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Introduction 1 

1. Introduction 

1.1. Overview 

Since Cajal and Golgi fou ded  ode  ai  esea h it has been thought for a very long 

time that once the generation of neurons during development has been completed, a process 

called developmental neurogenesis, no more neurons can be generated throughout the whole 

life. Cajal was the first who declared this dogma (Cajal, 1913-14). But in the early nineties a 

group led by Reynolds and Weiss discovered that Cajal’s hypothesis was wrong (Reynolds and 

Weiss, 1992) by showing that cells from the adult mouse striatum are able to divide and 

differentiate into neurons and astrocytes in vitro. Later, other groups found two regions in the 

adult mammalian brain where generation of neurons, now called adult neurogenesis, is still 

ongoing: the subgranular zone (SGZ) in the hippocampus and the subependymal zone (SEZ), 

also referred to as subventricular zone (SVZ), near the lateral ventricles in the forebrain (Gould 

and Cameron, 1996, Lois and Alvarez-Buylla, 1994). 

Currently, e a e ot a le to t eat a  eu ologi al o ditio s, e.g. st oke a d Alzhei e ’s 

disease, in a curative manner as the neuronal loss cannot be substituted. Could the process of 

adult neurogenesis help to substitute these lost neurons after brain injury and help to repair 

the brain? Studies in different injury models over many years have revealed that although 

proliferation and neurogenesis in these two adult neurogenic niches increase after injury, the 

survival and functional integration of newly generated neurons into existing neuronal circuits 

in the damaged area remains very low if at all present. Therefore other approaches to replace 

the neuronal loss need to be found. 

In addition to cellular transplantation, which has major ethical and immunological obstacles, 

a new concept has been invented by the laboratory of Magdalena Götz: endogenous glial cells 

that proliferate in the vicinity of virtually all CNS lesions could be reprogrammed into 

functional neurons by forced expression of neurogenic fate determinants. Indeed the lab was 

able to show that reactive astrocytes can be reprogrammed into functional subtype specific 

neurons in a highly sufficient manner in vitro (Heinrich et al., 2010). Recently, it was even 

demonstrated that this reprogramming process can be triggered in vivo (Guo et al., 2014). 
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Unfortunately, long-term survival and functional circuitry integration of these newly 

generated neurons remain very limited so far.  

As a consequence, a better understanding of the biological process is needed to identify 

reasons for these limitations. For example a prudential way would be to determine pathways 

that inhibit neuronal reprogramming. In particular the STAT signaling pathway is known to 

promote gliogenesis and inhibit neurogenesis during embryonic development (Bonni et al., 

1997). Could the activation of this pathway in reactive astrocytes explain the low efficiency of 

reprogramming by maintaining these cells in their glial lineage? 

By decreasing gliogenic pathways it may be possible to elicit neurogenesis in the adult injured 

cerebral cortex. Here we studied STAT expression after brain lesion and investigated the 

potential role of STAT signaling in impairing reprogramming of reactive astrocytes into 

neurons in the adult injured cortex. 

1.2. Cortical development 

The mammalian nervous system consists of two very distinct cell types: neurons and glia. In 

the adult brain a multitude of subtypes exists for each one of them. Together they have to 

fulfill remarkable tasks such as ensuring cognitive function, sensory perception and 

consciousness amongst others. A complex, highly-organized formation is needed. Therefore, 

during pre- and postnatal development of the nervous system, an essential diversification and 

integration has to take place.  

Rudolf Virchow, well-known fo  the Vi ho ’s t iad h pe oagula ilit , e dothelial 

dysfunction and hemodynamic changes as contributors to thrombosis) was the first who 

referred to supportive cells f o  o  o  alled glia  in the central nervous system (CNS) in 

1846 (Kriegstein and Alvarez-Buylla, 2009). Wilhelm His, Sr., father of Wilhelm His, Jr. who 

discovered the bundle of His in the heart, continued this work four decades later. First he 

added the hypothesis that neurons and glia were produced from two distinct progenitor pools 

(reviewed in (Kriegstein and Alvarez-Buylla, 2009)) and he also discovered that the 

development of the mammalian neocortex depends on the proliferation of cells lining the 

ventricle of the neural tube (reviewed in (Bentivoglio and Mazzarello, 1999)). The concept of 

two different progenitor pools for neurons and glia became very popular throughout the 
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majority of the last century for many experts and is still a dogma for many not working in the 

field. But substantial progress in research in the last three decades influenced experts to no 

longer fully agree with this hypothesis. Evidence now suggests that cells considered to be part 

of the glial lineage – radial glia (RG) and a subpopulation of astrocytes – are in fact the neural 

stem cells (NSC) that give rise to differentiated neurons and glial cells throughout 

development and in the postnatal brain (Kriegstein and Alvarez-Buylla, 2009).  

I will use the term glia to refer to both, differentiated macroglia (astrocytes, oligodendrocytes 

and ependymal cells) and glial cells that maintain stem cell properties (RG) but not to microglia 

as they are derived from the mesoderm. 

1.2.1. Neural stem / progenitor cells 

Both neurons and glia originate from the neuroectoderm via a pseudostratified 

neuroepithelium (reviewed in (Bonfanti and Peretto, 2007, Kriegstein and Alvarez-Buylla, 

2009)). These neuroepithelial cells are columnar, touch ventricular and pial surface (Temple, 

2001) and increase in cell number by symmetric division (Fig. 1). In addition, they generate 

some early neurons, called Cajal-Retzius cells, which settle in the marginal zone (MZ) (Fig. 1). 

Approximately around onset of cortical neurogenesis, embryonic day 9 (E9) – E10 in the mouse, 

they begin to transform into RG (Fig. 1) by acquisition of glial properties – a transition more 

fluent than sudden (reviewed in (Gotz and Huttner, 2005)). It is characterized by 

morphological changes (lengthening of the radial processes due to ongoing thickening of the 

cortex), presence of glycogen storage granules and upcoming expression of astroglial markers 

like glutamate aspartate transporter (GLAST), brain lipid-binding protein (BLBP), Tenascin C 

(TN-C) (reviewed in (Campbell and Gotz, 2002)) and intermediate filament proteins like nestin, 

vimentin and radial cell form  (RC1) (Edwards et al., 1990) and RC2 epitopes as well as glial 

fibrillary acidic protein (GFAP) (Benjelloun-Touimi et al., 1985, Choi and Lapham, 1978, Choi, 

1988, Eng, 1985, Levitt and Rakic, 1980, Kriegstein and Alvarez-Buylla, 2009), latter not in 

rodents and chicken (Onteniente et al., 1983, Bignami and Dahl, 1974).  



4 Introduction 

 

Fig. 1: Cortical development 
Neurons can be generated in different ways: 1. directly from RG via asymmetric cell division 2. indirectly 

via neuronal intermediate progenitor cells (nIPCs) and one round of amplification 3. again indirectly via 

nIPCs but two rounds of amplification; Figure from Kriegstein and Alvarez-Buylla, 2009. 

RG remain in contact with pial and ventricular surface with their cell bodies in the ventricular 

zone (VZ), a region next to the ventricles. It can be subdivided into a septal part, a cortical part, 

the lateral ganglionic eminence (LGE) and the medial ganglionic eminence (MGE). 

In contrast to the historic opinion that RG will only serve as guidance for neuronal migration 

to the cortical plate (CP), many studies in the last three decades supported the finding that RG 

also act as main neural progenitor cells. In fact, this idea was invented by the lab of Magdalena 

Götz (Malatesta et al., 2000, Hartfuss et al., 2001) and later confirmed by others (Noctor et al., 

2001, Anthony et al., 2004). Shortly after these initial findings the importance of the 

transcription factor Paired box protein 6 (Pax6) for the neurogenic potential of RG was 

identified by the lab of Magdalena Götz (Heins et al., 2002, Campbell and Gotz, 2002). RG 

acquired this status because they perform asymmetric cell division to self-renew and to 

produce either a nIPC, also referred to as basal progenitor cell or transit amplifying cell, or a 

neuron (Noctor et al., 2004, Haubensak et al., 2004). NIPCs are more restricted than RG and 

are already committed to the neuronal lineage as they express neuronal markers (reviewed in 

(Guillemot, 2005)). However, it is not the VZ that is thought to be the major site of 

neurogenesis but the SVZ (Fig. 1). Studies (Noctor et al., 2004, Miyata et al., 2004) revealed 

that SVZ cells are derived from RG and subsequently divide into neurons and that it is indeed 
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the nIPCs which populate the SVZ (Fig. 1) (Kriegstein and Alvarez-Buylla, 2009). That does not 

exclude the existence of nIPCs in the VZ at earlier time points (Noctor et al., 2007). As 

described above (Fig. 1), nIPCs will undergo symmetric cell division to produce either two 

neurons or two additional nIPCs (Noctor et al., 2007, Noctor et al., 2004, Haubensak et al., 

2004, Miyata et al., 2004, Kriegstein and Alvarez-Buylla, 2009). With the subsequent growth 

of CP and SVZ the VZ shrinks more and more until birth (Bonfanti and Peretto, 2007).  

1.2.2. Embryonic neurogenesis 

The existence of a multitude of neuronal subtypes in the adult brain requires a high diversity 

of neural progenitor cells (reviewed in (Kriegstein and Alvarez-Buylla, 2009)). As all cell 

decisions, the subtype specification can also be regulated via cell-intrinsic and -extrinsic signals. 

Long it was thought that extrinsic information would largely regulate the cell fate but 

nowadays studies suggest that it is mainly determined via intrinsic cellular mechanisms. The 

two main classes of cortical neurons are interneurons, which make local connections and 

projections neurons, whose axons reach intracortical, subcortical and subcerebral targets. The 

latter are excitatory glutamatergic neurons with a typical pyramidal morphology (Molyneaux 

et al., 2007). They are generated from progenitors of the germinal zone of the dorsal 

telencephalon (pallium) (Guillemot, 2005, Anderson et al., 2002), a process directed by Pax6 

and Neurogenin (Neurog) 2 (Fode et al., 2000, Guillemot, 2007) and sequentially reach the 

different cortical layers by radial migration. They settle in an inside-out fashion, i.e. later-born 

neurons make up the upper layers, therefore passing earlier born neurons, which display 

deeper layers. On the contrary, i te eu o s a e i hi ito , o tai  γ-aminobutyric acid 

(GABA) and are produced by progenitors from the ventral telencephalon (subpallium), e.g. 

from the LGE, the caudal ganglionic eminence (CGE), the MGE and the septal part of the VZ, 

(Molyneaux et al., 2007) before migrating tangentially to their final locations. Their generation 

is governed by the proneural proteins mammalian achaete-schute homolog 1 (Mash1) 

(Casarosa et al., 1999, Parras et al., 2002) and distal-less homeobox 1/2 (Dlx1/2) (Petryniak et 

al., 2007). In addition to these major spatial differences, each subdivision generates again a 

multitude of neuronal subtypes differing in molecular profile, morphology and connectivity 

(reviewed in (Campbell, 2005, Guillemot, 2005)). Another factor for variation is for example 

the temporal pattern (Desai and McConnell, 2000). So far studies suggest the coexistence of 
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single multipotential progenitor cells (He et al., 2001, Parnavelas et al., 1991, Yung et al., 2002), 

which are intrinsically capable to generate many neuronal and glial subtypes, and fate-

restricted progenitor cells (Battiste et al., 2007, Anthony et al., 2004), suggesting 

heterogeneity of RG populations (Kriegstein and Alvarez-Buylla, 2009). Recently it has been 

shown that from all early cortical progenitors, most exclusively generate neurons, few 

produce neurons before becoming glia-restricted progenitors and that there are no glia-

restricted early cortical progenitors (Hartfuss et al., 2001). 

The developmental processes underlying the difference between the small and non-folded 

(lissencephalic) neocortex of the rodent and the larger and higher-folded (gyrencephalic) 

neocortex of the human are subject of current research. An explanation could be the 

separation of the SVZ in an outer subventricular zone (OSVZ) and an inner subventricular zone 

(ISVZ) by a thin layer (Smart et al., 2002) with the existence of additional RG in the OSVZ (then 

called oRG) and more rounds of amplification by nIPCs to increase overall resulting neuron 

number in the CP (Lui et al., 2011). 

1.2.3. Embryonic gliogenesis 

RG cell bodies stay in the VZ throughout the whole period of cortical development to cope 

with their two jobs: generation of IPCs and neurons as well as guidance for newly born neurons 

to the CP. At the end of this period RG lose their ventricular attachment and migrate toward 

the CP via somal translocation. In mammals most RG transform via morphological changes 

(bipolar -> unipolar -> multipolar) into astrocytes (Kriegstein and Alvarez-Buylla, 2009, 

Takahashi et al., 1990). In addition to the generation of astrocytes from RG from the VZ and 

subsequently progenitors from the SVZ, an old idea about the contribution of differentiated 

astrocytes in the postnatal cortex by local proliferation (Hajos et al., 1981) was recently shown 

to be true (Ge et al., 2012). Some RG also transform into ependymal cells (Spassky et al., 2005). 

The onset of cortical embryonic gliogenesis, which follows neurogenesis, is regulated by a 

variety of factors, which will be reviewed in detail later (see chapter 1.6.3.2.), but are 

summarized shortly at this point: when important neurogenic factors like Neurog1 are 

downregulated at the end of neurogenesis, the signal transducer and activator of transcription 

(STAT) 3 can bind to its glial promoters, e.g. GFAP. Factors like the bone morphogenetic 
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protein (BMP) and Notch help to regulate this process via their downstream targets Smad and 

Hes. 

Oligodendrocytes also arise from RG during development (Fogarty et al., 2005). They originate 

from multiple locations in three big waves: 1. from the MGE 2. from the LGE and CGE and 3. 

from the dorsal cortex itself. Interestingly, most of early-generated oligodendrocytes (first and 

second wave) disappear after birth so that their adult population basically comprises the third 

wave production (Kessaris et al., 2006). Oligodendrocyte progenitor cells (OPCs) are neuron-

glial antigen 2 (NG2) expressing proliferating cells which exist throughout the whole brain 

(Rivers et al., 2008). OPCs are likely to correspond to oIPCs, however, compared to the actively 

proliferating IPCs in VZ and SVZ, NG2 expressing OPCs are found in grey and white matter and 

are usually quiescent, only proliferating symmetrically in response to local signals (reviewed 

in (Kriegstein and Alvarez-Buylla, 2009)). 

1.2.4. Time course of cortical development 

For a better understanding of the different timelines and overlaps of neuronal, astrocytic and 

oligodendrocytic production, I will here shortly review the time points for the rat brain (Fig. 

2): VZ neurogenesis commences at E12, peaks at E14 and recedes at E17 (Parnavelas, 1999). 

The SVZ emerges at E14 dorsally from the VZ. From late embryonic days (rat E17) to postnatal 

day 14 (P14) cells originating from the SVZ are essentially destined for glial lineages 

((Sauvageot and Stiles, 2002). The peak of astrocyte generation occurs between P0 and P2 (Fig. 

2) while oligodendrocyte formation has its climax at P14 (Parnavelas, 1999, Levison et al., 1993, 

Zerlin et al., 1995).  

 

Fig. 2: Temporal pattern of generation of neurons, astrocytes and oligodendrocytes in 

rats 
Generation of cells of the CNS occurs with a temporal distinct yet overlapping pattern. Neuron 

production peaks at E14, astrocytes highest increase is around P1 and oligodendrocytes have their 

production climax at P14. Figure from Sauvageot and Stiles, 2002. 
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1.3. Adult neurogenesis 

O e de elop e t as e ded, the fo ts of gro th a d rege eratio  of the axo s 

and dendrites dried up irrevocably. In adult centers, the nerve paths are something 

fixed and immutable: everything may die, nothing may be regenerated. It is for the 

s ie e of the future to ha ge, if possi le, this harsh de ree.   

Santiago Ramon y Cajal (Cajal, 1913-14) 

This long-lasting dogma that after brain development neuronal loss could not be substituted 

was for a very long time believed to be entirely true. Although Joseph Altman and colleagues 

reported in the early sixties about cells in the dentate gyrus that incorporate radioactive 

thymidine, a sign for cell division, (Altman, 1962) and Michel Kaplan showed via electron 

microscopy that these cells are indeed neurons (Kaplan and Hinds, 1977), leading 

neurobiologists still strongly disagreed with these findings at the emblematic conference 

Hope fo  a Ne  Neu olog  i   (Colucci-D'Amato et al., 2006). Positions changed when 

Fernando Nottebohm used neuronal markers and 5-bromo-2’-deoxyuridine (BrdU) for 

detection of proliferating cells in adult birds (Nottebohm, 1985). Finally, after isolating stem-

like cells from the adult brain (Reynolds and Weiss, 1992, Lois and Alvarez-Buylla, 1993), a new 

chapter of neuroscience started. While in most other CNS regions the germinal layers 

disappear soon after birth, leaving only an ependymal monolayer, two principal neurogenic 

niches in the adult brain have been identified since then (Fig. 3): the SGZ, corresponding to 

the inner layer of the dentate gyrus in the hippocampus (Gould and Cameron, 1996, 

Kempermann et al., 1997) and the SVZ in the lateral wall of the lateral ventricles (Lois and 

Alvarez-Buylla, 1994). Fo  these t o egio s Cajal’s state e t is o  p o e  to e o g. It 

still remains controversial if other brain regions also enable adult neurogenesis under 

physiological conditions in vivo, e.g. the subcallosal zone (SCZ) (Seri et al., 2006).  
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Fig. 3: Neurogenic niches in the adult mammalian brain: SVZ and SGZ 
This schematic illustration displays the SVZ in the lateral wall of the lateral ventricles and the SGZ in the 

dentate gyrus of the hippocampal formation. The former generates neuroblasts which migrate via the 

rostral migratory stream (RMS) to the olfactory bulb (OB). Figure modified from Ma et al., 2009. 

1.3.1. Subventricular zone 

At the end of developmental neurogenesis most RG transform into parenchymal astrocytes 

(Alves et al., 2002, Voigt, 1989) while a subset gives rise to ependymal cells (Spassky et al., 

2005) or astroglial stem cells in the adult SVZ (Merkle et al., 2007). Due to their expression of 

astroglial markers as GFAP, GLAST and others (Doetsch et al., 1997, Colak et al., 2008, Ma et 

al., 2009a) they are frequently called SVZ astrocytes. Furthermore they retain embryonic RG 

properties: a specific cell morphology with a cell body located under the ependymal cell layer, 

an apical process with endings on the ventricle as well as a long basal process with endings on 

blood vessels (Mirzadeh et al., 2008) and expression of Nestin and (Sex determining region Y)-

box 2 (Sox2). For a long time the original nature of the adult NSCs in the SVZ was debated. 

While it was shown that they are derived from RG (Merkle et al., 2004), it was not entirely 

clear if they are the SVZ astrocytes (Doetsch et al., 1999) or ependymal cells (Johansson et al., 

1999). In the following years it was reported that ependymal cells become postmitotic after 

development (Spassky et al., 2005) and only regulate quiescence and self-renewal of adult 

NSCs (Ramirez-Castillejo et al., 2006) but could be activated after a stroke to generate 

neuroblasts and glia (Carlen et al., 2009, Ma et al., 2009a). Eventually our lab showed that it 

is indeed the SVZ astrocytes that comprise the adult NSCs (Beckervordersandforth et al., 2010). 

They are relatively quiescent and widely known as Type B cells (Fig. 4). Recently they were 

shown to build up a pinwheel organization in the SVZ: the apical endings of B cells as core and 

two different types of ependymal cells in its periphery and thereby expressing their original 

epithelial properties (Mirzadeh et al., 2008). After generation of actively proliferating Type C 

cells (IPC or transit amplifying progenitors) (Doetsch et al., 1999) these will then subsequently 
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give rise to Type A cells (immature neuroblasts) which migrate in chains via the RMS to the OB 

(Fig. 3 and 4) (Lois and Alvarez-Buylla, 1994). This highly diversified structure is built by two 

different layers, the granule cell layer and the glomerular layer. Their basic neuron addition 

by adult neurogenesis is different: while the glomerular layer shows a constant net addition 

of a third of the total neuronal population within nine months, only a minor fraction is added 

to the granule cell layer (Ninkovic et al., 2007). In addition to the location of the progenitor 

cells in the postnatal SVZ (Merkle et al., 2004), the expression of different transcription factors 

in the SVZ or RMS plays the largest role in leading to a heterogenous population of neuroblasts 

and subsequently different types of the mainly GABAergic interneurons in the different 

neuronal cell layers of the OB (Carleton et al., 2003, Hack et al., 2005). For example Pax6 and 

Dlx2 together are essential for the generation of dopaminergic periglomerular neurons and a 

subpopulation of superficial granule cells (Brill et al., 2008). Other work showed that the role 

of Pax6 can be opposed by Olig2 which promotes a transit-amplifying precursor state (Hack et 

al., 2005). A recent study by our lab extended the knowledge about Pax6 even more: it 

egulates the su i al of dopa i e gi  eu o s of the OB  egulati g stalli e αA, which 

subsequently blocks apoptosis by inhibiting the activation of procaspase-3 (Ninkovic et al., 

2010). In addition to the mainly GABAergic interneurons of the OB, a lineage of glutamatergic 

juxtaglomerular interneurons was recently identified, characterized by the expression of 

Neurog2, T-box brain protein (Tbr) 1 and 2. Additionally, this lineage was also recruited to the 

cerebral cortex after induction of a lesion (see description of Macklis model in subchapter 

1.5.1.2.), therefore possibly displaying a source for regeneration after injury (Brill et al., 2009). 

Whether neurogenesis and migration of neuroblasts to the OB continue in adult humans is 

part of an ongoing debate (Curtis et al., 2007, Sanai et al., 2007, Kriegstein and Alvarez-Buylla, 

2009) but recent work shifted evidence strongly toward the idea that adult neurogenesis in 

the human OB occurs at a very low level or not even at all (Bergmann et al., 2012). In 

agreement it was reported that while the young human brain still contains solid chain 

migration of immature neurons via the RMS, this process appears to be distinctly decreased 

in older children and adults (Sanai et al., 2011). 
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Fig. 4: Scheme of progenitor cells in the adult brain SVZ 
SVZ astrocytes with two processes (blue), leading either to the ventricle or blood vessels, give rise to 

Type C cells (oIPCs or nIPCs, green). NIPCs generate Type A cells (red). Blue dashes represent asymmetric 

cell divisions, red dashes stand for symmetric cell divisions. Figure from Kriegstein and Alvarez-Buylla, 

2009. 

The role of OB neurogenesis in olfaction is well described (Lazarini and Lledo, 2011). Adult OB 

neurogenesis is a necessity for olfactory fear-conditioning (Valley et al., 2009) and olfactory 

perceptual learning (Moreno et al., 2009). In contrast, the adult generation of bulbar neurons 

is not required for odorant detection, discrimination or associative olfactory learning 

(Imayoshi et al., 2008, Sultan et al., 2010, Lazarini and Lledo, 2011). On the other hand OB 

neurogenesis is regulated by environmental factors: it increases for example during olfactory 

behaviour (Rochefort et al., 2002, Magavi et al., 2005). In contrast, long-term sensory 

deprivation diminishes the survival of adult-born granule cells (Mandairon et al., 2006). 

1.3.2. Dentate gyrus 

The second main neurogenic region in the adult mammalian brain is the inner layer of the 

dentate gyrus in the hippocampal formation – the SGZ (Fig. 5). A link between SGZ stem cells 

and developmental RG has not yet been provided by experimental evidence (reviewed in 

(Kriegstein and Alvarez-Buylla, 2009)). Nevertheless, anatomical studies led to the idea that 

RG in the dentate neuroepithelium (Altman and Bayer, 1990) transform upon others into 

radial astrocytes (Eckenhoff and Rakic, 1984), which are the precursors for new neurons in the 

hippocampus (Seri et al., 2001, Fukuda et al., 2003, Kempermann et al., 2003). In addition, 

both embryonic SGZ progenitors and adult SGZ radial astrocytes present with the primary 
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cilium, the apical process described above for SVZ astrocytes (Breunig et al., 2008, Kriegstein 

and Alvarez-Buylla, 2009). 

 

Fig. 5: Scheme of progenitor cells in the adult brain SGZ 
Radial astrocytes, subsiding in the SGZ, have a long process that reaches through the granule cell layer 

to the deep molecular layer. They give rise to nIPCs (Type D cells, Type II progenitors) that in turn 

generate young neurons. After some time of attachment to the radial process of the radial astrocytes 

they differentiate into granule cells. The dashed arrows stand for asymmetric (blue), symmetric (red) 

division and transformation (black). Figure modified from Kriegstein and Alvaret-Buylla, 2009. 

Radial astrocytes, also referred to as Type I progenitors, express GFAP and Nestin (in contrast 

to other SGZ astrocytes which express only GFAP) and give rise to Type II progenitors (also 

called Type D cells, see Fig. 5), which correspond to nIPCs (small basophilic cells) (Filippov et 

al., 2003). Type D cells are subdivided into D1-4 cells with D1 being more immature and D2-4 

having already more neuronal properties. The latter express e.g. the Poly-sialated neural cell 

adhesion molecule (PSA-NCAM), doublecortin, neurogenic differentiation (NeuroD) as well as 

the neuronal nuclear antigen (NeuN) (Fukuda et al., 2003, Seri et al., 2004, Seki and Arai, 1993) 

and increasingly acquire electrophysiological properties of new neurons (Song et al., 2002). 

Unlike the NSCs in the adult SVZ, radial astrocytes in the SGZ mainly generate glutamatergic 

excitatory dentate granule cells (Ma et al., 2009a). In addition to their neurogenic function, 

radial astrocytes also exhibit the classical astrocyte character of supporting neuronal and 

synaptic activity (Fukuda et al., 2003) as well as the function to guide new born neurons during 

their migration. 

Studies suggest that adult neurogenesis in the hippocampus potentially has implications on 

learning and memory (especially the dorsal part of the hippocampus, due to connectivity with 

the septo-temporal axis) as well as affective behaviour (particularly the ventral part) (Zhao et 

al., 2008). The role in spatial learning and memory remains elusive as one study showed that 
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ablated SGZ neurogenesis leads to impaired spatial learning and memory in a maze test (Raber 

et al., 2004) but others did not see defects (Meshi et al., 2006). Misguided neurogenesis can 

also lead to depression (Dranovsky and Hen, 2006) or epilepsy (Parent et al., 2006). Vice versa 

is true as well: hippocampal neurogenesis is regulated by different environmental cues 

(Kempermann et al., 1997). The survival of newborn neurons in the adult SGZ was positively 

influenced by hippocampus-dependent learning tasks (Leuner et al., 2006). Moreover studies 

report that chronic stressors decrease SGZ cell proliferation (Mirescu and Gould, 2006) while 

antidepressants increase SGZ neurogenesis (Warner-Schmidt and Duman, 2006). Activity 

seems to be important for the SGZ and SVZ (Ma et al., 2009b). Adult neurogenesis has also 

been shown to be regulated by a variety of signals. The most relevant seem to be Wnt (name 

origins from hybrid of Int and Wingless (Wg) in Drosophila) (Lie et al., 2005), Sonic Hedgehog 

(Shh) (Ahn and Joyner, 2005), Notch signaling (Androutsellis-Theotokis et al., 2006), BMP 

antagonists (Bonaguidi et al., 2008) and several cytokines (Bauer, 2009, Muller et al., 2009) – 

all known to promote progenitor proliferation and maintenance (Ma et al., 2009a). 

1.4. Neurological disorders and reactive gliosis 

Common acute (such as stroke and head trauma) and degenerative neurological disorders 

su h as Pa ki so ’s disease a d Alzhei e ’s disease) are caused and/or accompanied by a 

major and irreversible loss of neurons (Ma et al., 2009a). A growing number of scientists has 

therefore focused on the question of how to substitute this loss and thereby repair the brain. 

Could the process of adult neurogenesis described beforehand be helpful in this regard? 

Interestingly, virtually all neurological disorders associated with neuronal loss are 

accompanied by a reactive gliosis. Can this process lead us to repair the brain? Here I will first 

introduce stroke, one of the most prevalent neurological disorders. Next I will focus on 

reactive gliosis and especially on reactive astrocytes. 

1.4.1. Stroke 

Worldwide, fifteen million people annually have a stroke. Forty percent of them or six million 

per year die and another thirty percent or 4.5 million per year become permanently disabled 

(Mathers C, 2008). It is the second most common cause of death and the major cause of 

permanent disability. The costs for stroke were 73.7 billion dollars in 2010 (USA) (Lloyd-Jones 
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et al., 2010) and are estimated to be 2.21 trillion dollars until 2050 (from 2005 on, USA) (Roger 

et al., 2011). Actually, the Russian Federation and China are estimated to have five to ten times 

higher death rates than the USA - stroke spares no ethnic or racial group, it is considered to 

be a global problem (Moskowitz et al., 2010). To get a better understanding of this disorder it 

is essential to review risk factors, pathophysiology and clinical findings as well as current forms 

of therapy.  

1.4.1.1. Risk factors 

Stroke has a multitude of risk factors. Some of them like age, male sex, family history of 

cerebrovascular diseases and race are unmodifiable (Allen and Bayraktutan, 2008, Hankey, 

2006). However, 60% - 80% of stroke risk is accounted to risk factors that are modifiable. Most 

of them affect the heart or structure and function of blood vessels. Causal relations have been 

found for conditions like hypertension (Lawes et al., 2004a), diabetes (Lawes et al., 2004b), 

hypercholesterolemia (Amarenco et al., 2006), cigarette smoking (Bonita et al., 1999), atrial 

fibrillation (Hart et al., 1999), valvular heart disease (Kizer et al., 2005), ischemic 

cardiomyopathy (Loh et al., 1997) and carotid stenosis (Rothwell et al., 2003) (reviewed in 

(Moskowitz et al., 2010)). 

1.4.1.2. Pathophysiology 

In over 85%, stroke is caused by the occlusion of a cerebral artery (local thrombosis or 

embolus; following explanations will refer to this cause). The remaining 15% can be explained 

with hemorrhage or cardiac arrest (Moskowitz et al., 2010). Especially the brain is vulnerable 

to ischemia because of its high consumption of glucose and oxygen due to intrinsic metabolic 

activity and large concentrations of the excitatory neurotransmitter glutamate (Choi, 1992, 

Moskowitz et al., 2010). The tissue distal to an occluded blood vessel can be roughly separated 

in two regions (Fig. 6). First, the infarct core, which consists of irreversibly damaged tissue 

with < 20% of baseline blood flow level. Here, ATP levels are depleted and energy metabolism 

is irrevocably stopped. This i e  pa t of affe ted tissue is su ou ded  a egio  at isk , 

the ischemic penumbra or peri-infarct zone (Astrup et al., 1981). In this region, the significantly 

decreased blood flow levels can hardly provide basal ATP levels and oxygen metabolism. It is 



Introduction 15 

functionally impaired but potentially recoverable (Fig. 6). The described separation and its 

course over time are important to explain an inconstistency at first sight: head imaging of a 

stroke patient shows an ischemic lesion increasing over time but his initial symptoms improve 

(Fig. 6, (Dirnagl et al., 1999)).  

 

Fig. 6: Regression of functional neurological deficit while structural lesion grows 
Early time points after stroke show a small lesion and do not reflect functional impairment. With time 

parts of the penumbra recover and other do not – the structural lesion grows while symptoms regress. 

Figure from Dirnagl et al., 1999.  

Four major processes contribute to the pathophysiology of stroke: excitotoxicity, cortical 

spreading depolarizations (CSD), inflammation and apoptosis (Fig. 7). At first sight 

excitotoxicity develops as glutamate accumulates in the extracellular space due to energy and 

consecutive failure of ion pumps as well as reuptake mechanisms (Choi and Rothman, 1990). 

Subsequently, glutamate activates its receptors (2-amino-3-(5-methyl-3-oxo-1, 2-oxazol-4-

yl)propanoic acid (AMPA) and N-Methyl-D-aspartate (NMDA)), which leads to influx of calcium, 

sodium, chloride and water into neurons. The ensuing edema can negatively influence the 

tissue perfusion (reviewed in (Dirnagl et al., 1999)). Intracellular calcium, which is also 

increased by release from mitochondria, activates proteases, lipases and nucleases 

(Ankarcrona et al., 1995). Additionally, reactive oxygen species (ROS) are produced, which lead 

to oxidative and nitrosative stress.  
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Fig. 7: Detrimental cascade of pathophysiologic events in focal cerebral ischemia  
While excitotoxicity and peri-infarct depolarizations occur minutes after focal ischemia, inflammation 

and apoptosis are processes that have a later onset and whose impact decrease in the range of days. X-

axis displays course of time after onset of cerebral ischemia. Y-axis shows impact of particular process 

on final outcome. Figure from Dirnagl et al., 1999. 

CSDs (Moskowitz et al., 2010), also referred to as peri-infarct depolarizations, occur when 

ischemic cells depolarize as a consequence of low energy supply and the release of potassium 

and glutamate. Whilst in the core region, cells can undergo anoxic depolarization and never 

repolarize, penumbral cells can repolarize but at the expense of further energy consumption 

(Dirnagl et al., 1999). The frequency of depolarizations counts several per hour with a 

correlation to growth of infarct size (Mies et al., 1993).  

The increase in calcium, oxygen free radicals and hypoxia itself trigger the expression of a 

number of proinflammatory genes resulting in activation of microglia and astrocytes (a 

process called reactive gliosis (Robel et al., 2011) which I will refer to in the next subchapter) 

as well as hematogenous cells, e.g. macrophages and neutrophils, that cross the disrupted 

blood brain barrier (Dirnagl et al., 1999).  

Necrosis and apoptosis are the principal mechanisms of cell death, also after ischemic injury. 

Which one occurs depends on intensity of stimulus, type of cell and life-cycle stage. Necrosis 

is predominant after acute permanent vascular occlusion while milder injury is more often 

followed by apoptosis (Moskowitz et al., 2010). 

1.4.1.3. Clinical findings 

Patients with stroke can suffer from a plethora of possible symptoms. Depending on the 

occluded artery and the affected tissue behind it, patients can, amongst others, suffer from 

motor or sensory impairments, loss of vision or aphasia. If we focus on the cerebral cortex and 
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its blood flow providing vessels anterior, middle and posterior cerebral artery as well as both 

vertebral arteries, possible symptoms include: contralateral hemiparesis or -plegia (motor 

cortex in frontal lobe), contralateral numbness (sensory cortex in parietal lobe), aphasia (most 

ofte  i ol e e t of B o a’s o  We i ke’s a ea , hemineglect (if parietal lobe is affected) and 

vision loss (e.g. if visual cortex in occipital lobe is involved) amongst others. Affection of the 

cerebellum can lead to vertigo as well as altered coordination and gait. Symptoms related to 

deficits of the cranial nerves will often occur if the brainstem is involved and comprise e.g. 

altered smell, vision, eye movements, facial sensation and muscle strength, hearing, taste, 

swallowing and tongue movement. So far only one medical drug for reestablishment of flow 

and subsequent salvaging of brain tissue in the acute setting was approved by the US agency 

for Food and Drug Administration (FDA): Tissue plasminogen activator (tPA) administration 

since 1996. Due to several contraindications and a narrow time window of four and a half 

hours (Hacke et al., 2008) after supposable occlusion only less than 10% of patients are treated 

this way (Zivin, 2009). 

To investigate stroke in an experimental way the model of focal transient cerebral ischemia in 

adult mice is widely used and established (Hata et al., 1998). After a defined time of occlusion 

of the middle cerebral artery (MCAo) by a filament, the brain tissue will subsequently be 

perfused again and examined at later time points. It was especially valuable for us as our 

collaborators were greatly experienced with this model (Plesnila et al., 2004, Vosko et al., 

2006). It is explained in detail in subchapter 2.2.1.6. 

1.4.2. Reactive gliosis and reactive astrocytes 

The reaction of glial cells to CNS insults is called reactive gliosis. Microglia as well as macroglia 

are part of this process. While microglia (Hanisch and Kettenmann, 2007) and NG2 cells (Kang 

et al., 2010) are the cells activated during the early stage, astrocytes react later by multiple 

changes regarding their morphology and gene expression, a process also referred to as 

astrogliosis (Robel et al., 2011, Sofroniew, 2009). Not only occurs astrogliosis after stroke but 

after all forms of CNS injuries like trauma, neurodegenerative diseases or infection. Sofroniew 

suggested a definition of astrogliosis by bringing up four key features: first it is a spectrum of 

changes in astrocytes responding to all forms and severities of CNS injuries (like described 

above); second these changes vary with form and severity of insult along a graduated 
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continuum of progressive alterations in molecular expression, cellular hypertrophy, 

proliferation and scar formation (Fig. 8); third the changes are regulated by specific signaling 

events; fourth the changes have the potential to alter astrocyte activities potentially affecting 

surrounding neural tissue beneficially or detrimentally (Fig. 9) (Sofroniew, 2009).  

