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Summary

Neural assemblies in hippocampus encode positions. During rest, the hippocam-

pus replays sequences of neural activity seen during awake behavior. This replay

is linked to memory consolidation and mental exploration of the environment. Re-

current networks can be used to model the replay of sequential activity. Multiple

sequences can be stored in the synaptic connections. To achieve a high mem-

ory capacity, recurrent networks require a pattern separation mechanism. Such a

mechanism is global remapping, observed in place cell populations. A place cell

fires at a particular position of an environment and is silent elsewhere. Multiple

place cells usually cover an environment with their firing fields. Small changes in

the environment or context of a behavioral task can cause global remapping, i.e.

profound changes in place cell firing fields. Global remapping causes some cells to

cease firing, other silent cells to gain a place field, and other place cells to move

their firing field and change their peak firing rate. The effect is strong enough to

make global remapping a viable pattern separation mechanism.

We model two mechanisms that improve the memory capacity of recurrent net-

works. The effect of inhibition on replay in a recurrent network is modeled using

binary neurons and binary synapses. A mean field approximation is used to de-

termine the optimal parameters for the inhibitory neuron population. Numerical

simulations of the full model were carried out to verify the predictions of the mean

field model. A second model analyzes a hypothesized global remapping mecha-

nism, in which grid cell firing is used as feed forward input to place cells. Grid

cells have multiple firing fields in the same environment, arranged in a hexagonal

grid. Grid cells can be used in a model as feed forward inputs to place cells to

vi



Summary vii

produce place fields. In these grid-to-place cell models, shifts in the grid cell firing

patterns cause remapping in the place cell population. We analyze the capacity of

such a system to create sets of separated patterns, i.e. how many different spatial

codes can be generated. The limiting factor are the synapses connecting grid cells

to place cells. To assess their capacity, we produce different place codes in place

and grid cell populations, by shuffling place field positions and shifting grid fields

of grid cells. Then we use Hebbian learning to increase the synaptic weights be-

tween grid and place cells for each set of grid and place code. The capacity limit

is reached when synaptic interference makes it impossible to produce a place code

with sufficient spatial acuity from grid cell firing. Additionally, it is desired to

also maintain the place fields compact, or sparse if seen from a coding standpoint.

Of course, as more environments are stored, the sparseness is lost. Interestingly,

place cells lose the sparseness of their firing fields much earlier than their spatial

acuity.

For the sequence replay model we are able to increase capacity in a simulated

recurrent network by including an inhibitory population. We show that even

in this more complicated case, capacity is improved. We observe oscillations in

the average activity of both excitatory and inhibitory neuron populations. The

oscillations get stronger at the capacity limit. In addition, at the capacity limit,

rather than observing a sudden failure of replay, we find sequences are replayed

transiently for a couple of time steps before failing. Analyzing the remapping

model, we find that, as we store more spatial codes in the synapses, first the

sparseness of place fields is lost. Only later do we observe a decay in spatial

acuity of the code. We found two ways to maintain sparse place fields while

achieving a high capacity: inhibition between place cells, and partitioning the

place cell population so that learning affects only a small fraction of them in

each environment. We present scaling predictions that suggest that hundreds of

thousands of spatial codes can be produced by this pattern separation mechanism.

The effect inhibition has on the replay model is two-fold. Capacity is increased, and

the graceful transition from full replay to failure allows for higher capacities when

using short sequences. Additional mechanisms not explored in this model could

be at work to concatenate these short sequences, or could perform more complex
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operations on them. The interplay of excitatory and inhibitory populations gives

rise to oscillations, which are strongest at the capacity limit. The oscillation

draws a picture of how a memory mechanism can cause hippocampal oscillations

as observed in experiments. In the remapping model we showed that sparseness of

place cell firing is constraining the capacity of this pattern separation mechanism.

Grid codes outperform place codes regarding spatial acuity, as shown in Mathis et

al. (2012). Our model shows that the grid-to-place transformation is not harnessing

the full spatial information from the grid code in order to maintain sparse place

fields. This suggests that the two codes are independent, and communication

between the areas might be mostly for synchronization. High spatial acuity seems

to be a specialization of the grid code, while the place code is more suitable for

memory tasks.

In a detailed model of hippocampal replay we show that feedback inhibition can

increase the number of sequences that can be replayed. The effect of inhibition

on capacity is determined using a meanfield model, and the results are verified

with numerical simulations of the full network. Transient replay is found at the

capacity limit, accompanied by oscillations that resemble sharp wave ripples in

hippocampus. In a second model

Hippocampal replay of neuronal activity is linked to memory consolidation and

mental exploration. Furthermore, replay is a potential neural correlate of episodic

memory. To model hippocampal sequence replay, recurrent neural networks are

used. Memory capacity of such networks is of great interest to determine their

biological feasibility. And additionally, any mechanism that improves capacity has

explanatory power. We investigate two such mechanisms.

The first mechanism to improve capacity is global, unspecific feedback inhibition

for the recurrent network. In a simplified meanfield model we show that capacity

is indeed improved.

The second mechanism that increases memory capacity is pattern separation. In

the spatial context of hippocampal place cell firing, global remapping is one way

to achieve pattern separation. Changes in the environment or context of a task

cause global remapping. During global remapping, place cell firing changes in



Summary ix

unpredictable ways: cells shift their place fields, or fully cease firing, and formerly

silent cells acquire place fields. Global remapping can be triggered by subtle

changes in grid cells that give feed-forward inputs to hippocampal place cells.

We investigate the capacity of the underlying synaptic connections, defined as the

number of different environments that can be represented at a given spatial acuity.

We find two essential conditions to achieve a high capacity and sparse place fields:

inhibition between place cells, and partitioning the place cell population so that

learning affects only a small fraction of them in each environments. We also find

that sparsity of place fields is the constraining factor of the model rather than

spatial acuity. Since the hippocampal place code is sparse, we conclude that the

hippocampus does not fully harness the spatial information available in the grid

code. The two codes of space might thus serve different purposes.



Chapter 1

Introduction

1.1 Patient HM and clinical studies

The importance of the hippocampus for memory was discovered by accident. Some

patients that suffered from epilepsy or psychosis and developed resistance to med-

icative treatment decided to try experimental surgery. In epilepsy, this entailed

removal of the hippocampal area. In some patients both sides were removed, or

one side was removed and the other destroyed by a stroke or similar natural cause.

The bilateral removal of the hippocampal structure had very particular memory

deficits that allowed to disambiguate the different memory systems in humans.

One of these patients became a focus of research. We will revisit his story.

In 1953, the patient Henry Gustav Molaison (henceforth referred to as HM) had

a bilateral removal of his medial temporal lobes to alleviate epileptic seizure. A

precise account of the surgery and the ensuing impairments is given in (Scoville and

Milner, 1957). HM agreed to such radical surgery after medicative treatment had

failed. The lesion included hippocampus (HC), medial entorhinal cortex (MEC),

as well as the amygdala. HM’s treatment resulted in severe amnesia. His condition

did not allow him to form new memories of everyday events (anterograde amnesia).

Memories preceding the surgery were affected as well (retrograde amnesia). His

perception and intellect, however, were unaffected. To give two striking examples,

he could not remember what activity he performed a minute ago, no matter if it

was something trivial like a conversation or eating, or a memory task set up by

1



Chapter 1. Introduction 2

researches. He could also not remember the doctors he saw almost daily. Each

day, he acted as if he was meeting them for the first time.

The fact that only memory was afflicted by the surgery was surprising in itself.

Before HM, it was believed that memory is distributed over the cortex, integrated

in other systems responsible for intellectual or perceptual tasks (Squire, 2009).

Work with HM established the idea that a specific brain structure plays an im-

portant role for memory. More precisely, some kinds of memory are dependent on

temporal lobe structures.

Over the following years, researchers posed a wide range of memory tasks to HM.

These tasks revealed the existence of multiple memory systems. In some tasks

HM performed as well as a healthy person, while in other’s he had very specific

difficulties or could not accomplish them at all. These very differentiated effects

of his memory impairment gave a clue about the memory systems connected to

the lesioned areas. One task in which he performed well was retaining a sequence

of three digits for up to 15 minutes, but only if he stayed focused on it (Squire,

2009). As soon as his attention was diverted, he forgot it, together with the

fact he was given a task at all. The retention of the three digits used a memory

system that was termed working memory or immediate memory. The fact that his

working memory was intact was also the reason he could carry on conversations

and understand the memory tasks given to him.

Another task was his ability to learn motor skills. It was tested by drawing a five

pointed star (Milner, 1962), with the added difficulty of only seeing the drawing

hand in a mirror. Over several days, HM improved and the lines in his drawing

became more straight, his movements more fluid until he reached levels comparable

to a healthy subject. Successful retention was shown over the following 3 days. In

each session, HM had lost all recollection of the previous sessions and assured he

had never done this task before.

The memories HM could not retain were termed declarative and it was assumed

they depended on the temporal lobe to a large extent. These are further subdivided

into episodic knowledge (memories that involve a spatial and temporal context)
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and semantic knowledge (general knowledge about the world). The term non-

declarative is used to cover all other memory systems, like motor skills, simple

conditioning, priming and perceptual learning. Brain areas required for these are

the cerebellum, basal ganglia, amygdala and neocortex. The idea to even search

for these systems was born when HM showed retention of motor and other skills

(Squire, 2009).

The most striking effect of HM’s impairment of course was the inability to form

new memories of everyday events (anterograde amnesia). In addition, most events

that happened in the years before the surgery were forgotten as well (retrograde

amnesia). Despite this, older memories were still there. This retrograde amnesia

that was graded in time is sometimes described as the first direct evidence of

memory consolidation (Lechner et al., 1999; Frankland and Bontempi, 2005): new

memories might be initially dependent on the hippocampus, and over time are

moved to other areas of the brain. The details of this mechanism, however, are

still under debate (Nadel and Moscovitch, 1997; Frankland and Bontempi, 2005;

Winocur et al., 2010).

The knowledge that declarative memory depends on the temporal lobe together

with the idea of different memory systems and how to test for them in behav-

ioral tasks was successfully replicated in animal models (Squire, 2009) of human

memory impairment. Careful analysis of animal models (Mishkin, 1978; Squire

and Zola-Morgan, 1991) and further human patients with impairments similar to

HM (Scoville and Milner, 1957) indicated the structures relevant for declarative

memory to be the hippocampus as well as adjacent, anatomically related areas,

including entorhinal, perirhinal, and parahippocampal cortices (Squire and Zola-

Morgan, 1991).

The findings in HM and similar patients later converged with an independent

line of research focusing on rodent navigation (Squire, 1992). In rodents, the HC

is important for navigational tasks as well as memory. These findings will be

covered in a later section. Before that, to have a common ground, the next section

will review hippocampal anatomy and neural circuits which are common to all

mammals.
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1.2 Hippocampal anatomy

We will review both the internal circuitry of HC and its connections to other brain

areas.

The hippocampus is very similar in rats and in humans, Fig. 1.1. Compared to the

rat, the human hippocampus represents a smaller fraction of the cortex. Luckily,

the internal connectivity is comparable across mammals (Insausti, 1993).

The connections it makes with other areas, in particular all sensory areas and their

processing stages suggest a central role for hippocampal function in memory. It has

access to sensory information of all modalities (seeing, hearing, etc.), a prerequisite

to form memories that combine all these sensory impressions. HC also interacts

with neocortex, where higher functions like working memory in prefrontal cortex

rely on the detailed memories of HC. The internal circuitry of HC is of great

interest for detailed models of memory mechanisms. In this section, both will be

introduced in brief.

Figure 1.1: Position and shape of the hippocampus in humans (left) and rats (right).
Adapted from the Scholarpedia page on the hippocampus by Buzsaki.

As can be inferred from HM’s and other patients’ cases, the connections of HC and

neocortex are of particular importance for memory. The hippocampus is strongly

connected to all of neocortex, mostly through the entorhinal cortex (Van Hoesen

and Pandya, 1975; Swanson and Kohler, 1986; Amaral and Lavenex, 2006). Neo-

cortex contains the sensory areas and prefrontal cortex, which is responsible for
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higher cognitive functions. This particular connectivity suits the proposed func-

tions of the hippocampus: the formation of episodic memories requires inputs from

all sensory modalities. The extraction of semantic knowledge from several episodic

memories (e.g. the fact that fire is hot from several instances of burning yourself)

is hypothesized to happen in HC (Eichenbaum, 2004). A transformation of rapidly

formed memories from HC to long lasting memories in neocortex seems possible,

and would be the basis of memory consolidation (Frankland and Bontempi, 2005).

Both the extraction of semantic memory as well as memory consolidation likely

require active recall triggered by neocortex, hence the bidirectionality is thought

to be important (Eichenbaum, 2000).

The internal circuits of HC themselves are well described (Amaral and Witter,

1989). The anatomy is best understood by looking at a slice of hippocampus that

is cut perpendicular to its long and bent dorso-ventral axis, seen in Fig. 1.2a.

Comparing these transversal slices from different heights along the dorso-ventral

axis, the same anatomical structures can be seen.

Focusing on a transversal slice, Fig. 1.2a, one finds two structures distinguished

by a high concentration of neurons. The first is cornu ammonis (CA) or ammon’s

horn. It contains pyramidal neurons and interneurons, and can be further sub-

divided into 4 areas CA1 to CA4. Of these, two stand out. The first is CA3,

which can be identified by the high recurrent connectivity (between 2% and 4% in

the rat, (Amaral et al., 1990)) and the incoming connections from dentate gyrus

(mossy fibers). The second is CA1, which has lower recurrent connectivity and re-

ceives inputs from CA3 and also EC. CA1 receives mostly feed forward inputs from

CA3. In addition, CA1 is easily accessible in electro physiological experiments in

rodents, and most data available is from this area. CA3 is likely to contain the

mechanisms for memory and association, since recurrent connectivity has proven

to be essential in many connectionist models.

The other area with high concentration of neurons is the dentate gyrus (DG).

This structure consists of granule cells with tiny cell bodies and strong excitatory

connections to CA3 (other brain areas also have cells called granule cells, yet the

small cell body is the main common feature they share).
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Figure 1.2: a) Hippocampal circuitry, including the trisynaptic loop (perforant path-
way, mossy fibers, Schaffer collaterals). b) Scheme of the hippocampal neural network.
The trisynaptic loop is shown with solid arrows. The perforant pathway (PP) connects
layer II neurons in entorhinal cortex (EC) to dentate gyrus (DG). Mossy fibers connect
DG granule cells to pyramidal cells in CA3. Schaffer collaterals link pyramidal cells in
CA3 to pyramidal cells in CA1. CA1 pyramidal neurons project back to neurons in the
deeper layers of the EC. The perforant path also sends projections from EC directly to
CA3, skipping DG. Similarly, the temporoammonic pathway (TA) sends information
directly to CA1 from EC layer III neurons. Adapted from Deng et al. (2010) with
permission.

The connections between EC, DG, CA3 and CA1 form the famous trisynaptic

loop, Fig. 1.2b. Starting at EC layer II, signals are passed on to DG and CA3

via the perforant path (PP). Then mossy fibers (MF) project from DG to CA3.

The Schaffer collaterals (SC) project from CA3 to CA1. Finally CA1 sends inputs

to layers V and VI of EC, closing the loop. The three stages of PP, MF and SC

are called trisynaptic loop. In addition, the hippocampal structures of both brain

hemispheres are connected.

The interplay of recurrent structures (CA3, EC layers V and II) with purely feed

forward structures (DG, CA1) is believed to be the neural basis of effects like pat-

tern completion, pattern separation, and decorrelation of neural code for storage

in memory networks.
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The similarity of the hippocampal structure across mammals allows to compare

animal models with observations in human patients as presented before. The most

important results regarding the hippocampal structure in rodents is presented in

the next section.

1.3 A cognitive map of space

The hippocampus (HC) and entorhinal cortex (EC) are essential for navigation

tasks in rodents. The neurons in HC and EC maintain an internal representation of

the animals position, as has been demonstrated by electrophysiological recordings.

Place cells and grid cells are the most prominent examples of cells that represent

space. The properties of space encoding cells are discussed in this section.

The idea that animals have a map-like representation of space was raised by Tol-

man (1948) after he performed behavioral experiments that showed their ability

to find alternate routes to a goal, or short cuts. This is by no means self evident,

and it opposed the common behaviorist view: that complex behaviors like finding

short cuts can be explained by a series of sensory-motor responses. A navigational

strategy like that would always be centered on the animal, and is called egocentric.

For example, a tick navigates based solely on the heat and odor gradients around

it, without ever having a full map of the heat and odor distribution of a wider

area. The latter would be a map-like representation, detached from the existence

of the tick within that map. This is called an allocentric representation of space.

The advent of micro wire implantation in freely moving animals made it possible

to search for cells that represent space. Such place cells were found in the hip-

pocampus in 1971 (O’Keefe and Dostrovsky, 1971) and they are a neural substrate

of the allocentric map-like representation suggested by Tolman. A variety of other

cell types encoding aspects of space was found in the wake of this discovery, and

in parallel to it.

A milestone in understanding hippocampal function was reached with the discov-

ery of hippocampal cells that encode space (O’Keefe and Dostrovsky, 1971). Such

place cells fire only in distinct positions and are found in CA1, CA3 and DG.
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Assemblies of place cells recorded simultaneously have been shown to cover the

environment with their firing fields. Most place cells in CA have one firing field in

a box of 1 square meter, whereas DG place cells have an average number of fields

close to two (Leutgeb et al., 2007; Fenton et al., 2008). Another type of space en-

coding cell was found three decades later (Fyhn et al., 2004). So called grid cells

have multiple firing fields, laid out in a triagonal lattice over the environment they

encode. Assemblies of grid cells cover the environment with firing fields, and using

differently sized triangular lattices, it is possible to encode space unambiguously.

This thesis focuses on these two cell types.

There are additional cell types that encode aspects of space. More precisely, there

are border cells that fire at certain borders of the enclosure, like one wall of a

square box. Head direction cells fire only if the animal’s head is turned in a

direction specific to the cell and do not depend on position itself. Speed cells’

firing rate scales linearly with movement speed of the animal. Yet decoding the

position from these cells requires more effort. The grid and place cells are a more

refined representation that is invariant to many manipulations of the environment

and is easy to decode. And indeed models have been presented that produce place

or grid cell firing using these other cell types as inputs. This suggests that more

complex tasks like navigating to target locations and finding short cuts relies on

the higher level representations of grid and place cells.

