf, 2007). 

After the proteins are retrotranslocated and extracted from the membrane (if necessary), 

they are maintained in a soluble form and are transferred to the proteasome by 

chaperones such as the BAG6 complex (Claessen and Ploegh, 2011;Wang et al., 2011). In 

addition, Dsk2 and Rad23, both of which are shuttle factors, can bind ubiquitinated 

proteins and deliver them to the proteasome and can also deliver ERAD substrates to the 

proteolytic core (Medicherla et al., 2004). 
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3  Materials and Methods 

3.1  Materials 

3.1.1 Instruments 

Amersham Pharmacia Biotech: electrophoresis power supply EPS; 

Beckman Coulter: Avanti 30 Centrifuge; 

Beckman Coulter: Avanti J-25I ultracentrifuge; 

Beckman Coulter: GS GR Centrifuge; 

Beckman: DU 640 UV/VIS spectrophotometer;   

Biometra: T3 PCR- Thermocycler 

Bio-Rad: electrophoresis chambers MiniProtean 2 and 3; 

Bio-Rad: Mini Trans-Blot cell (liquid blotting); 

Eppendorf: Centrifuge 5424 and 5415R; 

Eppendorf: Pipets (2, 10, 20, 100, 200, 1000 µl);  

Eppendorf: Thermomixer Comfort; 

Fisher Scientific: pH meter Accumet Basic; 

Fujifilm: Image Reader LAS 3000; 

Hoefer Scientific Instruments (San Francisco, USA): SemiPhore blotting transfer unit; 

Mettler Toledo: balances AG285, PB602; 

Millipore: deionization system MilliQ plus PF; 

NanoDrop Technologies Inc.: NanoDrop-1000 Spectrophotometer;  

New Brunswick Scientific: orbital shaker and incubator Innova 4430; 

Zeiss: Microscope Axiovert 200M; 

 



Materials and Methods 30 

 

3.1.2 Chemicals 

Quality of chemicals was Pro Analysi (p.a.) and mostly reagents were supplied by Sigma-

Aldrich.  

 

Amersham Pharmacia Biotech: ECL+ Detection Kit; 

BD Bioscience: Doxycycline; 

BioRad: Protein Assay Kit; 

Calbiochem: TWEEN-20; 

DIFCO: Bacto agar, Bacto peptone, Bacto tryptone, Bacto yeast extract, Yeast nitrogen base 

w/o amino acids; 

Fermentas: PageRuler Prestained Protein Ladder Plus, GeneRuler 1 kb and 100bp DNA 

Ladder;  

Fluka: DMSO; 

Life Technologies: SYBR Safe - DNA Gel Stain; 

Merck: Benzonase, EDTA, 2-Mercaptoethanol; 

Molecular Probes: DAPI; 

New England Biolabs: restriction endonucleases, prestained protein marker broad range, 

T4 DNA Ligase, CIP; 

Pierce: Coomassie protein assay reagent; 

Promega: Wizard Plus SV Minipreps, PureYield Plasmid Midiprep system, Wizard SV gel 

and PCR clean-up system salt; 

Qiagen: QIAquick PCR purification and gel extraction kits; 

Roche: Complete Protease inhibitor, DTT, ampicillin; 

Schleicher & Schuell: Protran (nitrocellulose transfer membrane), nitrocellulose acetate 

membrane filter; 
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Seikagaku: Zymolyase-20T; 

Serva: Acrylamide-Bis solution 30% (37:5:1), Coomassie, Serva BlueR, PEG-4000, PMSF, 

Citifluor; 

Stratagene: PfuTurbo DNA Polymerase II, Yeast Carrier DNA; 

 

3.1.3 Buffers 

10X TBS 

For 1L For 10L Final concentration  

87.66 NaCl 876.6g NaCl 150 mM NaCl 

12.11g Tris 121.1g Tris 20 mM Tris 

~4ml HCl ~40ml HCl   

adjust pH to 8.0 adjust pH to 8.0   

 

1X TBS  

100 ml of 10X TBS and 900ml of ddH2O 

1X TBST 

For 1L 

100ml 10X TBS 

0.5ml 100% Tween (final 0.05% v/v) 

899.5ml ddH2O 

 

Blocking buffer 

5% skim milk in TBST 

 

Antibody buffer 

0.5% skim milk in TBST 

TAE 

For 1L 50X solution Final concentration 
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242g Tris Base 40mM Tris Base 

57.1 ml of Glacial Acetic Acid 20mM Acetate Acid 

100ml 0.5M EDTA 1mM EDTA 

Fill H20 up to 1l   

 

1.5M Tris HCl, pH = 8.8 

 

For 1L Final concentration 

181.65g Tris base 1.5M Tris HCl 

800 ddH20   

Adjust pH with 37%HCl   

Fill H20 up to 1l   

 

1.0M Tris HCl, pH = 6.8 

 

For 0.5L Final concentration 

78.8 g of Tris-HCl  1.0M Tris HCl 

400 ddH20   

Adjust pH with 37%HCl to 6.8   

Fill H20 up to 0.5l   

 

4X SDS-PAGE sample loading buffer 

 

For 7.5 ml 4X Final concentration 1X 

1.5 mL of 1 M Tris-HCl pH 6.8 200 mM Tris-HCl pH 6.8  50 mM Tris-HCl pH 6.8  

3 mL of 1 M DTT 0.4M DTT 0.1M DTT 

0.6 g of SDS 8% SDS 2% SDS 

0.05 g of bromphenol blue 0.08 % bromphenol blue 0.02 % bromphenol blue 

2.4 mL of glycerol 32% glycerol  8% glycerol  

Fill H20 up to 7.5ml     

 

4M and 8M UREA sample buffer  

For 40ml 4M UREA For 40ml 8M UREA Final concentration 

8ml 1M Tris/HCl pH=6.8 8ml 1M Tris/HCl pH=6.8 200mM  

9.6g UREA 19.2g  4M or 8M 
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2g SDS 2g SDS 5% SDS 

8µ 0.5 EDTA 8µ 0.5 EDTA 0.1mm EDTA 

0.05g 0.05g 0.075mM Bromphenol blue 

0.6 DTT 0.6 DTT 1.5% DTT 

 

4M and 8M Urea sample buffers were aliquoted in 1.5ml eppendorf tubes and stored in -

20°C.  

 

WB stripping buffer 

For 40ml Final concentration 

8ml 10% SDS  2% SDS 

5ml 1M pH6.8 Tris-HCl  0.125M pH6.8 Tris-HCl  

+243µl β-me 6mM β-me 

26.7 ddH2O   

 

SDS running buffer 

For 10l of 10X SDS-PAGE 

Running Buffer  

For 1l of 10X SDS-PAGE 

Running Buffer  
Final concentration 1X 

303 g Trisbase 30.3 g Trisbase 25 mM Tris 

1440 g glycine 144.0 g glycine 192 mM glycine 

100 g SDS 10.0 g SDS 0.1% SDS 

Fill H2O to 10l Fill H2O to 1l   

 

Transfer buffer 

For 10l of 1X Transfer Buffer Final concentration 1X 

29g Glycine 0.0387M 

58g Tris 0.0479M 

3.7g SDS 0.00128M 

2l MetOH 4.95mol/L 

Fill H2O to 10l   

 

Cycloheximide solution  

Cycloheximide solution was used in concentration 10mg per 1 ml of H2O. This solution 

was always prepared freshly.  
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Glass beads lysis buffer 

Final concentration 1X 

25 mM Tris/HCl pH7.5 

50 mM KCl 

5% Glycerol  

10 mM MgCl2 

1 mM EDTA 

1 mM PMSF 

1X protease inhibitor cocktail (Roche)  

 

Stocks in -20°C 

 

DTT (1 M) 

5 g of DTT (FW 154.25) were resolved in 32.5ml of 10 mM NaAc with pH = 5.2. Solution 

was filtered with 0.22 μm filter (Millipore). Aliquots of 0.5ml were made and stored in -

20°C freezer.   

 

PMSF (100 mM)  

3.48g of PMSF (FW 174) was dissolved in 200ml of isopropanol and was stored in -20°C 

freezer.  

 

1000X Ampicillin 

5g of ampicillin was dissolved in 50ml of ddH20 and was filtered through 0.22 μm filter 

(Millipore). Sterile solution was aliquoted in 1.5 ml eppendorf tubes and was stored in -

20°C freezer. 

 

1000X Kanamycin  
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1.25g of Kanamycin was dissolved in 50ml of ddH20 and was filtered through 0.22 μm 

filter (Millipore). Sterile solution was aliquoted in 1.5 ml eppendorf tubes and was 

stored in -20°C freezer. 

 

3.1.4 Cultivation media 

YPD  

2% peptone (Difco) 

1% yeast extract (Difco) 

2% glucose 

(+ 2-3% agar for solid medium) 

 

2X CM  

For preparing 3.1 l of synthetic media:  

12.4 g drop out mix without amino acids  

41.5g nitrogen base  

pH should be adjusted to 5.6  

Final CM - is diluted 2XCM with 2% glucose or 2% Galactose/Raffinose 

 

Drop out mix  

L-alanine, l-arginine, l-asparagine, l-aspartic acid, l-cystein, l-glutamine, l-glutamic acid, l-

glycine, l-methionine, l-isoleucine, l-phenylalanine, l-proline, l-serine, l-threonine, l-

tyrosine, l-valine, myo-Inositol – 2g.  

PABA (4-Aminobenzoic acid) 0.2 g 

 

LB 
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For 1l 

Bacto-tryptone 10g  

Bacto-yeast extract 5g 

10g NaCl  

Adjust PH to 7.0 

 

Resulting mixture was sterilized by autoclave. For solid LB, 2% of agar was added.  

 

SOB 

For 1l 

Bacto-tryptone 20g 

Bacto-yeast extract 5g  

NaCl 0.5g 

10ml of 250mM KCl 

Adjust PH to 7.0 

 

Resulting mixture was sterilized by autoclave. 

 

3.1.5 Yeast and E. coli strains used in this work 

Escherichia coli strains: 

Strain  Genotype  Reference 

DH5αF’ 
F'/endA1 hsdR17(rK-mK+) supE44 thi-1 recA1 gyrA (Na1r) relA1 
D(lacZYA-argF)U169(m80lacZDM15) Novagene 

SURE 
e14- (McrA-) D(mcrCB-hsdSMR-mrr)171 endA1 supE44 thi-1 gyrA96 
relA1 lac recB Novagene 

 

 

S. cerevisiae strains 

 

YPH499 
MATa ura3-52 lys2-801 ade2-101 trp1Δ63 
his3Δ200 leu2Δ1 

Sikorski and 
Hieter, 1989 

YPH499 
MATa ura3-52 lys2-801 ade2-101 trp1Δ63 
his3Δ200 leu2Δ1[pin-] This study 
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YPK010 MATa ura3-52 lys2-801 ade2-101 trp1-Δ63 his3-Δ200 Leu2∷His6-Ub 
Park et al., 
2013 

R1158 MATa his3-1 leu2-0 met15-0l URA::CMV-tTA 
Open 
Biosystem 

Tet-Off SIS1 
MATa his3-1 leu2-0 met15-0l URA::CMV-tTA 
pSIS1::KanR‐TetO7‐TATA 

Open 
Biosystem 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 EUROSCARF 

∆pdr5 BY4741 ∆pdr5::Kan-R EUROSCARF 

crm1-1ts BY4741MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 crm1-1ts EUROSCARF 

 

 

3.1.6 Plasmids 

Plasmid Description Reference 

CG*  
(p413GAL-ΔssCPY*-GFP ) 

CPY*-GFP without signal sequence under 
GAL1 promoter (CEN6, HIS3) 

Park et al., 
2013 

NLS-CG*  
(p413GAL-NLS-ΔssCPY*-GFP ) 

CPY*-GFP without signal sequence but with 
N-terminus nuclear localization sequence 
under GAL1 promoter  (CEN6, HIS3) This study 

NES-CG*  
(p413GAL-NES-ΔssCPY*-GFP) 

CPY*-GFP without signal sequence but with 
nuclear export sequence under GAL1 promoter  
(CEN6, HIS3) This study 

p16  
(pRS413ADH-ΔssCPY*-GFP) 

CPY*-GFP without signal sequence under 
ADH1 promoter expressed on a centromere 
plasmid  (CEN6, HIS3) 

Park et al., 
2007 

p17 
(pRS423ADH-ΔssCPY*-GFP) 

CPY*-GFP without signal sequence under 
ADH1 promoter expressed on a multicopy 
plasmid  (2μ, HIS3) 

Park et al., 
2007 

CTG*  
(pRS413-CPY*-TM-GFP) 

CPY*-TM-GFP under GPD promoter expressed 
on a centromere plasmid  (CEN6, HIS3) This study 

CPY*-HA 
(pRS413-CPY*-HA) 

CPY* under GPD promoter expressed on a 
centromere plasmid  (CEN6, HIS3) This study 

Ub-GFP  
(p415GAL-UbG76V-GFP) 

Ubiquitin conjugated with GFP under GAL1 
promoter, centromere plasmid (CEN6, LEU2) 

Park et al., 
2013 

His6-Ub  
(YIplac128ADH-His6-Ub) 

His6 tagged Ub expressed under ADH1 
promoter   

Kalocsay et al., 
2009 

20Q  
(pYES2-myc-20Q) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with 20Q tract (2μ, URA3) 

Park et al., 
2013 

96Q  
(pYES2-myc-96Q) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with 96Q tract (2μ, URA3) 

Park et al., 
2013 
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20QmCh  
(pYES2-myc-20QmCh) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with 20Q tract with C-
terminus mcherry fluorescent protein (2μ, 
URA3) 

Park et al., 
2013 

96QmCh  
(pYES2-myc-96QmCh) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with 96Q tract with C-
terminus mcherry fluorescent protein (2μ, 
URA3) 

Park et al., 
2013 

20QcODC  
(pYES2-myc-20QcODC) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with 20Q tract with C-
terminus cODC degron (2μ, URA3) 

Park et al., 
2013 

96QcODC  
(pYES2-myc-96QcODC) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with96Q tract with C-
terminus cODC degron (2μ, URA3) 

Park et al., 
2013 

20QcODC*  
(pYES2-myc-20QcODC_C441A) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with 20Q tract with  C-
terminus cODC degron  mutation (2μ, URA3) 

Park et al., 
2013 

96QcODC*  
(pYES2-myc-96QcODC_C441A) 

Yeast plasmid expressing fragment of first 
exon of huntingtin with 96Q tract with C-
terminus cODC degron  mutation (2μ, URA3) 

Park et al., 
2013 

pUBR1  
(pRS425ADH-Flag-UBR1) Yeast plasmid expressing Ubr1  (2μ, LEU2) Du et al., 2002 

pSSA1  
(pESC-LEU-SSA1) 

Yeast plasmid expressing Ssa1 under GAL1 
promoter (2μ, LEU2) 

Park et al., 
2013 

pYDJ1  
(pESC-LEU-YDJ1) 

Yeast plasmid expressing Ydj1 under GAL1 
promoter (2μ, LEU2) 

Park et al., 
2013 

pSIS1  
(pRS414GPD-SIS1) 

Yeast plasmid expressing Sis1 under GPD 
promoter (CEN6, TRP1) 

Addgene#186
87 

pHA-SIS1  
(p415GAL-HA-SIS1) 

Yeast plasmid expressing Sis1 under GAL1 
promoter (CEN6, LEU2) 

Park et al., 
2013 

pSIS1_AAA  
(p415GAL-HA-SIS1_AAA) 

Yeast plasmid expressing Sis1 carrying 
mutations in HPD loop under GAL1 promoter 
(CEN6, LEU2) 

Park et al., 
2013 

pSIS1_ΔJ   
(p415GAL-HA-SIS1_ΔJ) 

Yeast plasmid expressing Sis1 carrying J 
domain deletion under GAL1 promoter (CEN6, 
LEU2) 

Park et al., 
2013 

pNLS-SIS1  
(p415GAL-HA-NLS-SIS1 ) 

Yeast plasmid expressing Sis1 with N-
terminus nuclear localization sequence under 
GAL1 promoter (CEN6, LEU2) 

Park et al., 
2013 

pNES-SIS1  
(p415GAL-HA-NES-SIS1) 

Yeast plasmid expressing Sis1 with N-
terminus nuclear export sequence under GAL1 
promoter (CEN6, LEU2) 

Park et al., 
2013 

Ssa3-LacZ-Leu 

Yeast cytosolic stress reporter plasmid (2µ, 
LEU2) with β-Galactosidase linked to SSA3 
promoter 

Polier et al., 
2008 

Ssa3-LacZ-Ura 

Yeast cytosolic stress reporter plasmid (2µ, 
URA3) with β-Galactosidase linked to SSA3 
promoter 

This study, 
market swap 
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p415Gal 
Yeast expression vector (CEN6, LEU2), GAL1 
promoter 

Mumberg et 
al., 2004 

p425Gal 
Yeast expression vector (2μ, LEU2), GAL1 
promoter 

Mumberg et 
al., 2004 

p423Gal 
Yeast expression vector (2μ, HIS3), GAL1 
promoter 

Mumberg et 
al., 2004 

 

3.1.7 Clonning strategy 

NLS-CG* (p413GAL-NLS-∆ssCPY*-GFP). The N-terminal tandem SV40 NLS sequence 

(DPKKKRKVDPKKKRKV) was attached to ∆ssCPY*-GFP protein (Fischer-Fantuzzi and 

Vesco, 1988). P413Gal plasmid was cut with spe1 and hpa1 restriction endonucleases 

(NEB). P413Gal-∆ssCPY*-GFP plasmid was used as a template for PCR for amplification 

of ∆ssCPY*-GFP. Forward primer for this reaction had sequence 

AAGTCCACTAGTATGGCTTCTCCTAAGAAGAA 

ACGTAAAGTTATCTCATTGCAAAGACCGTTGGGT. Reverse primer had sequence 

CATCACCTTCACCCTCTCCACTGAC. PCR product was cut with spe1 and hpa1. PCR 

product was separated in 1% agarose gel and isolated from the gel with Wizard® SV Gel 

and PCR Clean-Up System. Insert and vector were mixed in 2:1 ratio and ligated by T4 

ligase overnight at 16°C.  

 

NES-CG* (p413GAL-NES-∆ssCPY*-GFP). Engineered NES sequence 

(NINELALKFAGLDL) sequence was attached to ∆ssCPY*-GFP protein (Guttler et al., 

2010). P413Gal plasmid was cut with spe1 and hpa1 restriction endonucleases (NEB). 

P413Gal-∆ssCPY*-GFP plasmid was used as a template for PCR for amplification of 

∆ssCPY*-GFP. Forward primer for this reaction had sequence 

AAGTCCACTAGTATGGCTTCTAACATTAATGAGCTCGCACTTAAGTTCGCCGGTTT

AGACCTGATCTCATTGCAAAGACCGTTGGGT. Reverse primer had sequence 

CATCACCTTCACCCTCTCCACTGAC. PCR product was cut with spe1 and hpa1. PCR 

product was separated in 1% agarose gel and isolated from the gel with Wizard® SV Gel 

and PCR Clean-Up System. Insert and vector were mixed in 2:1 ratio and ligated by T4 

ligase overnight at 16°C. 
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CTG* (pRS413-CPY*-TM-GFP). pMA plasmid was cut with Sma1 restriction endonuclease 

in Tango Y (Fermentas, now Thermo Scientific) and with Swa1 in double tango buffer 

consequently (Taxis et al., 2003). Vector was cut from the agarose gel and purified from 

gel (Wizard® SV Gel and PCR Clean-Up System) and ligated with T4 ligase (Neb) 

overnight at 16°C. 

 

CPY*-HA (pRS413-CPY*-HA). pRS413-CPY*-TM plasmid was cut HindIII and BstE2 and 

vector was isolated from the agarose gel. pCT42 plasmid was cut with HindIII and BstE2 

and insert was isolated from the agarose gel(Taxis et al., 2003). Vector was cut from the 

agarose gel, purified from gel (Wizard® SV Gel and PCR Clean-Up System) was cut with 

HindIII and BstE2, the insert was isolated from agarose gel. Insert and vector were mixed 

in 2:1 ratio and ligated by T4 ligase overnight at 16°C. 

 

3.1.8 Marker swap 

YEp-Ssa3-LacZ plasmid contain URA3 selection marker. To prepare strain for the 

experiments, YEp-Ssa3-LacZ was transformed in YPH499. Cells containing the plasmid 

were transformed according to standard protocol with pUL9 (Cross, 1997). Prior the 

transformation, plasmid was digested with Sma1 (NEB). After the transformation cells 

were distributed on CM without LEU2 selection marker. After 4 days in 30°Cincubator, 

plate replica was done on CM plate without uracil. This plate was incubated for two days 

at 30°C. Clones which are growing on CM without leucine but not growing on CM 

without uracil were selected.    

 

 

3.1.9 Antibodies 

First antibodies. 