 

Fig. 8: Progressive alterations of reactive astrogliosis after tissue insults 
Immunohistochemical staining with GFAP of the cerebral cortex of adult mice reveals non-overlapping 

processes of astrocytes in healthy tissue (a), moderate hypertrophy of astrocytes without overlapping 

processes after tissue insult (b) and severe hypertrophy and glial scar formation with overlapping of 

astrocytic processes (c). Figure from Sofroniew, 2009. 

“of o ie ’s se o d featu e a  e fu the  des i ed  i t odu i g diffe e t g adatio s of 

cellular hypertrophy. While mild reactive astrogliosis displays hypertrophy of cell bodies and 

processes but preservation of non-overlapping domains of individual astrocytes (Wilhelmsson 

et al., 2006), an extreme activation includes scar formation, overlapping astrocytic processes 

and newly proliferating cells (Fig. 8) (Bush et al., 1999, Faulkner et al., 2004, Sofroniew, 2009).  

Our lab was able to show that it is mature protoplasmic astrocytes from the grey matter and 

not cells arising from endogenous glial progenitors that seem to be the major source for these 

proliferating cells (Buffo et al., 2008). With fate mapping of quiescent astrocytes using the 

tamoxifen inducible recombination in the GLAST locus (GFP expression is specifically induced 

in astrocytes and kept in their progeny) and injection of lentiviral vectors into the grey matter 

as well as the use of BrdU as proliferation marker, our lab was able to show that these mature 

astrocytes re-enter cell cycle during scar formation (Buffo et al., 2008). Other potential origins 

like NG2-glia (Tatsumi et al., 2008) or ependymal cells (Carlen et al., 2009) from the forebrain 

are discussed (Robel et al., 2011).  Furthermore, reactive astrocytes were shown to alter their 

expression of molecules involved in cell structure (upregulation of GFAP, Vimentin and Nestin 

(Eddleston and Mucke, 1993, Robel et al., 2011)), energy metabolism (BLBP (Pekny and Nilsson, 
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2005), lactate (Pellerin et al., 2007)), intracellular signaling (e.g. STAT 3 (Herrmann et al., 2008) 

(discussed in details in subchapter 1.6.3.2.), u lea  fa to  κB NFκB  (Brambilla et al., 2005)) 

and membrane transporters (e.g. glutamate transporter (Rothstein et al., 1996)) among 

others (Sofroniew, 2009).  

1.4.2.1. Stem cell-like properties of reactive astrocytes? 

As shown by the upregulation of Vimentin, Nestin, BLBP and also the dermatan-sulfate-

dependent epitope 1 (DSD1) proteoglycan, cluster of differentiation (CD) 15 and in some cases 

Musashi, reactive astrocytes share hallmarks with NSCs and developmental radial glia (Robel 

et al., 2011). Unfortunately, it was not possible so far to observe these reactive astrocytes 

giving rise to any neurons without stimulus in vivo. In contrast, our lab and others were able 

to show that in vitro these cells acquire the potential to generate neurospheres (i.e. spherical, 

floating cellular aggregates) (Buffo et al., 2008, Lang et al., 2004), an indicator of multipotency 

and self-renewal. Using this neurosphere assay, cells, dissociated from brain tissue, can be 

propagated under specific culture conditions with mitogens to proliferate and later serum to 

differentiate. Our laboratory was able to show that a clone from a single reactive astrocyte 

could give rise to neurons, astrocytes and oligodendrocytes, demonstrating multipotency of 

at least the initial cell (Buffo et al., 2008). 

1.4.2.2. Role of astrogliosis 

The role of reactive astrogliosis can be both, beneficial and detrimental. For over 100 years 

glial scar formation was only seen as an inhibitor of axon regeneration (Fig. 9) establishing a 

negative view of this process per se (Sofroniew, 2009). Analysis of axon regeneration was 

performed extensively and supported this hypothesis (Silver and Miller, 2004). But in addition, 

the last decades have also shown that reactive astrogliosis exhibits a plethora of beneficial 

effects. Experiments with ablation of reactive astrocytes led to disrupted scar formation in 

turn resulting in increased spread of inflammatory cells (Fig. 9), failure to repair blood-brain 

barrier (BBB), increased lesion size and neuronal loss as well as impaired recovery of function 

(Sofroniew, 2005, Bush et al., 1999, Faulkner et al., 2004, Voskuhl et al., 2009, Myer et al., 

2006, Sofroniew, 2009). The hypothesis that scar-forming astrocytes are highly valuable for 
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neural protection and repair was further supported by studies showing for example that 

reactive astrocytes reduce vasogenic edema after stroke (Zador et al., 2009) and take up 

potentially excitotoxic gluatamate (Rothstein et al., 1996).  The evolving concept now is that 

reactive astrogliosis is needed in early stages after injury to limit tissue damage and 

inflammation but persistent scar formation can be harmful (Robel et al., 2011). 

 

Fig. 9: Different roles of the glial car 
Whereas during early stages after injury the glial scar prevents further expansion of inflammatory cells 

to healthy tissue and thereby further tissue damage, at later stages the glial scar barrier hinders axon 

growth and possible regeneration. Figure modified from Sofroniew, 2009.  

1.4.2.3. Regulation of astrogliosis 

After CNS insults many different cells like glial cells, neurons or inflammatory cells, can release 

molecules that influence astrocytes in various ways. Amongst others, cytokines like 

interleukins, leukemia inhibitory factor (LIF) and ciliary neurotrophic factor (CNTF) (John et al., 

2003), neurotransmitters like glutamate and noradrenalin (Bekar et al., 2008) or other small 

molecules like adenosine triphosphate (ATP) (Neary et al., 2003) and nitric oxide (NO) 

(Swanson et al., 2004) are known to stimulate this complex process (Sofroniew, 2009). 

Important intracellular signals include e.g. STAT3 (Herrmann et al., 2008, Robel et al., 2011), 

NFκB (Brambilla et al., 2005) and cytoplasmic polyadenylation element-binding protein 1 

(CPEB1) (Jones et al., 2008). Particularly STAT3 is seen as a key regulator of glial scar formation 

as knockout studies suggested limited migration of reactive astrocytes after spinal cord injury 

(SCI) (Okada et al., 2006). However, expression patterns after cerebral ischemia seem to be 

contradictory but will be discussed in details in subchapter 1.6.3.2. Other factors that were 

shown to exhibit specific functions regarding astrogliosis include e.g. glycoprotein (gp) 130 

(limiting infection) (Drogemuller et al., 2008), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 

(neuroprotection via increase of glutathione and less oxidative stress) (Shih et al., 2003) and 

CPEB1 (increased astrocyte migration) (Jones et al., 2008). 
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1.5. New  avenues toward neuronal repair 

As extensively described above virtually all neurological disorders, especially the highly 

prevalent stroke, are caused or at least accompanied by neuronal loss. How can we substitute 

these neurons and repair the brain? Can adult endogenous neurogenesis be stimulated after 

injury to reproduce the lost neurons? Or can we substitute these neurons by either producing 

them in vitro and transplanting them subsequently or converting another cell type into 

neurons in vivo? Along this line reactive astrocytes may represent an interesting population 

as described above. Here I will first discuss if physiological endogenous neuronal repair can 

occur after injury. I will then concentrate on possibilities of cell transplantation while this 

chapter will close with a broad introduction to neuronal reprogramming, the subject of the 

present work. 

1.5.1. Physiological neuronal repair: potential role of adult neurogenesis? 

As described in subchapter 1.3. adult neurogenesis is restricted to two neurogenic niches - the 

SVZ lining the ventricles and the SGZ in the hippocampus. Virtually no neurogenesis to repair 

lost neurons occurs outside of them, which is especially true for the striatum and the cerebral 

cortex. 

1.5.1.1. Striatum 

It was shown that neuroblasts from the adult neurogenic niches reroute along the vasculature 

(Ohab et al., 2006, Massouh and Saghatelyan, 2010, Thored et al., 2007) toward damaged 

tissue (Parent et al., 2002, Lindvall and Kokaia, 2006, Kokaia and Lindvall, 2003). Li d all’s 

group also reported about increased cell proliferation in the SVZ following MCAo. In addition, 

their experiments revealed that neurons generated after the stroke and possibly neuroblasts 

generated before the insult migrated into the damaged striatum and expressed markers of 

developing and mature medium-sized spiny striatal neurons (Fig. 10). They also described a 

density gradient of new born neurons in the striatum with the highest being closest to the SVZ 

(Arvidsson et al., 2002). However, only 20% of the newly generated neurons survived longer 

than six weeks with only half of them being positive for mature neuronal markers (Fig. 10). 

The resulting population displayed only 0.2% of the originally lost striatal neurons. 



22 Introduction 

Experiments about function and integration into neuronal circuits were missed (Lie et al., 

2004). Nonetheless, ablation of these neuroblasts leads to increased lesion size and impaired 

behavioral deficits (Jin et al., 2010). 

Another group reported migration of endogenous progenitors from the SVZ after transient 

forebrain ischemia into the affected hippocampal CA1 region to regenerate new pyramidal 

neurons (without endogenous neurogenesis in CA1 per se) - a response that was greatly 

enhanced by the intraventricular administration of growth factors (Nakatomi et al., 2002). 28 

days after ischemia they observed a substitution of up to 40% with up to 20% still surviving at 

six months. Additionally, they could show that these newly generated neurons participated in 

reconstruction of the intrahippocampal connection although synapses remained 

morphologically immature with altered electrophysiological properties at three months 

(Nakatomi et al., 2002). 

 

Fig. 10: Generation of striatal neurons from SVZ stem cells after stroke 
(a) NSCs in the SVZ next to the striatum. (b) MCAo leads to death of striatal neurons (white area) and 

increased proliferation of SVZ precursors. (c) Newly generated neurons migrate into the damaged 

striatum. (d) After six weeks only few neurons survive and mature. Figure from Lindvall et al., 2004. 

Similarly, an increase in cell proliferation and neurogenesis in the SGZ was observed after focal 

ischemia (Jin et al., 2001, Arvidsson et al., 2001), global ischemia (Takagi et al., 1999, Liu et al., 

1998) and other insults like seizures (Parent et al., 1997).  
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1.5.1.2. Cerebral cortex 

Cortical neurogenesis after insults was often reported not to occur (Arvidsson et al., 2002, 

Parent et al., 2002) or at very low levels (Magavi et al., 2000) (Lindvall et al., 2004). In particular 

the work of Sanjay Magavi and Jeffrey Macklis needs to be more emphasized as they used a 

methodically very different approach to induce cell death - a model also referred to as the 

Macklis model (also used in the earlier mentioned (Brill et al., 2009)). Cortical pyramidal 

projecting neurons were targeted by retrograde callosal transfer of beforehand in the 

contralateral motorcortex injected latex nanospheres that contained chlorine e6, a nontoxic 

chromophore. Laser illumination at 670nm was used to activate the chlorin e6 to produce 

cytotoxic singlet oxygen (Madison and Macklis, 1993). Overall this method constitutes a highly 

selective, precise and restricted way to induce apoptotic neuronal cell. Although Magavi et al. 

suggest cortical endogenous neural precursors to be the major source of the newly generated 

cortical neurons their work does not exclude the possibility that SVZ precursor cells 

proliferated after migration into these regions, leaving the origin of these neurons still 

unknown. In contrast, a recent study referred to cortical layer 1 neuronal progenitor cells as a 

source of adult neurogenesis after ischemia that mostly produced layer 4 neurons (Ohira et 

al., 2010). Unfortunately, they reported survival only for few weeks, could not exclude the 

possibility of migration of SVZ precursor cells and did not show electrophysiological 

characteristics of these cells as well as proof of functional integration. Studies on behavioral 

recovery were also not performed. As this single study was not supported by others so far the 

observed effects may at least partially be due to the mild ischemic condition (global forebrain 

ischemia) that was used. 

The underlying mechanism of substitution of neuronal loss has been mostly studied in 

ischemic or the Macklis model as described above. Fewer groups have used mechanical brain 

injury, e.g. stab wound injury, to examine neurogenesis after the insult. In particular our lab 

has shown that no long-time surviving neurons at all are regenerated after stab wound injury 

(Simon et al., 2011, Buffo et al., 2005). The latter reference will be discussed in detail in 

subchapter 1.5.3.2. 

Overall it seems evident that after brain injury, proliferation and neurogenesis in the adult 

neurogenic niches are increased and migration of neuronal precursors to the injury site occurs 
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to a certain extent. However, long-term survival and functional integration into existing 

neuronal circuits of these newly generated neurons in the damaged areas remain very low. 

1.5.2. Possible forms of therapy by delivering external factors / cells 

Essentially, two ideas on how to externally drive substitution of neuronal loss after brain 

insults exist. The indirect way is to infuse factors into the brain, which are believed to improve 

endogenous physiological brain repair, the direct way implies cell transplantation.  

1.5.2.1. Delivery of factors improving the endogenous repair 

Several factors have been reported to increase neurogenesis in SVZ or SGZ by improving 

survival of new neurons after injury, e.g. fibroblast growth factor 2 (FGF-2) (Yoshimura et al., 

2001), epidermal growth factor (EGF) (Teramoto et al., 2003), stem cell factor (Jin et al., 2002), 

erythropoietin (EPO) (Shingo et al., 2001), brain-derived neurotrophic factor (BDNF) 

(Gustafsson et al., 2003), caspase inhibitors (Ekdahl et al., 2002) and anti-inflammatory drugs 

(Monje et al., 2003, Lindvall et al., 2004). Unfortunately, only one study provided evidence 

that neurons are indeed functionally replaced (Nakatomi et al., 2002). However, it cannot be 

excluded that the functional improvement was due to other effects of these growth factors 

and not to newly generated neurons (Lindvall et al., 2004). A limiting feature for some factors 

could be also their relatively high molecular weight that can make it impossible to pass the 

BBB. Alternatives include smaller peptides, transnasal delivery to bypass the BBB (Fletcher et 

al., 2009) or compounds that can upregulate endogenous trophic factor production (Zhang et 

al., 1998, Moskowitz et al., 2010). 

1.5.2.2. Cellular transplantation 

Cell transplantation has been investigated intensively in many neurological disorders (Lindvall 

and Kokaia, 2006), but so far the FDA has not approved a single therapy. In the following 

section I will shortly introduce different cell types and potential reasons why cell 

transplantation could improve functional recovery. A plethora of human cell types has been 

analyzed for transplantation after stroke, most of them displaying heterogenous populations: 



Introduction 25 

(1) neural stem/progenitor cells (including the derivation from induced pluripotent stem cells 

(iPS cells)); (2) immortalized cell lines; and (3) hematopoietic/endothelial progenitors and 

stromal cells isolated from bone marrow, umbilical cord, peripheral blood or adipose tissue 

(Bliss et al., 2007, Lindvall and Kokaia, 2006). Usually these cells have been either grafted into 

the lesion site or delivered intravenously. The finding that both ways showed cells surrounding 

the lesion suggests that targeted migration takes place (Bliss et al., 2007). Another population 

of cells has been in the focus of biomedical research very lately: neurons that were 

reprogrammed from somatic cells would also need to be transplanted (described in detail in 

subchapter 1.5.3.4.). 

NPCs used for transplantation derived either from human embryonic stem (hES) cells or fetal 

tissue. HES cells can be differentiated into NPCs with various methods (Koch et al., 2009). For 

fetal tissue derived NPCs the first clinical trial was completed (Phase I) for Batten disease (CNS 

lysosomal storage disease) (Taupin, 2006, Bliss et al., 2010). Advantages for ES cells are their 

pluripotency, immortality in vitro and high expansion possibilities. Disadvantages are ethical 

issues (accompanied by political restrictions), insufficient availability and their tumorigenic 

potential (Banerjee et al., 2011). However, as it was recently shown how to generate iPS cells, 

whereby somatic cells as fibroblasts were reprogrammed to ES-like cells with three or four 

critical factors (Takahashi et al., 2007, Park et al., 2008), the first two disadvantages may be 

overcome.   

The widely used immortalized cell line NTera-2 (NT2) derived from human teratocarcinoma 

over 20 years ago. The advantage of potentially unlimited expansion in culture is balanced by 

the risk of malignant transformation (Bliss et al., 2010). Despite showing survival after 

transplantation their effects on functional recovery remain not clear yet (Bliss et al., 2006) 

(Borlongan et al., 1998).  

Until recently, most cell transplantation studies after brain injury used non-neural cell. Human 

bone marrow cells (HBMC), human umbilical cord blood cells (HUCBC), peripheral blood 

progenitor cells and adipose tissue mesenchymal progenitor cells have been shown to migrate 

to the brain and differentiate into neuronal marker-expressing cells (Banerjee et al., 2011). 

Unfortunately, only very few transplanted cells are found in the brain with even less cells 

expressing neuronal markers. Advantages are avoidance of ethical issues and immunological 

reactions at least for HBMC and peripheral blood stem cells as autologous and allogeneic 
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transplantation would be possible (paragraph reviewed in (Bliss et al., 2007)). Also, 

mesenchymal stem cells (MSCs) do not initiate T cell priming or antibody production and are 

therefore even with xenografts hypoimmunogenic (Li et al., 2002, Bliss et al., 2010). Except for 

neural stem/progenitor cell transplantation all mentioned cell types are currently under 

investigation in clinical trials. 

Many reasons for better functional recovery in animal studies with cell transplantation after 

neurological disorders are discussed. Unfortunately, evidence for the desirable integration 

into host brain circuitries is very limited and most likely not a major player (Song et al., 2002). 

Neuroprotection seems to be more contributing to functional recovery, as acute cell delivery 

often reduces lesion size (Hicks and Jolkkonen, 2009). Different cell types are believed to 

secrete trophic factors like the vascular endothelial growth factor (VEGF), glial cell-derived 

neurotrophic factor (GDNF), FGF and BDNF. Additionally, post-injury inflammation is 

attenuated after cell transplantation, which seems to be mediated by downregulation of 

inflammatory and immune response genes and suppression of T cell proliferation (Bliss et al., 

2010). Another process that is suggested to contribute to functional recovery is enhancement 

of endogenous repair processes, consisting of vascular regeneration, induction of host brain 

plasticity and recruitment of endogenous progenitors. Overall it is more the trophic factors, 

released by transplanted cells, than integration of the cells which lead to functional recovery 

(Bliss et al., 2010). 

Despite all progress made in the last years many issues for translation to the bedside like 

choice of cell type, cell numbers to be given, optimum timing of treatment and optimum route 

of cell delivery remain unsolved (Banerjee et al., 2011).  

1.5.3. Neuronal reprogramming 

Compared to the aforementioned possibilities the idea to recruit in vivo endogenous cells to 

repair the brain appears to be unique and innovative as it would overcome many of the major 

obstacles associated with cellular transplantation. Particularly the lab of Magdalena Götz has 

examined the potential of reactive astrocytes at the injury site being converted into functional 

neurons (Heins et al., 2002, Buffo et al., 2005, Berninger et al., 2007). As described above in 

subchapter 1.2.1., 1.3.1. and 1.3.2. neural stem/progenitor cells, i.e. RGs during development 
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and adult SVZ astrocytes as well as SGZ radial astrocytes, have properties of glial cells, which 

supports this idea strongly. That is why our lab has explored the question if even non-

neurogenic astrocytes from non-neurogenic regions (as described above, e.g. the cerebral 

cortex) could be reprogrammed into functional neurons (i.e. typifying neuronal lineage 

reprogramming or cell-fate conversion (Vierbuchen and Wernig, 2011)) when supporting this 

process by overexpressing transcription factors known to instruct NSC neurogenesis. In the 

following paragraphs I will first focus on the conversion of postnatal cortical astrocytes in vitro 

into functional neurons, then describe recent findings on how to reprogram glial cells from 

the adult cerebral cortex after injury in vitro into functional neurons, explore the question if 

conversion of glial cells into functional neurons can occur in vivo in the injured adult cortex 

and finally discuss a topic that has been in the focus of biomedical research very lately - 

neurons that were reprogrammed from somatic cells. 

1.5.3.1. Reprogramming of postnatal cortical astrocytes in vitro 

Earlier work suggested that the low grade of spontaneous neurogenesis of postnatal 

astrocytes declines to zero during the second postnatal week (Laywell et al., 2000). Epigenetic 

silencing could be at least partially the reason for the loss of neurogenic capacity as Neurog1 

and Neurog2 loci are repressed by the polycomb group complex (Hirabayashi et al., 2009). 

When investigating which neurogenic fate determinants could direct these astrocytes into 

functional, subtype-specific neurons our lab has provided some of the leading work. First it 

was reported that Pax6 is necessary for the generation of glutamatergic neurons from cortical 

radial glia (Heins et al., 2002). A next study, also by our group, showed that forced expression 

of Pax6 can also reprogram postnatal astroglial cells to action potential firing cells (in 

agreement to the former study that while being present in the developing cortex its 

expression levels decrease in postnatal astrocytes). Additionally, the same effect can be 

achieved by the proneural proteins Neurog2 and Mash1. Of note, Neurog2, but neither Pax6 

or Mash1, could direct these cells toward a glutamatergic lineage, indicated by induction of 

the expression of Tbr1 (Berninger et al., 2007).  

One of our most recent work (Heinrich et al., 2010) showed that non-neurogenic astroglia 

could be reprogrammed into glutamatergic synapse-forming neurons by overexpression of a 

single transcription factor. Using primary cultures of adherent GFAP-positive astrocytes 
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isolated from the cerebral cortex of postnatal mice (P5-7) and retroviral vectors encoding high 

levels of Neurog2 expression we showed that 70% of Neurog2-infected astrocytes were 

reprogrammed into neurons (indicated by immunohistochemistry with the neuronal markers 

βIII-tubulin and Microtubule-associated protein 2 (MAP2) and repetitive action potential firing 

in electrophysiological patch clamp recordings) while control retrovirus-transduced glial cells 

remained in their glial lineage.  Furthermore, we showed that after 2-3 weeks 60% of these 

astrocyte-derived neurons matured into synapse-forming glutamatergic neurons which was 

proven by perforated patch-clamp recordings. To ascertain that it was indeed astrocytes that 

gave rise to neurons, the described experiments were repeated with GLASTCreERT2GFP mice (as 

described in subchapter 1.4.2., (Mori et al., 2006)). Furthermore, this study provided evidence 

that forced expression of Dlx2, a transcription factor important for the generation of 

GABAergic neurons during embryonic development and adult neurogenesis (Brill et al., 2008, 

Petryniak et al., 2007), could lead to generation of functional GABAergic neurons from the 

same postnatal cortical astroglia (Heinrich et al., 2010, Berninger, 2010). Again, these 

astrocyte-derived neurons exhibited βIII-tubulin and MAP2 expression as well as action 

potential firing. This conversion could be greatly enhanced by co-expression with Mash1 (from 

35% to 95% of infected cells) (whole paragraph refers to (Heinrich et al., 2010)). This study has 

provided the first evidenve that mature neurons can be generated by direct conversion across 

cell lineages by forced expression of a single neurogenic transcription factor (Neurog2 induces 

astrocytes to switch their phenotype toward glutamatergic neurons while Dlx2 converts 

astrocytes into GABAergic neurons). 

1.5.3.2. Reprogramming of reactive astrocytes in vitro 

In contrast to astroglial stem cells residing in the adult neurogenic niches, mature 

parenchymal astroglia are largely postmitotic (Buffo et al., 2008). So far no group reported 

about effects of forced expression of neurogenic fate determinants on mature quiescent 

astrocytes (Berninger, 2010). But as described above after CNS lesion astrocytes become 

reactive. Some of them can even proliferate depending on the severity of the lesion. 

Within the same study cited above (Heinrich et al., 2010) we were able to show that reactive 

astrocytes that were isolated from the injured adult cerebral cortex could also be 

reprogrammed into neurons in vitro. To show that, we first applied a mechanical stab wound 
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injury in the cortex of adult mice and subsequently cultured reactive astrocytes under non-

adherent conditions. We observed partial dedifferentiation and expansion as neurospheres 

(see subchapter 1.4.2.1. for description) supporting the hypothesis that these previously 

quiescent astrocytes proliferate and dedifferentiate after injury as well as exhibit stem cell-

like properties in vitro. These neurosphere cells underwent the same experiments as 

described in 1.5.3.1. with transduction of a retroviral vector expressing Neurog2 or forced 

expression of Dlx2 showing that functional glutamatergic and GABAergic neurons, respectively, 

could be generated, indicating that neuronal reprogramming is not restricted to immature 

postnatal astrocytes (as described in subchapter 1.5.3.1.) but can also be accomplished from 

differentiated astrocytes from the adult cerebral cortex following reactivation after injury 

(Heinrich et al., 2010). 

1.5.3.3. Reprogramming of reactive astrocytes in vivo 

A major challenge remains the translation of these in vitro findings into the enormously more 

complex setting of the injured brain in vivo. How can this be done?  

It was shown that after stab wound or MCAo many cells, some of them being positive for the 

astroglial marker S100 calcium binding protein β (S100β), upregulate the oligodendrocyte 

transcription factor 2 (Olig2) (Buffo et al., 2005). As it was known that Olig2 is expressed in 

precursor cells during development (e.g. motoneuron precursor cells (Mizuguchi et al., 2001)) 

and typically decreased in mature cell types (e.g. neurons (Hack et al., 2005)), it has been 

suggested that Olig2 is required for some cells to maintain an undifferentiated state. An 

experiment to repress Olig2 via retroviral expression of a Olig2VP16 fusion protein to let cells 

differentiate, led indeed to some transduced doublecortin (DCX, marker for young neurons)-

positive cells. Interestingly, Pax6 expression was observed in some Olig2VP16-infected cells. 

Taking also into account that the majority of these Pax6-positive cells expressed DCX, it has 

been suggested that Pax6 may act as an intermediate toward the neuronal lineage. 

Unfortunately, these neurons could not be shown to survive for several weeks, mature or 

differentiate and therefore cannot be taken as an example of complete reprogramming (Buffo 

et al., 2005).  
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Several years later, this pioneer work has now been repeated with other neurogenic fate 

determinants (reviewed in (Arlotta and Berninger, 2014)). Using a transgenic mouse model 

and a triple combination of neurogenic fate determinants (Mash1, brain-2 (Brn2) and myelin 

transcription factor-like 1 (Myt1l)) Torper and colleagues demonstrated the conversion of 

striatal astrocytes into neurons in vivo (Torper et al., 2013). This work was supported by a 

study from Andrew Grande et al. showing that the combination of Ngn2, different growth 

factors and injury induced neurogenesis (Grande et al., 2013). While the latter did not report 

about the identity of the originating cells, both studies did not investigate the functional 

properties of newly generated neurons. In a landmark study Guo et al. investigated the effect 

of retroviral expression of NeuroD1, a downstream target of Ngn2, on the reprogramming of 

reactive astrocytes and NG2 cells in a stab wound model. Over 80% of infected cells were 

neurons, which were also shown to be capable of firing action potentials and receive synaptic 

input (Guo et al., 2014). Regrettably, less than 20 % survived longer than three weeks. 

Considering the difficulty to reprogam reactive astrocytes into long-term surviving functional 

neurons in vivo so far, pathways impairing neurogenesis in the injured cortex need to be 

examined. It is most likely that these pathways keep reactive astrocytes within their glial 

lineage. One of them could be the STAT signaling pathway which was shown to be important 

for embryonic gliogenesis (mentioned in subchapter 1.2.3. and will be described in detail in 

subchapter 1.6.3.2.). Ultimately, one strategy may therefore be to block these gliogenic 

pathways. 

1.5.3.4. Neuronal reprogramming from different somatic cell types 

For a long time it was thought that somatic cells are irreversibly committed to their fate. 

Mainly Sir John B. Gurdo  a d “hi a Ya a aka, ’s i e s of the No el P ize i  

Medicine or Physiology, changed this misbelief and discovered that mature cells can be 

reprogrammed to become pluripotent (Takahashi and Yamanaka, 2006, Gurdon, 1962). The 

aforementioned work of the Götz lab discovering that mouse postnatal astrocytes can be 

reprogrammed into GABAergic and glutamatergic neurons in vitro (Heinrich et al., 2010) was 

published in the same year as a report about reprogramming of mouse embryonic fibroblasts 

into glutamatergic neurons in vitro (Vierbuchen et al., 2010). The world wide interest in direct 

conversion toward the neuronal lineage became even clearer in 2011 when these two 
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challenging studies were followed by many others in high-impact journals (for review see 

(Vierbuchen and Wernig, 2011)). Using defined sets of transcription factors, interestingly 

virtually always including Mash1, functional glutamatergic, GABAergic, dopaminergic and 

motoneurons were generated by reprogramming of mouse and human postnatal and adult 

fibroblasts (Ambasudhan et al., 2011, Pfisterer et al., 2011, Caiazzo et al., 2011, Pang et al., 

2011, Kim et al., 2011, Qiang et al., 2011), lately also hepatocytes (Marro et al., 2011) and 

human cortical pericytes (Karow et al., 2012). Of note is particularly the work of Caiazzo et al. 

and Qiang et al., ho ultu ed hu a  fi o lasts f o  patie ts ith Pa ki so ’s disease or 

Alzhei e ’s disease, espe ti el  and reprogrammed them into dopaminergic or 

glutamatergic neurons, respectively.  

To transfer these in vitro findings in the vastly more complex living brain, Torper and 

colleagues engineered human fibroblasts and astrocytes to express inducible forms of 

neurogenic fate determinants and were able to demonstrate that these cells, after 

transplantation, converted into neurons upon activation of these reprogramming genes 

(Torper et al., 2013). 

Unfortunately, all within this subchapter described studies are confronted with the critical 

step that cellular transplantation (see subchapter 1.5.2.2.) would need to be clinically 

implemented. 

1.6. JAK/STAT signaling 

As already mentioned in subchapter 1.5.3.3. some pathways impairing neuronal 

reprogramming in the injured cortex by keeping reactive astrocytes within their glial lineage 

may exist. The JAK/STAT signaling, a well-known intracellular pathway that transmits 

information of extracellular cytokines to the nucleus and subsequently activates the 

transcription of definite genes, is known to promote the onset of astrogliogenesis during 

development (see subchapter 1.2.3., (Bonni et al., 1997)) and to be activated after specific 

CNS lesions (see subchapter 1.4.2.3., (Okada et al., 2006)). Consequently, this pathway needs 

to be investigated regarding its possible block of neuronal conversion of glial cells. Here I will 

introduce structure of the molecules, signaling cascade as well as expression and function in 

the organism and specifically the CNS, always with the focus on STAT3. 
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1.6.1. Structure of the STAT molecules 

The term STAT originates from Shuai et al., who found that a single phosphotyrosine was 

needed to turn on interferon (IFN)-γ ediated ge e a ti atio  (Shuai et al., 1993). So far seven 

STAT proteins have been identified in mammals (STAT1, 2, 3, 4, 5a, 5b, 6) with a size ranging 

from 750 to 850 amino acids (aa) and a molecular weight from 84 to 113 kilo Dalton (kDa). 

Their chromosomal locations (STAT1 and 4 on chromosome 1, STAT2 and 6 on 10 and STAT3 

and 5 on 11) led to the hypothesis that they arose from a single primordial gene. Six domains 

of the protein have yet been found, which are the amino-terminal domain, the coiled-coil 

domain, the deoxyribonucleic acid (DNA) binding domain, the linker domain, the SH2/tyrosine 

activation domain and the carboxy-terminal transcriptional activation domain (Fig. 11) 

(Kisseleva et al., 2002). 

 

Fig. 11: Crystal structure of STAT1 molecule 
STAT molecules share structurally and functionally conserved domains: the amino-terminal domain, the 

coiled-coil domain (green), the deoxyribonucleic acid (DNA) binding domain (red), the linker domain 

(orange) and the SH2/tyrosine activation domain (blue). In contrast, the transcriptional activation 

domain, located at the carboxy-terminus, is rather divergent and contributes to STAT specifity. The N-

terminal domain is not displayed. The DNA backbone is colored in grey. Figure from Chen et al., 1998. 

The N-terminal domain consists of approximately 130 amino acids and is believed to regulate 

e.g. the interaction with the transcriptional coactivator cAMP responsive element-binding 

(CREB)-binding protein (CBP)/p300 (Horvath et al., 1996) and the nuclear translocation of the 

whole molecule (Strehlow and Schindler, 1998). Adjacently resides the coiled-coil domain, 

hi h o p ises fou  α-helices (approximately aa 315-350) (Chen et al., 1998). Studies have 

suggested implications in receptor binding, tyrosine phosphorylation and nuclear export 



Introduction 33 

(Zhang et al., 2000, Begitt et al., 2000). The DNA binding domain (approx. aa 320-480) is 

located carboxy-terminally to the coiled-coil domain (Fig. 11) and contains se e al β-sheets, 

followed by the proverbial Linker domain (aa 465-585 for STAT3). An important role in 

regulating the signaling plays the src homology 2 (SH2) domain with its competence to bind 

to specific phosphotyrosine motifs. Consistent with that it is the most highly conserved STAT 

domain (Kisseleva et al., 2002). It is composed of the residues 580-680 which build up a pocket 

by an anti-parallel β-sheet and t o fla ki g α-helices (Fig. 11). The recognition of 

phosphotyrosine motifs is important for recruitment to the cytokine receptor, association 

with the activating JAKs as well as STAT homo (except STAT2)- or heterodimerization (Gupta 

et al., 1996). Latter is an interaction between the SH2 domain of one STAT monomer and the 

tyrosine phosphorylated tail segment around residue 700 (705 for STAT3, 701 for STAT1) of 

the other monomer (Kisseleva et al., 2002, Levy and Darnell, 2002). The last domain is not 

visible in Fig. 11 as it is the least conserved STAT domain. Whereas it structurally displays the 

carboxy-terminus it functionally represents the transcriptional activation domain. Literally, it 

displays high influence on transcriptional activity and binds transcriptional coactivators (like 

the IFN regulatory factor 9 (IRF9)), too. An important regulator of the latter seems to be serine 

phosphorylation (residue 727 in STAT1 and 3) (Decker and Kovarik, 2000). 

Highly influential regulations can be achieved via modifications of the STAT molecules. 

Phosphorylation of the tyrosine residue around 700 is important for dimerization (Shuai et al., 

1993) and subsequent DNA binding (Shuai et al., 1994). An additional tyrosine 

phosphorylation at 657 was reported to be the binding site for phosphoinositide 3-kinase 

(PI3K), whose relevance has not been determined yet (Pfeffer et al., 1997, Heinrich et al., 

2003). The above described serine phosphorylation seems to be important for full 

transcriptional activation (e.g. by mitogen-activated protein kinases (MAPKs) (Decker and 

Kovarik, 2000). STAT methylation of an arginine residue and acetylation are possibly related 

to increased transcriptional effectiveness (Mowen et al., 2001, Shankaranarayanan et al., 2001, 

Yuan et al., 2005). Also carboxy-terminal truncated isoforms can be found (except for STAT2). 

The  a e efe ed to as β-isoforms (for STAT3: 79 kDa; o al le gth ole ules: α-isoform, 86 

kDa) and have been shown to function as dominant negative forms (Caldenhoven et al., 1996). 

It is widely accepted that balanced STAT transcriptional activity requires the participation of 

negative regulators (Levy and Darnell, 2002, Kisseleva et al., 2002). Nonetheless, also positive 

regulatory roles for these forms have been reported (Schaefer et al., 1997). The half-lifes of 
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STAT proteins, relevant e.g. for loss-of-function experiments, differ greatly “TAT α: ,  h; 

“TAT β: , h; “TAT : h  (Heinrich et al., 2003). 

1.6.2. JAK/STAT pathway 

STATs conduct information for approximately 50 cytokines. These include the highly 

conserved families of hematopoietic cytokines and their corresponding receptors like the IFN 

family (IFN-α/β, IFN-γ, i te leuki  IL -10, IL-19, IL-20, IL-22), the gp130 family (IL-6, IL-11, 

oncostatin M (OSM), LIF, cardiotrophin-1 (CT-1), granulocyte colony-stimulating factor (G-CSF), 

IL-12, IL-23, Leptin, CNTF, novel neurotrophin-1 (NNT-1)/B cell-stimulating factor-3 (BSF-3)), 

the γC fa il  IL-2, IL-4, IL-7, IL-9, IL-15, IL-21) and the single chain family (Epo, growth 

hormone (GH), prolactin (PRL), thyroid peroxidase (Tpo)) of receptors (Schindler and Strehlow, 

2000, Kisseleva et al., 2002). Their receptors usually consist of two transmembrane signal 

transducing subunits (often gp130 and LIF-receptor (LIFR)) with or without a specifity 

p o idi g thi d liga d i di g α o po e t (Fig. 12) (Heinrich et al., 2003). STAT signaling can 

also be activated via non-cytokine receptors like receptor-tyrosine kinases (RTKs, e.g. EGF or 

platelet derived growth factor (PDGF)), G-protein-coupled receptors (e.g. Angiotensin II 

receptor (AT1)) (Schindler and Strehlow, 2000), radicals and excitatory neurotransmitters 

(Dziennis and Alkayed, 2008).   