Regarding the term navigation, it is important to be aware that all space encoding

cells have been observed only in very particular environments. Usually the space

encoded in experiments is a linear track of length between one meter up to 18

meters or boxes with square or circular shape with linear dimension of one to three

meters. Also mazes of many kinds are used. No observations in natural habitats

exist due to experimental limitations. Navigation in large habitats might include

entirely different neural processing. For example, an area that spans a square

kilometer might be too big to be covered with place fields. This could require a

different strategy of navigating between known spots, aided by directional cues

from distant landmarks. The grid and place codes might then only be used for

decisions on crossing points or for more detailed tasks at the target location, like

finding a stash of food hidden away earlier.
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Figure 1.3: Neural representations of self-location in the hippocampal formation.
(A) Left, setup of single unit recording. A rodent forages in an open environment
while extracellular electrodes record neural activity. An overhead camera records the
trajectory. Middle, raw data for a place cell. Shown are place cell spikes (red dots)
overlaid on rodent trajectory (black line). Right, a firing rate map of the raw data;
maximum firing rate depicted in red, its numerical value above the map. White bins
are unvisited. The place cell shown is only active when the animal occupies a small
area on the left side of the environment. (B) Raw data (left) and firing rate map
(middle) for a grid cell in medial entorhinal cortex (MEC). Firing fields are laid out
in a hexagonal lattice. Right, the grid-like firing pattern is mainly characterized by its
orientation, spacing, and offset (or phase). (C) Two head direction cells recorded from
the deep layers of MEC. Head direction cells are also found in rat’s dorsal presubiculum,
mammillary nuclei, anterior thalamus, and retrosplenial cortex. The polar plots show
firing rate as a function of head direction. Both cells show a preferred direction. When
the animal’s head points in this direction, the cell fires strongest. (D) A boundary
vector cell in the subiculum, showing the raw data (left) and firing rate map (middle).
Boundary vector cells fire whenever there is an environmental boundary a short distance
away in a preferred direction. Placing an additional wall triggers firing (right). Adapted
from Barry and Burgess (2014) with permission.

In the context of this thesis, I focus on place cells and grid cells and the inter-

action of their spatial codes. The other cell types are believed to be used by the

mechanisms that produce place cell and grid cell firing fields. In the following, all

cell types will be outlined.
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Figure 1.4: Spatial firing distributions of 80 simultaneously recorded pyramidal and
inhibitory neurons in the hippocampal formation of a rat. The rat freely explored a
square box. Each panel represents the firing rate distribution over the square shaped
environment for one cell. Red color indicates maximal firing rates, but only for cells
that fire significantly related to space. No firing is indicated by dark blue. Inhibitory
cells lack defined place fields, they fire over the whole environment while still having
spatial modulation. Adapted from Wilson and McNaughton (1993) with permission.

1.3.1 Place cells

O’Keefe and Dostrovsky (1971) found cells that encode space in the hippocampal

area of rats. The cells fired only when the animal was at a particular position,

Fig. 1.3a, coining the name place cells. Further work (O’Keefe, 1976) showed that

the place specific firing was very robust. It is not caused by a simple sensory

stimulus, e.g. it persisted when lights were turned off (independent of visual

stimuli) or when the arm of the maze was exchanged with an unused arm changing

olfactory stimuli. In addition, the cells did not react to direct sensory stimulation,

like shining a light at the animal. The experiments established that place cells

encode an abstract notion of space, decoupled from primary sensory input. Place

cells have been found in dentate gyrus (DG), hippocampal areas CA1 and CA3,

and in subiculum (O’Keefe, 1979; Kim et al., 2012).

If enough place cells are recorded they usually cover the whole environment,
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Fig.1.4, (O’Keefe, 1976; Wilson and McNaughton, 1993). Indeed, from activity

of those cell assemblies over time one is able to decode the rat’s trajectory (Wil-

son and McNaughton, 1993). These two facts, the encoding of abstract space

rather than sensory stimuli that coincide with a location, and the coverage of an

environment with place fields, justify calling the place cell assemblies a “cogni-

tive map of space” (O’Keefe and Nadel, 1978). In particular, it is an allocentric

one, in contrast to an egocentric representation in which the position of the an-

imal would be central. The neural substrate of the cognitive map postulated by

Tolman (Tolman, 1948) had been found.

In addition to being a cognitive map, the rat hippocampus, like in humans, plays

a role in memory (Lever et al., 2002; O’Keefe and Conway, 1978; O’Keefe and

Speakman, 1987). In particular it was found that the same place cell assemblies

that were active during awake behavior were active during sleep (Wilson and Mc-

Naughton, 1994; Skaggs and McNaughton, 1996; Lee and Wilson, 2002). When

decoding from these cells, the same trajectory as in awake behavior was obtained,

but replayed on a much faster scale. These replays coincide with so called hip-

pocampal sharp wave ripples (SWR), synchronized bursts of pyramidal cells which

happen during slow wave sleep or moments of rest while awake (Buzsaki et al.,

1983). An example of replay happening during awake SWR is shown in Fig. 1.5.

Sharp wave ripples are thought to be capable of potentiating downstream synapses

and are a candidate mechanism for the transfer of information to neocortex, i.e.

memory consolidation (Buzsaki, 1989; Nakashiba et al., 2009). Replay has also

been observed in reverse order (Foster and Wilson, 2006; Diba and Buzsaki, 2007).

Animals are also able to replay trajectories that are relevant to a decision: while

the animal is at a junction of a maze it may replay the possible trajectories in-

cluding the one leading to the reward (Johnson and Redish, 2007). This shows

that HC is not only representing space, but also carries out active computations

using the cognitive map. A third finding about replays challenges the idea that

they have anything to do with memory: (Dragoi and Tonegawa, 2011) found that

replay events happen even before the animal visits the relevant part of a linear

track. It is hence called preplay, and it is yet to be determined why this happens.

Either it is a consequence of fixed hippocampal circuitry, meaning that sequences
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of assembly firing are pre-wired in HC and external events are only mapped (or

associated) to their firing by a learning process, or the sequences are learned but

similar to existing ones, and HC fits them into an existing schema for accelerated

learning (the preplay being the existing schema) (Tse et al., 2007).

All these cases have one thing in common, the existence of sequentially firing cell

assemblies in HC. Several studies suggest that replay in HC is important for mem-

ory consolidation as well as mental exploration (Buhry et al., 2011). Concerning

the underlying mechanism, the CA3 region is a prime candidate that could produce

the sequences due to its recurrent connectivity. From a theoretical perspective,

it is interesting to construct a network that produces such sequences, and to test

how many can be stored and successfully replayed.
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Figure 1.5: Place cell activity while a rat runs on a linear track is replayed during
sharp wave ripples (SWRs) when the rat rests. Spike trains for 13 place cells are shown.
The actual traversal of the linear track is marked by the times with speed significantly
above zero (bottom graph) as well as by theta activity in the LFP signal (black line
above spike trains). Place fields are visible in the spike trains during traversal and
the cells have been ordered according to place field position. The red and blue box
mark awake SWRs. Both before and after traversal, awake SWRs are accompanied
by place cells replaying sequences seen during running in the same order or reverse
order. Forward replay (left inset, red box) occurs before traversal of the environment
and reverse replay (right inset, blue box) after. Adapted from Diba and Buzsaki (2007)
and Carr et al. (2011) with permission.

1.3.2 Grid cells

After the discovery of place cells, more space encoding cells were found in medial

entorhinal cortex (MEC). Recordings in layers II and III of MEC (Fyhn et al., 2004;

Hafting et al., 2005) showed cells with a very particular spatial tuning: multiple

sharp firing fields existed, and they were lying on a triangular lattice or grid. The
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grid proofed to be a robust phenomenon, appearing in environments of all shapes

and sizes. Grids are almost fully described by three parameters (Hafting et al.,

2005), as depicted in Fig. 1.3b:

1. The spatial period, or distance between vertices of the triangular lattice.

2. The orientation or angle of the grid.

3. The phase of the grid.

The width of the fields is not a parameter of its own, since it scales with spatial

period (Hafting et al., 2005; Brun et al., 2008). Spatial period and orientation is

mostly shared by nearby grid cells. Usually most grid cells recorded from a single

tetrode have the same periodicity. It also changes along the dorso-ventral axis of

MEC, showing larger periods the more ventral the recording site lies. Smallest

periods recorded were around 20cm, largest around 10m (Brun et al., 2008; Fyhn

et al., 2004; Hafting et al., 2005; Stensola et al., 2012). More recently it has been

shown that this change in scale is not continuous along the dorso-ventral axis,

but happens stepwise in a roughly geometric progression (Stensola et al., 2012).

These subgroups of grid cells with different periodicity are called modules, and

it is estimated that a rat has 5 to 9 of them. Cells in a module also share the

same orientation. The one parameter not shard in a module is the phase. It is

distributed over space, allowing coverage of the whole environment by firing fields.

It has been shown that this setup, in particular due to the geometric progression,

optimally encodes space (Mathis et al., 2012). Optimal in this case means that

decoding position from grid cell spikes is possible with high acuity using as few

cells as possible. The decoding scheme used is called “hierarchical”, since spatial

periods significantly differ in size and the progression from large to small is used

to remove ambiguities. An alternative coding scheme is based on the Chinese

remainder theorem (Fiete et al., 2008). The periods are close to each other but

are incommensurable, allowing unambiguous encoding of vast spaces. Yet this

decoding scheme requires the spatial periods to be very precise over the whole

space.
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1.3.3 Head direction cells, conjunctive cells and speed cells

Head direction cells have a maximum in firing rate when the animal’s head is point-

ing in a certain direction in the ground plane (yaw angle). This direction depends

on the head and environments alone, independent of the body’s orientation. They

were originally discovered in the rat’s dorsal presubiculum, mammillary nuclei,

anterior thalamus, and retrosplenial cortex (Taube et al., 1990a;b). More recently

they have been found in MEC (Sargolini et al., 2006). It is speculated that they

are used for path integration, together with velocity signals.

Cells that combine the tuning to head direction and the grid cell firing fields are

called conjunctive cells (Sargolini et al., 2006). These cells have hexagonal firing

fields that only fire for certain head-directions.

While grid cells, head direction cells, and conjunctive cells are all modulated by

speed (Sargolini et al., 2006), it was recently reported that some cells in MEC

explicitly encode velocity (Kropff Causa et al.). Together with head direction

cells, this is the most simple input to create a neural representation of space.

Of all the space encoding cells, place cells in CA3 have a special importance. Before

knowing of the existence of place cells in CA3, the area was already hypothesized

to be central to memory functions due to its recurrent connectivity. The finding of

place cells in this area showed that not only sensory representations are available to

CA3, but also a cognitive map of space. This was followed by the observation that

the spatial map changes drastically based on small changes in the environment

or behavioral context, which greatly helps most of the suggested memory models

to perform better. This phenomenon of changing the cognitive map of space is

called remapping. The next section will give an overview on experimental findings

related to remapping.
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1.4 Remapping

Remapping describes the observation that small changes in the environment or

behavioral context can drastically change the place cell firing fields. Rate remap-

ping refers to the firing rates of individual place fields changing, and for cells with

several fields this means they can change independently. Global remapping causes

a switch of the space encoding cell population: some place cells cease firing while

formerly silent cells become place cells; place cells that do not cease move their

firing fields and change firing rate in an unpredictable manner. Here, the detailed

situations that trigger both types of remappings are described. The case of global

remapping is of particular interest to us, since it directly benefits memory models.

The behavior of entorhinal grid cells during global remapping is described at the

end of this section, since it is the basis of a hypothesized mechanism of global

remapping in hippocampus.

Changes in the environment can trigger changes in place cell firing: Putting a wall

in the location of a firing field can abolish that field, while putting only the lead

base that held it leaves it intact (Muller and Kubie, 1987). Some place cells show

a firing field where a new object was placed, or a known one removed, while other

cells are independent of the same objects placed or removed in their firing field

(O’Keefe, 1976). Experiments like this give clues about what place cells exactly

encode and how they do it.

While many of these effects can be subtle and intriguing, we will particularly focus

on two phenomena: rate remapping and global remapping. They are of special

interest since they usually encompass all or many recorded cells, hence they have

implications for the HC as a memory structure. During rate remapping (Fig. 1.6

left panel) place field positions stay the same, but the firing rates of individual

place fields can change (Leutgeb et al., 2005). This might allow to encode space

by position of place fields, and behavioral context or other things in the rates.

The fact that place fields of the same cell can adjust rate differently (e.g. one can

increase, the other decrease), allows a huge space of representations for contexts of

positions. An even more radical change occurs during global remapping (Fig. 1.6

right panel), a complete change in almost all recorded place cells (Leutgeb et al.,
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Figure 1.6: Rate remapping and global remapping in six CA3 place cells (firing rate
maps show dark blue for 0 Hz and red for maximum firing rate as indicated left and
right of each row). Left, rate remapping is observed when rats explore two environments
with different color configuration but identical distal cues (same position of black and
white box within the laboratory). Right, global remapping is triggered when the distal
cues change while the box stays the same (box is moved to a different room). In both
panels, the left column shows the ratemap of the cell in the condition that caused the
highest peak firing rate (either white or black color for the left panel, or room A or B for
right panel). The middle column shows the ratemep of the other condition that caused
lower peak firing, using the same firing rate scale as in the first column. The final
column shows the same data as the middle column, but scaled so that red corresponds
to their own maximum firing rates. For rate remapping, the locations of place fields
stayed identical, but firing rates changed. For global remapping, both field locations
and firing rates changed. Adapted from Colgin et al. (2008) and Leutgeb et al. (2005)
with permission.

2005). Some move their place fields to new positions, others cease firing altogether,

and some formerly silent cells start showing place fields.

Both are triggered by rather small changes in environments. Furthermore, the

environments are usually very well known to the animal. A systematic study of

remapping started was first done by Leutgeb et al. (2005). A comparison between

the most renowned studies can be found in (Colgin et al., 2008). In one of the

experiments, the animal was foraging for randomly dropped food within a square

box with white walls and a black cue card on a wall. Rate remapping could be

induced by changing the colors to black walls and white cue card. It was crucial

to position the box in the same location of the room, to ensure distal cues are

identical. Global remapping was induced by changing the location of the box and

keeping the same colors. Another way to induce rate remapping was to change

the shape of the box from rectangular to circular (Fig. 1.6).
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Comparison between multiple studies (Colgin et al., 2008) shows that remapping

greatly depends on the training history of the animals. For example, a switch

from rectangular environment to circular surrounding in the same location can

induce both rate remapping (Leutgeb et al., 2005) or global remapping (Fyhn

et al., 2007). One interesting case shows that global remapping can often be

obtained between a rectangular and circular environment in the same location if

a pre-training occurred in which the round and square enclosures were in different

locations in the room. The final sessions had them tested in a new room in

one location and showed global remapping (see personal communication of R.U.

Muller and J.L. Kubie in (Colgin et al., 2008)). The line between rate and global

remapping is truly a thin one: slight changes like the material of the boxes, or

even the food used during training in the boxes, can make the difference (Colgin

et al., 2008)).

Figure 1.7: Remapping and grid realignment in medial entorhinal cortex (MEC). Rate
maps (left) of MEC grid cells recorded in square and circle enclosures with identical
distal cues. Changing the enclosure simultaneously causes global remapping in place
cells (not shown) and the shown changes in grid cell firing patterns. Grid cells show
coherent realignment (the same shift in phase for all cells) between the square and circle
enclosures, as visualized by the spatial cross-correlations (Pearson product-moment
correlations) seen on the right for the same cells. Adapted from Colgin et al. (2008)
and Fyhn et al. (2007) with permission.

In the first experiments it seemed surprising that minor changes can cause an

absolute change in the spatial fields (Muller and Kubie, 1987; Colgin et al., 2008).

The training phase explains why subtle changes can trigger such a large change

in coding cell populations: the animal has time to differentiate the codes. Now if

the only purpose of the code was to represent space, this would not be necessary.
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It is hence conceivable that remapping serves the memory function of HC. The

completely different codes that are produced even for similar situations help to

reduce memory interference.

Further insight into remapping was gained when grid cells and place cells were ob-

served simultaneously in several remapping paradigms (Fyhn et al., 2007). During

rate remapping in HC, grid cell firing patterns remain virtually unchanged. For

the cases in which global remapping occurs in HC, the grid firing fields in MEC

either change in phase and keep their orientation (Fig. 1.7), or change both phase

and orientation. All observed cells undergo the same change: the same translation

and rotation is applied to all firing fields. Yet only cells close to each other were

measured, and it is believed that cells in other modules along the dorso ventral

axis undergo different translations and rotations. This assumption leads to a sim-

ple mechanism of hippocampal global remapping (Monaco et al., 2011). Another

model explains the observed rate remapping by adding LEC inputs (Renno-Costa

et al., 2010).

The next section introduces the hypothesis of two stages of memory encoding seen

in the hippocampus. One stage inscribes memories acquired during behavior, the

second consolidates them during rest. Both remapping and the two stage model

are considered essential for memory.

1.5 The two stage model of memory

The hippocampus has two modes of operation, easily differentiated by the local

field potential. One stage incorporates sensory information in a neural substrate

and another stage shuts down inputs to let the neuronal networks process or

adjust to the new information. The switch between states is triggered by release

of neuromodulators like acetylcholine (Giocomo et al., 2007; Hasselmo and Bower,

1993; Hasselmo et al., 1992). A separation in two-stages is hypothesized to be of

great importance in several brain areas (Buzsaki, 1996).

In hippocampus, the first stage is defined by theta activity, an oscillation at

4–12 Hertz. Theta activity is interwoven with gamma oscillations (at 30-130 Hz).
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Figure 1.8: Local field potential recorded in the stratum radiatum of the left (1)
and right (r) CA1 region of the hippocampus during walk-immobility (still) transition.
During walking, regular theta waves can be observed. When the animal is immobile,
large monophasic sharp wave ripples (SWRs) replace the theta activity. SWRs are
bilaterally synchronous. Adapted from Buzsaki (1989) with permission.

Gamma rhythms are the result of fast inhibition and are also observed in other

brain areas (Buzsaki and Wang, 2012). Neurons firing together in one gamma cycle

are believed to be cell assemblies encoding information (Harris et al., 2003). The

second stage is marked by sharp wave ripples (SWR). SWRs are a compact wave

shape modulated by high frequency ripples (at 140–200 Hz). Theta oscillations

usually happen during exploratory movement and REM sleep, whereas sharp wave

ripples occur during immobility, consummatory behaviors, and slow-wave sleep,

see Fig. 1.8.

Theta oscillations and sharp wave ripples strongly influence information flow be-

tween neocortex and HC. Theta activity favors information transfer from neocor-

tex to HC (Buzsaki, 1989), and sharp wave ripples encourage transfer from HC to

neocortex (Chrobak and Buzsaki, 1996). The correspondence of theta oscillation

with memory encoding and the correspondence of sharp wave ripples with memory

consolidation is in agreement with many observations.

To understand how the two stage model and remapping help memory, the next

section will introduce several classes of models for memory and grid and place field

formation.

1.6 Models of the hippocampal area

Two types of models of the hippocampal area are important for this work: models

of memory and models of navigational aspects. We will shortly introduce the
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concepts of memory networks, both attractor networks that can hold a single

memory state over time as well as associative networks that can loop through

a sequence of memories. Regarding navigation, there are three classes of model

that are relevant to place cells, grid cells and remapping. First, generative models

suggest mechanisms that produce place fields and grid fields from lower level signals

like head direction cells, border cells, as well as recurrent network connectivity.