Antibody Animal 1st dilution 2nd dilution Reference 

CPY mouse  1/5000 1/1000 Invitrogen 

Dsk2 rabbit 1/5000 1/5000 Abcam 

FBPase rabbit 1/5000 1/5000 Gift from D.H. Wolf 
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GFP mouse  1/1000 1/1000 Roche 

HA rat 1/1000 1/1000 Roche high affinity 

Luciferase goat 1/2000 1/5000 Promega 

Myc mouse  1/250 1/1000 Santa Cruz 

PGK mouse  1/2000 1/1000 Invitrogen 

Rad23 Goat 1/1000 1/5000 Santa Cruz 

Sis1 rabbit 1/5000 1/5000 Cosmo Bio Co., Ltd 

Ssa1 rabbit 1/10000 1/5000 Gift from E.A. Craig 

Sse1 1484 rabbit 1/10000 1/5000 Gift from A. Bracher 

Ydj1 1326 rabbit 1/2000 1/5000 Gift from E.A. Craig 

Flag mouse  1/1000 1/1000 Sigma 

 

Secondary antibodies 

Secondary antibodies Host Reference 

anti-mouse-IgG-HRP  goat  Sigma A4416  

anti-rabbit-IgG-HRP  goat  Sigma A9169  

anti-goat-IgG-HRP  rabbit  Sigma  A5420  

anti-rat-IgG-HRP  goat  Pierce 31476 

anti-rabbit-CY3 goat  Dianova 

anti-mouse-CY3  goat Dianova  

anti-rabbit-FITC  goat  Dianova 

anti-mouse-FITC  goat  Dianova 

 

 

3.2  Methods 

3.2.1 DNA 

Overnight bacterial cultures with the plasmid of interest were grown at 37°C at 240 rpm 

in LB media. Plasmid preparations were performed with Promegas’s Mini-Prep or Midi-

Prep Kits according to supplier’s instructions. 

The concentration was determined by a photometer at 260 nm (Beckman DU640 

Spectrophotomer) or with Nanodrop (Thermo scientific). Constructs were verified by 

DNA sequencing (Sequiserve, Germany or in-house facility). 

 

Restriction and cloning enzymes  
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The restriction enzymes were purchased from New England Biolabs (NEB). Plasmids, 

primers and PCR products were digested according to instructions from supplier. T4 

ligase was produced in the in-house facility.  

 

3.2.2 Biochemical methods 

Agarose gel electrophoresis 

1% agarose gel was prepared with 1X TAE buffer. 1/10000 SYBR Safe DNA Gel Stain (Life 

Technologies) was added to the gel. 6 x Loading Dye Solution (Fermentas) was added to 

the samples. 1X TAE buffer was added to the tank and was run at 110V for 20-45 minutes, 

depending on the size of the products.  The Gene Ruler 1 kb-DNA-Ladder (Fermentas) was 

used as size marker. The DNA in the gel was visualized using UV light. Isolation form the 

gel (if needed) was performed with Wizard SV Gel and PCR Clean-Up System. 

 
Polymerase chain reaction (PCR) 

Polymerase chain reaction was performed in a Thermocycler (Biometra) according to a 

standard protocol with minor changes or modifications. Annealing temperature or 

extension time varied according to primer composition and template length. Taq-

polymerase (Promega) or Pfu- polymerase (Promega) were used. Typical PCR running 

conditions shown below:   

 

DNA template - final concentration 25 ng – 50а ng 

Primer - 20 pm 

dNTPs - 1 mM 

Polymerase buffer 1 x 

Polymerase 2.5 to 5 U 

Final volume 25μl or 50 μl 

 

Typical PCR cycle profile:  

94°C 4 minutes 

 

94°C 1 minute 

55°C 1 minute 

72°C 2 minutes 

=> 30-35 cycles 
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72°C 10 minutes 

 

PCR product was purified with Wizard SV Gel and PCR Clean-Up System. 

 
DNA ligation 

DNA Vector and DNA insert were cut with proper restrictive endonucleases. They have 

been isolated form the gel with Wizard SV Gel and PCR Clean-Up System and mixed at a 

ratio of 1:7 with total volume of 15μl with addition of ligase buffer. 0.4 μl of T4-DNA 

ligase (100U) was added. Ligation mixture was incubated in ligase buffer at 16°C 

overnight and transformed into chemically competent cells.  

 

SDS-PAGE 

SDS-PAGE was performed according to original paper in mini-Protean 3 system (BioRad) 

(Laemmli, 1970). Electrophoresis chambers were supplied by BioRad. Polyacrylamide gels 

were prepared according to the following protocol: 

Chemicals Separating gel Stacking gel 

  8% 10% 12% 5% 

H20 23.2 ml 19.8 ml 16.5 ml 6.8 ml 

30% Acrylamide/ 0.8% 
Bisacrylamide 

13.3 ml 16.7 ml 20 ml 1.7 ml 

1.5M Tris-HCl pH8.8 12.5 ml 12.5 ml 12.5 ml   

1 M Tris-HCL pH6.8       1.25 ml 

10% SDS 0.5 ml 0.5 ml 0.5 ml 1.7 ml 

10% freshly prepared APS 0.5 ml 0.5 ml 0.5 ml 0.1 ml 

TEMED  0.03 ml 0.02 ml 0.02 ml 0.01 ml 

Total Volume 50 ml 50 ml 50 ml 10 ml 

 

4M or 8M UREA loading buffer (4M or 8M urea, 5% SDS, 200 mM Tris-HCl [pH 6.8], 1 

mM EDTA 0.1% bromphenol blue, 1.5% 2-mercaptoethanol) was added to protein 

samples. 95°C. Samples were centrifuged before loading. Gel electrophoresis was carried 

out at a voltage 120V when samples are in the stacking gel and 200V when they are in 

separating gel. 

Prestained Protein Marker (Fermentas) used as a molecular weight marker.  
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Western Blotting and immunodetection  

After SDS-PAGE, proteins in the polyacrylamide gels were transferred to nitrocellulose 

membranes (Protran, GE Healthcare) in a liquid western blotting unit (GE Healthcare) at a 

constant current of 300mA for 45 minutes. Nitrocellulose membranes were blocked with 

TBST with 5% skim milk for 10 minutes. Membranes were incubated with primary 

antibody (1-3 hours), washed and incubated with secondary antibody (1 hour). Washed 3 

times with TBSt and developed with ECL (Millipore luminata solution). Exposure was 

done on the Image Reader LAS 3000 (Fujifilm).   

 

Western blot membrane stripping and reproving with different antibodies 

For removal of primary and secondary antibodies membrane was incubated in stripping 

buffer at 55°C for 5-10 minutes with mild shaking. After that, membrane was extensively 

washed with distilled H2O and 5 times with PBS solution on the shaker. 

Stripping buffer composition:  

For preparation of 100 ml: 

20 ml SDS 10% 

12.5 ml 0.5M Tris HCl pH 6.8  

67.5 ml ultra-pure water 

Add 0.8 ml ß-mercaptoethanol (under the fume hood) 

Fill the volume with H2O 

 

Filter retardation assay 

Glass beads lysis was performed but samples were not mixed with sample buffer. Instead, 

0.5µl benzonase (40U, Merck) was added per 100µl of supernatant. These samples were 

incubated 1hr at 4°C. Equal amount of 4% SDS / 100mM DTT was added to benzonase 

treated lysates. Probes were incubated in 96°Cfor 5 minutes. These samples were loaded 

on a cellulose acetate membrane (Schleicher&Schuell). Membrane had been soaked in 

0.1% SDS for 10 minutes.  Slot blot machine (Hoefer) was washed with 0.1% SDS solution 

3 times. Serial dilutions of samples were loaded in a slot blot machine. Membrane with 
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SDS insoluble aggregates was blocked with 5% milk solution in TBST and 

immunodetection of the signal was performed (Scherzinger at al. 1997). 

 

Trichloroacetic acid (TCA)-precipitation 

TCA precipitation was performed to concentrate protein samples. Protein samples were 

mixed at 1:1 ratio with a 20% TCA. Solution was incubated for 10 minutes on ice and 

centrifuged at 20,000 g for 15 minutes at 4°C. Pellets were washed with 1 ml of acetone 

(preincubated at -20°C) three times. Pellets were dried and stored or used for SDS-PAGE. 

For SDS-PAGE, UREA buffer (8 M urea, 5% SDS, 200 mM Tris-HCl [pH 6.8], 1 mM EDTA 

0.1% bromphenol blue, 1.5% 2-mercaptoethanol) was added to the pellet. Pellet was 

vortexed for 30 seconds and heated with UREA buffer if required. 

 

Immunoprecipitation 

Glass beads lysis was performed and yeast cell lysate was obtained. Lysates were cleared 

by fast speed centrifugation at 20,000g for 10 minutes at 4°C. Supernatant fractions 

containing 2 mg of protein incubated with 50 µl of anti-myc MicroBeads (Miltenyi 

Biotech) for 2 hours at 4°C. Part of the supernatant was taken as an input control for the 

experiment. Beads were washed 4 times with lysis buffer; bound proteins were analyzed 

by immunoblotting.  

SILAC labelling. 

Stable isotope labeling by amino acids in cell culture (SILAC) is a mass spectrometry 

based quantitative proteomics. In our work, we used it to identify interactors of the 

certain protein. Yeast cells were grown over night in CM with glucose without uracil and 

histidine. CM contained 100mg/l heavy L-lysine-13C6, 15N2 (Heavy) or with 100mg/l 

unlabeled L-Lysine (Light)(Ong and Mann, 2006). PolyQ and CG* were co-expressed in 

CM with 2% raffinose and 2% galactose instead of glucose. OD of the cells should be 0.8. 

Yeast cells were lysed by glass beads with lysis buffer composition: (25 mM Tris-HCl [pH 

7.5], 50 mM KCl, 10 mM MgCl2, 1 mM EDTA, 5% glycerol, 0.5% Triton X-100, complete 

protease inhibitors [Roche]). Cell lysates were cleared by centrifugation at high speed: 10 

minutes at 20,000g at 4°C. Myc tagged proteins were immunoprecipitated for 2 hours at 
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4°C with anti-myc Microbeads (Miltenyi Biotech). After 3 washes with lysis buffer bound 

proteins were eluted with UREA buffer (8M urea, 5% SDS, 200 mM Tris-HCl [pH 6.8], 1 

mM EDTA 0.1% bromphenol blue, 1.5% 2-mercaptoethanol)). Heavy and light eluates 

were mixed with 1 to 1 ratio and followed by SDS-PAGE, in-gel digestion and with LC-

MS. 

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

After SDS-PAGE and in-gel digestion, peptides were eluted from OMIX tips with 50 µl of 

80% acetonitrile/0.1% TFA. Elution was dried in a vacuum centrifuge at 35°C and 

resuspended in 6 µl 0.1% formic acid (FA). Lysate fractions and solutions were also 

digested and directly suspended in 6 µl of 0.5µl/min in 0.1% FA onto a 15 cm long 

capillary column with 75 µm inner diameter with a pre-pulled capillary tip (New 

Objective) with Reprosil-Pur 1.9 µm C18 material (Dr. Maisch). Peptides were eluted at 0.3 

μl/min with a 120 min gradient (pull-down eluate), or a 220 min gradient (lysate 

fractionation of samples) from 2 to 80 % acetonitrile, in 0.1 % FA. Peptides were directly 

injected into a Thermo LTQ-FT Ultra using a nano-electrospray ion source (Proxeon) with 

electrospray voltages ranging from 1.5 to 2.5 kV. FT scans from m/z 330-1700 were taken 

at 100,000 resolution for LTQ-FT Ultra, followed by collision induced dissociation (CID) 

scans in the LTQ of the 8 or 10 most intense ions with signal greater 2000 counts, and 

charge state larger than one. Dynamic exclusion of parent masses already fragmented was 

enabled. CID settings were as follows: isolation width 1, normalized collision energy 35 V, 

activation Q 0.250, and activation time 30 ms. 

Determination of SILAC Ratios 

Mass spectrometry data was analyzed with MaxQuant 1.0.13.13 software (Cox and Mann, 

2008). Program was used with parameters: Quant; SILAC Triplets, Medium Labels: Lys4, 

Heavy Labels: Lys8. Maximum labeled amino acids: 3. Variable modifications: Oxidation 

(M), Acetyl (Protein N-terminus). Fixed modifications: Carbamidomethyl (C). Database 

used for analysis: Yeast translated orf from Saccharomyces Genome Database 

(www.yeastgenome.org), published in 2012. Enzyme: LysC/P. MS/MS tolerance: 0.5 Da. 

Maximum missed cleavages: 2. Top MS/MS peaks/100 Da: 6. Mascot version 2.2 (Matrix 

Sciences, www.matrixsciences.com) was used to generate search results for MaxQuant. 

Identify; Peptide FDR: 0.01. Protein FDR: 0.01. Maximum PEP: 1. Minimum unique 

peptides: 1. Minimum peptide length: 6. Minimum peptides: 1. Protein Quantitation 
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based on Razor and Unique peptides. Minimum Ratio count: 2. ‘Re-quantify’ and ‘Keep 

low-scoring versions of identified peptides’ were both enabled. Normalized or non-

normalized ratios were used as specified below for every experimental set-up. 

Determination of 96Q Interactions 

SILAC was performed with swapped labeling: 96QmCh/CG* (H) versus 20QmCh/CG* 

(L) or 96QmCh/CG* (L) versus 20QmCh/CG* (H). 96Q interactors have been selected if 

they have been enriched in at least 2 experiments out of 3 by at least 2 fold in the pull 

down of 96QmCh over 20QmCh. All experiments were done independently. Correction of 

protein concentration was done (which could happen due to 96Q expression), normalized 

H/L and L/H ratios measured for the proteins in pull downs were corrected for 

significant differences in protein abundance in the respective protein lysates (Significance 

B calculated by MaxQuant < 0.05). 

 

3.2.3 Preparation of competent E.coli cells 

One colony from LB-plate was incubated in 3 ml LB medium overnight. Culture was 

incubated in 50 ml LB with initial OD600 = 0.05. Culture was grown for 2-3 hours at 30°C 

until OD600 reached 0.45-0.5. Cells were transferred on Ice and resuspended in sterile TfB 

I. Cells were pelleted at 4,000 g and resuspended in TfB II. 50-100 μl were frozen in liquid 

nitrogen. Chemically competent cells were stored at -80°C.  

 

TfB1 Chemical Concentration 

3.0g RbCl 100 mM 

2.48g MnCl2 X 4H2O  50 mM 

7.5 mL 1M Kac pH 7.5 30mM 

0.38g CaCl2 X 2H2O 10mM 

37.5g Glycerin 15% 

Add 250mL ddH2O   

 

TfB2 Chemical Concentration 

0.3g RbCl 10 mM 

5.0 mL 0.5M MOPS, pH 6.8 10 mM 

2.75g CaCl2 X 2H2O 75 mM 

37.5g Glycerin 15% 
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Add 250 mL ddH2O   

 

Transformation 

Competent cells were thawed on ice for 7 minutes. Cells were mixed with 0.5-1 μl plasmid 

DNA or 5-10 μl of ligation mixture. Samples were incubated for 30 minutes on ice and 

shocked with heat at 42°C for 70 seconds and immediately transferred on ice. 1 ml of LB 

was added to the cells and incubated at 37°C for 1-2 hours. Afterwards cells were pelleted 

and transferred on LB plates with antibiotics.  

 

3.2.4 Yeast 

 

Alkaline lysis of yeast.  

Yeast culture was collected after 15-18 hours of incubation in a selective 

galactose/raffinose containing CM media. 3 OD of the cells was used per sample and 

washed with ice-cold water. Then 1 ml of water was added to each sample. Probes 

vortexed for 15 seconds and 150µl of lysis buffer added per to cells. Resulting solution 

was vortexed 3 times and incubated on ice for 20 minutes.  Lysis buffer consist of 925 µl 

2M NaOH and 75 β-Me.  After the incubation 150µl of 50% TCA (trichloroacetic acid) was 

added and vortexed. Samples were left on ice for 15-30 minutes. As a next step, lysates 

were centrifuged on maximum speed for 10 minutes (20,000g) and supernatant was 

discarded. Pellets were washed with ice-cold acetone and sedimented by centrifugation 

with maximum speed for 5 minutes.  Supernatant was again discarded. 100 µl of 8M 

UREA sample buffer (8M UREA; 5% SDS; 0.1 mM EDTA; 0.075mM bromphenol blue; 1.5 

DTT) was added. Probes were shaken in Eppendorf Thermomixer Comfort at 1200 rpm 

for 15 minutes at 37°C. As a last step of preparation of lysate – it was incubated at 96°Cfor 

5 minutes and sample sedimented by centrifugation for 3 minutes at maximum speed. 10-

15 µl of extract was taken per well of the gel for SDS-PAGE. 

 

Glass beads lysis of yeast. 
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Yeast culture was collected after 15-18 hours of incubation in a selective 

galactose/raffinose containing CM media. Starting OD for the culture was 0.1-0.2OD/ml 

and total volume 50ml. Approximately 10-20OD was collected and was pelleted at 

2000rpm. 400µl of 1X lysis buffer was added to the sample and equal amount of glass 

beads. Probes were vortexed 2 times for 1minute. As a next step, samples were 

centrifuged 2,000rpm for 5minutes at 4°C. Supernatants were transferred in a new tube 

and protein concentration was measured by Bradford assay (Bio Rad). Concentration in 

the samples was adjusted with lysis buffer according to respective protein levels. Lysates 

were mixed with 1/5 amount of 5X sample buffer.  The same amount of protein loaded 

per well for SDS-PAGE.  

1X lysis buffer composition: 25mM Tris-Cl pH 7.5; 50mM KCl; 10mM MgCl2; 1mM EDTA; 

5% glycerol; 1mM DTT and 1 mM PMSF (added freshly); 1x protease inhibitor cocktail 

(from 25X stock: 1 tablet of protease inhibitor from Roche/2mLH2O, freshly made) 

Depending on the experiment, +1% of Triton X-100 could be added for dissolving 

membranes.  

 

Cycloheximide chase.  

After 15-18 hours of incubation of yeast cultures in a selective galactose/raffinose SC cells 

were collected in a 50ml falcon tube (cells were in the middle of log phase). Supernatant 

was discarded and 2ml of glucose CM media was added. Pelleted cells were redistributed 

in a media by pipetting or vortexing. 100µlof cycloheximide solution (10mg /ml) was 

added. Probes were incubated at 30°Cin the incubator. 500µl of the cells were collected 

per sample. Eppendorf tubes for sample collection had contained 500µl of 0.03M sodium 

azide (NaN3). Collected samples were pelleted by maximum speed centrifugation for 30 

sec and were frozen in liquid nitrogen. Samples were stored in -80°C. 

Time points for the samples collection depended on the level of expression of the protein. 

Typical time points used in this work were 0h, 1h, 2h, 3h; 0, 45 min, 90 min, 135 min; 0, 40 

min, 80min, 120min.  

 

Drop test  
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Cells were diluted in a 96 well plate. Cells were diluted in water or in respective CM 

without sugars in 1:6 or 1:10 ratios. Starting OD600 for dilutions were 0.1 OD. After 

dilutions are done 96 well replicator (created in core facility of MPI) used for making a 

plate replicas by dipping it in the wells and by pressing it on the selective plate with or 

without induction. Cells were grown in the incubator at indicated temperature (30°C if 

not stated otherwise).    

 

Yeast transformation 

Yeast cells were grown overnight and 0.5ml of culture was spun down in a centrifuge for 

10 sec, 10, 000g. Supernatant was discarded and 10µl of carrier DNA was added plus 1µl 

of DNA for transformation. Solution was vortexed well. 0.5ml of PLATE solution was 

added. Mixture was vortexed 2 times for 20 sec. 57 µl DMSO was added and 

transformation mixture was vortexed briefly. Solution was incubated at 30°C for 30 

minutes. Heat shock was done for 15 minutes at 42°C. Cells were pelleted at 6,000 g for 30 

seconds. Most of the supernatant was removed and the rest was used to spread cells on 

the selective CM plates.  

Plate solution:  40% PEG 3350  

   0.1 M Lithium acetate 

   10mM Tris/HCl pH 7.5 

   1 mM EDTA 

 

Fluorescence microscopy 

10 ml of yeast culture was fixed by addition of 1.2 ml formaldehyde addition and 1 ml of 

1M potassium phosphate (pH 6.5). Mixture was incubated at room temperature for 1 

hour. 1 ml of ice-cold SP buffer (composition?) was added and cells were sedimented at 

4°C at 800 g. Cells were again resuspended in ice cold SP buffer and washed with it 5 

times. Later cells were resuspended in 900 µl of SPβ buffer (composition) and 100µl of 

zymolyase (100T) solution (6 mg/ml) was added. Cells were incubated for 0.5-1 hour at 

30°C and were incubated 5 minutes on ice. Generated spheroplasts were washed 5 times 
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as described before and were resuspended in 150µl of cold SP buffer. Polylysine covered 

slides were prepared (20 µl of 0.5mg/ml polylysine solution per well) with 15 minutes 

incubation. Wells were washed 5 times with buffer. 20µl of spheroplasts were applied per 

well followed by an incubation for 10 minutes at room temperature. The spheroplasts 

were washed with PBS. The slides were immersed in ice cold methanol for 3 minutes and 

ice cold acetone for 30 sec. Slides were dried on air, 20 µl of PBST/4%BSA was added to 

each well for 50 minutes of incubation at room temperature. The wells were washed twice 

with PBST and 20 µl of primary antibody were added. Slides were incubated in the wet 

chamber for 1 hour and washes 5 times with PBST. Secondary antibodies were applied 

and procedure was repeated as before. Slides were air-dried and later DAPI mounting 

medium (1µg/ml) (or its analogs) was added for the nuclear staining. Slides were covered 

by coverslips and sealed by nail polish on its sides. Microscopy observation was done 

with Zeiss Axiovert 200M. 

Live cell fluorescence imaging 

Hoechst 33342 or DAPI stains were used for nuclear staining of the yeast cells. 