  

Fig. 12: Receptor composition for cytokines from the gp130 family 
The grey horizontal bar symbols the cell membrane. Reddish vertical bars represent transmembrane 

signal transducing subunits. Cytokines appear as grey circles. Receptors comprise a gp130 subunit plus 

again gp130, LIFR or Oncostatin M-receptor (OSMR). Thi d liga d i di g α o po e ts e ist fo  the 
receptors of IL-6, IL-11, CT-1 and CNTF. Figure from Heinrich et al., 1998. 
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1.6.2.1. Canonical STAT signaling cascade 

After binding of the specific cytokine to its corresponding receptor, the receptor subunits 

dimerize into their active conformation (Fig. 13). JAKs, a family comprising four members in 

mammals (JAK1, JAK2 and Tyrosine Kinase 2 [TYK2] as well as JAK3, which is mainly expressed 

in hematopoietic cells) (Heinrich et al., 1998), bind to a membrane-proximal region of the 

cytokine receptor, which contains box1 and box2 motifs (Heinrich et al., 2003) and 

subsequently carry out a characteristic series of three tyrosine phosphorylations (Fig. 13). First 

they transphosphorylate themselfes followed by the phosphorylation of tyrosine residues in 

the cytoplasmic tail of the receptors, which in turn function as docking sites for SH2 domains 

of latent cytoplasmic monomeric STAT proteins (mainly accepted hypothesis, although reports 

about preassociated STAT factors prior to stimulation exist (Stancato et al., 1996, Ndubuisi et 

al., 1999)). Consecutively and at last, JAKs phosphorylate also the STAT molecules at the 

important carboxy-terminal tyrosine residue around 700. In turn, STAT molecules dissociate 

from the receptor and are now able to homo (except STAT2)- or heterodimerize as described 

above (Fig. 13). 

 

Fig. 13: Canonical JAK/STAT pathway 
After cytokine binding to a specific receptor, JAKs bind to a membrane-proximal region of the receptor. 

First they transphosphorylate themselfes, second they phosphorylate the receptor subunits and third 

they phosphorylate STAT proteins, which could associate to the receptor as the phosphorylated 

receptors subunits serve as docking sites for their SH2 domains. The STAT molecules then dimerize and 

translocate to the nucleus where they bind to the DNA. Figure from Levy et al., 2002. 

Nuclear translocation requires dimerization in response to tyrosine phosphorylation but the 

phosphorylation itself is not an absolute necessity as also artificially dimerized not 
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phosphorylated STATs were found in the nucleus (Bromberg et al., 1999). Like all molecules 

larger than 60 kDa, STATs are transported across the nuclear pore complex (NPC) in an active 

bidirectional process that is energy and activation dependent (Kisseleva et al., 2002). After 

transfer to the nucleus they bind to specific DNA elements (Fig. 13, except for STAT2: that is 

why it also cannot form homodimers) and activate transcription of specific genes (Levy and 

Darnell, 2002, Aaronson and Horvath, 2002, Li, 2008). CBP and p300 then help to bridge the 

STAT dimer to the ribonucleic acid (RNA) Polymerase II (Zhang et al., 1996). STAT dimers 

usually bind to an 8-10-base pair consensus DNA sequence also referred to as γ-interferon 

activation site (GAS). STAT-DNA interaction at adjacent sites can be strengthened by tetramer 

formation (Vinkemeier et al., 1996, Levy and Darnell, 2002) and binding to transcriptional 

coactivators (like the IRF9) using the serine phosphorylation site (residue 727 for STAT1 and 

STAT3) (Decker and Kovarik, 2000). STAT binding sites were found in the promoter regions of 

GFAP, STAT1, STAT3 and JAK1 amongst others (He et al., 2005). Transcribed genes also encode 

for cell-survival factors like the B-cell lymphoma 2 (Bcl-2) family of proteins, factors involved 

in proliferation, e.g. cyclin D1 and myc, VEGF as an example for relation to angiogenesis and 

metastasis (Bromberg, 2002) and acute phase protein genes such as C- ea ti e p otei , α1-

a ti h ot psi  a d α2-macroglobulin (Heinrich et al., 1998). In contrast, STATs have also 

been reported to be associated with transcriptional repression (Ivanov et al., 2001). After 

dephosphorylation STATs will leave the nucleus (Begitt et al., 2000, Haspel and Darnell, 1999). 

Overall the STAT signaling expresses a large heterogeneity due to the possible combinations 

of the many different STAT and JAK molecules.  

JAK/STAT signaling pathways do not work autonomously, they are rather regulated in a 

multitude of ways (Fig. 14). In addition to the beforehand described posttranscriptional 

modifications like tyrosine and serine phosphorylation that activate the pathway, many 

inhibitory molecules exist. Unspecific regulation as receptor internalization is accompanied by 

e.g. SH2-domain-containing tyrosine phosphatases (SHP2), which are able to dephosphorylate 

the receptor complex as well as JAKs and STAT dimers (Fig. 14), which consecutively recycle 

from the nucleus to the cytoplasm (Haspel et al., 1996, Lehmann et al., 2003). Suppressor of 

cytokine signaling (SOCS) bind directly to JAKs and inactivate them (Krebs and Hilton, 2001). 

Interestingly, SOCS genes are activated by the same cytokines that activate STAT, providing a 

classical feedback loop (Fig. 14) (Aaronson and Horvath, 2002). DNA recognition by STAT 

dimers can be prevented by protein inhibitors of activated STAT (PIAS) (Fig. 14) (Shuai, 2000). 
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Fig. 14: Inhibitory regulators of STAT signaling 
Suppressor of cytokine signaling (SOCS) by direct JAK inhibition, protein inhibitors of activated STAT 

(PIAS) by impairment of DNA recognition of STAT dimers and SH2-domain-containing tyrosine 

phosphatases (SHP2) by dephosphorylation of multiple sites lead to inhibition of the STAT signaling 

cascade and therefore the transcription of DNA regions encoding acute phase proteins (APP). Figure 

modified from Heinrich et al., 1998. 

1.6.2.2. Non-canonical STAT signaling 

While the pathway described so far is referred to as canonical mode, some recent research 

found STAT signaling events, e.g. in Drosophila, not fitting into this pathway and therefore 

representing the o - a o i al  ode (Li, 2008). First it was reported that JAK overactivation 

leads to global disruption of heterochromatin and therefore subsequent expression of genes, 

usually not regulated by STAT (Shi et al., 2006, Betz and Darnell, 2006). Further investigation 

of the underlying mechanism revealed that the Drosophila STAT equivalent STAT92E is also 

localized in the nucleus of unstimulated cells in an unphosphorylated form and here stabilizes 

the heterochromatin protein 1 (HP1). Phosphorylation of STAT92E would lead to dissociation 

from heterochromatin, subsequent HP1 displacement and eventually heterochromatin 

destruction independent of transcription (Shi et al., 2008, Li, 2008). Consistent with these 

studies, it has also been shown that unphosphorylated mammalian STAT3 and STAT5a localize 

partially in a nuclear manner. Furthermore, it was proposed that unphosphorylated STATs 

constantly shuttle between nucleus and cytoplasm (Reich and Liu, 2006, Vinkemeier, 2004, Liu 

et al., 2005) and use distinct methods to induce gene transcription (Yang et al., 2007, Yang and 

Stark, 2008). The described non-canonical pathway is not counteracting the canonical 



38 Introduction 

pathway but rather conducive to the latter as heterochromatin disruption is necessary for 

activation of transcription by the canonical mode. 

1.6.3. Expression and functions 

Here, I refer to STAT expression as the expression of the functional gene product - the specific 

STAT protein.  

STAT proteins exert a multitude of functions and are expressed throughout the whole 

organism. Therefore I will focus here on STAT3, the main object of the present work. In 

addition, the most important aspects for other STATs will be mentioned. The main section 

about STAT expression and function in the CNS, separated in parts about development, the 

adult CNS and the adult CNS after injury, is preceded by a small introduction of the pattern of 

expression and functions of STAT proteins in the whole organism. 

1.6.3.1. Organism 

Originally, STAT3 was identified in hepatocytes as an acute-phase response factor, stimulated 

by IL-6 (Akira et al., 1994). Later it was found to be expressed in most tissues (Kisseleva et al., 

2002). Consistent with this, STAT3 gene disruption leads to early embryonic death at around 

E7.5 in mice (Takeda et al., 1997). However, the genetically engineered „flo ed  “TAT  allele 

has enabled the generation of tissue-specific knockouts. Highlighting its role in cell survival 

and proliferation, STAT3 has also been determined to be active in a number of murine and 

human tumors (Kisseleva et al., 2002, Bowman and Jove, 1999). A recently published example 

punctuated this by showing correlation between the tyrosine phosphorylation of STAT3 and 

lower cancer survival of patients (Birner et al., 2010). Going along with that, STAT3 has been 

shown to activate genes like c-myc, Bcl-XL and Fas, which were found to regulate cell 

transformation. By experimental mutation, STAT3 can be converted into an oncogene 

(Bromberg et al., 1999). Furthermore, STAT3 was reported to regulate cyclical mammary gland 

involution as STAT3 null mammary gland mice exhibited a significant delay in programmed cell 

death (Chapman et al., 1999). In addition, it has an important role for the integrity of skin and 

hair (Sano et al., 1999), cell migration and wound healing (Levy and Lee, 2002) as well as in 



Introduction 39 

the immune system, e.g. for the thymic epithelium, in T lymphocytes, monocytes and 

granulocytes (Takeda et al., 1998, Takeda et al., 1999, Lee et al., 2002). 

STAT5 (STAT5a) was first described as a prolactin-induced transcription factor (Burdon et al., 

1994). Further screening revealed that two distinct proteins exist, STAT5a and STAT5b (Azam 

et al., 1995), which share 96% identity and are only distinct at their carboxy terminals (Mui et 

al., 1995). Both proteins are expressed in all tissues. Although in vitro studies with dominant 

negative STAT5 mutants showed functional redundancy for the two proteins, single knockout 

studies revealed remarkably distinct phenotypes and in addition suggested that STAT5b could 

partially compensate for the loss of STAT5a (Teglund et al., 1998). As being prolactin-induced 

transcription factors, both have roles in development of the mammary gland as well. Primarily 

STAT5b appears to transduce information for GH and is therefore strongly suggested to exhibit 

the same functions as GH does (Teglund et al., 1998). Many biochemical studies have 

implicated important roles for STAT5 in hematopoiesis, particularly for lymphoid and myeloid 

lineages (Kisseleva et al., 2002).  

Whereas STAT1 was determined to be important in susceptibility to tumors, growth control 

and responses to interferons, STAT2 is more involved in transduction of IFN signals (Levy and 

Darnell, 2002). Expression of STAT4 is restricted to NK cells, dendritic cells and T lymphocytes. 

STAT6, which is expressed in all tissues, and 4 are relevant for Th1 cell differentiation (Levy 

and Darnell, 2002). 

1.6.3.2. CNS 

Physiological conditions 

As STAT3 was shown to be a highly influential factor in the regulation of the onset of 

gliogenesis (Bonni et al., 1997), the following part will describe in detail the different molecular 

mechanisms of the temporal switch between neurogenesis and gliogenesis.  

As described above, neurogenesis and astrogliogenesis in the developing rodent brain occur 

within a two-week perinatal period in a temporally distinct yet overlapping pattern with the 

birth marking the end point for neurogenesis. It is important to understand which factors 

regulate both processes as well as the change between them. Neurog2 in the dorsal 



40 Introduction 

telencephalon for generation of glutamatergic neurons and Mash 1 in the ventral 

telencephalon for production of GABAergic and cholinergic neurons were identified as 

relevant factors for neurogenesis (Casarosa et al., 1999, Fode et al., 2000) but it was not clear 

which factors would regulate astrogliogenesis. In 1997 Michael Greenbergs group at Harvard 

found the first evidence that JAK/STAT signaling could be a highly influential factor in the 

regulation of astrogliogenesis. They reported that in E14/17 rat embryos CNTF would lead 

cortical precursors via STAT3 to the astroglial lineage. Besides, a STAT binding site in the rat 

and human GFAP promoter was found to have a critical role (Bonni et al., 1997). An additional 

synergistic functioning pattern of two factors, namely LIF and BMP, was identified to promote 

astrogliogenesis. In detail, their downstream signaling molecules STAT3 and Smad (mainly 

Smad1, others are Smad5 and 8) were found to be closely attached in a complex bridged by 

p300 (Nakashima et al., 1999). BMP was known to act sequentially: first, complex formation 

with Neurog to promote neurogenesis and later with STAT to promote astrogliogenesis (Li et 

al., 1998, Gross et al., 1996). T o ea s afte  Nakashi a’s fi di gs one mechanism potentially 

guiding the change from neurogenesis to astrogliogenesis was identified: Neurog1, which is 

high during cortical neurogenesis and low during gliogenesis, sequesters the 

CBP/p300/Smad1/STAT3 complex away from glial promoters and directly suppresses 

JAK/STAT signaling (Fig. 15) (Sun et al., 2001). 

 

Fig. 15: Mechanism of the molecular switch from neurogenesis to astrogliogenesis 
During early embryonic days Ngn (Neurogenin, mainly Neurog1) dimerizes with an E-protein (E12 or 

E47) and with the help of the CBP/p300/Smad1 complex activates transcription of genes encoding 

proneuronal proteins like NeuroD. When levels of Ngn drop at later time points, the CBP/p300/Smad1 

complex can bind to STAT3 (here shown in a heterodimer with STAT1) and subsequently activate glial 

promoters. Figure from Sun et al., 2001. 
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Reports that STAT3 is present and active from E7.5 on (time of neurogenesis when no 

astrogliogenesis occurs) are consistent with that (Foshay and Gallicano, 2008). STAT3 is 

already present at times of neurogenesis but cannot act on glial promoters as Neurog1 

sequesters away the complex that is needed for transcriptional activation (Fig. 15). As binding 

sites for Neurog and STAT3 on CBP overlap, both factors compete for CBP binding (Sun et al., 

2001). When levels for Neurog would drop, STAT3 could associate to the complex and activate 

glial promoters (Fig. 15). Moreover, it was reported that the STAT3 recognition sequence in 

the GFAP promoter is highly methylated in NSCs during the time of neurogenesis, making it 

impossible for STAT3 to bind (Asano et al., 2009). Additional work with E17/18 rat embryos 

supported this as suppression of STAT3 at this gliogenic stage was found to promote 

neurogenesis and to inhibit astrogliogenesis (Gu et al., 2005). Next to STAT and BMP a third 

player in astrogliogenic cell fate decision and its crosstalk to JAK/STAT was identified: Notch. 

During neurogenesis it inhibits neuronal differentiation and promotes morphological 

differentiation typical for radial glia, while later it promotes astrocytic differentiation and 

induction of GFAP. The crosstalk between Notch and STAT3 is suggested to be mediated by 

Hes, a downstream target of Notch, which associates with Jak2 and STAT3, facilitates complex 

formation between them and therefore promotes STAT3 phosphorylation and activation 

(Kamakura et al., 2004). Supporting the major role of STAT during astrogliogenesis, a positive 

autoregulatory loop and a direct effect of STAT on astroglial genes during astrogliogenesis was 

postulated when binding sites for STAT1 and 3 were detected in the promoters of STAT1, 

STAT3, gp130, Jak1, GFAP and S100β (He et al., 2005).  Further roles for STAT proteins have 

been described e.g. in proliferation of embryonic CNS cells (Cattaneo et al., 1996), for the 

maintenance of NSCs in an undifferentiated state (Yoshimatsu et al., 2006) and in neuronal 

pathfinding (Conway, 2006).   

As described above, STAT3 expression is already present during neurogenesis and still 

increases postnatally at times of gliogenesis. But from P21 on STAT3 activity is shown to 

decrease except in hypothalamic leptin-responsive neurons (Stromberg et al., 2000) 

suggesting that STAT3 is required for maintenance of the hypothalamic neuroendocrine axis 

in the adult (Dziennis and Alkayed, 2008). In contrast, pSTAT3 is not upregulated in the SVZ 

(Bauer and Patterson, 2006). Whereas STAT3 decreases in the aging rodent brain from three 

months to 26 months, STAT1 remains unchanged in cortex, striatum and hippocampus (De-

Fraja et al., 2000). Moreover, the STAT proteins also differ functionally. While STAT3 and 5 
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promote neuronal survival by inducing neuroprotective genes, STAT1 promotes 

neurodegeneration by inducing apoptotic and other cell death promoting genes (Dziennis and 

Alkayed, 2008). 

CNS injury 

The role of STAT proteins in acute CNS injuries has mainly been investigated after SCI so far. 

For example Okada et al. suggested STAT3 as a key regulator of reactive astrocytes in the 

healing process (Okada et al., 2006). They found phosphorylated STAT (pSTAT) 3 being 

upregulated from twelve hours until two weeks after SCI with nuclear translocation mainly 

occuring in reactive astrocytes. Further evaluation via conditional STAT3 knockout showed 

limited migration of reactive astrocytes, widespread infiltration of inflammatory cells, neural 

disruption and demyelination. A possible link was provided by the decrease of E-cadherin, a 

cell adhesion molecule, due to STAT3 activation (Okada et al., 2006). Another study using a 

conditional STAT3 knockout confirmed the results that reactive astrocytes did not longer built 

a highly aligned border but were found randomly in the vicinity of the lesion after SCI 

(Herrmann et al., 2008). As astrocyte scar formation is believed to restrict inflammation, limit 

lesion size and preserve function (Voskuhl et al., 2009), STAT3 is suggested as a key regulator 

of scar formation. Another detailed expression analysis of pSTAT3 after SCI revealed that 

pSTAT3 is upregulated already from 6h after SCI on, peaks at 12h and decreases thereafter. 

Immunohistochemical studies after SCI showed pSTAT3 being present in neurons at acute 

stages and in reactive astrocytes and microglia more during chronic stages (Yamauchi et al., 

2006). Compared to STAT3, STAT1 has only insufficiently been examined after SCI. Herrmann 

and colleagues reported an activation of STAT1 signaling at three days after SCI (Herrmann et 

al., 2008). Experiments with entorhinal cortex lesion (by electrocoagulation of unilateral 

entorhinal afferents to the fascia dentata) showed pSTAT3 induction in reactive astrocytes of 

the fascia dentata. Expression was detected at one and three days after lesion, but not 

anymore at seven days. A similar time course was seen in sprouting neurons (Xia et al., 2002). 

Consistent with its clinical relevance some studies have been conducted on STAT expression 

after ischemia. The resulting pattern seems to be at least partially contradictory. Planas et al. 

reported about STAT3 being activated several days after transient focal cerebral ischemia 

mainly in microglia with control level expression in neurons and other glial cells (Planas et al., 
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1996). In contrast even the same group reported four years later that STAT3 is highly activated 

after ischemia in pyramidal neurons of layer V, astrocytes and microglia (Justicia et al., 2000). 

For STAT1 and STAT5 nearly the same conflict can be found. While Takagi et al. found STAT1 

to be phosphorylated within hours and translocated into neuronal nuclei after MCAo (Takagi 

et al., 2002), another group reported about STAT1 not being expressed after several hours 

after MCAo, but after four days (Planas et al., 1997). Phosphorylation of STAT5 was found in 

Cornu ammonis area 1 (CA1) of the rat hippocampus at one and three hours, but not anymore 

at six and 24 hours after transient global ischemia (Zhang et al., 2007), whereas another group 

found STAT5 gene expression (in addition to STAT2 and 6) upregulated after 24hours (Sun et 

al., 2007). Data for STAT expression after a stab wound injury to the adult cerebral cortex are 

entirely lacking so far. The characteristics of STAT expression after experimental stroke and 

acute lesion in the cerebral cortex as well as the functions of STAT signaling in these settings 

are therefore still unclear and need further evaluation.  

Compared to acute injuries even less has been investigated so far regarding the role of STAT 

proteins in neurodegenerative diseases like AD. While Zambrano et al. proposed a 

neuroprotective role via IL-3 (Zambrano et al., 2010), Hashioka et al. suggested a neurotoxic 

role of astrocytes mediated by IFN-γ and subsequently the JAK/STAT pathway (Hashioka et al., 

2009), supported by the finding that IFN-γ is apparantly involved in the stimulation of beta-

secretase and beta-amyloid production (Hong et al., 2003). Additionally, it has been found 

that IL-6 could be contributing to the tau hyperphosphorylation pattern (Orellana et al., 2005). 

Unfortunately, we were not able to identify studies that specifically investigated the role of 

STAT proteins in the mouse models APP/PS1 and CK/p25. 

1.7. Questions and goal of dissertation 

As reviewed in subchapter 1.5.3. cellular reprogramming into neurons displays an innovative 

approach of cell-based therapy for many neurological disorders. Compared to transplantation 

of exogenous cells the idea to recruit in vivo endogenous glial cells, which proliferate after 

injury, to repair the brain appears to be unique and innovative as it would overcome many of 

the major obstacles associated with cellular transplantation. Whilst so far it was not possible 

to reprogram reactive astrocytes in vivo in a highly sufficient manner into long-term surviving 

neurons (by forced expression of neurogenic fate determinants) it is decisive to search not 
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only for factors that enhance neurogenesis but also to study inhibiting factors as especially 

STAT3 was suggested. Along this line, the expression pattern of STAT after stroke is not fully 

understood yet and for stab wound, CK/p25 and APP/PS1 is still completely unknown. 

The aim of this present project is to investigate if i) the STAT signaling cascade is activated in 

reactive astrocytes after injury of the cerebral cortex and ii) these STAT-mediated pathways 

could hamper the neuronal reprogramming of these astrocytes. 

In particular, it should be examined which STAT molecules (i.e. STAT1, STAT3, STAT5) are 

expressed and at which time points after an insult in the adult cerebral cortex. Moreover, it 

should be studied if the respective STAT signaling is activated by investigating the 

phosphorylation status of these STAT molecules. For this, two different mouse models will 

mainly be used: one mimicking a stroke (MCAo) and the second one mimicking an acute 

mechanical injury (i.e. the stab wound model). To increase the significance of our potential 

findings, it should be investigated whether STAT signaling is altered in the cerebral cortex of 

ouse odels ep ese ti g featu es of Alzhei e ’s disease i.e. the CK/p25 and APP/PS1 

models). To answer these questions, the expression pattern of STAT will be assessed in a semi-

quantitative manner and over time following the injury using western blot. Additionally, 

immunohistochemistry will help us to determine which different cell types (e.g. neurons and 

astrocytes) express and activate STAT after injury as well as to study the spatial distribution of 

STAT activation, e.g. how distant from the insult the expression can be detected.  

Next, based on these findings obtained with western blot and immunohistochemistry, it 

should be investigated if the activation of STAT signaling in reactive astrocytes impairs the glia-

to-neuron conversion. For this aim, the well established neuronal reprogamming of postnatal 

astrocytes in vitro (see subchapter 1.5.3.1.) will be used. In particular, it should be tested 

whether gain-/loss-of-function of STAT1 and STAT3 signaling in cultured postnatal astrocytes 

may impair/promote their reprogramming toward the neuronal lineage. 
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2. Methods and Materials 

2.1. Materials 

2.1.1. Equipment 

Centrifuge 5810R     Co. Eppendorf (Hamburg, D) 

Centrifuge Mikro 22R     Co. Hettich (Tuttlingen, D) 

Centrifuge Qualitron® Microcentrifuges  Co. Krackeler Scientific (Albany, NY, USA) 

Centrifuge Sorvall Evolution RC   Co. Thermo Sc. (Waltham, MA, USA) 

Centrifuge Universal 320R    Co. Hettich (Tuttlingen, D) 

Electrophoresis power supply LKB GPS 200/400 Co. Pharmacia (not existent anymore) 

Electrophoresis power supply PowerPac 200 Co. BIO-RAD (Hercules, CA, USA) 

Electrophoresis system Mini-PROTEAN Tetra Co. BIO-RAD (Hercules, CA, USA) 

Fluorescent table     Co. Renner (Dannstadt, D) 

Forceps      Co. Fine Science Tools (Heidelberg, D) 

Freezer (-20°C)     Co. AEG (Frankfurt am Main, D) 

Freezer (-20°C)     Co. Liebherr (Bulle, CH) 

Freezer (-80°C)     Co. Thermo Sc. (Waltham, MA, USA) 

Freezer (-80°C)     Co. GFL (Burgwedel, D) 

Gel imaging system Gel DocTM XR   Co. BIO-RAD (Hercules, CA, USA) 

Gel system GeneMate    Co. BioExpress (Kaysville, UT, USA) 

Gel system PerfectBlue    Co. PEQLAB (Erlangen, D) 

Hand drill      Co. Foredom (Bethel, CT, USA) 

Ice machine      Co. Scotsman (Vernon Hills, IL, USA) 

Incubator      Co. Memmert (Schwabach, D) 

Incubator      Co. Binder (Bohemia, NY, USA) 

Incubator Galaxy 170R    Co. New Brunswick (Enfield, CT, USA) 

Kryostat CM 3050S     Co. Leica (Wetzlar, D) 

Laboratory balances     Co. Mettler Toledo (Giessen, D) 

Laminar flow      Co. Bdk (Sonnenbühl-Genkingen, D) 
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Magnetic stirrer IKA COMBIMAG RET  Co. IKA Jahnke und Kunkel (Staufen, D) 

Microscope Axiovert 40CFL    Co. Zeiss (Oberkochen, D) 

Light source HXP-120    Co. Visitron Systems (Puchheim, D) 

Microscope Fluo BX61    Co. Olympus (Tokio, J) 

Microscope Leica MZ6    Co. Leica (Wetzlar, D) 

Microscope LSM 710     Co. Zeiss (Oberkochen, D) 

Microwave      Co. Privileg (Stuttgart, D) 

Mouse cages      Co. Tecniplast (Buguggiate, I) 

pH-meter pH720     Co. WTW inoLab (Weilheim, D) 

Pipette controller accu-jet® pro   Co. Brand (Wertheim, D) 

Pipettes μl, μl, μl, μl, μl   Co. Eppendorf (Hamburg, D) 

Pipettes μl, μl, μl, μl, μl   Co. Gilson (Middleton, WI, USA) 

Refrigerator      Co. Privileg (Stuttgart, D) 

Refrigerator      Co. Liebherr (Bulle, CH) 

Shaker Duomax 1030     Co. Heidolph (Schwabach, D) 

Shaker IKA-Vibrax VXR    Co. IKA Jahnke und Kunkel (Staufen, D) 

Shaker Thermoshake      Co. C. Gerhardt (Königswinter, D) 

Spectrophotometer Nano-Drop ND-1000  Co. Thermo Sc. (Waltham, MA, USA) 

Spectrophotometer Prim Advanced   Co. Secomam (Alès, F) 

Stereotactic mouse adaptor    Co. Stoelting (Wood Dale, IL, USA) 

Thermomixer comfort    Co. Eppendorf (Hamburg, D) 

Tissue grinder      Co. Wheaton (Millville, NJ, USA) 

Trans-Blot SD Semi-Dry Transfer Cell   Co. BIO-RAD (Hercules, CA, USA) 

Vortex-Genie 2     Co. Bender & Hobein (Bruchsal, D) 

Water bath      Co. Memmert (Schwabach, D) 

Water bath GFL 1083     Co. GFL (Burgwedel, D)  

Water bath Haake D1/L    Co. Haake (Karlsruhe, D) 

2.1.2. Consumables 

Cell culture flasks CELLSTAR®  (T25, T75, T175) Co. Greiner Bio-One (Kremsmünster, A) 

Cell strainer      Co. BD Biosc. (Franklin Lakes, NJ, USA) 
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Coverslips      Co. Carl Roth (Karlsruhe, D) 

Eye and nose ointment    Co. Bepanthen (Leverkusen, D) 

Filaments (Vicryl)     Co. Ethicon (Norderstedt, D) 

Filter paper      Co. BIO-RAD (Hercules, CA, USA)  

Filter tips Biosphere     Co. Sarstedt (Nürnbrecht, D) 

Glass slides      Co. ThermoScientific (Waltham, MA, USA) 

Gloves       Co. Diana Bar. v. Schaezler (Augsburg, D) 

Gloves       Co. Ansell (Brüssel, B) 

Insulin needles (U-100, 1ml)    Co. BD Biosc. (Franklin Lakes, NJ, USA) 

Microscope slides     Co. Carl Roth (Karlsruhe, D) 

Microscope slides     Co. Thermo Sc. (Waltham, MA, USA) 

Pasteur pipettes     Co. VWR International (Darmstadt, D) 

Parafilm      Co. Peckiney Plastic P. (Chicago, IL, USA) 

PVDF membrane     Co. Merck Millipore (Billerica, MA, USA) 

Reaction tubes (0,5ml; 1ml; 2ml)   Co. Brand (Wertheim, D) 

Reaction tubes safelock (1,5ml; 2ml)   Co. Eppendorf (Hamburg, D) 

Reaction tubes (15ml; 50ml)    Co. Greiner Bio-One (Kremsmünster, A) 

Scalpel blades      Co. Fine Science Tools (Heidelberg, D) 

Serological pipettes (5ml; 10ml; 25ml)  Co. Sarstedt (Nürnbrecht, D) 

V-LanceTM Knife (19 Gauge)    Co. Alcon (Hünenberg, CH) 

Well plates (24/6)     Co. Orange Scientific (Braine-l’Alleud, B  

2.1.3. Chemicals 

Aceton       Co. Carl Roth (Karlsruhe, D) 

Acetic acid      Co. Carl Roth (Karlsruhe, D) 

Acrylamid (30%)     Co. BIO-RAD (Hercules, CA, USA) 

Agarose      Co. Serva (Heidelberg, D) 

Ammonium persulfate (APS)    Co. BIO-RAD (Hercules, CA, USA) 

Ampicillin      Co. Life Technologies (Carlsbad, CA, USA) 

Aprotinin      Co. Biomol (Hamburg, D) 

Bacto-Agar      Co. Carl Roth (Karlsruhe, D) 
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Bacto-Tryptone     Co. BD (Franklin Lakes, NJ, USA) 

BCA assay reagent A/B    Co. Interchim (Montlucon, F) 

BrdU       Co. Sigma-Aldrich (St. Louis, MO, USA) 

Bromphenol blue     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Corn oil      Co. Sigma-Aldrich (St. Louis, MO, USA) 

Deoxycholic acid     Co. Sigma-Aldrich (St. Louis, MO, USA) 

4′,6-diamidino-2-phenylindole dilactate (DAPI) Co. Life Technologies (Carlsbad, CA, USA) 

Doxycyclin      Co. Sigma-Aldrich (St. Louis, MO, USA) 

ECL Western Blotting Detection   Co. Chemicon  

Edetate disodium     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Ethanol (>99,8%)     Co. Carl Roth (Karlsruhe, D) 

Ethanol (70%)      Co. Carl Roth (Karlsruhe, D) 

Ethidium bromide     Co. Carl Roth (Karlsruhe, D) 

Ethylenediamine-tetraacetic acid (EDTA)  Co. Sigma-Aldrich (St. Louis, MO, USA) 

Ethylene glycol     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Glycerol      Co. Sigma-Aldrich (St. Louis, MO, USA) 

Glycine      Co. Sigma-Aldrich (St. Louis, MO, USA) 

Goat serum       Co. Life Technologies (Carlsbad, CA, USA) 

Hydrogen chloride (5N)    Co. Sigma-Aldrich (St. Louis, MO, USA) 

Imidazole      Co. Sigma-Aldrich (St. Louis, MO, USA) 

Isopropanol      Co. Carl Roth (Karlsruhe, D) 

Kanamycin      Co. Life Technologies (Carlsbad, CA, USA) 

Ketaminhydrochlorid (Ketavet, 100 mg/ml)  Co. Pfizer (New York City, NY, USA) 

Leukemia Inhibitory Factor    Co. Sigma-Aldrich (St. Louis, MO, USA) 

Leupeptin       Co. Biomol (Hamburg, D) 

Methanol      Co. Merck (Darmstadt, D) 

2-Mercaptoethanol     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Mounting solution (AquaPolymount)  Co. Polysciences (Warrington, PA, USA) 

NaCl solution (Saline, 0,9 %)    Co. B. Braun (Melsungen, D) 

Non fat dry milk blocker    Co. BIO-RAD (Hercules, CA, USA) 

NP-40       Co. Sigma-Aldrich (St. Louis, MO, USA) 

Paraformaldehyd (PFA)    Co. Sigma-Aldrich (St. Louis, MO, USA) 
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Pefabloc      Co. Biomol (Hamburg, D) 

Pepstatin      Co. Biomol (Hamburg, D) 

Monopotassium dihydrogen phosphate  Co. Merck (Darmstadt, D) 

Potassium chloride (KCl)    Co. Sigma-Aldrich (St. Louis, MO, USA) 

2-Propanol      Co. Carl Roth (Karlsruhe, D) 

Proteinase K      Co. Carl Roth (Karlsruhe, D) 

Sodium chloride     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Sodium citrate     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Sodium dodecyl sulfate (SDS)   Co. Sigma-Aldrich (St. Louis, MO, USA) 

Sodium dihydrogen phosphate   Co. Merck (Darmstadt, D) 

di-Sodium hydrogen phosphate   Co. Sigma-Aldrich (St. Louis, MO, USA) 

di-Sodium hydrogen phosphate dihydrate  Co. Merck (Darmstadt, D) 

Sodium hydroxide     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Sodium pyrophosphate    Co. Sigma-Aldrich (St. Louis, MO, USA) 

Spectinomycin     Co. Life Technologies (Carlsbad, CA, USA) 

Sucrose      Co. Merck (Darmstadt, D) 

TEMED  (Tetramethylethylenediamine)  Co. BIO-RAD (Hercules, CA, USA) 

Triton X-100      Co. Sigma-Aldrich (St. Louis, MO, USA) 

TRISbase      Co. Sigma-Aldrich (St. Louis, MO, USA) 

TRISHCl      Co. Sigma-Aldrich (St. Louis, MO, USA) 

Tween 20      Co. Sigma-Aldrich (St. Louis, MO, USA) 

Vanadate      Co. New England BioLabs (Ipswich, USA) 

Xylacinhydrochlorid (Rompun, 2 Vol %)  Co. Bayer (Leverkusen, D) 

Xyelene cyanol solution    Co. Sigma-Aldrich (St. Louis, MO, USA) 

Yeast extract      Co. BD (Franklin Lakes, NJ, USA) 

2.1.4. Buffers and solutions 

2.1.4.1. Western blot 

Whole cell lysis buffer: 

50 mM  TRISHCl 
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0,15 mM Saline 

1 %  Triton X-100 

10 %  Glycerol 

5 mM  EDTA 

Protease inhibitors (for 5 ml lysis buffer): Phosphatase inhibitors (for 5 ml lysis buffer): 

 μg  Leupeptin    μMol Sodium pyrophosphate 

 μg  Aprotinin   200 mMol Imidazol 

 μg  Pepstatin    μMol Vanadate 

2 mg  Pefabloc 

 

Subcellular fractioning lysis buffer: 

Low salt buffer (LSB; 5 ml):   High salt buffer (HSB): 

 μl  Hepes pH 8,0   1 ml  LSB 

 μl  1 M KCl    μl  NaCl 5M 

4,9 ml  H2Odd  

+ same inhibitors as for the whole cell lysis buffer 

 

20 Vol % Tween: 

50 ml   Tween 20 

200 ml  H2Odd 

 

TBS buffer (10x): 

12,1 g   TRISbase 

87,8 g   Sodium Chloride 

  ad 1 l H2Odd; pH 8,0 with HCl (5N); autoclave 

 

TBS-T (0,1 Vol %; 1x): 

100 ml  TBS 10x 

5 ml  20 Vol % Tween 20 

  ad 1 l H2Odd 
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Electrophoresis buffer (10x): 

30,3 g  TRISbase 

144 g  Glycine 

10 g  SDS 

  ad 1 l H2Odd; pH 8,45 

 

APS (10 % (w/v)): 

100 mg Ammonium persulfate 

  ad 1 ml H2Odd 

 

SDS (20 % (w/v)): 

2 g  SDS 

  ad 10 ml H2Odd 

 