Other models explore how place cell firing can emerge from grid cell firing, and

vice versa. And finally we will look at models of remapping. The most relevant one

for us relies on simple feed forward connections from grid to place cells. Finally,

the models of remapping will be discussed.

1.6.1 Memory networks

The first concept to understand is what constitutes a memory in most network

models: objects, people and facts are represented by an assembly of neurons that

activate at the same time. For example, a dear person is represented by one

assembly, the family dog by another. When a neural network is able to keep those

assemblies firing, it is considered memory (working memory in this case, as it

keeps a representation available). Alternatively, associative memory is realized by

giving the network a cue representation, and having it respond with an associated

representation.

In attractor networks (Hopfield, 1982), assemblies of neurons can be activated

externally (by sensory cues for example) and keep firing after the external input

ceased. This ability to sustain firing is one of the proposed mechanisms for memory.

The system sustains the firing, which in turn can be accessed by other brain areas

without sensory input.

An additional benefit of attractor networks is pattern completion. Incomplete

external cues are automatically completed by the system. Then firing of the full

assembly is sustained normally. In the visual system, this might be the mechanism

that allows us to identify an object we do not fully see. Like a tiger hiding behind

vegetation.
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The basis of this system lies in potentiation of the right synapses. When an

external cue causes an assembly of neurons to fire, the synapses between them are

strengthened. After enough repetitions (learning phase), the synapses are so strong

that the firing neurons can sustain each others activity after the external input

stopped. They become each other’s input. This also explains pattern completion.

If some neurons in the assembly are not firing, they will be activated by the many

other neurons of the assembly. There is of course a critical threshold of neurons

necessary. Not all patterns can be completed.

The name attractor network stems from the pattern completion. A marble on a

plane with some depressions will stay in the depressions. Similarly, the memory

system will stay in the memory states. And if it is in a state close to a memory

state, it will converge to that memory. Just like the marble rolling to the bottom

of a valley.

The mechanism of pattern completion is also what ultimately limits the network.

So far we neglected the interaction of multiple memories and their neuron assem-

blies. If two memory assemblies share too many neurons, they will activate neurons

from both assemblies, and form a new attractor that does not represent any exter-

nal cue learned. The two memories are said to interfere. If enough memories are

stored, there will be such overlaps. At some point, the network fails in a catas-

trophic way. Failure happens at a critical number of memories, called the capacity

of the network. Beyond that capacity, all memories are no longer accessible, and

either lead to activation of the whole network, or spurious attractor states that do

not represent a memory. This sudden transition is called catastrophic forgetting.

It would be more desirable to have graceful failure instead, meaning that memories

are still accessible, but carry more noise. The concepts of attractor states, pattern

completion, and catastrophic forgetting are important beyond this specific model.

Many recurrent networks can show these phenomena.

To avoid interference and store as many memories as possible, all memory assem-

blies should have as little overlap as possible. There are two suggested mechanisms

in the mammalian brain. The first is the dentate gyrus which possesses sparse and

powerful projections to CA3 pyramidal cells (Treves et al., 2008). During learning,
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the DG inputs by themselves can trigger CA3 cells to fire, and thereby strengthen

their recurrent connections during learning. During recall, the weaker inputs from

layer II of EC can reactivate assemblies. This allows DG to select sparse cell as-

semblies with little chance of overlapping with existing memory assemblies. The

precise mechanism of selecting assemblies is not known. Nevertheless, even if DG

does nothing else but selecting random sparse assemblies, this would be a power-

ful mechanism. In addition, DG does not convey new information to CA3 since

both CA3 and DG receive the same inputs from layer II of entorhinal cortex.

All together, this suggests DG acts as a decorrelator of neural assemblies during

learning. A second mechanism that decorrelates assemblies takes advantage of

remapping in entorhinal grid cells (Colgin et al., 2008; Fyhn et al., 2007). Grid

cells project onto CA3 pyramidal cells. These grid-to-place models produce place

cell firing fields from grid cell activity. Accordingly, the rather simple remapping

in grid cells, as explained earlier, causes global remapping of place cells, much like

it is observed in experiments (Monaco et al., 2011). And this global remapping in

place cells is a pattern separation mechanism, since the memory of a certain place

will be encoded using very distinct cell assemblies in CA3 for each remapping.

A memory network that cycles through a sequence of memories can be constructed

by the same principles. In the most simple case, one assembly is activated as a

cue and triggers a target assembly (Willshaw et al., 1969; Marr, 1971). This

allows to associate memories with one another. To achieve this, the synapses are

strengthened between neurons of the cue and neurons of the target assembly. Like

this, activity flows from one assembly to the next. An associative network also has

the property of pattern completion, albeit with reduced efficiency since it has to

happen within a single time step. It is possible to create a sequence of memories

in this way. Such a network will follow the chain until it reaches the end of the

sequence and firing ceases (Leibold and Kempter, 2006). No steady state exists,

since the sequence does not allow to dwell in one state. Also, an item may never

repeat, or it would lead to failure since no disambiguation is possible. The viability

of such a network depending on biological parameters can be found in (Leibold

and Kempter, 2006). Its optimization in terms of memory capacity by adding

inhibition is explored in this thesis.
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One important class of error when recalling memories is interference. Memories

are said to interfere with each other if the assemblies representing them share

synapses, resulting in undesired activation of neurons. The worst case example

is a network loaded with so many memories that virtually all assemblies are con-

nected. For the associative network, this results in a state where all neurons fire

or are silent, depending on how the threshold/inhibition was tuned. One strategy

to reduce interference is to use sparse coding, e.g. few active neurons in each

assembly. Additionally, it is desirable to have a mechanism that ensures that even

similar memories can be stored using very distinct assemblies, a principle called

pattern separation. An example of two similar memories that should be stored

as very different assemblies is seeing a tiger in a zoo compared to seeing a tiger

in your garden. The sensory inputs are very similar, but the context makes all

the difference. Remapping could be a mechanism for separate the two patterns.

An additional input, like fear, could trigger a recoding of the memory, which we

observe as global remapping of place cells in experiments.

The requirement of memory networks to have pattern separation also has mea-

surable predictions. Remapping in HC cells should be very unpredictable. This

is found to be true. In particular, CA3 is more unpredictable than CA1 during

remapping (Leutgeb et al., 2004). This is possibly due to a higher recurrent con-

nectivity in CA3 (Amaral and Witter, 1989), which would cause more interference

and hence require better orthogonalization of the neuronal assemblies used for

memories.

1.6.2 Place cell and grid cell models from lower level cells

Here we review models that produce place and grid cell firing based on inputs from

lower level cells like head direction cells, speed cells, and border cells.

One class of model uses continuous attractor dynamics to maintain an internal rep-

resentation of position (Samsonovich and McNaughton, 1997; Redish and Touret-

zky, 1998; Tsodyks, 1999), and inputs from head direction cells and velocity de-

pendent inputs to update this representation.
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A continuous attractor network resembles the Hopfield memory network described

earlier. There, we had discrete attractors, comparable to a marble on a plane

with some depressions. In the continuous attractor model, we have grooves that

make pathways, and the marble can move freely in a groove, but cannot leave it.

With neurons, such a groove or a continuous attractor can be built by arranging

all neurons on a square sheet, then connecting neighboring neurons with strong

excitation, while far away neurons inhibit each other. Each neuron has equivalent

connections to all others, giving the system translational symmetry on the sheet.

The system can be tuned so that a random external input causes one neuron

and its neighbors to win out: they fire while inhibiting every other neuron. This

forms a bump of activity on the cell sheet. This bump stays in place, until head

direction and velocity inputs move it around. It can move around due to the

translational symmetry of synaptic weights. It cannot lose its shape since the

mechanism of pattern completion would correct any deviation. We fooled the

system into accepting translations, but no other change. Coming back to our

analogy, the marble staying in the groove is equivalent to the bump keeping its

shape, and moving inside the groove is equivalent to moving the bump on the cell

sheet.

If we look at the activity of a single cell, it is not trivial that it will result in a

typical place cell firing map. To make the bump on the cell sheet a near perfect

representation of the position in space, velocity, and direction input have to work

precisely when moving the bump. Luckily, this works out fine.

Tuning the system in a different way, a hexagonal pattern of bumps can be created

(Fuhs and Touretzky, 2006; McNaughton et al., 2006; Burak and Fiete, 2009). Now

each cell will become active at multiple spots in the environment. The hexagonal

pattern in the cell sheet is transferred to the firing map of individual cells by

moving the bumps.

While it is beautiful to achieve the hexagonal pattern as an emergent phenomenon,

one can criticize that the translational symmetry in the connections is hard to

achieve and upkeep.
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Grid cell firing has also been modeled as the result of interfering oscillations

(Burgess et al., 2007). To do so, a base oscillation interferes with an oscillation

whose frequency depends on velocity. In one dimension, the velocity dependence

allows for a repeating pattern with fixed spatial period. In two dimensions, it

yields a stripe pattern, since the velocity vector needs to be projected onto an

arbitrary direction to make the model essentially one dimensional again. This is

then repeated using a total of three different directions, each producing striped

firing maps. These stripe cells are angled at 60 degrees, and are used as inputs for

a grid cell. The resulting pattern is a hexagonal grid.

1.6.3 Place cells from grid cells and vice versa

While both grid cell and place cell firing can be obtained from the lower level cells,

they can also be obtained from each other. A very simple model to produce place

cell firing maps from grid cell activity is to take feed forward connections from grid

to place cells. These connections can be set in different ways. Hebbian learning,

random connections, as well as optimization to yield sparse place cell firing and

other methods have been shown to produce similar outcomes (Cheng and Frank,

2011).

The other direction is more difficult. To produce grid firing fields from place

cells, two things are important (Kropff and Treves, 2008). First, grid cells need a

firing rate adaptation mechanism, which will reduce their excitability if they fire

continuously. Second, the mean grid cell activity has to be kept constant. This

can be achieved by inhibitory feedback between grid cells. This allows competition

between grid cells, resulting in few cells being active in the same locations, and

more different phases that cover the environment. The inputs for the grid cells are

place cells with feed forward connections, and Hebbian learning is used on these

connections while the animal moves on a random trajectory. At one point in space,

some place cells fire and trigger the firing of a grid cell, that by coincidence has

a higher initial weight. This grid cell, in turn, inhibits the grid cells with weaker

weights. As the rat moves, the grid cell tires due to adaptation, and other grid

cells win the competition. Moving far enough, the grid cell recovers and might
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start firing again. When the rat comes back to the same spot, the same grid cell

will win out, due to the strengthened connections from the active place cells. But

as it moves away, no matter what direction, the grid cell tires and stops firing.

Like this, there will always be a ring shaped zone where the cell is silent. A dense

packing of such firing fields with ring shaped zones of inactivity yields a hexagonal

pattern.

Both types of models can function with imperfect inputs (Azizi et al., 2014; Kropff

and Treves, 2008). In particular, the place-to-grid model requires only spatially

modulated input, as can be found in other areas like LEC.

1.6.4 Models of remapping

The feed forward transformation of grid to place cell firing offers an easy way of

remapping. By shifting or rotating the grid firing fields, completely new place cell

firing fields emerge (Monaco et al., 2011). It was shown that the neural assem-

blies encoding locations (population vectors) are decorrelated by this procedure

(Monaco et al., 2011). In particular, applying as little as four different shifts to

sub groups of grid cells (the discrete modules that share a spatial period (Stensola

et al., 2012)) results in a remapping that is as random as if shifts for individual

cells had been used. This means that the very different remappings in HC could

have a simple control mechanism that uses few parameters (shifts and rotations

of 4 to 10 grid cell modules) and can address the HC remappings in a consistent

way (Fyhn et al., 2007; Colgin et al., 2008).

Remapping in CA3 can also be modeled using a single recurrent network of CA3

cells (Samsonovich and McNaughton, 1997; Monasson and Rosay, 2013; 2014;

Stringer et al., 2002). Each remapping is learned as a single continuous attrac-

tor. Within it, activity can flow smoothly between neuron assemblies to represent

spatial position. To remap, the system jumps to another continuous attractor,

in which position is represented by other assemblies in a continuous way. Using

this combination of multiple continuous attractors, it is easy for external inputs

to update position, and more difficult to switch between remappings.
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Abstract Recurring sequences of neuronal activation
in the hippocampus are a candidate for a neurophysio-
logical correlate of episodic memory. Here, we discuss
a mean-field theory for such spike sequences in phase
space and show how they become unstable when the
neuronal network operates at maximum memory ca-
pacity. We find that inhibitory feedback rescues replay
of the sequences, giving rise to oscillations and thereby
enhancing the network’s capacity. We further argue
that transient sequences in an overloaded network with
feedback inhibition may provide a mechanistic picture
of memory-related neuronal activity during hippocam-
pal sharp-wave ripple complexes.
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1 Introduction

The hippocampus is a brain structure crucially involved
in the formation of autobiographic, episodic memories.
Electrophysiological recordings of hippocampal neu-
rons in behaving rodents have revealed the existence
of place cells, which are active at only a few particular
locations in a known environment, and silent elsewhere
(O’Keefe and Dostrovsky 1971). The response of a
population of place cells hence encodes the position of
an animal in an environment and a spatial trajectory of
this animal is represented by a sequence of active place
cells (e.g. Dragoi and Buzsáki 2006; Davidson et al.
2009).

During sleep and resting states, spontaneous hip-
pocampal activity bursts have been observed in which
neurons were activated in an order similar to ex-
ploratory phases (Wilson and McNaughton 1994;
Nádasdy et al. 1999; Lee et al. 2002; Diba and Buzsáki
2007; Gupta et al. 2010; Dragoi and Tonegawa 2011).
The activity sequences observed in slow-wave sleep
mostly correspond to previously experienced trajecto-
ries, whereas under awake rest, they have been found
to even code for future trajectories. Therefore, these
network bursts have been hypothesized to reflect mem-
ories and imaginations of spatial episodes (for review,
see Buhry et al. 2011).

The activity sequences are correlated with the occur-
rence of sharp-wave ripple complexes (Lee and Wilson
2002; Diba and Buzsáki 2007), a brief (∼100 ms) field
potential deflection that is superimposed with a high-
frequency oscillation in the hippocampal CA1 pyrami-
dal cell layer (∼200 Hz; Buzsáki et al. 1992). Although
it is still debated how these spontaneous sequences
are related to memory in the psychological sense, they
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constitute a fascinating example of a biophysical mem-
ory phenomenon realized by local network mechanisms
(Csicsvari et al. 2000; Sullivan et al. 2011; Maier et al.
2011).

In this paper, we extend on a model of a sequence
memory network using a dynamical systems approach.
The model network is operated in a regime at which
it can robustly reproduce all stored sequences. The
summed length of all stored sequences is called the
capacity of the network. It is known that neuronal inhi-
bition can improve this capacity and the robustness of
sequence retrieval (e.g. Tsodyks and Feigel’man 1988;
Treves 1990; Hirase and Recce 1996). Here we show
that, as the network is operated close to its capacity
limit, inhibition gives rise to oscillations. Beyond maxi-
mum capacity, inhibition enables transient replay, i.e.
the partial reproduction of stored sequences—just as
observed during sharp-wave-ripple-associated replay in
the hippocampus.

2 Model

We model neuronal sequence generation in a network
of binary neurons with binary synapses (Willshaw et al.
1969; Golomb et al. 1990; Nadal 1991; Hirase and Recce
1996; Leibold and Kempter 2006). The network con-
sists of a randomly connected network of N excitatory
neurons i = 1, . . . , N. The neurons are simplified as
binary with state xi = 1 if neuron i fires and state xi =
0 if it is silent. In the hippocampus, neuronal firing
during the spontaneous sequences is phase-locked to
ripple oscillations (Maier et al. 2011) at a frequency
around 200 Hz. We therefore formulate the dynamics
in discrete time t indicative of the oscillation cycle.
A model neuron i receives an input from neuron j if
there is a connection by an active “synapse”. Following
Gibson and Robinson (1992), the synapses are de-
scribed by two independent binary stochastic processes.
One stochastic variable indicates the presence (wij = 1)
or absence (wij = 0) of a morphological connection,
with probability prob(wij = 1) = cm. The constant cm

thereby denotes morphological connectivity. The other
stochastic variable sij describes the synaptic state, which
will be used to store memories. In the potentiated state
(sij = 1) a synapse translates a presynaptic spike into a
postsynaptic potential whereas in the silent state (sij =
0) it does not influence the postsynaptic neuron. The
model neuron i fires a spike at cycle t + 1 if the sum of
its inputs hi(t) in the previous cycle t exceeds a thresh-
old θ . In summary, the network dynamics is described
by the equation xi(t + 1) = �

[ ∑N
j=1 wijsijx j(t) − θ

]
,

with � denoting the Heaviside step function.

The memories stored in the network are sequences
of activity patterns ξ described by binary vectors
of dimension N, ξ ∈ {0, 1}N . A memory sequence of
length Q is an ordered occurrence of activity patterns
ξ 1, ξ 2, . . . , ξ Q (Fig. 1). The number M of active neurons
in each pattern is called pattern size, and is the same
for all patterns. Memory sequences are stored in the
synapses using the learning rule by Willshaw et al.
(1969): A synapse is potentiated only if it connects two
neurons that are activated in sequence at least once.
Then the number P of stored associations between a
cue and a target pattern is related to the fraction c/cm

of activated synapses by

P = ln(1 − c/cm)

ln(1 − f 2)
. (1)

The coding ratio f = M/N is the fraction of active
neurons and fixes the firing rate. If all P stored as-
sociations can be replayed, the number α ≡ P/(N cm)

is called the capacity of the network, and counts the
stored associations per number of synapses at a neuron.
Note that the sequence length Q is generally much
smaller than the total number P of associations; the
number of retrievable sequences of length Q is given
by �P/(Q − 1)�. Whereas P reflects the combinatorics
of the synaptic matrix (determined by N, M, cm, c),
the requirement of a minimum Q implies a stability
constraint for the network as a dynamical system.

Fig. 1 Sequence of activity patterns. A network of N neurons
(boxes) is considered in discrete time t. At each time step M
neurons are active (filled boxes). A sequence that lasts for Q
time steps is described by the binary vectors ξ1, ξ2, . . . , ξ Q, where
(ξk)i = 1 if neuron i fires in pattern k and (ξk)i = 0 if not. If P
transitions between activity patterns are stored in the network,
the number of stored sequences of length Q is �P/(Q − 1)�
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In the biologically relevant scenario of low coding
ratio f , capacity grows like α ∝ M−2 for fixed c, cm.
Maximum capacity thus corresponds to the minimum
pattern size Mopt at which the last (Q-th) element of
the sequence can still be recalled. The minimum pattern
size has been shown to scale like ln N (Willshaw et al.
1969; Gardner 1987), and hence α ∝ N/(ln N)2.