Fluorescence imaging of live yeast cells was performed using a Zeiss Axiovert 200M 

inverted microscope. Program for image analysis AxioVision 4.7.1 or ImageJ with 

additional extended scripts for working with .zvi files.  

 

Β-Galactosidase assay 

Original protocol for β Galactosidase assay was used with some modifications (Guarente, 

1983). Cells were grown overnight and diluted at the morning to 0.01 OD. Cells were 

grown up to 0.5OD, centrifuged and supernatant was discarded. Pellet was resuspended 

in 1 ml of Z buffer. 3 drops of chloroform and 2 drops of 0.1% SDS were added. Mixture 

was vortexed and preincubated at 28°C for 5 minutes. 0.2ml of ONPG was added 

(4mg/ml). After the color develops 0.5 ml of Na2CO3 solution was added. OD was 

measured at 420 nm after removal of cell debris (measurements were done against blank 

which did not contain any cells but all previous steps were applied).  

Z buffer:  

Chemical  Concentration 

Na2HPO4 7H2O  60mM 
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NaH2PO4 1H2O 40mM 

KCL   10mM 

MgSO4·7H2O  1mM 

dH20 till the final volume  

pH 7, stored at 4°C 

Before using 50mM of 2-Mercaptoethanol was added.  

ONPG (ο -nitrophenyl- β -D-galactoside) stock solution: 

4 mg/ml in Z buffer. Stored at –20°C. 

Na2CO3 stock solution used - 1M in H2O 

 

3.3  Contribution of other people to this work 

Results presented in this work were done in parts in a collaboration with Sae-Hun Park 

and Tao-Tao Chen. These results were published (Park et al., 2013). 
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3.4  Aim of the study 

 

PolyQ interference with protein quality control in the cell has been a subject of considerable 

debate (Díaz-Hernández et al., 2006;Ortega et al., 2010;Juenemann et al., 2013). Recent studies 

revealed that polyQ expansion proteins impair the normal function of the UPS and diminish the 

proteolytic activity of the proteasome(Michalik and Van Broeckhoven, 2004; Wang et al., 2008; 

Maynard et al., 2009). In contrast, other studies demonstrated no significant reduction in 

proteolytic activity in the presence of polyQ expansion proteins(Jana et al., 2001; Seo et al., 2004; 

Seo et al., 2007). Moreover, polyQ proteins did not have an effect on purified proteasomes; 

however, polyQ proteins indirectly interfered with the ubiquitin proteasome system (Bennett et 

al., 2005; Hipp et al., 2012). Therefore, whether polyQ expansion proteins inhibit the UPS 

remains unclear. If they actually inhibit the UPS, what is the mechanism underlying polyQ-

dependent interference with protein quality control? 

The first goal of the present study was to systematically analyze whether pathogenically 

expanded polyQ proteins affect proteasome function and protein quality control in the cell. 

Well-studied eukaryotic, terminally misfolded proteins based on CPY* were used as the model 

proteins for UPS activity in this study (Taxis et al., 2003). Degradation of these proteins by the 

proteasome was monitored using a cycloheximide chase assay. To accomplish the goal of this 

study, we examined the fate of the terminally misfolded proteins in the presence of the first 

exon of the huntingtin protein. Moreover, we observed whether quality control interference 

differed in various compartments of the cell. We determined whether the proteasome function 

changed in the presence of polyQ-expanded protein. We also addressed whether polyQ 

expression altered the ubiquitination of misfolded proteins. 

To address the mechanism of polyQ protein affecting protein quality control in the cell, we 

performed proteomic analyses by SILAC. These experiments were expected to provide us with 

quantitative data and a list of interactors with the polyQ-expanded proteins. Some of the 

proteins identified would be involved in the mechanism through which polyQ interferes with 

the protein quality control system in the cell. Using SILAC we anticipated to obtain sufficient 

data to unravel the mechanism through which polyQ affects the ubiquitin proteasome system 

and protein quality control.  

The second goal of this study was to study the exact mechanism of polyQ interference with the 

terminally misfolded protein CG*. We hoped to overcome the negative effects of polyQ 
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expression by overexpression of polyQ-interacting proteins.  Understanding the exact 

mechanism of polyQ interference should provide insight into how polyQ expression affects 

protein quality control and how the normal degradation of misfolded proteins in presence of 

polyQ can be restored.  
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4  Results 

4.1  General approach and model proteins 

Proteins are only marginally stable and are at risk of misfolding and aggregating. Cells have 

evolved extensive protein quality control machinery, in particular molecular chaperones, to 

maintain proteostasis and to prevent the accumulation of potentially toxic aggregate protein 

species. Failure of these protective systems is associated with degenerative diseases such as 

Alzheimer’s, Parkinson's and Huntington's diseases (Douglas and Dillin, 2010). 

A major goal of this study was to investigate the effects of pathologically expanded polyQ 

proteins on overall proteostasis. The yeast S. cerevisiae is a well-established model organism for 

studying polyQ protein aggregation and toxicity, which underlie Huntington's disease (Cohen 

et al., 2012). In this work, we overexpressed the N-terminal exon1 fragment of huntingtin with a 

non-pathogenic length of the polyQ tract (20Q) and a pathogenically expanded polyQ tract 

(96Q) in yeast. Overexpression of the exon1 fragment with the expanded polyQ tract is 

sufficient to cause HD-like pathology in different organisms (Mangiarini et al., 1996; Li et al., 

1999). Exon1 of huntingtin contains the polyQ tract and surrounding sequences, which may 

play important roles in the disease pathology. The flanking sequences of huntingtin protein 

appear to have a profound effect on polyQ toxicity and aggregation propensity (Duennwald et 

al., 2006; Robertson et al., 2011). Moreover, the proline-rich region following the polyQ tract 

mitigates toxicity (Dehay and Bertolotti, 2006). In this work, we used the entire exon1 sequence 

including the proline-rich segment and varied only the polyQ length (Figure 8). The proteins 

were overexpressed under a galactose-inducible (GAL1) promoter (Krobitsch and Lindquist, 

2000).To visualize the polyQ proteins in cells, we also generated C-terminal fusion constructs 

with fluorescent mCherry (20QmCh and 96QmCh). 
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Figure 8. Schematic picture of the constructs used in this study. 

The polyQ proteins and terminally misfolded proteins based on mutated carboxypeptidase Y (CPY*) used 
in this work are shown. Both polyQ proteins carry a myc-tag at the N-terminus for detection. These 
proteins also contain a poly-proline sequence after the 20Q or 96Q. 

 

To measure the effects of polyQ expansion proteins on proteostasis, we analyzed the ability of 

yeast cells to degrade misfolded proteins. The following terminally misfolded proteins were 

used: CG*, a mutant version of the secretory protein carboxypeptidase Y lacking the signal 

sequence (∆ssCPY*) and fused to GFP, and CG*, which is unable to fold in the reducing 

environment of the cytosol and undergoes rapid degradation via the UPS in a manner 

dependent on cytosolic Hsp70 (Ssa1) and Hsp40 (Ydj1) (Park et al., 2007). We also created two 

other constructs based on CG*. A nuclear localization signal (NLS) or a nuclear export signal 

(NES) was attached to the N-terminus of CG* (NLS-CG* and NES-CG*, respectively) to create 

versions of the protein that exclusively localized to the nucleus or to the cytosol. CPY* is a 

misfolded protein that resided in the ER lumen, and CTG* consists of CPY* linked to the ER 

membrane via a single transmembrane domain followed by a GFP domain, which is exposed to 

the cytosol. CPY* and CTG* are topologically different misfolded proteins that are degraded via 

ERAD. 

 

4.1.1  Expression of CG* and polyQ proteins in yeast 

We co-expressed CG* and 96Q or 96Q alone in wild-type cells (YPH499). CG* was expressed 

under the CPY promoter, whereas 96Q was expressed under a galactose-inducible (GAL1) 

promoter. Chronic overexpression of toxic proteins can lead to the selection of yeast that 
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produce lower yields of the proteins (Romanos et al., 1992). Therefore, we used a galactose-

inducible promoter for 20Q and 96Q. These experiments were performed under otherwise non-

stress growth conditions at 30°C. After 9 hr of induction, SDS-insoluble 96Qaggregates were 

detectable by immunoblotting (Figure 9). 

 

 

Figure 9. 96Q forms detergent-insoluble aggregates. 

Cells expressing 96Q alone or co-expressing 96Q and CG* were induced with galactose. Samples were 
collected at 0, 6, 9, 12 and 15 hours post-induction, and then were subjected to immunoblotting analysis 
using anti-GFP, myc and anti-PGK antibodies. SDS-insoluble and SDS-soluble forms of 96Q are clearly 
visible on the blot. The SDS-insoluble fraction does not enter the stacking gel and thus remains at the top 
of the membrane (Heiser et al., 2000). The SDS-soluble fraction of 96Q is situated at the bottom of the 
membrane. 

 

4.2  Global impairment of the ubiquitin-proteasome system by polyQ 

aggregation 

Aggregation-prone polyQ-expanded proteins may interfere with the protein quality control 

mechanisms of proteostasis. Studies have shown the expression of polyQ-expanded proteins 

result in the disruption of cellular protein folding in the C. elegans nematode model and the 

decline in cellular proteostasis capacity in a cell culture model (Gidalevitz et al., 2006; Gupta et 

al., 2011). Moreover, UPS components appear to be included in polyQ aggregates (Ciechanover 

and Brundin, 2003; Cummings et al., 1998; DiFiglia et al., 1997).  However, whether and how 

polyQ-expanded proteins interfere with cellular chaperone capacity and the UPS remain 

unclear. In previous studies, short-lived degron signal-containing proteins or small peptides 
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were used to explore the relationship between proteasome activity and polyQ-expanded 

protein aggregation (Bennett et al., 2007; Bett et al., 2009; Hipp et al., 2012; Maynard et al., 2009).  

However, these approaches are limited in their ability to explain whether polyQ-expanded 

proteins interfere with the ubiquitination process, inhibit proteasome function directly or both. 

Moreover, the use of small fluorogenic peptides to assess the functionality of the proteasome 

cannot address the question of whether polyQ-expanded proteins interfere with upstream 

reactions involved in proteasomal degradation, which includes ubiquitin modification and 

chaperone requirements.  In this study, to analyze the interference of proteasomal degradation 

by polyQ-expanded proteins, we tested the degradation of several compartment-specific 

misfolded proteins in cells co-expressing polyQ proteins. 

 

4.2.1 96Q interferes with the degradation of misfolded proteins in different 

compartments 

 

Protein quality control in the cytosol 

To evaluate the degree of interference of polyQ-expanded proteins in UPS functions, we co-

expressed 96QmCh with CG* or 20QmCh with CG* in S. cerevisiae strain YPH499. Expression of 

CG* and polyQ proteins were induced with galactose for 15 hours. After induction, cells were 

collected, and the degradation of CG* was analyzed by a cycloheximide (CHX) chase assay. The 

addition of cycloheximide inhibits protein synthesis in the cell by blocking the movement of 

peptidyl-tRNA from the acceptor site to the donor site within ribosomes(McKeehan and 

Hardesty, 1969). This technique allows us to determine the degradation kinetics of a protein and 

estimate its half-life. Cells expressing 96QmCh exhibited strong stabilization of CG*. After a 3-

hour CHX chase, approximately 80% of CG*remained. Cells expressing 20QmCh did not exhibit 

stabilization of CG*, and after a 3-hour CHX chase, only approximately 25% of CG* remained. 

The construct 96QmCh had a profound effect on the degradation of CG*, whereas 20QmCh did 

not appreciably interfere with CG* degradation. These results are shown in Figure 10. 
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Figure 10. 96QmCh stabilizes CG*. 

(A) The degradation of CG* was analyzed at several time points after the addition of CHX in wild-type 
cells expressing polyQ proteins and CG* expressed under the GAL1 promoter. CG* and polyQ proteins 
were detected using anti-GFP and anti-myc antibodies, respectively. PGK was used as a loading control. 
(B) CG* was quantified by densitometry analysis. Averages and the standard deviation (SD) from three 
independent experiments are shown. 

 

Interestingly, the observed effects on CG* stabilization were dependent on time. We did not 

observe CG* accumulation when CG* and 96Q were co-expressed for 6 hours (Figure 11). 
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Figure 11.  Turnover of CG* by CHX chase assay. 

96Q or 20Q constructs were co-expressed with CG* for 6 hr or 15 hr. CHX was added to inhibit protein 
synthesis. Samples were collected at the indicated time points and were analyzed for CG* by anti-GFP 
immunoblotting. CG* was quantified by densitometry analysis. Averages and the SD from three 
independent experiments are shown. 

 

 

Protein quality control in the nucleus 

Next, we determined whether 96QmCh interfered with the degradation of misfolded proteins 

in the nucleus. To do this, we analyzed the degradation of NLS-CG* in cells co-expressing 

polyQ proteins. Interestingly, 96QmCh also interfered with NLS-CG* degradation. After a 3-

hour CHX chase, approximately 53% of NLS-CG* remained. In cells expressing 20QmCh, only 

22% of NLS-CG* protein remained after the experiment. NLS-CG* degraded at a much faster 

rate in the presence of 96QmCh when compared with CG*. Thus, our results suggest that 
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96QmCh strongly interferes with the degradation of misfolded proteins in the nucleus. These 

results are presented in Figure 12. 

 

 

Figure 12. 96QmCh stabilizes NLS-CG*. 

(A) The degradation of NLS-CG* was analyzed in the presence of CHX in wild-type cells expressing 
polyQ proteins and NLS-CG* expressed under the GAL1 promoter. NLS-CG* and polyQ proteins were 
detected using anti-GFP and anti-myc antibodies, respectively. PGK was used as a loading control. (B) 
NLS-CG* was quantified by densitometry analysis. Averages and the SD from three independent 
experiments are shown. 
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Protein quality control in the ER 

 

Expression of the polyQ-expanded protein 96QmCh inhibited the degradation of misfolded 

proteins in two different compartments, the cytosol and the nucleus. Next, we tested whether 

96QmCh disturbed protein quality control in the ER. To this end, we took advantage of 

topologically distinct misfolded proteins based on CPY* (Figure 13). 

 

 

 

Figure 13. Topology of ERAD substrates used in this study. 

 

The ability of 96QmCh to affect ER luminal misfolded protein degradation was tested using a 

CPY* reporter protein. PolyQ proteins and CPY* were co-expressed, and the CHX chase assay 

was performed as described in the preceding sections. 96QmCh substantially inhibited the 

degradation of CPY*. After 135 minutes of CHX treatment, 65% of CPY* remained. In the 

control sample co-expressing 20QmCh, only 33% of the reporter protein was present. These 

results suggest that 96QmCh interferes with the degradation of ER lumen-specific CPY* (Figure 

14). 

 



Results 63 

 

 

Figure 14. 96QmCh stabilizes CPY*. 

(A) Degradation of CPY*-HA was analyzed upon the addition of CHX in wild-type cells expressing polyQ 
proteins. CPY*-HA was expressed under the TDH3 promoter. CPY*-HA* and polyQ proteins were 
detected using anti-HA, myc and PGK antibodies, respectively. PGK was used as a loading control. (B) 
CPY*-HA was quantified by densitometry analysis. Averages and the SD from three independent 
experiments are shown. 

 

96QmCh or 20QmCh was co-expressed with CTG* to determine whether polyQ-expanded 

proteins could affect the degradation of ER membrane-localized misfolded protein. 96QmCh 

interferes with CTG* degradation. After 135 minutes of CHX treatment, 64% of the CTG* was 

observed, whereas in cells expressing non-pathogenic polyQ protein (20QmCh), only 20% of 

CTG*remained. These results are shown in Figure 15. 
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Figure 15. 96QmCh stabilizes CTG*. 

 (A) The degradation of CTG* was analyzed upon the addition of CHX in wild-type cells expressing polyQ 
proteins. CTG* was expressed under the TDH3 promoter. CTG* and polyQ proteins were detected using 
anti-GFP and anti-myc antibodies, respectively. PGK was used as a loading control. (B) CTG* was 
quantified by densitometry analysis. Averages and the SD from three independent experiments are 
shown. 

 

4.3  Accumulation of misfolded proteins by 96Q leads to proteostasis 

collapse 
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4.3.1  The co-expression of 96Q with CG*, NLS-CG* and CTG* results in growth 

inhibition 

Next, we tested whether the co-expression of polyQ-expanded proteins with misfolded proteins 

compromises proteostasis capacity. As we observed, co-expression of 96QmCh with various 

forms of misfolded proteins significantly inhibited the elimination of misfolded proteins, 

including CG*, NLS-CG*, CTG* and CPY*. To test the consequences of this effect, we analyzed 

the growth of cells co-expressing polyQ proteins with misfolded proteins. A cell growth assay 

was performed for strains expressing polyQ proteins alone or in a co-expressed manner with 

CG*, NLS-CG*, CTG* or CPY*. The co-expression of 96QmCh with CG*, NLS-CG*, or CTG* 

resulted in substantial growth inhibition (Figure 16). Interestingly, co-expression of 96QmCh 

with CPY* did not result in a growth defect in yeast cells, and co-expression of 20QmCh with 

any of the misfolded proteins did not result in any noticeable toxicity. 

 

 

Figure 16. Growth of cells co-expressing polyQ-expanded proteins and misfolded proteins. 

Six-fold serial dilutions of cells were spotted on agar plates containing glucose (- induction) or galactose 
(+ induction) to induce the expression of polyQ proteins and misfolded proteins. The plates were 
incubated for 4 days at 30°C. 
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The observed proteotoxic effectswere also dependent on the expression levels of the misfolded 

protein CG*. Three different levels of CG* expression were assessed: low, average and high. 

High expression corresponds to the CG* construct used in the experiments described in the 

preceding sections. 96QmCh or 20QmCh was co-expressed with CG* constructs expressing at 

low, average and high levels. Co-expression of 96QmCh with CG* was toxic, and cytotoxicity 

increased according to CG*expression levels (Figure 17). 

 

 

Figure 17. 96Q and CG* toxicity correlates with the expression level of CG*. 

Growth of cells co-expressing 20Q or 96Q with CG*. Six-fold serial dilutions of cells were spotted on agar 
plates containing glucose or galactose. Plates were incubated for 4 days at 30°C. CG* expressed on a 
centromeric plasmid demonstrated low expression, CG* expressed on a multicopy plasmid demonstrated 
average expression, and CG* expressed under theGAL1 promoter on a centromeric plasmid expressed 

at the highest level. 

 

 

4.3.2  Overexpression of the 96Q protein results in toxicity 

Chronic accumulation of misfolded proteins can overwhelm the capacity of the protein quality 

control system, even though cells have a network of components to protect the proteome 

integrity and maintain proteostasis. (Finkbeiner, 2011;Hartl et al., 2011). Although the single 

expression of the polyQ-expanded proteins used in this study was not toxic for the yeast cells 

(Behrends et al., 2006; Krobitsch and Lindquist, 2000), we tested whether the overexpression of 

polyQ-expanded proteins alone could cause growth retardation. 
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To test this hypothesis, we overexpressed non-toxic versions of polyQ-expanded proteins 

(96QmCh and HA-96Q) from two plasmids, which resulted in cells expressing higher yields of 

the polyQ-expanded proteins. Both proteins were identical except for the expression of different 

epitope tags (HA and myc), which were used for their identification. The growth of cells 

overexpressing polyQ-expanded proteins was compared with cells co-expressing 96QmCh with 

CG*. Indicated combinations of cells overexpressing the polyQ proteins were analyzed by 6-

fold serial dilution spotting. Overexpression of 96Q from two plasmids was toxic in the same 

manner as CG* co-expression to the cells. Co-expression of 20QmCh with HA-96Q or HA-96Q 

alone was not toxic (Figure 18). 

 

 

Figure 18. Overexpression of non-toxic polyQ proteins causes cytotoxicity. 

Six-fold serial dilutions of cells were spotted on agar plates containing glucose (- induction) or galactose 
(+ induction) to induce the expression of polyQ proteins and misfolded proteins. The plates were 
incubated for 4 days at 30°C. 

 

In addition, we examined whether the overexpression of terminally misfolded proteins caused 

toxicity in yeast cells. To address this question, we overexpressed CG*under theGAL1 promoter 

with a multicopy plasmid backbone (2µ). As a result, CG* expression levels were significantly 

higher relative to CG* expressed on a centromeric plasmid. The viability of the cells 

overexpressing CG* (2µ) with ΔssCPY*-Cherry (CmCh*) was analyzed by 6-fold serial dilution 

cultures. Overexpression of CG*(2µ) with CmCh* was toxic to the cells. Surprisingly, 

overexpression of CG* with a multicopy plasmid was sufficient to induce cytotoxicity, which is 

likely due to the perturbation of proteostasis control attributable to the elevated levels of 

terminally misfolded proteins (Figure 19). 
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Figure 19. Overexpression of misfolded proteins does not cause significant growth inhibition. 

The growth of cells overexpressing terminally misfolded proteins was assessed by 6-fold serial dilutions 
of the cells. Cells co-expressing 96QmCh with CG* and 20QmCh with CG* were used as controls. Six-
fold serial dilutions of were spotted on agar plates containing glucose or galactose. The plates were 
incubated for 4 days at 30°C. 