Stacking gel buffer (TRIS 0,5M; pH 6,8): 

30,28 g TRISbase 

  ad 500 ml H2Odd; pH 6,8 with HCl (5N) 

 

Running gel buffer (TRIS 1,5M; pH 8,8): 

90,85 g TRISbase 

  ad 500 ml H2Odd; pH 8,8 with HCl (5N) 

 

Stacking gel solution (5 % Acrylamid; for two 1 mm thick gels): 

5,7 ml  H2Odd 

1,7 ml  Acrylamid (30 %) 

2,5 ml  Stacking gel buffer 

 μl  SDS (20 %) 

 μl  APS (10 %) 

 μl  TEMED 

 

Running gel solution (10 % Acrylamid; for two 1 mm thick gels): 

4,1 ml  H2Odd 



52 Methods and Materials 

3,3 ml  Acrylamid (30 %) 

2,5 ml  Running gel buffer 

 μl  SDS (20 %) 

 μl  APS (10 %) 

 μl  TEMED 

 

Transfer buffer: 

100 ml  TBS 10x 

200 ml  Methanol 

  ad 1 l H2Odd 

 

Loading dye (4x): 

2 ml  1 M TRISHCl pH 8,5 

8 ml  20 % SDS 

5 ml  Glycerol 

1,6 ml  2-Mercaptoethanol 

50 mg  Bromphenol blue 

3,4 ml  H2Odd 

 

Stripping buffer: 

 μl  2-Mercaptoethanol 

10 ml  10 % (w/v) SDS 

6,25 ml TRISHCl (pH 6,8) 

 

Blocking solution for western blot (5 % (w/v) milk powder): 

2 g   Milk powder 

  ad 40 ml TBS-T (1x) 

 

Antibody solution for western blot (5 % (w/v) BSA): 

0,5 g  BSA 

  ad 10ml TBS-T (1x) 
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2.1.4.2. Tissue Preparation for Immunohistochemistry 

Doxycyclin drinking water (100 ml): 

50 mg  Doxycyclin 

1,5 g  Sucrose 

  ad 100 ml H2O 

 

BrdU drinking water (100 ml): 

100 mg BrdU 

1 g  Sucrose 

  ad 100 ml H2O 

 

Anesthesia solution: 

2,5 ml  Saline 

1 ml  Ketavet 

0,25 ml Rompun 

 

Paraformaldehyd stock (PFA; 20 % (w/v)): 

134 g   di-Sodium hydrogen phosphate dihydrate in 800 ml H2Odd 

400 g  Paraformaldehyd 

ca. 10 ml Sodium hydroxide 

  pass through paper filters; ad 2 l H2Odd; pH 7,4 

 

Paraformaldehyd (4 %): 

100 ml  PFA 20 % 

400 ml  H2Odd 

 

Sucrose solution (30 % (w/v)) for cryoprotection: 

15 g  Sucrose 

  ad 50 ml PBS 1x 
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PO4-buffer (10x; pH 7,2 - 7,4): 

65 g  Sodium dihydrogen phosphate 

15 g  Sodium hydroxide 

2 ml  HCl (5N) 

  ad 400 ml H2Odd 

 

Storing solution for free floating brain tissue sections: 

150 ml  Glycerol 

150 ml  Ethylene glycol 

50 ml  PO4-buffer (10x) 

150 ml  H2Odd 

2.1.4.3. Immunohistochemistry/-cytochemistry 

Phosphate buffer saline (PBS; 10x): 

58,75 g di-Sodium hydrogen phosphate 

10 g  Monopotassium dihydrogen phosphate 

400 g  Sodium chloride 

10 g  Potassium chloride 

  ad 5 l H2Odd; pH 7,4 

 

Blocking solution for brain tissue sections (2 % (w/v) BSA): 

0,2 g  BSA 

  ad 10 ml PBS 1x 

 

Blocking solution for cells: 

0,2 g  BSA 

 μl  Triton X-100 

  ad 10 ml PBS 1x 

 

Sodium citrate buffer (0,1 M): 

29,41 g Sodium citrate 
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  ad 1 l H2Odd; pH 6,0 

2.1.4.4. Molecular cloning 

TAE (50x): 

242 g  TRISbase 

57,1 ml Acetic Acid 

37,2 g  Edetate disodium 

  ad 1 l H2Odd 

 

TAE (1x): 

20 ml  TAE 50x 

980 ml  H2Odd 

 

Ethidium bromide 

100 mg Ethidium bromide 

2 ml  H2Odd 

 

DNA sample buffer: 

20 ml  Glycerol 

1 ml  50x TAE 

 μl  Bromphenol blue 

 μl  Xylene cyanol solution 

  ad 50 ml H2Odd 

 

LB (lysogeny broth): 

0,5 % (w/v) NaCl 

1 % (w/v) Bacto-Tryptone 

0,5 % (w/v) yeast extract 

20 mM  TRISHCl (pH 7,4) 

  ad 500 ml H2Odd; pH = 7,0 with NaOH 
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2.1.5. Cell culture 

2.1.5.1. Media and components 

B27       Co. Life Technologies (Carlsbad, CA, USA) 

Basic fibroblast growth factor (FGF)   Co. Life Technologies (Carlsbad, CA, USA) 

Bovine serum albumin (BSA)    Co. Sigma-Aldrich (St. Louis, MO, USA) 

DMEM/F12 + GlutaMAXTM    Co. Life Technologies (Carlsbad, CA, USA) 

DMEM/F12      Co. Life Technologies (Carlsbad, CA, USA) 

D-Glucose (45 %)     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Ea le’s Bala ed “alt “olutio  (EBSS)   Co. Life Technologies (Carlsbad, CA, USA) 

Fetal calf serum     Co. Life Technologies (Carlsbad, CA, USA) 

Ha k’s Bala ed “alt “olutio  HB““   Co. Life Technologies (Carlsbad, CA, USA) 

Hepes (1 M)      Co. Life Technologies (Carlsbad, CA, USA) 

Horse serum      Co. Life Technologies (Carlsbad, CA, USA) 

Human epidermal growth factor (EGF)  Co. Life Technologies (Carlsbad, CA, USA) 

Hyaluronidase      Co. Sigma-Aldrich (St. Louis, MO, USA) 

Lipofectamine 2000     Co. Invitrogen (Carlsbad, CA, USA) 

Optimem      Co. Invitrogen (Carlsbad, CA, USA) 

Penicillin/Streptomycin (100x)   Co. Life Technologies (Carlsbad, CA, USA) 

Poly-D-Lysine (PDL)     Co. Sigma-Aldrich (St. Louis, MO, USA) 

Trypsin/EDTA (0,05 %)    Co. Life Technologies (Carlsbad, CA, USA) 

Trypsin      Co. Sigma-Aldrich (St. Louis, MO, USA) 

2.1.5.2. Solutions 

Basic astrocytes medium: 

5 ml  Penicillin/Streptomycin (100x) 

5 ml  Glucose (45 %) 

490 ml  DMEM-F12 
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Astrocytes proliferation medium: 

10 ml  Fetal calf serum 

5 ml  Horse serum 

2 ml  B27 

 μl  EGF (10 ng/ml) 

 μl  FGF (10 ng/ml) 

1 ml  Glutamax 

81,8 ml Basic astrocytes medium 

 

Astrocytes differentiation medium: 

2 ml  B27 

1 ml  Glutamax 

97 ml  Basic astrocytes medium 

 

RIPA buffer with 0,1 % (w/v) SDS: 

6,06 g  TRISHCl pH 8,0 

17,6 g  Sodium chloride 

0,5 g  Deoxycholic acid 

0,5 ml  NP-40 

 μg  SDS 

  add protease/phosphatase inhibitors (see above for whole cell lysis buffer) 

  ad 50 ml H2Odd   

   

HEK medium: 

2 ml  Fetal calf serum 

 μl  Penicillin/Streptomycin 

17,8 ml DMEM 

 

Solution 1 (HBSS-Glucose): 

50 ml  HBSS 10x 

9 ml  Glucose (300 mg/ml) 

7,5 ml  Hepes 1 M 
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  ad 500 ml H2Odd 

 

Solution 2 (Sucrose-HBSS): 

25 ml  HBSS 10x 

154 g  Sucrose 

  ad 500 ml H2Odd 

 

Solution 3 (BSA-EBSS-Hepes): 

20 g  BSA 

10 ml  Hepes 1M 

  ad 500 ml EBSS 

 

Neurosphere medium: 

47 ml  DMEM/F12 

1 ml  B27 

0,5 ml  Penicillin/Streptomycin 

0,4 ml  Hepes 1 M 

 μl  FGF (20 μg/ l  

 μl  EGF  μg/ l  

 

Dissociation medium: 

7,0 mg  Hyaluronidase 

13,3 mg Trypsin 

10 ml  Solution 1 

2.1.6. Oligonucleotides 

2.1.6.1. miRNAs 

The following microRNAs (miRNAs) were obtained from Life Technologies (Carlsbad, CA, USA): 

Against STAT3: “e ue e ’ → ’  Top Strand                        (Position) 
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   miRNA-STAT3-1    T T T C C A T T C A G A T C C T G C A T G      (719) 

   miRNA-STAT3-2    T T T C G T G G T A A A C T G G A C A C C    (1191) 

   miRNA-STAT3-3    T G C A G A A T T T A G C C C A T G T G A    (1798) 

Table 1: Designed miRNAs against STAT3 
Shown sequences display only mature miR RNAi sequence of the Top Strand. 

Against STAT1: “e ue e ’ → ’  Top Strand                        (Position) 

   miRNA-STAT1-1    T T A T A T G C C A G T T G C A T G C G C     (231)   

   miRNA-STAT1-2    T T A T C C T G G A G A T T A C G C T T G      (608) 

   miRNA-STAT1-3    T G A C G T T G G A G A T C A C C A C G A    (1714) 

   miRNA-STAT1-4    T G A T G A A G C C C A T A A T G C A C C     (2077) 

Table 2: Designed miRNAs against STAT1 
Shown sequences display only mature miR RNAi sequence of the Top Strand. 

2.1.7. Plasmids 

2.1.7.1. Established plasmids 

Plasmid Source 

   pcDNATM6.2-GW/EmGFP-miR    Co. Life technologies (Carlsbad, CA, USA) 

   STAT3-C Flag pRc/CMV    Addgene plasmid 8722 (Cambridge, MA, USA) 

   OE STAT3 (IRAVp968E059D)    Co. Source BioScience (Nottingham, UK) 

   OE STAT1 (IRAVp968D078D)    Co. Source BioScience (Nottingham, UK) 

   pDONRTM221    Co. Life Technologies (Carlsbad, CA, USA) 

   pCAG-IRES-GFP Destination    Our laboratory 

   pCAG Destination    Our laboratory 

   pCMV-GFP    Our laboratory 

   pCAG-Mash1-IRES-DsRed    Our laboratory 

   pCAG-IRES-DsRed    Our laboratory 



60 Methods and Materials 

Table 3: Available plasmids 
Displayed are name of plasmid and corresponding source. 

2.1.7.2. Newly designed plasmids 

During the work on this doctoral thesis several new plasmids were designed (pCAG-EmGFP-

2miRNA-STAT3, pCAG-EmGFP-2miRNA-STAT1, pCAG-EmGFP-2miRNA-STAT1/3, pCAG-STAT3-

IRES-GFP and pCAG-STAT1-IRES-GFP). In order to control our molecular cloning and to show 

that pCAG-EmGFP-2miRNA-STAT3, pCAG-EmGFP-2miRNA-STAT1 and pCAG-EmGFP-2miRNA-

STAT1/3 indeed comprise the respective miRNA sequence we sequenced the appropriate part 

of them (for sequencing method see section 2.2.5.9.). Sequences of interest are marked in 

bold (respective miRNA sequence surrounded by an additional linker (TGCTG; before), a 

subsequent loop sequence (19 nucleotides from miR-155) and nucleotides 1-8 and 11-21 of 

the sense target sequence). 

pCAG-EmGFP-2miRNA-STAT3: 

ACCGTCGATCGTTTAAGGGAGGTAGTGAGTCGACCAGTGGATCCTGGAGGCTTGCTGAAGGCTGTA

TGCTGTTTCCATTCAGATCCTGCATGGTTTTGGCCACTGACTGACCATGCAGGCTGAATGGAAACAG

GACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCCTGGAGGCTTGCTGAAGGC

TGTATGCTGTTTCCATTCAGATCCTGCATGGTTTTGGCCACTGACTGACCATGCAGGCTGAATGGAA

ACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCTGGCCGCACTCGAG

ATATCTAGACCCAGCTTTCTTGTACAAAGTGGTTGATGGCCGCGTCGACAATCAACCTCTGGATTACA

AAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTT

TAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTT

GCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCT

GACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCC

CCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTG

TTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTG

TTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTT

CCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCG

GATCTCCCTTTGGGCCGCCTCCCCGCCTGGATT 
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pCAG-EmGFP-2miRNA-STAT1: 

ACGTCGATCGTTTAAGGGAGGTAGTGAGTCGACCAGTGGATCCTGGAGGCTTGCTGAAGGCTGTAT

GCTGTTATATGCCAGTTGCATGCGCGTTTTGGCCACTGACTGACGCGCATGCCTGGCATATAACAG

GACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCCTGGAGGCTTGCTGAAGGC

TGTATGCTGTGACGTTGGAGATCACCACGAGTTTTGGCCACTGACTGACTCGTGGTGCTCCAACGTC

ACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCTGGCCGCACTCGAG

ATATCTAGACCCAGCTTTCTTGTACAAAGTGGTTGATGGCCGCGTCGACAATCAACCTCTGGATTACA

AAATTTGTGAAAGATTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGATACGCTGCTT

TAATGCCTTTGTATCATGCTATTGCTTCCCGTATGGCTTTCATTTTCTCCTCCTTGTATAAATCCTGGTT

GCTGTCTCTTTATGAGGAGTTGTGGCCCGTTGTCAGGCAACGTGGCGTGGTGTGCACTGTGTTTGCT

GACGCAACCCCCACTGGTTGGGGCATTGCCACCACCTGTCAGCTCCTTTCCGGGACTTTCGCTTTCCC

CCTCCCTATTGCCACGGCGGAACTCATCGCCGCCTGCCTTGCCCGCTGCTGGACAGGGGCTCGGCTG

TTGGGCACTGACAATTCCGTGGTGTTGTCGGGGAAGCTGACGTCCTTTCCATGGCTGCTCGCCTGTG

TTGCCACCTGGATTCTGCGCGGGACGTCCTTCTGCTACGTCCCTTCGGCCCTCAATCCAGCGGACCTT

CCTTCCCGCGGCCTGCTGCCGGCTCTGCGGCCTCTTCCGCGTCTTCGCCTTCGCCCTCAGACGAGTCG

G 

pCAG-EmGFP-2miRNA-STAT1/3: 

CCGTCGATCGTTTAAGGGAGGTAGTGAGTCGACCAGTGGATCCTGGAGGCTTGCTGAAGGCTGTAT

GCTGTTTCCATTCAGATCCTGCATGGTTTTGGCCACTGACTGACCATGCAGGCTGAATGGAAACAG

GACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCCTGGAGGCTTGCTGAAGGC

TGTATGCTGTTTCCATTCAGATCCTGCATGGTTTTGGCCACTGACTGACCATGCAGGCTGAATGGAA

ACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCCTGGAGGCTTGCTGA

AGGCTGTATGCTGTTATATGCCAGTTGCATGCGCGTTTTGGCCACTGACTGACGCGCATGCCTGGCA

TATAACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCCTGGAGGCTTG

CTGAAGGCTGTATGCTGTGACGTTGGAGATCACCACGAGTTTTGGCCACTGACTGACTCGTGGTGC

TCCAACGTCACAGGACACAAGGCCTGTTACTAGCACTCACATGGAACAAATGGCCCAGATCTGGCCG

CACTCGAGATATCTAGACCCAGCTTTCTTGTACAAAGTGGTTGATGGCCGCGTCGACAATCAACCTCT

GGATTACAAAATTTGTGAAAGATTTGACTGGTATTCTTAACTATGTTGCTCCTTTTACGCTATGTGGAT

ACGCTGCTTTAATGCCTTTGTATCATGCTATTGCTTCCCGTAT 
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2.2. Methods 

2.2.1. Animals 

2.2.1.1. Mouse strains 

All animal procedures were carried out in accordance with the policies of the use of Animals 

and Humans in Neuroscience Research, revised and approved by the Society of Neuroscience 

and the state of Bavaria under licence number 55.2-1-54-2531-144/07. All efforts were made 

to minimize animal suffering and to reduce the number of animals used. Most experiments 

were conducted on C57BL/6J mice, a common inbred strain of laboratory mice, which was 

used at different ages (adult: of 8-10 weeks of age (20-25 g), postnatal days 1 and 5-7). 

Additionally the following mouse lines were used for experiments: 

- APP/PS1: this line carries the Swedish double mutation KM670/671NL of the amyloid 

precursor protein (APP) as well as the mutation L166P of presenilin 1 (PS1), both 

controlled by the neuronal promoter Thy1. 

- CK/p25: this line overexpresses an inducible form (TetOFF) of the p25-GFP fusion 

protein under the control of the neuronal promoter CAMKII (CK). 

Both strains were used and analyzed in collaboration with Dr. Gwendolyn Behrendt. 

2.2.1.2. Doxycyclin administration 

Ck/p25 mice received Doxycyclin drinking water prenatally via the mother and until six weeks 

of age. As Doxycycline is light sensitive it was applied in bottles impervious for light and was 

exchanged every second day. Mice were kept for another five weeks to allow p25 

overexpression.  
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2.2.1.3. Anesthesia 

In order to anesthesize mice prior to perfusion we used anesthesia solution. 5 μl per 1 g body 

weight were injected intraperitoneally via insulin needle. Animal reflexes (e.g. eye blink reflex 

and the reflex after pinching the hindpaw) were checked until they disappeared. In case of 

sustained appearance additional anesthesia of 20 μl was given. 

2.2.1.4. Surgical stab wound of adult animals 

After anesthesia mice were placed in a stereotactic mouse adaptor in a flat skull position. To 

get access to the brain the skin above the skull was cut with a razor blade and trepanated with 

a hand drill between bregma and lambda. Subsequently, a stab wound was made by a sharp 

and thin scalpel (Ophthalmic Corneal V-lance knife) in the right cerebral sensorimotor cortex 

at the following coordinates: anteroposterior (AP) = from -1,6 to -2,4, mediolateral (ML) = -

1,5, dorsoventral (DV) = -0,5 mm with Bregma as reference. Touching of the white matter was 

avoided. To lower infection rate and inflammation the bone was replaced and the skin incision 

was sutured with vicryl filament. Consecutively, mice were housed in individual Plexiglas cages 

with food and water ad libitum and kept in a 12 h light-dark cycle (room temperature = 22 ± 

1°C). 

2.2.1.5. Experimental focal cerebral ischemia of adult animals 

These experimente were performed in the lab of Prof. Martin Dichgans at the Insitute of 

Stroke and Dementia research (ISD) with the help of Rebekka Fischer, Christof Haffner, Jan 

Burk and Veronika Lellek. 

Adult C57BL/6J mice underwent occlusion of the medial cerebral artery (MCA) as described 

previously (Vosko et al., 2006). Briefly, mice were anesthetized with isoflurane inhalation 

(initiation by 5 % isoflurane (< 1 min) and maintenance by 2 % isoflurane in a mixture of 

70 %/30 % of N2O/O2). Body temperature was maintained between 37 °C and 38 °C with a DC 

temperature regulation system (FHA, Bowdoin, USA). After anesthesia a fiberoptic probe 

(Perimed, Järfäla, SE) was placed over the MCA territory (+ 2 mm posterior and + 6 mm lateral 

to bregma). The regional cerebral blood flow (rCBF) was recorded in all animals by laser 
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Doppler flowmetry (Perimed, Järfäla, SE). Focal cerebral ischemia was induced by occlusion of 

the MCA using an intraluminal filament technique. After ventral midline neck incision, the left 

common and external carotid arteries were ligated. The internal carotid artery (ICA) was 

temporarily clipped with a microvascular clip (Aesculap, D). A silicon-coated 8-0 nylon 

monofilament (Ethicon, Johnson & Johnson, Norderstedt, D) was gently advanced into the ICA 

until resistance was felt. Successful occlusion of the MCA reduced the rCBF baseline by > 70%. 

After induction of ischemia, laser Doppler probes were removed and the mice were returned 

to their cages and allowed to wake up. During the 1 to 2 hours of ischemia cages were placed 

in an incubator (Babytherm 4200, Drägerwerk AG Lübeck, Germany) to keep the body 

temperature stable. After one to two hours animals were again anesthetized and the filament 

was removed. Animals were kept for three to four days. Between the different animal subsets 

that underwent either one or two hours of ischemia and were kept for three or four days I did 

not recognize significant difference and therefore pulled them together for analysis.  

Animal care and all experimental procedures were performed in strict accordance to the 

German and National Institutes of Health animal legislation guidelines and were approved by 

the local animal care and use committees. 

2.2.2. Western blot 

2.2.2.1. Tissue collection and lysis 

Dissection of brain tissue was conducted in HBSS medium. After careful removal of the 

meninges the brain was cut coronally in 3-4 slices. Hind- and forebrain were discarded. By 

putting the slices in a plane view in the dish we were able to dissect the grey matter without 

any contact to the white matter. Tissue pieces from both hemispheres (ipsi- and contralateral 

to the lesion) were then collected in defined 1,5 ml eppendorf tubes and immediately frozen 

in liquid nitrogen followed by storage at -80 °C.   

For whole cell lysis cortical tissue pieces were defrosted to 4 °C and 200 μl of hole ell l sis 

buffer was added. After transfer to a dounce tissue grinder the tight pestle was repeatedly 

moved up and down (10-15 times) to homogenize the tissue. After repeated sonication with 

a sonotrode (10 s, 20 s, 20 s) at 10 % intensity the samples were left on ice for 15 minutes to 
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be subsequently centrifuged on 14000 g for 15 minutes at 4 °C. The supernatant was collected 

and kept at -80 °C until further processing. 

For subcellular fractionation a protocol by Na et al. (Na et al., 2007) was adopted. Therefore 

tissue pieces were also defrosted to 4 °C and 200 μl of LSB was added. After transfer to a 

dounce tissue grinder and douncing for 20 times 1 % of NP-40 was added. After keeping the 

samples for 15 minutes on ice they were again dounced for 20 times. After another 15 minutes 

on ice they were centrifuged for 3500 RPM for 5 minutes at 4 °C. From the resulting suspension 

the upper 150 μl e e take  as p eli i a  tosoli  f a tio , the e t  μl e e dis a ded 

and the pellet was treated as preliminary nuclear fraction. The final cytosolic fraction evolved 

from the supernatant of the preliminary cytosolic fraction after centrifuging it at 14000 RPM 

for 1 hour at 4 °C (separation of membrane pellet and cytosolic fraction) and was kept at -

80 °C until further processing. The preliminary nuclear fraction was processed the following: 

addi g  μl L“B, esuspension, centrifuging at 3500 RPM for 5 minutes at 4 °C, discarding 

the uppe   μl, addi g  μl to the pellet, resuspension, centrifuging at 3500 RPM for 5 

i utes at  °C a d dis a di g as u h as possi le ithout tou hi g the pellet.  μl of H“B 

and 1 % NP-40 were added to the pellet, resuspended and kept on ice for 45 minutes. After 

another centrifugation step of 14000 RPM at 4 °C for 5 minutes the supernatant of the 

resulting solution built up the final nuclear fraction which was kept at -80 °C until further 

processing.   

2.2.2.2. Protein quantification and sample preparation 

Protein quantification was conducted with the BCA (bicinchoninic acid) assay. Shortly, this 

biochemical method displays a colorimetric assay measuring the protein concentration via 

absorption (wavelength 562 nm) of bicinchoninic acid chelating with a Cu+ ion which evolved 

by reduction of Cu2+ by peptide bonds under alkaline conditions (also called Biuret reaction). 

Therefore the color range from green to purple correlates with the quantity of peptide bonds. 

A o di g to the a ufa tu e ’s p oto ol eage ts B a d A f o  the BC assa  kit e e i ed 

1:50 a d  μl l sate as added to  l eage t i . Afte  i u atio  at  °C for 30 minutes 

samples were analyzed using a spectrophotometer. Different BSA concentrations were used 

as protein standard. According to the measured protein concentrations probes were adjusted 
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to 1  μg. Thereby we ensured the loading of equal amounts of protein. After adding 4x loading 

dye, probes were heated at 95 °C for 5 minutes and subsequently cooled on ice for another 

five minutes.  

2.2.2.3. Gel preparation 

Running and stacking gel solutions were mixed using the above described protocol and 

chemicals. First, glass plates were filled with the running gel solution at a level of 75 %. Water 

diluted isopropanol was used to remove bubbles and was washed away again after 

polymerization of the running gel solution (approx. 30 minutes). Stacking gel solution and a 

ridge were added on top and left for another 30 minutes for polymerization. Finally glass 

plates containing the SDS-polyacrylamide gel were transferred to the electrophoresis chamber. 

2.2.2.4. Protein electrophoresis 

Protein samples were loaded in the SDS-polyacrylamide gel and run with SDS-PAGE running 

buffer (electrophoresis buffer 1x) at a voltage of 80 – 120 V. Under these conditions sampled 

proteins get surrounded by negatively charged SDS according to their size. Smaller proteins 

migrate faster than larger proteins to the positively charged electrode, which allows 

separation of proteins by molecular weight.  

2.2.2.5. Transfer 

To make proteins accessible to antibodies they have to be transferred from the gel to a PVDF-

membrane. For preparation, the membrane needs to be incubated in methanol followed by 

incubation in transfer buffer. Also filter papers were shortly incubated in transfer buffer. 

Eventually, the Trans-Blot SD Semi-Dry Transfer Cell system was used to transfer proteins at a 

voltage of 15 V for 42 minutes. From anode to cathode a defined order was applied (anode -> 

filter paper -> membrane -> gel -> filter paper -> cathode). 
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2.2.2.6. Signal detection 

Chemiluminescent detection was used to analyze proteins of interest. Therefore, membranes 

were first blocked with 5 % (w/v) milk powder and afterwards incubated with the specific 

primary antibody (in 5 % (w/v) BSA) at 4 °C overnight. Used antibodies include:  

- Anti-STAT3   (rabbit, 1:1000, Cell Signaling, Beverly, MA, USA) 

- Anti-pSTAT3   (rabbit, 1:1000, Cell Signaling, Beverly, MA, USA) 

- Anti-STAT5   (rabbit, 1:500, Santa Cruz Biotechnology, CA, USA) 

- Anti-pSTAT5  (rabbit, 1:500, Cell Signaling, Beverly, MA, USA) 

- Anti-STAT5a  (rabbit, 1:500, Santa Cruz Biotechnology, CA, USA) 

- Anti-pSTAT1   (rabbit, 1:1000, Cell Signaling, Beverly, MA, USA) 

- Anti-GFAP  (rabbit, 1:2000, Sigma-Aldrich, St. Louis, MO, USA) 

- Anti-Nucleoporin (mouse, 1:1000, BD, Franklin Lakes, NJ, USA) 

- Anti-Enolase  (goat, 1:200, Santa Cruz Biotechnology, CA, USA) 

- Anti-GAPDH  (mouse, 1:7500, Abcam, Cambridge, UK) 

Anti-Glyceraldehyd 3-phosphate dehydrogenase (GAPDH) was used as loading control for 

whole cell lysates. Anti-Enolase and anti-Nucleoporin were used as cytosolic and nuclear 

loading control, respectively, in subcellular fractionated samples. After washing steps with 

TBS-T, horseradish peroxidase labeled secondary antibodies (1:10000, GE Healthcare, 

Wikesha, WI, USA; in 5 % (w/v) milk powder) were applied. These were detected by ECL 

Western Blotting Detection (Merck Millipore, Billerica, MA, USA). The abundance of the band 

was quantified using Image J 1.42q (National Institute of Health, USA) software after 

background correction. Protein amounts were normalized to loading controls. 

2.2.2.7. Membrane stripping 

For reprobing membranes, primary and secondary antibodies were removed. Therefore, 

membranes were kept in stripping buffer for 30 minutes at approx. 60 °C in a water bath. 

Extensive washing with TBS-T was followed by control signal detection. 
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2.2.2.8. Quantitative analysis of immunoblotting 

First, western blot membranes were scanned. Then by using Image J 1.42q the grey pixel value 

of the respective band was quantified (by rectangular selections) and expressed as an arbitrary 

unit. The ipsilateral fraction was calculated in relation to the contralateral fraction, which was 

set as 100 %. Consequently, the esults a e displa ed as elati e de sities . For each 

quantification, values are given as mean ± SEM. For detection of statistical significance, data 

were subjected to a 2-tailed t-test for independent samples with assumed same variances 

using SPSS 21 (IBM Corp., Armonk, NY, USA). Differences were considered statistically 

significant when the probability value was < 0.05. 

2.2.3. Histological procedures 

2.2.3.1. Perfusion, brain sectioning, storage of sections 

Adult animals were deeply anesthetized according to our anesthesia protocol (see 2.2.1.5.). 

Subsequently, they were transcardially perfused with PBS 1x followed by 4 % PFA (100 

ml/animal). Brains were postfixed in the same fixative for at least 2 h to maximal overnight at 

4 °C. Brains were cryoprotected by saturation in 30 % sucrose followed by washing in PBS and 

cut at a Cryostat (Kryostat CM 3050S) with a thi k ess of  μ . Sections were stored at -20 °C 

in storing solution until further processing. 

2.2.3.2. Immunohistochemistry 

Sections were first pretreated in 0,25 % Triton X-100 in PBS for 30 min, followed by incubation 

in blocking solution (2 % (w/v) BSA in PBS) for 60 min. Primary antibodies were incubated on 

specimen overnight at 4 °C in 2 % BSA, 0,1 % Triton X-100 in PBS. The following primary 

antibodies were used:  

- Anti-pSTAT3 (rabbit, 1:333, Cell Signaling, Beverly, MA, USA) 

- Anti-STAT3 (rabbit, 1:200, Cell Signaling, Beverly, MA, USA) 

- Anti-GFAP (mouse IgG1, 1:500, Sigma-Aldrich, St. Louis, MO, USA) 

- Anti-NeuN (mouse IgG1, 1:100, Merck Millipore, Billerica, MA, USA)  



Methods and Materials 69 

- Anti-pSTAT1 (rabbit, 1:333, Cell Signaling, Beverly, MA, USA) 

- Anti-STAT5 (rabbit, 1:100, Santa Cruz Biotechnology, CA, USA) 

- Anti-pSTAT5 (rabbit, 1:100, Cell Signaling, Beverly, MA, USA) 

- Anti-STAT5a (rabbit, 1:100, Santa Cruz Biotechnology, CA, USA). 

After extensive washing in PBS, sections were incubated with appropriate species- or subclass-

specific secondary antibodies conjugated to: 

- CyTM3 (1:500, Dianova, Hamburg, D) 

- CyTM5 (1:500, Dianova, Hamburg, D) 

- Alexa Fluor 488 (1:500, Life technologies, Carlsbad, CA, USA) 

- FITC (fluorescein isothiocyanate, 1:500, Dianova, Hamburg, D) 

- TRITC (tetramethyl rhodamine isothiocyanate, 1:500, Dianova, Hamburg, D) 

- DyLight 649 (1:500, Dianova, Hamburg, D)  

for 2 h in the dark at room temperature. After extensive washing in PBS and incubation with 

DAPI (1:1000, 5 minutes) sections were mounted on glass slides and embedded in Aqua-

Polymount and covered by a glass coverslip. Specific labeling was checked by omitting the 

primary antibody. 

For pSTAT3, STAT3, STAT5, STAT5a, pSTAT5 and pSTAT1 staining, pretreatment was needed 

to better access nuclear proteins. Therefore, sections were incubated in sodium citrate buffer 

at 95 °C in a water bath for 20 minutes. Afterwards, specimens were carefully rinsed before 

incubation with the primary antibody. Rinsing in TBS instead of PBS as diluent was used for 

pSTAT3, pSTAT1 and pSTAT5 to avoid staining interactions with phosphate molecules from 

PBS. Double-labelling was conducted by first, staining of no-treatment-necessary antibodies 

followed by 7 minutes of post-fixation with 4 % PFA followed by pretreatment for the second 

primary antibody.  

2.2.3.3. Microscopic analysis 

Stainings were first evaluated with an epifluorescence microscope (BX61, Olympus) equipped 

with the appropriate filter sets and then analysed in detail with a laser-scanning confocal 

microscope (LSM710, Carl Zeiss) using the same settings for equivalent stainings. Z-stacks of 

digital images were taken using the ZEN software (Carl Zeiss). Subsequently, single confocal 
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images were selected from the Z-stacks. Alternatively, the Z-stacks were merged in one picture 

using the maximum intensity projection function provided by the above mentioned software. 

2.2.3.4. Cell counts and statistical analysis 

Cell counts and representative pictures for figures were performed by taking pictures of 

several randomly selected views per cover slip analyzed by means of a Zeiss LSM 710 confocal 

microscope using a 10X, 25X or 40X objective. Subsequently, cells were quantified using Image 

J 1.42q (National Institute of Health, USA) software. For each quantification, values are given 

as mean ± SEM. Cell counting data were subjected to a 2-tailed t-test for independent samples 

with assumed same variances for statistical significance using SPSS 21 (IBM Corp., Armonk, NY, 

USA). Differences were considered statistically significant when the probability value was < 

0.05. In diagrams, significance is displayed by a star. 

2.2.4. Cell culture 

2.2.4.1. Cell strains and primary cultures 

For culturing postnatal astroglia we followed the procedure described previously by Heins et 

al. (Heins et al., 2002). After removal of the meninges, grey matter tissue from P1 and P5-P7 

cerebral cortex of C57BL/6J mice was dissected and dissociated mechanically. Subsequently, 

cells were centrifuged for 5 min at 1000 RPM, re-suspended, and plated in astrocytes 

proliferation medium. Contaminating oligodendrocyte precursor cells were removed by 

brusquely shaking the culture flasks several times. Cells were passaged after one week using 

trypsin/EDTA and plated on poly-D-lysine glass coated coverslips at a density of 60.000 cells 

per coverslip in the same medium. The vast majority of the cells (> 90%) in these cultures were 

positive for GFAP as previously described (Berninger et al., 2007). 

HEK293T cells display a widely used laboratory cell strain. They were cultured in HEK medium 

and splitted using trypsin to 750.000 cells per well (6-well-plate) or 50.000 cells per well (24-

well- plate), respectively. 
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Astrocyte-enriched culture of lesioned mouse cortices was generated by basically applying the 

protocol used for postnatal astroglia. Another centrifugation mode was used (1400 RPM, 5 

minutes) and in addition to mechanical dissection, hyaluronidase and trypsin were used for 

dissociation. 

2.2.4.2. Transfection 

Transfection via DNA-liposome complexes was performed in cortical astroglia and HEK293T 

cells. 

Passaged cortical astroglia were plated on poly-D-lysine coated 24 well tissue plates. DNA-

liposome complexes were prepared in Optimem medium using the plasmids pCAG-Mash1-

IRES-DsRed, pCMV-STAT3C, pCAG-EmGFP-2miRNA-STAT3, pCAG-EmGFP-2miRNA-STAT1, 

pCAG-EmGFP-2miRNA-STAT1/3, pCAG-STAT3-IRES-GFP and pCAG-STAT1-IRES-GFP or the 

control plasmids pCAG-IRES-DsRed, pCMV-GFP and Lipofectamine 2000 as cationic liposome 

formulation. Two hours after plating, astrocyte cultures were exposed to DNA-liposome 

complexes at a concentration of 0.5 μg DNA per 400 μL of Optimem medium for 4 hours. 

Subsequently, the medium was replaced by astrocyte differentiation medium and the 24 well 

tissue plates were kept in an incubating chamber for either 2 or 9 days. 

For HEK293T cells nearly the same method was applied. Here, we used 6 well tissue plates and 

 μg DNA per 1200 μL of Optimem medium. Cells were kept for two days before they were 

collected for western blot (see 2.2.4.4.). 