Sequence retrieval is described by two macro-
scopic dynamical variables: the number mt ∈ [0, M]
of correctly activated neurons (hits) and the number
nt ∈ [0, N − M] of incorrectly activated neurons (false
alarms). For large network sizes N and large pattern
sizes M, we can assume Gaussian distributions for the
number of inputs h(t), and reinterpret the variables m
and n in a mean-field sense as their respective expecta-
tion values over realizations of the connectivity matrix.
The distributions of inputs are thus characterized by the
means μ ≡ 〈h(t)〉 and variances σ 2 ≡ 〈h(t)2〉 − 〈h(t)〉2;
for “hit” neurons

μOn = cm m + c n ,

σ 2
On(m, n) = cm (1 − cm) m

+ c
[
(1 − c) + c CV2

q(n − 1)
]

n, (2)

and for “false-alarm” neurons,

μOff = c (m + n) ,

σ 2
Off(m, n) = c

[
(1 − c) + c CV2

q (m + n − 1)
]

× (m + n) . (3)

The terms proportional to

CV2
q = (1 − f 2)P

(
1 − f 2

1+ f

)P − (1 − f 2)P

[1 − (1 − f 2)P]2
(4)

originate from correlations in the synaptic states that
are induced by Willshaw’s learning rule and are com-
puted in the Appendix following Gibson and Robinson
(1992).

The network dynamics is then implemented as an
iterated map:

(mt+1, nt+1) = [TOn(mt, nt), TOff(mt, nt)] . (5)

Since only those neurons fire whose input h(t) exceeds
the threshold θ , we estimate the expectation values of
hits mt+1 and false alarms nt+1 from the cumulative

distribution function (cdf) of the normal distribution,
�(z) ≡ [1 + erf (z/

√
2)]/2,

TOn(m, n) = M �[(μOn − θ)/σOn]
TOff(m, n) = (N − M)�[(μOff − θ)/σOff] . (6)

The nullclines (e.g. n − TOn(n, m) = 0) of this dynam-
ical system are shown in Fig. 2(A) for a case of stable
retrieval, i.e., there exists an asymptotically stable fixed
point (m∞, n∞) = [TOn(m∞, n∞), TOff(m∞, n∞)] with
many hits m∞ � M and few false alarms n∞ 
 N − M.

If the firing threshold is too low or the pattern size
is too large (Fig. 2(C)), the nullclines do not cross in a
retrieval regime: After initialization at the condition of
perfect retrieval (m0, n0) = (M, 0), all neurons immedi-
ately start to fire and the network falls into an all-active
state, (m, n) � (M, N − M). If the firing threshold is
too high or the pattern size is too low (Fig. 2(B)) only
an unstable fixed point exists in the retrieval region.
After initialization at perfect retrieval, the network
immediately falls into an all-silent state (m, n) � (0, 0).

The phase diagram reveals the three phases of our
model sequence memory network (Fig. 2(D)): all silent,
all active, and retrieval. The region in which retrieval
is possible is wedge-shaped with a thin tip at low pat-
tern sizes M. It turns out that the dynamics usually
converges to the fixed points in only a few iterations,
meaning that if sequence retrieval is stable for some
finite length Q � 10, it is likely to be stable for Q →
∞ (see thin grey area in Fig. 2(D) which indicates
transient replay between 4 and 99 iterations). Note that,
technically, Q ≤ P, and thus the limit Q → ∞ should
be interpreted as having stored a cyclic sequence with
ξ Q+1 = ξ 1.

The region of retrieval obtained from the mean-field
equations can be validated with computer simulations
of the corresponding networks of binary neurons. As
expected, owing to the finite size of the simulated
network, the region of retrieval is overestimated by
mean-field theory, yet the deviations are relatively
small (white discs in Fig. 2(D)). According to Eq. (1),
the number P of stored associations increases with
decreasing coding ratio f = M/N, and thus the net-
work obtains the highest memory capacity at the wedge
tip M = Mopt. There the stability of the fixed point is
particularly sensitive to noise and thus the high capacity
is not accessible unless the dynamics can be stabilized.
A natural way to stabilize replay is to include feedback
inhibition (see Section 3).

2.1 Optimal firing threshold

A different view on the task of the excitatory neurons
during sequence replay is that of an optimal detector:
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Fig. 2 Phase space and phase diagram. (A) Phase space is
spanned by the numbers m of hits and n of false alarms. The m
nullcline (solid line) intersects twice with the n nullcline (dashed),
producing stable (disc) and unstable (square) fixed points. Ar-
rows indicate attractive or repulsive character of the nullcline;
gray areas correspond to unphysical values n < 0 or m > M.
(B) Same as A for higher threshold θ . Only the unstable fixed
point remains. (C) Same as A for lower θ . Both fixed points
disappear. (D) Phase diagram. M-θ space consists of three areas:
All silent; the sequence dies out. All active; all neurons fire at

maximum rate. Sequence retrieval (black); the fraction of hits
is much larger than the fraction of false alarms for infinitely
many time steps (here tested as mt/M > 0.9, nt/(N − M) < 0.1
for t ≤ 100). The dashed line separates the all-silent and all-active
phases for M-values at which no retrieval phase exists. Areas in
light gray correspond to transient retrieval of at least 4 time steps.
White discs mark the boundary of the retrieval region as obtained
from simulations of N binary neurons for exemplary values of
M. Parameters here and elsewhere are N = 105, M = 1,600, cm =
0.1, and c = 0.05, unless specified otherwise

the detector neuron is supposed to fire if it belongs
to the hit population AOn of the current time step,
or not, in which case it belongs to the false-alarm-
population AOff. The prior probabilities for a neuron to
belong to either of these populations, Pr (AOn) = f and
Pr (AOff) = 1 − f , are given by the coding ratio f , which
stipulates how many active neurons code for a pattern
at any one time step. The basis for the decision whether
to fire or not is a one-shot sample from the distributions
of synaptic input levels. We again approximate these
distributions as Gaussians whose mean and variance
depend on whether the detector neuron is target in a
pattern or not.

A Bayesian strategy to solve this problem ideally
seeks to maximize the probability of success S, i.e. the
probability of taking the right decision:

S = Pr
(
spike|AOn

)
Pr (AOn)

+ Pr (silence|AOff) Pr (AOff) .

Given the spike generation model (spike ≡ h � θ), the
conditional probabilities of spike or silence correspond
to integrals of the respective probability densities over
regions of synaptic input separated by the threshold θ :

S (θ) = Pr (h � θ |AOn) Pr (AOn)

+ Pr (h < θ |AOff) Pr (AOff) .

The mean-field considerations leading to Eq. (6) allow
to rewrite the success probability in terms of Gaussian
cdfs:

S (θ) = �(zOn) f + (1 − �(zOff)) (1 − f ) ,

with

zOn/Off = μOn/Off − θ

σOn/Off
.

The threshold θopt that maximizes the success
probability can be readily obtained by demanding
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dS (θ) /dθ = 0. Since ∂� (z) /∂z = e−z2/2
/ (√

2πσ
)

we
have

dS
dθ

= 1√
2π

(

− f
e−z2

On/2

σOn
+ (1 − f )

e−z2
Off/2

σOff

)

,

i.e. the optimal threshold is at the crossing point
of the weighted Gaussians. The resulting equation is
quadratic in θ ,

z2
Off − z2

On = 2 log

(
1 − f

f
σOn

σOff

)
,

and has roots

θ± =
(
σ 2

On − σ 2
Off

)−1
[

c (m + n) σ 2
On − (cm m + cn) σ 2

Off

± σOnσOff

√√√√(c − cm)2 m2 +
(
σ 2

Off − σ 2
On

)
log

(
M2

F2

σ 2
Off

σ 2
On

) ⎤

⎦ .

(7)

Generally, one of the thresholds is positive and the
other negative when m � M, n 
 N − M, which en-
ables heuristic identification of the sign leading to max-
imization of S (θ).

2.2 Optimal threshold adaptation

Foreshadowing our interest in adaptive regulation of
the threshold, we ask how the threshold should change
with the excitatory activities m and n. Figure 3 displays
the optimal threshold θopt (m, n) from Eq. (7): In the
phase-space region of retrieval (large m, small n), the
level curves of θopt (m, n) can be very well approxi-
mated by a linear function, which, using Taylor expan-
sion, is

θopt (m, n) = θopt (M, 0) + ∂mθopt (M, 0) (m − M)

+ ∂nθopt (M, 0) n .

Figure 3(A) thus demonstrates that the optimal
threshold derived from analytic optimality considera-
tions linearly increases with activity levels m and n
as has been found numerically by Hirase and Recce
(1996).

The coupling coefficients ∂mθopt and ∂nθopt are plot-
ted in Figure 3(B). Both partial derivatives have
positive values, which, as intuitively expected, corre-
sponds to an increase in threshold for growing activity.
Two things should be noted further: First, the two
coefficients depend on M only little (at least for M >

880 at which replay is stable; see Figure 2). Second, they
are of similar value (between c and 2 c in our exam-
ple network). Together this indicates that the optimal
adapting threshold may be approximately realized by

A

B

Fig. 3 Optimal threshold is linear in activity. (A) Level curves
(grey) of the optimal threshold as a function of the numbers of
hits m and false-alarms n. In this exemplary network with c =
0.05, cm = 0.1, N = 105 and M = 1,600, the linear approxima-
tion (dashed; θ (m, n) � 1.118 + 0.079 m + 0.062 n) is very good
in the retrieval region (m ≈ M, n/N ≈ 0) of the phase plane.
(B) Coefficients ∂m/nθopt that couple the optimal detector thresh-
old θopt and excitatory population activity of On (grey) and Off
cells (black)

a single multiplicative coupling constant b ≈ ∂mθopt ≈
∂nθopt that is the same for both hits mt and false alarms
nt (see Section 3.1).

3 Role of inhibition

It has been shown previously that adaptive thresholds
can be interpreted as instantaneous global feedback
inhibition and can improve the capacity of associa-
tive memory networks (Golomb et al. 1990; Treves
1990; Hirase and Recce 1996). We therefore have in-
vestigated the effect of inhibition with respect to its
phase-space behavior in our model. First, we consider
inhibition to provide an instantaneous negative feed-
back. Second, and unlike previous approaches, we treat
global inhibition as an additional dynamical variable.
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3.1 Instantaneous global inhibition

Motivated by previous results on optimal thresholds
(Section 2.2 and Hirase and Recce 1996), we intro-
duce an instantaneous negative feedback proportional
to the total number m + n of active neurons. The
dynamics is derived from Eq. (6) by substituting θ →
θ + b (mt + nt), where the positive b acts as a feedback
gain.

The main effect of inhibition is as follows. When the
threshold θ is too low (as in Fig. 2(C)), inhibition moves
the n-nullcline rightward; when θ is too high (as in
Fig. 2(B)), inhibition moves the m-nullcline downward.
Finally, in cases for which M is below the optimal
pattern size Mopt of the purely excitatory model, and
no threshold exists for which replay is stable (as in
Fig. 4(A)), inhibition moves both nullclines at the same
time. Thus, inhibition restores the stable fixed point
and therefore effectively enlarges the retrieval phase
(Fig. 4(B)). In particular, inhibition lowers the optimal
pattern size Mopt, thereby enhancing memory capacity
α ∝ M−2

opt (by a factor of about 2 in the example of
Fig. 4(C)). Interestingly, the optimal range for the feed-
back gain (b � c) fits well to that for the Bayes-optimal
threshold in Fig. 3(B). For such optimal values of b the
lower border of the wedge becomes roughly horizontal
and the threshold θ is close to zero (not shown). Physio-
logically, the feedback gain b may be adjusted into this
range by plasticity of inhibitory synapses.

To investigate the scaling behavior of the memory
capacity, we determined the minimum pattern size Mopt

for different network sizes N and found the well-known
logarithmic dependence Mopt ∝ ln N regardless of the
inhibitory gain b (Fig. 4(D)). The capacity thus still
grows with network size as α ∝ N/(ln N)2.

An alternative view on instantaneous global feed-
back inhibition can be derived from the mean val-
ues in Eqs. (2) and (3), viz., the substitution θ → θ +
b (mt + nt) effectively reduces the connectivities cm,
and c to cm − b and c − b . The ratio r = (cm − c)/c
between non-activated and activated synapses can be
interpreted as the plasticity resources of the network
and was shown in Leibold and Kempter (2006) to
critically define the signal-to-noise ratio at the post-
synaptic neurons (with maximal capacity at r ≈ 10 for
fixed N, M, cm). By substituting cm → cm − b and c →
c − b , instantaneous global inhibition with b < c can
be formally interpreted to increase the signal-to-noise
ratio like r → r/(1 − b/c). Since, in the present paper,
we initially assume r = 1, a feedback gain of b > 0 thus
generally increases the signal-to-noise ratio for fixed c
and thereby enhances capacity (Fig. 4(C)).

3.2 Dynamic global inhibition

We next asked whether the effects observed with in-
stantaneous global inhibition can be reproduced in a
more physiological scenario in which inhibitory activity

Fig. 4 Retrieval with
instantaneous global
inhibition b = 0 (black),
b = 0.4 c (red), and b = 0.8 c
(blue). (A) Nullclines (red
omitted). Firing threshold θ

for the blue nullclines is offset
by −b M to account for lower
mean input h. (B) Phase
diagram. Grey vertical line
and white dashes indicates
M, θ values used in A. Light
colors show transient
retrieval of at least 4 time
steps. (C) Capacity (black)
and minimum pattern size
Mopt (gray) as a function of
b . (D) The minimum pattern
size grows sublinearly with N
so that the capacity shows an
overall increase. The dashed
grey line indicates a
logarithmic dependence
M ∝ ln N

A B

C D
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has its own dynamics, and what additional features
such inhibitory dynamics would give rise to. To this
end, we extended the model from Eqs. (5) and (6) by
including a third dynamical variable kt that accounts
for the number of spikes in an inhibitory pool of K
neurons. Each neuron in this pool is assumed to project
to and to receive input from excitatory neurons with
probabilities cIE and cEI , respectively. Analogous to
Eq. (5), the dynamics of kt is implemented as the map
kt+1 = TInh(mt, nt) with

TInh(m, n) = K �[(μInh − η)/σInh]. (8)

The mean synaptic input and its variance are

μInh(m, n) = cEI wEI (m + n) (9)

σ 2
Inh(m, n) = w2

EI cEI (1 − cEI) (m + n). (10)

The parameter wEI denotes the synaptic weight of
the connections from excitatory to inhibitory neurons.
The inhibitory action on the sequence-related variables
m and n is implemented by replacing the thresholds
in Eq. (6) by θ → θ + wIE cIE kt, and the variances
by σ 2

On/Off(m, n) → σ 2
On/Off(m, n) + k w2

IE cIE (1 − cIE).
Again, wIE is the corresponding synaptic weight.

To test for sequence retrieval, the map is initial-
ized with a perfect pattern and matching inhibition,
(m0, n0, k0) = [M, 0, TInh(M, 0)]. The resulting phase
diagram reveals again regions of stable and transient
retrieval (Fig. 5). In agreement with the linear instan-
taneous inhibition model, the retrieval region in the
phase diagram extends to lower pattern sizes M (higher
capacities). However, the non-linearity of the sigmoidal
Gaussian cdf in Eq. (8) introduces a shearing of this re-
gion that can be explained as follows: The Gaussian cdf
is roughly linear in the vicinity of the inhibitory thresh-
old η and virtually flat elsewhere. Hence, as an approx-
imation, inhibition has no effect at low total activities
m + n, it adds a constant wIE cIE K to the threshold
θ at high total activities and establishes a nearly lin-
ear coupling for intermediate regimes, similar to the
instantaneous-inhibition model from Figure 4. During
sequence retrieval, total activity is approximately con-
stant, m + n � M, and therefore the retrieval region
of the dynamic-inhibition model can be understood
as a combination of three retrieval regions of the
instantaneous-inhibition model for different feedback
gains b and thresholds θ .

The broadening in θ of the region of retrieval (for
constant M) with both instantaneous and dynamic in-
hibition suggests that sequence memory becomes more
robust. Mean field theories, however, generally overes-
timate the regions of stable sequence retrieval (Latham
and Nirenberg 2004). To assess the predictive power

Fig. 5 Comparison of the retrieval regions in M-θ space for
the 2-dimensional model without inhibition (black) vs. the 3-
dimensional model with increasing dynamical feedback inhibi-
tion (red, blue). Triangles on the red region mark the first values
of θ (in integer steps) for which sequence retrieval is unstable in
simulations. Light colors show transient retrieval of at least 4 time
steps. (a–f): Example trajectories from network simulations for
M-θ pairs as indicated by white markers a–f (mt: green; nt: orange,
kt: blue). The grey vertical lines indicate Hilbert phase zero for
the false-alarm neuron activity nt. Parameters are K = 5,000,
wIE = 0.012, cIE = 1, wEI = 1, cEI = 0.01, and η = 13 for the
red region; η = 8.8 for the blue region. Inset: Robustness of se-
quence retrieval against threshold jitter with (red, K = 5,000) and
without inhibition (black) at M = 1,500 for simulated networks
with threshold noise

of our mean field results, we ran further simulations
where neuronal thresholds θ were jittered according to
a Gaussian process. The results show that the increase
of the relative range of thresholds by inhibition indeed
withstands threshold noise (Fig. 5 Inset). At high capac-
ities, the demand of robustness against threshold noise
implies that the area of retrieval should be broadest at
minimum M = Mopt.

We suggest two heuristic criteria for the parame-
ters of dynamic inhibition. First, to achieve maximum
sensitivity of the inhibitory feedback, the linear region
of TInh(m, n) should be centered at the average total
input m + n � M during retrieval. This requirement
is granted by setting the inhibitory threshold to η =
μInh(M, 0). Second, the slope at this average total input
should yield maximum capacity according to the instan-
taneous inhibition model (Figs. 3(B) and 4(C)), i.e., it
should take a value of at least c. This requirement can
be met by appropriately choosing the coupling factor
wIE K. The blue region in Fig. 5 illustrates the outcome
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of such an optimization at M = 880 with an effective
slope of 1.6 c (the red region is obtained at M = 1,300
and slope 1.3 c). The region of stable retrieval is al-
most flat in M-θ space, suggesting that replay is robust
against variability in pattern size M. To the left of
the region of stable retrieval, we observe in lighter
color a substantial region of transient sequences. Such
large regions of transient retrieval only occur for slopes
larger than c (not shown), which corresponds to the
optimal gain factors for the threshold adaptation from
Fig. 3(B). The minimum pattern size Mopt of stable
retrieval, however, does not decrease further for slopes
above c (as in Fig. 4(C)).

Simulations confirm the shape of the fundamental
regimes all active, all silent, and retrieval predicted by
the three-dimensional mean-field model. Figure 5(a–f)
displays simulated trajectories (mt, nt, kt) for typical
situations. Interestingly, all-silent states can also some-
times be observed for low threshold values, where inhi-
bition overcompensates the false alarms and transiently
allows for sequence retrieval before the network falls
back into silence (Fig. 5(c)).