 

 

4.4 Inactivation of the heat shock response by polyQ proteins 

96Q is a misfolded protein that is potentially harmful to the cell. Our data have shown that in 

combination with CG* expression, 96Q expression results in yeast cell growth inhibition. In 

what other ways do cells respond to the expression of polyQ-expanded proteins? Does co-

expression of polyQ-expanded proteins with terminally misfolded proteins inhibit the cellular 

stress response? To address these questions, we determined whether polyQ-expanded proteins 

expressed alone or co-expressed with misfolded proteins elicits a cytosolic stress response using 

a reporter construct consisting of the β-galactosidase gene under the control of the heat-shock 

promoter element (HSE) of the stress-inducible Hsp70 geneSSA3 (Boorstein and Craig, 1990a). 

Because theSSA3 promoter is activated only under stress, we used this promoter to measure 

how cells react to stress (Boorstein and Craig, 1990b). 

The spontaneous expression of LacZ was measured in cells expressing polyQ proteins alone or 

in combination with CG* under non-stress growth conditions at 30°C (Figure 18A). Under 

normal conditions, cells expressing 96QmCh alone or in combination with CG* exhibited a 

limited cytosolic stress response relative to control cells (Figure 20A). Furthermore, additional 

thermal stress consisting of 1 hour of heat shock at 37°C revealed that cells co-expressing 

96QmCh and CG* remained insensitive to the induction of a cytosolic stress response to heat 
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shock when compared with cells expressing no proteotoxic proteins (Figure 20 B). Interestingly, 

cells expressing CG* alone or in combination with 20QmCh also exhibited a substantial 

reduction in the cytosolic stress response, although cells expressing 96QmCh or 20QmCh alone 

induced a level of stress response similar to the control cells (Figure 20B). The comparison of the 

cytosolic stress response under normal (A) and heat-shock conditions (B) is plotted in Figure 

20C. Cells co-expressing the misfolded proteins 96QmCh and CG* demonstrated a limited 

ability to react to additional thermal stress. In this sample, cells were able to produce a thermal 

stress response that was only 2.2-fold higher than non-stress growth conditions at 30°C.Cells 

expressing 96QmCh alone produced a 6.1-fold increased stress response higher than non-

stressed sample. Co-expression of 20QmCh with CG* or single expression of CG* resulted in 

7.5- and 7.6-fold increases in stress activation, respectively. 20QmCh co-expressed with empty 

vector (p423Gal) or two empty vectors (pYES and p423Gal) responded to heat shock conditions 

with increases in LacZ activity by 14.5- and 13.1-fold, respectively. Moreover, the limited 

cytosolic stress response in cells co-expressing 96QmCh with CG* suggested that the cellular 

proteostasis system is impaired under these conditions. 
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Figure 20. Co-expression of 96QmCh and CG* inhibits the cytosolic stress response. 

The expression of LacZ was measured in cells expressing polyQ proteins alone or in combination with 
CG* under the conditions described in the Materials and Methods section. (A) A cytosolic stress response 
under normal growth conditions at 30°C (no heat shock). (B) A cytosolic stress response under heat-
shock conditions at 37°C. Cells were subjected to heat shock at 37°C for 1 hour prior to the experiment. 
(C) Comparison of the cytosolic stress response under normal (A) and heat shock conditions (B). 
Averages and the SD from three independent experiments are shown. 

 

 

4.5  CG* as a model protein for UPS impairment by polyQ-expanded 

proteins 
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We tested several UPS reporters that were stabilized in presence of the polyQ-expanded protein 

96QmCh. These reporter proteins are associated with different compartments and are degraded 

via distinct mechanisms. We chose CG* as a primary UPS reporter to study its mechanism of 

degradation for several reasons. First, CG* is a cytosolic protein, and almost half of the proteins 

in the yeast cell are cytosolic (Kumar et al., 2002). Therefore, a cytosolic protein represents the 

largest fraction of proteins in yeast, which would allow us to extrapolate our findings to many 

other misfolded or incorrectly assembled cytosolic proteins. Second,the degradation pathway 

for CG* and the required UPS components involved are well known (Park et al., 2007; Heck, et 

al., 2010; Prasad, et al., 2010). For example, CG* degradation requires Hsp70 Ssa1-Ydj1 

chaperone machinery. An understanding of how the UPS is impaired in CG* degradation by 

96QmCh is important for elucidating the basic cellular mechanisms of polyQ protein 

aggregation. 

 

4.5.1  96QmCh does not co-aggregate with CG* 

How do polyQ expansion proteins inhibit the degradation of the misfolded cytosolic protein 

CG* via the UPS? Proteins that form SDS-insoluble aggregates or inclusion bodies often co-

aggregate with other proteins. For example, chaperones co-localize with amyloid beta (Vattemi 

et al., 2004). Moreover, unrelated misfolded proteins tend to co-localize, but not to co-aggregate 

(Rajan et al., 2001). The co-localization of misfolded proteins could be explained by the 

accumulation of proteins in the juxta nuclear quality control compartment (JUNQ) or in 

insoluble protein deposits (IPODs) (Kaganovich et al., 2008). If CG* is sequestered by 96Q 

aggregates, then CG* would be less accessible to the UPS machinery. This could potentially 

explain CG* accumulation in the presence of 96Q. 

To examine whether the inhibition of CG* degradation was due to co-aggregation of CG* and 

96Q, we analyzed the subcellular distribution of 96QmCh and CG* in living cells. CG* was 

expressed under the control of the GAL1 promoter in these experiments, which resulted in 

higher expression levels than when under the control of the PRC1 promoter. In general, CG* 

was almost undetectable by fluorescence microscopy, which is likely because it is degraded 

relatively quickly, and 20QmCh was diffusely distributed and did not form any aggregates. 

Expression of 96QmCh led to the accumulation of multiple aggregates, and CG* formed 

cytosolic inclusions. However, the CG* inclusions did not overlap with the inclusions formed 

by 96QmCh (Figure 21). Therefore, we concluded that CG* stabilization was not due to co-

aggregation of CG* with 96Q but is due to other reasons. 
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Figure 21. Formation of CG* inclusions upon co-expression with 96Q. 

Cells co-expressing 20QmCherry (20QmCh) or 96QmCh in combination with CG* for 18 hours at 
30°Сwere analyzed by live cell fluorescence microscopy. Nuclei were counterstained with Hoechst 
33342. Scale bar, 10 mm. 96QmCh and CG* did not co-aggregate. 

 

 

4.6  Proteasome function and ubiquitination are not affected by 96Q 

4.6.1  96Q does not inhibit UbG76V-GFP degradation 

We observed that the expression of 96Q interfered with the degradation of several misfolded 

proteins. However, how this interference occurs is not clear. One hypothesis that could explain 

this observation is that pathogenically expanded polyQ directly inhibits the proteasome because 

the proteasome cannot digest SDS-insoluble fibrils and/or because soluble 96Q contains a long 

polyQ tract that cannot be digested (Venkatraman et al., 2004; Raspe et al., 2009). The 

proteasome may become clogged with the polyQ domain. We tested the possibility of general 

inhibition of proteasome function using 96QmCh. If polyQ-expanded proteins inhibited the 

general function of the proteasome, then the degradation of all or most proteasomal substrates 

would be affected. 

To test the ability of the proteasome to degrade other proteins, we used the short-lived UPS 

reporter UbG76V-GFP,which is exclusively degraded by the proteasome (Johnson et al., 

1995;Dantuma et al., 2000). UbG76V-GFPconsists of a single ubiquitin molecule fused with GFP. 

Deubiquitination of the GFP fusion is completely inhibited because the C-terminal Gly76 of the 

ubiquitin moiety is substituted with Val76(Johnson et al., 1995). UbG76V-GFP represents a 

normally folded but short-lived protein (due to ubiquitination). Under normal conditions, 

UbG76V-GFP is rapidly degraded via the UPS but accumulates in the cells upon proteasomal 

inhibition (Dantuma et al., 2000). UbG76V-GFP was co-expressed with 96QmCh or 20QmCh. 

Interestingly, UbG76V-GFP was not stabilized when co-expressed with 96QmCh. Moreover, the 

degradation kinetics of UbG76V-GFP in cells co-expressing 96QmCh were similar to control cells 

co-expressing UbG76V-GFP and 20QmCh. 
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Figure 22. 96QmCh does not interfere with UbG76V-GFP degradation. 

(A) The degradation of UbG76V-GFP was analyzed upon the addition of CHX in wild-type cells expressing 
polyQ proteins. UbG76V-GFPand polyQ proteins were detected using anti-GFP, myc and PGK antibodies, 
respectively. PGK was used as a loading control. (B) UbG76V-GFP was quantified by densitometry 

analysis. Averages and the SD from three independent experiments are shown. 

 

4.6.2  Inhibition of CG* degradation occurs upstream of the proteasome 

To obtain more evidence that 96QmCh does not inhibit the proteasome directly, we used 

GFPcODC in addition to the reporter. GFPcODC is a C-terminally GFP-tagged construct 

containing the 37-amino acid degron found in ornithine decarboxylase (cODC). This degron 

sequence targets GFPcODC to the 26S proteasome in a ubiquitin-independent manner (Zhang 

et al., 2003; Takeuchi et al., 2007;Takeuchi et al., 2008).We co-expressed CG* and GFPcODC in 
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the presence of polyQ proteins. This experiment would allow us to determine whether the 

proteasome remained functional under conditions where CG* degradation is inhibited by 96Q.  

As expected, in the presence of 96QmCh, degradation of CG* was inhibited, but interestingly, 

non-ubiquitin-dependent GFPcODC degradation occurred rapidly even in the presence of 

96QmCh (Figure 23). Therefore, our findings that the degradation ofUbG76V-GFP and GFPcODC 

remain unimpaired in yeast indicate that 96Q does not interfere with UPS function by blocking 

the proteasome core directly. Furthermore, these results suggest that the proteasome remains 

functional in the presence of 96Q (Figure 23). 

 

 

 

Figure 23. The proteasome remains functional in the presence of 96QmCherry. 

CG* and GFPcODC were co-expressed in yeast with either 96QmCh or 20QmCh. After induction for 18 
hr, CHX was added to follow the decay of CG* and GFPcODC as shown in Figure 12. PGK was included 
as a loading control. 

 

4.6.3  The proteasome is capable of degrading polyQ proteins 

To determine whether a long polyQ tract could be degraded by the proteasome, the C-terminal 

37-aminoacid ornithine decarboxylase (cODC) degron was fused to the C-terminus of the 

polyQ-expanded proteins. When cODC was fused to the C-terminus of 96Q (96QcODC), the 

resulting fusion protein was effectively degraded, and blockage of CG* degradation was 

partially relieved (Figure 24). In contrast, 96Q fused with a mutated cODC (C441A) degron 

(96QcODC*) (Zhang et al.,2003) was stabilized and interfered with CG* degradation (Figure 24). 

In addition, SDS-soluble 96QcODC was degraded with kinetics similar to 20QcODC (Figure 25). 

These results exclude direct proteasome inhibition by 96Q. Therefore, we concluded that the 

proteasome remains functional in cells expressing 96QmCh, and inhibition of CG* and other 
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reporters by 96QmCh is not attributable to the direct inhibition of the proteasome (Figure 22, 23, 

24 and 25). 

 

 

 

 

Figure 24. Targeting 96Q to the proteasome relieves the inhibition of CG* degradation. 

CG* was co-expressed with 96QcODC or 20QcODC for 15 hours at 30°С. Cells expressing 96QcODC* 
or 20QcODC* (containing a mutated cODC degron) served as controls. The degradation kinetics of CG* 
were analyzed after the addition of CHX. Subsequently, SDS-PAGE and immunoblotting using anti-GFP 
and PGK antibodies were performed. Averages and the SD from three independent experiments are 
shown. 
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Figure 25. Targeting the polyQ protein to the proteasome. 

Targeting the polyQ protein to the proteasome. The turnover of 96QcODC and 20QcODC was analyzed 
upon the addition of CHX. 96QcODC* and 20QcODC* were used as controls. PGK was included as a 
loading control. 
 

 

4.7  Ubiquitination of CG* and Ubr1 overexpression 

4.7.1  CG* ubiquitination is not affected by polyQ proteins 

 

Protein poly-ubiquitination is a hallmark of proteasomal degradation by the UPS, and poly-

ubiquitination is mediated by reactions catalyzed by the enzymes from the families E1, E2 and 

E3 ligases (Dennissen et al., 2012; Valera et al., 2005). Therefore, we tested whether CG* was 

efficiently ubiquitinated in the presence of 96QmCh. These experiments were performed in cells 

expressing His6-ubiquitin (His6-Ub). His6-ubiquitin-conjugated proteins were isolated from cell 

extracts using TALON magnetic beads under denaturing conditions. When CG* was expressed 

either alone or in combination with 20QmCh or 96QmCh, ubiquitinated CG* was detected in 

pull-down assays by immunoblotting with an anti-CPY antibody (Figure 26, lanes 5–7). Co-

expression with 96QmCh did not reduce the amount of ubiquitinated CG* (Figure 26, lane 7). 
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Figure 26. 96QmCh does not interfere with CG* ubiquitination. 

His6-Ub-conjugated proteins were isolated from cells expressing the indicated constructs (20QmCh or 
96QmCh, CG* or vector control and His6-Ub), followed by 4–12% gradient SDS-PAGE and 
immunoblotting using an anti-CPY antibody to detect ubiquitinated CG*. CPY marks the position of the 
endogenous CPY protein. 

 

4.7.2 Overexpression of Ubr1 does not improve CG*degradation 

To test whether the ubiquitination of CG* was a rate-limiting step for degradation, we 

overexpressed the E3 ubiquitin ligase Ubr1, which is involved in the ‘‘N-end rule’’ degradation 

pathway and is also required for efficient CG* degradation (Eisele and Wolf, 2008; Hecket al., 

2010; Varshavsky, 2012). Ubr1 overexpression did not rescue CG* degradation in the presence 

of 96QmCh but stimulated CG* degradation in 20QmCh-expressing cells (Figure 27). These 

results suggest that Ubr1 is not a limiting factor for CG* degradation. 

 

 



Results 78 

 

 

Figure 27. Ubr1 is not a limiting factor for CG* degradation in the presence of polyQ proteins. 

Ubr1 was overexpressed under the control of theADH1 promoter in cells co-expressing 96QmCh or 
20QmCh and CG*. After 18 h of polyQ induction, CG* degradation was analyzed upon the addition of 
CHX. CG* levels were quantified. Averages and the SD from three independent experiments are shown. 
 

 

4.7.3 Disruption of Ubr1 in 96Q and CG*-expressing cells results in increased 

toxicity 

Despite the fact that overexpression of Ubr1 does not accelerate CG* degradation in the 

presence of 96QmCh, Ubr1 plays an important role in the clearance of misfolded proteins. We 

co-expressed 96Q with CG* or 20Q with CG* in ΔUbr1 cells. As controls, we used wild-type 

cells co-expressing 96Q with CG* or 20Q with CG*. We analyzed the survival rates of the cells 

grown on agar plates containing glucose or galactose (Figure 28). 
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Figure 28. Co-expression of 96Q with CG* in ΔUbr1 cells results in enhanced cytotoxicity. 

The percent cell survival in ∆Ubr1 cells co-expressing polyQ proteins with CG* was assessed by counting 
the number of colonies on agar plates containing glucose or galactose after 4 days of culture at 30°C. WT 
refers to the BY4741 strain. Averages and the SD from three independent experiments are shown. 

 

 

4.8  Interactome of 96Q by quantitative proteomic analysis 

Misfolded proteins are involved in many aberrant interactions. For example, artificial β-sheet 

proteins sequester endogenous proteins into aggregates and cause cytotoxicity. Particularly 

vulnerable proteins for these interactions are the components of the metastable subproteome in 

the cell (Olzscha et al., 2011). The first line of defense against misfolded proteins with exposed 

hydrophobic residues consists of chaperones. Molecular chaperones are well known for their 

ability to modulate polyQ-dependent toxicity (Barral et al., 2004). Proteasomes and other 

components also play obvious roles in this interaction because misfolded protein must be 

degraded; however, these components would be involved in the later stages (Kim et al., 2013). 

96Q likely interacts with chaperones, components of the proteasome and other proteins. 96Q 

interactions could inactivate or occupy proteins required for the efficient degradation of the 

misfolded substrates used in our study. To identify interacting proteins, we tested the 

interactome of 96Q versus the non-pathogenic 20Q protein. Among the interactors, we expected 

to find protein(s)that are required for CG* degradation and potentially for the degradation of 

the other misfolded proteins included in our study. If 96Q-interacting proteins are required for 

CG* degradation, then these proteins could be identified in a straightforward manner. 
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4.8.1  Identification of 96Q-interacting proteins 

The results described above suggest that 96QmCh inhibits CG*degradation by sequestering one 

or more factors that act upstream of the proteasome in addition to ubiquitination. To identify 

proteins that preferentially interact with 96QmCh relative to 20QmCh, we performed a 

quantitative interactome analysis using SILAC (stable isotope labeling with amino acids in cell 

culture)(Ong and Mann, 2006). Cells co-expressing 96QmCh and CG*were labeled for 20 hr 

with a heavy lysine isotope, while cells co-expressing 20QmCh and CG* were grown in light 

medium to serve as the control sample. Using anti-myc antibody, 96QmCh and 20QmCh were 

isolated from cell extracts that had been clarified by centrifugation to remove polyQ inclusions. 

The isolated fractions were mixed in a 1:1 ratio and were separated by SDS-PAGE followed by 

in-gel digestion and LC-MS/MS analysis. Approximately 100proteins were enriched over 2-fold 

(and up to 100-fold) upon 96QmCh immunoprecipitation when compared with 20QmCh 

immunoprecipitation in at least two of three independent experiments. A list of the protein 

interactors that were increased in the presence of 96QmCh relative to 20QmCh is presented in 

Table 2. 

 

Highly enriched proteins can be divided into several groups according to their function:  

 Chaperones 

 Glutamine-rich proteins 

 Yeast prion proteins 

 UPS components 

 Nuclear pore complex proteins 

 Vesicle transport 

 

Interestingly, many 96QmCh-interacting proteins localized to the nucleus. We found 76 

proteins with nuclear or nuclear/cytosolic localization that interacted with96QmCh. As we 

have shown before, 96QmCh was located primarily in the cytosol and not in the nucleus. 

However, we are unable to completely rule out partial nuclear 96QmCh localization that cannot 

be detected due to degradation or other reasons, which could explain the enrichment of 

interactions observed with nuclear proteins in our experiment. Furthermore, PolyQ proteins 

have been reported to localize to the nucleus, supporting partial localization of 96QmCh in the 

nucleus(Havel et al., 2009). To address this question, experiments with MG132 or other 

proteasome inhibitors should be performed; however, these experiments are beyond the scope 

of our study. 
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UPS components 

Some UPS components were enriched in the 96QmCh fraction when compared with the 

20QmCh fraction. We observed a 20-fold increase in Dsk2 in the 96QmCh fraction when 

compared with the 20QmCh fraction. Dsk2 is a ubiquitin-binding protein that plays a role in 

many processes such as the degradation of other proteins and spindle pole body duplication 

(Biggins et al., 1996). Three proteins that were enriched were Rpn5, Rpn1 and Rpn11. These 

proteins, which are components of the 26S proteasome, were enriched in the 96QmCh fraction 

by 4-, 3- and 3-fold increases, respectively. 

 

Chaperones 

Chaperones and co-chaperones were strongly enriched in the 96QmCh fraction. We observed a 

29-fold increase in Sis1 co-immunoprecipitation in the 96QmCh fraction. We also observed an 8-

fold increase in Ssa2 co-immunoprecipitation in the 96QmCh fraction. Ssa1 and Ssa4 were both 

enriched 4-fold, and Ydj1 was enriched 3-fold in the 96QmCh fraction when compared with the 

20QmCh fraction. Cytosolic Hsp70 and Hsp40 members also strongly interacted with 

pathogenically expanded polyQ, which is consistent with observations made from our 

immunoprecipitation data that will be discussed later. 

 

Q-rich proteins 

Another category of polyQ interactors is glutamine-rich (Q-rich) proteins. Pathogenic polyQ 

proteins are known to co-aggregate with other proteins that are Q-rich (Steffan et al., 2000; 

Nucifora et al., 2001). Pub1 was 104.3-fold enriched in the 96QmCh fraction relative to the 

20QmCh fraction. Pub1 is a poly(A)+ RNA-binding protein, an abundant mRNP component 

protein, that binds mRNA and is required for mRNA stability. Another protein that was highly 

enriched in the 96QmCh fraction is Sgt2. Sgt2 was enriched 50-fold in the 96QmCh fraction. 

Sgt2 is a cytoplasmic co-chaperone that is required for the complex formation of Get4, Get5 and 

other TRC complex members(Chang et al., 2010).This complex mediates the posttranslational 

insertion of tail-anchored proteins into the ER membrane. Def1 is another polyQ-containing 

chaperone that was enriched 39-fold in the 96QmCh fraction. Def1 is an RNAPII degradation 

factor that functions in a complex with the Rad26 protein (Woudstra et al., 2002). 

 

Yeast prions 

Many yeast prions were enriched in the 96QmCh fraction relative to the 20QmCh fraction. Cyc8 

was enriched 87-fold in the 96QmCh fraction. Cyc8 is a transcriptional co-repressor and a part 

of the transcriptional co-activator complex that recruits the SWI/SNF and SAGA complexes to 
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promoters. Yeast prion Rnq1 was enriched 7-fold in the 96QmCh fraction. Rnq1 is an infectious 

prion protein that results in the [PIN+] phenotype in yeast. Sup35 was enriched 6-fold. The 

Sup35 protein functions as the translation termination factor eRF3. In prion form,Sup35 

expression results in the [PSI+] phenotype (Lindquist et al., 2001;Derkatch et al., 2004). Pin3 was 

4-fold enriched in the 96QmCh fraction. Pin3 is a negative regulator of actin nucleation-

promoting activity. Pin3 also induces the appearance of [PIN+] when overproduced (Derkatch 

et al., 2001). 