2.2.4.3. Immunocytochemistry 

For immunocytochemistry, cultures were fixed in 4 % paraformaldehyde (PFA) in phosphate 

buffered saline (PBS) for 15 min at room temperature. For pSTAT3 staining we applied 

methanol pretreatment (10 minutes at -20 °C). Cells were then incubated in blocking solution 

for 60 minutes. As already described for immunohistochemistry, staining procedures for 

phosphorylated proteins were conducted with TBS instead of PBS. Primary antibodies were 

incubated on specimen overnight at 4°C in 2 % BSA, 0,5 % Triton X-100 in PBS (TBS). The 

following primary antibodies were used:  
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- Anti-GFP (green fluorescent protein, chicken, 1:2000, Aves Labs, Tigard, OR, USA) 

- Anti-GFAP (rabbit, 1:4000, DakoCytomation, Hamburg, D) 

- Anti-RFP (red fluorescent protein, rabbit, 1:500, Merck Millipore, Billerica, MA, USA) 

- Anti-RFP (rabbit, 1:2000, Rockland, Gilbertsville, PA, USA) 

- Anti-βIII-tubulin (mouse IgG2b, 1:500, Sigma-Aldrich, St. Louis, MO, USA)  

- Anti-pSTAT3 (rabbit, 1:250, Cell Signaling, Beverly, MA, USA) 

- Anti-STAT3 (mouse, 1:1000, Cell Signaling, Beverly, MA, USA) 

- Anti-O4 (mouse IgM, 1:200, Sigma-Aldrich, St. Louis, MO, USA). 

After extensive washing in PBS, cells were incubated with appropriate species- or subclass-

specific secondary antibodies conjugated to: 

- CyTM3 (1:500, Dianova, Hamburg, D) 

- CyTM5 (1:500, Dianova, Hamburg, D) 

- DyLight 649 (1:500, Dianova, Hamburg, D) 

- Alexa Fluor 488 (1:500, Life Technologies, Carlsbad, CA, USA) 

- FITC (fluorescein isothiocyanate, 1:500, Dianova, Hamburg, D) 

- TRITC (tetramethyl rhodamine isothiocyanate, 1:500, Dianova, Hamburg, D)  

for 2h in the dark at room temperature, followed by extensive washing in PBS and incubation 

with DAPI (5 minutes, 1:1000). Coverslips were finally mounted onto a glass slide with an anti-

fading mounting medium. 

2.2.4.4. Western blot 

To collect cells for western blot experiments, cells were rinsed with PBS and incubated with 

RIPA buffer for 2 minutes. Subsequently, cells were scratched intensively, transferred to an 

Eppendorf and centrifuged at 14000 RPM at 4 °C for 30 minutes. Eventually, the pellet was 

discarded and the sample kept until further processing at -80 °C. Protein concentration was 

measured according to the aforementioned protocol (2.2.2.2.) and western blot technique 

conducted (2.2.2.). 
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2.2.4.5. Neurosphere assay 

For evaluation of the stem cell capacity in vitro a neurosphere assay of reactive tissue after 

cortical injury was applied (for scientific explanation see subchapter 1.4.2.1.). Therefore, after 

removal of meninges, cerebral cortices of MCAo mice were dissected in HBSS containing 10 

mM Hepes. Forceps were used to cut off the white matter. Tissue of interest was collected in 

Solution 1, mechanically triturated and subsequently incubated for 30 minutes at 37 °C in a 

mix with dissociation medium. After stopping the enzyme reaction with Solution 3, cells were 

passed through a 70 μm-strainer. The resulting mix was centrifuged at 1500 RPM for 5 minutes. 

Afterwards, the pellet was resuspended in solution 2 and again centrifuged at 2000 RPM for 

10 minutes. The suspension of the pellet in Solution 3 was gently applied on top of Solution 3 

and afterwards centrifuged at 1500 RPM for 7 minutes. The pellet was resuspended in 

Neurosphere medium and kept in a flask. First, small neurospheres were picked and 

transferred to PDL-coated coverslips in a 24-well-plate in differentiation medium. After approx. 

8 days, neurospheres were fixed with 4 % PFA for 15 minutes. Immunostaining was conducted 

as described above (2.2.4.3.). 

2.2.5. Molecular cloning 

2.2.5.1. Restriction digestion of DNA 

A o di g to the a ufa tu e ’s p oto ol (Life Technologies, Carlsbad, CA, USA) a typical 

reaction was conducted as follows: 

 μg o   μg  DNA of MaxiPrep or MiniPrep 

,  μl 10x reaction buffer 

,  μl 100x BSA 

 μl Restriction enzyme mix 

Ad  μl H2Odd 

The resulting mix was incubated at 37 °C for 1 hour. Analysis of DNA fragments was performed 

using agarose gels (see 2.2.5.4.). 
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2.2.5.2. Analysis of DNA fragments 

Analysis of DNA fragments was performed according to (Meyers et al., 1976). An agarose gel 

was prepared by solubilizing agarose in 1x TAE at a percentage of 1-2 %, depending on DNA 

size. Dissolving was performed by boiling in a microwave. After administration of ethidium 

bromide (final concentration approx. 1 μg/ml), the solution was poured into a gel chamber 

and cooled down with a ridge. Samples were supplemented with DNA sample buffer and 

together with 1 kb DNA ladder loaded. An approximate voltage of 80-90 V was applied. When 

separated, the samples were photographed with the Gel imaging system GelDocTM XR.  

When separation was performed for further ligation of fragments, fragments were cut out 

using a fluorescent table (UV light at 254 nm) and purified with the NucleoSpin Extract II kit. 

A o di g to the a ufa tu e ’s p oto ol, weight-adapted NT buffer was added, the sample 

heated to 50 °C for approx. 5 minutes and centrifuged. After a washing step the DNA was 

diluted in 30 μl H2Odd. 

2.2.5.3. Ligation 

A o di g to the a ufa tu e ’s p oto ol (Life Technologies, Carlsbad, CA, USA) a typical 

ligation reaction was prepared as follows: 

 μl Insert DNA 

 μl Vector DNA 

 μl T4 DNA Ligase  U/μl  

,  μl 10x T4 DNA Ligation Buffer 

ad  μl H2Odd 

Generally, insert DNA amount exceeded vector DNA by 3-10 fold. The mix incubated at room 

temperature for 1 hour. 
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2.2.5.4. Preparation of bacterial agar plates 

For agar plates, 7,5 g of Bacto-Agar were mixed in 500 ml LB. After autoclaving and a cooling 

step, the appropriate antibiotic was added in a prudential concentration. The resulting mix 

was poured in 10 cm culture dishes, cooled down to room temperature and stored at 4 °C. 

2.2.5.5. Transformation of chemo-competent E.coli 

Transformation of chemo-competent TOP10 E.coli was performed according to (Hanahan, 

1983). Shortly, 100 ng of DNA were added to 50 μl of bacteria and left for 30 minutes on ice. 

Consecutively, bacteria were heated to 42 °C for 40 seconds and afterwards again kept on ice 

for another 2 minutes. 250 μl of SOC-medium (including 100 μl 1 M Glucose, 125 μl 1 M MgSO4 

and 125 μl 1 M MgCl2) were added and the sample incubated at 37 °C for 1 hour in a shaker. 

Finally, different amounts (50 μl or 250 μl) were plated on bacterial agar plates and incubated 

overnight at 37 °C. 

2.2.5.6. Bacterial liquid cultures 

A single colony was inoculated in 2-3 ml LB medium or 200 ml LB medium (including the 

appropriate antibiotic) for small scale DNA preparation (MiniPrep) or large scale DNA 

preparation (MaxiPrep), respectively and incubated overnight at 37 °C under vigorous shaking. 

2.2.5.7. Small scale DNA preparation (MiniPrep) 

Small scale DNA preparation (1-5 μg DNA) was conducted using the Nucleospin Plasmid, 

Plasmid DNA purification kit. 2 ml of small scale bacterial liquid cultures were centrifuged at 

6000 RPM for  i utes. A o di g to the a ufa tu e ’s p oto ol, the pellet was 

resuspended in 250 μl of Buffer A1. After lysis of bacteria, DNA was separated by 

centrifugation and washed repeatedly until resuspension in 30 μl of H2Odd. Correctness of the 

plasmid was examined with restriction digestion and subsequent analysis on agarose gels. 
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2.2.5.8. Large scale DNA preparation (MaxiPrep) 

Large scale DNA preparation (200-500 μg DNA) was conducted using the PureLink HiPure 

Plasmid MaxiPrep kit (Life technologies, Carlsbad, CA, USA). Accordingly, the large scale 

bacterial liquid culture was centrifuged at 6000 g for 10 minutes. Then, cells and DNA were 

further processed a o di g to the a ufa tu e ’s p oto ol.  

2.2.5.9. Sequencing of DNA 

DNA of interest was sequenced by Eurofins MWG Operon, Ebersberg, D. 

2.2.5.10. Design of miRNAs against STAT3 and STAT1 

As used before in our laboratory and proved to be efficient, we designed miRNAs against 

STAT3 and STAT1 using the Invitrogen BLOCK-iTTM RNAi Designer 

(http://rnaidesigner.invitrogen.com/rnaiexpress/). The manufacturer guaranteed that of two 

ordered oligonucleotides at least one will give greater than 70 % knockdown of the target RNA 

given a transfection rate of at least 80 % (http://rnaidesigner.invitrogen.com/ 

rnaiexpress/setOption.do?designOption=mirna&pid=-8000760282235669486). The strategy 

for the selection of the appropriate miRNAs is presented in subchapter 3.3.1.1. 

2.2.5.11. Virus production 

As described in subchapter 3.3.1.3., we first produced a plasmid containing the retroviral 

backbone using the Gateway Technology (Life Technologies, Carlsbad, CA, USA). For all steps 

we followed exclusively the protocol described by the company. Subsequently, we performed 

the viral production by first preparing the DNA using the Caesium chloride gradient method, 

then transfecting HEK293T cells with the designated viral packaging vector and expression 

plasmid and finally using ultracentrifugation in order to separate cells and viral particles and 

to remove debris and aggregates. 

http://rnaidesigner.invitrogen.com/rnaiexpress/
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3. Results 

The results obtained during this medical thesis work have been published or are under way to 

be submitted. The following paragraphs shortly indicate my contributions to these different 

studies. 

First, the results addressing the overall goal of this dissertation (see subchapter 1.7.) will be 

submitted for publication in the foreseeable future with the title Role of “TAT  signaling in 

the inhibition of neuronal reprogramming of reacti e ast o tes   Tiedt “, Gas ó  S, Haffner 

C, Dichgans M, Götz M* and Heinrich C* (* These authors contributed equally to this work.). 

Parts of this thesis work have already been published. Recently, our laboratory was able to 

show that invasive brain injuries elicit a higher stem cell response of reactive astrocytes, 

triggered by elevated levels of Shh, compared to non-invasive injuries (Sirko et al., 2013). I was 

involved in the experiments of neurosphere generation after MCAo (see Sirko et al., 2013, Fig. 

3b) and determination of the activation of STAT3 signaling after different injury conditions 

(see Sirko et al., 2013, Suppl. Fig. 4a and b; or this thesis Fig. 33). 

Next, I contributed to a study of our laboratory showing that cortical astroglia are able to 

undergo conversion into synapse-forming functional neurons induced by forced expression of 

neurogenic fate determinants (Heinrich et al., 2010). In particular, I was involved in showing 

that fate-mapped astroglia from the postnatal cortex transduced with control retrovirus 

exhibit glial morphology (see Heinrich et al., 2010 Fig. 3b). Due to stringency reasons, this work 

has not been included in this thesis. 

3.1. Expression of STAT3 and activation of STAT3 signaling in the injured 

cerebral cortex 

The main aim of this work was to investigate whether STAT signaling influences 

reprogramming of reactive astrocytes into neurons. Therefore, as a first step, we examined 

whether STAT signaling, in particular STAT3 signaling, is activated over time in reactive 

astrocytes in different injury models, such as MCAo and stab wound. 
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3.1.1. Expression analysis of GFAP and STAT3 over a time course of seven days after stab 

wound injury 

As reviewed in subchapter 1.6.3.2. the characteristics of STAT3 expression remain 

controversial after experimental stroke conditions and have not been described yet in the stab 

wound model. Therefore, we first aimed at studying the pattern of STAT3 and GFAP expression, 

the latter being an indicator of reactive astrogliosis, over a time course of seven days following 

a stab wound injury. In this initial set of experiments we performed a western blot analysis at 

one, three, five and seven days post stab wound (dpSW) (n = 1 mouse for each time point, Fig. 

16). We compared the cortical hemisphere where the stab wound was inflicted (ipsilateral 

site) with the contralateral, non-injured cortical hemisphere. As no overt differences could be 

observed between the contralateral hemispheres, they were pooled for this analysis and 

loaded in one lane (lane: contra). 

 

Fig. 16: Expression pattern of STAT3 and GFAP over seven days after stab wound 
Representative western blot is shown. Independent tissues of the ipsilateral cortices of stab wounded 

mice at 1, 3, 5 and 7 dpSW were loaded (n = 1 for each time point). Contralateral cortices were mixed 

and loaded in one lane. Expression levels of STAT3 and GFAP were determined. GAPDH signals were 

used as loading controls. 

The e p essio  le els of oth isofo s, α a d β, of “TAT  sho ed a  i ease at 3 and 5 dpSW 

compared to contralateral levels while no difference was observed at 1 dpSW. This was 

accompanied by an increase in expression of different GFAP isoforms already detectable at 3 

dpSW and massive at 5 dpSW, in agreement with previous observations (Robel et al., 2011, 
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Hozumi et al., 1990). While STAT3 decreased thereafter and returned to control expression 

levels by 7 dpSW, GFAP expression remained very high at 7 dpSW.  

Taken together, although using one mouse per time point, these data suggested that the 

protein levels of both STAT3 and GFAP increased concomitantly in the injured cortex at 3 and 

5 days following a stab wound lesion. Based on these data we mainly focused on the 3 and 5 

dpSW time points for further analysis. 

3.1.2. Analysis of STAT3 expression and activation after stab wound using subcellular 

fractionated cortical extracts 

As reviewed in subchapter 1.6.2. the JAK/STAT signaling is mediated by the translocation of 

phosphorylated STAT dimers into the nucleus to exert their function as transcriptional 

activators. Whole cell extracts, which were used so far, would not be sufficient to follow this 

process as nuclear and cytoplasmic fractions cannot be separated. In order to demonstrate 

changes in protein levels between nuclear and cytoplasmic fractions, subcellular fractionation 

had to be applied to separate the nuclei and the cytoplasms. 

3.1.2.1. Protocol for subcellular fractionation 

Here we adjusted a protocol that was previously described by Na et al. (Na et al., 2007). In 

brief we changed the buffers that were used and adopted centrifugation steps to our needs. 

Furthermore, we added another cleaning step in order to get correctly separated fractions 

(see subchapter 2.2.2.1.). We used Enolase, a phosphopyruvate hydratase involved in 

glycolysis, and Nucleoporin p62, a nuclear pore complex protein, as loading controls for the 

cytoplasmic and nuclear fration, respectively, as previously described (Na et al., 2007). 

3.1.2.2. Expression pattern of STAT3 after stab wound 

Applying subcellular fractionation would now make it feasible for us to demonstrate not only 

possible changes of STAT3 protein levels in the cytoplasmic and nuclear fractions, but also 

allow us to following the process of nuclear translocation of STAT3. Therefore, a western blot 

analysis of subcellular fractionated brain extracts collected at 3, 5 and 7 dpSW was conducted 
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(n = 3 mice for each time point, Table 4, Fig. 17). First, immunoblotting for enolase revealed 

the presence of this protein only in the cytoplasmic fraction of the brain extracts and its virtual 

absence in the nuclear fraction. Nucleoporin opposed this pattern by being only present in the 

nuclear fraction. This shows that these two fractions were properly separated by our 

subcellular fractionation technique. 

 

Fig. 17: Expression of STAT3 and pSTAT3 in cytoplasmic and nuclear fractions at 3, 5 and 

7 dpSW 
For each time point a representative western blot from one mouse is shown. Tissues of the contra- and 

ipsilateral cortices of stab wounded mice at three, five or seven days were loaded. Expression levels of 

STAT3 and pSTAT3 were determined. Enolase and nucleoporin signals were used as cytoplasmic and 

nuclear loading controls, respectively. 

Second, we found that at all time points investigated and independent of the hemisphere, the 

expression levels of STAT3 were significantly higher in the cytoplasmic fractions compared to 

the corresponding nuclear fractions (Fig. 17). 

Next, we compared the side ipsilateral to the lesion with the contralateral side and analyzed 

cytoplasmic and nuclear fractions as well as the total samples (cytoplasmic plus nuclear 

fractions) (Table 4). For each analysis we first normalized contra- and ipsilateral STAT3 signals 

to nucleoporin and/or enolase signals, then set the STAT3 expression level in the contralateral 

fraction as 100 % and calculated the expression level in the ipsilateral fraction in relation to 

the contralateral fraction (see legend of Table 4 and subchapter 2.2.2.8. for more detailed 

description of western blot quantification). 

Fractions:  Contralateral Ipsilateral P-value Significance 

   3 dpSW  Cytoplasmic: 100,0 ± 0,0 % 174,2 ± 15,7 %    0,009 ** 

 Nuclear: 100,0 ± 0,0 % 178,9 ± 22,2 % 0,023 * 

 Total: 100,0 ± 0,0 % 170,3 ± 15,9 % 0,011 * 
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   5 dpSW Cytoplasmic: 100,0 ± 0,0 % 163,7 ± 31,3 % 0,111 - 

 Nuclear: 100,0 ± 0,0 % 131,8 ± 8,9 % 0,023 * 

 Total: 100,0 ± 0,0 % 151,7 ± 20,2 % 0,063 - 

   7 dpSW Cytoplasmic: 100,0 ± 0,0 % 105,0 ± 7,6 %    0,546 - 

 Nuclear: 100,0 ± 0,0 % 54,8 ± 17,1 %    0,057 - 

 Total: 100,0 ± 0,0 % 94,2 ± 9,0 % 0,554 - 

Table 4: Expression of STAT3 at 3, 5 and 7 dpSW in contralateral versus ipsilateral cortical 

hemispheres 
Relative densities of western blot bands (antibody against STAT3) of cytoplasmic and nuclear fractions 

are shown as mean ± SEM for the contra- and ipsilateral hemispheres at 3, 5 and 7 dpSW (n = 3 for each 

time point) after quantification with Image J 1.42q by using densitometric analysis (see subchapter 

2.2.2.8. for more detailed description of western blot quantification). P-values for the determination of 

significant differences between cytoplasmic and nuclear fractions were calculated using a 2-tailed t–test. 

Different levels of significance are indicated (** p < 0,01, * p < 0,05). 

Here we found that STAT3 levels were significantly higher in the total ipsilateral fraction at 

three days compared to the contralateral fraction (170,3 ± 15,9 % versus 100,0 ± 0,0 %, p = 

0,011, n = 3 animals, Fig. 18A), but not anymore at five days (151,7 ± 20,2 % versus 100,0 ± 

0,0 %, p = 0,063) and seven days after stab wound (94,2 ± 9,0 % versus 100,0 ± 0,0 %, p = 0,554, 

n = 3 animals for each time point, Table 4, Fig. 18A). In the cytoplasmic ipsilateral fractions 

STAT3 levels were significantly elevated compared to the cytoplasmic contralateral fractions 

at three days after stab wound (174,2 ± 15,7 % versus 100,0 ± 0,0 %, p = 0,009) but again not 

anymore at 5 dpSW (163,7 ± 31,3 % versus 100,0 ± 0,0 %, p = 0,111) and 7 dpSW (105,0 ± 7,6 % 

versus 100,0 ± 0,0 %, p = 0,546; n = 3 for each time point, Table 4, Fig. 18B). More importantly, 

at three and five days after stab wound, the ipsilateral nuclear fractions contained significantly 

more STAT3 than the contralateral nuclear fractions (3 dpSW: 178,9 ± 22,2 % versus 100,0 ± 

0,0 %, p = 0,011; 5 dpSW: 131,8 ± 8,9 % versus 100,0 ± 0,0 %, p = 0,023, n = 3 for each time 

point, Table 4, Fig. 18C). This demonstrates an overall increase in STAT3 protein levels, 

including the nuclear fraction, after injury (Table 4). 
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Fig. 18: Protein levels of STAT3 in ipsilateral versus contralateral fractions at 3, 5 and 7 

dpSW 
Quantification of the western blot bands (as shown in Fig. 17) with Image J 1.42q by using densitometric 

analysis. (A) Total ipsilateral versus contralateral fractions (cytoplasmic plus nuclear fraction) at 3, 5 and 

7 dpSW (n = 3 for each time point). (B) Ipsilateral cytoplasmic versus contralateral cytoplasmic fractions 

at 3, 5 and 7 dpSW (n = 3 for each time point). (C) Ipsilateral nuclear versus contralateral nuclear 

fractions at 3, 5 and 7 dpSW (n = 3 for each time point). ** p < 0,01, * p < 0,05. 

Taken together, these data showed that STAT3 is highly upregulated at 3 dpSW in the injured 

cerebral cortex after stab wound lesion. In particular, our subcellular fractionation revealed a 

prominent increase in STAT3 protein in the cytoplasmic but also in the nuclear fractions at this 

time point, thus suggesting a nuclear translocation of STAT3 protein and an increased 

activation of STAT3 signaling. 

3.1.2.3. Analysis of STAT3 signaling activation after stab wound by studying the 

phosphorylation status of STAT3 at Tyr705 

As reviewed in subchapter 1.6.2. STAT3 undergoes phosphorylation at Tyr705 by JAKs when 

associated to the cytokine receptor. Thereafter it is able to homo- or heterodimerize which in 

turn is necessary for nuclear translocation. Accordingly, the Tyr705 phosphorylation is a 

critical step in the activation of STAT3 signaling. In order to study the phosphorylated STAT3 
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protein, we used phosphorylation site specific antibodies (see subchapter 2.2.2. and 2.2.3.). 

Here we conducted a western blot analysis of the subcellular fractionated cerebral cortex 

extracts at 3, 5 and 7 dpSW (n = 3 animals for each time point, Fig. 17). 

First, we found that, in contrast to STAT3, pSTAT3 expression was virtually restricted to the 

nuclear fractions compared to the cytoplasmic fractions at all time points investigated and in 

both hemispheres (Fig. 17). This is in agreement with the literature, describing that 

phosphorylated STAT proteins are translocated into the nucleus (see subchapter 1.6.2.). 

For the following quantitative analysis we first normalized pSTAT3 signals to the 

corresponding nucleoporin signal, then set the nuclear fraction contralateral to the lesion as 

100 % and calculated the pSTAT3 expression level in the ipsilateral side relative to this value. 

Most importantly, we observed a significant upregulation of pSTAT3 in the nuclear fraction 

ipsilateral to the lesion compared with the contralateral nuclear fraction at 3 dpSW (411,5 ± 

147,3 % versus 100,0 ± 0,0 %, p = 0,022, n = 3, Fig. 19) but not anymore at 5 and 7 dpSW (5 

dpSW: 209,2 ± 83,1 % versus 100,0 ± 0,0 %, p = 0,259, n = 3; 7 dpSW: 71,6 ± 36,3 % versus 

100,0 ± 0,0 %, p = 0,478, n = 3, Fig. 19). 

 

Fig. 19: Expression of pSTAT3 in ipsilateral versus contralateral nuclear fractions at 3, 5 

and 7 dpSW 
Quantification of the western blot bands (as shown in Fig. 17) with Image J 1.42q by using densitometric 

analysis. Ipsilateral nuclear versus contralateral nuclear fractions at 3, 5 and 7 dpSW (n = 3 for each time 

point). * p < 0,05. 
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Overall, these data showed that pSTAT3 is upregulated specifically in the nuclear fraction of 

the ipsilateral side at 3 dpSW, thus indicating an early activation of STAT3 signaling pathways 

following injury in the cerebral cortex. 

3.1.3. Expression and activation pattern of STAT3 after MCAo 

In the next set of experiments, we investigated whether the upregulation of STAT3 and the 

activation of STAT3 signaling that we evidenced in the stab wound model would also be 

observed in other acute injury models. To this aim, we used an experimental stroke model 

(MCAo), which is also clinically more relevant (see subchapter 2.2.1.6. for detailed description). 

We applied the same western blot analysis of subcellular fractionated cerebral cortex extracts 

obtained from mice sacrificed at 3-4 days after MCAo. We studied the levels and activation of 

STAT3 as described above (n = 3 animals for STAT3 and pSTAT3, Fig. 20). First, as after stab 

wound, immunoblotting for enolase and nucleoporin revealed that these proteins were only 

present in the cytoplasmic and nuclear fraction, respectively, ensuring that our samples were 

properly fractionated. Next, we observed that independent of the hemisphere, the expression 

levels of STAT3 were significantly increased in the cytoplasmic compared to the corresponding 

nuclear fractions (Fig. 20A). 

In order to compare the side ipsilateral to the lesion with the contralateral side we again first 

normalized STAT3 and pSTAT3 signals to enolase and/or nucleoporin signals, then set the 

STAT3/pSTAT3 expression level in the contralateral fraction as 100 % and calculated the 

protein level in the ipsilateral in relation to the contralateral fraction. 
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Fig. 20: Expression and activation of STAT3 at 3-4 days after MCAo 
(A) Representative western blots are shown. Independent tissues of the contra- and ipsilateral cortices 

of mice, that underwent MCAo and were kept for 3-4 days, were loaded (n = 3 for STAT3 and pSTAT3). 

Expression levels of STAT3 and pSTAT3 were determined. Nucleoporin and enolase signals served as 

nuclear and cytoplasmic loading controls, respectively. (B) Quantification of the western blot bands (as 

shown in Fig. 20A) with Image J 1.42q by using densitometric analysis. Ipsilateral nuclear versus 

contralateral nuclear fractions at 3-4 days after MCAo (n = 3 for each time point). * p < 0,05. 

Here we did not observe a significant difference in STAT3 protein levels in the total ipsilateral 

versus contralateral fraction (162,5 ± 32,8 % versus 100,0 ± 0,0 %, p = 0,129, n = 3) or in the 

cytoplasmic (ipsilateral 95,5 ± 17,2 % versus contralateral 100,0 ± 0,0 %, p = 0,808, n = 3) or 

nuclear fractions (ipsilateral 718,5 ± 375,8 % versus contralateral 100,0 ± 0,0 %, p = 0,175, n = 

3).  

The activation of STAT3 signaling was analyzed by studying the phosphorylation status at 

Tyr705 of STAT3. In agreement with our stab wound model data, pSTAT3 was mostly localized 

in the nucleus. Importantly, we demonstrated a significant upregulation in pSTAT3 expression 

in the nuclear fraction in the lesioned side compared to the contralateral nuclear fraction 

(472,1 ± 133,0 % versus contralateral 100,0 ± 0,0 %, p = 0,049, n = 3, Fig. 20B), i.e. to 

comparable levels as observed after stab wound. 

Taken together, these data revealed an early activation of STAT3 signaling in the injured 

cerebral cortex following a stroke episode. While no significant differences in STAT3 

expression could be detected between the ipsilateral and contralateral fractions at 3-4 days 

after MCAo, pSTAT3 displayed a significant upregulation in the ipsilateral nuclear fractions 

compared to the contralateral side. This indicated an activation of STAT3 signaling at 3-4 days 

after MCAo, as it was found in the stab wound model after 3 days, thus suggesting that 
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activation of STAT3 in the cerebral cortex is a general response induced by an acute invasive 

injury. 

3.1.4. Expression analysis of STAT1 and STAT5 

As written in subchapter 1.6.3.2., also other proteins of the STAT family have been suggested 

to be expressed after CNS injury. Here we examined if especially STAT1 and STAT5 are 

upregulated after stab wound injury. 

First, we investigated the STAT5a protein levels in our initial series of experiments over a time 

course of seven days after stab wound (n = 1 animal for each time point, Fig. 21A). Different 

STAT5a antibodies were tested but they all resulted in poor signals in western blot. In contrast 

to STAT3, the overall level of STAT5a protein was lower and no obvious upregulation could be 

observed. Unfortunately, subsequent experiments with other STAT5 antibodies to detect 

STAT5b and pSTAT5 failed to disclose the protein in western blot due to poor specificity of 

these antibodies. 

 

Fig. 21: Expression of STAT5a and pSTAT1 after stab wound 
(A) Representative western blot is shown. Independent tissues of the ipsilateral cortices of stab 

wounded mice at 1, 3, 5 and 7 dpSW were loaded (n = 1 for each time point). Contralateral cortices were 

mixed and loaded in one lane. Expression levels of STAT5a were determined. GAPDH signals served as 

loading controls. (B) Representative western blot is shown. Contra- and ipsilateral cortex of a stab 

wounded mice, that was kept for 3 d, were loaded (n = 1). Expression levels of pSTAT1 were determined. 

Second, we studied the activation of STAT1 at 3 dpSW in subcellular fractionated cortical brain 

extracts (n = 1 animal) by using a phosphorylation site (Tyr701) specific antibody (see 

subchapter 2.2.2., Fig. 21B). In this experiment we found that pSTAT1 is rather high in the 

nucleus. However, no difference between the nuclear contralateral and ipsilateral fractions 

was detectable. Nevertheless, given the fact that a loading control is missing in this 

experiment, no final conclusions can be drawn. 
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Given the lower levels of STAT5a protein and the lack of an injury-dependent pSTAT1 

regulation, we mainly focused on STAT3 signaling in the next set of experiments. 

3.2. Which cell types express and activate STAT3 signaling in the injured 

cerebral cortex? 

Our western blot experiments revealed that STAT3 is upregulated and activated at three days 

after stab wound and also activated at three days after MCAo. However, our western blot 

analysis could not answer the question in which cell types this process of STAT3 activation 

occurs after cerebral injury. Additionally, a review of the recent literature revealed that 

regarding the expression of STAT3 in different cell types, so far only contradictory results had 

been published after experimental stroke and no results after stab wound (see subchapter 

1.6.3.2.). Therefore, a detailed immunohistochemical analysis of STAT3 expression was 

required at different time points in acute invasive injury models, such as the stab wound injury 

and MCAo. In addition, we also examined STAT3 expression in non-invasive injury models, 

such as Alzhei e ’s disease models.  

3.2.1. Cellular localization of STAT3 at three days after stab wound 

Our western blot findings indicated that STAT3 expression and activation have their peaks at 

three days after stab wound. Therefore, we first investigated which cell types expressed STAT3 

at three days after stab wound injury by immunohistochemistry. Accordingly, we stained 30 

µm Cryostat sections from mouse brains collected at 3 dpSW, for STAT3 and GFAP, which is a 

marker for reactive astrocytes, and compared the injured cortex with the contralateral 

hemisphere. 
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Fig. 22: GFAP immunohistochemistry at 3 dpSW in the contra- versus ipsilateral 

hemisphere 
Representative micrographs are shown. Contra- (A) and ipsilateral (B) example belong to the same 

mouse. Stainings against GFAP were performed with brain sections from mice that were perfused at 3 

dpSW. The stab wound is indicated by a red dashed line. 

Whereas the ipsilateral cortical hemisphere displayed a massive upregulation of GFAP around 

the stab wound area, virtually no GFAP+ cell was observed in the contralateral hemisphere 

(Fig. 22) as described before (Hozumi et al., 1990, Buffo et al., 2005, Buffo et al., 2008, Robel 

et al., 2011, Bardehle et al., 2013). 
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Fig. 23: GFAP and STAT3 costaining at 3 dpSW in contra- and ipsilateral cortices 
Representative micrographs are shown. Contra- and ipsilateral examples belong to the same mouse. 

Stainings against GFAP and STAT3 were performed with brain sections from mice that were perfused at 

3 dpSW. (A-A’’  O e ie  of the o t alate al he isphe e. B-B’’  O e ie  of the ipsilate al he isphe e. 
(C-C’’  Highe  ag ifi ation of reactive astrocytes in the ipsilateral hemisphere. (D-D’’) Costaining with 

DAPI, GFAP and STAT3 of a reactive astrocyte in the vicinity of the lesion. 
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Furthermore, our staining showed that STAT3 protein is expressed in both, the contra- and 

ipsilateral hemisphere (Fig. 23A’ a d B’  in agreement with our western blot data. Moreover, 

we detected an overall upregulation of STAT3 expression in some cells in the ipsilateral injured 

cortex compared to the control side (Fig. 23A’ and B’). In addition, this upregulation was 

particularly visible in the nuclei of the injured cortex compared to the contralateral side, thus 

confirming and extending our western blot results. The costaining with GFAP revealed that 

virtually all these strongly STAT3-immunoreactive cells in the ipsilateral side were also GFAP 

positive (Fig. 23B’’ . Together with their typical morphology showing long star-shaped 

processes, this population most likely represented reactive astrocytes. Moreover, pictures 

acquired at higher magnification in the ipsilateral side unraveled that STAT3 is expressed in 

both, the nuclear and cytoplasmic compartment – the latter best seen in the long processes 

(Fig. 23C’  – in agreement with our western blot data. To provide further evidence of the 

nuclear localization of STAT3, a costaining with the nuclear marker DAPI was performed (Fig. 

23D-D’’) and showed that STAT3 is indeed present in the nucleus but absent in nucleoli. Taken 

together, these experiments revealed an upregulation of STAT3 in the injured cortex in some 

cells, which virtually all costained with GFAP, thus indicating an increased expression of STAT3 

in reactive astrocytes. 

Next, in order to further examine which cell population expressed STAT3 in the contralateral 

cortical hemisphere, we performed a costaining with NeuN, a marker of mature neurons, with 

brain sections from mice that were perfused at 3 dpSW (Fig. 24). Again, we observed that 

STAT3 is expressed contra- and ipsilaterally but is upregulated in some nuclei ipsilaterally (Fig. 

24A’ a d B’ . In the ipsilateral cortical hemisphere virtually no STAT3+ cell colocalized with 

NeuN as previously suggested by the abundant colocalisation of STAT3 with GFAP (Fig. 24A’’ 

a d B’’). In contrast, we could observe that virtually all weakly STAT3+ cells in the 

contralateral cortical hemisphere were NeuN+ neurons (Fig. 24B’’). The magnified pictures 

demonstrated STAT3 to be expressed in the nuclei and the surrounding cytoplasm of NeuN+ 

cells (Fig. 24C-C’’). The STAT3 protein level in the contralateral cortical hemisphere was 

consistently above background levels (immunohistochemistry without primary antibody, data 

not shown). 
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Fig. 24: NeuN and STAT3 costaining at 3 dpSW in contra- and ipsilateral cortices 
Representative micrographs are shown. Contra- and ipsilateral example belong to the same mouse. 

Stainings against NeuN and STAT3 were performed with brain sections from mice that were perfused at 

3 dpSW. (A-A’’  O e ie  of the ipsilateral hemisphere. (B-B’’  O e ie  of the contralateral hemisphere. 

(C-C’’  Highe  ag ifi atio  of eu o s i  the o t alate al he isphe e. 

These stainings clearly demonstrated a STAT3 colocalization with GFAP at 3 dpSW, i.e. an 

expression in reactive astrocytes, in the ipsilateral side and with NeuN, i.e. an expression in 

mature neurons, in the contralateral cortical hemisphere. 

3.2.2. Activation pattern of STAT3 signaling after stab wound by investigating STAT3 

phosphorylation status 

As described in 3.1.2.3., the investigation of the phosphorylation status of STAT3 is crucial to 

demonstrate activation of STAT3 signaling. In order to study if STAT3 is not only expressed but 
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also activated in reactive astrocytes at 3 dpSW, we performed immunohistochemical analysis 

of pSTAT3 and GFAP expression (Fig. 25). 

 

Fig. 25: pSTAT3 and GFAP costaining at 3 dpSW in contra- and ipsilateral cortices 
Representative micrographs are shown. Contra- and ipsilateral example belong to the same mouse. 

Stainings against GFAP and pSTAT3 were performed with brain sections from mice that were perfused 

at 3 dpSW. (A-A’’  O e ie  of the contralateral hemisphere. (B-B’’  O e ie  of the ipsilateral 

hemisphere. (C-C’’  Highe  ag ifi atio  of ea ti e ast o tes i  the ipsilate al he isphe e. 

First of all, we observed round and bright pSTAT3+ nuclei that were localized in the vicinity of 

the stab wound lesion in the ipsilateral side, while virtually no pSTAT3+ cells could be observed 

in the contralateral cortical hemisphere (Fig. 25A’ a d B’). Higher magnification revealed its 

exclusive nuclear localization (Fig. 25C’’  thus confirming our western blot data. Virtually all of 

these pSTAT3+ nuclei were surrounded by GFAP, i.e. were contained in reactive astrocytes 

(Fig. 25B’’ a d C’’). 20,0 ± 2,3 % of GFAP+ cells showed pSTAT3 expression in the stab wound 
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lesion area (± 400 µm; see below for details of quantification). The specificity of our pSTAT3 

antibody was confirmed by the previously known pSTAT3 expression in neuronal nuclei of the 

periventricular hypothalamic nucleus (Hakansson and Meister, 1998) (data not shown). 