In the retrieval phase the network typically exhibits
oscillatory behavior (Fig. 5(b–d)) arising from the inter-
play between excitatory neurons mt, nt and inhibition
kt that manifests itself in oscillations of the two with
the phase of inhibition slightly delayed (by about one
timestep). The periods of these oscillations are about
5 to 10 time steps corresponding to gamma-range fre-
quencies of 20 to 40 Hz, under our initial assumption
that one time step corresponds to a ripple cycle of
5 ms. The oscillatory activity components are present
during both transient (Fig. 5(c), (d)) and ongoing replay
(Fig. 5(b)). We further analyzed the oscillations based
on the inhibitory activities kt during ongoing replay
from cellular simulations (Fig. 6). As a measure for
the oscillation amplitude we computed the standard
deviation over time std(k/K), and found that it in-
creases towards the edges of the region of replay. As a
consequence, the oscillations are particularly strong at
the low-M tip of the replay wedge, where the network
realizes its maximum capacity. From this, we conclude
that gamma oscillations herald the onset of dynamical
instability as it is the case at the capacity limit.

Fig. 6 Transition to instability is marked by increase in ampli-
tude of gamma oscillations. At lower left, colored discs mark
combinations of M and θ for which numerical simulations re-
vealed stable retrieval. The standard deviation over time of the
inhibitory activity kt (normalized to K) is represented by the
color code as indicated. At top left, oscillation amplitudes (mea-
sured as std(k/K) are shown for networks with M, θ along the
midline of the wedge. Examples of kt/K are given with std(k/K)

as orange bars. At right, oscillation amplitudes std(k/K) are
shown for networks of fixed M = 1,400 and different thresholds;
the corresponding kt/K are given with std(k/K) as grey bars.
The top right panel shows an exemplary power spectrum of the
inhibitory activation k − 〈k〉 for a simulation with M-θ values as
indicated. The peak of the spectrum at around 1/7 per time step
corresponds to 30 Hz for a time step of 5 ms
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4 Discussion

This paper presents a dynamical-systems extension of
time-discrete sequence memory models with inhibitory
feedback. The effect of instantaneous global feedback
inhibition in memory networks has been well studied
(e.g. Tsodyks and Feigel’man 1988; Golomb et al. 1990;
Treves 1990; Hirase and Recce 1996; Amit and Huang
2010). Our model shows that also dynamical feedback
inhibition can stabilize the retrieval of memory se-
quences and thereby increase both memory capacity
and robustness. The optimal instantaneous global in-
hibitory feedback is a roughly linear function of the
total network activity as numerically found by Hirase
and Recce (1996) and semi-analytically confirmed by a
probabilistic approach in the present paper. Extending
the model to dynamic global inhibition, we find that, at
the edges of stable replay, inhibition induces strong oscil-
lations, which can be interpreted as gamma oscillations.

Gamma oscillations are ubiquitous in the brain and
their origin is generally attributed to local inhibitory
networks (Wang 2010). Several cognitive functions
have been related to increased gamma power and co-
herence, such as sensory integration, attention, and
memory (Jutras and Buffalo 2010). Specifically, gamma
coherence between subregions in the hippocampal for-
mation and prefrontal cortex has been shown to cor-
relate with involvement in a short-term memory task
(Sigurdsson et al. 2010). This finding fits well into the
general view of gamma rhythms as a mechanism that
facilitates communication between brain areas (e.g.
Colgin 2011). In our model, gamma occurs as a side
effect of feedback stabilization during replay. In com-
bination with these findings, our model suggests that
memory networks may have to be critically loaded to
be able to transfer information to other brain areas.

Our model also reveals parameter regions in which
transient retrieval occurs that lasts for only a few time
steps. These regions of transient retrieval (light color
in Fig. 5) extend far into low pattern sizes M for strong
inhibitory feedback, and thus correspond to the regimes
of largest memory capacity. Neuronal networks ex-
hibiting activity sequences hence operate with optimal
memory performance if they are in a regime of hyper-
excitability that is stabilized by delayed inhibition. This
transient retrieval regime is consistent with the dynamic
features of sequence replay during sharp wave ripple
complexes in the hippocampus, which typically extends
over 5 to 10 cycles of an approximately 200 Hz oscil-
lation, and that are accompanied by delayed inhibitory
feedback (Maier et al. 2011).

In large environments, sequence replay in vivo
can span several ripple episodes (Davidson et al.

2009), showing that long sequences can be constructed
by concatenating multiple transient replay episodes.
Our model argues that such fragmentation solves the
dilemma between stability and capacity by not having
to trade capacity for stability. Instead it uses dynamic
feedback inhibition to break sequence replay into
short stable fragments of transient replay. It remains
open though, how information transfer between these
fragments is realized and whether it occurs intra- or
extrahippocampally.

Throughout the paper, we consider the connectivity
parameters c and cm as constants, based on the assump-
tion that the morphological connectivity cm is mainly
determined by geometrical constraints such as the size
of the cell surface, or the volume requirement of wiring.
The functional connectivity c is assumed to result from
the specific learning rules that ensure that the network
always remains plastic: In order to store new memories
a large fraction of synapses has to be able to change
its state. In the parameter regime used for our analy-
sis, this requirement is fulfilled by fixing c/cm = 0.5.
Moreover, the connectivities employed are small, since
experiments indicate that hippocampal networks are
sparsely connected (Miles and Wong 1986).

Limitations of our model arise from specific assump-
tions underlying our analysis. One of them is that of
a constant pattern size M. In reality pattern sizes may
be variable (as discussed for a different learning rule in
Amit and Huang 2010), leading to a decreased capacity.
Another significant simplification of our model is the
discreteness in time. Dynamical interactions of synaptic
currents and membrane processes during sharp-wave
ripples may also reduce capacities. In this sense the
capacity values derived in this paper can only be con-
sidered as upper bounds and for determining scaling
behavior.

Extending the model to more realistic dynamics is
necessary to investigate how close to the upper bound
of capacity a real spiking network can get. Such a trans-
lation to biophysically more realistic neuron models,
however, raises difficult problems. The massive bom-
bardment by synaptic inputs (specifically inhibition)
sets the cells into a high-conductance regime, in which
the effective time constants become short and spike
generation very sensitively depends on the timing of
inputs. Further, the interplay between excitation and
inhibition not only has to keep the cell in a balanced
state in which spiking is sparse, but also has to ensure
synchrony of spiking in the time slots of roughly 5 ms.

Other models of hippocampal sharp-wave ripples
focused on dynamic features of sharp-wave ripples
as a network phenomenon mostly disregarding func-
tional aspects of sequence replay. In the model of
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Memmesheimer (2010) sharp waves arise from spon-
taneous bursts of excitatory activity that are shaped
by non-linear dendritic integration. Such a scenario
requires a relatively high level of background activity
(high n) and it is not yet clear how well this can work
together with sequence replay at high memory capac-
ities, where false alarms n are not desired. In another
model by Vladimirov et al. (2012) synaptic integration
plays no role in evoking action potentials. Spiking is
propagated across axons by axo-axonal gap junctions
(Schmitz et al. 2001). Also in this model the rela-
tion of these axonal spike patterns to memory-related
processes has not been evaluated. Moreover, it’s un-
clear how inhibition could physiologically be realized
in such a scenario. We thus conclude that, despite these
considerable efforts, we still lack a model of sharp wave
ripples that combines realistic physiological phenom-
enology with functional hypotheses of the hippocampal
memory networks.
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Appendix: First and second moments

The dynamics underlying neuronal activity sequences
is formulated as a two-dimensional iterated map in
Eqs. (2)–(6). This time-discrete dynamics is simplified
using Gaussian approximations for the distributions of
the number h of synaptic inputs to a specified neu-
ron. The Gaussian approximation therefore requires
expressions for the means and variances of the input
sums h.

Inputs can be of two kinds, hits m and false alarms
n. The input sum h = ∑m+n

j=1 w j s j thus runs over all
m + n ≤ N active (firing) neurons in the network and
depends on two binary random variables for each po-
tential input: w ∈ {0, 1} indicating the presence of a
synaptic connection, and s ∈ {0, 1} indicating its state
(Gibson and Robinson 1992). The stochasticity of s is
inherited from the randomness of the activity patterns
underlying the memory sequences via Willshaw’s learn-
ing rule.

The distribution of w is given by the morphological
connectivity such that prob(w = 1) = cm. The probabil-
ity prob(s = 1) of a synapse having been potentiated
depends on whether it connects or not neurons that
should fire in sequence at the particular point in time.

The Willshaw rule ensures that synapses that connect
sequentially firing neurons are in the potentiated state,
i.e. prob(s = 1) = 1, and thus for this subset of synapses
the input sum depends on a binomial process with
probability prob(w = 1) = cm.

For the other synapses, the probability prob(s = 1) =
qx depends on the the number x ≤ P of associations the
specific postsynaptic neuron is involved in. Note that if
the postsynaptic neuron is never supposed to fire, the
Willshaw rule will activate none of its synapses and thus
q0 = 0. In general, the probability that a neuron is not a
target in one specific step of the sequence (association)
is 1 − f , and thus the probability that it is not a target
in any one of x associations is (1 − f )x. Conversely, the
probability of such a synapse being potentiated is qx =
1 − (1 − f )x. Hence, assuming independence of the two
binomial processes, the input sum h for this subset of
synapses is binomial with probability

prob(wi si = 1) = cm qx . (11)

The probability distribution of the input h can then be
determined as

p(h) =
P∑

x=0

p(h|x) p(x) , (12)

in which the conditional probability p(h|x) =(m+n
h

)
(cm qx)

h (1 − cm qx)
m+n−h is derived from

Eq. (11), and the probability p(x) that a neuron
is involved in x associations is also binomial, viz.
p(x) = (P

x

)
f x (1 − f )P−x.

To compute expected values of h, we have to discern
between neurons that should be active at time step
t + 1 (and are supposed to generate the hits) and those
that should be silent (and potentially give rise to false
alarms). For the potential false alarms, we obtain

〈h〉Off =
m+n∑

h=0

h
P∑

x=0

p(h|x) p(x) =
P∑

x=0

p(x)

m+n∑

h=0

h p(h|x)

=
P∑

x=0

p(x) (m + n) (cm qx)

= (m + n) cm

P∑

x=0

[1 − (1 − f )x]
(

P
x

)
f x(1 − f )P−x

= (m + n) cm

[

1 − (1 − f )P
P∑

x=0

(
P
x

)
f x

]

= (m + n) cm
[
1 − (1 − f )P (1 + f )P]

= (m + n) c .
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Note that the last step makes use of the capacity of the
Willshaw rule, Eq. (1). Similarly, for the potential hits,
we obtain

〈h〉On =
n∑

h′=0

h′
P∑

x=0

p(h′|x) p(x) +
m∑

h′′=0

h′′ p(h′′)

= n c + m cm .

Here the expected value sums over two independent
subsets of neurons, the first one (h′) representing the
false alarms, and the second (h′′) representing the hits
during the previous time step.

The corresponding variances can be obtained anal-
ogously employing the formula of the geometric series
several times, and introducing the abbreviation CV2

q =
varx q/〈q〉2

x with expected values according to the dis-
tribution p(x):

σ 2
On(m, n) = cm m (1 − cm)

+ n c
[
(1 − c) + c CV2

q (n − 1)
]

σ 2
Off(m, n) = (m + n) c

×[
(1 − c) + c CV2

q (m + n − 1)
]
.

Note that CVq → 0 for f → 0, and, in this limit, the
variance formulas σ 2

On → m cm (1 − cm) + n c (1 − c),
σ 2

Off → (m + n) c (1 − c) from the present theory ap-
proximate those in Leibold and Kempter (2006).
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Abstract

Grid cells in the medial entorhinal cortex encode space with firing fields that are arranged on the nodes of spatial hexagonal
lattices. Potential candidates to read out the space information of this grid code and to combine it with other sensory cues
are hippocampal place cells. In this paper, we investigate a population of grid cells providing feed-forward input to place
cells. The capacity of the underlying synaptic transformation is determined by both spatial acuity and the number of
different spatial environments that can be represented. The codes for different environments arise from phase shifts of the
periodical entorhinal cortex patterns that induce a global remapping of hippocampal place fields, i.e., a new random
assignment of place fields for each environment. If only a single environment is encoded, the grid code can be read out at
high acuity with only few place cells. A surplus in place cells can be used to store a space code for more environments via
remapping. The number of stored environments can be increased even more efficiently by stronger recurrent inhibition and
by partitioning the place cell population such that learning affects only a small fraction of them in each environment. We
find that the spatial decoding acuity is much more resilient to multiple remappings than the sparseness of the place code.
Since the hippocampal place code is sparse, we thus conclude that the projection from grid cells to the place cells is not
using its full capacity to transfer space information. Both populations may encode different aspects of space.
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Introduction

The neuronal representation of space that is necessary for

navigation and orientation has been traditionally assigned to the

hippocampal place cell system [1], where cells fire only at few

distinct locations and are silent elsewhere. Since the discovery of

grid cells in the medial entorhinal cortex (MEC) [2,3], which fire

on a hexagonal spatial lattice, a second space representation is now

known and it has become unclear what the functional differences

of the two are. It is speculated that the MEC grid cells are

predominantly used in path integration, whereas the place cells

may connect position and context information [4]. From the

coding perspective it is remarkable that the hippocampal place

fields are considerably sparse, whereas the grid fields generate a

much denser code with approximately one third of all grid cells

active at any one time [3]. Since both networks are reciprocally

connected anatomically [5,6] and functionally [7,8], the two space

representations have to be synchronized. Understanding the

interplay of both codes thus leads to the more general question

of how a dense neuronal code can be efficiently transferred into a

sparse code and vice versa.

In this paper, we focus on the mapping from grid to place cells.

This extends previous coding approaches in so far as they studied

the isolated grid cell system from a mainly information theoretic

perspective [9,10]. Here, we discuss a coding theory by including

the further constraint that the grid code has to be readable by the

place code at a similar and behaviorally relevant resolution, since

we assume that space information is only relevant for the brain if it

can be read out by other neurons. Employing two population

models, for grid cells and place cells, we show that a relevant

resolution of the order of centimeters can be easily transferred

from a relatively small grid-cell to a relatively small place-cell

population. Larger numbers (particularly of place cells) can thus be

used to encode multiple environments [11] at a similar spatial

resolution. Our model also shows that may interference owing to

multiple environments reduces the sparseness of the hippocampal

code much faster than it reduces the space information of the

population patterns measured by the number of different

environments that can be encoded at a given spatial resolution.

These findings argue against a pure feed-forward model of place

field formation from grid cells, consistent with recent experimental

findings [7,12–16].

Results

Here we briefly summarize the general structure of our model,

whereas a detailed account is provided in the Materials and

Methods Section. A population of Ng grid cells is connected to Np
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place cells via a feed-forward synaptic matrix. The grid cells are

organized in four modules that differ in the spatial period (or grid

spacing) of the periodic hexagonal firing patterns [17]. The

neuronal activities of the MEC and hippocampal populations are

assumed to encode either linear tracks or square boxes both of

length 1 m (Figs. 1 and 2). Different environments are represented

by phase shifts of the grid fields that are identical for all cells in a

module [18] but random between modules [19].

The spike count of the grid cells is assumed to follow Poisson

statistics. For the place cells we first define place fields that

optimally cover the whole environment but are only used as

teacher patterns in a training step in which we construct synaptic

weights between grid cells and place cells by supervised Hebbian

learning. The teacher place fields are randomly assigned in each

environment (shuffling of place cells) resembling the global

remapping [20] of hippocampal place fields found in experiments.

For each such remapping synaptic weights are incremented

according to the Hebb rule such that all shifted grid patterns

activate the corresponding remapped place code.

Realizations of grid field spikes are projected via the learned

feed-forward connections to the place field population that

employs a soft winner-take-all mechanism (E%-MAX rule) to

emulate recurrent inhibition [21]. The activity from these

simulations determines the actual firing fields and spike statistics

of the place cells. The spatial acuity of both codes is measured by

the empirical minimum mean square decoding error of single trial

activity. The simulations are evaluated by a variety of measures

including sparseness and the similarity between the place fields

used during training and those obtained in the simulation.

The capacity of a spatial code consists of two components. First,

the spatial resolution [9], or how precisely one can infer a spatial

position. Second, how many different environments can be

represented. Since different environments are obtained by MEC

phase shifts and hippocampal remapping, all spatial information is

conveyed by the same synaptic connections. Thus the multiple

stored environments interfere at the cost of spatial resolution.

Resolution of the grid code
To assess the ground truth of our model, we first evaluate the

coding capacity of the grid cell population on a one-dimensional

linear track (Fig. 3). The spatial resolution (denoted as root-mean

square estimation error; RMSE) non-trivially depends on the

tuning width sg of the grid code and the number Ng of neurons

[9,22]. Three examples of grid codes are shown in Fig. 3A–C for

three different values of sg. Grids as usually observed in MEC are

most similar to the situation in Fig. 3B, whereas Fig. 3A and C

illustrate settings with extremely thin and broad tuning curves,

respectively. Thus, the biological value of sg is about 1, which

corresponds to a ratio between tuning width and spatial period of

about 0:3 (see Fig. S4 of [3]). However, the RMSE non-

monotonically depends on sg [22] with a minimum at rather thin

tuning curves (Fig. 3D).

The resolution (RMSE) improves with Ng such that even for

moderate cell numbers (several hundreds) it is easy to obtain

spatial resolutions in the range of 1 mm and below. From a

behavioral perspective, however, one may ask whether such a

resolution is actually psychophysically reasonable, or even useful.

We thus suggest that resolution is probably not the major objective

of the grid code and test the alternative possibility that the grid

Fig. 1. Hebbian learning of multiple linear tracks. (A) Grid cell
firing maps for 400 grid cells with width constant s~1 on a 1 meter
linear track (Sg~1:5, Sp~2:56, sp~0:05 m, Np~500). The cells are
organized in 4 modules, with a period ratio of 1.67 to achieve a spatial
period of 30 cm in the lowest module. The numbers at top right corners
indicate the maximal spike count Cg as a proxy for peak firing rate (see
Materials and Methods). (B) Firing rates of place cells which received the
grid field activity from A as an input. The corresponding synaptic
connections were obtained from an Hebbian outer product rule based
on the rate maps of the grid population in A and the ideal place field
population (C). (D) To represent a second environment, the grid code
from A is shifted by module-specific phases. (E) Globally remapped
place code that is learned from the remapped rate maps in D and F. (F)
Ideal place code in the second environment.
doi:10.1371/journal.pcbi.1003986.g001

Author Summary

The mammalian brain represents space in the population
of hippocampal place cells as well as in the population of
medial entorhinal cortex grid cells. Since both populations
are active at the same time, space information has to be
synchronized between the two. Both brain areas are
reciprocally connected, and it is unclear how the two
codes influence each other. In this paper, we analyze a
theoretical model of how a place code processes inputs
from the grid cell population. The model shows that the
sparseness of the place code poses a much stronger
constraint than maximal information transfer. We thus
conclude that the potentially high spatial acuity of the grid
code cannot be efficiently conveyed to a sparse place cell
population and thus propose that sparseness and spatial
acuity are two independent objectives of the neuronal
place representation.