 

Nuclear pore complex 

We observed a 34-fold enrichment of Nup100 protein in the 96QmCh fraction relative to the 

20QmCh fraction. Nup100 is an FG-nucleoporin component of the central core of the nuclear 

pore complex (Rout et al., 2000). A 10-fold enrichment of Nup116 was also observed in the 

96QmCh fraction. Nup116 is a paralog of Nup100. Nsp1 was 4-fold enriched in the 96QmCh 

fraction. Nsp1 is a part of the nuclear pore complex and is an FG-nucleoporin component. 

 

Vesicle transport 

Two proteins involved in vesicle transport were enriched in the 96QmCh fraction relative to the 

20QmCh fraction. Pan1 and Ent1 were enriched 24 and 18 times, respectively. Pan1 is a part of 

the actin cytoskeleton-regulatory complex Pan1-Sla1-End3 (Wendland et al., 1996). Ent1 is an 

epsin-like protein that takes part in endocytosis and actin patch assembly. 

 

Table 2. List of 96Q interactors. 

The SILAC labeling experiment was repeated in triplicate with swapped SILAC labeling patterns: 
96QmCh, CG* (H) versus 20QmCh, CG* (L) or 96QmCh, CG* (L) versus 20QmCh, CG* (H). 96Q 
interacting proteins were enriched by at least 2-fold in the immunoprecipitation of 96QmCh when 
compared with the immunoprecipitation of 20QmCh in at least 2 out of 3 independent experiments. 
Interacting proteins were sorted from high to low according to their degree of enrichment in the 96QmCh 
fraction (based on a ratio of 96QmCh/20QmCh). The background value is a median for three independent 
SILAC experiments. Labeling in the table: gene ID, systematic name in the Saccharomyces Genome 
Database (SGD); standard name, gene name in SGD; description, protein information; 96QmCh/20QmCh 
ratio, enrichment of 96QmCh co-immunoprecipitation over the 20QmCh fraction; MW, molecular weight; 
E, essentiality; localization, subcellular localization by pSORT (cyto, cytosol; cysk, cytoskeletal; nucl, 
nucleus). 

 

  Gene ID  Gene name  Description 

96QmCh/2

0QmCh 

Ratio 

MW 

(kDa) E Localization 

1 YNL016W  PUB1  

Nuclear and cytoplasmic 

polyadenylated RNA- 104.3 50.8   cyto/nucl 
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binding protein 

2 YER162C RAD4 

DNA repair protein 

RAD4 87.5 87.2   nucl 

3 YBR112C CYC8 

General transcriptional 

corepressor 

CYC8 87.1 107.2   nucl 

4 YOR007C SGT2 

Small glutamine-rich 

tetratricopeptide repeat-

containing 50.2 37.2   cyto/nucl 

5 YNL084C END3 

Actin cytoskeleton-

regulatory complex 

protein 44.2 40.3   nucl 

6 YKL054C DEF1 

RNAPII degradation 

factor 39.2 84.0   nucl 

7 YKL068W NUP100 Nucleoporin NUP100 34.3 100.0   nucl 

8 YGR136W LSB1 

LAS seventeen-binding 

protein 1 32.6 26.1   nucl 

9 YDR099W BMH2 Protein BMH2 31.7 31.1   nucl 

10 YNL007C SIS1 Protein SIS1 29.4 37.6 E cyto 

11 YIR006C PAN1 

Actin cytoskeleton-

regulatory complex 

protein PAN1 23.9 160.3 E nucl 

12 YMR276W DSK2 

Ubiquitin domain-

containing protein 20.5 39.3   nucl 

13 YDL161W ENT1 Epsin-1 18.2 52.4   nucl 

14 YER177W BMH1 Protein BMH1 14.5 30.1   nucl 

15 YNL208W YNL208W Uncharacterized protein 13.9 20.2   nucl 

16 YOR265W RBL2 

Tubulin-specific 

chaperone A  12.9 12.4   nucl 

17 YMR047C NUP116 Nucleoporin NUP116 10.1 116.2 E nucl 

18 YPR181C SEC23 

Protein transport protein 

SEC23 9.7 85.4 E cyto/nucl 

19 YDR505C PSP1 

Growth inhibitory protein 

5 8.3 95.3   nucl 

20 YLL024C SSA2 Heat-shock protein SSA2 7.6 69.5   cyto 

21 YGR250C YGR250C 

Uncharacterized RNA-

binding protein 7.6 89.5   nucl 
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22 YOL111C MDY2 

Ubiquitin-like protein 

MDY2 7.5 23.7   nucl 

23 YOR197W MCA1 Metacaspase-1 7.2 48.0   nucl 

24 YDR405W  MRP20  54S ribosomal protein L41  7.0  30.6   mito 

25 YCL028W RNQ1  

[PIN+] prion protein 

RNQ1  7.0  42.6   nucl 

26 YCR093W  NOT1   

General negative 

regulator of 

transcription subunit 1 7.0  240.3  E  plas 

27 YPR088C  SRP54  

Signal recognition particle 

subunit SRP54 6.2  59.6  E cyto 

28 YHR030C   SLT2  

Mitogen-activated protein 

kinase SLT2  6.2 55.6   nucl 

29 YGL014W  PUF4 

Pumilio homology 

domain family member 4 6.1  97.8   nucl 

30 YBR018C  GAL7  

Galactose-1-phosphate 

uridylyltransferase  6.0  42.4   nucl 

31 YDR172W  SUP35  

Translation release factor 

3 5.8  76.6 E    nucl 

32 YPL243W  SRP68  

Signal recognition particle 

subunit SRP68  5.1  69.0  E  nucl 

33 YPL210C  SRP72  

Signal recognition particle 

subunit SRP72  5.0  73.5  E nucl 

34 YPL190C  NAB3  

Nuclear polyadenylated 

RNA-binding protein 3  4.9  90.4 E  nucl 

35 YIL033C  BCY1  

cAMP-dependent protein 

kinase regulatory subunit  4.5 47.2   nucl 

36 YKL032C  IXR1  

Intrastrand cross-link 

recognition 

protein  4.5  67.9   nucl 

37 YDL226C  GCS1  

ADP-ribosylation factor 

GTPase-activating protein  4.4  39.3   nucl 

38 YGR178C  PBP1  PAB1-binding protein 1  4.4  78.8   nucl 

39 YNL091W  NST1 

 Stress response protein 

NST1  4.3  141.5   nucl 
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40 YOR164C YOR164C  

UPF0363 protein 

YOR164C  4.2  36.3   cyto 

41 YJL041W  NSP1  Nucleoporin NSP1  4.2  86.5  E mito 

42 YAL005C  SSA1  Heat shock protein SSA1  4.2  69.7   cyto 

43 YER103W  SSA4  Heat shock protein SSA4  4.1  69.7   cyto 

44 YPR154W  PIN3  

[PSI+] inducibility protein 

3 4.0  23.5   nucl 

45 YDL147W  RPN5  

26S proteasome 

regulatory subunit 

RPN5  3.9  51.8  E nucl 

46 YGL112C  TAF6  

Transcription initiation 

factor TFIID subunit 6 3.8  57.9  E cyto/nucl 

47 YIL036W  CST6  

Chromosome stability 

protein CST 6 3.8 65.3   nucl 

48 YJL066C  MPM1  

Mitochondrial peculiar 

membrane protein 1 3.7  28.5   cyto 

49 YKL173W  SNU114  

Growth inhibitory protein 

10 3.7  114.0  E nucl 

50 YGL234W  ADE5  

Phosphoribosylamine-

glycine ligase  3.6  86.1   cyto 

51 YBL007C  SLA1  

Actin cytoskeleton-

regulatory 

complex protein SLA1  3.5  135.8   nucl 

52 YMR124W YMR124W  

Uncharacterized protein 

YMR124W  3.3  105.9   nucl 

53 YIR001C  SGN1  

RNA-binding protein 

SGN 1 3.2  29.0   nucl 

54 YML105C  SEC65  

Signal recognition particle 

subunit 

SEC65  3.2 31.2  E nucl 

55 YHR027C  RPN1  

26S proteasome 

regulatory subunit 

RPN1  3.2 109.5   nucl 

56 YNL064C  YDJ1  Yeast dnaJ protein 1 3.0  44.7   cyto 

57 YBR172C  SMY2  

Suppressor of MYO2-66 

protein  3.0  81.4   nucl 
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58 YDL053C  PBP4  

Protein PBP4;PBP1-

binding protein 4  3.0  19.9   nucl 

59 YJR045C  SSC1  Heat shock protein SSC1  2.8  70.6  E mito 

60 YNL059C  ARP5  Actin-related protein 5 2.8 87.6   nucl 

61 YIL115C  NUP159  Nucleoporin NUP159  2.8  158.9 E cyto/nucl 

62 YJL061W  NUP82  Nucleoporin NUP82  2.8  82.1  E nucl 

63 YMR214W  SCJ1  DnaJ-related protein SCJ1  2.8  41.5   cyto/nucl 

64 YDR171W  HSP42  Heat shock protein 42  2.7  42.8   nucl 

65 YIL109C  SEC24  

Protein transport protein 

SEC24  2.7  103.6  

E

  nucl 

66 YFR004W  RPN11  

26S proteasome 

regulatory subunit RPN11  2.7  34.4  E cyto 

67 YGR264C  MES1  

Methionyl-tRNA 

synthetase  2.7  85.7  E cyto 

68 YIL070C  MAM33  

Mitochondrial acidic 

protein MAM33  2.6  30.1   mito 

69 YLL013C  PUF3  

mRNA-binding protein 

PUF3  2.5  98.1   nucl 

70 YMR318C  ADH6  

NADP-dependent alcohol 

dehydrogenase 6  2.5  39.6   cyto 

71 YPL235W  RVB2  RuvB-like protein 2  2.5  51.6  E cysk 

72 YIL041W  GVP36  

36 kDa Golgi vesicle 

protein  2.5  36.7   nucl 

73 YBR019C  GAL10  Galactose mutarotase  2.4  78.2   cyto 

74 YML008C  ERG6  

Sterol 24-C-

methyltransferase  2.4  43.4   cyto 

75 YGR204W  ADE3  

Methenyltetrahydrofolate 

cyclohydrolase 2.4  102.2   cyto 

76 YHR121W  LSM12  Sm-like protein 12  2.4  21.3   cyto/nucl 

77 YDR190C  RVB1  RuvB-like protein 1 2.3  50.5 E cyto 

78 YAL021C  CCR4 

Glucose-repressible 

alcohol 

dehydrogenase 

transcriptional 

effector 2.3  94.7   nucl 

79 YIL075C  RPN2  
26S proteasome 

regulatory subunit RPN2  
2.3 104.2  

E

  
cyto 

80 YFR002W  NIC96  Nucleoporin NIC96  2.3  96.2  

 

nucl 
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81 YCL009C  ILV6  
Acetolactate synthase 

small subunit  
2.3  34.0   mito 

82 YOR117W  RPT5  

26S protease regulatory 

subunit 6A  2.3  48.3  E nucl 

83 YBR169C  SSE2  

Heat shock protein 

homolog SSE2  2.3  77.6   cyto 

84 YLR187W  SKG3 

Suppressor of lethality of 

KEX2-GAS1 double null 

mutant protein 3 2.3  114.1   nucl 

85 YJL081C  ARP4  Actin-related protein 4  2.2  54.8  E nucl 

86 YIL108W  YIL108W  

Putative zinc 

metalloproteinase  2.2  77.4   cyto 

87 YGL048C  RPT6  

26S protease regulatory 

subunit 8 homolog  2.2  45.3  E cysk 

88 YPR108W  RPN7  

26S proteasome 

regulatory subunit 

RPN7  2.2  49.0  E nucl 

89 YOR141C  ARP8  Actin-like protein ARP8  2.2  100.2   nucl 

90 YMR033W  ARP9  

Chromatin structure-

remodeling complex 

protein ARP9  2.2  53.1  

E

  nucl 

91 YPL106C  SSE1  

Heat shock protein 

homolog SSE1  2.2  77.4   cyto 

92 YLR025W  SNF7  

Vacuolar-sorting protein 

SNF7  2.1  27.0   nucl 

93 YNL088W  TOP2  DNA topoisomerase 2  2.1  164.2  E nucl 

94 YDL097C  RPN6  

26S proteasome 

regulatory subunit RPN6  2.1  49.8  E  nucl 

95 YDR394W  RPT3  

26S protease regulatory 

subunit 6B homolog  2.1  47.9  E nucl 

96 YBR198C  TAF5  

Transcription initiation 

factor TFIID subunit 5  2.1  89.0  E nucl 

97 YOR091W  TMA46  

Translation machinery-

associated protein 46  2.1  39.5   nucl 

98 YKR001C  VPS1  

Vacuolar protein sorting-

associated protein 1  2.0  78.7   nucl 
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99 YFL024C  EPL1  

Enhancer of polycomb-

like protein 1  2.0  96.7  E nucl 

100 YBR160W  CDC28  

Cell division control 

protein 28  2.0  34.1  E  cyto/nucl 

101 YDR117C  TMA64  

Translation machinery-

associated protein 64  2.0  64.0   nucl 

102 YGL150C  INO80  

Putative DNA helicase 

INO80  2.0  171.5 E nucl 

103 YKL145W  RPT1  

26S protease regulatory 

subunit 7 homolog  2.0  52.0  E nucl 

104 YHL034C  SBP1 

 Single-stranded nucleic 

acid-binding protein  2.0  33.0   cyto/nucl 

105 YOL006C  TOP1  DNA topoisomerase 1  2.0  90.0   nucl 

106 YFL039C  ACT1  Actin  2.0  41.7 E cysk 

 

 

 

4.8.2  CG* stabilization by 96Q depends on [PIN+] prion status of the cell 

Our results show that 96QmCh interacts with yeast prions. Rnq1 was enriched 7-fold in the 96Q 

fraction relative to the 20Q fraction in our SILAC experiment. The Rnq1 protein can induce the 

[PIN+] phenotype, which is known to influence the aggregation of other polyQ-containing 

proteins in the cell (Derkatch et al., 2001;Derkatch et al., 2004). We tested whether CG* 

stabilization by 96Q was dependent on the [PIN+] status of the cells. Most yeast strains are 

[PIN+] (Manogaran et al., 2010). To generate the [pin-] phenotype, we incubated YPH499 in 

YPD medium containing 3mM GuCl (Jung and Masison, 2001). After overnight incubation, cells 

were transferred to YPD medium containing 3mM GuCl, and the incubation was repeated for 

two additional rounds. Cells were plated on agar plates containing YPD. Individual colonies 

were then tested for [pin-] status. Cells were transformed with Rnq-GFP, and [pin-] strains 

displayed diffuse GFP fluorescence throughout the cytosol (Figure 29). 
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Figure 29. [PIN+] and [pin-] status of YPH499 cells expressing Rnq-GFP before and after 

incubation in 3mM GuCl YPD medium. 

 

96Q expressed in the [pin-] background does not interfere with the degradation of 

CG* 

96QmCh and CG* were co-expressed in [PIN+] or [pin-] cells. 96QmCh stabilization of CG* was 

observed only in [PIN+] cells, whereas CG* expressed in [pin-] cells was not stabilized by 

96QmCh. The [PIN+] and [pin-] status of the cells had a profound impact on the ability of the 

cells to degrade misfolded proteins. These results are shown in Figure 30. 
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Figure 30. CG* is not stabilized by 96QmCh in [pin-] cells. 

96QmCh and CG* were co-expressed in [PIN+] and [pin-] cells. CG* degradation was analyzed by CHX 
chase, SDS-PAGE and immunoblotting using anti-myc, GFP and PGK antibodies. PGK was included as 
a loading control. (B) CG* was quantified by densitometry analysis. Averages and the SD from three 
independent experiments are shown. 
 

A similar effect was observed for the degradation of NLS-CG* in [pin-] cells. 96QmCh and NLS-

CG* were co-expressed in [PIN+] and [pin-] cells. NLS-CG* stabilization was observed only in 

[PIN+] cells, whereas NLS-CG* was not stabilized by 96QmCh in [pin-] cells. These results are 

shown in Figure 31. 
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Figure 31. NLS-CG* is not stabilized by 96QmCh in [pin-] cells. 

96QmCh and NLS-CG* were co-expressed in [PIN+] and [pin-] cells. NLS-CG* degradation was analyzed 
by CHX chase, SDS-PAGE and immunoblotting with anti-myc, GFP and PGK antibodies. PGK was 
included as a loading control. (B) NLS-CG* was quantified by densitometry analysis. Averages and the 
SD from three independent experiments are shown. 

 

In addition, we studied the influence of the [PIN+] and [pin-] phenotypes on CTG* degradation 

in 96QmCh-expressing cells. 96QmCh and CTG* were co-expressed in [PIN+] and [pin-] cells. 

CTG* stabilization by 96QmCh was observed only in [PIN+] cells, whereas CTG* stabilization 

by 96QmCh was not observed in [pin-] cells. These results are shown in Figure 32. The [pin-] 

status of the cell appears to play a pivotal role in the degradation of misfolded proteins in the 

presence of 96QmCh. 
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Figure 32. CTG* is not stabilized by 96QmCh in [pin-] cells. 

96QmCh and CTG* were co-expressed in [PIN+] and [pin-] cells. CTG* degradation was analyzed by 
CHX chase, SDS-PAGE and immunoblotting with anti-myc, GFP and PGK antibodies. PGK was included 
as a loading control. (B) CTG* was quantified by densitometry analysis. Averages and the SD from two 
independent experiments are shown. 

 

As shown in the preceding figures, several combinations of co-expressed misfolded proteins 

were toxic. To follow up on these observations, we determined whether the cytotoxicity 

observed previously was dependent on [PIN+] status. 96QmCh and CG*, 96QmCh and NLS-

CG* or 96QmCh and CTG* were co-transformed into [PIN+] or [pin-] cells. Interestingly, [pin-] 

cells expressing the combinations of 96QmCh and CG*, 96QmCh and NLS-CG* or 96QmCh and 

CTG* did not demonstrate detectable growth inhibition, whereas the expression of any of these 

combinations in [PIN+] cells resulted in growth inhibition (Figure 33). We suspect that [pin-] 
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status affects certain important properties of polyQ proteins rendering polyQ proteins less 

prone to aggregation, thereby alleviating their cytotoxic effects. 

 

 

 

Figure 33. Growth of [pin-] and [PIN+] cells on plates. 

Growth of cells was assessed as described for Figure 16. Plates were incubated for 4 days at 30°C. 

 

Chaperone capacity is increased in [pin-] cells 

96QmCh did not inhibit protein degradation in [pin-] cells. Moreover, we observed no growth 

inhibition caused by the co-expression of 96QmCh and CG*. This could occur because 96QmCh 
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interacted differently with chaperones and other proteins due to conformational changes. To 

determine the status of the most important interactors of misfolded proteins (i.e., chaperones), 

we co-expressed 96QmCh with CG* and 20QmCh with CG* in [PIN+] and [pin-] cells. 

Immunoprecipitation (IP), SDS-PAGE and immunoblotting were performed, and the results are 

presented in Figure 34. 96QmCh expressed in [PIN+] cells strongly interacted with Sis1, Ssa1 

and Ydj1. In contrast, 96QmCh expressed in [pin-] cells exhibited reduced interactions with all 

chaperones tested. These data suggest that in [pin-] cells expressing 96QmCh, cellular 

chaperone capacity was increased due to fewer interactions between 96QmCh and the 

chaperones. Chaperones interacted to a lesser extent with 96QmCh in [pin-] cells and thus could 

execute their customary chaperone functions. The pool of available chaperones had more access 

to Sis1, Ssa1 and Ydj1, which indicates that total chaperone capacity was increased. Because of 

the increase in chaperone capacity, co-expression of 96QmCh and CG* was not cytotoxic at least 

in part because the available pool of chaperones was able to handle their normal housekeeping 

tasks. 

 

Figure 34. Interaction of 96QmCh with chaperones in [pin-] cells. 

96QmCh and 20QmCh were immunoprecipitated from the indicated cells with an anti-myc antibody. The 
association of polyQ proteins with chaperones was analyzed using anti-Sis1, Ssa1 and Ydj antibodies. 
PGK was included as a control for loading (in the input fraction) and as a specificity marker (in the IP 
fraction) because PGK should not interact with the 96QmCh and 20QmCh proteins. 

 

Ssa1 and Ydj1 overexpression do not promote CG* degradation 
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As observed in Figure 34, Ssa1 and Ydj1 interacted with 96QmCh. CG* degradation depends on 

the assistance of these proteins for its proteasomal degradation(Park et al., 2007). Therefore, the 

aberrant interaction of 96QmCh with Ssa1 and Ydj1 could be a rate-limiting factor for the 

degradation of the reporter proteins used in this work. The depletion of cellular levels of Ssa1 

and Ydj1 by 96QmCh for CG* degradation could represent an underlying reason for CG* 

stabilization under these conditions. 

To test this hypothesis, we co-expressed 96QmCh and CG* together with Ssa1 under the control 

of the GAL1 promoter and then analyzed the rate of degradation of CG*. Overexpression of Ssa1 

did not improve the clearance of CG* in the presence of 96QmCh. Interestingly, Ssa1 

overexpression partially stabilized CG* degradation in cells expressing 20QmCh. These results 

are shown in Figure 35. 
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Figure 35. Overexpression of Ssa1 does not restore CG* degradation in the presence of 96Q. 