In the laboratory, a new in vitro culture system was recently characterized that allows to 

culturing reactive glial cells isolated from the stab wound injured cortex. We took the 

opportunity to use this in vitro model to confirm our pSTAT3 data. We found that pSTAT3 was 

exclusively expressed in the nucleus of GFAP+ reactive astrocytes, thus confirming our in vivo 

findings (Fig. 26A and B). The nuclear staining was proven by colocalization with DAPI (Fig. 26C 

and D). 

 

Fig. 26: pSTAT3 and GFAP costaining of reactive astrocytes isolated in culture 
Three days after stab wound mouse cortices were dissected and mechanically dissociated with 

hyaluronidase and trypsin. Cells were stained for GFAP (A), pSTAT3 (B) and DAPI (C) at 3 days after 

plating. D shows the merge picture. 

Next, we examined the expression of pSTAT3 over time after stab wound, as our western blot 

findings showed that STAT3 signaling was mainly activated at 3 dpSW (see subchapter 3.1.2.2. 

and 3.1.2.3.). Here we compared pSTAT3 immunohistochemistry of brain sections from mice 

perfused at 3, 5 and 7 dpSW (n = 3 animals per time point, Fig. 27). 
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Fig. 27: pSTAT3 and GFAP costaining at 3, 5 and 7 dpSW 
Representative micrographs are shown. Stainings against GFAP and pSTAT3 were performed with brain 

sections from mice that were perfused at 3, 5 or 7 dpSW (n = 3 animals per time point). (A-A’’) Overview 

of the ipsilateral hemisphere at 3 dpSW. (B-B’’  O e ie  of the ipsilateral hemisphere at 5 dpSW. (C-

C’’  O e ie  of the ipsilateral hemisphere at 7 dpSW. 

When we quantified cell numbers using Image J 1.42q we found that the percentage of 

pSTAT3+ cells among GFAP+ cells decreased significantly from 3 dpSW to 5 and 7 dpSW (20,0 

± 2,3 % (3 dpSW) versus 6,5 ± 3,8 % (5 dpSW), p = 0,038; and versus 8,7 ± 1,4 % (7 dpSW), p = 

0,014, n = 3 animals per time point, Fig. 28A). Moreover, the percentage of GFAP+ cells among 

pSTAT3+ cells also decreased, although not significantly, from 3 dpSW to 5 and 7 dpSW (100,0 

± 0,0 % versus 78,9 ± 9,7 % (5 dpSW), p = 0,096; and versus 65,9 ± 13,9 % (7 dpSW), p = 0,069, 

n = 3 animals per time point, Fig. 28B), and between 5 and 7 dpSW (p = 0,483). These data 

suggest that other cell types may express pSTAT3 at 5 and 7 dpSW. Further analysis is required 

to investigate which other cell types contain pSTAT3 at these later time points. 
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Fig. 28: Quantification of pSTAT3+ cells at 3, 5 and 7 dpSW 
Analysis of the percentage of pSTAT3+ cells among GFAP+ cells (A) and GFAP+ cells among pSTAT3+ cells 

(B) by using Image J 1.42q (n = 3 animals for each time point). Values are given as mean ± SEM. * p < 

0,05. 

Overall, these data indicated an upregulation of pSTAT3 in GFAP+ cells in the vicinity of the 

stab wound, thus indicating a specific activation of STAT3 signaling in reactive astrocytes. In 

addition, the number of pSTAT3+ cells among GFAP+ cells was maximal at 3 dpSW and 

decreased thereafter. Nevertheless, it is likely that this number of pSTAT3+ cells is 

underestimated due to the high turn over and transitory feature of the phosphorylation status 

of a transcription factor at a given time point. 

3.2.3. Activation pattern of STAT3 signaling after MCAo by studying STAT3 phosphorylation 

status 

The results of our western blot experiments indicated that STAT3 is also activated after MCAo 

(see subchapter 3.1.3.). Moreover, the reviewed literature exhibited contradictory results 

regarding the STAT3 expression in different cell types after MCAo (see subchapter 1.6.3.2.). 

Therefore, we asked which cell types activate STAT3 signaling after MCAo and performed 

immunohistochemistry for GFAP and pSTAT3 on brain sections from mice that were perfused 

at 3-4 days after MCAo (n = 3 mice). 

While virtually no GFAP+ cell was detected in the contralateral cortical hemisphere we 

observed a massive astrogliosis, as revealed by upregulation of GFAP, in the side ipsilateral to 

the ischemic infarct. In addition, we observed a large necrotic core, devoid of any GFAP+ cell, 

that had a clear-cut border to the surrounding astrogliosis (Fig. 29). 
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Fig. 29: GFAP-immunostaining at 3-4 days after MCAo 
Representative micrograph is shown. Stainings against GFAP and DAPI were performed with brain 

sections from mice that were perfused at 3-4 days after MCAo. 

 

Fig. 30: Costaining of GFAP and pSTAT3 at 3-4 days after MCAo 
Representative micrographs are shown. Stainings against GFAP and pSTAT3 were performed with brain 

sections from mice that were perfused at 3-4 days after MCAo (n = 3 animals). (A-A’’  O e ie  of the 

ipsilateral hemisphere. (B-B’’  Highe  ag ifi atio  of ea ti e ast o tes i  the ipsilate al he isphe e. 

Round and bright pSTAT3+ nuclei were localized in the ipsilateral ischemic cortex (Fig. 30), 

while no pSTAT3+ cells could be observed in the contralateral side. More importantly, our 



Results 97 

double immunostaining revealed that pSTAT3 was virtually only contained in the nuclei of 

GFAP+ reactive astrocytes (Fig. 30A’’, B’’  as previously observed for the stab wound injury. 

Quantification revealed that the percentage of pSTAT3+ cells among GFAP+ cells at 3-4 days 

after MCAo did not differ significantly from 3 dpSW (18,8 ± 6,4 % versus 20,0 ± 2,3 %, p = 0,867, 

n = 3 animals for each condition, Fig. 31A). However, the number of GFAP+ cells among 

pSTAT3+ cells differed significantly between 3-4 d after MCAo and 3 dpSW (58,9 ± 6,5 % versus 

100,0 ± 0,0, p = 0,003, n = 3 animals for each condition, Fig. 31B), suggesting that STAT3 is also 

activated in other cell types 3-4 days after MCAo. 

 

Fig. 31: Quantification of pSTAT3+ cells at 3 days after MCAo and stab wound 
Analysis of the percentage of pSTAT3+ cells among GFAP+ cells (A) and GFAP+ cells among pSTAT3+ cells 

(B) by using Image J 1.42q (n = 3 animals for each time point and condition). Values are given as mean ± 

SEM. * p < 0,05. 

Taken together, these data indicate that at 3-4 days after MCAo, STAT3 signaling is activated 

in reactive astrocytes to a similar extent as observed at 3 dpSW. This suggested that the 

activation of STAT3 signaling in reactive astrocytes could be a general response to an acute 

invasive injury. 

3.2.4. Activation pattern of STAT3 signaling in non-invasive injury models like APP/PS1 and 

CKp25 

The brain injury models examined so far, stab wound and experimental stroke, represent 

acute invasive brain injuries. In order to investigate whether STAT3 signaling may be restricted 

to invasive injury, we examined its activation also in non-invasive injury models. Especially 



98 Results 

Alzhei e ’s disease AD , a highly prevalent brain disorder in elderly people which leads to 

cognitive impairment, has caught our attention. Here, we investigated STAT3 expression and 

activation in two different mouse models: one showing a progressive (chronic) amyloid plaque 

deposition and the other showing a non-invasive, widespread neuronal death. 

3.2.4.1. Mouse model of amyloidosis: the APP/PS1 mouse 

To model amyloidosis many mouse models have been generated. I will here shortly introduce 

the APP/PS1 mouse, which expresses mutant forms of both APP and PS1 in neurons (Radde et 

al., 2006). 

When generating mouse models for diseases, it has always been useful to check familial forms 

for genetic mutations. For AD a genetic variance of APP was found in a Swedish family leading 

to the generation of the KM670/671NL mutated mouse line (Hsiao et al., 1996). Recently, 

another mutation (PS1-L166P), which in humans presents as very aggressive familial form of 

AD, has been added (Radde et al., 2006), leading to the generation of a mouse line expressing 

human APP with the Swedish double mutation together with PS1 L166P under the Thy1 

neuronal promoter and showing stable early onset amyloid plaque deposition in the cortical 

grey matter and no gender differences. However, in contrast to human pathology, this mouse 

model does not display tau pathology and fails to show substantial neuronal loss (Rupp et al., 

2011).  

3.2.4.2. Mouse model of non-invasive neuronal death: the CK/p25 mouse 

Therefore, we aimed at also examining another mouse model better reflecting the widespread 

neuronal loss observed in AD. To this end, we used the CK/p25 mouse, in which neuronal 

death can be induced by targeted activation of p25 expression in neurons of the cerebral 

cortex. Mice expressing p25 under the promoter of the tetracycline operator (tetO) were 

crossed with mice expressing the tetracycline controlled transactivator (tTA) (Gossen and 

Bujard, 1992) under the neuronal forebrain promoter CAM kinase II (CK) (Mayford et al., 1996) 

(Fig. 32). The resulting mouse line expresses p25 in neurons when withdrawing a tetracyclic 

drug (here we used Doxycyclin) and represses p25 when administrating doxycycline (Cruz et 

al., 2003) (Fig. 32). 
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Fig. 32: Scheme of the CK/p25 mouse model 
The CK (tTA) mouse line and the p25 (TetO) mouse line are crossed and generate a mouse line that 

expresses p25 in neurons, as the neuronal promoter CamKII drives the expression of tTA, which is 

required for TetO-linked p25 GFP activation, when doxycycline (Doxy) is withdrawn (ii). If doxycycline is 

administered, the transcription will be blocked (i). Modified from Mayford et al., 1996. 

P25 is a truncated and more stable form of p35, which interacts with cyclin-dependent kinase 

5 (Cdk5). In neurodegenerative diseases like AD, Cdk5 activity is enhanced by p25 (Bu et al., 

2002, Lee et al., 2000, Nguyen et al., 2001) thus leading to tau phosphorylation, neurotoxic 

effects by beta-amyloid accumulation in neurons, apoptotic cell death and therefore extensive 

loss of neurons. Accordingly, these mice recapitulate many hallmark features of AD like 

amyloidosis, tauopathy, substantial neuronal loss and impaired synaptic plasticity (Cruz et al., 

2003). 

3.2.4.3. Activation of STAT3 signaling in mouse models of non-invasive brain injury 

Although it was already suggested that reactive astrocytes upregulate GFAP expression in 

mouse models of AD (Kamphuis et al., 2012), we were not able to identify studies that 

investigated the expression and activation of STAT3 in the above described mouse models 

(see subchapter 1.6.3.2.). To analyze the activation of STAT3 signaling in these mouse models, 

we performed immunohistochemistry for pSTAT3 and GFAP in six months old APP/PS1 mice 

and CK/p25 mice that were off doxycycline for five weeks (Fig. 33). 
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Fig. 33: Costaining of GFAP and pSTAT3 in CK/p25 and APP/PS1 mice 
Representative micrographs are shown. Stainings against GFAP and pSTAT3 were performed with brain 

sections from CK/p25 (D) (that were perfused at five weeks after withdrawal of Doxycyclin) and APP/PS1 

mice (six months old) (C) in comparison with stab wound (B) and control mice (A). 

In both models we observed a strong reactive gliosis in the cerebral cortex as evidenced by 

GFAP expression spreading through all cortical layers (Fig. 33C and D). APP/PS1 mice exhibited 

a more pronounced expression of GFAP in the close vicinity of amyloid plaques (data not 

shown). In both models we observed pSTAT3+ nuclei that were scattered through the 

different cortical layers (Fig. 33C and D). As described above in the stab wound model, also 

here the vast majority of these pSTAT3+ nuclei colocalized with GFAP (Fig. 33C and D) and no 
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significant differences in the percentage of GFAP+ cells among pSTAT3+ cells could be 

evidenced between the stab wound and APP/PS1 or CK/p25 mice (Fig. 33B, C and D; Fig. 34B). 

However, we observed a significantly lower percentage of pSTAT3+ cells among GFAP+ cells 

in six months old APP/PS1 mice compared to mice analyzed 3 dpSW (7,4 ± 2,9 % (APP/PS1) 

versus 20,0 ± 2,3 % (3 dpSW), p = 0,026, n = 3 animals for each condition, Fig. 34A). 

 

Fig. 34: Quantification of pSTAT3+ cells at 3 dpSW, 3-4 days after MCAo and in APP/PS1 

and CK/p25 mice 
Analysis of the percentage of pSTAT3+ cells among GFAP+ cells (A) and GFAP+ cells among pSTAT3+ cells 

(B) by using Image J 1.42q (n = 3 animals for each time point and condition). Values are given as mean ± 

SEM. * p < 0,05. 

Taken together, these data clearly showed that STAT3 signaling is also activated in reactive 

astrocytes in APP/PS1 and CK/p25 mice, however, to a lower extent compared to the stab 

wound and MCAo models (approximately half). Thus, these results suggested that STAT3 

activation is less prominent in non-invasive injury compared to acute invasive injury conditions. 

3.2.5. Activation of STAT3 signaling in the adult neurogenic niches – SVZ and SGZ 

Until now we analyzed the expression and activation of STAT3 in different injury models and 

found STAT3 signaling to be activated in reactive astrocytes mostly at 3 dpSW and 3-4 days 

after MCAo and to a lesser extent also in APP/PS1 and CK/p25 mice. Astrocytes are remarkable 

as in addition to their diverse functions in the brain parenchyma, they also serve as neural 

stem/progenitor cells in the adult neurogenic niches. As reviewed in subchapter 1.6.3.2., 

STAT3 signaling was shown to inhibit embryonic neurogenesis (Bonni et al., 1997, Gu et al., 

2005). Thus, we hypothesized that STAT3 signaling would not be activated in the SVZ 

astrocytes and SGZ radial astrocytes that give rise to neurons in the adult neurogenic niches. 

We performed immunohistochemistry for GFAP to identify SVZ and SGZ astrocytes, and 

pSTAT3 on brain sections from adult eight weeks old mice (Fig. 35A-D). 
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Fig. 35: Expression of GFAP and pSTAT3 in the adult neurogenic niches 
Representative micrographs are shown. Stainings against GFAP, pSTAT3 and DAPI were performed with 

brain sections from adult eight weeks old mice. Displayed are (A) an overview about the SVZ at the 

lateral site of the lateral ventricles, (B) a higher magnification of the SVZ, (C) an overview of the 

hippocampal SGZ and (D) a higher magnification of the SGZ. 

In agreement with our hypothesis virtually no pSTAT3+ cell could be detected in the 

population of GFAP+ cells in both neurogenic niches. Thus, it seems that a lack of STAT3 

activation in the SGZ and SVZ radial astrocytes correlates with their ability to generate neurons. 

This further supports our hypothesis that activation of STAT3 signaling in non-neurogenic 

reactive astrocytes in the lesioned cortex could exert anti-neurogenic effects, and maintain 

them in their glial lineage. 

3.2.6. Cellular localization and activation pattern of STAT1 and STAT5 following stab wound 

injury 

As mentioned in subchapter 1.6.3.2. and 3.1.4., also STAT1 and STAT5 have been suggested 

to be upregulated after CNS injury. Our western blot results suggested virtually no 

upregulation of STAT5a or activation of STAT1 signaling after injury. However, as discussed 

above, the western blots for STAT5a and pSTAT1 did not give the most conclusive data. 

Therefore, we investigated these proteins also by immunohistochemistry at 3 dpSW by 

applying costainings for (i) STAT5a and either GFAP or NeuN (Fig. 36A-C) and (ii) pSTAT1 and 

GFAP (Fig. 37A-B) (n = 1 animal per each condition). 
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Fig. 36: Costaining with STAT5a and GFAP or NeuN at 3 dpSW in contra- versus ipsilateral 

cortices 
Representative micrographs are shown. Contra- and ipsilateral example belong to the same mouse. 

Stainings against GFAP, NeuN and STAT5a were performed with brain sections from mice that were 

perfused at 3 dpSW. (A-A’’  O e ie  of the ipsilateral hemisphere stained with GFAP and STAT5a. (B-

B’’  O e ie  of the ipsilateral hemisphere stained with NeuN and STAT5a. (C-C’’  O e ie  of the 

contralateral hemisphere stained with NeuN and STAT5a. 

At 3 dpSW we found that STAT5a-immunostaining was present throughout all layers of the 

injured cortex and mainly colocalized with NeuN (Fig. 36B’’  and not with GFAP (Fig. 36A’’ , in 

contrast to STAT3. In addition, this localization and the overall signals of STAT5a-

immunostaining in the injured cortex were not different from the ones observed in the 

contralateral cortical hemisphere where STAT5a also colocalized largely with NeuN+ neurons 

(Fig. 36B’’ and C’’). Importantly, these data confirmed our impression in western blot analysis 

that STAT5a was not upregulated after injury compared to the control non-injured cortex. 
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Fig. 37: Costaining with pSTAT1 and GFAP at 3 dpSW in contra- versus ipsilateral cortices 
Representative micrographs are shown. Contra- and ipsilateral example belong to the same mouse. 

Stainings against GFAP and pSTAT1 were performed with brain sections from mice that were perfused 

at 3 dpSW. (A-A’’  O e ie  of the contralateral hemisphere. (B-B’’  Ipsilateral hemisphere. 

Virtually no pSTAT1+ cells were detected in the contralateral non-injured cortex (Fig. 37A’). In 

contrast, we could see very few pSTAT1+ nuclei in GFAP+ cells in the injured cortex (Fig. 37B’ 

and B’’ . 

Taken together, these data showed that STAT1 is activated only in very few reactive astrocytes 

in the injured cortex at 3 dpSW. Furthermore, STAT5a, which is bilaterally expressed in 

neurons, does not appear to be expressed in reactive astrocytes after stab wound injury. 

3.3. Does STAT3 signaling inhibit reprogramming of reactive and postnatal 

astrocytes into neurons? 

So far, we showed that STAT3 signaling is activated in a subset of reactive astrocytes early 

after cortical injury, while no STAT3 activation could be detected in the neurogenic astrocytes 

in the neurogenic niches. During embryonic development, the activation of STAT3 signaling 

was shown to inhibit neurogenesis and to promote the differentiation of cerebral cortical 

precursor cells into astrocytes (Bonni et al., 1997). In addition, forced activation of STAT3 
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signaling could lead to precocious astrogliogenesis (He et al., 2005). Cellular reprogramming 

of astroglia into functional neurons emerges as an innovative approach to regenerate lost 

neurons for brain repair (Berninger et al., 2007, Buffo et al., 2005, Heins et al., 2002, Robel et 

al., 2011, Amamoto and Arlotta, 2014). Recent literature suggests that it can be enhanced in 

specific regions and depends on the type of injury as well as on the factors that were provided 

(Grande et al., 2013). Moreover, it has been shown that astroglia-to-neuron conversion rates 

can be increased by applying specific neurogenic fate determinants in vivo (Guo et al., 2014). 

However, in many brain regions the astroglia-to-neuron conversion is still limited in vivo after 

injury. Therefore, we hypothesized that the STAT3 activation that we observed to be 

upregulated in reactive astrocytes in the injured cerebral cortex may contribute to restrict 

astrocytes in their glial lineage and prevent them to generate neurons when provided with 

the appropriate neurogenic fate determinants. In order to perform gain- and loss-of-function 

experiments, we first aimed at finding ways to overactivate and to inhibit STAT3 signaling. 

Next, we decided to test our hypothesis on the well-established neuronal reprogramming of 

postnatal cortical astrocytes in vitro (as reviewed in subchapter 1.5.3.1.) by activating and 

inhibiting STAT3 signaling pathways. Indeed, this model was easy to use in the framework of 

this thesis in order to validate our hypothesis before going on with the in vivo condition. 

3.3.1. Molecular cloning of constructs containing miRNAs against STAT3 and STAT1 

In order to inhibit STAT signaling we took advantage of a well established biological method 

to reduce protein levels. miRNAs direct translational repression or degradation of messenger 

RNAs (mRNAs) of protein-coding genes and comprise approx. 20 to 23 nucleotides (Bartel, 

2009). The following paragraph will describe the molecular cloning of constructs containing 

newly designed miRNAs against STAT1 and STAT3. Although the activation of STAT1 was much 

less pronounced after brain injury compared to STAT3, we decided to also inhibit STAT1 

signaling as we postulated that STAT1 may take over the gliogenesis-promoting function of 

STAT3 when the latter would be downregulated. This was endorsed by the detection of 

binding sites for STAT1 and 3 in the promoters of STAT1, STAT3, gp130, Jak1, GFAP and S100β 

(He et al., 2005). 
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3.3.1.1. Design of effective miRNAs against STAT3 and STAT1 

miRNAs against STAT3 and STAT1 were designed using the Invitrogen BLOCK-iTTM RNAi 

Designer (http://rnaidesigner.invitrogen.com/rnaiexpress/). Nucleotide sequences of STAT3 

and STAT1, respectively, were provided and subsequent resulting highest-ranked suggestions 

were accepted in a way that miRNAs were distributed over the respective nucleotide 

sequence (see table 1 and 2 in subchapter 2.1.6.1.). Thus, four miRNAs against STAT1 and 

three miRNAs against STAT3 with Top and Bottom Strand, each containing linker, mature miR 

RNAi sequence, a loop sequence and nucleotides 1-8 and 11-21 of the target sequence, were 

ordered from Life Technologies (Carlsbad, CA, USA). The double-stranded oligo was produced 

by annealing Top a d Botto  “t a d a o di g to the a ufa tu e ’s p oto ol. “ho tl , e ual 

amounts of Top and Bottom Strand were mixed and heated to 95 °C for 4 minutes. 

Subsequently, each double strand miRNA was ligated into a linearized form of pcDNATM6.2-

GW/EmGFP-miR. In order to select the most efficient miRNAs to impair STAT3 and STAT1 

signaling, western blot of transfected HEK293T cells was performed. Shortly, plated HEK293T 

cells were exposed to either a vector overexpressing STAT3 (OE STAT3, plasmid 

IRAVp968E059D from Source BioScience containing complementary DNA (cDNA) encoding for 

STAT3) and one of the three miRNAs against STAT3 (Fig. 38A) or a vector overexpressing STAT1 

(OE STAT1, plasmid IRAVp968D078D from Source BioScience containing cDNA encoding for 

STAT1) and one of the four miRNAs against STAT1 (Fig. 38B). Each overexpressing vector was 

also tested with a control-miRNA (prior testing in our laboratory revealed no effect on protein 

level). 
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Fig. 38: Effect of miRNAs against STAT3 and STAT1 in HEK293T cells 
Representative western blots are shown. After plating, HEK293T cells were transfected with the 

designated miRNAs against STAT1 (B) or STAT3 (A) (each 3 µg) and vectors overexpressing STAT1 (B) or 

STAT3 (A) (1 µg). Cells were collected at two days after transfection. Each condition was loaded in a 

single lane and western blot analysis was performed. Signals for pSTAT1 (B), STAT3 and pSTAT3 (A) were 

detected. GFP signals served as loading controls. 

Two days after transfection the greatest downregulation of STAT3 expression was achieved 

by the miRNA-STAT3-1. Importantly, the levels of pSTAT3 were also decreased, thus indicating 

a reduction of the activation of STAT3 signaling (Fig. 38A). The miRNA-STAT1-1 and miRNA-

STAT1-3 drastically reduced the levels of pSTAT1 (Fig. 38B). As a consequence, these miRNAs 

were selected for further analysis. 

In order to further investigate the efficiency of the miRNA-STAT3-1, we performed 

immunostaining for STAT3 in HEK293T cells after transfection (Fig. 39). Shortly, three days 

after plating HEK293T cells were transfected with OE STAT3 alone (Fig. 39A) or miRNA-STAT3-

1 and OE STAT3 (Fig. 39B) and fixed two days after transfection. 
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Fig. 39: Effect of miRNA-STAT3-1 in HEK293T cells 
Representative micrographs are shown. Staining against STAT3 was performed at two days after 

transfection. Transfection with OE STAT3 alone (A) or with OE STAT3 and miRNA-STAT3-1 (B). 

A strong downregulation of STAT3 expression in HEK293T cells transfected with miRNA-STAT3-

1 and OE STAT3 (Fig. 39B) compared to OE STAT3 alone (Fig. 39A) was observed. The vast 

majority of cells showed virtually no expression of STAT3 anymore after transfection with 

miRNA-STAT3-1. Only sparse cells showed a comparable level of STAT3 expression to cells 

transfected with OE STAT3 only (Fig. 39B). 

Taken together, these data indicated that miRNA-STAT3-1 as well as miRNA-STAT1-1 and 

miRNA-STAT1-3 strongly impair STAT3- and STAT1 signaling, respectively, and thus were 

selected for further analysis. 

3.3.1.2. Cloning of constructs containing several miRNAs against STAT3 and STAT1 

In order to increase the expression level of one miRNA and/or to combine different miRNAs 

to further suppress the STAT3 or STAT1 signaling, we cloned different miRNAs together in one 

plasmid. Toward this aim, the following constructs were synthesized using restriction enzymes 

and ligation of DNA fragments:  

1. pcDNATM6.2-GW/EmGFP including twice the miRNA-STAT3-1 (called pcDNATM6.2-

GW/EmGFP-2miRNA-STAT3) by inserting the BamHI/XhoI fragment of pcDNATM6.2-



Results 109 

GW/EmGFP-miRNA-STAT3-1 into the BglII/XhoI digested pcDNATM6.2-GW/EmGFP-

miRNA-STAT3-1 vector (Fig. 40A) 

2. pcDNATM6.2-GW/EmGFP including miRNA-STAT1-1 and miRNA-STAT1-3 (called 

pcDNATM6.2-GW/EmGFP-2miRNA-STAT1) by inserting the BamHI/XhoI fragment of 

pcDNATM6.2-GW/EmGFP-miRNA-STAT1-3 into the BglII/XhoI digested pcDNATM6.2-

GW/EmGFP-miRNA-STAT1-1 vector (Fig. 40B) 

3. pcDNATM6.2-GW/EmGFP including miRNA-STAT1-1, miRNA-STAT1-3 and twice the 

miRNA-STAT3-1 (called pcDNATM6.2-GW/EmGFP-2miRNA-STAT1/3) in a four 

fragment ligation by: 

a. inserting the BamHI/XhoI fragment of pcDNATM6.2-GW/EmGFP-miRNA-STAT1-

1 into the BglII/XhoI fragment of pcDNATM6.2-GW/EmGFP-miRNA-STAT3-1 (Fig. 

40C, 1), 

b. the SalI/BglII fragment of pcDNATM6.2-GW/EmGFP-miRNA-STAT3-1 into the 

SalI/BamHI fragment of the prior to this produced pcDNATM6.2-GW/EmGFP-

2miRNA-STAT3/1 (Fig. 40C, 2) 

c. and the BamHI/XhoI fragment of pcDNATM6.2-GW/EmGFP-miRNA-STAT1-3 

into the BglII/XhoI fragment of pcDNATM6.2-GW/EmGFP-3miRNA-STAT3/1 (Fig. 

40C, 3). 

Each fragment ligation step was performed by first fragmenting the plasmids by using 

restriction digestion. Subsequently, DNA fragments were separated using agarose gel 

electrophoresis and desired fragments were cut out and purified. DNA ligation of these 

designated fragments was followed by transformation of chemo-competent E.coli and small 

scale DNA preparation (MiniPrep) including extraction of the DNA and final analysis of DNA 

fragments. Large scale DNA preparations (MaxiPrep) were then used to increase the amount 

of DNA. 
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Fig. 40: Cloning of constructs containing several miRNA against STAT3 and/or STAT1 
Three constructs were synthesized using restriction enzymes and ligation of DNA fragments. (A) 

pcDNATM6.2-GW/EmGFP-2miRNA-STAT3 by inserting the BamHI/XhoI fragment of pcDNATM6.2-

GW/EmGFP-miRNA-STAT3-1 into the BglII/XhoI digested pcDNATM6.2-GW/EmGFP-miRNA-STAT3-1 

vector, (B) pcDNATM6.2-GW/EmGFP-2miRNA-STAT1 by inserting the BamHI/XhoI fragment of 

pcDNATM6.2-GW/EmGFP-miRNA-STAT1-3 into the BglII/XhoI digested pcDNATM6.2-GW/EmGFP-miRNA-

STAT1-1 vector, (C) pcDNATM6.2-GW/EmGFP-2miRNA-STAT1/3 in a four fragment ligation by inserting 

the BamHI/XhoI fragment of pcDNATM6.2-GW/EmGFP-miRNA-STAT1-1 into the BglII/XhoI fragment of 

pcDNATM6.2-GW/EmGFP-miRNA-STAT3-1 (1), the SalI/BglII fragment of pcDNATM6.2-GW/EmGFP-

miRNA-STAT3-1 into the SalI/BamHI fragment of the prior to this produced pcDNATM6.2-GW/EmGFP-

2miRNA-STAT3/1 (2) and the BamHI/XhoI fragment of pcDNATM6.2-GW/EmGFP-miRNA-STAT1-3 into 

the BglII/XhoI fragment of pcDNATM6.2-GW/EmGFP-3miRNA-STAT3/1 (3). 

3.3.1.3. Cloning of the miRNAs against STAT3 and STAT1 into retroviral vectors 

We hypothesized that strong and persistent expression of the miRNAs directed against STAT3 

and STAT1 expression would be helpful to evaluate their effects on neuronal reprogramming 

of astrocytes. Previously used long terminal repeat (LTR)-driven Moloney Murine Leukemia 

Virus (MMLV)-derived retroviral constructs where shown to be only 2-3 fold higher than 

endogenous expression (Heins et al., 2002, Heins et al., 2001) and even more important prone 

to silencing (Gaiano et al., 1999). To avoid these constraints we decided to subclone the 

miRNAs into a self-inactivating retroviral vector driving gene expression under the control of 

a chicken beta-actin promoter (pCAG) that was shown to sustain long-term expression over 

months in the adult mouse brain (Zhao et al., 2006) and to more efficiently convert astroglia 

into neurons (Heinrich et al., 2010). 

First, we changed the backbone from our so far used pcDNATM6.2-GW/EmGF (for miRNAs) and 

pCMV-SPORT6 (for OE STAT3 and OE STAT1) to the retroviral pCAG backbone. To be able to 

perform this change we used the Gateway Technology (Life Technologies, Carlsbad, CA, USA). 

This cloning method uses site-specific recombination properties of bacteriophage lambda 

(Landy, 1989) to be able to efficiently move DNA sequences into different vector systems. It 

uses two reactions, the BP and LR reaction (named after respective flanking att sites, see 

reaction below), to move from expression clone and pDONR to entry clone and destination 

vector (BP reaction) or vice versa (LR reaction): 
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BP reaction                                                   LR reaction  

attB1-gene-attB2  ×  attP1-ccdB-attP2   ⇔   attL1-gene-attL2  ×  attR1-ccdB-attR2 

(expression clone)            pDONR™)                  (entry clone)           (destination vector) 

The BP reaction was conducted using the respective vector encoding the different miRNA 

combinations (pcDNATM6.2-GW/EmGFP-2miRNA-STAT3, pcDNATM6.2-GW/EmGFP-2miRNA-

STAT1 or pcDNATM6.2-GW/EmGFP-2miRNA-STAT1/3) and the pDONRTM221 vector (Life 

Technologies, Carlsbad, CA, USA). The resulting entry clone was then reacted to the retroviral 

destination vector pCAG. 

The same method was applied to OE STAT3 and OE STAT1 as well as the retroviral destination 

vector pCAG-IRES-GFP. 

First, in order to controll our molecular cloning, we aimed at showing that pCAG-EmGFP-

2miRNA-STAT3, pCAG-EmGFP-2miRNA-STAT1 and pCAG-EmGFP-2miRNA-STAT1/3 indeed 

comprise the respective miRNA sequence and sequenced the appropriate part of these 

vectors (for confirming results see section 2.1.7.2., for sequencing method see section 

2.2.5.9.). Their correspondent effects on the expression levels of STAT3 and STAT1 were 

further analyzed by western blot of transfected HEK293T cells (Fig. 41A and B). Shortly, 

HEK293T cells were transfected with the retroviral vector plasmids: pCAG-STAT3-IRES-GFP (OE 

STAT3, Fig. 41A) or pCAG-STAT1-IRES-GFP (OE STAT1, Fig. 41B) plus a miRNA-control (ctrl) or 

pCAG-EmGFP-2miRNA-STAT3 (mi3, Fig. 41A), pCAG-EmGFP-2miRNA-STAT1 (mi1, Fig. 41B) or 

pCAG-EmGFP-2miRNA-STAT1/3 (miAll, Fig. 41A/B). 
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Fig. 41: Effects of retroviral backbone plasmids expressing STAT3, STAT1, 2miRNA3, 

2miRNA1 or 2miRNA3/1 
Representative western blots are shown. After plating, HEK293T cells were transfected with the final 

plasmids containing retroviral backbone encoding STAT3 (A) or STAT1 (B) (1 µg) and either the 

designated miRNAs against STAT3 or STAT1 or a control-miRNA (each 3 µg). Cells were collected at two 

days after transfection. Each condition was loaded in a single lane. Signals for pSTAT1 and STAT3 were 

detected. GFP signals served as loading controls. mi3: 2miRNA1-STAT3, mi1: 2miRNA1/3-STAT1, miAll: 

2miRNA-STAT1/3, ctrl: control-miRNA. 

The vectors pCAG-EmGFP-2miRNA-STAT3 encoding miRNAs against STAT3 (Fig. 41A) and 

pCAG-EmGFP-2miRNA-STAT1 encoding miRNAs against STAT1 (Fig. 41B) were able to 

decrease the expression level of STAT3 and pSTAT1, respectively, to a level that was not 

detectable anymore. In addition, the vector pCAG-EmGFP-2miRNA-STAT1/3 encoding miRNAs 

against both STAT3 and STAT1 decreased the expression of both STAT3 and pSTAT1 equally 

well. Subsequently, viral preparations were performed (see subchapter 2.2.5.10.). 

Overall, we were able to produce retroviral vectors that encode either the different 

combinations of miRNAs, STAT3 or STAT1 under the control of a strong and silencing-resistant 

promoter. 

3.3.2. Expression analysis of STAT3 and pSTAT3 in postnatal astrocytes 

As reviewed above, our lab has previously shown that astrocytes isolated in vitro from the 

postnatal cortex can be directly reprogrammed into fully functional neurons by forced 

expression of neurogenic fate determinants (Heinrich et al., 2010, Heinrich et al., 2011, 

Berninger et al., 2007). In addition, the neurotransmitter identity of the reprogrammed 

neurons could be achieved by overexpressing selective transcription factors. In particular, the 

transcription factor Neurog2, known to instruct the generation of glutamatergic neurons 

during embryonic development was shown to drive astroglia-derived neurons toward a 

glutamatergic identity. Conversely, forced expression of Mash1 and/or Dlx2, known to instruct 

a GABAergic neuronal phenotype, was converting postnatal astrocytes into inhibitory neurons. 

We decided to assess in this model, whether (i) activation of STAT3 signaling would impair 
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neuronal reprogramming of postnatal astrocytes, and conversely (ii) downregulation of STAT3 

signaling would enhance the efficiency of such a reprogramming. Indeed, this experiment 

represented the first step to assess the effects of STAT-signaling on reprogramming of 

astrocytes, before moving in vivo after brain injury, which was clearly beyond the scope of this 

MD thesis. First, we assessed whether postnatal astrocytes could partially mimic adult reactive 

astrocytes, i.e. if they express STAT3 and show STAT3 signaling activation. This step was 

important for the assessment whether it is reasonable to perform gain- and loss-of-function 

experiments of STAT3 signaling in postnatal astrocytes. We investigated the expression and 

activation level of pSTAT3 in postnatal astrocytes under control conditions by performing 

western blot analysis of cultured astrocytes of mouse cortices that were dissected at postnatal 

day 1 and 6 and expanded in culture for seven days (Fig. 42). We observed that STAT3 was 

expressed and activated in astrocytes in both conditions. In addition, to further confirm the 

specificity of STAT3 expression and activation of STAT3 signaling, we investigated the 

expression levels in liver extracts, known to express both STAT3 forms (Alonzi et al., 2001), as 

positive controls. We indeed found STAT3 expression in the cytoplasmic liver extract fraction 

and pSTAT3 in the nuclear liver extract fraction (Fig. 42). 

 

Fig. 42: Expression of STAT3 and pSTAT3 in astrocytes 
Representative western blots are shown. Postnatal astrocytes were collected seven days after plating. 