Capacity of Hippocampal Remapping
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code may be designed to display a reasonable spatial resolution in

as many environments as possible. As a lower bound for such a

reasonable resolution we postulate an RMSE of 0.5 cm (dashed

line in Fig. 3D) and ask the question, which parameter setting in

Ng,sg-space would actually result in this behaviorally relevant

RMSE (Fig. 3E). The minimum Ng scales supra-linearly with sg,

i.e. it flattens out for smaller sg. We thus argue that sg&1 is a

good choice because it still is in the super-linear regime requiring

only relatively small cell numbers and at the same time results in

tuning widths that are similar to biology (like Fig. 3B). For further

analysis we thus fix the grid code to sg~1 and Ng~400.

Resolution of the place code in a single environment
The spatial acuity of the population code of grid cells can only

be made use of if it can be read out by downstream centers. We

therefore asked under which conditions the resolution of grid cell

network from the previous subsection can be preserved in the

place cell network under the ideal conditions that only one

environment has to be represented (number of environments

Ne~1); Fig. 4.

Since the tuning curves are actually learned there exists a clear

lower bound for the tuning widths that reflects the minimal width

of the grid cell population (Fig. 4A–F). Narrower place fields

cannot be achieved by the present model even if the fields used

during training are much narrower than the smallest grid fields.

Similar as for the grid cell code, a reduction in the place field width

effectively improves the RMSE, however, the resolution is limited

by that of the grid code (0.5 cm). Therefore an increase in the

number Np of place cells reduces the RMSE and the performance

quickly converges to the minimum for Np&
> 100; Fig. 4G. Only

relatively few neurons are needed to achieve such a behaviorally

relevant resolution, and thus we next asked how many different

environments can be represented at this resolution.

Multiple environments
Storing multiple environments generates interferences of the

place codes since each remapping taxes synaptic resources. Thus

the spatial resolution of the place code is getting worse when

storing multiple environments (Fig. 5). However, even for 21

remappings in our parameter regime (Np~500) the decoding

error is still relatively low (v5%). Also the number Ne of

remapped environments for which decoding is possible increases

with the number of place cells (Fig. 6A), such that even for

moderate place cell numbers Np many environments can be easily

decoded at physiological resolution.

Although space information is retained for considerably large

values of Ne, the place code degenerates already for much smaller

Ne. This degeneration is best described by a loss of sparseness

(Fig. 6B, [23]) resulting from less localized firing fields, while the

Fig. 2. Two-dimensional rate maps for grid cells and place
fields in two environments (Ne~2). (A, D) Grid rates differ by
module-specific phase shifts. Four example cells are shown, two from
the first module (top) and two from the second (bottom). A total of four
modules was used. Maximum spike counts Cg shown above each plot.
(B, E) place cell rate maps for both remappings. Positions of place fields
are set by Hebbian learning. (C, F) Desired place fields as used for
Hebbian learning. Firing fields in C are distributed in a square lattice
equidistantly across the environment. Fields in F are obtained by
shuffling cell identities from C, which ensures equal coverage.
Parameters are Np~500 place cells and Ng~400 grid cells and
sp~0:05 m, sg~0:3, Sp~2:56, Sg~1:5. All other parameters are as for
the one-dimensional case.
doi:10.1371/journal.pcbi.1003986.g002

Fig. 3. Root mean square error of grid cells (RMSEgrid) on the
linear track. (A–C) Example tuning curves for 4 cells from different
modules and three choices of width constant sg . (D) RMSEgrid as a
function of cell number Ng and tuning width sg . (E) Scaling of Ng with
sg for fixed RMSEgrid~0:5 cm. Parameters are M~4, lmax~(1z0:4sg)
m, Sg~1:5.
doi:10.1371/journal.pcbi.1003986.g003
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average spike count Cp remains constant (see Materials and

Methods). This delocalization results in a reduction of the number

of proper place cells (Fig. 6C) which exhibit an increased number

of regular-sized firing fields (Fig. 6D, E) before they cease to be

place cells and are active over almost the whole track as indicated

by a mean population sparseness (average fraction of active cells at

a position) close to 1 (Fig. 6F). Also the firing fields quickly loose

their similarity to the trained firing fields (Fig. 6G). From these

observations we conclude that although a large number Np of

putative place cells allow to reliably decode a large number of

environments by remapping, the place field quality (i.e. the

sparseness) of the encoding neurons disappears. Thus the

observation of a sparse place code in the hippocampus must

result from further objectives beyond decoding quality and

remapping capacity.

Generalization to open fields
To test whether these observations are specific to the one-

dimensional paradigm, we repeated the same simulations and

analysis for a two-dimensional enclosure (see Materials and

Methods and Fig. 2). As in the one-dimensional case, inspection

of single examples for high numbers Ne of remappings reveals that

the place-selectivity of the readout neurons (the putative place

cells) deteriorates much faster than the decoding quality (Fig. 7).

Even random spatial patches (for Ne~30; Fig. 7 B) allow for

almost perfect decoding (Fig. 7 E). Spatial estimation only breaks

down, if hardly any space modulation is observable in the firing

patterns (Fig. 7 C, F). These exemplary observations are

corroborated by a systematic quantitative assessment of the code

and the firing fields in Fig. 8.

In analogy to the one-dimensional case, decoding quality

increases with the number Np of putative place cells and remains

in the centimeter range for 40 and more remappings if Np§500

(Fig. 8A). At the same time, the place field characteristics

deteriorate with increasing Ne as was described in the one-

dimensional case (Fig. 6): sparseness decreases (Fig. 8B, F), place

field number increases before no clear place fields are visible

anymore (Fig. 8C, D, E), place fields loose their similarity to the

trained patterns (Fig. 8G).

In the two-dimensional case for few place cells Np~50, we

observe an improvement in resolution when going from one to

Fig. 4. Root mean square error of place cells RMSEplace on
linear track. (A–F) Place cell tuning functions (spike counts Cp as a
function of space x). Dashed lines: teacher tuning curves used for
training. Solid lines: tuning curves after learning averaged over 800 trials
(sp is the width of the teacher curves). (G) Place cell resolution RMSEplace

as function of sp and Np . Grid cell resolution is shown as dashed line.
Parameters used were Ng~400, sg~1:038, Sp~2:56, other parameters
were as in Fig. 3.
doi:10.1371/journal.pcbi.1003986.g004

Fig. 5. Quality of 1-d place code for increasing number of maps
in a network with Np~500 place cells and Ng~400 grid cells
and sp~0:01 m, sg~1:038, Sp~2:56, Sg~1:5. Left column: Rate map
for environment 1. Right column: Position estimates from the place
code as a function of real position.
doi:10.1371/journal.pcbi.1003986.g005
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about 10 remappings before the decoding error again increases

with Ne. Although counter-intuitive, this effect reflects that an

increase in mean population sparseness at first provides a better

coverage of the square box. To make the model work also for

small Ne, the number Np of place cells has to be large to overcome

this finite size effect. It therefore imposes a constraint on a

minimum number of Np. This effect also exemplifies that decoding

RMSE depends on many different aspects and thus it is generally

difficult to use it as a single measure for comparing the "quality" of

a population code.

We also assessed the robustness of our findings with respect to

essential model parameters. We evaluated the place code for

Fig. 6. Capacity for storing remappings on the linear track.
Place cell resolution and further measures as functions of the number
Ne of remappings stored. (A) Root mean square error (RMSE) of place
cells. Blue and green solid lines: Mean over realizations. Dashed lines:
99% quantiles. Red line RMSE of the grid cell input. (B) Mean single cell
sparseness. (C) Ratio of proper place cells. (D) Mean number of place
fields for proper place cells. (E) Mean size of place fields for proper place
cells. (F) Mean population sparseness. (G) Ratio of cells for which
Hebbian learning was successful (according to the three similarity
criteria defined in the Materials and Methods section). Parameters were
Ng~400, sp~0:01 m, sg~1:038, Sp~2:56, Sg~1:5, 4 modules, 20
realizations.
doi:10.1371/journal.pcbi.1003986.g006

Fig. 7. Quality of 2-d place code, for increasing number of
stored environments Ne. (A–C) Rate maps of four example cells for
15, 30, and 90 stored remappings. The desired place field positions (not
shown) are identical to Fig. 2 C, but in this case are hardly achieved. (D–
F): Minimum mean squared error estimates of position plotted against
true position for 500 trials, again for Ne~15, 30 and 90. Parameters as in
Fig. 2.
doi:10.1371/journal.pcbi.1003986.g007
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different number of grid cells Ng, while keeping a constant total

number Sg Ng of input spikes and found essentially no difference

(S1 Figure). Also, a mere increase in the number Sp of place field

spikes only improves the spatial resolution but does not alter any of

the other place field characteristics (S2 Figure).

Direct control of sparseness
A substantial effect on the population code can be observed by

altering the strength of feedback inhibition in the place field

population by means of the E% value (Fig. 9). This parameter

determines the firing threshold as the input strength E% below the

maximum (see Methods and [21]). The E% value directly controls

the sparseness of the code (Fig. 9B–G). For low E% values (sparse

codes) and low numbers Ne of environments, we again observe the

finite size effect of high RMSE, which then improves with

increasing Ne (Fig. 9A). This initially high RMSE, however, can

again be compensated for by using larger numbers Np of place

cells (as in Fig. 8 A). As a result, the decreasing E% generally

allows to store more environments, however, at the cost of high Np

to achieve a sufficiently small RMSE for low Ne.

Partial learning
If one constrains the parameter space to biologically realistic

mean population sparseness values for the hippocampal place

fields about 0:1 to 0:2 (Supporting Information of [24] and [25],

see Discussion) our simulations of the standard parameter regime

(Fig. 8) show that such a regular place code can only be observed

for up to about ten environments. Also for increased E% value the

number of sparsely encoded environments is only increased to

several tens (Fig. 9). A major factor limiting the number Ne of

environments is that in our model the synapses to the place cells

are updated in each remapping, i.e., the place cells experience

maximal interference. One can considerably extend the number of

remappings for a given sparseness if the synaptic changes from

different remappings are distributed to varying subsets of place

cells, thereby increasing the overall number of putative place cells

(partial learning). This strategy is motivated by an experimental

report showing that only a small subset of CA1 pyramidal cells

shows intracellular determinants for being recruited as a place cell

in a novel environment [26]. We illustrate the benefits of partial

learning by a further set of simulations in which the synaptic

weights to only a fraction f of the place cells are updated in each

individual remapping (partial learning; Fig. 10). Using mean

population sparseness as a criterion for the breakdown of the place

code, partial learning increases the number of possible remappings

(Fig. 10A) to over a hundred. As a measure for capacity, one can

define a critical number of environments at which the mean

population sparseness exceeds a (biologically motivated) threshold

value of 0:12 (see Discussion). This critical Ne only weakly

increases with the number Np of place fields but strongly decreases

with increasing fraction f of partial learning (Fig. 10B, C).

In rat hippocampus the number Np of CA1 neurons is in the

order of several 100 thousands and thus according to Fig. 10B, a

sparse place representation may still be consistent with storing

hundreds to thousands of remappings if each place cell is involved

in only a small fraction of environments.

The encoding acuity (RMSE) is generally not affected by partial

learning as long as Np is not too small (Fig. 10D). Only for very

small values of f , when a winner-take-all effect of the E%-MAX

rule decreases sparseness for Ne??, spatial acuity deteriorates.

However, this regime is biologically unrealistic, since there the

number Np f of neurons encoding an environment tends to zero.

The geometry of the spatial firing patterns (place field size and

number), is virtually unaffected by f (Fig. 10 D, E). The place field

sizes we find in the model (up to 0.05 m2) are within the range

reported in the experimental literature [25,27], the mean number

Fig. 8. Capacity for storing remappings in a square box. Place
cell resolution and further measures as functions of the number Ne of
remappings stored. (A) Root mean square error (RMSE) of place cells.
Blue and green solid lines: Mean over realizations. Dashed lines: 99%
quantiles. Red line RMSE of the grid cell input. (B) Mean single cell
sparseness. (C) Ratio of proper place cells. (D) Mean number of place
fields for the proper place cells. (E) Mean size of place fields for the
proper place cells. (F) Mean population sparseness. (G) Ratio of cells for
which Hebbian learning of place fields was successful (according to the
three similarity criteria defined in the Materials and Methods section).
Parameter used as before Ng~400, sp~0:01 m, sg~0:3, Sp~2:56,
Sg~1:5, 4 modules, 15 realizations.
doi:10.1371/journal.pcbi.1003986.g008
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of place fields (about 3) is at the upper bound of the 1{3 fields per

m2 experimentally found in the hippocampus and dentate gyrus

[24,27], which indicates that the place code might in fact even be

sparser than than the 0:12 threshold motivated by current

experimental data (see Discussion).

Discussion

The hippocampal formation hosts two space representations. A

sparse one in the hippocampus proper, in which the neurons have

a limited number of distinct firing fields (place fields) and a dense

one in the MEC, where grid cells exhibit multiple firing fields

located on the nodes of a hexagonal lattice. If both brain regions

encode the unique physical spatial position of the animal, the two

codes have to be coherent. Anatomically both brain areas are

reciprocally connected [5–8] and thus place cell activity will

influence grid cell activity and vice versa.

In this paper, we focus on the connections from the medial

entorhinal grid cells to the hippocampus, which anatomically

correspond to the perforant pathway and the temporo-ammonic

pathway. These pathways have initially been thought to predom-

inantly underly the transformation from grid to place cells [19,28–

32]. More recently, developmental studies [12,13] and pharma-

cological interventions that block grid cell firing [7,14–16], have

shown that place cells can also be observed independently of grid-

field firing (but see [33]). Thus, while the MEC-to-hippocampus

connections seem to be unnecessary to generate place fields, they

are likely important in synchronizing both codes. This view is

further corroborated by the observation that place cell firing is less

stable if MEC input is eliminated [34].

Although it is known from information theory that capacity and

sparseness cannot be maximized simultaneously [35,36], our

paper exemplifies this rule for a specific neuronal network

example, in that it shows that maximization of capacity of

MEC-to-hippocampal connections destroys the sparseness of the

hippocampal place code.

From the theoretical perspective, if the synaptic matrix is know

that transforms one code into another, reading out a dense code is

more difficult than reading out a sparse code. This is because the

synaptic matrix gives rise to a much noisier postsynaptic signal for

dense input patterns [37]. Therefore the transformation from

place cells to grid cells is less problematic than the other way

round. The grid to place transformation provides an interesting

test case to study information transfer between different brain

areas in general.

Our model is largely based on experimental reports of grid and

place cell remapping [18,20,38–40]. While place cells turn on,

turn off, or show random relocation during global remapping [40],

grid fields shift and rotate. In our model, we consider only shifts,

since rotations were shown to be less efficient for remapping

previously [19]. Although the grid modules seem to operate

functionally independent [17], it is not yet clear whether the

modules remap independently as proposed in [19]. A further

finding from [19] was that a few (&> 2) modules suffice for strong

remapping and data [17] suggest that MEC has only about 5 to 9

modules. Only a part of these modules innervate any one place

cell, owing to the dorso-ventrally ordered topography of the input

fibers. We therefore concluded that a biologically reasonable

number of modules influencing any single place cell is about 4. We

further assume that the number of cells per module is constant,

which is optimal from a theoretical perspective [9] but might not

necessarily be the case [17].

To connect our simulations to hippocampal physiology, we

assume a population sparseness value of 0:12. This value can be

estimated by combining data from the supporting information

(Table S1 of [24]) (mean number of place cells: 1.1/(0.8 m)2 for

CA3, 2/(0.8 m)2 for DG; percentage of place fields: 62/71 for

Fig. 9. Effect of the E% parameter on the capacity for storing
remappings in a square box for Np~500 place cells. Place cell
resolution and further measures as functions of the number Ne of
remappings stored. (A) Root mean square error (RMSE) of place cells.
Blue and green solid lines: Mean over realizations. Dashed lines: 99%
quantiles. Red line RMSE of the grid cell input. (B) Mean single cell
sparseness. (C) Ratio of proper place cells. (D) Mean number of place
fields for the proper place cells. (E) Mean size of place fields for the
proper place cells. (F) Mean population sparseness. (G) Ratio of cells for
which Hebbian learning of place fields was successful (according to the
three similarity criteria defined in the Materials and Methods section).
Parameter used as before Ng~400, sp~0:01 m, sg~0:3, Sp~2:56,
Sg~1:5, 4 modules, 8 realizations. The curve for E%~0:1 is taken from
Figure 8 and has 15 realizations.
doi:10.1371/journal.pcbi.1003986.g009
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CA3, 41/44 for DG) and place field areas measured in [25] in a

circular enclosure of diameter 76 cm (field area: 0.08 m2 for CA3,

0.06 m2 for DG). The estimate of the population sparseness for a

1 m2 enclosure (as in our simulations) thus follows from the

product of these three values, i.e., we obtain about 0.12 for CA3

and 0:17 for DG. However, in our simulations, a sparseness value

of 0:12 yields a number of place fields per place cell that is slightly

higher than observed in experiments, and thus the above numbers

may over-estimate the sparseness values in the real rodent brain.

Previous coding theories of MEC grid cells have extensively

investigated spatial resolution. According to [9,41], hierarchical

grid codes outperform place codes by far in terms of their scaling

behavior. A main reason is that for a constant resolution, the

number of place cells scales with area, whereas for grid cells only

those with larger period have to be scaled up with area for

disambiguation, however, the resolution mostly rests on the

smallest grid periodicity and thus the size of the population with

small periodicity is independent of spatial range to be encoded.

The parameter regimes in which grid codes are particularly

superior to place codes provide relative root mean square errors in

the range of 10{3 and even far below [9]. For a one meter

environment, this would correspond to (sub-)millimeter resolution

which is biologically irrelevant for encoding but might be

important for MEC models of path integration [42,43] where

errors can accumulate over time. In the regime used for the

present model (Figs. 3 and 4), the surplus in resolution of the grid

Fig. 10. Partial learning. Effect of place cell number Np and of the fraction f that are trained to encode one environment on the number of
environments Ne . (A) Population sparseness as function of environments Ne stored, for Np~500 place cells. Different colors represent different
fractions for partial learning, see legend in B. The critical value Ne at which sparseness reaches a biologically realistic value of 0:12 is obtained by
interpolation. (B) Critical values of Ne as function of place cell number Np and partial learning fraction f . Data can be fitted by simple logarithmic
functions Ne~cNa

p . (C) Exponent a and coefficient c of fit from B. (D) Root mean square errors (RMSE) at the critical Ne for the Np and f in B. (E) and

(F): Mean place field size (E) and number (F) at the critical Ne for the Np and f in B. Averages are over proper place cells.
doi:10.1371/journal.pcbi.1003986.g010
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code is relatively small, consistent with a biologically relevant

decoding situation of high noise and few modules [44].