(A and B) Ssa1p was overexpressed under the control of the GAL1 promoter in cells co-expressing CG* 
with 20QmCh or 96QmCh. CG*, polyQ proteins and Ssa1 were detected by immunoblot analysis of cell 
lysates using anti-GFP, myc and Ssa antibodies, respectively. PGK antibody was included as a loading 
control (C) CG* was quantified. 

 

Ydj1 was also tested as a possible rate limiting factor for CG* degradation by 96QmCh. When 

Ydj1 was overexpressed in combination with 96QmCh, CG* degradation did not increase. 

Similarly, Ydj1 was overexpressed in combination with CG* in the presence of non-pathogenic 

20QmCh, which resulted in the stabilization of CG*. These results are shown in Figure 36. 
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Figure 36. Ydj1 overexpression inhibits CG* degradation. 

(A and B) Ydj1 was overexpressed under the control of the GAL1 promoter in cells co-expressing CG* 
with 20QmCh or 96QmCh. CG*, polyQ proteins and Ydj1 were detected by immunoblot analysis of the 
cell lysates using anti-GFP, myc and Ydj antibodies, respectively. PGK antibody was included as a 
loading control (C) CG* was quantified. 

 

Furthermore, overexpression of Ssa1 or Ydj1 in combination with 96QmCh reduced the 

formation of SDS-insoluble polyQ aggregates. These results are presented in Figure 37. 
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Figure 37. Ydj1 or Ssa1 overexpression reduces the amounts of SDS-insoluble polyQ aggregates. 

Lysates of cells expressing the indicated proteins were analyzed in a filter-trap assay in the presence of 
SDS to visualize SDS-insoluble 96QmCh aggregates. PolyQ proteins were detected with an anti-myc 
antibody. One hundred micrograms and 200 µg of total protein was loaded onto the membrane to 
visualize the results. 

 

To assess the effects of chaperones on cytotoxicity, we co-expressed Ssa1 or Ydj1 in cells 

containing 96QmCh and CG* or 20QmCh and CG*. As controls we used cells co-expressing 

96QmCh, CG* and empty vector and cells co-expressing 20QmCh, CG* and empty vector. These 

strains were used to assess the effects of the chaperones and co-chaperones in a growth test. 

Ssa1 did not significantly affect the growth of cells expressing 96QmCh and CG*. In contrast, 

Ydj1 overexpression improved the growth of cells expressing 96QmCh and CG*. These results 

are shown in Figure 38. 
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Figure 38. Ydj1 overexpression partially rescues the growth of cells expressing 96QmCh and CG*. 

The cells indicated above were diluted six-fold and spotted on agar plates containing 2% glucose (-
Induction) or 2% galactose (+Induction). CG* was expressed from a multi-copy plasmid under the control 
of the CPY promoter (average level of expression). Plates were incubated for 4 days at 30°С. 
 

This result was confirmed by counting the number of cells grown under similar conditions. 

Cells co-expressing 96QmCh and CG* in the presence of Ydj1 demonstrated a higher percent 

cell survival (Figure 39). 

 

Figure 39. Ydj1 overexpression suppresses 96QmCh and CG* toxicity. 

Percent cell survival was assessed by counting the number of colonies on agar plates containing glucose 
or galactose after growth for 4 days at 30°С.Averages and the SD from three independent experiments 
are shown. 
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4.8.3 Sis1 overexpression in the 96Q background restores the degradation of 

misfolded proteins 

We identified 96Q interacting proteins in a systematic way. We hypothesized the existence of a 

factor X that is depleted due to its interaction with 96Q. This factor should be required for the 

degradation of CG*, NLS-CG*, CPY* and CTG*. Thus, if factor X binds to polyQ proteins, it 

cannot assist in the degradation of other misfolded proteins. Furthermore, if this factor is 

present in the cell in low abundance, then factor X could be subjected to depletion. Likewise, 

overexpression of factor X should be able to restore the degradation of misfolded proteins even 

in the presence of polyQ protein. The overexpression of factor X would hypothetically remove 

the excess pressure on the protein quality control systems in the cell thereby alleviating the 

cytotoxicity caused by the co-expression of 96Q and CG*. 

 

Sis1 overexpression rescues CG*, NLS-CG* and CTG* degradation in 96QmCh-

expressing cells 

To identify factor X according to our hypothesis, we analyzed the list of 96QmCh interacting 

proteins obtained from our SILAC experiments. As discussed in previous sections, the Sis1 

chaperone strongly interacted with 96QmCh to an extent that could result in the depletion of 

Sis1 from the pool of available chaperones in the cell. The abundance of different chaperones 

and co-chaperones in the cell is presented in the Table 3. Compared with other chaperones, Sis1 

protein is in much lower abundance. Therefore, the strong association between Sis1and 

96QmChwould likely impact the availability of this chaperone. Sis1 overexpression is a 

reasonable experiment that could demonstrate whether this proteinis a limiting factor for the 

degradation of misfolded proteins in the presence of 96QmCh. 

 

Table 3. Chaperone and co-chaperone abundance in S.cerevisiae. 

This table was prepared based on a study performed in the laboratory of Prof. Weissman 
(Ghaemmaghami et al., 2003; SGD, http://www.yeastgenome.org). 

Chaperone Molecules/cell 

Sis1                              20,300     

Ydj1                            119,000     

Ssa1                            269,000     

Ssb1                            170,000     

 



Results 101 

 

Cells co-expressing 96QmCh and CG* or 20QmCh and CG* with Sis1 overexpression or empty 

vector were generated. Cells were cultivated in glucose-containing medium overnight and then 

were shifted to 2% galactose/raffinose medium. After 15 hours of incubation in the 

galactose/raffinose medium, the cells were subjected to a CHX chase experiment. Then, SDS-

PAGE and immunoblotting were performed. The overexpression of Sis1 strongly promoted 

CG* degradation in the presence of 96QmCh and removed the "degradation block" imposed by 

96QmCh overexpression on CG*. These results are shown in Figure 40. 

 

Figure 40. Sis1 overexpression accelerates CG* degradation in 96QmCh-expressing cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 96QmCh, CG*, and Sis1 or 96QmCh, 
CG*, and empty vector were collected at the indicated time points and frozen in liquid nitrogen. Samples 
were subjected to SDS-PAGE and western blot analysis using anti-myc, GFP, Sis1 and PGK antibodies. 
(B) Densitometry analysis of CG* in the 96QmCh-expressing strain with or without overexpression of the 
Sis1 protein. Averages and the SD from three independent experiments are shown. 
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Sis1 overexpression also increased CG* degradation, even in the absence of a degradation block 

by 96QmCh. In the figure below, cells co-expressing 20QmCh and CG* with or without Sis1 

overexpression were analyzed by the CHX chase assay. Overexpression of Sis1 increases the 

degradation speed of CG* in the presence of 20QmCh (Figure 41). 

 

Figure 41. Sis1 overexpression accelerates CG* degradation in 20QmCh-expressing cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 20QmCh, CG* and Sis1 or 20QmCh, 
CG* and empty vector were collected at the indicated time points and frozen in liquid nitrogen. Samples 
were subjected to SDS-PAGE and western blot analysis using anti-myc, GFP, Sis1 and PGK antibodies.  
(B) Densitometry analysis of CG* in the 20QmCh-expressing strain with or without overexpression of the 
Sis1 protein. Averages and the SD from three independent experiments are shown. 
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Sis1 overexpression also increased the degradation of NLS-CG* in cells expressing 96QmCh. 

This effect was not as strong when compared with the effect of Sis1 overexpression on CG* 

degradation in the same strain. These results are shown in Figure 42. 

 

 

Figure 42. Sis1 overexpression accelerates NLS-CG* degradation in 96QmCh-expressing cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 96QmCh, NLS-CG* and Sis1 or 
96QmCh, NLS-CG* and empty vector were collected at the indicated time points and frozen in liquid 
nitrogen. Samples were subjected to SDS-PAGE and western blot analysis using anti-myc, GFP, Sis1 
and PGK antibodies. (B) Densitometry analysis of NLS-CG* in the 96QmCh-expressing strain with or 
without overexpression of the Sis1 protein. Averages and the SD from three independent experiments are 
shown. 

 



Results 104 

 

Sis1 overexpression slightly increased degradation of the NLS-CG* reporter in the 20Q-

expressing cells. However, NLS-CG* co-expressed with 20QmCh showed rapid degradation 

kinetics; therefore, it was difficult to determine whether a significant increase in NLS-CG* 

occurred in the presence of Sis1 overexpression. However, we observed an increase in NLS-CG* 

degradation in Sis1-overexpressing cells. The results are shown in Figure 43. 

 

 

Figure 43. Sis1 overexpression accelerates NLS-CG* degradation in 20QmCh-expressing cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 20QmCh, NLS-CG* and Sis1 or 
20QmCh, NLS-CG* and empty vector were collected at the indicated time points and frozen in liquid 
nitrogen. Samples were subjected to SDS-PAGE and western blot analysis using anti-myc, GFP, Sis1 
and PGK antibodies.  (B) Densitometry analysis of NLS-CG* in the 20QmCh-expressing strain with or 
without overexpression of the Sis1 protein. Averages and the SD from three independent experiments are 
shown. 
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Sis1 overexpression did not rescue CPY*-HA degradation in the presence of 96QmCh. The 

degradation kinetics of CPY*-HA in Sis1-overexpressing and wild-type cells were similar. These 

results are shown in Figure 44. 

 

Figure 44. Sis1 overexpression does not accelerate CPY* degradation in 96QmCh-expressing 

cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 96QmCh, CPY*-HA and Sis1 or 
96QmCh, CPY*-HA and empty vector were collected at the indicated time points and frozen in liquid 
nitrogen. Samples were subjected to SDS-PAGE and western blot analysis using anti-myc, CPY, Sis1 
and PGK antibodies.  (B) Densitometry analysis of CPY*-HA in 96QmCh-expressing cells with or without 
the co-expression of Sis1 protein. Averages and the SD from three independent experiments are shown. 
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Similar results were observed for CPY*-HA expressed in the presence of 20QmCh. Sis1 did not 

increase the degradation kinetics of CPY*-HA in the presence of 20QmCh. These results are 

presented in Figure 45. 

 

Figure 45. Sis1 overexpression does not accelerate CPY* degradation in 20QmCh-expressing 

cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 20QmCh, CPY*-HA and Sis1 or 
20QmCh, CPY*-HA and empty vector were collected at the indicated time points and frozen in liquid 
nitrogen. Samples were subjected to SDS-PAGE and western blot analysis using anti-CPY, myc, Sis1 
and PGK antibodies.  (B) Densitometry analysis of CPY*-HA in 20QmCh-expressing cells with or without 
overexpression of the Sis1 protein. Averages and the SD from three independent experiments are shown. 
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Sis1 overexpression did not rescue CTG* degradation in the presence of 96QmCh. The 

degradation kinetics of CTG* were similar in the presence or absence of Sis1 overexpression. 

These results are presented in Figure 46. 

 

Figure 46. Sis1 overexpression does not accelerate CTG* degradation in 96QmCh-expressing 

cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 96QmCh, CTG* and Sis1 or 96QmCh, 
CTG* and empty vector were collected at the indicated time points and frozen in liquid nitrogen. Samples 
were subjected to SDS-PAGE and western blot analysis using anti-GFP, myc, Sis1 and PGK antibodies.  
(B) Densitometry analysis of CTG* in the 96QmCh-expressing strain with or without overexpression of the 
Sis1 protein. Averages and the SD from three independent experiments are shown. 

 

Similar results were observed when CTG* was overexpressed in the presence of 20QmCh. These 

results are shown in Figure 47. 
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Figure 47. Sis1 overexpression does not accelerate CTG* degradation in 20QmCh-expressing 

cells. 

(A) A CHX chase assay was performed as described in the Materials and Methods section. Samples 
were collected every 40 minutes for 2 hours. Cells co-expressing 20QmCh, CTG* and Sis1 or 20QmCh, 
CTG* and empty vector were collected at the indicated time points and frozen in liquid nitrogen. Samples 
were subjected to SDS-PAGE and western blot analysis using anti-myc, GFP, Sis1 and PGK antibodies.  
(B) Densitometry analysis of CTG* in 20QmCh-expressing cells with or without overexpression of the 
Sis1 protein. Averages and the SD from three independent experiments are shown. 

 

 

Sis1 overexpression stimulates the stress response 

Sis1 overexpression reversed the cytotoxicity observed in cells co-expressing 96QmCh and CG*. 

A possible explanation for this effect is that Sis1 promoted the degradation of CG*, and thus 
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misfolded proteins did not overburden the proteostasis capacity of the cell. However, another 

possibility is that Sis1 affected certain components of the proteostasis network consistent with 

an indirect effect of Sis1 on misfolded protein degradation. 

Several combinations of the constructs 96QmCh, 20QmCh and empty vector were 

overexpressed in combination with Sis1 or with empty vector in yeast cells, after which the cells 

were subjected to a stress assay using the SSA3LacZ construct. Cells expressing Sis1 or empty 

vector were heat-shocked for 1 hour as control samples. Interestingly, Sis1 overexpression 

increased the expression of LacZ when compared with cells carrying empty vector under heat 

shock conditions. Furthermore, LacZ expression increased two-fold in cells co-expressing 

96QmCh with Sis1 relative to cells expressing 96QmCh alone.Sis1-overexpressing cells 

produced a stronger stress response to pathogenic misfolded proteins. These data are shown in 

the Figure 48. The increased cytosolic stress response observed in cells expressing Sis1 under 

heat shock conditions could help explain how Sis1 stimulates the stress response to heat shock, 

but other possible explanations may exist. Sis1 overexpression may help maintain correct LacZ 

folding or could increase the mRNA levels of LacZ as a result of the stress response. These 

possibilities are partially controlled for by cells co-expressing 20QmCh, CG* and Sis1; however, 

other controls and experiments should also be considered to further validate our conclusions. 

 

 

Figure 48. Cells overexpressing Sis1 mount a stronger heat shock response. 

The expression of LacZ was measured in cells expressing 96QmCh alone or in combination with Sis1 at 
30°С (no heat shock) and at 37°С (heat shock conditions). A LacZ activity test was performed as 
described in the Materials and Methods section, and the final values in Miller units were calculated. 
Averages and the SD from three independent experiments are shown. 
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4.9 The general requirement of Sis1 for terminally misfolded cytosolic 

proteins 

4.9.1  Effects of Sis1 depletion on CG* degradation 

To determine the extent of the involvement of Sis1 in the degradation of misfolded proteins 

independent of 96QmCh, Sis1 was depleted in cells. The original Sis1 promoter was replaced 

with a tetracycline-regulated promoter (Tet-Off). Sis1 promoter replacement resulted in a 20-

25% reduction in Sis1protein levels when compared with the wild-type strain. In the Tet-Off 

SIS1 cells expressing CG*, significant stabilization of the reporter protein was observed in a 

CHX chase assay (Figure 49) even without the addition of doxycycline. The addition of 

doxycycline greatly reduced Sis1 expression levels and resulted in even stronger CG* 

stabilization. After 2 hours of CHX chase, 85% of misfolded protein remained (in the control, 

only 50% remained). 

 

 

Figure 49. Moderate depletion of Sis1 results in CG* stabilization. 

CG* was expressed in wild-type cells (R1158) and in Tet-Off SIS1 cells. Cells were grown for 20 hours 
without doxycycline (-DOX) or with 10 mg/ml doxycycline (+DOX). CG* degradation kinetics were 
analyzed. SDS-PAGE and immunoblotting were performed using anti-Sis1 and anti-CPY antibodies. 
Averages of at least three independent experiments and p-values for differences in the fractional CG* 
degradation after 120 min are indicated. A band cross-reacting with the anti-Sis1 antibody is indicated by 
the symbol *.Endogenous CPY was used as a loading control. 

 

4.9.2  Sis1 cooperates with Hsp70 in the degradation of CG* 

Sis1, as well as many other chaperones, requires other interacting partners to properly function. 

As the Sis1 protein belongs to the Hsp40 family type II protein, its interaction with the Hsp70 
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family depends on the HPD loop (Kampinga and Craig, 2010). This loop is situated in the J 

domain and consists of the amino acids His-Pro-Asp. We substituted the HPD-loop with an 

alanine amino acid sequence (Sis1AAA). Alternatively, we deleted the entire J domain 

corresponding to amino acids 1-76 (Sis1∆J). 

Sis1AAA overexpression (in a wild-type Sis1-depleted background) did not increase the 

degradation kinetics of CG* as observed with wild-type Sis1 overexpression. In strains 

expressing Sis1AAA and CG*, CG* was stabilized, whereas the CG*degradation rate was 

increased in the presence of wild-type Sis1 (Figure 50). 

 

 

 

Figure 50. Sis1AAA cannot replace wild-type Sis1 for CG* degradation. 

CG* was co-expressed with HA-tagged Sis1 or Sis1AAAin Tet-Off SIS1 cells. These cells were cultivated 
for 20 hours in the presence of DOX to deplete endogenous Sis1. CG* degradation was analyzed by CHX 
chase, SDS-PAGE and immunoblotting with anti-GFP, Sis1 and PGK antibodies. 

 

Sis1, Sis1∆J, Sis1AAA and CG* were co-expressed in Tet-Off Sis1 cells. Sis1, Sis1ΔJ and Sis1AAA 

were immunoprecipitated with antibodies against their N-terminal HA-tag. These samples 

were subjected to SDS-PAGE and immunoblotting analysis. Sis1 and its mutants formed ternary 
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complexes with Ssa1 and CG*. Sis1ΔJ and Sis1AAA strongly interacted with CG*. Sis1ΔJ had 

weaker interactions with Ssa1 relative to the other Sis1 versions tested. We suspect that the Sis1 

chaperone interacts with CG* and helps to recruit Ssa1 using its J domain (Figure 51). 

 

 

 

 

Figure 51. Sis1 interacts with Ssa1 and CG*. 

CG* was co-expressed withSis1p, Sis1ΔJ or Sis1AAA in Tet-Off SIS1 cells. Strains were incubated in 
DOX-containing medium. Immunoprecipitation with anti-HA antibodies was performed followed by 
immunoblotting with anti-HA, anti-Ssa1 and anti-GFP antibodies. 

 

 

4.9.3  Sis1 is not required for the degradation of short-lived regulatory proteins 

Sis1 accelerated the degradation of CG* and NLS-CG* in cells expressing 96QmCh. The 

degradation of CG* was accelerated even in the presence of 20QmCh, under which conditions 

the UPS remained unimpaired. Therefore, Sis1 could be required for the degradation of 

misfolded cytosolic proteins. Fructose-1,6-bisphosphatase (FBPase) was chosen to represent 

normal cytosolic proteins. FBPase converts fructose-1,6-bisphosphate to fructose 6-phosphate 

during gluconeogenesis. FBPase is expressed when yeast cells are grown in media without a 

fermentable carbon source, such as in ethanol or acetate. However, FBPase is rapidly degraded 

via the UPS if glucose is the main carbon source (Juretschke et al., 2010). 

FBPase expression was induced in Tet-Off SIS1 yeast cells and in wild-type cells by growing 

them on 2% ethanol medium. An abrupt shift to glucose-containing medium initiated the 
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degradation of FBPase, after which we performed a CHX chase assay. Sis1 depletion did not 

affect FBPase degradation kinetics (Figure 52). 

 

 

Figure 52. The catabolite-induced degradation of fructose-1,6-bisphosphatase (FBPase) is Sis1-

independent. 

Wild-type and Tet-Off SIS1 cells were grown for 20 hours in medium containing 2% ethanol and DOX. 
The degradation of FBPase was initiated by transferring the cells to medium containing 2% glucose and 
DOX. CHX chase and SDS-PAGE were performed. FBPase, Sis1 and PGK were analyzed by 
immunoblotting with the appropriate antibodies. 

 

 

4.10  Sis1 is required for the delivery of CG* into the nucleus for degradation 

4.10.1  Depletion of Sis1 results in the formation of cytoplasmic CG* inclusions 

The majority of the proteasome complexes in yeast are localized in the nucleus. Consequently, 

some cytosolic misfolded proteins are degraded in the nucleus (Russell et al., 1999). Moreover, 

recent studies have shown that CG* is degraded in the nucleus (Heck et al., 2010;Prasad et al., 

2010). However, the mechanism underlying this process remains unknown. In our work, we 

evaluated the potential involvement of Sis1 in this mechanism. We depleted 85% of Sis1 in cells 

expressing CG* (Figure 53), which caused the formation of large cytosolic CG*inclusions. These 

results suggest that CG* is degraded in the nucleus, and that Sis1 delivers CG* to the nucleus 

for degradation. 
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Figure 53. Sis1 depletion results in the formation of CG* inclusions. 

CG* was expressed in Tet-Off SIS1 cells and grown in the presence of DOX for 20 hours to deplete 
endogenous Sis1. Live cells were analyzed by DIC and fluorescence microscopy. Nuclei were 
counterstained with DAPI. Scale bar: 10 mm. 

 

 

4.10.2 Targeting of CG* to the nucleus or to the cytoplasm significantly influences 

CG* degradation kinetics 

Next, we modified CG* by fusing NLS and NES sequences to its N-terminus, which should 

result in the sequestration of NLS-CG* protein in nucleus and NES-CG* in the cytoplasm. 