Nuclear and cytoplasmic extracts of liver tissue were loaded as controls. Antibodies against STAT3 and 

pSTAT3 were then applied. 

These results showed that STAT3 is expressed and activated in postnatal astrocytes, similarly 

to what we found before for adult reactive astrocytes. This indicated that in vitro cultured 

postnatal astrocytes can be used as a model for investigating the role of STAT3 signaling on 

glia-to-neuron conversion.  
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3.3.3. Effects of STAT3 signaling activation on neuronal reprogramming of postnatal 

astrocytes 

To examine the effects of STAT3 signaling on neuronal reprogramming of postnatal astrocytes, 

we aimed at further increasing STAT3 signaling activation compared to the endogenous 

physiological activation and therefore used in the first set of experiments a constitutively 

active form of STAT3, STAT3C, that by substitution of two cysteine residues within the C-

terminal loop of the SH2 domain of STAT3 can spontaneously dimerize, bind to DNA and 

activate transcription independently of the phosphorylation status (Bromberg et al., 1999) 

(see 2.1.7. or http://www.addgene.org/8722/#). Reprogramming of postnatal astrocytes into 

neurons was induced as described before by forced expression of Mash1 (Berninger et al., 

2007, Heinrich et al., 2010). Shortly, cortices of P6 mice were dissected, the cells dissociated, 

plated and passaged after seven days. One day later these postnatal astrocytes were either 

transfected with (i) pCAG-Mash1-IRES-DsRed and pCMV-STAT3C, with (ii) pCAG-Mash1-IRES-

DsRed and pCMV-GFP or with (iii) pCAG-IRES-DsRed and pCMV-STAT3C and fixed nine days 

after transfection (Fig. 43). I counted the number of Mash1-induced neurons amongst 

cotransfected cells in these different conditions. 
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Fig. 43: Astrocytes isolated from the cerebral cortex at postnatal day 6 at 9 days after 

transfection with Mash1 and GFP or Mash1 and STAT3C or STAT3C and DsRed 
P6 astrocytes that were fixed at nine days after transfection with either Mash1 and GFP (A-A’’’) or Mash1 

and STAT3C (B) or STAT3C and DsRed (C). Staining with RFP, GFP, βIII-tubulin and DAPI was applied. 

Representative micrographs are shown. Short arrowheads in A-A’’ and B indicate RFP- and GFP-positive 

cells or RFP-positive cells, respectively. Longer arrows in A-A’’’ indicate neuronal processes of RFP- and 

GFP-positive cells. 

 

Fig. 44: Statistical analysis of P6 astrocytes at 9 days after transfection with Mash1 and 

GFP or Mash1 and STAT3C 
(A) Quantification of neurons at nine days after transfection with either Mash1 and GFP or Mash1 and 

STAT3C. Values are given as mean ± SEM, n = 5 independent experiments. (B) Quantification of RFP-

positive cells at nine days after transfection with either Mash1 and GFP or Mash1 and STAT3C. Values 

are given as mean ± SEM, n = 5 independent experiments. 

Several reporter+ cells exhibited a neuronal morphology following transfection with pCAG-

Mash1-IRES-DsRed and pCMV-GFP a d stai ed positi el  fo  RFP a d βIII-tubulin, indicating 

that these cells were induced neurons reprogrammed by Mash1 (Fig. 43A-A’’’). In contrast, 

when astrocytes were transfected with pCAG-Mash1-DsRed and pCMV-STAT3C, we could 

observe some induced neuronal cells, but they were strongly reduced in number (Fig. 43B) 

(here our co-transfection rate was virtually 100 % as seen with GFP and RFP encoding 

constructs, data not shown). As expected, we could not detect any reprogrammed neurons 

following transfection with pCMV-STAT3C and pCAG-IRES-DsRed (Fig. 43C). When we analyzed 

these experiments quantitatively, we indeed observed a much lower number of neurons nine 

days after transfection with Mash1 and STAT3C compared to  Mash1 and GFP (36 ± 10 versus 

123 ± 51 βIII-tubulin+ cells, n = 5 independent experiments, Fig. 44A). The percentage of 

neurons per RFP-positive cells was slightly decreased after transfection with Mash1 and 

STAT3C compared to Mash1 and GFP (54,1 % ± 11,7 % versus 65,5 % ± 10,4 %).   This suggested 

that activation of STAT3 signaling in postnatal astrocytes impaired Mash1-induced neuronal 

reprogramming.  
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In parallel the number of Mash1-transfected cells (RFP-positive cells) observed at nine days 

after transfection was also decreased with Mash1 and STAT3C compared to Mash1 and GFP 

(66 ± 11 versus 174 ± 55 Mash1-transfected cells, n = 5 independent experiments, Fig. 44B).  

This raised the hypothesis that forced expression of STAT3C itself or in combination with 

Mash1 may lead to a reduced number of astrocytes or astrocyte-derived neurons. First, in 

order to rule out that the number of transfected cells would have been initially lower with 

Mash1 and STAT3C versus Mash1 and GFP, we counted the number of transfected cells based 

on their RFP fluorescence at two days post transfection (Fig. 45). 

 

Fig. 45: Analysis of P6 astrocytes at 2 days after transfection with Mash1 and GFP or 

Mash1 and STAT3C 
(A a d A’) P6 astrocytes that were fixed at two days after transfection with either Mash1 and GFP A’  

or Mash1 and STAT3C (A). Stainings with RFP and DAPI were applied. Representative micrographs are 

shown. (B) Quantification of RFP+ cells at two days after transfection with either Mash1 and GFP or 

Mash1 and STAT3C per well. Values are given as mean ± SEM, n = 3 independent experiments. 
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There was no significant difference in the number of Mash1-transfected cells between the P6 

astrocytes that were transfected with Mash1 and GFP and the ones that were transfected with 

Mash1 and STAT3C (1668 ± 692 versus 1325 ± 570 RFP+ cells, n = 3 independent experiments, 

Fig. 45B). Moreover, we observed that the transfected cells exhibited a star-shaped 

morphology indicating their astrocytic nature (Fig. 45A a d A’). Thus, we could rule out that 

the numbers of transfected cells were initially different between the different conditions. 

Next, we investigated whether forced expression of STAT3C alone would induce cell death of 

postnatal astrocytes at nine days post transfection. We found that the number of cells 

transfected with pCMV-STAT3C and pCAG-IRES-DsRed (Fig. 43C) was not different from the 

cells transfected with pCMV-GFP and pCAG-IRES-DsRed in control conditions (180,7 ± 49,7 

versus 154,9 ± 16,5, n = 5 independent experiments, p = 0,634). These data showed that forced 

expression of STAT3C per se did not induce cell death of postnatal astrocytes. 

Taken together, these data strongly suggested that forced expression of Mash1 in 

combination with STAT3C could lead to cell death of astrocytes or astrocyte-derived neurons, 

as compared to forced expression of either Mash1 or STAT3C alone. This could be a 

consequence from the activation of two conflictive differentiation pathways, Mash1 inducing 

a neurogenic conversion of astrocytes, and STAT3 protein driving genes that could possibly 

lead to maintain these cells in their glial lineage and/or induce their proliferation. 

3.3.4. Effects of STAT3 level reduction on reprogramming of postnatal astrocytes into 

neurons 

Next, we investigated the impact of STAT3 signaling inhibition on neuronal reprogramming of 

postnatal astrocytes and therefore used our newly designed miRNA plasmid against STAT3 

(see subchapter 3.3.1.). Cortices of P6 mice were dissected, plated and passaged after seven 

days. One day later these postnatal astrocytes were transfected with pCAG-EmGFP-2miRNA-

STAT3.  We applied immunocytochemistry for pSTAT3 and GFP two days after transfection 

and found virtually no STAT3 signaling activation in cells transfected with the plasmid 

containing the miRNAs against STAT3 (Fig. 46A). Subsequently, we transfected postnatal 

astrocytes with either (i) pCAG-Mash1-IRES-DsRed and pCMV-GFP or with (ii) pCAG-Mash1-

IRES-DsRed and pCAG-EmGFP-2miRNA-STAT3, and fixed nine days after transfection (Fig. 46B 
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and C). While the number of transfected cells did not differ significantly between Mash1 and 

GFP compared to Mash1 and miRNAs against STAT3 at nine days post transfection (68 ± 53 

RFP+ cells in Mash1 and GFP versus 50 ± 22 RFP+ cells in Mash1 and pCAG-2miRNA-STAT3, p 

= 0,763, n = 3 independent experiments, Fig. 46D), the proportion of neurons per transfected 

cells was higher after transfection with Mash1 and miRNAs against STAT3 than after Mash1 

and GFP transfection (57,5 ± 6,9 % of neurons per transfected cells in Mash1 and pCAG-

EmGFP-2miRNA-STAT3 versus 39,4 ± 10,8 % in Mash1 and GFP, n = 3 independent experiments, 

Fig. 46E). This difference did not reach significance due to high variations observed in the 

survival of the cells. Additional experiments should be performed to enable a reliable 

statistical analysis.  
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Fig. 46: Analysis of P6 astrocytes at 2 and 9 days after transfection with Mash1 and GFP 

or Mash1 and miRNAs against STAT3 
(A) P6 astrocytes that were fixed at two days after transfection with miRNAs against STAT3. Staining 

with GFP and pSTAT3 was applied. Representative micrograph is shown. (B) and (C) P6 astrocytes that 

were fixed at nine days after transfection with Mash1 and miRNAs against STAT3 (B) or Mash1 and GFP 

C . “tai i g ith GFP a d βIII-tubulin was applied. Representative micrographs are shown. (D) and (E) 

Quantification of transfected cells at nine days (D), and number of neurons per transfected cells at nine 

days (E), with either Mash1 and GFP or Mash1 and miRNAs against STAT3. Values are given as mean ± 

SEM, n = 3 independent experiments. 
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Nevertheless, these data suggested that antagonizing STAT3 signaling by the addition of a 

miRNA against STAT3 improved the neuronal reprogramming efficiency induced by Mash1 

compared to Mash1 alone. Furthermore, antagonizing STAT3 signaling in cells transfected 

with Mash1 did not reduce cell numbers, in contrast to our previous results showing that 

instead forced expression of STAT3 and Mash1 led to reduced numbers of postnatal astrocytes. 

Taken together, our data revealed that endogenous STAT3 signaling impairs the neuronal 

reprogramming of postnatal astrocytes induced by Mash1. 

In addition to pCAG-EmGFP-2miRNA-STAT3, we also generated pCAG-EmGFP-2miRNA-STAT1 

and pCAG-EmGFP-2miRNA-STAT1/3 (see subchapter 3.3.1.). These constructs remain to be 

tested in order to further examine the possible effect that in the case of STAT3 suppression 

STAT1 would overtake parts of the gliogenic function of STAT3 as suggested by He et al. (He 

et al., 2005). 

3.4. Do reactive astrocytes acquire stem cell properties after acute invasive 

injury? 

Reactive astrocytes at the site of injury appear as potential candidates for in vivo 

reprogramming, in order to generate new neurons from an endogenous cellular source. Our 

data showed that activation of STAT3 signaling in postnatal astrocytes may impair their 

conversion into neurons. This suggests that the activation of STAT3 signaling that we 

evidenced in reactive astrocytes in the adult brain following injury may also exert inhibiting 

effects on the neuronal reprogramming when these astrocytes are provided with neurogenic 

transcription factors. This hypothesis remains to be tested. In addition the lab of Magdalena 

Götz could recently show that reactive astrocytes acquire neural stem cell-like properties in 

response to stab wound injury in the cerebral cortex (Buffo et al., 2008), as revealed by their 

ability to generate self-renewing and multipotent neurospheres in vitro. This also suggests 

that reactive astrocytes would be amenable to reprogramming into neurons when provided 

with the appropriate neurogenic fate determinants. 

During my MD thesis, I was also involved in a larger project aiming at comparing the properties 

of reactive glia in the injured brain in response to different injury paradigms. In particular, we 

investigated whether the stem cell response of reactive astrocytes is a general feature 
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observed after acute invasive injury inducing a high rate of astrocyte proliferation. To this aim, 

we used again the experimentel stroke model (MCAo), and examined whether reactive 

astrocytes isolated from the ischemic cortex, would generate neurospheres in vitro. Shortly, 

injured cortices of mice that underwent MCAo were dissected 3-4 days after injury and 

dissociated for subsequent neurosphere cultures (see subchapter 2.2.4.5). We observed the 

formation of neurospheres to a similar level as for the stab wound-injured tissue. These 

neurospheres showed the typical hallmarks of stem cells: they could be passaged and were 

capable of self-renewal as indicated by the formation of secondary neurospheres (Fig. 47). 

This figure includes additional work by Gwendolyn Behrendt and Lana Sirko, I was only 

involved in the generation of neurospheres from the MCAo group. 

 

Fig. 47: Formation of neurospheres from cells from different injury models 
Comparison of the generation of neurospheres from cells from different injury models (stab wound, 

MCAo, APP/PS1 and CK/p25). White bars indicate primary neurospheres, grey bars indicate secondary 

neurospheres. *p < 0.05, **p < 0.01, and ***p < 0.001. From Sirko et al., 2013. 

In order to assess the multipotency of the neurospheres, we exposed the cells to 

differentiation conditions for seven days and applied immunocytochemistry with antibodies 

against GFAP (to label astrocytes), βIII-tubulin (to label neurons) and O4 (to label cells of the 

oligodendrocyte lineage). We found that all three cell types were generated by some 

neurosphere cells derived from the ischemia-injured cortex (Fig. 48A-A’’’). This showed the 

multipotency of these neurosphere cells that constituted about one third of all neurospheres. 
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Fig. 48: Neurosphere assay at 3-4 days after MCAo 
(A) When neurospheres were exposed to differentiation conditions, they generated βIII-tubulin+ 

neurons A’’  a d A’’’ , GFAP+ astrocytes A , A’  a d A’’’  and O4+ oligodendrocytes A’  a d A’’’ ). 

Representative micrographs are shown. (B) Quantifification showing the differentiation of single plated 

neurospheres (n = 1 experiment). 

Next, we further analyzed the multipotency potentials of single plated neurospheres and 

found that all of them gave rise to astrocytes. In addition, approximately one third (8/23) of 

these neurospheres also generated neurons and oligodendrocytes. Nevertheless, 

approximately 40 % (9/23) generated only astrocytes, four of 23 generated astrocytes and 

oligodendrocytes and two of 23 generated astrocytes and neurons (Fig. 48B). Thus, almost 

half (10 of 23) of the neurospheres derived from reactive glia after MCAo showed the potential 

of generating neurons. 

Taken together, these results showed that self-renewing and bipotent neurospheres can be 

obtained from the MCAo injured cortex. In addition, their degree of neuron generation is 

comparable to that of neurospheres generated from the stab wound-injured cortex. 
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4. Discussion 

4.1. Comprehensive summary of the results 

In the present work I examined the expression and activation of STAT signaling after brain 

injury and investigated the impact of STAT3 signaling on the reprogramming of astrocytes into 

neurons.  

We first aimed at performing a thorough analysis of the pattern of expression and activation 

of STAT signaling after various types of brain lesion. Here we showed with western blot and 

immunohistochemistry that STAT3 expression is upregulated in the injured cortex after acute 

invasive injury such as stab wound and ischemia. Furthermore, we demonstrated that 

ipsilateral to the lesion STAT3 is virtually only expressed in reactive astrocytes, while 

contralateral it is mainly expressed in mature neurons. In order to determine the activation of 

STAT3 signaling we examined the expression of the phosphorylated form of STAT3, pSTAT3, 

and could show its expression exclusively in reactive astrocytes in the injured cortex. By 

demonstrating this pattern of STAT3 expression and activation not only after stab wound but 

also in an experimental stroke model, MCAo, we were able to increase the clinical significance 

of our findings. Compared with these acute invasive brain injury models the activation of 

STAT3 signaling was lower in mouse models mimicking non-invasive brain injury by exhibiting 

hall a ks of Alzhei e ’s disease, APP/PS1 and CK/p25. In contrast to STAT3, we were not able 

to reveal an unambiguous upregulation of expression and activation of STAT5 and STAT1 

signaling after cortical injury.  

Together with the susceptibility of reactive astrocytes to be reprogrammed into neurons when 

provided with the appropriate neurogenic fate determinants and the gliogenic function of 

STAT3 signaling during embryonic development, these results, showing the activation of 

STAT3 after acute brain injury, led to the investigation of the potential role of STAT3 signaling 

on neuronal reprogramming of astrocytes. In order to be able to perform gain- and loss-of-

function experiments, we first designed new vector constructs containing STAT3C, a 

constitutively active form of STAT3, or miRNAs against STAT3, with the purpose to decrease 

STAT3 expression. Next, we showed both the expression and activation of STAT3 signaling in 

postnatal astrocytes, which were then used as an established culture system for astrocyte-to-
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neuron conversion. We were afterwards able to provide evidence that the combination of 

Mash1 and STAT3C impairs neuronal reprogramming of postnatal astrocytes in vitro 

compared to Mash1 alone. Of note, we demonstrated by cotransfection of these postnatal 

astrocytes with Mash1 and miRNAs against STAT3 that reprogramming into neurons could be 

slightly enhanced in vitro compared to transfection with Mash1 alone. Future experiments will 

be required to study whether such an effect of STAT3 signaling also holds true in vivo, by 

investigating the effects of the delivery of neurogenic genes such as Mash1 and miRNAs to 

block STAT3 signaling in reactive astrocytes in the injured cortex after stab wound or MCAo. 

Moreover, we demonstrated that after MCAo, reactive astrocytes can give rise to 

neurospheres in vitro meaning that they acquire stem cell-like properties after MCAo, as 

described after stab wound (Buffo et al., 2008). The molecular pathway responsible for this 

apparently general effect after acute invasive injury is part of ongoing discussion. Shh was 

already shown to be involved (Sirko et al., 2013), but whether STAT3 signaling plays a role in 

this context remains to be investigated. Our expression analysis after brain injury showed a 

correlation between the number of generated neurospheres and the level of STAT3 signaling 

activation. Indeed, in acute invasive brain injury models (like stab wound and MCAo) reactive 

astrocytes expressed high levels of pSTAT3 and gave rise to high numbers of neurospheres, 

while they showed lower levels of pSTAT3 in non-invasive brain injury models (like APP/PS1 

and CK/p25) and produced much less neurospheres. Further studies are required to 

investigate whether activation of STAT3 signaling in reactive astrocytes plays a role in their 

capacity to acquire stem cell-like properties. Given the described roles of STAT3 signaling for 

proliferation (Brantley and Benveniste, 2008) and the acquisition of pluripotency (Yang et al., 

2010), it is conceivable that the activation of STAT3-signaling supports the formation of 

neurospheres. 

Taken together, we first provided evidence for the activation of STAT3 signaling in reactive 

astrocytes in different brain injury models. By inhibiting STAT3 signaling we were then able to 

increase the neuronal reprogramming of astrocytes in culture, suggesting that activation of 

STAT3 signaling impairs the conversion of astrocytes into neurons. On the other hand, we 

showed that the formation of neurospheres, indicative for the stem cell potential of astrocytes, 

correlates positively with the level of STAT3 signaling activation. From our data, one may 

speculate a dual function of STAT3 signaling over time in reactive astrocytes: it may participate 
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in their dedifferentiation, acquisition of stem cell properties and scar formation at early time 

points following injury, which might be benefial for brain repair. However, at later time points 

the decrease of STAT3 signaling activation may be required to promote the conversion of 

these reactive astrocytes into neurons. Future investigations are required to unravel the 

potential benefit for brain regeneration of either activating or inhibiting STAT3 signaling at 

defined time points. 

4.2. Expression and activation of STAT3 in the adult injured cerebral cortex 

So far the STAT3 expression and activation pattern have not been described after stab wound 

injury to the adult cerebral cortex and in the two mouse models APP/PS1 and CK/p25. 

Additionally, published data about the expression of STAT after MCAo have been 

contradictory. Here we investigated the expression and activation of STAT3 signaling in these 

brain lesion models with western blot and immunohistochemistry in order to be able to 

evaluate subsequent gain- and loss-of-function experiments for investigating the effects of 

STAT signaling on reprogramming of reactive astrocytes into neurons. 

4.2.1. Expression of STAT3 and pSTAT3 within the different subcellular compartments 

Our western blots of subcellular fractionated extracts of brain tissue and our 

immunohistochemistry data demonstrated that STAT3 is expressed in the cytoplasm and the 

nucleus, independently of the hemisphere (contra- and ipsilateral), the time and the lesion 

model. This finding is strongly supported by the theory of the canonical STAT signaling 

pathway (for review see (Aaronson and Horvath, 2002)), which assumes that STAT monomers 

are usually existent in the cytoplasm and upon activation by cytokines, translocated into the 

nucleus after dimerization and phosphorylation. It therefore suggests that virtually no non-

phosphorylated STAT proteins should be located in the nucleus. Thus, one may ask why a 

fraction of STAT3 was detected in the nuclear compartments in our experiments. Here, we 

need to keep in mind that the antibody used against STAT3 for western blot and 

immunohistochemistry did not differentiate between non-phosphorylated or phosphorylated 

STAT3 proteins suggesting that the detected nuclear STAT3 fraction also represents 

phosphorylated STAT3 proteins. Taking this into consideration, the very low level of STAT3 
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expression in the nuclear fraction of the contralateral hemisphere that was detected with 

western blot could display a baseline activation level of the STAT3 signaling pathway.  

Fitting with the described canonical STAT signaling cascade and our data on STAT3, we 

demonstrated that pSTAT3, detected by a phosphorylation site specific antibody in western 

blot and immunohistochemistry, was mainly localized in the ipsilateral nuclear compartment. 

Here it is important to note that in general within activated STAT signaling pathways the 

turnover of the phosphorylation status is very high. Phosphorylated STAT proteins that are 

translocated into the nucleus will then be dephosphorylated and return to the cytoplasm 

where they again can be phosphorylated (Haspel et al., 1996). So when evaluating the 

activation of the STAT signaling cascade by only measuring the nuclear expression levels of 

pSTAT3, we may underestimate the full dynamics of this activation. 

4.2.2. Upregulation and activation of STAT3 signaling over time after stab wound 

In order to thoroughly describe the expression and activation pattern of STAT3 after stab 

wound we performed western blot with whole cell and subcellular fractionated extracts and 

immunohistochemistry over the first seven days. We observed with western blot of whole 

brain extracts that the expression of STAT3 starts to increase at 3 dpSW, in parallel with GFAP, 

a marker for reactive astrocytes (Robel et al., 2011), as already shown before (Hozumi et al., 

1990). Next, by investigating separated nuclear and cytoplasmic fractions by subcellular 

fractionation, we could show a significant upregulation in both fractions in the ipsilateral 

compared to the contralateral cortex at 3 dpSW. This suggests that STAT3 proteins in the 

ipsilateral hemisphere are produced upon STAT3 promoter activation, possibly by STAT3 itself 

(He et al., 2005), and subsequently translocated into the nucleus in order to exert its 

transcriptional activation function. We reinforced these data by showing that also pSTAT3 

displays a significant upregulation in the nuclear fraction of the lesioned hemisphere 

compared to the contralateral side at 3 dpSW. Both, STAT3 and pSTAT3, decreased nearly 

completely to baseline levels at 5 and 7 dpSW.  

Our western blot results can be correlated with our results from immunohistochemistry after 

stab wound. We showed that virtually all of the cells that upregulated and activated STAT3 at 

3 dpSW were GFAP+. Thus the ipsilateral expression of STAT3 and pSTAT3 detected at 3 dpSW 
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in western blots represents the expression and activation of STAT3 signaling in reactive 

astrocytes. We next observed that instead the contralateral expression of STAT3 in western 

blot corresponds to the STAT3 expression in mature neurons.  On the lesioned site, in contrast 

to 3 dpSW, we observed at 5 and 7 dpSW only 78,9 % and 65,9 %, respectively, of pSTAT3+ 

cells to be GFAP+. Additionally, while approximately 20 % of reactive astrocytes, mainly in the 

close vicinity of the stab wound, were pSTAT3+ at 3 dpSW, this value significantly decreased 

at 5 and 7 dpSW. Overall, this observed pattern of pSTAT3 argues for a lower relative number 

of GFAP+ cells that activated STAT3 signaling at 5 and 7 dpSW compared to 3 dpSW and 

suggests that other cell types must have upregulated STAT3 signaling at 5 and 7 dpSW. 

Although no published data exist on STAT3 signaling in the different cell types after stab 

wound, investigations in other CNS lesion models, mainly SCI, have been performed. Yamauchi 

and colleagues found that pSTAT3 is significantly upregulated in neurons as well as reactive 

astrocytes at 12 hours and microglia at 48 hours after SCI (Yamauchi et al., 2006). However, 

this study did not evaluate the pSTAT3 expression in different cell types beyond 48 hours. 

More recent studies on the activation of STAT3 signaling after SCI focused only on reactive 

astrocytes and did not investigate other cell populations (Herrmann et al., 2008, Wanner et 

al., 2013, O'Callaghan et al., 2014). In contrast, Planas and colleagues used a MCAo model to 

induce transient focal cerebral ischemia and found STAT3 upregulated in microglial cells at 4, 

7 and 15 days after MCAo. However, they did not provide any quantifications or 

immunohistochemistry investigating the expression in astrocytes or neurons (Planas et al., 

1996). A study from our laboratory investigated the proliferative reaction of glial cells after 

stab wound injury (Simon et al., 2011) and showed that at 7 dpSW most proliferating cells 

were positive for Iba1, a marker for microglia, CD45, that is expressed on many hematopoietic 

ells, o  “ β, a  ast oglial a ke . Taken together, these data suggest that CD45+ cells, 

microglia or neurons could constitute the cell populations that, in addition to reactive 

astrocytes, upregulate pSTAT3 at 5 and 7 dpSW. 

Very recently, our laboratory was able to further discriminate different populations of reactive 

astrocytes after stab wound (Bardehle et al., 2013). For up to 28 days after injury single 

astrocytes were followed with in vivo two-photon laser-scanning microscopy. Thereby, at least 

three different subpopulations could be distinguished: one population of astrocytes keeping 

their original morphologic shape, another population navigating their processes toward the 

lesion and a third subset, proliferating, at a juxtavascular location. Independently of the subset, 
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no single astrocyte migrated toward the lesion site. It will be very interesting to examine the 

STAT3 expression and activation of these three subsets given the role of STAT3 in proliferation. 

4.2.3. Upregulation and activation of STAT3 signaling after MCAo 

As mentioned before, no results have been published yet on the expression and activation 

pattern of STAT signaling after stab wound injury to the adult cerebral cortex. Therefore, we 

aimed to rule out stab wound model-related effects by conducting the same analysis in MCAo 

mice. 3-4 days after MCAo cortices were dissected and subsequently western blots of 

subcellular fractionated extracts were performed. Here we found no upregulation of STAT3 

expression in the ipsilateral hemisphere. In contrast, pSTAT3 was significantly higher in the 

ipsilateral compared to the contralateral nuclear fraction. This pattern was in contrast to the 

changes that we evidenced in the stab wound model where we observed a significant 

upregulation of both, pSTAT3 and STAT3 in the ipsilateral cortex. Different reasons can be 

found for this different level of activation of the signaling cascade. First, the different 

pathophysiologies of the two models lead to the activation of different additional pathways 

that can influence the STAT3 signaling pathway. As a consequence, some promoters, e.g. the 

“TAT  p o ote  itself, a  e lo ked a d a ’t e a ti ated  p“TAT  di e s hile othe  

promoters can be accessed now. Additionally, the faster or more effective onset of inhibitory 

regulators of the STAT signaling cascade, in particular of PIAS, which would inhibit the DNA 

recognition of phosphorylated STAT dimers in the nucleus (Shuai, 2000), could lead to less 

increased expression of STAT proteins overall in the ipsilateral cortex. Second, these two 

models also display totally different neuropathological features. For example the necrotic core 

and the area affected by the ischemia are manifold larger after MCAo than after stab wound. 

Given the fact that the dissection of the cortices were performed in the same way (namely 

cutting the brain frontally in three or four sections and afterwards dissecting cortices of 

contra- and ipsilateral hemispheres), we may have taken proportionally more parts of the 

necrotic core in the MCAo animals compared to the SW animals. As this dead tissue could not 

show increased STAT3 signaling, it may have had a dilutional effect on the whole sample. 

Although displaying different pathophysiologies and neuropathologies, both, stab wound and 

MCAo are models of acute invasive brain injuries. The activation of STAT3 signaling therefore 
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does not only seem to be an effect, which would be specific for the stab wound model, but 

instead a more general phenomenon after acute invasive brain injury. 

Again, in order to investigate the cell types activating STAT3 after MCAo, we performed 

immunohistochemistry with pSTAT3. As after SW, we observed that most pSTAT3+ cells were 

GFAP+. We could therefore argue that the significant difference that was observed in the 

ipsilateral compared to the contralateral nuclear fraction in the western blot represents the 

changes of pSTAT3 expression in these reactive astrocytes. As at 3 dpSW, the percentage of 

GFAP+ cells expressing pSTAT3 at 3-4 days after MCAo was approx. 20 %. In contrast, the 

percentage of pSTAT3+ cells that were also GFAP+ at 3-4 days after MCAo was significantly 

lower than at 3 dpSW. This suggests that other cell types do activate STAT3 signaling at 3-4 

days after MCAo. This difference may again be explained by the different pathophysiology 

underlying these two brain lesions. While the stab wound may lead to focal disruption of blood 

vessels with subsequent intraparenchymal hemorrhage, disruption of neuronal projections as 

well as local cell death of neurons and glial cells, the experimental stroke model MCAo leads 

to an ischemia that covers much larger parts of the brain and subsequently results in cell death 

by excitotoxicity, peri-infarct depolarizations, inflammation and apoptosis. Furthermore, after 

MCA occlusion for 1-2 hours, the proportion of neurons, which are affected by the 

pathophysiology but not immediately dead after insults (the so-called penumbra), may be 

much larger than after stab wound in which some cells may die immediately but the majority 

of the surrounding cells may not be affected. As it is known that STAT3 promotes neuronal 

survival by upregulating neuroprotective genes (for review see (Dziennis and Alkayed, 2008)), 

the neurons in the ischemic penumbra may represent a group of cells that could upregulate 

STAT3 signaling and therefore represent a population of cells that in addition to reactive 

astrocytes upregulated STAT3 signaling. A previous study by Suzuki and colleagues indeed 

found pSTAT3 to be expressed in neurons at 3,5 and 24 hours after MCAo but not in GFAP+ 

cells at four days after MCAo (Suzuki et al., 2001). As mentioned above Planas and colleagues 

found even another pattern of STAT3 signaling activation after MCAo as they reported only 

microglia and not neurons or other glial cells to express STAT3 at 4, 7 and 15 days after MCAo 

(Planas et al., 1996). The same group reported four years later that STAT3, in contrast to their 

first study, is also upregulated in layer V neurons and astrocytes at several days after MCAo 

(Justicia et al., 2000). Together, this supports the idea that neurons may be an additional 
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population of cells that upregulate STAT3 signaling after MCAo and therefore explain the 

decrease of the proportion of pSTAT3+ cells being GFAP+. 

Another not significant but remarkable difference of the percentage of GFAP+ cells expressing 

pSTAT3 was observed between the conditions three days after stab wound and MCAo on the 

one hand (20,0 and 18,8 %) and 5 and 7 days after stab wound on the other hand (6,5 and 

8,7 %). Apparently, reactive astrocytes activate STAT3 signaling more at earlier (three days 

after insult) than at later time points (five and seven days after insult) independent of the 

brain lesion. This is consistent with Yamauchi and colleagues which showed with western blot 

of whole cell extracts, that pSTAT3 decreases from three to seven days after SCI. Additionally, 

they found STAT3 signaling to be upregulated from 6 hours on after insult (Yamauchi et al., 

2006). In contrast, Zamanian and colleagues demonstrated a sustained upregulation of STAT3 

gene expression up to one week after MCAo (Zamanian et al., 2012), indicating that STAT3 

may be translationally repressed at five and seven days. The role of STAT3 in reactive 

astrocytes may be important to understand in order to explain the designated difference 

between earlier and later time points. Mainly three studies investigated the function of STAT3 

in reactive astrocytes and found it to be highly important for the glial scar formation after 

brain lesion (Okada et al., 2006, Herrmann et al., 2008, Wanner et al., 2013). Possible links 

were provided as first, a STAT3 binding site was found in the promoter of GFAP (Bonni et al., 

1997), which is one of the structural hallmarks of reactive astrogliosis, second, mice with a 

conditional STAT3 knockout lacked astrocytic hypertrophy (Herrmann et al., 2008) and third, 

STAT3 led to a decrease of E-cadherin, a cell adhesion molecule (Okada et al., 2006). 

Furthermore, Okada and colleagues showed with an in vitro migration assay that STAT3 is 

crucial for the migration of astrocytes (it will be interesting to see if injection of our miRNA 

expressing plasmids in vivo also leads to reduced migration of reactive astrocytes to the lesion 

site). The glial scar is especially important early after brain lesion as it inhibits the spread of 

inflammatory cells via STAT3-dependent mechanisms (Wanner et al., 2013) and helps to repair 

the blood brain barrier, which consecutively leads to smaller lesion size and less neuronal loss 

(Bush et al., 1999, Faulkner et al., 2004, Voskuhl et al., 2009). Thus, we hypothesized here that 

the STAT3 signaling activation that we evidenced in acute brain injuries at early time points is 

likely related to the role of STAT3 in the formation of the glial scar that is particularly valuable 

at early time points after brain injury. 
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4.2.4. Upregulation and activation of STAT3 signaling in mouse models of non-invasive 

brain injury 

For the purpose of extending the spectrum from acute/invasive to non-acute/non-invasive 

injuries and additionally to increase the clinical significance of our findings regarding the 

expression and activation of STAT3 signaling after brain lesion, we investigated the pattern of 

STAT3 signaling also in two mouse models mimicking AD - APP/PS1 and CK/p25, which have 

not been examined yet in this context. With immunohistochemistry we found that in both 

models the percentage of reactive astrocytes that were pSTAT3+ was lower compared to 3 

dpSW and 3-4 days after MCAo. This fits with our beforehand described hypothesis that STAT3 

activation is important for the initial formation of the glial scar within days after injury. The 

still existent but lower activation of STAT3 signaling at late time points (six months old APP/PS1 

mice and CK/p25 mice that were off doxycycline for five weeks) suggests that activation of 

STAT3 at a baseline level promotes the ongoing process of reactive astrogliosis. Nevertheless, 

we need to keep in mind that this baseline expression level is based on some pSTAT3+ cells as 

a subset of the total GFAP+ cell population and does not display a general average expression 

of pSTAT3 in every GFAP+ cell. Also the percentage of GFAP+/pSTAT3+ cells did not differ 

between both models indicating that the chronicity of the lesion could play a role. 

Interestingly, this percentage value was in both models lower than at 3 dpSW and significantly 

higher than after MCAo. Again, these differences may be explained by the pathophysiology. 

After MCAo we identified neurons within the penumbra and microglia as potential cell 

populations to activate STAT3 signaling. Here, these two non-invasive brain injury models lack 

a penumbra. In addition, their vascular integrity is not affected and consequently, immune 

cells (e.g. CD45+ cells) can invade the affected brain areas only to a much lower extent than 

after invasive brain injury models where blood vessels are disrupted. Therefore, these models 

display much less immunological response than after MCAo. Moreover, in the CK/p25 mice, 

neurons overexpress p25 which interacts with Cdk5 which in turn associates to and 

subsequently phosphorylates STAT3 at the Ser727 residue (Fu et al., 2004). This 

phosphorylation step appears to be important for full transcriptional activation (Decker and 

Kovarik, 2000). This could indicate that given the higher transcriptional capacity of single STAT 

dimers in p25 expressing neurons either lower pSTAT3 expression levels are needed for the 
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necessary STAT3 transcriptional function or negative regulators as SOCS and SHP2 are 

upregulated and therefore pSTAT3 expression levels decreased. 

Overall, we here provided evidence for the first time that STAT3 signaling is activated in 

reactive astrocytes after stab wound and in two mouse models mimicking AD – APP/PS1 and 

CK/p25. Additionally, we were able to add further experimental evidence that STAT3 is 

activated in reactive astrocytes after MCAo. Future studies will have to clarify which other cell 

types may activate STAT3 after these brain lesions. 

4.3. STAT5 and STAT1 signaling in the injured cerebral cortex 

Besides STAT3 also other members of the family of STAT proteins have been suggested to be 

expressed after CNS lesion, mainly STAT1 and STAT5. Here we investigated with western blot 

and immunohistochemistry if these proteins are expressed or activated after stab wound. 