A further noteworthy result of our simulations is that a

population code still contains almost maximal space information

(in terms of minimal RMSE), even if no clear spatial firing fields

can be delineated anymore. On the one hand this shows that also

brain areas like the lateral entorhinal cortex [45] and the

subiculum [46] with only weakly space-modulated individual

neurons can provide high-resolution space information on the

population level and thus a superposition of such weakly

modulated firing fields via synaptic inputs is sufficient to provide

place information to any downstream structure. This means that

also the hippocampus and the MEC may not generate their

strongly spatially modulated firing fields de-novo but inherit them

from weakly modulated populations as e.g. the lateral entorhinal

cortex. On the other hand our findings show that sparseness of

the hippocampal place representation is not due to coding

precision requirements but must serve other purposes. Manifold

advantages of sparseness have been proposed [47] including

energy efficiency [48]. A further classical benefit of sparse

representations arises for auto-associative memory networks,

where it facilitates memory retrieval due to reduced interference

[37,49–52].

Although our model includes lateral inhibition via the E% rule

to limit the overall network activity the network cannot enforce

sparseness except for unrealistically low values of f . So it is still

possible that other assumptions about the recurrent connections

may enforce sparseness more effectively, while allowing remap-

pings. For example, in a model using a combination of recurrent

excitation and inhibition [53,54] place fields arise from stable

attractor states, where each attractor reflects the topology of place

field positions for one remapping. The capacity (number of

remappings per neuron) of this autoassociator is in the range of few

percent and, thus for Np~1000 may end up slightly above the

capacity derived from our model (&10) (for fixed realistic

sparseness). So, recurrent excitatory connections between place

cells can potentially help to keep the place fields compact. The

disadvantage of attractor-like solutions is that they show

catastrophic forgetting, whereas our model exhibits a gradual

decline of the order parameters (Figs. 6, 8 and 9).

The view on how space information is communicated between

the reciprocally connected brain areas hippocampus and MEC has

recently undergone a dramatic change from a completely feed-

forward grid-to-place dogma [19,28–32] to an almost reversed

place-to-grid picture [7,12–16]. We started out under the

assumption that the spatial precision in the hippocampus mostly

relies on inputs from MEC grid cells and remapping the MEC

triggers remapping on the hippocampus. If this was the only

function of the MEC-to-hippocampus connections, they should be

filled with as much space information as possible and the

representation would no longer be sparse. Our results thus show

that functionally the classical pure grid-to-place hypothesis would

only suboptimally use the coding resources. The required compact

place fields and the MEC-to-hippocampus synapses thus do not

seem to be optimized to transfer space information.

Since new experimental data [7,12–16] show that MEC is

actually not essential for generating place cells, our findings suggest

the possibility that hippocampal space information might actually

primarily stem from other regions than the MEC. The grid field

input to place fields thus likely imposes only modulatory or

stabilizing effects. Conversely, no grid cells have been so far

observed without place cell activity, and thus the place-to-grid

hypothesis is still a possible candidate. However, it is unclear why

hexagonal symmetry might emerge from the perspective of a

transformation of a sparse place code to a dense code, and thus it

might as well be that the two codes are generated independently

for different computational purposes and the reciprocal connec-

tions are only required for synchronization and stabilization.

Materials and Methods

Grid cell firing rate maps in one dimension
The Ng grid cells are modeled as Poisson spikers with firing

maps Ri xð Þ that denote the mean spike count of cell i~1 . . . Ng

conditioned on the position x[ 0,1½ � on a 1 meter track. All cells

have the same maximal spike count Cg and the same field width

parameter sg. The cells differ in their spatial periods li and grid

phases Qi. The specific model for the cells’ Poisson spike counts

follows a von Mises function:

Ri xð Þ~Cgexp
cos 2p=li x{Qið Þð Þ{1

s2
g

 !
:

Each cell belongs to one of M modules. Cells in a module share

a spatial period li. The phases Qi in each module are chosen

equidistantly such that the firing fields cover the linear track;

Fig. 1A.

Though we have only one width parameter sg for all cells, the

tuning width sg li=(2p) for the cells in one specific module scales

with the period li, as can be seen from expanding the cosine term

in Ri xð Þ.
The spike count Cg is adjusted such that the whole grid cell

population generates a constant given number S of spikes

averaged over all positions x and cells i, i.e.,

S~Spoiss Ri xð Þð ÞTi[ 1,...,Ngf g;x[ 0,1½ �&

P
i,b Ri xbð Þ
Ng B

ð1Þ

Here, the locations x are discretized in B~104 bins xb. The

value used for S is 1.5 spikes per cell. Since for Poisson spikers the

spike count is a product of averaging duration, firing rate and

number of cells with the same rate function Ri, the three factors

cannot be distinguished. Although, for simplicity, we call Ng the

number of grid cells, it is more correctly referred to as the number

of grid cell channels (different rate functions Ri).

The different modules are defined by their grid period li. In our

grid cell population, the first module is assigned the largest spatial

period, which we take l1~(1z0:4sg) m such that each cell in this

module only has one unique firing field on the track. The smaller

periods of the other modules are obtained via geometric progres-

sion, lmz1~
lm

rl
, with a period ratio rl, and m~1, . . . M. The

period ratio rl~(l1=lM )1=(M{1) is defined via the number M of

modules and the smallest period lM , which is set to 30 cm, a lower

bound suggested by experiments [3,17]. Thus the only remaining

degrees of freedom for the grid code are the number M of modules,

the width constant sg and the mean spike count per length S. We

choose sg~1, M~4 and Sg~1:5 unless otherwise mentioned.

Hebbian learning of place cells
The synaptic weights wij of the feed forward connections from

grid to place cells are set by Hebbian learning based on the rate

maps Ri(x) of the grid cells from eq. (1) and the desired rate maps
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Di xð Þ~ exp {
x{cið Þ2

2s2
p

 !
ð2Þ

of the place cells with width sp and centers ci that uniformly cover

the interval ½{sp,1mzsp�; Fig. 1C.

With these idealized place fields, the weights are calculated

according to outer product (Hebbian) rule: using discretized

locations xb, b~1, . . . ,B we define

wij~
S
B

b~1
Di xbð ÞRj xbð Þ

S
B

b~1
Di xbð Þ

: ð3Þ

The denominator ensures that connections to place cells with

fields at the borders are as strong as the ones to centered place

fields.

Remapping
The two networks (grid and place cells) are supposed to encode

Ne environments. Each environment has a new grid code

generated by shifting each module’s phases by a constant

sm,[ 0,lm½ �, m~1,:::,M. These shifts have experimentally been

shown to be coherent within one module [18] and have been

theoretically proposed to be uncorrelated between modules [19].

The shifted grid field patterns are denoted by R
eð Þ

i xð Þ. A new place

code D
eð Þ

i xð Þ is generated by randomly choosing the place field

centers ci. Hebbian learning as in eq. 3 is repeated Ne times and

weights are added.

Place cell spikes and position decoding
The place cell spikes for cell i at a position x are produced by

drawing Poisson spikes kj~poisson Rj xð Þ
� �

for the grid cells, then

taking the weighted sum

Ui~
XNg

j~1

wij kj

of those, to yield a membrane potential of the place cells. The activity

is then generated following the E%-MAX rule [21], that emulates the

effect of recurrent inhibition: after finding the maximum membrane

potential Umax~ maxi (Ui), all Uiv0:9Umax are set to zero and the

ones above this threshold are multiplied with a constant Cp, and used

as place cell firing rate from which spike counts qi are derived

according to Poisson statistics.

Decoding the place code via a minimum mean square estimator

[55]

x̂x~SxTfqig~

ð
dxxp(xDfqig) ð4Þ

requires a statistical model p(xDfqig) of place cell firing. Since in

the model the single trial spike counts qi are statistically

independent the posterior can be obtained using Bayes’ rule,

p(xDfqig)~
Pi p(qi Dx)p(x)

Pi

Ð
dxp(qi Dx)p(x)

:

The prior is taken as constant, p(x)~1=m. The individual

likelihoods p(qi Dx) are obtained by repeating the above stochastic

process 800 times for each cell and each sampled position and

sampling the relative frequencies of spike counts qi. This

distribution is then fitted with a bimodal model function consisting

of a probability Ai of cell i not firing, and probability of firing qi

spikes following a normal distribution with fit parameters mean

mi xð Þ and variance si xð Þ:

p qi Dxð Þ~Ai(x)d qið Þz 1{Ai xð Þð Þnorm qi,mi xð Þ,si xð Þð Þ : ð5Þ

Examples for such fits are shown in Fig. 11. Again, the constant

Cp is obtained by fixing the number S of spikes per centimeter per

cell in an iterative fashion. The resulting value is S~2:56 unless

otherwise mentioned.

Two-dimensional place code
For comparison we also implemented the model in two spatial

dimensions~xx[½0,1�2. There, the grid cell’s firing maps are set as in

[31]

Ri(~xx,l,h,~cci)~Cg g
X3

k~1

cos
4p~uu(hkzh):(~xx{~cci)ffiffiffi

3
p

lm

� � !
,

with u(hk)~( cos (hk), sin (hk)) being a unitary vector pointing

into direction hk. Using h1~{30, h2~z30 and h3~z90, the

three spatial waves add up to a hexagonal firing pattern with

spatial period lm, a maximum at ~cci, and orientation h (Fig. 2A).

The nonlinearity g(y)~ exp (0:3(yz1:5)){1 both adjusts the

minimal firing rate to zero and matches the spatial decay of the

firing rate peaks to experiments [31]. Like for the one-dimensional

simulations we use four modules. Cells in one module share spatial

Fig. 11. Spike count likelihood of place cells. (A) Firing rates (gray
code) of model place cells as a function of position. (B–D) Simulated
spike counts and fits of the model function eq. (5) for examples
indicated in A.
doi:10.1371/journal.pcbi.1003986.g011
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period and orientation. The period for the first module is l1~1:42
m (larger than the box). The smallest period is set to 0:3 m. The

two intermediate periods are again obtained by geometric

progression lmz1~
lm

rl
. Orientation h for each module is drawn

at random. The "centers" ~cci are uniformly distributed over the

Wigner cell of size l. For all computational purposes, we used

100|100 spatial bins to discretize the box.

To generate two-dimensional place fields we set feed-forward

weights by Hebbian learning, using Gaussian tuning curves as

firing maps for place fields as in eq. (2), but with x and ci replaced

by their two-dimensional counterparts (Fig. 2 B, C). The centers~cci

cover the box uniformly on a square grid. Centers of teacher place

fields for cell exceeding the number of nodes on the square lattice

were distributed randomly. Weights are then calculated using eq.

(3).

The spikes are produced as in the one-dimensional case.

Decoding follows eq. (4) with one-dimensional quantities replaced

by their two-dimensional counterparts.

For a remapping, each grid cell module is assigned one random

spatial shift vector, added to all~cci from that module. The shift is

obtained by drawing a vector from the Wigner cell of that module

using a uniform distribution (Fig. 2 D). For remapping, the place

cells are assigned new centers at random, which again cover the

box equidistantly. Then Hebbian learning is repeated, adding to

the existing weights (Fig. 2 E, F).

Partial learning
Partial learning as used in the simulations of Fig. 10 was

implemented as follows. For each environment we selected a

random set of f Np cells such that each cell is selected

approximately the same amount of times across environments.

This was achieved via random permutations of the cell indices.

The sets of f Np cells were taken from such a random index

sequence one after the other, and only if less than f Np items were

left in the index sequence, a new random permutation was

generated.

For each set of f Np selected cells we defined teacher place fields

that cover the whole environment as uniformly as possible on a

square grid with t
ffiffi
(

p
Np f )s2 nodes (see previous section). Hebbian

learning according to eq. (3) was applied to only the synapses

between the grid field population and the selected set of

postsynaptic cells.

By construction, some place cells will be used in more

environments than others. We normalize the rows of wij after all

environments have been learned to avoid that the cells that are

involved in more environments (and thus have larger weights) are

overly excited and exert too much inhibition on the remaining

cells via the E%-MAX rule.

Single cell sparseness
According to [23], single cell sparseness is defined as

SRT2=SR2T, where R(x) denotes the firing rate of the specific

cell as a function of position x and S:T indicates the average over

space.

Population sparseness
Population sparseness is defined as the percentage of place cells

firing above a threshold of 20% of the maximum firing rate at any

position.

Detection of (proper) place fields
The number and size of place fields was found by first

thresholding the rate maps, discarding all bins below 20% of the

maximal rate, and then applying the algorithm by Hoshen and

Kopelman [56]. Bins were considered neighboring if they share an

edge, hence diagonal bins were not neighbors. Place fields were only

included in the analysis (proper place fields) if they were larger than

50 cm2 and smaller than 60% of the total environment.

Success of Hebbian learning by similarity
Learning of place fields was considered successful in a cell if the

learned field showed sufficient similarity to the training field

according to three criteria: 1) the total area above a threshold of

20% peak rate has to be smaller than 0:6m2, 2) the place field

center has to be detected close to the desired location, i.e., no

further away than the place field radius (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=p

p
), and 3) the

desired place field has to have an area at least twice the size of all

other place fields.
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realizations. Dashed lines: 99% quantiles. Red line RMSE of the
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place cells. (D) Mean number of place fields for the proper place

cells. (E) Mean size of place fields for the proper place cells. (F)

Mean population sparseness. (G) Ratio of cells for which Hebbian

learning of place fields was successful (according to the three

similarity criteria defined in the Materials and Methods section).

Parameter used as before Ng~400, sp~0:01 m, sg~0:3,

Sp~2:56, Sg~1:5, 4 modules, 15 realizations, 10 for Sp~0:64.
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S2 Figure Effect of varying grid cell number Ng and grid cell

spike count Sg with constant NgSg on the capacity for storing

remappings in a square box. Place cell resolution and further

measures as functions of the number Ne of remappings stored for

Np~500. (A) Root mean square error (RMSE) of place cells. Blue

and green solid lines: Mean over realizations. Dashed lines: 99%
quantiles. Red line RMSE of the grid cell input. (B) Mean single

cell sparseness. (C) Ratio of proper place cells. (D) Mean number

of place fields for the proper place cells. (E) Mean size of place

fields for the proper place cells. (F) Mean population sparseness.

(G) Ratio of cells for which Hebbian learning of place fields was

successful (according to the three similarity criteria defined in the

Materials and Methods section). Parameters used are as before

Ng~400, sp~0:01 m, sg~0:3, Sp~2:56, Sg~1:5, 4 modules, 7

realizations, 15 for Ng~400, Sg~1:5, data from Fig. 8.

(EPS)
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Figure 3.1: Effect of the place cell spike number Sp on the capacity for storing
remappings in a square box. Place cell resolution and further measures as functions of
the numberNe of remappings stored forNp = 500. (A) Root mean square error (RMSE)
of place cells. Blue and green solid lines: Mean over realizations. Dashed lines: 99%
quantiles. Red line RMSE of the grid cell input. (B) Mean single cell sparseness. (C)
Ratio of proper place cells. (D) Mean number of place fields for the proper place cells.
(E) Mean size of place fields for the proper place cells. (F) Mean population sparseness.
(G) Ratio of cells for which Hebbian learning of place fields was successful (according to
the three similarity criteria defined in the Materials and Methods section). Parameter
used as before Ng = 400 , σp = 0.01m, σg = 0.3, Sp = 2.56, Sg = 1.5, , 4 modules,
15 realizations, 10 realizations for Sp = 0.64. Adapted from Kammerer and Leibold
(2014) with permission.
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Figure 3.2: Effect of varying grid cell number Ng and grid cell spike count Sg with
constant NgSg on the capacity for storing remappings in a square box. Place cell
resolution and further measures as functions of the number Ne of remappings stored
for Np = 500. (A) Root mean square error (RMSE) of place cells. Blue and green solid
lines: Mean over realizations. Dashed lines: 99quantiles. Red line RMSE of the grid
cell input. (B) Mean single cell sparseness. (C) Ratio of proper place cells. (D) Mean
number of place fields for the proper place cells. (E) Mean size of place fields for the
proper place cells. (F) Mean population sparseness. (G) Ratio of cells for which Hebbian
learning of place fields was successful (according to the three similarity criteria defined
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data from Fig. 8. Adapted from Kammerer and Leibold (2014) with permission.



Chapter 4

Discussion

In this chapter, the results are summarized and compared to the most relevant

experimental findings. Furthermore, the shortcomings of the models used in this

work are discussed. Other models are reviewed that give clues on how to resolve

those issues. Fig. 4.1 shows a schematic of sequence replay in HC that puts the

two mechanisms modeled in this thesis into context. During learning, pattern sep-

aration mechanisms select neural assemblies with little overlap used in the replay

of a memory sequence. One such pattern separation mechanism takes advantage

of shifts in MEC grid field phase. We investigated the limits and scaling behavior

of the MEC pattern separation mechanism in chapter 3. The model, by its spatial

nature, also tests aspects of the synchronization of spatial codes in MEC and HC.

For the replay phase (Fig. 4.1), we built on an existing model (Leibold and

Kempter, 2006), further improving its memory capacity by adding an inhibitory

population. We found that inhibition can improve the capacity of a network re-

playing sequences (Kammerer et al., 2013). At the capacity limit, replay of stored

sequences was reduced to short transient sequences. Both the length of these

sequences as well as the oscillations in inhibitory feedback are consistent with

reactivation of place cell assemblies during sharp wave ripples.

In the following, we will compare the sequences of our sequence replay model

(Kammerer et al., 2013), which use random neuron assemblies with few overlaps,

59



Chapter 4. Discussion 60

Figure 4.1: Schema of hippocampal replay. During learning (orange), new memory
sequences are encoded by potentiation of recurrent connections in CA3. For spatial
memories, MEC grid cell inputs are hypothesized to separate patterns used for memories
(model from Kammerer and Leibold (2014), chapter 3). Replay (blue), can be facilitated
by adding an inhibitory population, thereby increasing memory capacity (model from
Kammerer et al. (2013), chapter 2).

with the sequences that are encoded in actual hippocampal replay, which inher-

ently have overlaps. Additional models that address this and other problems are

reviewed. Then, we will revisit experimental findings on hippocampal replay. We

will argue that our model and its scaling predictions are applicable to the existing

interpretations of sequence replay experiments.

We then give a short overview of how observations of remapping strengthen the

view on how HC and EC encode space. Our own results regarding the synchro-

nization of the two spatial codes in HC and EC are discussed.