Surprisingly, the NLS tag either increased or did not change the degradation kinetics of 

CG*assuming the delivery to the nucleus was efficient. In contrast, NES fusion led to the 

cytosolic localization of the NES-CG* protein. 

We expressed NLS-CG*, CG* and NES-CG* in wild-type cells, after which CHX chase, SDS-

PAGE and immunoblotting were performed (Figure 54). NLS-CG* degradation occurred more 

rapidly than CG* degradation. In contrast, NES-CG* was stabilized relative to CG*. These 

results strongly suggest that the CG* protein is degraded in the nucleus. 
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Figure 54. Nuclear degradation of CG*. 

(A) NLS-CG*, NES-CG* and CG* degradation were analyzed in wild-type YPH499 cells. CHX chase was 
performed followed by SDS-PAGE and immunoblotting with anti-GFP and PGK antibodies. PGK levels 
were used as a loading control. (B) Densitometry analysis of NLS-CG*, CG* and NES-CG* in wild-type 
cells. Averages and the SD from three independent experiments are shown. 

 

 

4.10.3 NES-CG* is exported from the nucleus via Crm1 

We showed that the addition of a nuclear export signal to CG* leads to the stabilization of CG*. 

However, the addition of the NES tag could change the degradation kinetics based on the 

protein structure and not because of the localization properties of the NES sequence. Crm1 

(Xpo1) is the nuclear export receptor for proteins containing NES sequences (Johnson et al., 

2002;Maurer et al., 2001). To determine whether NES-CG* is specifically exported, we used 

temperature-sensitive crm1-1ts cells. In these cells, when the temperature is shifted to 37°C, the  

protein becomes unable to function properly. Therefore, this strain could be used to study the 

behavior of a given substrate in the presence and absence of the nuclear exporter Crm1. We 

expressed NES-CG* in wild-type and crm1-1ts cells. The results of the CHX chase experiments 

performed at 37°C are presented in Figure 55. 

 



Results 116 

 

 

Figure 55. NES-CG* degradation is increased in crm1-1ts cells at 37°C. 

(A) NES-CG*degradation was analyzed in crm1-1ts and in wild-type cells. A CHX chase was performed 
followed by SDS-PAGE and immunoblotting using anti-GFP and PGK antibodies. PGK levels were 
included as the loading control. (B) Densitometry analysis of NES-CG* in crm1-1ts cells and wild-type cells. 
Averages and the SD from two independent experiments are shown. 

 

We expressed CG* in crm1-1ts and in wild-type cells and performed a CHX chase at 37°C. CG* 

was degraded more rapidly in the temperature-sensitive mutant relative to the wild-type strain. 

These results are presented in Figure 56. 

 



Results 117 

 

 

 

Figure 56. CG* degradation is increased in a crm1-1tsmutant at 37°C.  

CG* degradation was analyzed in crm1-1ts and in wild-type cells. A CHX chase was performed followed by 
SDS-PAGE and immunoblotting using anti-GFP and PGK antibodies. PGK levels were included as the 
loading control. (B) Densitometry analysis of CG* in crm1-1tsand wild-type cells. Averages and the SD from 
two independent experiments are shown. 

 

4.10.4.  CG* and Sis1 accumulation in the nucleus upon proteasome inhibition 

CG* degradation can be inhibited by MG132. MG132 is a specific, reversible proteasome 

inhibitor. In yeast cells, MG132 functions most effectively in strains that lack the Pdr5 protein, a 

specific multi-drug transporter that is involved in the pleiotropic drug response (Ernst et al., 

2005). To achieve MG132 accumulation, we used cells lacking the Pdr5 transporter, which tend 

to accumulate MG132. Fluorescence imaging was performed in cells expressing CG* in the 

Δpdr5strain (Figure 57). In these cells, MG132 caused the accumulation of CG* in a juxtanuclear 

manner. CG* was observed primarily as an aggregate, although the CG* signal was also 
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partially present in the nucleus in a diffuse manner suggesting solubility. Sis1 also accumulated 

in the nucleus in MG132-treated cells. 

 

Figure 57. CG* and Sis1 accumulate in the nucleus upon proteasome inhibition. 

CG* was expressed in ∆pdr5 cells for 18 hours followed by the addition of 1% DMSO or 100 mMMG132 
in DMSO for 2 hr. Sis1p was immunolabeled using rabbit anti-Sis1 antibody coupled to Cy3-conjugated 
goat anti-rabbit antibody, and CG* was labeled by GFP fluorescence. Nuclei were counterstained with 
DAPI. Scale bar: 10 mm. 

 

4.10.5 СG* and Sis1 accumulate in the nucleus in Δsan1 cells 

Another method to demonstrate that the nucleus is the primary degradation site for CG* is to 

delete proteins that are essential for protein degradation via UPS in the nucleus. San1 is a 

ubiquitin ligase involved in the degradation of aberrant nuclear proteins through the UPS 

(Rosenbaum et al., 2011). CG* was expressed in Δsan1 cells. Sis1 accumulated in the nucleus 

(Figure 58), whereas CG* accumulated in a juxtanuclear manner and in the nucleus. 

 

Figure 58. San1 deletion leads to CG* and Sis1 accumulation in the nucleus. 

CG* was expressed in wild-type (WT) and in Δsan1cells for 18 hours, after which the cells were analyzed 
by immunofluorescence. Sis1 was immunolabeled with a rabbit anti-Sis1 antibody coupled to a Cy3-
conjugated goat anti-rabbit antibody. CG* was observed by GFP fluorescence. Nuclei were stained with 
DAPI.  Scale bar: 10 mm. 
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4.10.6 Sis1 shuttling is required for the degradation of misfolded proteins 

Sis1 plays an important role in the delivery of CG* into the nucleus. When 96Q interacts with 

the Sis1 protein, it likely hinders Sis1 shuttling between the cytosol and the nucleus. To address 

this question, NES-Sis1 and NLS-Sis1 proteins were constructed. The Tet-Off SIS1 strain was 

used for the expression of NES-Sis1 or NLS-Sis1. When this strain was incubated in medium 

containing DOX, endogenous Sis1 was depleted. The results of this experiment and the 

intracellular distribution of these proteins are shown in Figure 59. In both cases, CG* was not 

properly degraded and showed the formation of inclusions in the cytosol. 

 

Figure 59. Sis1 shuttling between the cytoplasm and the nucleus is required for CG* degradation. 

CG* co-expressed with Sis1, NLS-Sis1, or NES-Sis1 in Tet-Off SIS1 cells. Cells were incubated in 
medium containing DOX and GAL. Immunolabeling was performed using an anti-HA antibody modified by 
a Cy3-conjugated goat anti-mouse antibody, and CG* was monitored by GFP florescence. Nuclei were 
stained with DAPI stain. Scale bar: 10mm. 
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5  Discussion 

According to the United Nations, the overall median age in developed countries rose from 

28.0 years in 1950 to 40 in 2010 and is expected to increase to 44 years by 2050. The same 

trend applies to the global population: the median age was 24 years in 1950, which 

increased to 29 years by 2010 and is expected to increase to 36 years in 2050 (United 

Nations, Department of Economic and Social Affairs, Population Division, 2013). These 

data suggest that the population in developed countries and worldwide is quickly aging. 

Age is the largest risk factor for the development of many neurodegenerative diseases. 

Therefore, one can expect a rise in the number of patients with neurodegenerative 

disorders. The worldwide prevalence of Alzheimer's disease was 26.6 million in 2006. By 

2050, the number of people with this disease is expected to be approximately 80 million. 

In other words, one in 85 people in the world will be living with Alzheimer’s 

disease(Brookmeyer et al., 2007). Finding a way to cure or at least effectively manage 

patients with neurodegenerative diseases is one of the biggest challenges for society and 

for the life sciences. 

Neurodegenerative disorders are irreversible and incurable. There are no effective 

treatments available. Therefore, understanding the mechanisms of neurodegeneration as 

well as the links and similarities between different neurodegenerative disorders is crucial 

for the development of potential treatments. Among the most common neurodegenerative 

diseases, the following disorders are particularly important to investigate: Alzheimer's, 

Parkinson's and Huntington's. Little is known regarding the mechanisms underlying 

toxicity in these disorders and how potential therapies could be developed to counter 

these diseases. As of the writing of this work, six drugs are currently in phase III clinical 

trials, 39 are in phase II trials, and 38 are in phase I trials for the treatment of Alzheimer's 

disease. Yet, despite these attempts, hope for the development of an efficient treatment 

remains bleak, as only a few drugs, largely intended for symptomatic treatment, have 

been approved to date. New clinical trial designs using biomarkers based on the latest 

advances in neurodegenerative disease studies could help in the informed development 

of efficient drugs (Becker and Greig, 2008). 

Patients with the abovementioned diseases display amyloidogenic aggregates in their 

brain tissues. There are intracellular inclusions in Parkinson’s disease containing 

aggregated α-synuclein, aggregates in HD containing huntingtin and extracellular β-
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amyloid plaques that are characteristic of Alzheimer’s disease (Chiti and Dobson, 2006). 

Therefore, these aggregates are thought to be the major cause of toxicity in the cell (Pike et 

al., 1993;Shearman et al., 1994;Li et al., 2000). Some inconsistencies related to this theory 

have been noted such as poor correlation between neuron death and the number of visible 

aggregates (Yoo et al., 2003). Some studies have shown that the SDS-insoluble aggregates 

observed in these diseases are relatively harmless and that the toxic species are actually 

the soluble oligomeric intermediates(Hartley et al., 1999;Kuemmerle et al., 1999). A study 

by Kuemmerle et al. even suggested that SDS-insoluble aggregates of polyQs might play a 

cytoprotective role. Increasing evidence from different neurodegenerative disease studies 

has suggested that soluble oligomeric proteins formed before the development of SDS-

insoluble inclusions may be responsible for the disease-related cytotoxicity (Haass and 

Selkoe, 2007;Sánchez et al., 2003). Oligomeric forms may increase the chance for 

interactions on susceptible hydrophobic surfaces, which primarily drive the aberrant 

interactions of these aggregate-prone proteins. In the insoluble fibrils, hydrophobic 

surfaces are buried in a compact β-structured core (Bolognesi et al., 2010). Another 

hypothesis with abundant supporting data postulates that the main species causing the 

toxicity are these soluble oligomeric species, while the role of SDS-insoluble aggregates 

remains controversial (Leitman et al., 2013;Behrends et al., 2006). 

Huntington's disease is a good model for the analysis of neurodegenerative disorders and 

the identification of toxicity mechanisms. With age, the burden on the proteostasis 

network increases, and proteostasis collapse can occur (Morimoto, 2008). Moreover, 

studies have shown that longevity and proteotoxicity from misfolded proteins due to 

neurodegenerative disorders have a negative relationship (Cohen et al., 2006). In this 

study, we created a model to analyze the interplay between different misfolded proteins 

(polyQ- and CPY*-derived proteins). This model allowed us to simulate the fate of cells 

carrying an increased amount of misfolded proteins. 

 

5.1  Saccharomyces cerevisiae as a model for studying UPS 

interference by polyQ proteins 

We chose S. cerevisiae, a eukaryotic model with well-established molecular biology, easy 

genetic manipulations and a fully sequenced and well-annotated genome (Botstein et al., 

1997; Engel et al., 2013). Gene disruptions via the introduction of mutations into existing 
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genes are relatively easy and straightforward to perform in this model. Furthermore, the 

S. cerevisiae yeast has been widely used to study neurodegenerative diseases (Behrends et 

al., 2006;Konopka et al., 2011;Duennwald, 2012). 

In our model, we studied polyQ interference with the cellular protein quality control 

system. The polyQ-expanded protein 96Q inhibits the degradation of several misfolded 

proteins. We studied reporters in different cellular compartments and with different 

topologies: cytosolic (CG*), nuclear (NLS-CG*), ER lumenal (CPY*), and ER membrane 

proteins (CTG*) (Taxis et al., 2003). All of these proteins are based on CPY*, a terminally 

misfolded protein. We investigated the behavior of misfolded proteins in the different 

compartments of the cell in the presence of a polyQ-expanded protein. This model 

enabled us to obtain a systematic view of the chain of events caused by 96Q expression. 

Hopefully, this model will be used in future studies to analyze the fate of polyQ 

substrates in more detail, as these types of analyses were beyond the scope of the current 

study. 

 

5.1.1  96Q interference with the degradation of misfolded proteins 

Protein aggregates can strongly inhibit UPS function (Verhoef et al., 2002; Bence et al., 

2001) prior to inclusion body formation (Bennett et al., 2005). The UPS may also be 

inhibited indirectly by pathogenic polyQ (Hipp et al., 2012). However, UPS impairment 

by pathogenically expanded polyQ proteins remains a controversial topic (Valera et al., 

2007). Our model allowed us to systematically analyze polyQ interference with the UPS in 

the cell. 

As shown in the Results section, 96Q stabilized several misfolded proteins: CG*, NLS-

CG*, CPY* and CTG*. We observed that proteins containing a pathogenically expanded 

glutamine tract interfered with the degradation of proteins in the cytosol, nucleus and ER. 

Previous studies have shown that 47% of yeast proteins are cytoplasmic, 27% are 

nuclear/nucleolar and 13% are exocytic (including proteins of the ER and secretory 

vesicles) (Kumar et al., 2002). Taking into account published data from yeast proteome 

analyses, we speculate that our misfolded proteins represent more than 70% of the 

proteome. Therefore, CG*, NLS-CG*, CPY* and CTG* represented misfolded proteins in 

different compartments that could emerge at anytime. 
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Based on our results showing that 96Q stabilizes several misfolded proteins from different 

cellular compartments, we can assert that proteins containing a pathogenically expanded 

polyglutamine tract influenced misfolded proteins in the entire cell. Therefore, our results 

suggest that 96Q can influence the degradation of misfolded proteins to a greater extent 

than previously thought. 

Misfolded proteins are often found in cells exposed to stress (such as heat shock or 

chemical stress) or with age (Cohen et al., 2006). If proteostasis capacity is overloaded by 

misfolded proteins, then cytotoxicity arises (Powers et al., 2009;Hartl et al., 2011). In our 

model, we simulated a natural situation: the capacity of the cell to counter misfolded 

protein stress was overloaded when 96Q was co-expressed with CG*, NLS-CG* or 

CTG*,whereas the cell capacity to handle misfolded protein stress was not overwhelmed 

in the case of 20Q co-expression with CG*, NLS-CG* or CTG*. Based on the results of our 

experiments, the expression of 96Q alone does not result in growth inhibition. 

Furthermore, co-expression of 96Q with either CG*, NLS-CG* or CTG* dramatically 

increases growth inhibition in our experiments. We hypothesize that the protein quality 

control system in these cases are not capable of handling all of the misfolded specimens. 

Proteostasis capacity of the cells and the ability to control misfolded species is reduced 

with age. In diseases caused by protein aggregation, misfolded proteins exert additional 

pressure on the proteostasis system in the cell (Taylor and Dillin, 2011;Cuanalo-Contreras 

et al., 2013). Our data are consistent with the idea that many neurodegenerative diseases 

(including Huntington’s disease) have a certain age of onset. With age, proteostasis 

capacity diminishes and reaches the point where the protein quality control system is no 

longer able to handle the misfolded proteins; pathogenic polyQ-expanded proteins 

aggravate this problem. 

Co-expression of 96Q and CG* not only led to cytotoxicity but also influenced the ability 

of the cells to respond to stress. According to our data, cells expressing 96Q and CG* were 

the least capable strains in inducing a stress response. In our experiments, the 

combination of these misfolded proteins impaired the heat shock response (Figure 20C). 

These data are supported by another observation made by our group: amyloid-like β-

structured proteins deregulate the stress response in mammalian cells (Olzscha et al., 

2011). In another study, the authors showed that full-length, non-aggregated polyQ-

expanded Htt protein could block effective induction of the heat shock response 

(Chafekar and Duennwald, 2012). Thus, not only did 96Q and CG* expression overload 
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the proteostasis network, but the co-expression of these proteins also impaired the heat 

shock response. The diminished ability of the cell to withstand stress resulted in cytotoxic 

effects. Reduced ability of the cell to respond to stress will be further discussed in section 

5.2. 

The degradation of CG* and CTG* requires assistance from the Hsp70 chaperone Ssa1 and 

the Hsp40 co-chaperone Ydj1 (Park et al., 2007). According to the data from our SILAC 

proteomic analysis, 96Q was strongly associated with Sis1, Ssa1, Ssa2, Ssa4 and Ydj1. The 

association of these proteins with 96Q resulted in a reduced total chaperone capacity in 

the cell. Given that CG* and CTG* both require chaperone assistance, their degradation 

should be affected by the depletion of chaperone pool via 96Q expression. In the case of 

CG*,the Sis1 chaperone appears to be the limiting factor for CG* degradation. However, 

the chaperone or other protein that serves as the limiting factor for CTG* degradation 

remains unknown. Our results also showed that Dsk2 was strongly associated with 96Q 

in our SILAC experiments. Because a previous study has shown that CTG* depends on 

Dsk2 for its degradation (Medicherla et al., 2004), we hypothesize that Dsk2 depletion 

could explain the CTG* stabilization observed in our study. 

As discussed above, the [PIN+] phenotype is important for the de novo formation of the 

[PSI+] phenotype but not for [PSI+] phenotype propagation (Derkatch et al., 1997; 

Derkatch et al., 2000). The [PIN+] phenotype is critical for the aggregation and 

cytotoxicity of pathogenic polyQ proteins in the cell (Meriin et al., 2002). Our data show 

that 96Q interference with misfolded proteins depends on the [PIN+] status of the cell. 

One possible explanation for this is that the [PIN+] prion is important for initial "seeding" 

of the amyloidal conformation in S. cerevisiae(Derkatch et al., 2004;Vitrenko et al., 2007). 

96Q did not stabilize CG*, NLS-CG* and CTG* in the [pin-] background. Moreover, we 

demonstrated through immunoprecipitation experiments that 96Q bound significantly 

less of the chaperones and co-chaperonesSsa1, Sis1 and Ydj1 (Figure 34). Thus, we suspect 

that in [pin-] cells, 96Q existed in a different conformation that did not efficiently bind 

chaperones and other components of the proteostasis network. Based on several studies 

that have shown that polyQ aggregation and toxicity depend on the [PIN+] phenotype, 

we speculate that soluble oligomers and SDS-insoluble aggregates are not present in [pin-] 

cells(Meriin et al., 2002;Kurahashi et al., 2008). Therefore, the soluble oligomers and SDS-

insoluble aggregates may be responsible for chaperone depletion and stabilization of 
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misfolded proteins in wild-type [PIN+] cells. However, further studies are required to 

identify which fraction (SDS-soluble or SDS-insoluble) causes CG* stabilization. 

As shown in our results, the co-expression of 96Q and CG*, CTG* or NLS-CG* was not 

toxic in the [pin-] strain (Figure 30, 31 and 32). Under normal conditions, Sis1 interacts 

with prion fibrils of Rnq1 proteins in [PIN+] cells and with aggregated polyQ 

(Sondheimer et al., 2001). In [pin-] cells, Sis1 and other co-chaperones and chaperones 

interacted less with 96Q fibrils when compared with [PIN+] cells, which suggests that in 

[pin-] cells, various chaperones were not depleted from the available chaperone pool. This 

results in a greater chaperone capacity to handle misfolded proteins in the [pin-] strain. 

We hypothesize that increased chaperone availability in [pin-] cells overcomes the toxicity 

caused by 96Q and CG* co-expression. 

In addition, our results showed that 96Q did not inhibit CG* degradation if these proteins 

were expressed for only 6 hours (Figure 11). The 96Q SDS-soluble fraction was 

abundantly present after 6 hours of incubation, which raises the question of which 

fraction of polyQ proteins is associated with chaperones. Monomeric or low molecular 

weight fractions found in the cell after 6 hours of incubation did not block CG* 

degradation. Moreover, the formation of the polymeric species of polyQ is not an 

instantaneous process (Krobitsch and Lindquist, 2000), and the period of 6 hours was 

likely not long enough for the formation of SDS-insoluble polymeric 96Q structures (not 

observed in filter retardation assay). SDS-insoluble polymeric 96Q structures were 

observed after 15 hours of expression (the presence of the SDS-insoluble fraction was 

detected by filter retardation assay); however, technical constraints prevented us from 

determining whether the SDS-soluble fraction or the SDS-insoluble polymer fraction was 

responsible for chaperone activity sequestration. More experiments are required to 

answer this question, but it seems likely that the conformation of the pathogenic polyQ 

protein plays a pivotal role in processes that are harmful to the cell. 

In future studies, the construction of an unfolded reporter protein that could be targeted 

to the mitochondria could be useful. Indeed, a mitochondrial dysfunction has been 

observed in Huntington's disease (Oliveira, 2010). There are several theories explaining 

this phenomenon, but many of them do not consider protein quality control interference 

by polyQ in the cell. We have shown interaction between polyQ-expanded protein and 

many chaperones and co-chaperones (Ssa, Sis1 and Ydj1) and many other components of 

the proteostasis network (Table 2). In addition to these observations, Hsp70 and other 
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chaperones have been shown to be involved in the import of proteins into the 

mitochondria. Therefore, protein transport to the mitochondria could also be affected by 

polyQ. Sequestration of proteins that are important for mitochondrial transport could lead 

to mitochondrial dysfunction, which is characteristic of some neurodegenerative diseases. 