4.3.1. Expression of STAT5a after stab wound 

With western blot of whole cell extracts and immunohistochemistry we first showed that 

STAT5a was not upregulated in the ipsilateral cortex at several days after stab wound (1, 3, 5 

and 7 dpSW with western blot and 3 dpSW with immunohistochemistry). Second, we showed 

that, in contrast to STAT3 and pSTAT3 after injury, STAT5a is mostly expressed by mature 

neurons, as shown by colocalization with NeuN. No obvious difference in colocalization 

between contra- and ipsilateral hemisphere was observed. Regrettably, antibodies that were 

meant to detect STAT5b and pSTAT5 did not work in our hands. Therefore, we were not able 

to pursue further analysis of STAT5b and pSTAT5 expression.  

Previously published studies regarding the expression and activation of STAT5 signaling after 

brain injury focused so far on models of cerebral ischemia. The mRNA for both proteins, 

STAT5a and STAT5b, were shown to be upregulated at 24 hours after MCAo in the ipsilateral 

hippocampus by using microarray analysis (Sun et al., 2007). Unfortunately, no protein levels 

were measured in this study. Another study used a model of transient global ischemia. Here, 

Zhang and colleagues focused on the CA1 area of the rat hippocampus (as short global 

ischemia leads to a selective and delayed neuronal cell death in this area) and showed that 

while total STAT5 expression levels do not change, the level of pSTAT5 is increased at 1 and 3 
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hours after reperfusion with an earlier increase of pSTAT5a than pSTAT5b (Zhang et al., 2007). 

Given first, the different model of a transient global ischemia, which is performed by a twelve 

minutes long four-vessel occlusion, second, the usage of an antibody against STAT5, which 

detects STAT5a and STAT5b and third, the investigation of only the CA1 area of the 

hippocampus, these results can hardly be compared to ours. In addition, this study did not 

address the role of STAT5 signaling in ischemia. Furthermore, Yamaura and colleagues 

observed STAT5a to be an integral player against the myocardial ischemia-reperfusion injury 

(Yamaura et al., 2003), indicating that STAT5 signaling in ischemia is not brain-specific. 

Overall, our data suggest that STAT5a is not upregulated at 3 dpSW, but bilaterally expressed 

in neurons. Future studies are required to check if this expression pattern changes over time at 

5 and 7 dpSW or in different injury models. Furthermore, it will be interesting to see if STAT5b 

and pSTAT5 show a distinct pattern of expression as indicated by previous studies. 

4.3.2. Activation of STAT1 after stab wound 

By applying western blot of subcellular fractionated extracts that were collected from mice at 

3 dpSW we observed no obvious upregulation of pSTAT1 in the ipsilateral versus the 

contralateral hemisphere. As expected from our results with pSTAT3 and suggested by the 

canonical STAT signaling pathway, pSTAT1 was mainly found in the nuclear fractions. But as 

the loading control was missing in this experiment, no solid conclusions can be drawn. With 

immunohistochemistry we demonstrated that pSTAT1 is only expressed in the ipsilateral 

hemisphere and here virtually always by GFAP+ cells. In contrast to pSTAT3, these cells 

represented only a very minor fraction of reactive astrocytes in the vicinity of the lesion. 

Although these cells in the ipsilateral cortex exhibited pSTAT1 staining only in the nucleus, the 

lack of pSTAT1+ cells in the contralateral hemisphere was in clear contrast to our western blot 

findings. As we succeeded in detecting a single band matching the presumed molecular weight 

of the phosphorylated form of STAT1 as well as only nuclei of single cells, the specificity of the 

antibody was apparently not questionable. However, the sensitivity of this antibody for 

immunohistochemistry might have been low. In that case we may have only detected the cells 

that expressed pSTAT1 at highest levels. Alternatively, the missing nuclear loading control for 

our western blot could have lead to false interpretation of this western blot data. 
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So far no data have been published on the upregulation of STAT1 signaling after stab wound 

and little is known about its expression after MCAo and SCI. While Planas and colleagues found 

STAT1 expression in western blot of brain tissue from four days on after MCAo until 15 days 

(Planas et al., 1997), Takagi and his team found pSTAT1 to be expressed in neurons even within 

several hours after MCAo and proposed a role in cell death, as STAT1 knockout mice showed 

reduced infarct volume and less neurological deficits (Takagi et al., 2002). Osuka and 

colleagues found that pSTAT1 is upregulated around 6 hours after SCI in neurons but not 

translocated into the nuclear compartment, in strong disagreement with the canonical 

signaling pathway (Osuka et al., 2011). STAT1 activation in reactive astrocytes after injury was 

reported in the hippocampus after kainic acid-induced seizures (Choi et al., 2003). 

Our data suggest that the activated form of STAT1, pSTAT1, is expressed in a subset of reactive 

astrocytes at three days after stab wound. Other studies will unravel how this pattern develops 

over time and in other injury models.  

4.4. Impact of STAT3 signaling on reprogramming of postnatal astrocytes into 

neurons 

The long-term goal of the whole study is to investigate if STAT-mediated pathways could 

hamper the reprogramming of reactive astrocytes into neurons after injury of the cerebral 

cortex. In order to evaluate whether a strategy aiming at decreasing or increasing STAT 

signaling would make sense we first conducted a thorough analysis of the pattern of 

expression and activation of STAT signaling after various brain lesions, which was presented 

and discussed above. For the purpose of evaluating the impact of STAT signaling on neuronal 

reprogramming we used the neuronal reprogramming of postnatal astrocytes in vitro, a 

system, which has been established by our laboratory. Indeed, our lab was previously able to 

show that cortical postnatal astrocytes can be directly reprogrammed into fully functional 

neurons by forced expression of neurogenic fate determinants (Berninger et al., 2007, 

Heinrich et al., 2010, Heinrich et al., 2011). Therefore, this controlled in vitro system 

represented the ideal setting to evaluate the effect of STAT signaling on neuronal 

reprogramming. Very recent data on the reprogramming of brain-resident cells into neurons 

in vivo (as introduced in subchapter 1.5.3.3.) will allow us to investigate this pathway in this in 
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vivo setting in future experiments. Here we first investigated if postnatal astrocytes would 

indeed mimic reactive astrocytes regarding the expression and activation of STAT signaling. 

4.4.1. Expression and activation of STAT3 in postnatal astrocytes 

We chose to study the expression and activation of STAT3 in postnatal astrocytes mainly for 

two reasons: to see whether they can be used as a model for reactive astrocytes and second 

to assess if it is reasonable to perform gain- or loss-of-function experiments of STAT3 signaling 

in postnatal astrocytes. By using western blot we found STAT3 to be expressed and activated 

in cortical astrocytes that were cultured from mouse pups sacrificed at postnatal day one or 

six and subsequently expanded for seven days in vitro. At these postnatal days 

astrogliogenesis is indeed at its peak. As reviewed in detail in subchapter 1.6.3.2. STAT3 is at 

the centre of astrogliogenesis regulation and becomes robustly elevated from E11.5 on (He et 

al., 2005). It was even suggested that STAT3 expression increases before from E7.5 on (Foshay 

and Gallicano, 2008). Then during postnatal development, Gautron and colleagues observed 

by using immunohistochemistry that STAT3 expression increases from P3 to P21 (Gautron et 

al., 2006). Fourth, it was demonstrated that JAK/STAT signaling was among the 20 enriched 

signaling pathways in astrocytes from the forebrain of mice that were one to thirty days old 

(Cahoy et al., 2008). Overall, our finding that STAT3 is expressed and activated in our culture 

of cortical astrocytes is in line with previously published data. With regard to STAT signaling, 

postnatal astrocytes can therefore be used as a model for reactive astrocytes and it was 

reasonable to perform subsequent gain- and loss-of-function experiments in postnatal 

astrocytes.  

4.4.2. Inhibition of STAT signaling: several possible approaches 

Here we took advantage of a widely used method to reduce protein expression – miRNAs. 

Although we observed a much more pronounced STAT3 activation in reactive astrocytes after 

injury and data on the impact on neuro- vs. astrogliogenesis have been much more intriguing 

for STAT3 than for STAT1, we decided to also create miRNAs against STAT1 as binding 

sequences of STAT1 in astroglial promoters GFAP a d “ β  have been found (He et al., 

2005) and we hypothesized that STAT1 could thus overtake the gliogenesis-promoting 
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function of STAT3. For the purpose of higher efficiency and GFP labeling the newly designed 

miRNAs were subjected to different cloning steps that led to three different constructs, one 

containing two miRNAs against STAT3, one with two miRNAs against STAT1 and one with two 

miRNAs against STAT3 and two against STAT1. During this process their sequence was tested 

repeatedly (by Eurofins MWG Operon, Ebersberg, D) and at all times found to be correct.  

Subsequently, we decided to subclone each of the miRNA constructs and overexpressing 

vectors into a retroviral vector under the control of the pCAG promoter. That would allow 

long-term expression by avoiding silencing (Gaiano et al., 1999, Zhao et al., 2006, Heinrich et 

al., 2010). Unfortunately, the time that was available for the present work was not sufficient 

to test the viruses’ transduction efficiency and to perform further experiments with them. 

Future studies will reveal if the application of these viruses leads to better inhibition of STAT 

signaling and therefore allow more pronounced effects on the reprogramming of reactive 

astrocytes into neurons. 

miRNAs represent not only tools that can be exogenously delivered to target mRNAs but are 

also endogenously available, exert a plethora of effects by targeting approximately 30 % of all 

mRNAs and thereby modify many different signaling pathways (Bartel, 2004). These 

endogenous miRNAs affect also processes like oligodendrocyte proliferation and 

differentiation as well as myelin formation (Barca-Mayo and Lu, 2012). Investigating the role 

of endogenous miRNAs in astrocytes, especially after brain injury, displays an interesting 

approach on its own, which warrants future studies.  

Many different ways to inhibit proteins in general have been proposed as well. miRNAs are 

part of the RNA interference system, with another component of this system being small 

interfering RNAs (siRNAs). Exogenously delivered small hairpin RNAs (shRNAs) are 

cytoplasmically processed into siRNAs (Bernstein et al., 2001), which then target mRNAs to 

degrade them or to inhibit their translation (as miRNAs do), but compared to miRNAs they 

target only one mRNA specifically. We here chose to work with miRNAs as the manufacturer 

of the RNAi expression vector kit (Life Technologies, Carlabsd, CA, USA), that was established 

in our laboratory, reported that the knockdown success rates of miRNAs in reducing mRNA 

expression are higher than that of shRNAs (> 70 % versus 50 %; http://de-

de.invitrogen.com/site/de/de/home/Products-and-Services/Applications/rnai/Vector-based-

RNAi/Pol-II-miR-RNAi-Vectors.html).  



Discussion 139 

In addition to the mRNA level, other levels of the protein synthesis or elements of the STAT 

signaling pathway could be targeted to reduce STAT signaling. For example a dominant 

negative form of STAT3 has recently been used to inhibit STAT3 signaling – STAT3F (Bonni et 

al., 1997). STAT3F can bind to phosphorylated cytokine receptors but cannot be 

phosphorylated itself as Tyr705 was substituted by phenylalanine. Subsequently, it cannot 

dissociate from the receptor and thus inhibits the recruitment of endogenous STATs to the 

cytokine receptor (He et al., 2005). Ultimately, it is therefore thought to prevent the activation 

of endogenous STATs (originally developed by Nakajima and colleagues (Nakajima et al., 

1996)). We tested STAT3F by transfecting cultured astrocytes isolated from postnatal day six 

cerebral cortex, but unfortunately, in our hands the molecule was not able to decrease the 

intensity of pSTAT3 in the nucleus significantly (data not shown), as the designed miRNAs did. 

Other STAT-mediated pathway inhibitors as Stattic (Schust et al., 2006), a STAT3-specific 

inhibitor or AG490 (Meydan et al., 1996), a Jak2 inhibitor, have been described. We instead 

decided to use vectors encoding the respective miRNAs because only with them we would be 

able to track successfully transfected cells by GFP labeling (by the use of vectors that at the 

same time encode GFP). 

In parallel to exogenously delivered molecules, genetically modified mice have also proven to 

be a valuable tool for the alteration of signaling pathways. While STAT3 knockout mice per se 

die at embryonic ages (Takeda et al., 1997), conditional knockouts, in order to be able to 

induce the knockout at a specific time point and only in a selected cell type, have been 

generated recently (e.g. see (Herrmann et al., 2008)). Such a mouse line, e.g. 

GLASTcreERT2STAT3flox/flox, would allow for astrocyte-specific STAT3 deletion by inducing cre 

expression under control of the astrocyte-specific glutamate transporter GLAST and by 

inducing its translocation to the nucleus upon delivery of tamoxifen at any given time point 

(Mori et al., 2006). Future experiments will reveal the effects of such an in vivo deletion of 

STAT3 specifically in astrocytes. 

Due to their simple experimental use and easy tracking of expression by following GFP we 

decided to use miRNAs instead of other inhibitors. Here, we developed miRNAs against STAT3 

and STAT1 and proved them to lower the respective STAT protein remarkably. 
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4.4.3. Impact of STAT3 signaling on reprogramming of postnatal astrocytes into neurons 

As STAT3 was shown to promote astrogliogenesis during embryonic development we here 

aimed at investigating its function on the neuronal reprogramming of postnatal astrocytes 

induced by a well-known neurogenic fate determinant, Mash1 (also named Ascl1, achaete-

scute homolog 1). Therefore, we first cotransfected P6 astrocytes with STAT3C and Mash1. At 

nine days after transfection, the number of neurons was lower in Mash1/STAT3C-transfected 

cells than in Mash1/GFP-transfected cells. Concomitantly, at this time point the number of 

RFP+ cells was lower in Mash1/STAT3C-transfected cells than in Mash1/GFP-transfected cells. 

To rule out transfection related cell death we studied the number of Mash1-transfected cells 

shortly after transfection, at two days, and found no difference between the conditions 

Mash1/GFP and Mash1/STAT3C. In addition, STAT3C-related cell death could be excluded as 

the number of RFP+ cells at nine days after cotransfection with STAT3C/DsRed was not lower 

than the number of RFP+ cells in GFP/DsRed-transfected cells. These results indicate that 

STAT3C impairs the reprogramming of postnatal astrocytes into neurons, possibly by inducing 

cell death of the cells cotransfected with both, STAT3 and Mash1, which exert opposite 

effects: while STAT3 would maintain the astrocytes in their glial lineage or induce their 

proliferation, Mash1 would force them to become neurons, thus inducing a cell fate conflict 

resulting in cell death.  

Next, in order to block STAT3 signaling we cotransfected cells with Mash1 and GFP-2miRNA3 

and observed that the number of neurons per transfected cells was higher than with Mash1 

alone. Interestingly, the number of Mash1-transfected cells did not change between 

Mash1/GFP-2miRNA3- and Mash1/STAT3C-transfected cells. Conditions like these that led to 

equal cell numbers do not exclude the possibility of cell death because compensatory 

proliferation can occur. However, the withdrawal of proliferation factors in these cultures 

after transfection leads to very little proliferation.  In general, we interpreted reduced cell 

numbers as netto cell death (more cell death than proliferation). Future studies will 

investigate the cell death in these conditions in more details, e.g. with live imaging, 

immunostaining of caspases or TUNEL assay (terminal deoxynucleotidyl transferase dUTP nick 

end labeling). 
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Regarding the combined forced expression of Mash1, a neurogenic fate determinant, and 

STAT3, a gliogenic fate determinant, it is necessary to discuss the pivotal molecular process 

that underlies the transition from neurogenesis to astrogliogenesis. Several mechanisms have 

been suggested to suppress STAT signaling during the neurogenic phase. First Neurog1, which 

is highly expressed during cortical neurogenesis and low during gliogenesis, sequesters the 

CBP/p300/Smad1 complex away from STAT3, which subsequently cannot bind to glial 

promoters and directly suppresses JAK/STAT signaling (Sun et al., 2001). Second, STAT proteins 

are not able to access astrocytic genes due to histone H3K9 or DNA methylation (Takizawa et 

al., 2001, Fan et al., 2005). And third, during the neurogenic phase astrogliogenesis is inhibited 

by the erbB4-NCoR signaling (Sardi et al., 2006). In contrast, at the transition between 

neurogenic and astrogenic phase Neurog1 and Neurog2 loci are epigenetically silenced by the 

polycomb group complex (Hirabayashi et al., 2009) leading to negligible Neurog2 expression 

in postnatal astroglia (Heinrich et al., 2010). Consecutively, the CBP/p300/Smad1 complex can 

bind to STAT3 and subsequently activate glial promoters. The neurogenic phase ends in the 

mouse cortex at approx. E18.5 (Levers et al., 2001) while STAT starts to regulate the onset of 

gliogenesis (Bonni et al., 1997). At P6 then these astrocytes still express STAT3 and do not have 

any intrinsic neurogenic capacity (Ge et al., 2012). The forced expression of Mash1 and Dlx2, 

which is a direct downstream target of the ventral telencephalic transcription factor Mash1, 

was shown to reprogram these postnatal astrocytes into GABAergic neurons in vitro (Heinrich 

et al., 2010). However, we show now that the forced expression of STAT3 by administrating 

STAT3C can indeed robustly inhibit this process. The activation of two opposed differentiation 

pathways, Mash1 for the neurogenic and STAT3 for the gliogenic pathways, leads to cell death. 

Alternatively, as the blockade of STAT3 signaling tends to increase neuronal reprogramming, 

the endogenous activation of STAT3 signaling could also inhibit the neuronal reprogramming 

process itself.  

Here we suggest that cell death due to the activation of two opposed differentiation pathways 

but also the inhibition of the process of neuronal reprogramming itself, led to decreased 

numbers of neurons after cotransfection with Mash1/STAT3C compared to Mash1 alone. In 

contrast, the blockade of STAT3 signaling partially increases the neuronal reprogramming of 

postnatal astrocytes induced by Mash1. 
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4.5. Acquisition of stem cell properties by reactive astrocytes after brain 

injury 

Recently, our group was able to demonstrate that acute/invasive injuries (MCAo and SW) 

significantly differ from non-invasive injuries (APP/PS1 and CK/p25) concerning proliferation 

and stem cell properties of responding astrocytes (Sirko et al., 2013). While invasive models 

elicited a large degree of proliferation and capacity to form multipotent and self-renewing 

neurospheres among astrocytes, non-invasive models showed an astrocytic response with 

virtually no potential to form neurospheres and only low levels of proliferation. Strikingly, our 

group could identify Shh as participating pathway responsible for the astrocytic reaction after 

invasive injury. Notably, the STAT3 signaling pathway may have an important effect in this 

context – independent or interacting with the Shh signaling pathway as both pathways can 

lead to transcriptional activation (Yang et al., 2012). Here, our expression analysis showed 

higher levels of pSTAT3 in reactive astrocytes after acute brain injury models like stab wound 

and MCAo, that also show a higher capacity to form multipotent and self-renewing 

neurospheres, compared to lower expression levels of pSTAT3 in reactive astrocytes after non-

acute and non-invasive brain injury models like APP/PS1 and CK/p25, that also show lower 

potential to generate neurospheres. Various causative links can be found for this apparent 

correlation between the number of generated neurospheres and the level of STAT3 signaling 

activation. First, it is suggested that insufficient activation of JAK/STAT3 is a limiting condition 

for the acquisition of pluripotency in heterogenous embryonic stem cell lines (Yang et al., 

2010). While pluripotency refers to the ability of a stem cell to differentiate into derivates of 

any of the three embryonic germ layers, multipotency is a more restricted competence, which 

indicates the capacity of a progenitor cell to develop into more than one cell type. 

Consequently, it is conceivable that STAT3 signaling may also play a role in the acquisition of 

multipotency. Second, STAT signaling is linked to cellular proliferation - a critical process in the 

development of neurospheres - in different contexts, e.g. of embryonic CNS cells (Cattaneo et 

al., 1996) and in various tumors like gliomas (Brantley and Benveniste, 2008). 

Further studies are required to determine whether STAT3 signaling plays a key role in the 

potential of reactive astrocytes to generate neurospheres. Given the described roles of STAT3 
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signaling for proliferation and pluripotency, it is conceivable that the activation of STAT3 

signaling indeed supports the formation of neurospheres. 

4.6. Effect of STAT signaling on reprogramming of reactive astrocytes into 

neurons in the adult injured brain 

The final goal of the present work will be to investigate the impact of STAT signaling inhibition 

on reprogramming of reactive astrocytes into neurons. Here it will be particularly interesting 

to see if neuronal reprogramming of reactive astrocytes in vivo can be enhanced after injection 

of our newly produced virus containing miRNAs against STAT3, in combination with forced 

expression of neurogenic transcription factors like Neurog2, NeuroD1 or Sox2 as recently 

described (Grande et al., 2013, Guo et al., 2014, Niu et al., 2013). 

Reactive astrocytes derive from mature protoplasmic astrocytes from the grey matter that 

reenter cell cycle after injury to the CNS (Buffo et al., 2008) and thereby contribute to a process 

called reactive gliosis. Amongst others, they upregulate GFAP, Vimentin, Nestin and BLBP (for 

review see (Robel et al., 2011)). They also activate STAT3 in vivo (see our own findings and e.g. 

(Herrmann et al., 2008)) as postnatal astrocytes do. This is in sharp contrast to SGZ and SVZ 

astrocytes in the adult neurogenic zones, which are able to generate neurons and do not 

activate STAT3 signaling. This is supported by our own data and the previous work of Bauer 

and Patterson which also found virtually no STAT3 activation in the SVZ using 

immunohistochemistry (Bauer and Patterson, 2006). Overall, this provides further support for 

the link between STAT3 signaling activation and inhibition of neurogenesis. Indeed both, 

reactive and postnatal astrocytes, while showing strong STAT3 signaling activation, lack the 

intrinsic neurogenic capacity, which SGZ and SVZ astrocytes exhibit.  

In our experiments with postnatal astrocytes the blockade of STAT3 in combination with 

forced expression of Mash1 led to increased neuronal reprogramming compared to forced 

expression of Mash1 alone. Given that STAT3 is activated in reactive astrocytes as well, it will 

be interesting to see, if future studies can reveal the same effect for reactive astrocytes, 

possibly in vivo. Although STAT1 signaling has been suggested to be more expressed in 

neurons after CNS lesion (Osuka et al., 2011, Takagi et al., 2002), we found STAT1 also to be 

activated in reactive astrocytes after stab wound. Future studies will unravel if STAT1 is further 



144 Discussion 

activated when STAT3 is blocked in reactive astrocytes in vivo and therefore whether 

additional blockade of STAT1 may be necessary to promote neuronal reprogramming in vivo. 

In addition to their potential to be possibly reprogrammed into neurons after CNS injury, 

reactive astrocytes exhibit another important function by forming a scar. The role of this 

process has been described in detail in subchapters 1.4.2.2. and 4.1.3., but shortly, during 

early times after injury it is essential for improving recovery by impairing the spread of 

inflammatory cells and repairing the BBB among other mechanisms (e.g. (Bush et al., 1999)). 

At later times the detrimental inhibition of axon regeneration by scar formation outweighs 

the positive role as also inflammation has disappeared and the BBB has recovered. It has been 

shown that STAT3 is a key regulator of this mechanism (Herrmann et al., 2008, Okada et al., 

2006). Therefore, the blockade of STAT3 signaling to induce neuronal reprogramming of 

reactive astrocytes should occur when the initial scar was formed. Otherwise resulting adverse 

effects of the missing scar at early times may outweigh the potential positive effects of newly 

generated neurons. It will be a key question to find the optimal time point when to inhibit 

STAT3 signaling to allow both, scar formation early after injury when STAT3 is still expressed 

(and therefore can exert its influence on processes like proliferation and acquisition of 

multipotency) and later to allow reactive astrocytes to be reprogrammed into neurons by 

ablating STAT3 signaling and possibly also facilitate axon regeneration due to less glial scar. 

Recent studies on the in vivo reprogramming of brain-resident cells into neurons reported also 

low survival rate of these newly generated neurons (Guo et al., 2014, Grande et al., 2013). It 

would be exciting to investigate if a decrease of STAT3 signaling activation at these later time 

poi ts ould p olo g these eu o s’ lifes. Future experiments will reveal at what time after 

brain injury STAT3 would need to be inhibited as it was here found to be a potential target for 

inducing reprogramming of reactive astrocytes into neurons in vivo. 

In summary, we first demonstrated the activation of STAT3 signaling in reactive astrocytes in 

different brain injury models. We suggest that this activation of STAT3 signaling impairs the 

conversion of astrocytes into neurons as we were able to increase the neuronal reprogramming 

of astrocytes in culture by inhibiting STAT3 signaling with miRNAs. However, we showed that 

the level of STAT3 signaling activation correlates positively with the formation of neurospheres, 

indicative for multipotency and self-renewal. Therefore, we suggest a dual function of STAT3 

signaling over time in reactive astrocytes: it may be involved in their dedifferentiation, 
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acquisition of stem cell properties and scar formation at early time points following injury, 

which might be benefial for brain repair. On the other hand, at later time points the decrease 

of STAT3 signaling activation may be necessary to promote the reprogramming of these 

reactive astrocytes into neurons and allow long-term survival of these neurons. Future 

investigations will unravel the potential benefit for brain regeneration of either activating or 

inhibiting STAT3 signaling at defined time points. 
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5. Summary 

Currently, o u ati e the apies fo  a  eu ologi al diso de s, e.g. st oke a d Alzhei e ’s 

disease, exist as the neuronal loss cannot be substituted. Unfortunately, the survival and 

functional integration of newly generated neurons from the two adult neurogenic niches into 

existing neuronal circuits in the damaged area remains negligible. In order to overcome the 

major ethical and immunological obstacles, that are associated with cellular transplantation, 

a new concept has been invented by our laboratory: endogenous glial cells, which proliferate 

in the proximity of CNS lesions, could be reprogrammed into neurons. Using forced expression 

of neurogenic fate determinants our laboratory was able to show that reactive astrocytes can 

be reprogrammed into functional subtype specific neurons in a highly sufficient manner in 

vitro. Recently, it was even demonstrated that this reprogramming process can be triggered 

in vivo. Unfortunately, long-term survival and functional circuitry integration remain very 

limited so far. Therefore, it is crucial to look not only for factors that enhance neurogenesis 

but also to search for hampering factors. Of note, the STAT signaling pathway is known to 

promote gliogenesis and inhibit neurogenesis during embryonic development. 

The goal of the present work was to investigate if first the STAT signaling pathways are 

activated in reactive astrocytes after different cerebral cortical injury models and second to 

determine if these STAT-mediated pathways could inhibit the reprogramming of astrocytes 

into neurons. 

First we showed with western blot and immunohistochemistry that STAT3 expression is 

upregulated at three days after stab wound in the mouse cerebral cortex. Moreover, we 

demonstrated that ipsilateral to the lesion STAT3 is virtually only expressed in reactive 

astrocytes, while contralateral it is mainly expressed in mature neurons. Furthermore, we 

could evidence that the activated, phosphorylated form of STAT3, pSTAT3, is also expressed 

in reactive astrocytes in the injured cortex after stab wound. We were able to increase the 

clinical significance of our findings by demonstrating principally the same pattern of STAT3 

activation in an experimental stroke model, MCAo. Compared with these invasive brain injury 

models the activation of STAT3 signaling in non-invasive brain injury models, APP/PS1 and 

CK/p25, was decreased. In contrast to STAT3, we could not reveal an unambiguous 

upregulation of expression and activation of STAT5 and STAT1 signaling after stab wound. 
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Second, we investigated the role of STAT3 signaling on the reprogramming of astrocytes into 

neurons. In order to be able to perform gain- and loss-of-function experiments, we designed 

new vector constructs containing miRNAs against STAT3, with the purpose to decrease STAT3 

expression, or STAT3C, a constitutively active form of STAT3. After we had shown the 

expression and activation of STAT3 signaling in postnatal astrocytes, we were able to provide 

evidence that the combination of Mash1 and STAT3C impairs neuronal reprogramming of 

postnatal astrocytes in vitro compared to Mash1 alone. Of note, we demonstrated by 

cotransfection of these postnatal astrocytes with Mash1 and newly designed miRNAs against 

STAT3, compared to transfection with Mash1 alone, that neuronal reprogramming could be 

enhanced in vitro. 

Moreover, we demonstrated that after MCAo, reactive astrocytes can give rise to 

neurospheres meaning that they acquire stem cell-like properties after MCAo, as described 

after stab wound. The apparent correlation between the number of generated neurospheres 

and the level of STAT3 signaling activation - higher levels of pSTAT3 in acute brain injury 

models like stab wound and MCAo, which also show higher numbers of neurospheres, 

compared to lower levels of pSTAT3 in non-invasive brain injury models like APP/PS1 and 

CK/p25, which also show lower numbers of neurospheres – needs further analysis. 

Taken together, we first demonstrated the activation of STAT3 signaling in reactive astrocytes 

after different brain injury models. By inhibiting STAT3 signaling we were then able to increase 

the conversion of postnatal astrocytes into neurons in vitro. However, the formation of 

neurospheres, indicative for the stem cell potential of astrocytes, correlates positively with 

the level of activation of STAT3 signaling in our study. Future investigations will further 

determine the optimal time point of modulating STAT3 signaling and its benefit for brain 

regeneration after injury as STAT3 was here found to be a potential target for inducing 

reprogramming of reactive astrocytes into neurons in vivo. 
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6. Zusammenfassung 

Für viele neurologische Krankheitsbilder, wie z.B. Schlaganfall oder die Alzheimer-Erkrankung, 

existieren momentan keine kurativen Therapien, da der Verlust von Neuronen nicht 

ausgeglichen werden kann. Zwei adulte neurogene Zonen produzieren zwar Neurone. Ihr 

Überleben und funktionelle Integration in existierende neuronale Kreise in der geschädigten 

Gehirnregion bleibt aber leider vernachlässigbar. Um nun die hauptsächlich ethischen und 

immunologischen Hürden, die mit zellulärer Transplantation verbunden sind, zu umgehen, ist 

in unserem Labor ein neuer Ansatz entwickelt worden: endogene Gliazellen, die in der 

unmittelbaren Umgebung des verletzten Gehirnareals proliferieren, könnten zu Neuronen 

reprogrammiert werden. Mithilfe von forcierter Expression von neurogenen 

Schicksalsdeterminanten war es unserem Labor möglich zu zeigen, dass reaktive Astrozyten in 

vitro in funktionelle subtypspezifische Neurone reprogrammiert werden können. Dieser 

Prozess konnte kürzlich sogar in vivo nachvollzogen werden. Das Langzeitüberleben sowie die 

Integration in neuronale Schaltkreise sind bisher jedoch sehr limitiert. Es ist daher notwendig 

nicht nur nach Faktoren zu suchen, die die Neurogenese aktivieren, sondern auch nach 

hemmenden Faktoren. Interessanterweise ist bekannt, dass der STAT-Signalweg die 

Gliogenese aktiviert und die Neurogenese während der embryonalen Entwicklung inhibiert. 

Das Ziel der voliegenden Arbeit war es zu untersuchen, ob STAT-Signalwege in reaktiven 

Astrozyten nach verschiedenen Verletzungsmodellen des zerebralen Kortex aktiviert sind. 

Anschließend sollte analysiert werden, ob diese STAT-Signalwege die Reprogrammierung von 

Astrozyten in Neurone hemmen. 

Zunächst konnten wir mithilfe von Western Blot und Immunhistochemie zeigen, dass die 

kortikale Expression von STAT3 drei Tage nach Stichwundenverletzung erhöht ist. Während 

STAT3 auf der ipsilateral zur Läsion gelegenen Seite fast ausschließlich in reaktiven Astrozyten 

exprimiert wurde, war es kontralateral hauptsächlich in vollständig ausgebildeten Neuronen 

zu finden. Zusätzlich konnten wir dann zeigen, dass auch die aktivierte, phosphorylierte Form 

von STAT3, pSTAT3, in reaktiven Astrozyten im verletzten kortikalen Areal nach 

Stichwundenverletzung aufreguliert war. Durch den Nachweis des gleichen 

Expressionsmuster in einem experimentellen Schlaganfallmodell, MCAo, konnten wir die 

klinische Relevanz unserer Ergebnisse steigern. Im Vergleich zu diesen invasiven 
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Gehirnverletzungsmodellen war die Aktivierung des STAT3-Signalweges in nicht-invasiven 

Gehirnverletzungsmodellen, APP/PS1 and CK/p25, verringert. Im Gegensatz zu STAT3 konnten 

wir jedoch keine zweifelsfreie Aufregulierung der Expression und Aktivierung des STAT5- und 

STAT1-Signalweges nach Stichwundenverletzung demonstrieren.  

Um nachfolgend den Einfluss der STAT-Signalwege auf die neuronale Reprogrammierung von 

Astrozyten zu untersuchen, konstruierten wir Plasmide, die z.B. miRNAs gegen STAT3, um das 

Expressionslevel von STAT3 zu senken, oder STAT3C, eine konstitutiv aktive Form von STAT3, 

enthielten. Nachdem wir die Expression und Aktivierung des STAT3-Signalweges in 

postnatalen Astrozyten gezeigt hatten, konnten wir demonstrieren, dass die Kombination von 

Mash1 und STAT3C die neuronale Reprogrammierung von postnatalen Astrozyten in vitro im 

Vergleich zu Mash1 alleine hemmt. Interessanterweise konnten wir dann zeigen, dass die 

Kotransfektion dieser postnatalen Astrozyten mit Mash1 und neu designten miRNAs gegen 

STAT3, verglichen mit der Transfektion mit Mash1 alleine, die neuronale Reprogrammierung 

in vitro erhöhte. 

In einem nächsten Schritt konnten wir darlegen, dass reaktive Astrozyten nach MCAo, wie 

schon für die Stichwundenverletzung gezeigt, dazu fähig sind Eigenschaften von Stammzellen 

anzunehmen indem sie Neurosphären bildeten. Die scheinbare Korrelation zwischen der Zahl 

der generierten Neurosphären und dem Level der Aktivierung des STAT3-Signalweges – 

höhere Level von pSTAT3 in invasiven Gehirnverletzungsmodellen wie der 

Stichwundenverletzung und MCAo, die auch mehr Neurosphären bilden verglichen mit 

niedrigeren Level von pSTAT3 in nicht-invasiven Gehirnverletzungsmodellen wie APP/PS1 und 

CK/p25, die auch weniger Neurosphären bilden – bedarf weiterer Analyse. 

Zusammengefasst konnten wir demonstrieren, dass der STAT3-Signalweg in reaktiven 

Astrozyten nach verschiedenen Gehirnverletzungsmodellen aktiviert ist. Durch die Inhibierung 

des STAT3-Signalweges konnten wir die Reprogrammierung von postnatalen Astrozyten in 

Neurone in vitro steigern. Im Gegensatz dazu korrelierte die Generierung von Neurosphären, 

bezeichnend für die Stammzelleigenschaften der Astrozyten, positiv mit dem Level der 

Aktivierung des STAT3-Signalweges in unserer Studie. STAT3 wurde hier als potentielles Target 

zur Induzierung der Reprogrammierung von reaktiven Astrozyten in Neurone in vivo 

identifiziert. Zukünftige Studien werden den optimalen Zeitpunkt für die Modulierung des 

STAT3-Signalweges, gemäß seiner unterschiedlichen Funktionen, finden. 
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Fig.   Figure 
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miRNA   microRNA 
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MSC   Mesenchymal stem cell 
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Olig2   Oligodendrocyte transcription factor 2 
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P25   Protein 25 

P300   Protein 300 
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SCI   Spinal cord injury 

SCZ   Subcallosal zone 

SEZ   Subependymal zone 

SGZ   Subgranular zone 
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Shh   Sonic Hedgehog 
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shRNA   small hairpin RNA 

siRNA   small interfering RNA 

SOCS   Suppressor of cytokine signaling 

Sox2   (Sex determining region Y)-box 2 

STAT   Signal transducer and activator of transcription 
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Tbr1   T-box brain protein 1 

tetO   Tetracycline operator 

Thy1   Thymocyte differentiation antigene 1 

Thy1-APP/PS1  Mouse model with Swedish double mutation under the Thy1 promoter 

TN-C   Tenascin C 

tPA   Tissue plasminogen activator 

Tpo   Thyroid peroxidase 

TRITC   Tetramethyl rhodamine isothiocyanate 

tTA   Tetracycline controlled transactivator 

TUNEL   Terminal deoxynucleotidyl transferase dUTP nick end labeling 

TYK   Tyrosine kinase 

VEGF   Vascular endothelial growth factor 

VZ   Ventricular zone 

Wg   Wingless 

Wnt   Hybrid of Int and Wg 

w/v   Weight per volume 
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