4.1 Properties of model sequences and alternative models

In spite of all efforts, we are far away from an integrative model that resolves all

problems that arise regarding replay of memory sequences. While our model of

sequence replay allows to investigate scaling properties with biological parameters

using high cell numbers, it has shortcomings. This paragraph summarizes the

gravest differences to real sequences. Other classes of models are discussed that

indicate how the brain might deal with several difficulties of sequence replay.
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Realistic sequences of place cell firing

The patterns used in our sequence replay model are fully randomized, and hence

have little overlap. Real sequences of place cell assemblies on the other hand have

overlap since their place fields have spatial overlap and change continuously during

movement. As a place field is traversed, the cell fires several times and hence

participates in several assemblies. Successive assemblies will therefore share many

cells. Only assemblies separated in time will have a chance to not overlap. Indeed,

the overlap is thought to be necessary to ensure synapses between assemblies can

be potentiated. Two place cells with overlapping fields fire over several theta

cycles, and theta phase precession ensures they fire in correct order (Skaggs et

al., 1996). This firing occurs on a time scale short enough to trigger short term

synaptic plasticity (STDP), and supposedly sets up the weights for sequence replay

during rest. If place cells did not overlap, the time scale would be dependent on

the animal’s speed, and STDP would not trigger reliably. The trade off is that

patterns in the sequence will have overlaps.

Continuous attractor models

The overlapping patterns created by STDP and phase precession, together with

a random trajectory would create a continuous attractor over time. The rea-

son is that one assembly is not only connected to the next subsequent assembly,

but to several, albeit more weakly. Nonetheless, this allows neural activity to

flow smoothly between assemblies, and the random trajectory ensures there is no

preferred direction. A continuous attractor model like this has been successfully

used to create cognitive maps of multiple environments at the same time (Sam-

sonovich and McNaughton, 1997). However, this model does not feature replay

of any form. The attractor state can be moved by external cues, which equates

to updating the internal representation of position by sensory inputs. Without

sensory inputs, the representation stays in one and the same location, and even

noise only generates a diffusive movement, not similar to real replay observations.

To make the model replay sequences, spike-frequency adaptation was added to

(Samsonovich and McNaughton, 1997) resulting in a model of mental exploration
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and replay (Hopfield, 2010). The adaptation causes the firing neurons in the at-

tractor assembly to fire less and less, making the attractor state move. This is

interpreted as mental exploration. Random paths through the environment can

be replayed like this. Even paths that were never experienced are possible, the

only requirement is that enough paths were experienced to create a continuous

attractor that covers the environment. Not only random paths can be replayed, it

is possible to include a preference for formerly experienced or mentally explored

paths. For this, the synapses connecting the assemblies of the experienced path

are slightly changed by an STDP rule. Activity is then more likely to flow along

the experienced path instead of randomly. This preferred path corresponds to the

observed bias towards replay of over-trained trajectories (Louie and Wilson, 2001;

Diba and Buzsaki, 2007).

Summarizing, there is a continuous attractor model that features replay of place

cell assembly sequences (Hopfield, 2010). It uses adaptation to move the inter-

nal representation of space, creating replay. For replay of specific sequences, an

additional STDP rule is necessary. While the mechanisms exist in HC, their pre-

cise role in replay has yet to be tested. Recently, a successful way of analyzing

capacity for continuous attractor models was described in (Monasson and Rosay,

2013; 2014). However, mental exploration is more difficult than maintaining an

attractor, since the energy landscape has to be very smooth. Hence the capacity

could be drastically lower in this class of model. It has not been tested using a

network that stores more than a few environments.

Wave-propagation path planning

Finally the mental exploration model can be altered to efficiently find the shortest

path to a target location (Ponulak and Hopfield, 2013). In this model, during

mental exploration, a target neuron assembly representing a target location is ac-

tivated. Then, instead of creating sustained firing in an attractor assembly, an

activity wave spreads from the target point, until it reaches the current position.

The wave potentiates the synapses via anti-STDP, allowing activity to flow back-

wards from the current position to the target. From this activity a motor signal
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can be constructed (Hopfield, 2010; Ponulak and Hopfield, 2013) to reach the tar-

get using the shortest path. Observing only few neurons in an experiment, such

waves would look like reverse replay. As mentioned for the model in (Hopfield,

2010), capacity for this model is potentially small, and only few environments

have been stored in the tested cases. In addition, it is prone to noise (Ponulak

and Hopfield, 2013), which would further decrease capacity.

Models based on continuous attractors give a reason why place cells should have

compact place fields, and ideally one place field. A constraint like spatial resolution

of the place code alone fails at this. Even cells with multiple overlapping place

fields spreading over the whole environment can produce high spatial resolution.

A disadvantage of continuous attractors is catastrophic forgetting, they simply

fail after a certain number of attractors has been stored. The continuous attractor

models reviewed here also show how forward and reverse replay can happen in

the same system. Forward replay could be mental exploration, and back ward

replay might be the backflow along the trace created by STDP in the model of

Hopfield (2010). Our model (Kammerer et al., 2013) cannot replay the same

sequence forward and backward. In general, it fails as soon as two sequences have

a single assembly in common. The ability to disambiguate at such a junction

in the sequence requires information about the previous states of the network, a

problem we discuss in detail in the next section.

Disambiguation of crossings in trajectories

Real sequences of place cell assemblies will likely share a complete assembly of neu-

rons when two trajectories intersect at one position. In our model such a crossing

point would lead to failure: as soon as either sequence reaches the crossing point,

the network would try to replay the remainder of both sequences. The model has

no mechanism to choose and replay only one. It has no track of its own history,

only its last state is important for the next update. A simple solution is to add

layers of neurons that delay the inputs by one or more time steps (Fukushima,

1973). A variety of models exists that use delays in more complex ways to also

deal with the temporal dimension of inputs, e.g. (Coolen and Gielen, 1988; Heskes
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and Gielen, 1992; Bartholomeus and Coolen, 1992; Herz et al., 1988), and several

of these models can be quantified by statistical mechanics (Herz et al., 1991). A

different solution (Minai et al., 1993) includes the history implicitly by adding a

subset of neurons with fixed recurrent connectivity, and no explicit delays. The

subnetwork’s internal state contains the history of the inputs and permits disam-

biguations of sequences that share several items.

Reservoir computing models

The principle of implicitly keeping track of time by using recurrent network dy-

namics is taken to the extreme in the framework of ’reservoir computing’ (Maass

et al., 2002; Jaeger, 2001). Only the recurrent network is used, with static synap-

tic weights, and an output layer with plastic synapses. Learning happens in the

synapses of the output layer using supervised learning techniques. If the reservoir

parameters are chosen well, it works as a map from input space into a higher di-

mensional space of neuronal states. The higher dimension allows for two things:

separation of similar patterns (separation property), and mapping of multiple in-

puts over time into a single pattern that can be read out in one time step (memory

property). The read out is done by an output layer of neurons. The recurrent net-

work essentially works as a black box. The only demand on it is to produce high

dimensional trajectories and to have memory. The memory property of the dy-

namics can be controlled by capacitive effects in the neuron model, short term

plasticity, and also recurrent connectivity. The separation property could be a

mechanism for global remapping. In this scenario, few inputs encoding the con-

text could enforce the use of a very different neuronal code in the reservoir, which

results in global remapping. In addition, the memory property can potentially be

used to evaluate different paths. A path, encoded by multiple place cells firing

over time, can be mapped to a single neural code that summarizes information like

path length, energy cost or other behaviorally relevant measures. Alternatively,

an often used path can be tagged with a neural code that later can be used by

other brain areas.
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Next step for reservoir computing models

An understanding of how the memory property and separation property of a reser-

voir react to changes in network parameters is only the first step. To relate the

model to real systems it is required to understand how synaptic plasticity can

benefit the reservoir. Yet the addition of plasticity rules make it harder to create

a working reservoir. One successful model that endows the reservoir with addi-

tional useful properties is SORN (Self Organizing Recurrent Network) (Lazar et

al., 2009). By carefully combining three plasticity mechanisms, the recurrent con-

nections learn unsupervised, followed by a supervised learning step in the output

layer alone. This improves the performance in several tasks by creating more di-

verse trajectories in the recurrent network, which in turn makes it easier for the

output layer to produce the correct output. One interesting effect is that the plas-

ticity rules cause activity in the recurrent network to be more sparse (Fig. 4 in

(Lazar et al., 2009)). Another observation is a generalization of a counting task,

in which plasticity causes similar inputs to be mapped to similar states (the fifth

letter in both series abbbbbbc and deeeeeef). These results make it seem feasible

to find appropriate inputs that produce sparse place field firing from exploratory

behavior. While other models have achieved this (Franzius et al., 2007), doing the

same with a reservoir model would combine the abilities to represent space and to

perform complex tasks including sequences of spatial and other memories.

4.2 Sharp wave ripples and replay events

Several experiments show sequential firing of neural ensembles. There are three

cases to be considered (Buhry et al., 2011). Replay of sequences can be observed

during sleep, in particular slow wave sleep (Lee and Wilson, 2002). Replay is also

found during wakeful rest while a behavioral task is going on, and can happen

in a forward as well as backward direction (Csicsvari et al., 2007; Foster and

Wilson, 2006; Diba and Buzsaki, 2007). Finally, preplay has been observed during

wakeful rest (Gupta et al., 2010; Dragoi and Tonegawa, 2011; 2013). Preplay

refers to sequential firing of place cell ensembles that were not experienced during
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preceding behavior. Preplay of was observed before movement along a linear track.

One study (Dragoi and Tonegawa, 2011) found preplay of a linear track before

the animal crossed the track, and replay afterwards. Presumably the preplay

represented mental exploration or planning. One criticism is that the animal

had experienced the whole environment beforehand. Another experiment found

preplay in a formerly not experienced environment (Dragoi and Tonegawa, 2011),

which suggests that the sequences observed are pre-wired (Buhry et al., 2011).

Replay during slow wave sleep

The case of replay during sleep is of special interest since memory consolidation is

believed to happen during sleep (Marr, 1971; Crick and Mitchison, 1983; Diekel-

mann and Born, 2010). During sleep, it is observed that both SWR and replay

correlate with memory performance (Axmacher et al., 2008; Dupret et al., 2010).

The more SWR or replay events are observed, the better the memory performance.

A causal link could be established as well (Girardeau et al., 2009; Ego-Stengel and

Wilson, 2010). Disrupting replay when SWR are detected during SWS signifi-

cantly affects memory performance. However, the memory performance is still

satisfying from a behavioral point of view, indicating that either the disruption is

not affecting all replay events, or that there are other mechanisms of consolidation

at work (Buhry et al., 2011). In particular it is not clear if each SWR is accom-

panied by sequential activity or vice versa (Buhry et al., 2011), which could also

explain the small effect.

In addition to the directly observed connection to memory consolidation, the SWR

and replay events during sleep show all the necessary capacities to induce synaptic

changes in the form of LTP and STDP (Bliss and Lomo, 1973; Gerstner et al.,

1996; Markram et al., 1997; Magee and Johnston, 1997; Buzsaki et al., 1983).

Replay and reverse replay during wakeful rest

Replay events and SWR were also found during wakeful rest (Csicsvari et al.,

2007; Foster and Wilson, 2006; Diba and Buzsaki, 2007). In addition to regular
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replay, reverse replay was found. Replay does not always start at the rat’s actual

position. This can be seen as mental exploration. Alternatively it could mean

that consolidation starts while the animal is still awake and performing the task

(Buhry et al., 2011).

Preplay

A third type of sequential activity was found later and termed preplay. Preplay

events represent trajectories never before realized by the animal. Finding these

events requires more careful analysis than used in earlier replay experiments, and

it was pointed out that these older experiments might show preplay if analyzed

differently (Buhry et al., 2011). Arguably replay is an artifact, and the system’s

sequences are determined and not altered by experience. The connection to experi-

ences is made by mapping the sensory inputs to these existing sequences. Different

mappings might exist in parallel. This is in accordance with our model of remap-

ping, that turned out to be uncontrollable by Hebbian learning. Sparsity could

be controlled, but not the exact place field locations. Much like the place code

generated by our model, the sequences are set in stone by some process, and their

abundance should allow for sufficient mappings from experiences to sequences.

Relevance of our model

Our model of sequence replay is compatible with all possibilities implied by the

observations of replay and preplay: the replay during sleep might be an inherent

replay to consolidate the synaptic changes made during behavior. The awake

behavior could be an inscription phase as well, or mental planning using memories.

In both cases, inscription can mean two things. It can constitute changes in the

synaptic matrix of the recurrent network, or instead, changes in the mapping

from sensory areas to preexisting sequences of the recurrent network, leaving its

internal synaptic weights unchanged. Correspondingly, replay can be seen in these

two ways. Regarding our model, it has a learning phase in which the synapses

of the recurrent network are changed, which seems incompatible with the idea of

preexisting sequences. Yet we do not specify when this learning happens. For
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the case of preexisting sequences, this learning phase might happen early during

development, and all our results about capacity and transient replay are still valid.

The case of experience based changes in the recurrent network is covered as well,

since new sequences can be added at any time. However, in that case many models

assume a mechanism of forgetting that favors new synaptic connections by slowly

erasing older connections. In our model a mechanism of forgetting is implied

by fixing the synaptic connectivity c, yet all sequences contribute equally to this

connectivity, old or new. Indeed the model fits the case of preexisting sequences

better.

The observation of forward and backward replay in the same experiment (Diba

and Buzsaki, 2007) cannot be explained by our model alone. As mentioned earlier,

to disambiguate between forward and backward replay, the model would need a

means to identify context, e.g. by keeping track of the history of network states.

Nonetheless, it is possible that forward and reverse replay are caused by different

mechanisms.

4.3 Remapping

Remapping is a phenomenon that casts light on several hypothesis of hippocampal

function. One is the hippocampal area CA3 implementing associative memory.

The other is the idea that HC and MEC both contain cognitive maps of space,

where MEC is more restricted to space alone whereas HC has the possibility to

combine spatial information with content from many other sensory modalities and

brain areas.

The hippocampus encodes episodic memories (Squire, 2004). In particular, CA3 is

hypothesized to be crucial for memory functions, since its high recurrent connec-

tivity (Amaral and Witter, 1989) allows it to work as an auto-associative memory

network (McNaughton and Morris, 1987; Marr, 1971; Treves and Rolls, 1992).

This hypothesis is backed up by the finding that remapping is stronger in CA3
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than in CA1 (Leutgeb et al., 2004; 2005). Remapping decorrelates neural repre-

sentations, which is important for memory networks, but not so much for networks

that mostly receive feed forward connections, like CA1.

To encode episodic memories, CA3 needs to combine spatial and non-spatial infor-

mation. From anatomical studies it is known that HC has access to all information

in neocortex (Van Hoesen and Pandya, 1975; Swanson and Kohler, 1986; Amaral

and Lavenex, 2006). In addition, remapping shows that CA3 not only relies on

spatial cues, but also on context like wall color (Leutgeb et al., 2005) or details of

the behavioral task (Wood et al., 2000). Hence the remapping experiments further

corroborate that CA3 indeed uses more than spatial information.

Grid cells in entorhinal cortex on the other hand show more simple behavior during

remapping (Fyhn et al., 2007). When CA3 undergoes rate remapping, the gird cell

firing maps stay unchanged. Global remapping in CA3 is accompanied by shifts

and in some cases also rotations of grid fields in EC. Yet these transformations

are not as radical as in CA3, CA1 or DG. In grid cells, the mean firing rates

stay the same and no cell ceases firing. Based on this contrast between CA3 and

EC during remapping one can hypothesize that the grid code represents a second

code for space, not influenced by context. Along this line, it has been argued that

CA3 place fields fully draw spatial information from EC, and the CA3 network

merely deals with context (Sharp, 1999), effectively separating the workload to

increase memory capacity in CA3. This is disputed by experiments that show

that place cell code is developed before grid cell code in young rats (Wills et al.,

2010). Nevertheless there is enough spatial information in the grid code of the rat

pups to create place fields (Azizi et al., 2014). Independent of HC, the EC has

great relevance for navigation and is hypothesized to work as a path integrator

(McNaughton et al., 2006). Path integration allows an animal to retrace its path

or find the shortest way home in complete darkness in absence of any cues but

proprioception and the vestibular system. The ability to find home in darkness is

affected by damage to the EC (Parron and Save, 2004).

Taken together, the evidence draws a picture of EC holding a map of space,
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whereas HC also holds spatial information, and in addition associates spatial con-

tent with context from all over the cortex. The idea that EC is specialized in en-

coding space without context is consistent with the fact that the grid code meets

optimal requirements for encoding space and outperforms place codes (Mathis et

al., 2012). Unraveling how the two codes interact is an important endeavor for

experimentalists and modelers.

We investigated (Kammerer and Leibold, 2014) the feed forward connections from

MEC to CA3 or CA1 in a grid to place cell model, under the hypothesis that the

connections are learned by Hebbian learning. We find that it is not possible to

learn place field positions in a controlled manner using Hebbian learning on the feed

forward connections of a grid to place cell model, as was found before for a similar

model (Cheng and Frank, 2011). Instead of showing up on the learned location,

place fields mostly show up at multiple random locations. However, we show it is

possible to control place field sparsity and to maintain a good spatial resolution

by controlling parameters like inhibition. Indeed a good spatial resolution is easily

obtained whereas sparse place fields require more careful adjustment of parameters.

The most efficient way we encountered to control place cell sparseness is to only

use a few place cells in each remapping. Hence we postulate that the finding that

not all place cells participate in all remappings is necessary to successfully read

out grid code while maintaining sparse and compact firing fields.

The little control over positions of place fields during learning in our model can

be fixed in two ways. The first is to assume that the place field positions are not

controllable, and CA3 acts as a random network, in which each assembly only is

assigned a meaning in the read-out layer. This situation resembles the reservoir

computing, a full recoding step in the read-out layer is required. Alternatively, ad-

ditional mechanisms might help control place field positions. For example, a setup

in CA3 using multiple continuous attractors (see Samsonovich and McNaughton

(1997)) could stabilize place fields, and the grid to place model presented here

could be used to move the attractor and address the different remappings.
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4.4 Concluding remarks

The hippocampal formation participates in episodic memory and memory consol-

idation. It also encodes space in place cell and grid cell networks. Experimental

evidence from anatomy, human patients, and electrophysiology in animals, gives

an opportunity to constrain individual models to match various experimental ob-

servations.

The idea that remapping, which is observed in a spatial context, serves memory

networks as pattern separator is very fruitful. In this thesis a pattern separation

mechanism based on remapping was analyzed, and the results emphasize that the

compact place fields we see in hippocampus likely are needed for more than just

spatial resolution of the place code. As mentioned in the discussion, continuous

attractor models can indeed take advantage of such compact place fields to effi-

ciently navigate to a target location. Both models contribute to a more concise

picture of why we find compact place fields.

Models of the hippocampal area go beyond explaining experimental observations.

Many models illustrate powerful principles like pattern separation. Reservoir com-

puting models for example showcase the principle of dimensional expansion of neu-

ral code. They also quantify how mechanisms like short term synaptic plasticity

endow the network with memory. While reservoir computing models do not ex-

plain experimental findings in hippocampus, the principles they unveil might one

day gain importance in a new experimental context. At the very least they can

guide our intuition when building models.
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