 

5.1.2  PolyQ proteins do not directly inhibit the proteasome 

Previous studies have suggested that the proteasome is inhibited in polyQ diseases due to 

the co-aggregation of pathogenically expanded polyQ proteins with ubiquitin and with 

proteasome subunits in patients with spinocerebellar ataxia type 1 and Huntington's 

disease (DiFiglia et al., 1997;Cummings et al., 1999). Thus, pathogenic polyQ proteins are 

thought to sequester proteasome subunits into the inclusions, which can lead to an 

imbalance in the UPS component stoichiometry and can result in the decrease of 

proteasomal function. Another model claims that UPS impairment is related to the fact 

that polyQ cannot be digested in vitro (Venkatraman et al., 2004).These findings were 

further supported by another study that revealed that proteins containing expanded 

polyQ tracts blocked the proteasome and prevented protein degradation(Raspe et al., 

2009). 

Our study provides evidence that conflict with both of these models. Cells expressing 

pathogenic polyQ retain the ability to degrade UbG76V-GFP, suggesting that the 

proteasome remains active (Figure 22). Moreover, GFPcODC can be degraded in cells co-

expressing 96Q and CG*. Importantly, CG* was stabilized in this experiment due to the 

presence of 96Q. Therefore, these data suggest that the proteasome block was located 

upstream of the proteasome. 

In addition, our data show that the proteasome is capable of degrading polyQ proteins if 

they are efficiently delivered to the proteasome upon the addition of cODC tags. These 

results suggest that long polyQ tracts do not physically encumber or sequester the 

proteasome. The data that we obtained from yeast are in accordance with studies 

performed in mammals. A previous study found that polyQ-expressing mice do not 

exhibit reduced proteasomal activity (Bett et al., 2006). 
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To summarize our results, the proteasome remains functional upon 96Q expression. 

Moreover, pathogenically expanded polyQ interferes with protein quality control 

upstream of the proteasome in yeast. 

In addition, we found that CG* was fully ubiquitinated in the presence of 96Q. Pathogenic 

polyQ did not interfere with CG* ubiquitination, and therefore, CG* stabilization was due 

to a different cause. Previous studies support our finding that pathogenic polyQ protein 

interference with the proteasome is not linked to Ub-conjugation (Hipp et al., 2012). 

Moreover, overexpression of Ubr1 (an E3 ubiquitin ligase with a major role in targeting 

misfolded cytosolic proteins and CG* ubiquitination) did not improve CG* degradation 

(Eisele and Wolf, 2008; Heck et al., 2010; Park et al., 2013). However, disruption of Ubr1 in 

cells co-expressing 96Q and CG* resulted in increased cytotoxicity (Figure 27). This 

implies that Ubr1 plays an important role in CG* degradation, although it is not a limiting 

factor for degradation. 

 

5.2 Expression of misfolded proteins reduces the ability of cells to 

respond to stress 

The heat shock response is highly conserved in all organisms and is activated in response 

to different conditions such as exposure to high temperatures and the presence of 

misfolded proteins (Lindquist, 1986). The ability to respond to stress is very important for 

cell survival (Verghese et al., 2012). Cells expressing pathogenically expanded toxic polyQ 

proteins are not able to produce a strong stress response (Duennwald and Lindquist, 

2008). Our results confirm this result based on our non-toxic 96Q protein. Neither 96Q 

alone nor in combination with CG* was able to induce a strong stress response (Figure 

20A). 

Moreover, the ability of the cells to produce a heat shock response was significantly 

impaired if both 96Q and CG* were co-expressed. CG* overexpression had a negative 

influence on stress induction in our experiments (Figure 20B). Summarizing the data from 

our experiments, we propose the following model: accumulation of misfolded proteins 

overwhelms the proteostasis network; however, cells cannot upregulate important 

proteostasis components because of the reduced ability to induce the appropriate stress 
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response in these cells. This results in the cytotoxicity we observed in cells co-expressing 

96Q and CG*. 

Interestingly, Sis1 overexpression (we will discuss this protein in more detail later) in 

96Q-expressing cells led to a strong stress response induction even in the absence of heat 

shock (Figure 48). The intensity of the response in Sis1-overexpressing cells was similar to 

the response to heat shock. We speculate that Sis1 plays a role as a stress sensor and 

senses 96Q as a potentially dangerous misfolded protein, thereby triggering the 

upregulation of the stress response in the presence of 96Q. Sis1 is involved in the 

degradation of misfolded proteins and can also help upregulate other components of the 

proteostasis network to endure stress.Sis1 could act as a sensor for misfolded proteins in 

the cytosol and nucleus, which would represent a novel function of Sis1; however, more 

data are required to support this idea. Data from our stress assay with Sis1 overexpression 

should be further investigated on the mRNA level. Data from our laboratory suggest that 

high levels of Sis1 in the presence of 96Q increased the mRNA levels of several important 

players in the proteostasis network (personal communication with Dr. Julien Micoud). 

 

5.3  Key 96Q interactors 

Our data show that the proteasome remains active in the presence of 96Q. Stabilization of 

CG* and other proteins occurs upstream of the proteasome. We suspect that 96Q interacts 

with factor X, which is required for misfolded protein degradation. To identify factor X, 

we conducted a quantitative interactome analysis using SILAC (Ong and Mann, 2006). We 

identified proteins that showed enriched interaction with 96Qrelative to 20Q. 

Approximately 100 proteins were enriched over 2-fold by co-immunoprecipitation in at 

least two of three independent experiments. These proteins were classified into 6 groups: 

chaperones, glutamine-rich proteins, yeast prion proteins, UPS components, nuclear pore 

complex proteins and vesicle transport proteins. 

First, the association of prion proteins with 96Q reflects the requirement of prion status 

for the seeding of polyQ protein aggregation in yeast (Meriin et al., 2002). Moreover, 

many polyQ-rich proteins tend to co-aggregate with each other (Kazantsev et al., 1999; 

Schaffar et al., 2004). These studies suggest that polyQ-rich proteins exchange structural 

information with each other. 96Q expression might affect other polyQ-rich proteins by 
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encouraging the adoption of a misfolded configuration in a manner similar to prions. This 

would increase the likelihood that other proteins could have aberrant protein interactions. 

Two groups of 96Q-interacting proteins were notable: molecular chaperones (and co-

chaperones) and proteins associated with the UPS. Molecular chaperones constitute the 

first line of defense against misfolded proteins; therefore, their increased interaction with 

96Q was anticipated. In our study, we found that some very highly abundant chaperones, 

such as Ssa1, associated with 96Q. However, we also identified strong interacting 

proteins, such as the Sis1 protein, which is an Hsp40 chaperone with low abundance. We 

found that the overexpression of Sis1 restores CG* degradation, whereas overexpression 

of Ssa1 or Ydj1 fails to restore CG* clearance in 96Q-expressing cells. Our data also 

showed that as little as a 25% decrease in Sis1 expression led to the stabilization of CG* 

(Figure 49). Therefore, we concluded that Sis1 is a limiting factor for CG* degradation in 

the presence of 96Q. 

UPS components also associated with 96Q. Our results showed that Dsk2 was highly 

enriched, and several subunits of the 19S proteasome complex were moderately enriched. 

We found that, despite the fact that Dsk2 is dispensable for CG* degradation, Dsk2 

deletion accelerated CG* turnover (Medicherla et al., 2004; Park et al., 2013). Previous 

studies have shown that CTG* requires Dsk2 for its degradation (Medicherla et al., 2004). 

Therefore, the functional depletion of Dsk2 by 96Q could have caused the stabilization of 

CTG* observed in our study. However, additional experiments to investigate the 

mechanism of CTG* stabilization are required. 

 

In summary, we found that 96Q interacts with several different types of proteins. 96Q 

interacts extensively with components of the proteostasis network particularly with 

chaperones. These results suggest that 96Q drastically affect the ability of the cell to 

maintain protein homeostasis by interacting with the proteostasis machinery. 
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5.4  Ssa1, Ydj1 and Sis1 interact with 96Q and are depleted from the 

pool of available proteins 

First, we tried to overexpress Ssa1 and Ydj1, as these proteins were strongly associated 

with 96Q in our SILAC experiments, and they are required for CG* degradation (Park et 

al., 2007). Ssa1 and Ydj1 overexpression did not restore CG* degradation in 96Q-

expressing cells. Moreover, Ssa1 and Ydj1 stabilized CG* levels (Figure 35 and Figure 36). 

Because chaperones act in a cooperative manner, one might expect that the upregulation 

of a single chaperone may lead to an imbalance between the components of the chaperone 

cycle (Hartl and Hayer-Hartl, 2002). Nonetheless, our results show that Ssa1 and Ydj1 are 

not limiting factors for CG* degradation in our model. 

Chaperones are known modulators of polyQ aggregation and toxicity (Sakahira et al., 

2002). Overexpression of Ssa1 and Ydj1 decreased the SDS-insoluble fraction of 96Q 

present in the cell but failed to restore the degradation of misfolded proteins. One possible 

explanation for this phenomenon is that the chaperones were trying to refold the 

terminally misfolded CPY*, which skewed the balance between refolding and degradation 

towards the refolding pathway. However, chaperone functions are beneficial to the cell. 

For example, Ydj1 overexpression resulted in reduced toxicity in cells co-expressing 96Q 

and CG* (Figure 38). We suspect that Ydj1 interacted with 96Q and thus was able to shield 

96Q protein from potentially harmful interactions effectively substituting for some of the 

functions of the cognate Sis1 protein. 

Second, we overexpressed the protein Sis1 based on the fact that Sis1was very strongly 

associated with 96Q in our SILAC experiments. CG* degradation in the presence of 96Q 

was greatly accelerated when Sis1 was overexpressed (Figure 40). Moreover, NLS-CG* 

degradation was accelerated by Sis1 overexpression (Figure 42). The effects of Sis1 on CG* 

and NLS-CG* degradation were quite specific, as all other reporters (CTG* and CPY*-HA) 

tested did not degrade faster in the presence of Sis1 (Figure 44 and Figure 46). This 

observation can be explained by the fact that Sis1 is localized in the cytosol and the 

nucleus and assists with the degradation of misfolded substrates in these compartments 

(Huh et al., 2003). 

Ssa1 and Ydj1 sequestration by 96Q did not lead to stabilization of CG* protein because 

these two proteins are present in the cell in high quantities (269,000 and 119,000 molecules 

per cell, respectively), which makes their depletion by 96Q difficult (Ghaemmaghami et 

al., 2003). However, Sis1 protein exists in relatively low abundance, with only 20,300 
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molecules per cell, which suggests that 96Q could significantly deplete Sis1 protein. 

Altogether, 96Q depleted the chaperone pool by sequestering chaperones and co-

chaperones. Depletion of the chaperone pool plays an important role in unbalancing the 

protein quality control system in the cell. Partial restoration of this balance due to Sis1 

overexpression or due to [pin-] status of the cell leads to the alleviation of toxicity and 

significant improvements in CG* degradation (Figure 30 and Figure 40). 

We showed that even a small reduction in Sis1 levels in the Sis1-Tet-Off strain resulted in 

the stabilization of CG*. As Sis1 is a protein of low abundance, we propose that 

pathogenic polyQ expression significantly depletes the pool of this chaperone. 

We conclude that Sis1 sequestration by pathogenic polyQ protein explains the observed 

inhibition of CG* degradation. However, other proteins might contribute to CG* 

stabilization. 96Q associates with proteins from the nuclear pore or ubiquitin receptors 

(such as Dsk2). This might increase the observed defect in the degradation of misfolded 

proteins. 

Our results suggest that Sis1 is a limiting factor in the degradation of CG* and NLS-CG*. 

However, the limiting factors for CPY* and CTG* remain unknown. We suspect that the 

limiting factor for CTG* degradation could be Dsk2, which should be confirmed with 

direct evidence. 96Q interaction with the proteostasis network is complex and should be 

further investigated. 

 

 

5.5 Sis1 plays an important role in the degradation of misfolded 

proteins in the nucleus 

Proteasomes are present in the cytoplasm and in the nucleus in significant quantities 

(Wójcik and DeMartino, 2003). Studies have shown that misfolded proteins are degraded 

not only in the cytoplasm but also in the nucleus (Heck et al., 2010;Prasad et al., 2010). 

However, the mechanism underlying such degradation remains poorly understood. In 

our study, we established that CG* is degraded in the nucleus. The nuclear substrate NLS-

CG* was very quickly degraded, whereas the cytoplasmic substrate NES-CG* was 

stabilized (Figure 54). These data are in accordance with other studies (Heck et al., 2010). 

We also established the role of the Sis1 co-chaperone in CG* degradation. This chaperone 

is actively involved in the delivery of misfolded proteins to the nucleus (Figure 57, Figure 

58 and Figure 59). Moreover, Sis1 tagged with NLS and NES failed to increase CG* 
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degradation (Figure 54). Therefore, shuttling of the Sis1 protein between the cytosol and 

the nucleus is important for its activity. 

In support of our data showing that Sis1 is involved in the degradation of misfolded 

proteins, another terminally misfolded protein was reported to degrade with the 

assistance of Sis1: the short-lived version of GFP, slGFP. We hypothesize that if previous 

studies had inhibited the proteasome, slGFP would have localized to the nucleus 

(Summers et al., 2013). We also speculate that Sis1 is an essential protein given its 

involvement in the degradation of misfolded proteins in the nucleus. When Sis1 is 

depleted due to interactions with 96Q, misfolded proteins are no longer delivered to the 

nucleus. The accumulation of misfolded proteins results in cytotoxicity. 

The idea that misfolded cytosolic proteins are generally degraded in the nucleus should 

be verified by future experiments. 

As mutant studies have shown, a fully functional J domain is essential for Sis1 function. 

Sis1AAA or Sis1∆J mutants were unable to replace wild-type Sis1 for CG* degradation. 

Therefore, interaction with Hsp70 plays a pivotal role for Sis1. Sis1 interacts with Ssa1, 

presumably by binding to Ssa1/Ydj1 and substrate complexes or by replacing Ydj1 in 

those complexes. Despite the fact that Sis1 is a much less abundant protein relative to Ydj1 

(20,300 to 119,000 per cell, respectively), Sis1 likely has a stronger affinity for misfolded 

proteins relative to Ydj1. Based on our data, we propose the following model: misfolded 

proteins are attempted to be refolded several times by Ssa1/Ydj1; then, Sis1 interacts with 

these complexes, substitutes for Ydj1 and targets the misfolded proteins for degradation. 

This model would explain why the overexpression of Ydj1 had some effect on CG* 

degradation but also stabilized CG*. Based on the fact that the proper ratio between the 

chaperones was perturbed by 96Q, Sis1 was not able to target proteins for degradation. 

Whether Sis1 directly interacts with importin proteins and nuclear pore complexes 

remains unclear. The specific role of Sis1 in nuclear transport is supported by the 

following facts: CG* and Sis1 accumulated in the nucleus upon proteasome inhibition, 

and NLS-Sis1 or NES-Sis1 were unable to functionally replace normal Sis1. Re-export of 

Sis1 to the cytosol in our model is interconnected with the transfer of misfolded proteins 

to the nuclear proteasome machinery. A model for Sis1 degradation in the nucleus is 

shown in Figure 60. 

Additionally, CG*, NLS-CG*, CTG* and CPY*-HA were stabilized in the presence of 96Q. 

Pathogenic polyQ protein sequestered many different proteins, particularly the molecular 

chaperones Ssa1, Ydj1 and Sis1. Moreover, CPY*-derived misfolded proteins require 
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chaperone assistance for degradation, and therefore contribute to the depletion of 

chaperone capacity. CG* and NLS-CG* were stabilized because the Sis1 co-chaperone was 

sequestered. CTG* and CPY*-HA were stabilized via different mechanisms, which we 

speculate occurred because chaperone capacity was depleted by 96Q or because Dsk2 was 

sequestered by 96Q. However, the exact mechanism of CTG* stabilization should be 

confirmed with direct evidence. 

In addition, the [PIN+] prion affects the chaperone capacity of the cell. We suspect that 

[PIN+] fibrils cause many other aggregation-prone proteins to aggregate (Patel and 

Liebman, 2007). We hypothesize that polyQ aggregates in [PIN+] cells sequester 

chaperone capacity (Figure 60). 

 

 

 

Figure 60. Model of the role of Sis1 in the degradation of misfolded cytosolic proteins. 

CG*, CTG* and CPY*-HA are shown in the cytosol or ER. Misfolded proteins in the cytosol, such 
as CG* (green), are initially stabilized in their soluble form by Ssa1 in cooperation with Ydj1. CG* is 
a terminally misfolded protein; therefore, after several cycles of attempted refolding through protein 
binding and release, CG* remains unfolded and is ubiquitinated (most likely via Ubr1). Sis1 
recognizes misfolded proteins and remodels the chaperone complex, shifting it from refolding to 
degradation mode. Sis1 stabilizes the association with Hsp70 and mediates protein import into the 
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nucleus for degradation by the proteasome. Red arrows indicate reactions where 96Q depletes 
Sis1. In addition, 96Q interferes with the degradation of CG*, CPY*-HA and CTG*. 96Q interacts 
with Sis1 and Hsp70 and sequesters them to the aggregates. Sis1 is required for CG* degradation. 
Chaperones are sequestered to aggregates and cannot assist in the degradation of misfolded 
proteins resulting in the accumulation of misfolded proteins. NLS-CG* is not shown in the figure but 
exhibits a similar mechanism of degradation to CG*. 

 

Strikingly, 96Q does not inhibit the degradation of CG*, CTG* and NLS-CG* in [pin-] 

cells. Through immunoprecipitation and immunoblotting, our results show that 96Q does 

not interact with Ssa1, Ydj1 and Sis1 as strongly in [pin-] cells when compared with 

[PIN+] cells (Figure 34). Therefore, chaperone capacity was alleviated in [pin-] cells. This 

observation could help explain why different types of misfolded proteins were degraded 

normally in [pin-] cells. These results are summarized in Figure 61. 

 

Figure 61. 96Q does not interfere with the degradation of CG*, CTG* and NLS-CG* in [pin-] 

cells. 

In [pin-] cells, chaperone capacity is partially alleviated. CG*, NLS-CG* and CTG* are degraded 
normally even in the presence of 96Q. No significant accumulation of the studied misfolded 
proteins was observed in [pin-] cells. 
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7  Appendix 

 

7.1  Abbreviations 

Units are expressed according to the international system of units (SI). Protein and gene names 

are abbreviated according to their SWISSPROT database entries. 

 

ADP    adenosine 5’-diphosphate 

Amp    ampicillin  

APS    ammonium peroxydisulfate 

ATP   adenosine 5’-triphosphate 

bp   base pair 

BSA    albumin bovine serum  

Cen.   centromeric plasmid 

cODC   c-terminal 37 amino acids of ornithine decarboxylase 

CHX   cycloheximide 

Da   dalton 

DAPI    4,6-diamidin-2-phenylindol 

DMSO   dimethylsulfoxid 

DNA    deoxyribonucleic acid 

dNTP   dideoxynucleoside triphosphate 

Dox    doxycycline 

DTT    dithiothreitol 

E.coli    Escherichia coli 

EDTA   ethylenediaminetetraacetic acid 

ER   endoplasmic reticulum 

ERAD    ER-associated degradation 

FBPase   fructose 1,6-bisphosphatase 

FITC   fluorescein-isothiocyanate 

g   acceleration of gravity, 9.81 m/s2 

Gal   galactose 

GFP    green fluorescent protein 

Glu    glucose 
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GuCL    guanidinium hydrochloride 

HD    Huntington’s disease 

HRP    horseradish peroxidase 

HS   heat shock 

Hsp    heat shock protein 

Hsp70   heat shock proteins with molecular weight70 kilodaltons 

Hsp40   heat shock proteins with molecular weight40 kilodaltons 

HSR   heat shock response 

IB    inclusion body 

IP   immunoprecipitation 

LB    Luria-Bertani 

mCherry  monomeric red fluorescent protein 

mRNA   messenger RNA 

myc   protein tag derived from the c-myc protein 

NEF   nucleotide-exchange factor 

NES   nuclear export signal 

NLS   nuclear localization signal 

OD    optical density 

OD420   optical density at a wavelength of 420nm 

OD600   optical density at a wavelength of 600nm 

ONPG   ortho-Nitrophenyl-β-galactoside 

PAGE    polyacrylamide Gel Electrophoresis  

PBS    phosphate-buffered saline 

PCR    Polymerase Chain Reaction  

PEG    polyethylene glycol 

PGK   phosphoglycerate kinase 

Pi    inorganic Phosphate 

PMSF    phenylmethylsulfonyl fluoride 

RNA    ribonucleic acid 

PolyQ   polyglutamine 

Poly-Ub  polyubiquitin 

S. cerevisiae  Saccharomyces cerevisiae 

SD   standard deviation 

SDS    sodium dodecylsulfate 

SDS-PAGE  sodium dodecyl sulfate polyacrylamide gel electrophoresis 
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SILAC   stable isotope labeling by amino acids in cell culture 

SBD    substrate binding domain 

TCA    trichloroacetic acid 

TEMED   N,N,N’,N’-tetramethylethylendiamine 

Tet    tetracycline  

Tris    tris(hydroxymethyl)aminomethane 

Triton X-100  octyl phenol ethoxylate 

Tween 20   polyoxyethylen-sorbitan-monolaurate 

Ub    ubiquitin  

UPR    unfolded protein response 

UPS    ubiquitin-proteasome system 

WT    wild-type 

2µ   multicopy plasmid 
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PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the 

Sis1p chaperone. Cell 154:134–145 
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